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Abstract. Fully Homomorphic encryption (FHE) has been gaining popularity as
an emerging way of enabling an unlimited number of operations on the encrypted
message without decryption. A major drawback of FHE is its high computational cost.
Especially, a bootstrapping that refreshes the noise accumulated through consequent
FHE operations on the ciphertext is even taking minutes. This significantly limits
the practical use of FHE in numerous real applications.
By exploiting massive parallelism available in FHE, we demonstrate the first GPU
implementation for bootstrapping CKKS, one of the most promising FHE schemes that
support arithmetic of approximate numbers. Through analyzing FHE operations, we
discover that the major performance bottleneck is their high main-memory bandwidth
requirement, which is exacerbated by leveraging existing optimizations targeted to
reduce computation. These observations lead us to extensively utilize memory-centric
optimizations such as kernel fusion and reordering primary functions.
Our GPU implementation shows a 7.02× speedup for a single FHE-multiplication
compared to the state-of-the-art GPU implementation and 0.423us of amortized
bootstrapping time per bit, which corresponds to a speedup of 257× over a single-
threaded CPU implementation. By applying this to a logistic regression model
training, we achieved a 40.0× speedup compared to the previous 8-thread CPU
implementation with the same data.
Keywords: Fully Homomorphic Encryption · Bootstrapping · Logistic regression ·
GPU · Kernel fusion

1 Introduction
Homomorphic encryption (HE) enables one to perform operations on encrypted data
without decrypting them and the result can be decrypted only with the secret key. As
HE reveals nothing about the input or output except their sizes during computation, it
has been spotlighted as a core technology for the applications such as privacy preserving
computation. The HE schemes in an early stage had restrictions on the number and type
of operations. After Gentry’s breakthrough, however, these restrictions have been removed
to obtain Fully Homomorphic Encryption (FHE), where an unlimited number of operations
are allowed with the help of bootstrapping operation [Gen09].

The CKKS (Cheon-Kim-Kim-Song) scheme is the one that has recently gained attraction
with their efficient approximate computation [CHK+19]. As opposed to the other FHE
schemes, this scheme is equipped with rounding operations as well as addition and
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multiplication (mult) of real numbers as the primitive operations, and so provides efficient
fixed-point arithmetic on ciphertexts. Its advantage is prominent in the fields of privacy-
preserving data analysis and machine learning. In the secure genome analysis competition
iDash, for instance, most of the winners and runner-ups in the HE track has employed
CKKS since 2017 [WTW+18, KJT+20, JHK+20]. However, its performance is still far from
satisfaction for the industry practitioners [Cra19, YZLT19, ZLX+20, BHS19, HLF+19];
Bootstrapping, the most inefficient operation in CKKS, even takes more than 60 seconds
in a conventional PC environment [CHK+18] on a 128-bit security parameter set.

In this paper, we address these challenges by improving the performance of FHE
schemes, focusing on the CKKS scheme with a Residue Number System (RNS) [CHK+19],
which is the most efficient scheme for many applications. Furthermore, we strive to
maximize the parallelization of the FHE operations, by exploiting a high-performance
commodity platform, GPU. That is, all the operations of CKKS have been implemented
to run on GPUs, including the HE mult and bootstrapping, which are the most frequently
used primitive one and the slowest one, respectively.

Through analysis, we discover that the FHE operations have high memory bandwidth
and capacity requirements. Most FHE schemes require many evaluation keys for manipu-
lating ciphertexts (e.g., mult key and rotation keys), whose size is large as each key is a
ciphertext of a certain value related to the secret key. When examining the mult operation
of CKKS (HMULT), we observe that the arithmetic intensity (OP/B, operation per byte) of
HMULT’s primary functions is low. Hence, they are not bottlenecked by the limited number
of arithmetic units (compute-bound) but by limited memory bandwidth (memory-bound)
on modern GPUs. In particular, Tensor-product and Inner-product in key-switching exhibit
very low arithmetic intensity (lower than 3 OP/B in Figure 2(b)). We also identify that
most of the existing performance optimization techniques further increase the memory
bandwidth and capacity requirements; these include RNS-decomposition [BEHZ16], effi-
cient mod-up/down operations [CHK+19], improved linear transformation [HHC19], and
efficient bootstrapping [HK20]. Especially, using a large decomposition number (dnum)
heavily increases memory capacity and bandwidth requirement.

These key observations lead us to devise memory-centric optimizations to improve the
performance of CKKS on GPUs substantially. First, we fuse the functions that compose
an individual HE operation, such as HMULT (intra-HE-fusion), and the ones across HE
operations (inter-HE-fusion), through which we reduce main-memory accesses. Second,
in contrast to the prior work that trades computation cost with multiplicative level (the
number of subsequent HMULT on a ciphertext) [HK20], we also consider main-memory
bandwidth and capacity requirements while finding the optimal dnum for HMULT.

Thanks to the aforementioned memory-centric optimizations, our HMULT and rescaling
implementations perform 7.02× and 1.36× better, respectively, against the recent result
of [BHM+20] while using the same GPU generation. We are the first to report the
performance of bootstrapping in CKKS implemented on GPUs after applying recently
proposed algorithm-level optimizations such as [HK20]. The proposed GPU implementation
overtakes the speed of a single-thread CPU implementation by 257×. The wall-clock time
for bootstrapping is reduced to 526.96ms in a 173-bit security parameter set with 65,536
slots and 19-bit precision bit, which translates into 0.423us in terms of amortized time
per bit. Our result is orders of magnitude superior to the recent works that produce
298us [HK20] and 519us [CCS19] in 128-bit security parameter sets. To demonstrate
the effectiveness of the proposed optimizations at an application level, we implement
Logistic Regression in the same way as [HHCP19] on GPUs. The evaluation confirms
that, compared to the implementation on an 8-threaded CPU, there is 40.0× improvement
(from 31.0 to 0.775 seconds per iteration) in speed when training with the same data as
[HHCP19].

Finally, we propose ‘amortized FHE-mult’ time as a new unit of measurement for
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comparing the performance of mult in FHE. Amortized FHE-mult refers to the average
time required per mult when an unlimited number of HMULTs are possible by bootstrapping.
We calculate this time by measuring the average HMULT time plus the bootstrapping
time divided by the maximum number of subsequent mults between two bootstrapping
operations. The amortized FHE-mult time of our implementation is 24.35 ms, through
which we believe that practical privacy-preserving applications can be developed.

2 Background

2.1 Notation for Homomorphic Encryption

Let Ci = {q0, · · · , qi} and B = {p0, · · · , pk−1} be the sets of prime numbers where all the
primes in each set share the same bit-length. Let [a]Ci(∈

∏i
j=0(Z∗qj )

N ) = NTT([a(X)]Ci) =
(NTT([a(X)]qj ))qj∈Ci where NTT means the Number Theoretic Transform operation and
iNTT is the inverse NTT. [·]qj denotes the modular reduction by qj (e.g., [a(X)]qj ∈ Rqj =
Zqj [X]/(XN + 1)). If not ambiguous, we use a to represent [a]Ci . [a]Ci can also be denoted
as (a(j))j∈[0,i] where each a(j) = (a(j)

u = [a(ωuqj )]qj ∈ Z∗qj )u∈[0,N−1], wqj is the primitive

N -th root of unity in Z∗qj , and [x, y] = {a ∈ Z|x ≤ a ≤ y}. a $←− A means a is sampled from
the distribution A. If A is a set, it refers to the uniform sampling over A. χerr is the error
distribution used for encryption and key generation in CKKS [CKKS17]. � denotes the
Hadamard multiplication. SY and S ′Y are two disjoint subsets of Y (∈ {CL,B}). The level of
a ciphertext ct refers to the number of multiplication that can be performed with ct without
bootstrapping. L(`) is the maximum (current) level of a ct. For a given arbitrary parameter
dnum∈Z+, α=((L+1)/dnum)∈Z+ and β=d(`+1)/αe. We define P=

∏k−1
i=0

pi, Q′=
∏αβ−1

i=`+1
qi, Q̂=PQ′,

Q̂′′′j =
∏

qi∈SCL
qi×
∏

pi∈SB∧i6=j
pi, Q̂′′j =

∏
qi∈SCL∧i6=j

qi×
∏

pi∈SB
pi, Q̂j=

∏dnum−1
i=0∧i6=j

Q′i, {Q′j}j∈[0,dnum−1]=

{
∏(j+1)α−1

i=jα
qi}j∈[0,dnum−1], Ai=[iα,iα+α−1], C′i={qiα,...,qiα+α−1}, and Di=(B∪(∪0≤j<iC′j). evk =

(evki)i∈[0,dnum−1] is a key-switching key.
Followings are the descriptions of the sub-routines used for the operations in CKKS.

RLWECi(s,m) generates a Ring Learning with Error instance from s = [s]Ci acting as a
secret key and m = [m]Ci as a message to be added to the instance. For this, it first
performs e $←− χerr then it returns (a $←−

∏i−1
j=0(Z∗qj )

N , b← a�s + e + m). We omit Ci when
i = L. FrobeniusMap(a, n) denotes the Frobenius map function on NTT domain [HK20].
For every a(i) = (a(i)

j )j∈[0,N−1] in {a(i)}i∈[0,`], it generates a′(i) = ((a(i)
π−1
n (j))j∈[0,N−1] where

πn(x) = ([5n(2x+ 1)]2N−1)/2, which is a permutation. Then it returns a′ = (a′(i))i∈[0,`].
Fast basis conversion (Conv), which converts the basis of a polynomial into a new basis

that is coprime to the original basis [CHK+19, BEHZ16], approximate modulus raising
(ModUp), RNS decomposition (Dcomp), and approximate modulus reduction (ModDown) are
described in Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4, respectively [HK20].
Please refer to Appendix C for more information about the subroutines and notations.

Algorithm 1: ConvSCL∪SB→S′CL∪S
′
B

([a(X)]SCL∪SB) (Fast Basis Conversion)

1 for qi ∈ S ′CL ∪ S
′
B % we use qi instead of pi to represent the elements in S ′B

2 [ã(X)]qi ←
[∑

qj∈SCL
[[a(X)]qj · Q̂′′j−1]qj · [Q̂′′j ]qi

]
qi

3 [ā(X)]qi ←
[∑

pj∈SB [[a(X)]pj · Q̂′′′j −1]pj · [Q̂′′′j ]qi
]
qi

4 [ã(X)]qi ← [ã(X)]qi + [ā(X)]qi
5 end for
6 return [ã(X)]S′B∪S′CL = [ã(X)]S′B ||[ã(X)]S′CL
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Algorithm 4: Approximate Modulus Reduction
1 procedure ModDownDβ→C`(b̃

(0), b̃(1), ... , b̃(k+αβ−1))
2 [b̃]Dβ−C` ← (b̃(0), ... , b̃(k−1),b̃(k+`), ..., b̃(k+αβ−1))
3 [b̃(X)]Dβ−C` ← iNTT([b̃]Dβ−C`)
4 [ã(X)]C` ← ConvDβ−C`→C`([b̃(X)]Dβ−C`)
5 [ã]C` ← NTT([ã(X)]C`)
6 for 0 ≤ j ≤ ` do
7 b(j) = [Q̂−1]qj ·

(
b̃(k+j) − ã(j)) (mod qj)

8 end
9 return (b(0), ..., b(`))

10 end procedure

Algorithm 2: ModUpC′
i
→Dβ ([a]C′

i
)

1 ([a(X)]C′
i
)←iNTT([a]C′

i
)

2 (ã(j))j∈Ai=(a(j))j∈Ai
3 [ã(X)]Dβ−C′i

← ConvC′
i
→Dβ−C

′
i

([a(X)]C′
i
)

4 (ã(j))j∈([0,k+αβ−1]−Ai)←NTT([ã(X)]Dβ−C′i
)

5 return [ã]Dβ=(ã(0),· · · , ã(k+αβ−1))

Algorithm 3: Dcomp(d=(d(0),· · ·,d(`)))
1 d(j) ← 0 ∀j ∈ [`+ 1, αβ − 1]
2 d

(i)
j ←d(jα+i)·[Q′]qjα+i ·[Q̂j−1]qjα+i ∀i ∈
[0, α− 1],∀j ∈ [0, β − 1].

3 dj ← (d(i)
j )i∈[0,α−1] ∀j ∈ [0, β − 1]

4 return ~d = (dj)j∈[0,β−1]

2.2 An Overview of GPU Architecture

We briefly explain the architecture of modern GPUs. Typical GPUs exploit massive
thread-level parallelism (TLP) by exploiting many scalar, in-order processors that run
concurrently. A GPU consists of dozens of hardware units called Streaming Multiprocessors
(SM ), each of which can run thousands of threads concurrently. Threads in a GPU are
grouped into a unit called thread block. Threads in a thread block share the resource
assigned to the thread block, such as register file and a user-configurable scratchpad
memory, called shared memory, typically sized several dozens of KBs [NVI17, NVI21].

Threads in a thread block are again grouped into a unit of 32 threads, called warp.
All the threads in a warp execute an instruction at a time in a lockstep manner. An SM
can hold multiple thread blocks at a time. Each SM holds multiple warp schedulers, each
selecting one or more warps ready for issuing an instruction at the cycle. The latency of an
instruction executed by a warp is hidden by other warps selected by the warp schedulers.
Thus, GPU is well suited to well-parallelizable programs and can run a massive number of
threads in a throughput-oriented manner. A group of thread blocks is grouped into a unit
called grid. The number of thread blocks in a grid and the number of threads in a thread
block is specified by the execution unit of GPU called kernel, a user-specified function
called by CPU.

Our target GPU architecture is NVIDIA Tesla V100 GPU [NVI17], which we use for
all the experiments in this paper. It features 80 SMs that can run up to 163,840 threads
concurrently. Compared to a modern server-class CPU that typically has a last-level
cache sized dozens of MBs, a GPU has a smaller cache but provides higher main-memory
bandwidth. We evaluated the performance of our CPU implementation of CKKS with Intel
Xeon Gold 6234 [Int20] that has 24.75 MBs of last-level cache per socket, which is large
enough to accommodate one or two polynomials with typical HE parameters. In contrast,
Tesla V100 has a last-level cache of 6 MBs but is equipped with a large main-memory
bandwidth of 900 GB/s, being suitable for throughput-oriented programs.
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3 CKKS: the state-of-the-art FHE

3.1 Polynomial Arithmetic in CKKS

Each ciphertext of CKKS is represented as a pair of polynomials of degree < N in
RQ = ZQ[X]/(XN + 1) and a FHE operation consists of polynomial operations. Since
the polynomial degree N is very high (e.g., degree N = 216 or 217) and the coefficient size
is very big (e.g., logQ = 2, 000), such polynomial arithmetic is very costly in FHE. For
example, FHE-mult [CLP17, Cry20, HS14] becomes slower by a factor of thousands in
terms of latency, compared to the native mult in the unencrypted domain.

Due to the high mult cost between polynomials, FHE schemes [BEHZ16, CHK+19,
BPA+19] typically have their own variants with Residue Number System (RNS) [GHS12] to
reduce their computational cost. First, by exploiting Chinese Remainder Theorem (CRT),
they represent each big-integer coefficient as a set of residues, each being the coefficient
modulo a distinct prime number. The mult between two big integers is translated into
point-wise mult between the two sets of residues, avoiding expensive multi-word arithmetic.

Second, they use Number Theoretic Transform (NTT) [AB75, Har14] and its inverse
transformation (iNTT) for polynomial ring mult. NTT is a variant of Discrete Fourier
Transform (DFT) [CCF+67] performed on a finite field of integers. It reduces the oper-
ational complexity of the mult in a polynomial ring Rqi from O(N2) to O(N logN). A
naïve mult of two polynomials, a(X) =

∑N−1
i=0 aiX

i and b(X) =
∑N−1
i=0 biX

i ∈ Rqi outputs
a polynomial c(X) =

∑N−1
i=0 ciX

i ∈ Rqi whose coefficients (c0, . . . , cN−1) are negacylic con-
volution of two sequences (a0, . . . , aN−1) and (b0, . . . , bN−1). The negacyclic convolution is
replaced with the following operations: two NTT performed on each integer sequence, one
element-wise modular mult between the two sequences in the NTT domain, and one iNTT
on the output of the element-wise mult. Because the computational complexity of NTT
and iNTT is both O(N logN) and the element-wise mult is O(N), the total complexity
becomes O(N logN).

We target a recent RNS variant of the CKKS scheme [HK20]; it is an improved version
of [CHK+19] in that they reduced complexity by adopting a generalized key-switching
technique through RNS decomposition, which is explained in detail in the following section.
Throughout this paper, we call this scheme CKKS.

3.2 Description of CKKS

We compactly describe CKKS [HK20] and its core operations. CKKS encodes message ~z,
a vector of N/2 complex numbers, into a polynomial m(X) ∈ RQ, called plaintext. The
encoding step is twofold: (1) performing inverse Discrete Fourier Transform (iDFT) on ~z,
and (2) scaling up by multiplying with a scalar value ∆ (called scaling factor), followed by
a rounding operation. Typical values of ∆ range from 240 to 250.

CKKS encrypts a plaintext m(X) as ct← RLWE(s,m)1 where s ∈
∏L
i=0(Z∗qi)

N is the
secret key and m ← NTT([m(X)]CL). The ciphertext has the level L after encryption.
A single execution of FHE-mult (HMULT) followed by rescaling, a function adjusting the
scaling factor ∆ of the message, reduces one level of the ciphertext. For an HE circuit
reducing the input ciphertext level by d, we call d as multiplicative depth of the circuit.

We provide the details of FHE-mult and other FHE operations in Algorithm 5 - 9.
CMULT(ct,m) returns (ma,mb) where (a, b)← ct. HMULT (HADD) multiplies (adds) ct0 to
ct1. HROTATE rotates the message in ct by rotation index sn. RESCALE performs rescaling
operation for ct.

1The process of encryption using a public key rather than a private key is different from this, but the
form of the result is the same. However, there is a difference that the size of the included error increases.



6
Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through

Memory-centric Optimization with GPUs

Modulus Raising

CoefficientToSlot

SlotToCoefficient

A
p

p
ro

x
im

a
te

 m
o

d
 q Scaling

Sine Evaluation

Applying 
double angle formula

𝒇𝒓𝒆𝒔𝒉




ொಽ


ொ


Coefficient
Space

(a)

Modulus Raising

CoefficientToSlot

SlotToCoefficient

A
p

p
ro

x
im

a
te

 m
o

d
 q Scaling & Shift

Cosine Evaluation

Applying 
double angle formula

𝒇𝒓𝒆𝒔𝒉




ொಽ


ொ


Coefficient
Space

(b)

Figure 1: Flow diagram of (a) the original CKKS bootstrapping algorithm [CHK+18] and
(b) ours adopting cosine evaluation in [HK20] and slim bootstrapping in [CH18].

Algorithm 5: HMULT(ct0,ct1,evk)
1 ct0 → (a0, b0),ct1 → (a1, b1)
2 d2 ← (a0 � a1), d0 ← (b0 � b1)
3 d1 ← (a1 � b0 + b1 � a0)
4 (c′0, c′1)← KeySwitch(d2, evk)
5 return ctmult = (d1 + c′0, d0 + c′1)

Algorithm 6: HROTATE(ct,sn,evk)
1 ct → (a, b)
2 a′ ← FrobeniusMap(a,sn)
3 b′ ← FrobeniusMap(b,sn)
4 (a′′, b′′)← KeySwitch(a′,evk)
5 return ct′ = (a′′, b′ + b′′)

Algorithm 7: HADD(ct0,ct1)
1 ct0 → (a0, b0),ct1 → (a1, b1)
2 d0 ← (a0 + a1)
3 d1 ← (b0 + b1)
4 return (d0, d1)

Algorithm 8: RESCALE(ct)
1 ct→ ([a]C` , [b]C`)
2 a′(j) ← [q−1

` (a(j)−NTT([iNTT(a(`))]qj ))]qj ,j∈[0,`−1]
3 b′(j) ← [q−1

` (b(j)−NTT([iNTT(b(`))]qj ))]qj ,j∈[0,`−1]
4 return ([a′]C`−1 , [b′]C`−1)

Algorithm 9: KeySwitch([d]C` ,evk) performs key-switching over d
1 ~d ← Dcomp(d), (dj)j∈[0,β−1] ← ~d

2 [d̃j ]Dβ =(d̃(0)
j ,d̃(1)

j ,· · · ,d̃(k+αβ−1)
j )← ModUp([dj ]C′

j
) for j ∈ [0, β − 1]

3 ([c0]Dβ , [c1]Dβ ), where (c(i)0 , c
(i)
1 ) = Σβ−1

j=0 d̃
(i)
j ∗ evk(i)

j for i ∈ [0, k + αβ − 1]
4 ([c0]C` , [c1]C`) ← (ModDown([c0]Dβ ),ModDown([c1]Dβ ))
5 return ([c0]C` , [c1]C`)

Throughout the paper, we call the step 3 in Algorithm 9 as Inner-product.

3.3 Bootstrapping in CKKS
Before the level of a ciphertext is depleted by consecutive operations, bootstrapping must
be performed on the ciphertext to reset its level and to allow more FHE operations on the
ciphertext. We briefly explain the CKKS bootstrapping algorithm [CHK+18, HK20].
Modulus Raising: Let ct be a ciphertext given by encrypting a plaintext m(X). Let
the current modulus of ct be q = q0 having zero level. Our goal is to increase the
modulus (or, level). First, the modulus of ct is increased into QL, the modulus of a freshly
encrypted ciphertext, producing ct′. Although the level is increased, it adds an error
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polynomial q · I(X) to the plaintext: Decrypt(ct′) = t(X) = m(X) + q · I(X), where I(X)
is a polynomial whose coefficients are integers bounded to a small integer K, which is
determined by the secret key distribution. To remove the error, we apply the approximate
modulo operation in a homomorphic way.
CoefficientToSlot: Let the plaintext t(X) = t0 + t1X + t2X

2 + . . .+ tN−1X
N−1 be the

decryption of ct′ in Modulus Raising and its decoding be ~z. The goal of CoefficientToSlot
is to compute ct1 and ct2, which contain messages ~z1 = (t0, t1, . . . , tN/2−1) and ~z2 =
(tN/2, tN/2+1, . . . , tN−1), respectively. ct1 and ct2 are computed by evaluating encoding
circuit, the linear transformations on ct:

~z1 = 1/N · (VT
~z + VT~z), ~z2 = 1/N · (WT

~z + WT~z)

where

V =


1 ω0 · · · ω

N
2 −1

0

1 ω1 · · · ω
N
2 −1

1
...

...
. . .

...
1 ωN

2 −1 · · · ω
N
2 −1
N
2 −1

 and W =


ω
N
2

0 ω
N
2 +1

0 · · · ωN−1
0

ω
N
2

1 ω
N
2 +1

1 · · · ωN−1
1

...
...

. . .
...

ω
N
2
N
2 −1 ω

N
2 +1
N
2 −1 · · · ω

N−1
N
2 −1

 .

Instead of performing two linear transformations, the relationships iV = W and
VT

~z = VT~z are exploited, requiring only one linear transform to produce VT
~z, and the

following homomorphic conjugation and addition/subtraction compute the other terms.
Approximated modulo operation: For the two ciphertexts ct1 and ct2, we want to
perform modular reduction on each element of their message: (ti mod q) for all i. However,
because the modular reduction operation is not available in FHE, twofold approximation
of modulo operation is used instead. First, modulo q operation is approximated as a scaled
sine function, such as f(t) = q/2π sin(2πt/q) [CHK+18]. It exploits the facts that each
value ti in message ~z1 and ~z2 is distributed near q · I for an integer I ∈ (−K,K) for the
small K, and the scaled sine function resembles modulo operation near q · I. Second, as
the sine function is also not available in FHE, it is approximated as polynomials. We
adopted a recent bootstrapping algorithm in [HK20]. First, it approximates not sine,
but cosine function by shifting ct1 and ct2. Also, it uses polynomial interpolation with
Chebyshev polynomial basis to approximate the cosine function in addition to adopting
the double-angle formula. We use one of their parameter sets for bootstrapping; we
evaluate a 31-degree polynomial followed by applying the double-angle formula three times,
approximating f(t) = cos(24πt). With cosine evaluation on ct1 and ct2, we get two output
ciphertexts ct′1 and ct′2 whose messages are ~z′1 and ~z′2. Our cosine evaluation step has
multiplicative depth of 11.
SlotToCoefficient: This is the opposite of CoefficientToSlot. With ct′1 and ct′2, we
compute an output ciphertext, ctfresh, which contains message ~zfresh, by evaluating a
linear transformation as below:

~zfresh = V~z′1 + W~z′2 = V(~z′1 + i~z′2)

~zfresh is approximately equal to the message of ct before Modulus Raising.
We also adopt an additional technique of slim bootstrapping in [CH18], which reorders

the bootstrapping process (see Figure 1) from (Modulus Raising, CoefficientToSlot, Cosine
evaluation, SlotToCoefficient) to (SlotToCoefficient, Modulus Raising, CoefficientToSlot,
Cosine evaluation). By postponing Modulus Raising, the computational cost of SlotToCo-
efficient decreases as the ciphertext level of the input to SlotToCoefficient decreases.

We also use efficient CoefficientToSlot and SlotToCoefficient proposed in [HHC19].
They adopt Cooley-Tukey FFT algorithm [CT65] to linear transforms in CoefficientToSlot
and SlotToCoefficient. DFT algorithm can be expressed in a form of mult between DFT
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matrix D and an input vector ~v. The computational complexity of directly computing
D ·~v is O(N2). By adopting the Cooley-Tukey FFT algorithm, D can be decomposed into
log2N block-diagonal sparse matrices, reducing the total complexity to O(N logN).

For a given radix r and degree N , they decompose Vrev, which is a row-permuted
V, into logr(N/2) block-diagonal sparse matrices {V(r)

i }1≤i≤logr(N/2) such that Vrev =
V(r)

1 V(r)
2 . . .V(r)

logr(N/2). Each decomposed block-diagonal sparse matrix V(r)
i is a matrix

having 2r − 1 (when i > 1) or r (when i = 1) diagonals and other elements are zero. We
refer to each diagonal of index i from a matrix M as a length-N/2 vector, diagi(M), such
that diagi(M) = (M(0, i),M(1, i+ 1), . . . ,M(N/2− 1, N/2 + i− 1)) where M(i, j) refers
to the (i, j) element of M. The same decomposition technique applies to CoefficientToSlot
as well. For more details, see Appendix A.

An important characteristic of the (2r− 1) (or, r) diagonals of each decomposed block-
diagonal sparse matrix is that their indices form an arithmetic progression. Using this
property, [HHC19] adopts Baby-step Giant-step algorithm as in [HS15, CH18, CHK+18],
reducing the number of FHE rotations required in each mult between block-diagonal sparse
matrix and a vector that is encrypted as a ciphertext.
Baby-step Giant-step algorithm: Each mult between a block-diagonal sparse matrix
and the input vector is performed in a homomorphic-friendly way, exploiting the Baby-step
Giant-step algorithm (BSGS) [HS15, CH18, CHK+18]. BSGS computes the matrix-vector
mult by summation of the products of plaintexts, each being an encoded diagonal, and
shifted input vectors, each being the message of correspondingly rotated ciphertext.

Let a predetermined block-diagonal sparse matrix with n diagonals be M and the input
vector be ~v, the message of a ciphertext ct. Let roti(~v) be an input vector shifted by i,
the message of HROTATE(ct, i, evk). For l and t such that l · t = n, BSGS computes
M · ~v as below, where the common difference of the arithmetic progression is one:

M · ~v =
n−1∑
i=0

diagi(M)� roti(~v) =
l−1∑
i=0

t−1∑
j=0

diagti+j(M)� rotti+j(~v)

=
l−1∑
i=0

rotti(
t−1∑
j=0

rot−ti(diagti+j(M))� rotj(~v))

(1)

Given a radix r, by choosing l and t near
√
n, the number of rotations required for each

SlotToCoefficient and CoefficientToSlot is reduced from O(r logr n) to O(
√
r logr n), as

each block-diagonal sparse matrix has 2r − 1 (or, r) diagonals. We can choose any l and t
with flexibility by adding zero diagonals [HHC19].

4 CKKS: Baseline implementation
4.1 Basic HE operations
We provide the pertinent details of the baseline CPU and GPU implementation of CKKS.
There are five groups of functions that compose FHE operations: (1) element-wise RNS
operation between polynomials, such as mult in NTT domain, addition, and subtraction,
(2) NTT and iNTT, (3) fast basis conversion (Conv) used in ModUp and ModDown [BEHZ16,
CHK+19], and (4) Inner-product in key-switching. Also, we explain our implementation
of BSGS algorithm. Throughout this paper, we use double-word (i.e., 64-bit) moduli such
that log qi ≈ 51 and log pj ≈ 61 where i ∈ [0, L] and j ∈ [0, k). Also, we layout input and
output data contiguously in memory in degree-first manner (i.e., a chunk of N residues of
a(i) are continuous for each i).
RNS operation: We refer an RNS operation to a binary operation that takes residues
as input and performs a element-wise operation on them, such as mult, addition, and



Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon and Younho Lee 9

subtraction. In our CPU implementation, each CPU thread takes two vectors with N
residues (i.e., a(i), b(i) ∈ Rqj ) at a time and performs N RNS operations. Then, the thread
(or another thread in a multi-threaded, multi-core environment) takes another pair of two
vectors with N residues, until (`+ 1)×N RNS operations complete by all the threads. In
contrast, our GPU implementation follows the method in [BPA+19]; we launch (`+ 1)×N
threads for a single GPU kernel. We let each GPU thread perform a single RNS operation
so that we exploit the massive thread-level parallelism available from modern GPUs, which
can run hundreds of thousands of threads concurrently.
NTT and iNTT: For NTT and iNTT, in both CPU and GPU implementation, we
exploit the David Harvey’s NTT algorithm [Har14] along with the in-place Cooley-Tukey
algorithm, which is commonly used in other works [CLP17, Sho16, HS14].

For the CPU implementation of NTT, we use the same approach as in the RNS operation,
where each thread takes N residues (i.e., a(i) for a given i) at a time, and perform N -
point NTT. For the GPU implementation, we use the hierarchical NTT implementation
in [KJPA20], which heavily exploits shared memory in GPUs. More specifically, for every
(i)NTT with N residues, we use 8 per-thread (i)NTT kernels described in [KJPA20], where
each thread in a kernel loads 8 residues into registers at a time. We launch kernels each
performing radix-256 or radix-512 (i)NTT. It uses shared memory as a storage for the
temporal output of each (i)NTT stage so that the N residues are loaded from and stored
to main memory only once per kernel. We launch two sequential GPU kernels for the
practical values of N ranging from 216 to 217. See Appendix B for more details.
ModUp and ModDown: We first explain the implementation of fast basis conversion.
Given an input polynomial a(X) and RNS bases S1 = SCL ∪ SB and S2 = S ′CL ∪ S

′
B, a

fast basis conversion ConvS1→S2([a(X)]S1) consists of two steps. Step 1 multiplies each
input residue with Q̂′′j−1 mod qj (or Q̂′′′j−1 mod pj) for corresponding j. Then step 2
computes each output residue by multiply-accumulate (MAC) operation on |S1| input
residues each multiplied with (Q̂′′j mod qj(pj)) or (Q̂′′′j mod qj(pj)) for corresponding qj (or
pj) ∈ S1, followed by a modular reduction with pi (or qi) ∈ S2 (see Conv in Subsection 2.1).

In the CPU implementation of fast basis conversion, each thread takes N residues
that are coefficients of [a(X)]qj(or pj) where qj (or pj) ∈ S1 as inputs, and performs the
step 1. After all threads complete the first step, the step 2 begins, where each thread
computes N output residues; the inner-most loop, which performs MAC followed by a
modular reduction, computes one output residue at a time.

The GPU implementation of the fast basis conversion consists of two kernels. The first
kernel (called scaling kernel) for step 1 launches (|S1|+ 1)×N threads where each thread
multiplies an input residue with a corresponding constant Q̂′′j−1(Q̂′′′j−1) mod qj (pj).
The second kernel for step 2 launches |S2| × N threads where a thread takes (|S1| + 1)
residues of a coefficient as inputs to compute one output. Throughout the accumulation,
the partial sum resides in the registers the thread holds. When the accumulation completes,
the thread performs a modular reduction on the result. See Appendix B for more details.

Both ModUp and ModDown exploit the fast basis conversion but with different input and
output basis values. Also, both perform iNTT on the inputs of the fast basis conversion,
and NTT on the outputs of the fast basis conversion. The difference between ModUp and
ModDown lies in the RNS operations coming after NTT. ModUp concatenates the output of
NTT to its input with the original basis to extend the basis. ModDown (see Algorithm 4)
subtracts the original input from the output of NTT , and scales by Q̂−1 mod qj (line 7).
Because the subtraction and scaling after NTT are the element-wise RNS operations, our
CPU and GPU implementations take the same approach for executing them as explained.
Inner-product in key-switching: Our baseline implementation of Inner-product in
key-switching is shown in Algorithm 10. It includes the lazy modular reduction technique
adopted in FHE libraries [CLP17, Cry20]. The technique performs wide MAC operations
(i.e., the partial sum being 128-bit) instead of doing modular reduction for β times.
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Algorithm 10: Baseline implementation of Inner-product in key-switching
1 evki := (aevki , bevki), i = 0, 1, . . . , β − 1
2 d := {d(0)

2 , d
(1)
2 , ..., d

(β−1)
2 }

3 procedure Inner-product(accum, evk,d)
4 accum = d

(0)
2 · evk0 // partial sums

5 for i in [1, β) do
6 accum += d

(i)
2 · evki

7 end
8 b′accum = BarrettModReduction(baccum)
9 a′accum = BarrettModReduction(aaccum)

10 return (a′accum, b′accum)
11 end procedure

In our CPU implementation, a thread loads three vectors of N residues, one from d
(i)
2

and two from evki for i ∈ [0, β), performs mult (line 5) or MAC (line 7) in an element-wise
manner. This is repeated β times, followed by Barrett’s modular reduction [Bar87] (line 8
and 9). Our baseline GPU implementation launches three kinds of kernels: one for mult
(line 5), another for MAC (line 7), and the other for modular reduction (line 9 and 10).
Each of the three kernels launches (αβ + k)N threads. In the first and the second kernel,
each thread takes three residues as inputs, one from d

(i)
2 and two from evki. Then the

thread multiplies the first input with the others, accumulates them into two 128-bit partial
sums, and stores them as in the CPU implementation. The last kernel reduces the 128-bit
partial sums into 64-bit using Barrett’s modular reduction.

4.2 Baby-step Giant-step
Let a matrix M be predetermined and has l diagonals whose indices form arithmetic
progression, and let vector ~v be encrypted as a ciphertext ct. In CKKS, the evaluation of
BSGS in Equation 1, where rot−ti(diagti+j(M)) is encoded as a plaintext mi,j for each
0 ≤ i < l, 0 ≤ j < t, is done as shown in Algorithm 11. It requires a distinct rotation key
for each rotation index j, but we skip the notation here for simplicity.

We describe the implementation of HE operations required in BSGS. CMULT is performed
as two element-wise RNS operations as described in the previous section. HROTATE is
mostly similar with HMULT for its key-switching, except it performs the Frobenius map
(see Section 2), which can be understood as a permutation. For the implementation of the
permutation with index n, where a {j}[0,N)-th residue of a given input {a(i)}[0,`] is moved
into the πn(j)-th position, each CPU thread executes in-place permutation on N residues,
whereas GPU performs out-of-place permutation by launching (`+ 1)×N threads such
that (i×N + j)-th thread takes the j-th residue of a(i).
Hoisting: Halevi et al. [HS18] suggested reducing the computation cost of BSGS by
applying hoisting. Hoisting reduces the required number of ModUp, when multiple HROTATE
operations with different rotation indices are performed on the same ciphertext. Specifically,
it restructures the HROTATE algorithm to perform ModUp first, before the Frobenius map.
Below is the computation order in HROTATE with hoisting:

1. (PrecomputeModUp) Perform iNTT, fast basis conversion, and NTT on a of a cipher-
text ct = (a, b).

2. (FastRotate) Perform Frobenius map with a rotation index i. Skip ModUp. Perform
Inner-product, ModDown, and the rest of the functions required for HROTATE.

The modified HROTATE consists of two steps. When one needs to rotate a single
ciphertext with different rotation indices, we perform ModUp only once on a ciphertext,
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Algorithm 11: Evaluation of BSGS in Equation 1
1 ct :=(input ciphertext)
2 out :=(zero-initialized output ciphertext)
3 ptxt := {mi,j}i∈[0,l),j∈[0,t) // precomputed plaintexts

4 procedure
5 for j in [1, t) do
6 ctj = HROTATE(ct, j)
7 end
8 for i in [0, l) do
9 accum = CMULT(ct,mi,0)

10 for j in [1, t) do
11 temp = CMULT(ctj ,mi,j)
12 accum = HADD(temp,accum)
13 end
14 temp = HROTATE(accum, ti)
15 out = HADD(accum,out)
16 end
17 return out
18 end procedure

and then we perform multiple FastRotate instead of HROTATE. The error bound of the
FastRotate stays the same with HRotate; the error bound is proportional to the infinity
norm ‖ã‖∞ where ã is the reconstructed output of ModUp [CHK+19], and hoisting preserves
the infinity norm (i.e., it changes the order of the coefficients only).

By applying the hoisting, one PrecomputeModUp is required right before the line 5 of
Algorithm 11, whereas HROTATE in line 6 changes to FastRotate, reducing the required
number of ModUp from (t − 1) + (l − 1) to 1 + (l − 1). We evaluate the performance
improvement of bootstrapping with hoisting in Section 7.

5 Bottleneck Analysis of FHE-mult
In this section, we show that the major FHE operations are primarily limited by the
main-memory bandwidth of GPUs.

5.1 Function-level Operation Complexity and Memory Access Analysis
First, we show operation complexity and the number of main-memory accesses of each
function in mult of CKKS (HMULT). We evaluate the operation complexity in terms of
the number of integer mults, and additions (adds) as in [TLW19]. We first count the
number of modular mults (ModMuls) as well as the other operations, and convert the
ModMuls into the number of mults and adds. We count one Barrett’s ModMul [Bar87]
(Shoup’s ModMul [Sho16]) as 4 (3) mults and 3 (2) adds, using the methodologies explained
in [TLW19]. For simplicity, we assume that the two input ciphertext has the same level `,
and β = (`+ 1)/α without ceiling function.

Prior work [HK20] showed the operation complexity of FHE-mult for various dnum in
terms of the number of ModMuls and showed that it is practical to choose a moderate dnum;
however, they did not consider the high main-memory bandwidth requirement, which is
directly translated into the performance of FHE-mult especially on GPUs. We assume
that each modulus {qi}0≤i≤L and {pj}0≤j<k is a double-word (8 bytes). We count the
main-memory accesses in unit of 8 bytes. Also, we consider subtraction as signed addition.
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Tensor-product: We exploit Karatsuba algorithm [KO62], which is commonly used in
many HE libraries [HS14, Cry20, CLP17]. It computes a1�a0, b1� b0, (a0 +a1)� (b0 + b1)
first, then computes (d2, d1, d0) (see Subsection 3.2) from them, reducing the number of
polynomial mults from 4 to 3, at cost of three additions that are cheap. It results in
3(`+1)N ModMuls, 4(`+1)N adds in total. For the memory accesses, 4 input polynomials
are loaded and 3 output polynomials are stored, so 4(`+ 1)N reads and 3(`+ 1)N writes.
RNS-Decomposition: There are αβN = (` + 1)N ModMuls and 2(` + 1)N memory
accesses in total for reads and writes (see Dcomp in Subsection 2.1).
NTT & iNTT: For a single execution of (i)NTT on N residues of each {a(i)}i∈[0,`), there
are N logN/2 ModMuls and N logN adds. As there are logN stages for each execution
of (i)NTT, the number of main-memory accesses is up to 2N logN for loading and storing
input and output, respectively, and N for loading twiddle factors.

However, there are two more factors that affect the total number of memory accesses:
cache memory size of a processor and Shoup’s ModMul [Sho16]. If the cache is large
enough to accommodate the length-N input of (i)NTT, it does not have to access the
main memory on each stage, reducing main-memory accesses by up to a factor of 1/ logN .
Modern server-class CPUs have last-level cache memory of dozens of megabytes [AFK+19],
easily achieving such reduction in memory accesses. In contrast, GPUs have much smaller
last-level cache with few megabytes [NVI17], hardly accommodating the input/output of
(i)NTT. Therefore, the number of memory accesses required on GPU for loading an input
polynomial of (i)NTT is between 2N · logN and 2N .

Our baseline (i)NTT implementation [KJPA20] launches two GPU kernels, each of which
performs radix-

√
N (i)NTT, resulting in 2N logN/ log

√
N accesses for input and output.

Rather than Barrett’s algorithm [Bar87], we adopt Shoup’s modular mult [Sho16], which is
commonly used in (i)NTT to reduce the operation complexity of ModMuls [CLP17, HS14].
Using Shoup’s method adds extra N memory accesses as it demands a precomputed value
for each ModMul. iNTT is performed at the front of ModUp and ModDown, each being done
β times for αN residues and once for (αβ+ k)N residues, respectively (see Subsection 2.1).
NTT is performed on the output of basis conversion in ModUp and ModDown, each done β
times for (αβ + k − α)N residues and once for αβN residues.
ModUp: Because we count operations in (i)NTT separately, we consider only the fast
basis conversion in ModUp and ModDown here. With the lazy modular reduction technique,
one needs to perform modular reduction only once after computing a sum of product,
as stated in Section 4. Therefore, αβ(αβ + k − α)N mults, αβ(αβ + k − α)N adds, and
β(αβ+k−α)N modular reductions are required in total. The number of memory accesses
is αβN for read and β(αβ + k)N for write in total.
Inner-product: As in ModUp, the lazy modular reduction technique is also applied to
Inner-product in key-switching; this results in 2β(αβ+k)N mults, 2(β−1)(αβ+k)N adds,
and 2(αβ + k)N modular reductions. The required memory accesses are 2β(αβ + k)N for
loading {evki}0≤i<β , β(αβ + k)N for loading {d2,i}0≤i<β , and finally, 4(β − 1)(αβ + k)N
and 4β(αβ + k)N for loading and storing accum in Algorithm 10, respectively.
ModDown: There are k(αβ)N mults, k(αβ)N adds, and (αβ)N modular reduction for
each of the two polynomials (a′accum and b′accum), which are the output of Inner-product.
Meanwhile, there exist kN memory accesses for loading the input and (αβ + k)N for
storing the output for each of the two polynomials.

We summarize the total operation complexity and the number of memory accesses
required in Table 1.

For a given L, `, and N , a value of dnum that minimizes the total number of modular
mults and plain mults is (L+ 1)

√
8`+ 7 logN + 32 /((`+ 1)

√
logN + 8). Main-memory

access count is minimized when dnum = ((L+ 1)
√
logN)/((` + 1)

√
logN + 14). Prior

work [HK20] chooses dnum that minimizes the number of ModMuls. However, this could
be sub-optimal if an FHE operation is mostly bottlenecked by main-memory bandwidth,
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Table 1: Operation complexity and memory accesses required in FHE-mult with ciphertexts
having level l < L and degree N . We converted the number of ModMuls into mults and
adds to count total integer operations. α = (L+ 1)/dnum and β = (`+ 1)/α.

# of ModMuls # of muls and adds # of total integer ops
Memory accesses

(each 8B)
Tensor-product 3(`+ 1)N 4(`+ 1)N 25(`+ 1)N 7(`+ 1)N

RNS-decomposition (`+ 1)N - 7(`+ 1)N 2(`+ 1)N
NTT β(αβ + k)N(logN)/2 β(αβ + k)N(logN) 7β(αβ + k)N(logN)/2 β(αβ + k)(2N +N logN)
iNTT (2αβ + k)N(logN)/2 (2αβ + k)N(logN) 7(2αβ + k)N(logN)/2 (2αβ + k)(2N +N logN)

Inner-product 2(αβ + k)N (4β − 2)(αβ + k)N (4β + 12)(αβ + k)N (11β − 4)(αβ + k)N
Conv (ModUp) β(αβ + k − α)N 2αβN β(7αβ + 7k − 5α)N (αβ + αβ2 + kβ)N

Conv (ModDown) 2αβN 4kαβN (4k + 14)αβN 2(αβ + k)N
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Figure 2: (a) FHE-mult time with 8-threaded CPU (CPU-8T) and our baseline GPU
implementation when (N , L) = (65536, 24). (b) A roofline model of mult in CKKS with
our baseline GPU implementation when (N , L, dnum) = (216, 45, 45). The number of
integer instructions is measured with NVIDIA Nsight compute [NVI20].

which is especially true in GPUs compared to CPUs. Figure 2(a) shows the FHE-mult
time with various dnum values on our baseline CKKS implementation, both with CPUs and
GPUs. As stated above, because modern server-class CPUs have a last-level cache of several
dozens of megabytes that can accommodate one or two polynomials in FHE operations, the
last-level cache absorbs most DRAM traffics. This makes the execution time of FHE-mult
directly proportional to the number of arithmetic operations. In contrast, GPUs have
smaller caches and thus the execution time is rather determined by the main-memory
accesses and becomes susceptible to memory bandwidth, making it preferable to use a
smaller dnum for fewer memory accesses.

5.2 Memory-bandwidth Bottleneck of FHE Operations on GPUs
A single ModMul operation is translated into different instructions depending on the
machine types. To understand the actual operational characteristics of FHE-mult on GPUs,
we provide a roofline plot [PH12] of CKKS mult in our baseline GPU implementation
in Figure 2(b). We measured integer operation throughput and DRAM access counts using
a profiling tool provided by NVIDIA Nsight Compute [NVI20].

Most FHE operations are not compute-bound, but main-memory-bandwidth bound.
Among those operations, Inner-product has the lowest operation intensity, severely bounded
by main-memory bandwidth. The operation intensity of Inner-product is even lower
than that of the addition operations because the baseline Inner-product implementation
accumulates the i-th product d(i)

2 · evki into accum (line 6-8 in Algorithm 10), whose
elements are 128-bit (quad-word) long, incurring a lot of memory accesses.

We observe that Inner-product in key-switching is a major bottleneck in accelerating
FHE-mult because it has extremely low operational intensity albeit having a large number
of memory accesses, especially with large dnum. Figure 3 presents the execution time,
main-memory (DRAM) bandwidth, and instruction throughput (SM utilization) of FHE-
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Figure 3: Execution time, DRAM utilization, and SM utilization of a single FHE-mult on
our baseline GPU implementation of CKKS with (N , L, dnum) = (216, 45, 45).

mult with our baseline GPU implementation. For most functions, their DRAM bandwidth
utilization is higher than SM utilization, concurring with the low operational intensity
shown in the roofline plot (Figure 2)(b). Also, although NTT performs most of the modular
mults required in FHE-mult, Inner-product dominates by 54.5% of the overall execution
time. Because Inner-product is the most memory-intensive one in FHE-mult, it utilizes
SM in GPU only by 3.4%. The second-most time-consuming function, NTT, also exhibits
high main-memory utilization (71.0%) and low SM utilization (38.4%).

One of the factors that attribute to the large number of memory accesses in Inner-
product is using a large dnum, as the number of evaluation keys is proportional to dnum
({swki}0≤i<dnum). Throughout this paper, we adopt generalized key switching in [HK20]
that prefers using smaller dnum values, reducing the size of keys and thus amortizing
the main-memory bandwidth bottleneck of Inner-product in GPUs. Moreover, we apply
memory-centric optimizations that are commonly applicable to GPUs, such as operation
fusion (kernel fusion [QRHT19]) in both intra- and inter-FHE manners, which significantly
reduces main-memory bandwidth requirement.

6 Memory-centric optimizations for FHE on GPUs
Kernel fusion is a technique that fuses multiple GPU kernels into one kernel. Typical GPU
kernels operate in three steps: load the input data from DRAM into shared memory or
registers, compute on the data, and store the output data. Kernel fusion combines multiple
kernels together, and by reusing data in the register file or shared memory, it reduces the
number of main-memory accesses between kernels. By judiciously applying various kernel
fusion methods both in intra- and inter-FHE-operation manners, we significantly reduce
the memory accesses required for memory-intensive FHE operations.

6.1 Intra-FHE-operation Fusion
There are many opportunities of kernel fusion inside a single FHE operation. More
specifically, we show that the major FHE operations such as mults, rotation, and rescaling
have ample chances for adopting kernel fusion to save memory accesses. Then, we describe
how we exploit the kernel fusion technique to those FHE operations.
Fusing the scaling kernel in ModUp with batched iNTT: We suggest and apply
two optimizations to ModUp. First, we batch β iNTT kernels in ModUps that are invoked
β times per KeySwitch. Each execution of the fast basis conversion in ModUp follows
iNTT([a]C′

i
), as described in Subsection 2.1. When dnum is large enough, the input size of

each iNTT (LN/dnum = αN) decreases, and one cannot maximally exploit thread-level
parallelism in GPUs because the throughput of an iNTT kernel decreases due to the kernel
call overhead [BVMA18, KJPA20]. Instead of launching numerous small iNTT kernels,
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Figure 4: (a) Execution time breakdown of a single run of bootstrapping on GPU, (b)
speedup of line 9-13 in Algorithm 11 with batching plaintext-ciphertext MAC for various
t. The red line represents the maximum speedup, 11/3. (N , L, dnum) = (217, 29, 3).

we fuse them into a single, large iNTT kernel that takes (αβ)N input residues, and launch
the large kernel once.

Second, we fuse the scaling kernel of Conv in ModUp (which multiplies either [Q̂
′′−1
j ]qj

or [Q̂
′′′−1
j ]pj ; see Subsection 2.1), with the preceding batched iNTT kernel. Because the

scaling kernel has low arithmetic intensity and becomes memory-bound, fusing it with its
preceding batched iNTT kernel removes most of the required memory accesses. Specifically,
since we perform 8 per-thread iNTT for the batched iNTT kernel, each thread holds 8
double-word output elements in its registers, before storing them to the main memory. We
multiply each of the 8 output elements with its corresponding [Q̂

′′−1
j ]qj or [Q̂

′′′−1
j ]pj , right

before storing them into main memory. This reduces 2αβN memory accesses in total.
Fusing Inner-product in key-switching: Inner-product in key-switching (see Algo-
rithm 10) requires (11β − 4)× (αβ + k)×N memory accesses in total (Table 1). Most
main-memory accesses required come from reading and writing accum multiple times.
Because each element of accum is 128-bit long, it takes up most of memory accesses.

To reduce the memory accesses, we fuse all three kinds of kernels in Algorithm 10,
which are described in Subsection 4.1 into a single kernel that performs all the mults,
mult-and-add, and reduction operations. In the fused kernel, each thread holds the partial
sum in its registers until the last mult-and-add is completed. This simple but effective
approach reduces the number of total memory accesses required from (11β − 4)(αβ + k)N
to (3β + 2)(αβ + k)N .
Fusing element-wise operations in ModDown with NTT:We fuse two element-wise
operations in ModDown, the subtraction and the scaling with [Q̂−1]qj for each j (line 6-8
in Algorithm 4), with a preceding NTT (line 5). Prior to the fusion, we call one kernel for
subtraction and one for scaling. Similar to the kernel fusion we apply to ModUp, these two
operations are applied right before storing the NTT’s output to main memory, reducing
2(`+ 1)N main-memory accesses in the subtraction and 2(`+ 1)N in the scaling in total.

This fusion in ModDown is also applicable to the rescaling operation, because RESCALE
can be understood as ModDown that drops a prime (i.e., ModDownC`→C`−1) on both input
([a]C` , [b]C`) ← ct. Therefore, we also apply the fusion in rescaling and evaluate its
performance after fusion in Section 7.

6.2 Inter-FHE-operation Fusion
Most of the bootstrapping time is spent for evaluating linear transformation. Therefore, we
suggest optimizations applicable to the linear transformation: batching plaintext-ciphertext
multiply-accumulate (MAC) operations.
Breakdown on bootstrapping: Figure 4(a) shows the execution time breakdown of
bootstrapping with one of the representative parameter sets in Section 7, after applying all
intra-FHE-operation fusions in the previous section. About 62.7% of bootstrapping time
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is spent for evaluating linear transforms: SlotToCoefficient and CoefficientToSlot, which
are homomorphic decoding and encoding, respectively. We focus on these two functions
and accelerate their core algorithm, BSGS (see Equation 1).
Batching plaintext-ciphertext multiply-accumulate (MAC): As described in Sub-
section 3.3, the core operation of SlotToCoefficient and CoefficientToSlot is a series of
mults between block-diagonal sparse matrices, whose diagonals are encoded into plaintexts,
and an input vector, which is a ciphertext, exploiting the BSGS algorithm (Equation 1).

Our key observation is that the inner-most sum of BSGS (line 10-13 in Algorithm 11)
exhibits a severe memory bandwidth bottleneck on GPU, similar to Inner-product (line
5-7 in Algorithm 10). For a given ciphertext with level `, the number of required memory
accesses of the innermost sum of Algorithm 11 is 5t(`+1)N for t CMULT and 6(t−1)(`+1)N
for t− 1 HADD. We fuse the kernels for CMULT and HADD in line 9-13 of Algorithm 11 into
one, reducing the total memory accesses of (11t− 6)(`+ 1)N to (3t− 1)(`+ 1)N . We call
this fusion as batching plaintext-ciphertext MAC.

As CMULT and HADD in Algorithm 11 are mostly memory-bound, reduction in the number
of memory accesses is translated into a speedup of up to asymptotically 11/3 times with
batching plaintext-ciphertext MAC. We benchmark the speedup of line 9-13 in Algorithm 11
with our GPU implementation for various t in Figure 4(b). Even with t = 2, we get a
2.66× speedup. On the other hand, the overall execution time of BSGS is as follows.
Let fspeedup(t) = (11t− 6)/(3t− 1). Then, the execution time of Algorithm 11 becomes
(l + t− 2) (HROTATE time) + {l· (CMULT time) + (t− 1)(l − 1) (HADD time)}/fspeedup(t).

We can model the speedup of each execution of BSGS in CoefficientToSlot and SlotTo-
Coefficient. For a given radix r, because each block-diagonal sparse matrix (except the
first one that is multiplied with input first) has 2r− 1 diagonals, we should select a proper
value of l and t in Equation 1 such that l · t > 2r − 1 and both l and r are near

√
2r − 1.

Following [HHC19], we select a proper radix r first. For N = 216, we use r as 25, resulting
in three matrix-vector mults, each with radix 25 (because N/2 = (25)3). For N = 217, as
log r = 5 does not divide log(N/2) without a remainder, we perform three matrix-vector
mults, each with radix 25, 25, and 26. Thus, we get the total time of CoefficientToSlot
(the same applies to SlotToCoefficient) when N = 216 as: (total time of each baby-step
giant-step in SlotToCoefficient) = 14 (HROTATE time) + {64 (CMULT time) + 49 (HADD
time)} /fspeedup(8), where fspeedup(8) = 3.56.

7 Evaluation
We present performance improvement in FHE operations with our inter- and intra-FHE-
optimizations, the effect of generalized key-switching, and hoisting. All experiments were
performed on a single NVIDIA Tesla V100 [NVI17] GPU with CUDA 11.2 and Intel Xeon
Gold 6234 @3.3GHz CPU with 8 cores [Int20]. We also cached all the evaluation keys
and constants in the main memory for both CPU and GPU implementation. We used all
parameters that meet the security bit λ > 80, calculated from the LWE estimator [APS15].
Our parameter sets used for evaluating the performance of bootstrapping add 2−19 mean
errors to the input message after bootstrapping; they are small enough not to hinder most
of applications [HK20, CCS19, HHC19, CHK+18].
Performance of individual FHE operations: Table 2 summarizes the latency of FHE
operations on a single-threaded CPU, our GPU implementation, and PrivFT [BHM+20],
the state-of-the-art implementation of CKKS [CHK+19] on GPU. Because PrivFT is
closed-source, we compared the latency of each operation provided by their paper using
the same GPU. Also, we compared the performance on the parameter set with the largest
level in [BHM+20], considering the practical use of FHE. This parameter set with a large
level represents the parameter sets suited for applications not requiring bootstrapping.

First, by applying all the intra-FHE-operation fusion techniques, our optimized GPU
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Table 2: Execution time of FHE operations in our single-threaded CPU implementation,
GPU implementation without (baseline) and with (fused, fusedL, and fusedH) our
optimizations, and PrivFT [BHM+20].

Execution time (ms) Speedup
CPU GPU

1 thread base fused fusedL fusedH PrivFT [BHM+20]
N 216 216 216 216 217 216

logPQ 2366 2366 2366 2364 3220 2360*
logQ 2305 2305 2305 1693 2305 2300
L 44 44 44 32 44 44

dnum 45 45 45 3 3 45
λ 98 98 98 100 128 98

HMULT 2644.8 33.51 17.4 2.96 7.96 55.884 7.02×
HROTATE 2578.9 32.93 16.83 2.55 6.6 - -
RESCALE 145.4 0.846 0.635 0.49 1.20 1.632 1.36×

HADD 28.12 0.208 0.208 0.162 0.378 0.188 0.50×
CMULT 26.22 0.177 0.177 0.135 0.318 0.170 0.54×

* We estimate log P as 60 since the paper does not provide the value.

Table 3: Bootstrapping time of our baseline implementation and ones that incrementally
adopt MF, IF, and MDF together (Intra-FHE-fusion), batching plaintext-ciphertext MAC
(Batching), and hoisting (Hoisting).

Parameter
Execution time (ms)

Speedup
set (vs. CPU 1 thread)

CPU GPU
(N , Level, dnum)

1 thread Baseline
Intra-FHE

Batching Hoisting(logPQ, λ) fusion
(216, 34, 5)

79444 428.94 377.78 351.09 328.25 242×(2222, 106)
(217, 29, 3)

135400 719.87 623.92 568.2 526.96 257×(1540, 173)

implementation beats the baseline CPU implementation by 152×, 153×, 229×, and 135× in
HMULT, HROTATE, RESCALE, and HADD, respectively. Second, compared to PrivFT [BHM+20],
even without the optimizations, our baseline implementation outperforms PrivFT by 1.67×
in HMULT. Our memory-centric optimizations are effective such that we get a speedup of
3.21× in HMULT (fused), compared to PrivFT.

We also showed the impact of choosing a proper value of dnum on GPU implementation.
Because using a smaller dnum decreases the multiplicative level with a fixed logPQ and
security bit, we show two parameter sets having either the same logPQ with fewer levels
(fusedL), or the same level with higher logPQ and N to ensure high security of 128-bit
(fusedH). Comparing the result of fusedH with PrivFT that does not exploit generalized
key-switching, we improved the performance by 7.02× in HMULT. In fusedH , HADD, RESCALE,
and CMULT become slower because of the ciphertext size is larger than fused; however,
the execution time of HMULT and HROTATE generally dominates by an order of magnitude.
Compared to the one that uses maximum dnum (fused), fusedL obtains the speedup of
5.88× and 6.6× in HMULT and HROTATE, respectively. Our results show the importance of
memory-centric optimizations and selection of dnum in accelerating FHE operations.
Performance of bootstrapping: We evaluate the performance of bootstrapping with
our intra- and inter-FHE-operation fusion, and hoisting [HS18] in Table 3. For evaluation,
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Figure 5: Performance of each single FHE operation without fusion (Baseline) and
incrementally adopting fusion. FastRotate represents the implementation that applies
hoisting after MDF. (N , logQ, L) = (216, 2305, 44).

we select two parameter sets with small dnum and moderate levels, which represent
bootstrap-friendly parameter sets suited for applications demanding bootstrapping. First,
our baseline GPU implementation already provides up to a 185× of speedup compared to
the CPU implementation. Using small dnum increased the performance gap between the
CPU and GPU implementation by relieving the memory bandwidth bottleneck on GPU.
Second, intra-FHE-operation fusions lead to a speedup of up to 1.15× compared to Baseline.
Moreover, batching plaintext-ciphertext MAC and hoisting gives an additional speedup,
resulting in up to 257× in total, compared to the single-thread CPU implementation. In
both parameter sets, we exhibited similar speedups on each optimization.
Speedup breakdown: Using a small dnum significantly reduces the Inner-product time
by a factor of 7.48 and 7.50 in our baseline GPU implementation of HMULT and HROTATE,
respectively (see Figure 5(a) and (b)). As the number of memory accesses required by
Inner-product reduces proportional to dnum, the portion of Inner-product time changes
from 54.6% (55.8%) when dnum= 45 to 29.8% (33.5%) when dnum= 3 in HMULT (HROTATE).

After reducing memory accesses using a small dnum, we analyze the effect of each
intra-FHE-operation fusion (Figure 5(b)). We call three intra-FHE-operation fusions listed
in Subsection 6.1 as ModUp Fusion (MF), Inner-product Fusion (IF), and ModDown
Fusion (MDF), respectively. Figure 5(b) shows the execution time breakdown when we
applied MF, IF, and MDF incrementally. MF increases the overall performance of HMULT
and HROTATE by 1.02× and 1.03×, respectively. The speedup is relatively small, because
the size of iNTT in ModUp is small, taking up a small portion in the overall execution time.
On top of MF, IF significantly decreases execution time of Inner-product by reducing
the number of memory accesses by up to a factor of 11/3, resulting in 3.75× (3.75×) of
speedup in Inner-product and 1.35× (1.41×) in total for HMULT (HROTATE). Lastly, MDF
increases the overall performance by 1.46×, 1.54×, and 1.32× in HMULT, HROTATE, and
RESCALE, compared to the baseline.

We also evaluate the effectiveness of hoisting [HS18] in HROTATE, shown as a distinct
column in Figure 5(b). With hoisting, FastRotate outperforms HROTATE with MDF by
1.65× as it does not require ModUp and multiple NTT/iNTT executions. The execution
time for permutation (Frobenius map in the NTT domain) increases by 2.32× as the size
of permutation becomes larger by precomputing ModUp; however, the performance benefit
outweighs the cost as permutation only took 4% in HROTATE with MDF.
Performance of Baby-step Giant-step: Figure 6(a) shows the performance improve-
ment in BSGS with batching plaintext-ciphertext MAC and hoisting on various t. Batching
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Figure 6: (a) Speedup of evaluation of BSGS (Algorithm 11) with batching plaintext-
ciphertext MAC (Batching) and hoisting over t. (b) Amortized FHE-mult time
(Tmult,Amortized) for a given logPQ ≈ 2450 and N = 216 (97-bit security).

plaintext-ciphertext MAC improves the performance up to 1.25×. Moreover, applying
hoisting results in a speedup of up to 1.45×, while giving no benefit when t = 2 as we
perform only one FastRotate and thus cannot save any ModUp.
Amortized FHE-mult time: We propose a new metric for performance that reflects
the performance of real applications requiring bootstrapping, amortized FHE-mult time.
It considers both bootstrapping cost and the number of mults between two consecutive
bootstrapping operations. Let one perform consecutive HMULT until the level of a ciphertext
depletes, perform bootstrapping, and then repeat. We define the amortized FHE-mult
time as Tmult,amortized = Tmult + Tboot

Lboot
where Tmult is the average time of HMULT between

two bootstrapping operations, Tboot is the bootstrapping time, and Lboot is the number of
HMULT between bootstrappings.

Figure 6(b) shows the amortized FHE-mult time of our best-performing and baseline
GPU implementation with various dnum for a given security bit. In both implementations,
the amortized time becomes minimal when dnum = 4 (24.35 ms and 43.5 ms for the
optimized and baseline, respectively). However, our optimized implementation largely
shrinks the performance gap between the optimal dnum and the large one (dnum = 8) as
it significantly amortizes the memory bandwidth pressure by applying memory-centric
optimizations. This enables high dnum values more attractive for the ones who want more
security with the parameter sets that consider bootstrapping.

Our optimized implementation of CKKS outperforms the baseline by 1.68×, 1.78×,
1.79×, and 2.46× when dnum of 2, 3, 4, and 8, respectively. By adopting generalized
key-switching as well as memory-centric optimizations, the amortized FHE-mult time of our
optimized GPU implementation even outperforms the single mult time of PrivFT [BHM+20],
which does not support bootstrapping.
Performance of Logistic Regression: Our optimized GPU implementation of CKKS
achieves a similar degree of performance improvement in complex applications requiring
bootstrapping. As a target application, we evaluated the execution time of training a
logistic regression model. We used the methodology in [HHCP19] which trains a binary
classification model with non-RNS CKKS [CKKS17]; we used the same dataset (the subset
of MNIST labeled as 3 and 8), learning rate, weight update algorithm, and the circuit that
approximates a Sigmoid function as a cubic polynomial.

In [HHCP19], they exploited the gradient descent algorithm to find a weight vector w
that minimizes a negative log-likelihood function NL(w) = −1/m · logP (w), where m is
the batch size, P (w) = Πm

i=1pw(xi)yi · (1 − pw(xi))1−yi and pw(xi) = S(IP(w, (1,xi))).
Here (1,xi) is a concatenation of 1 and vector xi, IP(w, (1,xi)) is an inner product
between the two vectors, and S(x) is a Sigmoid function, which is approximated as a cubic
polynomial [HHCP18].
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Table 4: Performance of training a binary classification model with 8-threaded CPU
implementation (CPU-8T) and our optimized GPU implementation with parameter set
(N , ∆, logPQ, L, dnum) = (217, 251, 2395, 35, 3).

Accuracy (%) Execution time per mini-batch (ms)
Bootstrapping Others Total

CPU-8T 96.4 15 284.7 15 760.3 31 045.0
GPU 96.4 328.7 446.3 775.0

Speedup 46.5× 35.3× 40.0×

Given a learning rate α and the gradient ∆wNL(w), training is an iterative process
that updates weight w to w′ such that

w′ = w− α ·∆wNL(w), ∆wNL(w) = −1/m ·
m∑
i=1
S(−IP(zi,w)) · zi

where zi = y′i · (1,xi), and y′i = 2yi − 1 ∈ {−1, 1}. We packed the training data into
ciphertexts such that each sample of training data is packed to a ciphertext, while
a ciphertext holds (N/2)/f ′ training samples where f ′ is the smallest power of two,
which is bigger than the number of features f . As in [HHCP19], we compress each
patch of 2×2 pixels in MNIST dataset [Lec98] into their arithmetic mean, resulting in
f = (28/2)× (28/2) = 196.

We apply our implementation of CKKS to the circuit [HHCP19] that exploits non-RNS
CKKS, resulting in 5 multiplicative depth per training iteration. We use a parameter set
of N = 217, ∆ = 251, logPQ = 2395, L = 35, and dnum= 3. Because the level in our
parameter set is 35, each bootstrapping consumes 16 levels and leaves 19 levels, requiring
a bootstrapping for every 3 iterations.

Table 4 shows the execution time of our 8-threaded CPU and the best-performing
GPU implementation for a single iteration of training the binary classification model. We
showed the amortized time per iteration (i.e., the total learning time divided by the number
of iterations). We achieve 96.4% accuracy and 0.99 AUROC (area under the receiver
operating characteristics) with 30 iterations, which are the same as in [HHCP19]. Our GPU
implementation outperforms the CPU implementation by 40.0× in total, resulting in a
sub-second iteration per mini-batch, whereas [HHCP19] reported the 4 minutes of execution
time per iteration with an 8-threaded CPU with non-RNS CKKS implementation [Cry20].

8 Related work
To the best of our knowledge, PrivFT [BHM+20] is the only one accelerating the RNS-
variant of CKKS using GPUs, exploiting the libraries from their previous works [BPA+19,
BVMA18] that implement the RNS-variants [BEHZ16, HPS19] of Brakerski-Fan-Vercauteren
(BFV) scheme [Bra12, FV12]. They did not implement bootstrapping.

An open-source library called cuFHE [Ver18] implemented a TFHE scheme shown
in [CGGI16, CGGI17] including bootstrapping of TFHE, which is the fastest bootstrapping
but accommodates at most up to several bit plaintext per ciphertext. We conduct a
benchmark on the GPU we used throughout evaluation and get 0.5 ms of bootstrapping
time per binary gate in cuFHE. Our bootstrapping implementation, as shown in Table 3,
exhibits 8 us of per-slot bootstrapping time, resulting in a 62.5× of speedup.

9 Conclusion
In this paper, we have demonstrated the first GPU implementation for bootstrapping of
CKKS. We showed that the main-memory bandwidth bottleneck is the key challenge in
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accelerating FHE operations with GPUs. Also, we found that the decomposition number
(dnum) in an FHE parameter set significantly impacts the performance of FHE operations;
raising dnum significantly increases both main-memory accesses and capacity required for
Inner-product in key-switching. Based on the observation of high memory bandwidth
requirement, we devised memory-centric optimizations to our GPU implementation, such
as kernel fusion and a proper choice of dnum. Also, by applying our batching plaintext-
ciphertext MAC in bootstrapping, we obtained 8 us per-slot bootstrapping time with
19-bit precision, which corresponds to a 257× speedup over the single-threaded CPU
implementation. Finally, we showed the effectiveness of our solutions by training a logistic
regression model, which obtains a speedup of 40.0× with our single GPU implementation
compared to the 8-threaded CPU implementation.
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A Matrix Decomposition in CoefficientToSlot/SlotToCoefficient

The matrix decomposition of V in Subsection 3.3 with Cooley-Tukey algorithm [CT65] in
the previous work [HHC19] is as follows. For the bit-reversing (permutation) matrix R,
let Vrev = VR. With a radix of 2, the following equations hold:

Vrev =
log2(N/2)∏

i=1
V(2)
i ,

V(2)
i =



[
IN

2i
WN

2i

IN
2i
−WN

2i

]
0 · · · 0

0
[
IN

2i
WN

2i

IN
2i
−WN

2i

]
· · · 0

...
...

. . .
...

0 0 · · ·

[
IN

2i
WN

2i

IN
2i
−WN

2i

]


where In is an n× n identity matrix and Wn is an n× n diagonal matrix whose (i, i)-th
element is ω5i

4n for 0 ≤ i < n. With the decomposition, each V(2)
i has two (i = 1) or

three (i 6= 1) diagonals. A decomposition with a higher radix with r > 2 is obtained by
multiplying the matrices together:

log2(N/2)∏
i=1

V(2)
i =

logr(N/2)∏
i=1

(
log2(r)∏
j=1

V(2)
ri+j) =

logr(N/2)∏
i=1

V(r)
i

where each V(r)
i has r (when i= 1) or 2r − 1 (i 6= 1) diagonals. For the complete proof,

please refer to [HHC19].
Then, SlotToCoeff and CoeffToSlot directly use the bit-reversed matrix Vrev for their

evaluations. CoeffToSlot is modified to output bit-reversed results ~t1 and ~t2:

~t1 = R~z1 = 1
N

(Vrev
T
~z + Vrev~z)

~t2 = R~z2 = 1
N

(−iVrev
T
~z + iVrev~z).

In the same way, SlotToCoeff takes bit-reversed inputs but outputs a non-bit-reversed
result because the inputs are reversed again: ~z = Vrev(~t1 + i~t2).

B GPU implementation of NTT and fast basis conversion

We describe 8 per-thread NTT implementation [KJPA20] that we used throughout this
paper. Because iNTT is symmetric with NTT, we only show the case of NTT. Figure 7(a)
and (b) show the data access pattern of the two kernels composing an NTT execution. In
the two kernels, a thread block loads R1 or R2 residues that are selected from N residues
corresponding to a prime. The residues loaded to the register file can be considered as
a 3-D data cube (Figure 7(c)), where an index of the residues, idx, maps to (x, y, z) =
(idx% R

64 , (idx%R
8 )/ R64 , idx/

R
8 ) so that the x dimension comes first.



Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon and Younho Lee 27

⋯  ⋯  ⋯
1 2 3 74 5 6 𝑅ଵ

⋯  ⋯  ⋯

𝑁

𝑅ଶ

𝑅ଵ

(a) The first kernel with radix R = R1

⋯  ⋯  ⋯

𝑅ଶ

𝑁

𝑅ଶ

(b) The second kernel with radix R = R2

𝑻𝟏  𝑻𝟐   ⋯  𝑻 𝑹
𝟔𝟒

⋮

⋯  ⋯  ⋯  𝑻𝑹
𝟖

𝑻𝟏 

𝑻 𝑹
𝟔𝟒 𝑻𝟐 

8

8

𝑹

𝟔𝟒

𝑻𝟏 𝑻𝟐  ⋯

 ⋯  ⋯  ⋯  𝑻𝑹
𝟖

⋮
𝑻𝑹

𝟖  

𝑻 𝑹
𝟔𝟒 

x
y

z
1

2

3

4

5

(c) Execution of an NTT kernel

Figure 7: Data access pattern of a thread block in (a) the first kernel and (b) the second
kernel of N -size 8 per-thread NTT implementation with GPU [KJPA20], where N = R1 ·R2.
(c) The thread block, which consists of R/8 threads, performs radix-R NTT on the loaded
data cube, where a thread performs an NTT with a size of 8 three times (¶, ¸ , º). Also,
synchronization of a thread block for storing the output to shared memory is shown (·,
¹).

Algorithm 12: Implementation of fast basis conversion in GPU
1 S = SCL ∪ SB := {qi}i∈[0,l)
2 S ′ = S ′CL ∪ S ′B := {q′i}i∈[0,l′) s.t. S ∩ S

′ = ∅
3 q̂i = (

∏l−1
j=0 qj)/qi,

4 in := [a(X)]S s.t. a(X) =
∑N−1
i=0 aiX

i

5 out := [a′(X)]S′ = ConvS→S′([a(X)]S) s.t. a′(X) =
∑N−1
i=0 a′iX

i

6 procedure FastBasisConversionStep1 // launch lN threads
7 idx = blockDim.x * blockIdx.x + threadIdx.x
8 i = idx / N
9 j = idx % N

10 [aj ]qi = ShoupModMulqi([aj ]qi , [q̂
−1
i ]qi)

11 end procedure
12 procedure FastBasisConversionStep2 // launch l′N threads
13 idx = blockDim.x * blockIdx.x + threadIdx.x
14 i = idx / N
15 j = idx % N
16 accum = [aj ]q0 · [q̂0]q′

i

17 for m in [1, l) do
18 accum += [aj ]qm · [q̂m]q′

i

19 end
20 [a′j ]q′i = BarrettModReductionq′

i
(accum)

21 end procedure
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Then the thread block, which consists of TR
8
threads, performs NTT along the z axis

first (using the twiddle factors inside the main memory), stores the outputs to shared
memory, synchronizes, loads the stored data in shared memory to the register file, and
repeats for the y and x axes. Because each thread performs up to 8-point NTT, we call
this as 8 per-thread NTT.

Algorithm 12 shows the implementation of the fast basis conversion on GPU. It consists
of two kernels, where each index of data that a thread processes (idx) is characterized
by the index of the corresponding thread block (blockIdx.x), dimension of the block
(blockDim.x), and thread index inside the warp (threadIdx.x).
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C Details on CKKS subroutines
This section provides supplementary explanations for the subroutines referred in the main
body of the paper to enhance the understanding of the CKKS method, with the required
mathematical background.

C.1 Table for Notation in HE

Table 5: Notation for HE used in this paper.
i, j, log2N ∈ N qi, pi Prime numbers
R Z[X]/(XN + 1) Rqi Zqi [X]/(XN + 1)
B {p0, . . . , pk−1} Ci {q0, . . . , qi}
Di (B

⋃
(
⋃

0≤j<i C′j) m(X) Coefficient-wise representation of
∑N−1

i=0
miX

i∈R

[s(X)]qj Coefficient-wise mod qj [a]qj a mod qj
� Hadamard mult [s(X)]Ci ([s(X)]q0 ,··· ,[s(X)]qi )

Qi
∏i
j=0 qj L Maximum level of ciphertext

Q̂j
∏dnum−1
i=0∧i 6=j Q

′
i ` Current level of ciphertext

q̂j
∏L
i=0∧i 6=j qj χkey Secret key distribution [CKKS17]

P
∏k−1
i=0 pi ωqi Primitive Nth root of unity in Rqi

α (L+ 1)/ dnum β d(`+ 1)/αe
{Q′j}j∈[0,dnum] {

∏(j+1)α−1
i=jα

qi}j∈[0,dnum) [a,b] {n∈Z|a≤n≤b}

C′i {qiα, . . . , qiα+α−1}. ct Ciphertext whose form is given as (a,b)∈(
∏

i
(Z∗qi )N )2

Q′
∏αβ−1
i=`+1 qi Q̂ P ∗Q′

SY ,S′Y subsets of Y s.t. SY ∩
S′Y =φ, where Y ∈{B,CL}

Q̂′′′j
∏

qi∈SCL
qi×
∏

pi∈SB∧i6=j
pi

Ai [iα, iα+ α− 1] Q̂′′j
∏

qi∈SCL∧i6=j
qi×
∏

pi∈SB
pi

πn(a) A permutation on [0,N−1]. a 7→ ([5n(2a + 1)]2N− 1)/2. Please refer to C.3 for more info.
dnum RNS-decomposition number [HK20] Please refer to C.7 for more information.
slot Position of a plaintext in a ciphertext that contains a vector of plaintexts
χerr Error distribution used for encryption and key generation [HK20].
k Number of prime moduli used for ModUp/ModDown.
NTT([s(X)]qi ) NTT op. returning s(i)= ([s(ω0

qi
)]qi , ··· , [s(ωN−1

qi
)]qi) ∈(Z∗qi )

N

NTT([s(X)]Ci ) Executes (NTT([s(X)]qi ))qi∈Ci then returns s=[s]Ci=(s(0),··· ,s(i))

iNTT([s]Ci ) Inverse NTT op. returning [s(X)]Ci=([s(X)]qj )j∈[0,i−1]

a
$←− S a is (uniformly) sampled from the distribution (or a set) S.

evk Key-switching key of the form (evk0,...,evkdnum−1),where
evki=(evk(j)

i
)j∈[0,k+L] ∈

∏k−1
n=0

((Z∗pn )N )2 ×
∏L

n=0
((Z∗qn )N )2

Table 5 tabulates the symbols and their descriptions used throughout this paper.

C.2 RLWECi(s,m)
CKKS uses RLWE instances for key generation and encryption. For example, to encrypt
a plaintext polynomial m(X) ∈ RQ, CKKS first generates (a(X), b(X)), which is a pair
of elements in RQ where a(X) $←− RQ, b(X) ← a(X) · s(X) + e(X), and e(X) $←− χerr.
After generating the pair, by adding m(X) to b(X) we complete the encryption. Here,
e(X) ∈ RQ, and since the absolute value of a coefficient of e(X) is about several tens
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at maximum with very high probability [CKKS17], the bit lengths of e(X)’s coefficients
are very short. s(X) ∈ RQ is the secret key, and only with this, m(X) + e(X) can be
recovered through (a(X), b(X)) · (−s(X), 1).

We can use CRT to convert an element in RQ` into one in
∏`
j=0Rqj . By applying NTT

further, finally it can be expressed as an element in
∏`
j=0(Z∗qj )

N . That is, the following
relations are preserved through CRT and NTT:

a(X) ∈ RQ` (aqj (X))j∈[0,`] ∈
∏`
j=0Rqj (a(j))j∈[0,`] ∈

∏`
j=0(Z∗qj )

N
CRT

iCRT

NTT

iNTT

The algorithm RLWECi(s,m) in the main body of the text generates an RLWE instance
in NTT domain (a, b) ∈ (

∏`
j=0(Z∗qj )

N )2 with s and m, each of which is a secret key s(X)
and message m(X) in NTT domain, respectively; the output (a, b) can be converted from
and to (a(X), b(X)) in (RQ`)2.

C.3 FrobeniusMap(a,n)
This algorithm performs Frobenius map function in NTT domain for HROTATE. In CKKS,
a vector ~z of complex numbers of dimension M ≤ N/2 can be converted into a plaintext
polynomial m(X) ∈ RQ`

~z ∈ CM τ−1

−−→ (mQ(X)) ∈ Q(X)/(XN + 1) b∆·e−−−→ m(X) ∈ RQ` (2)

where τ : zi 7→ mQ(ζi) and ~z = (zi)i∈[0,N−1], ζi = ζ5i , ζ = exp(−2πi/4M), and
b∆·e : a 7→ b∆ · ae. In this case, ζM = ζ0 = ζ. We define the result obtained by
substituting ζi for X in mQ(X) as the value of the i-th slot.

Now we consider the slot rotation operation. For example, assuming that the rotation
by n slots is performed in mQ(X), the resultant polynomial m′Q(X) ∈ Q[X]/(XN + 1)
should preserve mQ(ζi) = m′Q(ζi+n). That is, the value in the (i + n)-th slot of m′Q(X)
should be the same as the one in the i-th slot of mQ(X). Because ζi+n = ζ5i+n = ζ5n

i , we
need to compute m′Q(X) = mQ(X5−n) from mQ(X).

The above relation holds on ciphertexts. For example, to rotate the hidden message
in a ciphertext (a(X), b(X) = a(X) · s(X) +m(X) + e(X)) ∈ R2

Q`
by n slots, we need to

derive (a(X5−n), b(X5−n) = a(X5−n) · s(X5−n) +m(X5−n) + e(X5−n)) from (a(X), b(X)).
Let us consider a(X) (because the same applies to b(X)). As described in the previous

section, we can convert a(X) to (a(j))j∈[0,`] ∈
∏`
j=0(Z∗qj )

N through CRT and NTT. Let’s

focus on one element a(i) =
(A)︷ ︸︸ ︷

([a(ω0)]qi , · · · , [a(ωN−1)]qi) ∈ (Z∗qi)
N where ωj is ωjqi in the

main body of the text (j ∈ [0, N − 1]). In order to rotate the hidden message by n

slot, we need to calculate

(B)︷ ︸︸ ︷
([a(ω5−n

0 )]qi , · · · , [a(ω5−n
N−1)]qi), which is the result of applying

NTT to [a(X5−n)]qi . Fortunately, Equation (A) above is a permutation of Equation (B)

(i.e., (B)=
(C)︷ ︸︸ ︷

([a(ωπ−1
n (0))]qi , · · · , [a(ωπ−1

n (N−1))]qi)). Here, πn : [0, N − 1] → [0, N − 1] is a
permutation that satisfies ω5n

j = ωπn(j).
Now let’s discuss FrobeniusMap(a,n). a = (a(j))j∈[0,N−1] ∈ (Z∗qj )

N . It is a subroutine
to calculate the rotation result by n-slots for all a(j)s in a by the way described in Equation
(C).
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C.4 ConvSCL∪SB→S′
CL
∪S′

B
([a(X)]SCL∪SB)

This subroutine refers to the fast basis conversion algorithm [CHK+19, BEHZ16]. Given
the result of modular operations with the prime numbers in SCL ∪ SB for a polynomial
a(X), the purpose of the algorithm is to produce the result of modular operations on the
coefficients of a(X) with the different prime numbers in S ′CL ∪ S

′
B.

More precisely, given [a(X)]SCL∪SB as an element in
∏
qi∈SCL

Rqi ×
∏
pj∈SB Rpj , the

algorithm converts it into an element [a(X)]S′CL∪S′B in
∏
qi∈S′CL

Rqi ×
∏
pj∈S′B

Rpj with
the prime numbers given in S ′CL ∪ S

′
B.

To obtain the result above, one can simply use iCRT for the coefficient of [a(X)]SCL∪SB
and then perform the modular reduction operation on the coefficient using each of the
prime modulus values to represent the target rings in the result. However, if the number of
target rings is large, many long-precision operations should be conducted, which exhibits
huge computation cost. For example, if iCRT is performed to (aqj (X))qj∈C` which is an
element of RC` , the result, A(X) ∈ R, can be calculated with the following formula:

A(X)← (
∑̀
j=0

(((q̂−1
j mod qj) · [a(X)]qj ) mod qj) · (q̂j)) mod Q`, (3)

where q̂j =
∏
i∈[0,`]∧i 6=j qi. The bit length of q̂j is much larger than that of the primes

that are single- or double-word, increasing the computation cost.
The fast basis conversion algorithm directly retrieves [a(X)]S′CL∪S′B by computing the

following equation for each q′i ∈ S ′CL ∪ S
′
B:

(
∑̀
j=0

(((q̂−1
j mod qj) · [a(X)]qj ) mod qj) · (q̂j mod q′i)) mod q′i. (4)

The algorithm uses the fact that only the prime numbers in a specific set are used to
represent polynomial rings used in CKKS. The prime numbers used are all elements of
CL ∪ B. Thus, if we pre-compute [Q̂′′−1

j ]qj , [Q̂′′j ]qj for all qj ∈ CL, and [Q̂′′′−1
j ]pj , [Q̂′′′j ]pj for

all pj ∈ B in advance, we obtain the result with much less computation cost compared
to using iCRT. Line 2-4 of Algorithm 1 of the main body of this paper are the main
computation steps for the above formula. Because the bit lengths of [Q̂′′j ]qi and [Q̂′′′j ]qi are
at most that of a single prime number, they can be performed efficiently.

In Equation 4, ‘ mod pi’ operation is performed without performing the last ‘mod Q`’
in Equation 3. Thus, there is a difference in the result compared to executing modular
reduction by pi to the result of running Equation 4. However, since the calculation result
is returned to RQ` through modDown in the future, the error can be ignored.

C.5 ModUpC′
i→Dβ([a]C′

i
)

This algorithm takes [a]C′
i
∈
∏i·α+α−1
j=i·α (Z∗qj )

N as input and changes its basis to Dβ including
the existing basis C′i using the fast basis conversion: [a]Dβ ∈

∏i·α+α−1
j=0 (Z∗qj )

N×
∏k−1
j=0 (Z∗pj )

N .
The input [a]C′

i
is one of the decomposed part of [a]C` after the RNS decomposition that

will be described later.
Specifically, in the basis conversion, ConvC′

i
→Dβ−C′i([a]C′

i
) is performed and the result

is concatenated with the input [a]C′
i
to finally obtain the result. Since the input of Conv

operates only on a polynomial element of coefficient-wise representation, iNTT is performed
to convert [a]C′

i
into [a(X)]C′

i
∈
∏
qj∈C′i

Rqj before executing Conv.
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C.6 ModDownDβ→C`(b̃(0), b̃(1),· · · ,b̃(k+αβ−1))
Suppose P =

∏
ri∈Dβ−C` ri and Q =

∏
ri∈C` ri. In this paper, the elements of Dβ − C`

are expressed in the form of either pi or qj , However, we use ri instead to simplify the
expression.

If iNTT and iCRT are executed for each coefficient of the input b̃(0), b̃(1),· · · ,b̃(k+αβ−1),
it can be expressed as [b̃(X)]PQ ∈ RPQ. ModDown basically does the following equations
but in RNS domain:

t(X) ← [b̃(X)]PQ − [b̃(X)]PQ mod P
b(X) ← t(X)/P

ModDown performs the above formula on RNS with ([b̃(X)]ri)ri∈Dβ ∈
∏
ri∈Dβ Rri , which

is approximately [b̃(X)]PQ after applying CRT.
For ri ∈ Dβ − C`, ([b̃(X)]ri − [b̃(X)]ri mod P ) mod ri equals to zero. Therefore, the

output becomes ([b(X)]ri)ri∈C` where

[b(X)]ri = [P−1(

(D)︷ ︸︸ ︷
[b̃(X)]PQ mod ri−

(E)︷ ︸︸ ︷
([b̃(X)]PQ mod P ) mod ri)]ri .

(D) is the same as the provided input [b̃(X)]ri . (E) should be calculated using
the fast basis conversion (ConvDβ−C`→C`(·)). The evaluation of (E) is [b′(X)]ri∈C` =
ConvDβ−C`→C`(([b̃(X)]ri)ri∈Dβ−C`). In conclusion, the following formula can be derived
from the above:

(F)︷ ︸︸ ︷
[b(X)]ri = [P−1([b̃(X)]ri − [b′(X)]ri)]ri (5)

ModDown first converts the inputs (b̃(0), b̃(1),· · · ,b̃(k+αβ−1)) to ([b̃(X)]ri)ri∈Dβ using
iNTT and evaluates ([b̃(X)]ri)ri∈Dβ . Finally, it performs subtractions and multiplication
with P−1 to obtain the desired result.

Please be aware that in the description of ModDown in Algorithm 4, NTT is executed
before executing (F). Since Equation (F) still holds although we replace X to ωj (j ∈
[0, N − 1]), it is possible to execute (F) after applying NTT; thus, we obtain b(i) =
([b(ω(j)

qi )])j∈[0,N−1]) for every i ∈ [0, `].

C.7 RNS Decomposition (Dcomp(d = (d(0), · · · , d(`))))

Recall Q` =
∏`
i=0 qi. Suppose there are two elements A and B in Z∗Q` . We can calculate

Z on the equation below.

Z =
∑̀
i=0

((A · q̂−1
i ) mod qi) · (q̂i ·B)) mod Q` (6)

We can see that Z mod qi = A ·B mod qi is satisfied for all qi (i ∈ [0, L]). Therefore,
Z mod Q` = AB mod Q` by CRT.

The above relationship holds true also for A(X), B(X) ∈ RQ` and Z(X) ∈ RQ` , which
are corresponding to A, B, and Z, respectively. Since we are using an RNS-variant of
CKKS, suppose that (A(X) · q̂−1

i ) mod qi) · (q̂i · B(X)) is performed in
∏`
j=0Rqj after

applying CRT on A(X) and B(X). Then, the term q̂i ·B(X) mod qj becomes all zero for
all j where j 6= i. Eventually, the following relationship is satisfied:
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∑`
i=0((A(X) · q̂−1

i ) mod qi) · (q̂i ·B(X))) mod Q`
CRT−−−→ (((A(X) · q̂−1

i ) mod qi) · (q̂i ·B(X)) mod qi)i∈[0,`], (7)

where CRT−−−→ refers to applying CRT.
This method can be applied to the multiplication on ciphertexts to increase the

maximum level for a fresh ciphertext on the same parameter set compared to where the
method is not applied. We call the above technique as RNS-decomposition.

Instead of performing decomposition on each of individual prime numbers {qi}i∈[0,`],
the above method can be applied per group of primes, after grouping L prime numbers used
in the scheme. Han et al. [HK20] define the parameter α as the number of prime numbers
in a group, which can be calculated by (L + 1)/dnum, where dnum, the decomposition
number, is an arbitrarily chosen parameter; dnum is normally selected from the set of
the divisors of L+ 1. Then, the above Equation 7 changes to work with groups of prime
numbers as below.

∑β−1
i=0 ((A(X) · Q̂−1

i ) mod Qi) · (Q̂i ·B(X))) mod Qαβ

CRT−−−→ (

(G)︷ ︸︸ ︷
((A(X) · Q̂−1

i ) mod qiα+j) ·(Q̂i ·B(X)) mod qiα+j)i∈[0,β−1],j∈[0,α−1], (8)

where α, β ∈ Z, β = d `+1
α e, and Q̂i =

∏α·i+α−1
j=α·i qj (i ∈ [0, β − 1]). We have to set A(X)

mod q`+1 = · · · = A(X) mod qi·α+α−1 = 0 such that Equation 8 also holds true when
i · α < ` < i · α+ α− 1.

Now we provide the description on Dcomp(d = (d(0), · · · , d(`))) in Section 2. It executes
the process (G) in Equation 8 above in NTT domain. We omitted the description on other
parameters such as α, dnum, `, L in the description of Dcomp.
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