
CRYPTGPU: Fast Privacy-Preserving Machine Learning on the GPU

Sijun Tan∗, Brian Knott†, Yuan Tian∗, and David J. Wu∗

∗University of Virginia
{st8eu, yuant, dwu4}@virginia.edu

†Facebook AI Research
brianknott@fb.com

Abstract—We introduce CRYPTGPU, a system for privacy-
preserving machine learning that implements all operations on
the GPU (graphics processing unit). Just as GPUs played a pivotal
role in the success of modern deep learning, they are also essential
for realizing scalable privacy-preserving deep learning. In this
work, we start by introducing a new interface to losslessly embed
cryptographic operations over secret-shared values (in a discrete
domain) into floating-point operations that can be processed
by highly-optimized CUDA kernels for linear algebra. We then
identify a sequence of “GPU-friendly” cryptographic protocols
to enable privacy-preserving evaluation of both linear and non-
linear operations on the GPU. Our microbenchmarks indicate
that our private GPU-based convolution protocol is over 150×
faster than the analogous CPU-based protocol; for non-linear
operations like the ReLU activation function, our GPU-based
protocol is around 10× faster than its CPU analog.

With CRYPTGPU, we support private inference and private
training on convolutional neural networks with over 60 million
parameters as well as handle large datasets like ImageNet.
Compared to the previous state-of-the-art, when considering
large models and datasets, our protocols achieve a 2× to 8×
improvement in private inference and a 6× to 36× improvement
for private training. Our work not only showcases the viability
of performing secure multiparty computation (MPC) entirely on
the GPU to enable fast privacy-preserving machine learning, but
also highlights the importance of designing new MPC primitives
that can take full advantage of the GPU’s computing capabilities.

I. INTRODUCTION

Deep learning has enabled numerous applications in the form
of digital voice assistants, video monitoring and surveillance
systems, and even systems for disease diagnosis and treatment
planning. But these new and exciting applications raise challeng-
ing questions regarding user privacy. After all, modern machine
learning algorithms are largely data-driven and training image
recognition, speech recognition, or disease predictor systems
all rely on aggregating and analyzing sensitive user data. Even
model inference raises privacy concerns as increasingly often,
voice or video recordings from a mobile or IoT device are
outsourced to the cloud for analysis.

To address some of the privacy challenges associated with
the widespread deployment of deep learning technologies, a
number of works [1, 2, 3, 4, 5, 6] in the last few years have in-
troduced cryptographic frameworks based on secure multiparty
computation (MPC) [7, 8] to enable privacy-preserving deep
learning (see Section V for a more comprehensive survey). At
a high level, MPC protocols allow a set of mutually-distrusting
parties to compute an arbitrary function over secret inputs such

that at the end of the computation, the parties only learn the
output of their computation, and nothing more. In particular, all
information about other parties’ inputs are completely hidden
(up to what could be inferred based on the output1).

While there have been considerable advances in the con-
crete efficiency of MPC protocols, current approaches remain
computationally expensive and do not scale well to the types
of neural networks typically used in modern machine learning
systems. Until recently, cryptographic protocols for private
inference over deep neural networks have been limited to small
datasets such as MNIST [11] or CIFAR [12]. In contrast, the
current baseline for object recognition is ImageNet [13], a
dataset that is over 1000× larger than CIFAR/MNIST and
contains 1000 different classes (compared to just 10 classes for
MNIST and CIFAR). Similarly, state-of-the-art deep learning
models for computer vision such as ResNet-152 [14] contain
over 150 layers and over 60 million parameters. In contrast,
most protocols for privacy-preserving machine learning have
been constrained to relatively shallow networks with just tens
of layers and a few hundred thousand parameters.

Recently, two systems FALCON [6] and CRYPTFLOW [5]
have made considerable headway towards scalable privacy-
preserving machine learning. For the first time, they demon-
strate the ability to perform privacy-preserving machine learn-
ing at the scale of ImageNet (or Tiny ImageNet [15] in the case
of FALCON) and with much larger models (e.g., AlexNet [16],
VGG-16 [17], and the ResNet family of models [14]). In spite
of these advances, there still remains considerable overhead:
for example, private training of AlexNet on Tiny ImageNet is
estimated to still take over a year using FALCON. CRYPTFLOW
currently only supports private inference and not private
training. Both works argue that hardware acceleration with
graphics processing units (GPUs) will be essential for scaling
up privacy-preserving deep learning, especially in the case of
private training.

The importance of GPU acceleration. GPUs and hardware
acceleration have played a critical role in the evolution of
modern deep learning. Today, convolutional neural networks
(CNNs) have become a staple for modern computer vision.
However, in the immediate years following their introduction

1There are settings where even learning the exact output is problematic and can
reveal compromising information about other parties’ inputs. Techniques like
differential privacy [9, 10] provide a defense against these types of attacks.
We discuss this in greater detail in Section V.

mailto:st8eu@virginia.edu
mailto:yuant@virginia.edu
mailto:dwu4@virginia.edu
brianknott@fb.com


in the seminal work of LeCun et al. [18], CNNs did not
see widespread adoption. This was in large part due to the
high computational costs of the backpropagation training
algorithm. Starting the mid-2000s, several works [19, 20]
showed that CNN training could be greatly accelerated through
the use of graphics processing units (GPUs). This culminated
with the breakthrough moment when Krizhevsky et al. [16]
introduced “AlexNet” and won the ImageNet Large Scale
Visual Recognition Challenge in 2012 using a large CNN
trained entirely on the GPU. Since AlexNet, CNNs have
become a mainstay of computer vision. Modern machine
learning frameworks like PyTorch [21] and TensorFlow [22] all
support and rely heavily on not only GPUs, but even custom-
designed application-specific integrated circuits (ASICs) such
as Google’s tensor processing unit [23].

Privacy-preserving machine learning on the GPU. Hard-
ware acceleration has become a core component for evaluating
and training deep learning models. Given that MPC protocols
necessarily incur a non-zero overhead on top of the plaintext
computation, it is essential for cryptographic protocols to be
able to leverage GPU acceleration in order to have any chance
of scaling up to support training and inference over deep models.
After all, if we are bound to CPU-based computations (as nearly
all existing MPC frameworks have), then it is infeasible to
even run the machine learning algorithm on plaintext data.

A. Our Contributions

In this work, we introduce CRYPTGPU, a new cryptographic
MPC framework built on top of PyTorch and CRYPTEN [24]
where all of the cryptographic operations (both linear and non-
linear) are implemented on the GPU. CRYPTGPU operates in
the standard 3-party setting where we assume that all inputs are
secret-shared across three non-colluding servers who execute
the MPC protocol. The inputs are secret shared using a 2-out-
of-3 replicated secret sharing scheme [25, 26] (see Section III
for the full details). Our system provides security against a
single semi-honest corruption. We describe our threat model
formally in Section III-A.

CRYPTGPU can perform private inference over modern
computer vision models such as ResNet-152 on ImageNet
images in just over 25s (2.3× faster than the previous state-of-
the-art CRYPTFLOW [5]). For smaller networks like AlexNet,
private inference over ImageNet requires just 1.5s.

Further improvements to the costs of private training are
possible if we consider batch inference, which also benefits
from GPU parallelism. For example, batch inference over
ResNet-152 reduces the cost of private inference from 25s
for a single image to 13.2s per image when amortized over a
batch of 8 images.

For private training (which has a greater potential to benefit
from GPU acceleration), we demonstrate a 36× speed-up for
private training of AlexNet on the Tiny ImageNet database
compared to FALCON. Whereas it would have taken over a
year to privately train FALCON on Tiny ImageNet, our GPU-
accelerated system would be able to do so in just over a week

(see Section IV-B). Beyond these performance results, our
work highlights the potential of leveraging GPUs to accelerate
privacy-preserving deep learning in much the same way GPUs
have dramatically accelerated standard deep learning. Our work
also highlights the importance of developing new types of
cryptographic protocols that are “GPU-friendly” and can take
advantage of the parallelism provided by GPUs.

Cryptography on the GPU. While NVIDIA’s CUDA (Com-
pute Unified Device Architecture) platform [27] supports
general-purpose computations on the GPU, directly translating
code written for the CPU onto the GPU is unlikely to translate
to immediate performance gains. The architectural differences
between the CPU and the GPU introduce several additional
hurdles that must be overcome in order to have an efficient
implementation:

• Leveraging existing CUDA kernels. The first challenge is
that highly optimized CUDA kernels for computing deep
learning primitives (i.e., convolutions, pooling, matrix multi-
plication) are designed to operate on floating-point inputs,
and there does not currently exist kernels for computing on
integer values. In MPC, we typically compute over discrete
objects (i.e., ring or field elements). To leverage optimized
kernels for these basic primitives, we need a way to embed
the integer-valued cryptographic operations into (64-bit)
floating-point arithmetic that can in turn be operated on
by these kernels. CRYPTGPU enables this by introducing
a new abstraction called a CUDALongTensor that models
tensors (i.e., multi-dimensional arrays) of integer values,
but seamlessly translates the integer-valued computations
into a corresponding set of floating-point computations. We
describe our construction in Section II-B. The DELPHI
system encountered a similar challenge, but as we discuss
in Remark II.3, their solution does not extend well to our
setting. A critical difference is that DELPHI considers private
inference where the model is public while in this work, we
assume that the model is also hidden (i.e., secret-shared).

• “GPU-friendly” cryptography. The GPU architecture is
optimized for performing a large number of simple com-
putations on blocks of values. This means that operations
like component-wise addition and multiplication of vec-
tors/matrices are fast while operations that involve large
numbers of conditional statements are slower. While there
is support for integer addition and multiplication, operations
like computing a modular reduction by a prime incurs consid-
erably more overhead [27]; for instance, we observed a 40×
difference in the running time of point-wise addition vs. point-
wise modular reduction. Thus, when choosing and designing
cryptographic protocols for the GPU, one must carefully
calibrate them for the architecture. Protocols like Yao’s
garbled circuits [28] are less well-suited for taking advantage
of GPU parallelism compared to a vectorized secret-sharing-
based protocol. Similarly, protocols that require extensive
finite field arithmetic (and thus, require modular reductions)
will incur more overhead on the GPU compared to protocols
that only rely on arithmetic modulo a power of 2. We

2



also design protocols for common non-linear functions (e.g.,
exponentiation and division) that are specifically optimized
for our particular setting. We describe the cryptographic
protocols we use in Section III.

Systematic evaluation of GPU-based MPC. We present a
comprehensive and systematic evaluation of CRYPTGPU to
quantify the advantages of a GPU-based MPC protocol and
compare against previous protocols for privacy-preserving
machine learning. We specifically measure the performance of
our private training and inference protocols on a wide range
of object recognition models (e.g., LeNet [18], AlexNet [16],
and the ResNet family of networks [14]) and datasets (e.g.,
MNIST [11], CIFAR-10 [12], and ImageNet [13]). We describe
our experimental methodology and measurements in Section IV.

We also collect fine-grained measurements to understand
how the computational costs are split across the different
layers of a network. For instance, in CPU-based systems like
FALCON [6], the linear layers account for 86% to 99% of
the overall computational costs of private training.2 On the
same model/datasets, our GPU-based approach evaluates the
same linear layers with a 25× to 72× speed-up; this is a major
source of the performance advantage of CRYPTGPU compared
to previous systems. Consequently, the costs of our private
training protocol is more evenly split between evaluating linear
layers and non-linear layers. We provide the full details in
Section IV-B and Table V.

In Section IV-C, we report microbenchmarks to quantify
the performance advantages of using the GPU to execute all
of the MPC protocols. For instance, we show that evaluating
convolutions on secret-shared data (with secret-shared kernels)
on the GPU is over 150× faster than the corresponding
protocol on the CPU. Even for non-linear operations like the
ReLU (rectified linear unit) function, using a GPU-based MPC
protocol still yields a 10× speed-up over the same underlying
CPU-based protocol.

Finally, since our MPC protocol represents real-valued inputs
using a fixed-point encoding, and moreover, some of our
protocols rely on approximations to non-linear functions, we
also compare the accuracy of our private inference and private
training algorithms to the analogous plaintext algorithms. As
we show in Section IV-D, for the models and datasets we
consider in this work, the behavior of our privacy-preserving
algorithms closely matches their plaintext analogs.

An ML-friendly approach. One of the guiding principles
behind our system design is to make it friendly for machine
learning researchers to use. We build our system on top of
CRYPTEN [24], which is itself built on top of the popular
machine learning framework PyTorch [21]. Effectively, our
work (much like CRYPTEN) provides a new cryptographic
back end that supports computations on secret-shared values
while retaining a similar front end as PyTorch. In fact, we note
that our work on developing the CUDALongTensor module

2While linear layers are simpler to evaluate from a cryptographic perspective
(in comparison to non-linear layers), the size of the linear layers is typically
much larger than that of the non-linear layers.

has already been integrated as part of CRYPTEN to support
privacy-preserving GPU computations [24].

II. SYSTEM OVERVIEW

Similar to previous works on constructing efficient protocols
for privacy-preserving machine learning [2, 3, 6, 5, 29, 30]
(see also Section V), we assume that the data and model
are (arbitrarily) partitioned across three parties. For example,
the three parties could be three independent organizations
seeking to collaboratively train a model on their joint data
without revealing their inputs to each other. Our system is also
applicable in the “server-aided” setting [31], where a group
of (arbitrarily-many) clients seek to train a joint model on
their data (or evaluate a secret-shared model on private inputs).
In the server-aided setting, the clients first secret share their
inputs to three independent cloud-service providers, who in
turn run the cryptographic protocol on the secret-shared inputs.
We design our protocols to provide security against a single
semi-honest corruption. We provide a formal description of
our threat model in Section III-A.

A. Background

Our starting point in this work is the CRYPTEN privacy-
preserving machine learning framework [24]. CRYPTEN is
built on top of the widely-used machine-learning framework
PyTorch [21]. We adapt the basic architecture of CRYPTEN,
and make modifications to support three-party protocols based
on replicated secret sharing. We describe the main system
architecture below.

GPU architecture. GPUs, and more recently, ASICs like
Google’s tensor processing units [23], have played a critical role
in scaling up modern deep learning. These specialized hardware
platforms support massive parallelism, making them well-suited
for performing standard linear algebraic operations (e.g., con-
volutions or average pooling) as well as point-wise evaluation
of functions on large blocks of neurons (e.g., evaluating an
activation function or performing batch normalization). Popular
frameworks for deep learning frameworks such as PyTorch [21]
and TensorFlow [22] natively support computations on both
the CPU and GPU.

CUDA is a parallel computing platform developed by
NVIDIA for general-purpose computing on GPUs [27].
For deep learning in particular, CUDA libraries such as
cuBLAS [32] and cuDNN [33] provide highly-optimized
implementation for a wide-range of standard primitives such
as convolutions, pooling, activation functions, and more. These
libraries are designed for floating-point computations and do
not support integer-valued analogs of these operations. Since
cryptographic protocols typically operate over discrete spaces
(e.g., a 64-bit ring) where the underlying algebra is implemented
using integer-valued computations, one cannot directly translate
an existing protocol to the GPU.

PyTorch. PyTorch [21] is a popular open-source machine
learning framework designed for prototyping, implementing,
and deploying deep neural networks. The PyTorch front end

3



supports many standard neural network layers (e.g., convolu-
tions, pooling, activation functions, etc.) as well as features
such as automatic differentiation and gradient computation. The
PyTorch back end natively supports computation on both CPUs
as well as GPUs. This flexibility enables users to train complex
models without needing to worry about the finer details of
backpropagation. It also allows users to take advantage of GPU
acceleration without needing to interface with low-level CUDA
kernels. PyTorch also provides library support for distributing
computations across multiple devices and/or GPUs.

Data in PyTorch is organized around tensors, which pro-
vide a general abstraction for n-dimensional arrays. PyTorch
provides an expressive API for computing on and applying
transformations to tensors. Especially importantly in our case,
the PyTorch back end natively and seamlessly leverages GPU
acceleration for tensor computations.

CRYPTEN. CRYPTEN [24] is a recent framework built on top
of PyTorch for privacy-preserving machine learning. CRYPTEN
provide a secure computing back end for PyTorch while still
preserving the PyTorch front end APIs that enables rapid
prototyping and experimentation with deep neural networks.

The main data abstraction in CRYPTEN is the MPCTensor,
which functions like a standard PyTorch tensor, except the
values are secret shared across multiple machines. Internally,
CRYPTEN uses n-out-of-n additive secret sharing. For bilinear
operations such as convolutions and matrix multiplications,
CRYPTEN uses arithmetic secret sharing over a large ring
(e.g., Z264 ), while for evaluating non-linear operations like an
activation function, it uses Boolean secret sharing. CRYPTEN
uses the ABY share-conversion techniques [34] to convert
between arithmetic shares and Boolean shares.

CRYPTEN supports general n-party computation and pro-
vides security against a single semi-honest corruption. At
the cryptographic level, elementary arithmetic operations are
handled using Beaver multiplication triples [35], Boolean
circuit evaluation is implemented using the Goldreich-Micali-
Wigderson (GMW) protocol [7], and low-degree polynomial
approximations are used for most non-linear operations. We
note that while our system builds on CRYPTEN, we work in a
3-party model where parties compute using replicated secret
shares (as in [26]). We describe this in Section III.

B. System Design and Architecture

The design of CRYPTGPU is centered around the following
principles:
• Leverage existing CUDA kernels for linear algebra. As

mentioned in Section II-A, highly-optimized CUDA kernels
exist for most linear algebra operations encountered in deep
learning. However, these kernels only support computations
on floating-point values and are not directly applicable for
computing on discrete structures common in cryptographic
protocols. Thus, we seek a way to keep all of the computation
on the GPU itself.

• Keep all computations on the GPU. While some previous
works on private machine learning [36, 4] show how to

leverage the GPU for computing linear and bilinear functions,
they then move the data out of the GPU to evaluate non-
linear functions. In this work, we seek to keep all of the
computations on the GPU, and as we show in Section IV-C,
even computing non-linear functions can benefit greatly
from GPU acceleration, provided that they are implemented
using “GPU-friendly” cryptographic protocols (i.e., protocols
that primarily rely on point-wise or component-wise vector
operations).

Floating point computations. The cryptographic core of
CRYPTGPU relies on (additive) replicated secret sharing over
the 64-bit ring Z264 . Computing bilinear functions such as
convolutions over secret-shared values essentially correspond
to the parties running an analogous local operation on their
shares, followed by a communication step (see Section III).
Our goal is to take advantage of the GPU to accelerate each
party’s local computation on their individual shares. As noted
in Section II-A, existing GPU libraries for linear algebra only
support computation over 64-bit floating point values. Thus, to
take advantage of GPU support for these operations, we need
to embed the ring operations over Z264 (or equivalently, 64-bit
integer operations) into 64-bit floating point operations.

Integer operations using floating-point arithmetic. Our
approach for embedding 64-integer operations into 64-bit
floating point operations relies on the following observations:
• Exact computation for small values. First, 64-bit floating

point values have 52 bits of precision and can exactly
represent all integers in the interval [−252, 252]. This means
that for all integers a, b ∈ Z ∩ [−226, 226], we can compute
the product ab using their floating-point representations and
still recover the correct value over the integers.

• Bilinearity. Operations like matrix multiplication and con-
volutions are bilinear. This means that for any choice of
inputs A1,A2,B1,B2,

(A1 + A2) ◦ (B1 + B2) =

A1 ◦B1 + A2 ◦B1 + A2 ◦B1 + A2 ◦B2,

where ◦ denotes an arbitrary bilinear operation. Suppose
now that we rewrite an input as an expansion in a smaller
base; for example, we might write A = A0 + 216A1 and
B = B0 + 216B1. Bilinearity ensures that A ◦ B can be
expressed as a linear combination of the pairwise products
A0 ◦ B0, A0 ◦ B1, A1 ◦ B0, and A1 ◦ B1. Computing
A◦B from the pairwise products only requires element-wise
additions and scalar multiplications.

• CUDA kernels for element-wise operations. To complete
the puzzle, we note that there are optimized CUDA kernels
for performing component-wise addition and scalar multipli-
cation on 64-bit integer values.

To evaluate a bilinear operation ◦ like matrix multiplication or
convolution (which do not have integer kernels), CRYPTGPU
first decomposes each of the inputs A,B ∈ Zn×m264 into
smaller inputs A1, . . . ,Ak,B1, . . . ,Bk ∈ Zn×m2w where A =∑k
i=1 2(i−1)wAi. Then, it computes the k2 products Ai ◦Bj

4



using floating-point arithmetic on the GPU. As long as the
entries of Ai ◦ Bj do not exceed 252 in magnitude, all of
these pairwise products are computed exactly. Finally, each
component of the pairwise product is re-interpreted as a 64-bit
integer. Computing A ◦B from the pairwise products AiBj

amounts to evaluating a linear combination of tensors, which
can be done efficiently using existing CUDA kernels for 64-bit
integer operations. Note that since the final operations are taken
modulo 264, it suffices to compute only the products AiBj

where w(i+ j − 2) < 64.
When performing computations using floating-point kernels,

CRYPTGPU decomposes each input into k = 4 blocks, where
the values in each block are represented by a w = 16-bit
value. For this choice of parameters, each bilinear operation is
expanded into 10 pairwise products.

Remark II.1 (Smaller Number of Blocks). While it may
be tempting to decompose 64-bit values into k = 3 blocks,
where each block consists of 22-bit values, this compromises
correctness of our approach. Namely, correctness of the
computation is guaranteed only if the entries in each of the
intermediate pairwise products Ai ◦Bj do not exceed the 52-
bits of available floating-point precision. If the entries of Ai

and Bj are 22 bits, then the entries in a single multiplication
between an element in Ai and Bj will already be 44 bits.
If we are evaluating a convolution (or matrix multiplication)
where each output component is a sum of 28 = 256 values,
this exceeds the available precision and triggers an arithmetic
overflow. This is problematic for larger networks. Using 16-bit
blocks, we can handle bilinear operations involving up to 220

intermediate products, which is sufficient for our applications.

Remark II.2 (Overhead of Block-wise Decomposition).
While decomposing each bilinear operation on integer val-
ues into O(k2) floating-point operations on same-sized in-
puts can appear costly, CRYPTGPU takes advantage of
GPU parallelism to mitigate the computational overhead.
Namely, for convolutions, CRYPTGPU uses group convo-
lution (cudnnConvolutionForward) to compute the
convolutions in parallel. Similarly, for matrix multiplica-
tions, CRYPTGPU uses a batch matrix multiplicative kernel
(cublasSgemm) to multiply matrices in parallel. We observe
that for small inputs (e.g., 64× 64 inputs), this approach only
incurs a modest 2× overhead (compared with evaluating a
single convolution of the same size) and increases to roughly
9× for larger 224× 224 inputs.

While the computational overhead of our embedding is
partially mitigated through parallelism, this approach does
increase the memory requirements of our protocol. This does
not have a significant effect on privacy-preserving inference,
but it does limit the batch size we can handle during privacy-
preserving training (recall that during training, a single iteration
of the optimization algorithm processes a batch of instances).
Scaling up to support larger batch sizes during privacy-
preserving training would likely necessitate distributing the
computation across multiple GPUs rather than a single GPU
(as is also the case for training deep models in the clear).

Remark II.3 (Comparison with DELPHI). The DELPHI
system [4] leverage GPUs for evaluating convolutions on
secret-shared inputs in their private inference system. In their
setting, the parameters are chosen so that the outputs of the
convolution are always within the interval [2−52, 252], and as
such, the existing floating-point kernels for convolution can be
used without incurring any floating-point precision issues. In
particular, DELPHI uses a 32-bit ring and 15 bits of fixed-point
precision. The system works in the setting where the model
parameters are assumed to be public: namely, the convolution
kernels are not secret-shared. In this way, convolutions are
evaluated between a plaintext value and a secret-shared value,
which ensures that the resulting outputs are bounded. In our
setting, both the model and the inputs are secret-shared so
we cannot directly embed the integer-valued operations into
64-bit floating-point computations. In fact, as we discuss in
Section IV-C, to have sufficient precision when scaling up to
deeper models and larger datasets, it is often necessary to use a
larger ring (i.e., a 64-bit ring) for the arithmetic secret sharing.

The CUDALongTensor abstraction. CRYPTGPU provides
a new abstraction called a CUDALongTensor for embed-
ding 64-bit integer-valued operations into 64-bit floating-
point arithmetic. Similar to CRYPTEN’s MPCTensor, the
CUDALongTensor abstractly represents a secret-shared ten-
sor of 64-bit integers and is backed by a standard PyTorch
tensor of 64-bit integers. In the back end, whenever an
elementary operation needs to be evaluated on the underlying
tensor, CRYPTGPU proceeds as follows:

• If optimized CUDA kernels exist for evaluating the chosen
operation on integer-valued tensors (e.g., point-wise addition
or point-wise multiplication), then the corresponding CUDA
kernel is directly invoked.

• For bilinear operations where optimized CUDA kernels only
exist for computations on floating-point inputs (e.g., con-
volutions, matrix multiplications), then CRYPTGPU applies
the above technique of first decomposing the input into
k = 4 tensors of 16-bit values, computing all necessary
O(k2) pairwise products of the resulting blocks (using the
floating point kernel), and re-combines the pairwise products
to obtain the final output.

III. THREAT MODEL AND CRYPTOGRAPHIC DESIGN

In this section, we provide a formal specification of our
threat model and a description of the private inference and
training functionalities we develop. We then describe the
cryptographic sub-protocols we use to construct our privacy-
preserving training and inference protocols.

We begin by introducing the notation we use in this work.
For a finite set S, we write x R←− S to denote that x is drawn
uniform at random from S. We use boldface letters (e.g., x,y)
to denote vectors and use non-boldface letters (e.g., xi, yi)
to denote their components. We denote our three parties by
P1, P2, P3. To simplify notation, whenever we use an index
i ∈ {1, 2, 3} to denote a party (or a share), we write i − 1

5



and i+ 1 to denote the “previous” party and the “next” party,
respectively. For example, P3+1 refers to P1.

We say that a function f is negligible in a parameter λ if
f(λ) = o(λ−c) for all c ∈ N. We say an algorithm is efficient if
it runs in probabilistic polynomial-time in the length of its input.
We say that two families of distributions D1 = {D1,λ}λ∈N and
D2 = {D2,λ}λ∈N are computationally indistinguishable (i.e.,
D1

c
≈ D2) if no efficient adversary can distinguish samples

from D1 and D2 except with negligible probability.

A. Threat Model

Similar to several recent 3-party protocols [26, 37, 2, 6], we
design our system in the honest-majority model. Moreover, we
focus on semi-honest adversaries. Namely, we assume that each
of the three computing parties follow the protocol, but may
individually try to learn information about other parties’ inputs.
Formally, we consider the standard simulation-based notion of
security in the presence of semi-honest adversaries [38, 39]:

Definition III.1 (Semi-Honest Security). Let f : ({0, 1}n)3 →
({0, 1}m)3 be a randomized functionality and let π be a
protocol. We say that π securely computes f in the presence
of a single semi-honest corruption if there exists an efficient
simulator S such that for every corrupted party i ∈ {1, 2, 3}
and every input x ∈ ({0, 1}n)3,

{outputπ(x), viewπi (x)}
c
≈ {f(x),S(i, xi, fi(x))}

where viewπi (x) is the view of party i in an execution of π on
input x, outputπ(x) is the output of all parties in an execution
of π on input x, and fi(x) denotes the ith output of f(x).

Computing on secret-shared values. In this work, we con-
sider two main settings: private inference and private training
on secret-shared inputs. We use standard 3-out-of-3 additive
secret sharing as well as 2-out-of-3 replicated secret sharing.
Abstractly, we model both types of secret sharing as a pair of
algorithms (Share,Reconstruct) with the following properties:
• On input x ∈ {0, 1}n, the share algorithm Share(x) outputs

a tuple of three shares (x1, x2, x3).
• The reconstruction algorithm Reconstruct(S) takes a set of

shares T and outputs a value x ∈ {0, 1}n if successful and
⊥ if not.

Correctness of a threshold secret sharing scheme with threshold
t says that for any subset of shares T ⊆ Share(x) of size at
least t, Reconstruct(T ) = x. Perfect security says that there
exists a probabilistic polynomial-time simulator S such that
for every subset T ⊆ {1, 2, 3} where |T | < t and every input
x ∈ {0, 1}n,

{(x1, x2, x3)← Share(x) : (xi)i∈T } ≡ {S(1n, T )}.

We now formally define our notion of private inference and
private training on secret-shared inputs:
• Private inference: Inference is the problem of evaluating

a trained model M on an input x. We denote this
operation as Eval(M,x). In private inference, the ideal
functionality f maps secret shares of an input x and a

model M to a secret share of the output Eval(M,x).
Namely, on input ((M1, x1), (M2, x2), (M3, x3)),
the ideal functionality outputs Share(Eval(M,x))
where M ← Reconstruct({M1,M2,M3}) and
x ← Reconstruct({x1, x2, x3}). In particular, a private
inference protocol ensures privacy for the model M , the
input x, and the output Eval(M,x).

• Private training: In private training, the goal is to run a
training algorithm Train on some dataset D. In this case,
the ideal functionality f maps secret shares of the dataset
(D1, D2, D3) to a secret share of the model Share(Train(D))
where D ← Reconstruct(D1, D2, D3). In this case, each
party individually learn nothing about the input dataset D
or the resulting learned model Train(D).

B. Cryptographic Building Blocks for Private Inference

We now describe the main MPC building blocks we use for
private inference on deep neural networks. First, we decompose
the neural network inference algorithm into a sequence of
elementary operations: linear/pooling/convolution layers and
activation function evaluation (ReLU). To obtain our protocol
π for computing the ideal functionality for private inference,
we sequentially compose the semi-honest secure protocols
for realizing each of the elementary operations. Correctness
and semi-honest security of the overall protocol then follows
by correctness and security of the underlying sub-protocols
together with the sequential composition theorem [38].

“GPU-friendly” cryptography. As alluded to in Sections I-A
and II-B, we seek cryptographic protocols that are particularly
amenable to GPU acceleration. For example, protocols that
involve conditionals (such as garbled circuits [28]) or require
extensive finite field arithmetic are more challenging to support
efficiently on the GPU. For this reason, we focus primarily
on secret-sharing based protocols and work over a ring with a
power-of-two modulus. In the following description, we elect
to use cryptographic protocols where the underlying imple-
mentations vectorize and whose evaluation can be expressed
primarily in terms of point-wise or component-wise operation
on blocks of data.

Secret sharing. We work over the ring Zn where n = 2k

is a power of 2. In our specific implementation, k = 64. To
secret share a value x ∈ Zn, sample shares x1, x2, x3

R←− Zn
such that x1 + x2 + x3 = x. Following Araki et al. [26], our
default sharing is a 2-out-of-3 “replicated secret sharing” [25]
where each party holds a pair of shares: P1 has (x1, x2), P2

has (x2, x3), and P3 has (x3, x1). We denote this by JxKn =
(x1, x2, x3). In some cases, we will also consider a 3-out-of-3
additive secret sharing scheme where party Pi holds xi (but
none of the other shares).

Fixed point representation. Machine learning algorithms na-
tively operate on real (i.e., floating-point) values while the most
efficient cryptographic protocols are restricted to computations
over discrete domains such as rings and finite fields. Following
previous work, we use a fixed-point encoding of all values

6



occurring in the computation, and then embed the integer-
valued fixed-point operations in the ring Zn. Specifically, if
we consider a fixed-point encoding with t bits of precision, a
real value x ∈ R is represented by the integer bx · 2te (i.e.,
the nearest integer to x · 2t). The ring modulus n is chosen to
ensure no overflow of the integer-valued fixed-point operations.
CRYPTGPU sets n = 64; we discuss this choice in detail in
Section IV-D.

Protocol initialization. In the following description, we as-
sume that the parties have many independent secret shares
of 0. This will be used for “re-randomization” during the
protocol execution. We implement this using the approach of
Araki et al. [26]. Specifically, let F be a pseudorandom function
(PRF). At the beginning of the protocol, each party Pi samples
a PRF key ki and sends ki to party Pi+1. The jth secret share
of 0 is the triple (z1, z2, z3) where zi = F (ki, j)−F (ki−1, j).

Linear operations. Linear operations on secret-shared data
only require local computation. Namely, if α, β, γ ∈ Zn are
public constants and JxKn, JyKn are secret-shared values, then
Jαx + βy + γKn = (αx1 + βy1 + γ, αx2 + βy2, αx3 + βy3).
Each of the parties can compute their respective shares of
Jαx+ βy + γKn from their shares of JxKn and JyKn and the
public coefficients α, β, γ.

Multiplication. To multiply two secret-shared values JxKn =
(x1, x2, x3), JyKn = (y1, y2, y3), each party Pi locally com-
putes zi = xiyi + xi+1yi + xiyi+1. By construction, z1 + z2 +
z3 = xy ∈ Zn. This yields a 3-out-of-3 additive sharing of z.
To obtain replicated shares of z, party Pi sends Pi+1 a blinded
share zi + αi, where (α1, α2, α3) is a fresh secret-sharing of
0 (derived from the PRF as described above).

Since x, y are fixed-point encodings, the parties additionally
need to rescale z after computing the product (i.e., divide it
by the scaling factor 2t). In this work, we use the truncation
protocol Πtrunc1 from ABY3 [2] to implement this procedure.
We note that Mohassel and Rindal propose two versions of
the share truncation protocol: a two-round protocol Πtrunc1

that only relies on elementary arithmetic operations and a one-
round protocol Πtrunc2 that relies on precomputed “truncation
tuples”. While generating the truncation tuples can be done
in a separate offline phase, doing so requires implementing
a Boolean bit extraction circuit over secret-shared values. In
contrast, Πtrunc1 relies exclusively on arithmetic operations, and
naturally extends to our tensor-based computing model. For
this reason, we use the two-round truncation protocol Πtrunc1

in our implementation. This has the added advantage that we
avoid a separate (and potentially expensive) preprocessing step.
Both of these share-truncation protocols are not exact and
may introduce 1 bit of error in the least significant bit of the
secret-shared value (i.e., with t bits of fixed-point precision, the
error introduced is bounded by 2−t). We provide an empirical
assessment of the error (and resulting model accuracy) in
Section IV-D.

Convolutions and matrix multiplication. The above proto-
cols for computing linear functions as well as products of secret-

shared values directly vectorize to yield protocols for computing
linear functions on tensors as well as bilinear operations like
matrix multiplication and convolution. Linear functions on
secret-shared tensors only require local computation. Bilinear
operations on secret-shared tensors like matrix multiplications
and convolutions are implemented by computing three separate
products (as described in the multiplication protocol above).
These computations over secret-shared tensors directly map
to analogous computations on local shares, so we can take
advantage of existing highly-optimized CUDA kernels for
evaluating these operations via the technique from Section II-B.

As in several previous systems (e.g., [1, 2, 5]), when we
compute products of secret-shared tensors, we only apply the
truncation protocol to the result of the product and not after
each individual multiplication. This has a significant impact on
the performance of the protocol for two reasons: (1) we can
use existing CUDA kernels optimized for matrix products and
convolutions without needing to modify how the elementary
multiplications are performed; and (2) the total communication
in the protocol is proportional to the size of the output rather
than the number of intermediate element-wise multiplications.

Most significant bit. Several of our protocols rely on a
protocol for computing the most significant bit Jmsb(x)Kn
of a secret-shared value JxKn. In our fixed-point represen-
tation, this corresponds to computing the sign of x. For
this, we adopt the general approach from ABY3. Namely,
given an arithmetic secret sharing JxKn = (x1, x2, x3) of
x, the parties re-interpret it as three binary shares of values
Jx1K2 = (x1, 0, 0), Jx2K2 = (0, x2, 0), and Jx3K2 = (0, 0, x3).
The parties now evaluate an addition circuit on the binary shares
Jx1K2, Jx2K2, Jx3K2 to compute binary shares of the sum JxK2,
which in particular, yields a binary share of Jmsb(x)K2. Finally,
to recover arithmetic shares of JReLU(x)Kn from JxKn and
Jmsb(x)K2, we use the bit injection protocol from ABY3 [2,
§5.4], which only requires simple arithmetic operations.

The majority of this computation is the evaluation of the
addition circuit over binary shares on the GPU. Evaluating
a Boolean addition circuit on secret-shared binary values
decomposes into a sequence of bitwise AND and XOR op-
erations (along with communication for the AND gates), which
can be computed using efficient GPU kernels. We provide
microbenchmarks in Section IV-C.

ReLU activation function. The standard activation function
we consider in our networks is the rectified linear unit
(ReLU) [40, 16]: ReLU(x) := max(x, 0). To compute the
ReLU function, it suffices to construct a protocol for testing
whether the fixed-point value x is positive or not. This
corresponds to computing the most significant bit msb(x) of
x, which we evaluate using the protocol described above.

C. Additional Building Blocks for Private Training

To support private training, we need to augment our existing
toolkit with several additional protocols. Here, we consider
a standard backpropagation setting with a softmax/cross-
entropy loss function optimized using (minibatch) stochastic

7



gradient descent (SGD) [41]. As with private inference, we
decompose the backpropagation algorithm into a sequence of
elementary operations and build our private training protocol by
sequentially composing protocols for the elementary operations.

In this work, we consider classification tasks with d target
classes. Each iteration of SGD takes an input x ∈ Rm and a
one-hot encoding of the target vector y ∈ {0, 1}d (i.e., yi = 1
if x belongs to class i and yi = 0 otherwise) and computes
the cross-entropy loss:3

`CE(x;y) := −
∑
i∈[d]

yi log z̃i, (III.1)

where z̃← softmax(z), z← Eval(M,x), and M is the current
model. For a vector x ∈ Rd, the softmax function

softmaxi(x) := exi/
∑
i∈[d]

exi . (III.2)

The gradient of `CE for the output layer z is then

∇z`CE = softmax(z)− y.

We can use the private inference protocol from Section III-B
to compute JzKn from JxKn and JMKn. To compute J∇z`CEKn,
we need a protocol to compute softmax on secret-shared values.

For the ReLU layers, the gradient computation reduces to
evaluating the derivative of the ReLU function. The gradients
for the linear/convolution layers are themselves linear functions
of the gradients from the preceding layer, and thus, can be
handled using the protocols from Section III-B. In the following,
we describe our protocols for evaluating the softmax and the
derivative of the ReLU function on secret-shared values. Note
that backpropagation does not require computing the value of
the loss function (Eq. (III.1)), so we do not need a protocol
for computing logarithms on secret-shared values.

Softmax. To avoid numeric imprecision from evaluating the ex-
ponential function in the softmax function (Eq. (III.2)) on very
large or very small inputs, a standard technique is to evaluate
the softmax on the “normalized” vector (x −maxi xi) [41].
A simple calculation shows that softmax(x − maxi xi) =
softmax(x). This has the advantage that all inputs to the
exponential function in Eq. (III.2) are at most 0, and the
denominator is contained in the interval [1, d]. In the following,
we describe protocols for evaluating the exponential function,
division, and computing the maximum over a vector of secret-
shared values. Together, this yields a protocol for computing a
softmax on secret-shared values.

Exponentiation. We approximate the exponential function ex

needed to compute softmax with its limit characterization fm:

fm(x) :=
(

1 +
x

m

)m
. (III.3)

3Technically, in minibatch SGD, each iteration takes a batch of N inputs and
the loss function is the average of the loss function for all N inputs in the
batch. For ease of exposition, we describe the setup for a single input, but
everything generalizes naturally to the minibatch setting.

Using a Taylor expansion for the function ln(1 + x) and
assuming that |x| < m,

fm(x)

ex
=
em ln(1+x/m)

ex
= e−O(x2/m).

Thus, the degree-m approximation fm provides a good ap-
proximation ex on an interval of size O(

√
m) centered at 0.

A common alternative approximation is to use Taylor series to
approximate the exponential function. The advantage of using
a Taylor series approximation of degree m is that it provides
a good estimate in an interval of size O(m) (as opposed to
O(
√
m) using the approximation fm). However, using a Taylor

series approximation has several drawbacks:
• Evaluating a degree-m Taylor approximation requires m

multiplications over O(logm) rounds. Computing fm, in
comparison, only requires logm multiplications. For a fixed
degree m, the cost of computing the fm approximation is
exponentially smaller than computing the degree-m Taylor
series approximation.

• The size of the smallest coefficient in the Taylor series of
degree m is 1/m!. In a fixed-point encoding scheme with
t bits of precision, values less than 2−t−1 round to 0. This
gives an upper bound on the degree of the Taylor expansion
we can feasibly support. Alternatively, we could compute the
terms xm/m! in the Taylor expansion as

∏
i∈[m]

x
i , but this

now requires O(m) rounds of multiplications to compute.
• In our setting, the inputs to the exponential function are

drawn from the interval (−∞, 0]. The approximation fm(x)
has the appealing property that as x → −∞, f(x) → 0,
which matches the behavior of ex. In contrast, the Taylor
approximation diverges as x → −∞. This can introduce
significant errors in the computation (unless we use a Taylor
approximation of sufficiently high degree). For the models
and inputs we consider in Section IV-A, most inputs to the
exponential function lie in the interval [−45, 0]. Ensuring
that the Taylor approximation does not diverge for all inputs
in this interval would require a high-degree approximation.

Thus, compared to a Taylor approximation, the limit-based
approximation fm is more efficient to evaluate (in terms of
the number of multiplications) and more robust for handling
large negative inputs that may arise in the computation.

Division. Computing the softmax function requires computing
a quotient Jx/yKn on secret-shared values JxKn and JyKn
and where 1 ≤ y ≤ Y , for some bound Y . It suffices to
compute the reciprocal J1/yKn and compute the quotient using
share multiplication. Similar to previous works [6], we use
the iterative Newton-Raphson algorithm to approximate the
value of 1/y. Very briefly, the Newton-Raphson algorithm
for approximating 1/y starts with an initial “guess” z0 and
iteratively computes zi ← 2zi−1− yz2i−1. In this work, we use
a fixed initialization z0 = 1/Y . This provides a highly-accurate
estimate for 1/y for all y ∈ [1, Y ] using O(log Y ) iterations
of Newton’s algorithm. To see this, let

errori = |1/y − zi| =
1

y
|1− ziy| ≤ εi,

8



where εi = |1 − ziy|. Substituting in the Newton-Raphson
updates, εi = ε2i−1, so the maximum error after i iterations is
(1− 1/Y )2

i ≤ e−2i/Y .
We note that using a more accurate initialization for Newton-

Raphson will allow convergence in fewer iterations. However,
methods for computing a more accurate estimate [6] for
the initialization typically rely on binary-valued operations
(e.g., comparisons) and are more costly than using a fixed
initialization and increasing the number of iterations. Note that
a fixed initialization is possible in our setting because we are
guaranteed that the values y lies in a fixed interval (due to the
normalization in the softmax computation).

Maximum. The last ingredient we require for computing the
softmax function is computing the maximum value Jmaxi xiKn
from a secret-shared vector JxKn where x ∈ Rm. We implement
this using m invocations of a comparison protocol. To reduce
the round complexity to logm, we use a tree of comparisons
where pairs of elements are compared each round, and the
larger value in each pair advances to the next round. Comparing
two secret-shared fixed-point values JxKn, JyKn is equivalent
to computing the most significant bit of their difference (i.e.,
Jmsb(x− y)Kn). We implement this using the protocol from
Section III-B.

Derivative of ReLU. During backpropagation, we also need
to compute the derivative of the ReLU function ReLU′(x),
which is 0 if x < 0 and 1 if x > 0. This again corresponds to
computing the most significant bit of the fixed-point encoding of
x, which we implement using the protocol from Section III-B.

IV. SYSTEM IMPLEMENTATION AND EVALUATION

We build CRYPTGPU on top of CRYPTEN, which itself
builds on PyTorch. First, we introduce the CUDALongTensor
data type that represents a PyTorch tensor for 64-bit integer
values (see Section II-B). Our design enables us to take
advantage of optimized CUDA kernels for evaluating bilinear
operations such as convolutions and matrix multiplications on
secret-shared tensors. This suffices for evaluating arithmetic
circuits on secret-shared tensors. Using these elementary
building blocks, we then implement protocols for each of
the operations described in Section III (i.e., the truncation
protocol for fixed-point multiplication, ReLU computation, and
the softmax function). Through composing these individual
protocols together, we obtain an end-to-end system for private
inference and private training.

Point-to-point communication. We leverage PyTorch’s
torch.distributed package for point-to-point communi-
cation between parties. The default communication mode in
PyTorch is a “broadcast” mode where every message sent
by a party is sent to all peers. To emulate point-to-point
channels (as required by our protocol), we initialize a separate
communication back end between each pair of parties. In
this case, a “broadcast” channel between each pair of parties
functions as a point-to-point channel between the parties.

Pseudorandom generators on the GPU. We use AES as
the PRF in our protocol (used for share re-randomization in
the truncation protocol). We use the torchcsprng PyTorch
C++/CUDA extension [42] (based on the Salmon et al.
protocol [43]) which enables AES evaluation on the GPU.

A. Experimental Setup for System Evaluation

We now describe our experimental setup for evaluating
CRYPTGPU as well as the specific parameters we use to
instantiate our cryptographic protocols from Section III.

Deep learning datasets. We evaluate CRYPTGPU on the
following standard datasets for object recognition:
• MNIST [11]. MNIST is a dataset for handwritten digit

recognition. The training set has 60,000 images and the test
set has 10,000 images. Each digit is a grayscale (i.e., single-
channel) 28× 28 image. Due to its relatively small size, it
is widely used as a benchmark in many privacy-preserving
ML systems [1, 2, 5, 6].

• CIFAR-10 [12]. CIFAR-10 is a dataset with 60,000 32× 32
RGB images split evenly across 10 classes.

• Tiny ImageNet [15]. Tiny ImageNet is a modified subset
of the ImageNet dataset. It contains 100,000 64× 64 RGB
training images and 10,000 testing images split across 200
classes. Compared to CIFAR-10, Tiny ImageNet is much
more challenging: each image is 4× larger and there are
20× more classes.

• ImageNet [13]. ImageNet is a large-scale visual recognition
dataset with more than 1,000,000 training images. It is
the standard benchmark for evaluating the classification
performance of computer vision models. ImageNet has 1000
classes, and each example is a center-cropped 224 × 224
RGB image. The only prior system for privacy-preserving
machine learning that demonstrates performance at the scale
of ImageNet is CRYPTFLOW [5].

Deep learning models. For our experimental evaluation,
we measure the cost of our private training and private
inference protocols on several representative CNN architectures
developed for object recognition. Each of these networks can
be represented as a composition of a collection of standard
layers: convolution, pooling, activation, batch normalization,
softmax, and fully-connected layers.
• LeNet [44]. LeNet was proposed by LeCun et al. for

handwritten digit recognition. It is a shallow network with
2 convolutional layers, 2 average pooling layers, and 2 fully
connected layers. The network uses the hyperbolic tangent
(tanh) as its activation function.

• AlexNet [16]. AlexNet was the winner of 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC-2012)
competition. It has 5 convolutional layers, 3 max pooling
layers, and 2 fully connected layers for a total of 61 million
parameters. AlexNet uses ReLU as its activation function.

• VGG-16 [17]. VGG-16 is the runner-up of the ILSVRC-
2014 competition. It uses 16 layers consisting of convolution,
ReLU, max pooling, and fully-connected layers. VGG-16
has a total of 138 million parameters.

9



• ResNet [14]. ResNet is the winner of ILSVRC-2015
competition. It introduces skip-connections that addresses
the vanishing gradient problem when training deep neu-
ral network models. ResNet consists of convolution, max
pooling, average pooling, batch normalization, and fully
connected layers. Since their inception, the ResNet family of
models have enjoyed wide adoption in the computer vision
community. We evaluate the performance of ResNet-50,
ResNet-101, and ResNet-152 on ImageNet. These networks
respectively have 23, 44, and 60 million parameters and 50,
101, and 152 layers.

Architecture adjustments. We use the standard architecture of
each of these networks, except with the following modifications:
• AlexNet and VGG-16 on small datasets. Since AlexNet

and VGG-16 were designed for ImageNet, they are not
directly compatible with smaller inputs (i.e., those from
CIFAR-10 or Tiny ImageNet). Thus, when using AlexNet or
VGG-16 with smaller inputs, we have to modify the network
architecture. For AlexNet, we drop the final max pooling
layer for CIFAR-10, and adjust the number of neurons in the
fully-connected classification layers to 256-256-10 and 1024-
1024-200 for CIFAR-10 and Tiny ImageNet, respectively.
For VGG-16, we adjust the number of neurons in the
fully-connected classification layers to 256-256-10 and 512-
512-200 for CIFAR-10 and Tiny ImageNet, respectively.4

When evaluating AlexNet on ImageNet, we use the original
architecture [16]. In the case of VGG-16, we add a 2x2
average pooling layer to reduce the input dimension of the
first fully connected layer from 18432 to 4608; this is due
to memory limitations on the GPU. When we compare
our system to the FALCON system on these models and
datasets, we make the same adaptations. We provide the full
specification of the AlexNet and VGG-16 model architectures
we use in Appendix A.

• Activation functions. All networks we consider except
LeNet use the ReLU function as the activation function.
In contrast, LeNet uses the hyperbolic tangent function tanh
as the underlying activation function. Since CRYPTGPU
does not support evaluating the tanh function and modern
networks primarily use ReLU as their activation function,
we replace tanh with ReLU in our experiments with LeNet.

• Average pooling. Pooling is a standard way to down-sample
the outputs of the convolutional layers in a CNN. Specifically,
a pooling layer accumulates the output of the convolutional
layers by replacing each (small) window of the feature map
(from the convolutional layer) with the average of the values
(i.e., average pooling) or the max of the values (i.e., max
pooling). Earlier networks such as AlexNet and VGG-16 used
max pooling throughout, while more recent deep networks
such as the ResNets primarily use average pooling (with a
single max pooling layer at the beginning). While the choice
of pooling function does not make a significant difference in
the computational costs of plaintext training, this is not the

4Previous systems like FALCON [6] made similar adjustments when evaluating
AlexNet and VGG-16 on smaller datasets.

case in private training. The difference is due to the fact that
average pooling is a linear operation while max pooling is
a highly non-linear operation. To reduce the computational
overhead of our system, we replace all the max pooling
layers in the above networks with average pooling. This
reduces the complexity at the cryptographic level and allows
us to take better advantage of GPU parallelism.

We show in Section IV-B that in existing systems, the
pooling layer is not the bottleneck, and the performance
improvements of our protocol relative to past works is not
due to our substitution of average pooling in place of max
pooling. We additionally show in Section IV-D that using
average pooling in place of max pooling does not significantly
affect the accuracy of the models we consider.

Protocol instantiation. We instantiate our protocols from
Section III using the following parameter settings:
• Fixed-point precision. We consider secret-sharing schemes

over the 64-bit ring Z264 , and encode inputs using a fixed-
point representation with t = 20 bits of fractional precision
(i.e., an input x ∈ R is encoded as bx ·220e. In Section IV-D,
we analyze the effect the number of bits of precision has on
the accuracy of our protocols.

• Exponentiation. We use the function fm from Eq. (III.3) to
approximate the exponential function. In this work, we take
m = 29 = 512, so evaluating fm requires logm = 9 rounds
of multiplication. With t = 20 bits of fixed-point precision,
we measure the maximum error of our approximation on all
inputs x ≤ 0 to be at most 6 · 10−4.

• Division. As described in Section III-C, we require a private
division protocol to compute J1/yKn where y ∈ [1, Y ], and
Y is the number of classes in the classification problem. For
all of the datasets we consider for private training, Y ≤ 200.
In our implementation, we use 13 iterations of Newton-
Raphson (with 1/Y as the initialization). With t = 20 bits
of fixed-point precision, we measure the maximum absolute
difference between the approximate value and the true value
for inputs in the interval [1, Y ] to be ≈ 10−4 (and ≈ 10−9

using floating-point evaluation).

B. Benchmarks for Private Training and Inference
We run our experiments on three Amazon EC2 instances op-

timized for GPU computation (p3.2xlarge). Each instance
has a single NVIDIA Tesla V100 GPU with 16 GB of GPU
memory. All of the instances run Ubuntu 18.4 and have 8 Intel
Xeon E5-2686 v4 (2.3 GHz) CPUs and 61 GB of RAM. We
consider a local area network (LAN) environment and place all
three servers in the us-east-1 (Northern Virginia) region. In
this case, we measure the network bandwidth to be 1.25GB/s
with an average latency of 0.2ms. For each model/dataset
pair we consider in our evaluation, we measure the end-to-end
protocol execution time and the total amount of communication.

Comparisons with prior work. We compare the performance
of CRYPTGPU against FALCON [6] and CRYPTFLOW [5]. To
our knowledge, these are the only privacy-preserving machine-
learning frameworks that have demonstrated the ability to

10



handle neural networks at the scale of AlexNet on large datasets.
Since our primary focus is on the scalability of our approach
and not on the performance on shallow networks (where GPUs
are unlikely to shine compared to optimized CPU protocols),
we focus our comparisons with FALCON and CRYPTFLOW.
• For CRYPTFLOW (which supports private inference for

ResNet), we use the performance numbers reported in their
paper (which also operate in a LAN environment).

• For FALCON (which supports private inference and private
training for LeNet, AlexNet, and VGG-16), we collect bench-
marks using their provided reference implementation [45].
We run the FALCON system on three compute-optimized
AWS instances (c4.8xlarge) in the Northern Virginia
region.5 Each instance runs Ubuntu 18.4 and has 36 Xeon
E5-2666 v3 (2.9 GHz) CPUs and 60 GB of RAM. We
measure the network bandwidth between machines to be
1.16GB/s with an average latency of 0.2ms.

For the main benchmarks, we also measure the computational
cost using PyTorch on plaintext data (with GPU acceleration).

Private inference. Table I summarizes the performance of
CRYPTGPU’s private inference protocol on the models and
datasets described in Section IV-A. For shallow networks and
small datasets (e.g., LeNet on MNIST or AlexNet on CIFAR),
FALCON outperforms CRYPTGPU. However, as we scale to
progressively larger datasets and deeper models (e.g., VGG-
16 on Tiny ImageNet), then CRYPTGPU is faster (3.7× on
VGG-16). The performance on small datasets is not unexpected;
after all, if the computation is sufficiently simple, then the
extra parallelism provided by the GPU is unlikely to benefit.
Moreover, the use of more efficient cryptographic building
blocks (which may not be “GPU-friendly”) can allow a CPU-
based approach to enjoy superior performance.

The setting where we would expect the GPU-based approach
to perform well is in the setting of large datasets and deeper
models. For instance, at the scale of ImageNet, CRYPTGPU is
able to perform private inference over the ResNet-152 network
(containing over 150 layers and over 60 million parameters)
in just over 25 seconds. This is about 2.2× faster than
CRYPTFLOW, which to our knowledge, is the only protocol for
private inference that has demonstrated support for the ResNet
family of networks on the ImageNet dataset. For the ResNet
family of networks, the running time of CRYPTGPU scales
linearly with the depth of the network.

Compared to plaintext inference on the GPU, there still
remains a significant 1000× gap in performance. This un-
derscores the importance of designing more GPU-friendly
cryptographic primitives to bridge this gap in performance.

Batch private inference. We can also leverage GPU paral-
lelism to process a batch of images. This allows us to amortize
the cost of private inference. Table II shows the time and
communication needed for private inference over a batch of

5Note that we use different instances for our comparison because CRYPTGPU
is GPU-based while FALCON is CPU-based.

64 images on the CIFAR-10 dataset. Here, the amortized cost
of private inference on a single image using AlexNet drops
from 0.91s to 0.017s (a 53× reduction). With VGG-16, batch
processing reduces the per-image cost from 2.14s to 0.18s (a
12× reduction).

Table III shows the time and communication needed for
private inference on ImageNet using the ResNet networks
with a batch of 8 images. Here, we see a 1.9× reduction in
the amortized per-image private inference cost for each of
ResNet-50, ResNet-101, and ResNet-152. The cost reduction
compared to those on the CIFAR-10 dataset (Table II) is smaller.
This is likely due to the smaller batch sizes in play here (8 vs.
64). Supporting larger batch sizes is possible by either using
multiple GPUs or using GPUs with more available memory.
Nonetheless, irrespective of the model/input size, we observe
that batch private inference allows us to amortize the cost of
private inference protocol. Communication in all cases scales
linearly with the batch size.

Private training. We expect GPUs to have a larger advantage
in the setting of private training (just like modern deep learning,
training is much more challenging than inference and thus, more
reliant on hardware acceleration). We measure the time needed
for a single iteration of private backpropagation (Section III-C)
on a batch size of 128 images for several dataset/model
configurations and summarize our results in Table IV (together
with measurements for the equivalent plaintext protocol). We
only compare with FALCON because CRYPTFLOW does not
support private training. We note that the public implementation
of the FALCON system [45] does not include support for
computing the cross-entropy loss function for backpropagation.
However, given the gradients for the output layer, the provided
implementation supports gradient computation for intermediate
layers. Thus, our measurements for the FALCON system only
includes the cost of computing the gradients for intermediate
layers and not for the output layer; this provides a lower bound
on the running time of using FALCON for private training. Our
system supports the full backpropagation training algorithm.

Our system achieves a considerable speedup over FALCON
in multiple settings, especially over larger models and datasets.
For instance, to train AlexNet on Tiny ImageNet, a single
iteration of (private) backpropagation completes in 11.30s with
CRYPTGPU and 6.9 minutes using FALCON. For context, pri-
vately training AlexNet on Tiny ImageNet (100,000 examples)
would just take over a week (≈ 10 days) using CRYPTGPU
while it would take over a year (≈ 375 days) using FALCON
(assuming 100 epochs over the training set).

On the larger VGG-16 network, our system is constrained
by the amount of available GPU memory. Our system currently
supports a maximum batch size of 32 when training VGG-16
on CIFAR-10 and a maximum batch size of 8 when training on
Tiny ImageNet. To establish a fair comparison when comparing
our system against FALCON for privately training VGG-16, we

11



LeNet (MNIST) AlexNet (CIFAR) VGG-16 (CIFAR) AlexNet (TI) VGG-16 (TI)

Time Comm. (MB) Time Comm. (MB) Time Comm. (MB) Time Comm. (MB) Time Comm. (MB)

FALCON 0.038 2.29 0.11 4.02 1.44 40.45 0.34 16.23 8.61 161.71
CRYPTGPU 0.38 3.00 0.91 2.43 2.14 56.2 0.95 13.97 2.30 224.5

Plaintext 0.0007 — 0.0012 — 0.0024 — 0.0012 — 0.0024 —

AlexNet (ImageNet) VGG (ImageNet) ResNet-50 (ImageNet) ResNet-101 (ImageNet) ResNet-152 (ImageNet)

Time Comm. (GB) Time Comm. (GB) Time Comm. (GB) Time Comm. (GB) Time Comm. (GB)

CRYPTFLOW — — — — 25.9 6.9 40* 10.5* 60* 14.5*

CRYPTGPU 1.52 0.24 9.44 2.75 9.31 3.08 17.62 4.64 25.77 6.56

Plaintext 0.0013 — 0.0024 — 0.011 — 0.021 — 0.031 —

*Value estimated from [5, Fig. 10]

TABLE I: Running time (in seconds) and total communication of private inference for different models, datasets, and systems
in a LAN setting. The “TI” dataset refers to the Tiny ImageNet dataset [15]. The plaintext measurements correspond to the
cost of inference on plaintext data on the GPU (using PyTorch). Performance numbers for CRYPTFLOW are taken from [5].
Performance numbers for FALCON are obtained by running its reference implementation [45] on three compute-optimized
AWS instances in a LAN environment (see Section IV-B). As discussed in Section IV-A, when testing the performance of
CRYPTGPU, we replace max pooling with average pooling in all of the networks.

k = 1 k = 64

Time Comm. Time Comm.

AlexNet 0.91 0.002 1.09 0.16
VGG-16 2.14 0.056 11.76 3.60

TABLE II: Running time (in seconds) and total communication
(in GB) for batch private inference on CIFAR-10 using a batch
size of k.

k = 1 k = 8

Time Comm. Time Comm.

ResNet-50 9.31 3.08 42.99 24.7
ResNet-101 17.62 4.64 72.99 37.2
ResNet-152 25.77 6.56 105.20 52.5

TABLE III: Running time (in seconds) and total communication
(in GB) for batch private inference on ImageNet using a batch
size of k.

apply the same batch size adjustment. As shown in Table IV,
when training VGG-16, our system is 30× faster when training
on CIFAR-10 and 26× when training on Tiny ImageNet.
Reducing the memory overhead of our protocol and augmenting
it with support for multiple GPUs (as is standard for modern
deep learning) will enable better scalability. We leave this as
an interesting direction for future work.

Like the setting of private inference, there still remains
a large gap (roughly 2000×) between the costs of private
training and plaintext training (on the GPU). Designing new
cryptographic protocols that can take even better advantage of
GPU parallelism will be important for closing this gap.

Private training breakdown. In Table V, we provide a fine-
grained breakdown of the costs of processing the different
layers in a single iteration of private training. Not surprisingly,
the primary advantage of our GPU-based protocol compared to

the CPU-based protocol of FALCON is in the computation of
the linear layers. In the settings we consider, evaluation of the
linear layers is between 25× and 70× faster with our system.
The linear layers are the primary bottleneck in FALCON, and
account for 86% to 99% of the overall computational cost. In
CRYPTGPU, the computational costs are more evenly split
between the linear layers and the non-linear layers.

For the pooling layers, the performance difference between
CRYPTGPU and FALCON can be partially attributed to the
the fact that FALCON uses max pooling rather than average
pooling. As discussed in Section IV-A, average pooling is a
linear function and simpler to evaluate privately. However, our
measurements show that CRYPTGPU maintains a (significant)
performance edge even if we exclude the cost of the pooling
layers from the running time of FALCON.

Finally, for the ReLU layers, the CPU-based protocol in
FALCON compares very favorably with the ReLU protocol in
CRYPTGPU, and even outperforms our protocol on the smaller
models and datasets. Having a ReLU protocol that can better
take advantage of GPU parallelism will likely improve the
performance of our protocol. As described in Section III-B,
our ReLU protocol relies on an arithmetic-to-binary share
conversion, which is less GPU-friendly compared to bilinear
operations. The ReLU protocol from FALCON relies on different
techniques and it is interesting whether their approach can be
adapted to be efficiently computed on the GPU.

Avenues for improvement. Compared to FALCON, our private
training protocol is more communication-intensive. FALCON
develops a number of specialized cryptographic protocols to
substantially reduce the communication in their protocols. We
believe it is an interesting question to study whether the
protocols developed in FALCON are “GPU-friendly” and can
benefit from GPU acceleration.

CRYPTGPU does not currently support batch normalization
during private training, so we do not report private training

12



LeNet (MNIST) AlexNet (CIFAR-10) VGG-16 (CIFAR-10) AlexNet (TI) VGG-16 (TI)

Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

FALCON* 14.90 0.346 62.37 0.621 360.83† 1.78† 415.67 2.35 359.60‡ 1.78‡

CRYPTGPU 2.21 1.14 2.91 1.37 12.14† 7.55† 11.30 6.98 13.89‡ 7.59‡

Plaintext 0.0025 — 0.0049 — 0.0089 — 0.0099 — 0.0086 —

*The provided implementation of FALCON does not support computing the gradients for the output layer, so the FALCON measurements only include the time
for computing the gradients for intermediate layers. All measurements for FALCON are taken without batch normalization.

†Using a smaller batch size of 32 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.
‡Using a smaller batch size of 8 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.

TABLE IV: Running time (in seconds) and total communication (in GB) for a single iteration of private training with a batch
size of 128 images for different models, datasets, and systems in a LAN setting. The “TI” dataset refers to the Tiny ImageNet
dataset [15]. The plaintext measurements correspond to the cost of training on plaintext data on the GPU. Performance numbers
for FALCON are obtained by running its reference implementation [45] on three compute-optimized AWS instances in a LAN
environment (see Section IV-B). As discussed in Section IV-A, when testing the performance of CRYPTGPU, we replace max
pooling with average pooling in all of the networks.

benchmarks on the ResNet-family of models.6 Developing a
GPU-friendly protocol for batch normalization is an interesting
avenue for further work and an important step towards
supporting private training of the ResNet family of models.
We are not aware of any system that currently supports private
training over ResNet.

C. Microbenchmarks

To quantify the advantage of keeping all of the computation
on the GPU, we compare the running time of the MPC protocols
for evaluating convolutions (i.e., the linear layers) and for
evaluating ReLU (i.e., the primary non-linear layer) on the
CPU vs. the GPU. For convolutions, we study the effect of
both the input dimension as well as the batch size. We use the
same experimental setup described in Section IV-A for all of
the experiments in this section.

Private convolution: GPU vs. CPU. For convolutions, we
consider two types of convolutions: (1) convolutions with a
large receptive field (filter size) but a relatively small number
of input/output channels; and (2) convolutions with a small
receptive field, but a large number of input/output channels.
Convolutions of the first type are generally used in the initial
layers of the CNN while filters of the second type are used
in the later layers of the CNN. Note that when implementing
convolutions on the CPU, we do not break up the 64-bit secret-
shared tensor into 16-bit blocks (as we do in the GPU setting;
see Section II-B). We provide the microbenchmarks in Fig. 1.

From Figs. 1a and 1c, we see that for small inputs, the
computational cost of the private convolution protocol is
comparable on both the GPU and the GPU. While there is only
a 10× speed-up for convolutions between a small 32× 32× 3
input with a stack of 64 filters, the gap grows quickly as the
input size increases; for instance, increasing the input size to

6Note that we can still perform private inference for a model that is trained using
batch normalization. Namely, the normalization parameters are secret-shared
(as part of the model) and applying batch normalization just corresponds to
an affine transformation.

that of a Tiny ImageNet instance (64×64×3), the GPU-based
protocol is nearly 40× faster. Scaling to a 512×512×3 image,
the GPU-based protocol is 174× faster than the CPU-based
protocol (from 23.9s on the CPU to 0.14s on the GPU). An
analogous trend holds when we consider convolutions with a
large number of input/output channels: for small inputs, the
running times of the CPU- and GPU-based protocols are quite
comparable, but for large inputs (e.g., a 64× 64× 512 input),
the GPU-based protocol is 168× faster (from 543s on the CPU
to just 3.2s on the GPU).

We additionally note that for small instances, the protocol
running time on the GPU is essentially constant—this is due
to the parallelism. Only after the input becomes sufficiently
large do we start seeing increases in the running time based
on the size of the input. In contrast, the CPU running time
always scales with the size of the input.

Similar speedups are present when we consider convolutions
on batches of inputs (this is important for training and for
batch inference). For a fixed input size (32 × 32 × 3) and
kernel size (11× 11), we observe a 10× speed-up for running
the private convolution protocol on a single input using the
GPU, but a 40× to 60× speed-up when we consider a batch
of anywhere from 32 to 512 inputs. As an example, to evaluate
a convolution over a batch of 512 inputs with this set of
parameters, we require 11.6s on the CPU and only 0.27s on
the GPU. We refer to Fig. 1b for the full comparison.

Private ReLU: GPU vs. CPU. Previous privacy-preserving
ML systems like DELPHI [4] leveraged GPUs to accelerate
convolutions, but still executed the non-linear steps (e.g.,
ReLU computations) on the CPU. Here, we argue that with a
carefully-chosen set of cryptographic protocols, we can also
take advantage of GPU parallelism to accelerate the non-linear
computations. To illustrate this, we compare the running time
of our private ReLU protocol on the CPU vs. the GPU. As
described in Section III-B, private ReLU evaluation of ReLU on
a large block of neurons (e.g., output by the convolutional layer)

13



Linear Pooling ReLU Softmax

FALCON CRYPTGPU FALCON CRYPTGPU FALCON CRYPTGPU FALCON CRYPTGPU

LeNet (MNIST) 13.07 0.49 1.34 0.076 0.47 1.00 — 0.53
AlexNet (CIFAR) 59.23 0.86 2.65 0.077 0.41 1.33 — 0.55
VGG-16 (CIFAR)* 355.16 6.33 2.86 0.21 5.40 4.74 — 0.53
AlexNet (TI) 402.45 5.60 10.20 0.37 1.92 4.16 — 1.04
VGG-16 (TI)† 355.84 7.61 2.87 0.32 5.37 4.73 — 0.98

*Using a smaller batch size 32 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.
†Using a smaller batch size 8 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.

TABLE V: Runtime (in seconds) of FALCON [6] and CRYPTGPU for evaluating the linear, pooling, ReLU, and softmax layers
for different models and datasets during private training. The “linear” layers include the convolution and the fully-connected
layers. The “pooling” layer refers to max pooling in FALCON, and average pooling in CRYPTGPU. The implementation of
FALCON [45] does not currently support softmax evaluation (and correspondingly, gradient computation for the output layer).
Performance numbers for FALCON are obtained by running its reference implementation [45] on three compute-optimized AWS
instances in a LAN environment (see Section IV-B).

32 64 128 256 512

0.01

0.1

1

10

100

Input Dimension n

E
va

lu
at

io
n

Ti
m

e
(s

) CPU
GPU

(a) Convolution on an n×n×3 input with an
11× 11 kernel, 64 output channels, 4× 4
stride, and 2× 2 padding.

32 64 128 256 512
0.01

0.1

1

10

100

Batch Size k

E
va

lu
at

io
n

Ti
m

e
(s

) CPU
GPU

(b) Convolution on batch of k 32 × 32 × 3
inputs with an 11× 11 kernel, 64 output
channels, 4× 4 stride, and 2× 2 padding.

1 2 4 8 16 32 64

0.1

1

10

100

1,000

Input Dimension n

E
va

lu
at

io
n

Ti
m

e
(s

) CPU
GPU

(c) Convolution on an n×n×512 input with
a 3× 3 kernel, 512 output channels, 1× 1
stride, and 1× 1 padding.

Fig. 1: Comparison of total protocol execution time (in a LAN setting) for privately evaluating convolutions on the CPU and the
GPU. Parameters for convolution kernels are chosen based on parameters in AlexNet [16]. The stride and padding parameters
specify how the filter is applied to the input. All of the figures are log-log plots.

corresponds to evaluating a large number of point-wise Boolean
operations on secret-shared binary tensors. Such operations
naturally benefit from GPU parallelism.

We measure the time it takes to privately-evaluate ReLU on
different numbers of secret-shared inputs (ranging from 50,000
to 32,000,000). The full results are shown in Fig. 2. For ReLU
evaluation, we see a 16× speedup when evaluating ReLU on
a block of 256,000 inputs (from 2s on the CPU to 0.12s on
the GPU). As we scale up to a block with 32 million inputs
(250 MB of data), there is a 9× speedup on the GPU, with
the absolute running time dropping from 149s on the CPU to
just 16.3s on the GPU.

D. Accuracy of Privacy-Preserving Protocols

Several of the underlying protocols in CRYPTGPU are not
exact and can introduce a small amount of error: using fixed-
point encodings to approximate floating-point arithmetic, the
share-truncation protocol from ABY3, and the approximation
to the softmax function. While we have chosen our parameters
(e.g., the fixed-point precision) to reduce the likelihood of
errors, we validate our parameter choices with an empirical

0 4 8 12 16 20 24 28 32

0.1

1

10

100

Input Size (millions of elements)

E
va

lu
at

io
n

Ti
m

e
(s

)

CPU
GPU

Fig. 2: Comparison of total protocol execution time (in a LAN
setting) on the CPU vs. the GPU for point-wise evaluation of
the private ReLU protocol on different-sized inputs.

analysis. In the following, we will often measure the difference
between an output zpriv computed using CRYPTGPU with the
output zplain of a plaintext version of the same computation
(using 64-bit floating-point values). We define the absolute
error between zpriv and zplain as |zpriv − zplain| and the relative
error to be |zpriv − zplain|/zplain.

Fixed point precision. As discussed at the beginning of Sec-
tion IV, CRYPTGPU emulates floating-point computations by

14



encoding values using a fixed-point representation using t = 20
bits of fractional precision. The fixed-point computations over
the integers are embedded into operations on secret-shared
values over the ring Zn. The modulus n must be large enough
to support multiplication (and more generally, convolution and
matrix multiplication) of plaintext values without triggering
a modular reduction. In CRYPTGPU, n = 264, so shares are
represented by 64-bit integers.

Previous privacy-preserving protocols like FALCON [6] and
DELPHI [4] use a smaller number of bits of fixed-point
precision (e.g., 13 bits and 15 bits, respectively). In turn,
they are able to work with arithmetic shares over a 32-bit
ring as opposed to a 64-bit ring. This reduces communication
(since shares are half as large) and in our model, also saves
computation (recall from Section II-B that we need to split up
tensors of 64-bit integers into 4 tensors of 16-bit integers in
order to use existing CUDA kernels for deep learning).

Using fewer number of bits of precision reduces the accuracy
of the protocol outputs, especially when scaling to deep
architectures and large inputs. To analyze the effect the number
of bits of fixed-point precision t has on the accuracy of the
outputs of our system (i.e., the values of the output layer), we
compute the average relative error between the output values
output by CRYPTGPU to those computed using the plaintext
inference protocol on a small example (AlexNet over CIFAR-
10) as well as a large example (ResNet-50 on ImageNet). Our
results are summarized in Fig. 3.

Fig. 3 shows that for a relatively shallow model like AlexNet
on the CIFAR-10 dataset, it is sufficient to use 12 to 14 bits of
fixed-point precision (e.g., the parameter setting in [6]). The
relative error in this case between the outputs computed by
the private inference protocol and the plaintext computation
is around 1%. However, when we scale up to a model like
ResNet-50 on ImageNet, the average relative error in the model
outputs increases 5× to almost 5%. We further remark that we
are only measuring the relative error in a single forward pass
over the network (inference). Larger errors would be expected
in the case of private training when the protocol needs to run
multiple forward and backward passes. In this work, we use
t = 20 bits of fixed-point precision which ensures that the
average relative error for private inference over ResNet-50 on
ImageNet is under 0.02%. Our analysis indicates that scaling up
to deeper architectures and operating over larger datasets will
require a greater number of bits of precision in the underlying
fixed-point representation. For instance, to keep the average
relative error under 1% for ResNet-50 on ImageNet, we require
at least 15 bits of fixed-point precision. As such, to prevent
overflows in the arithmetic evaluation over secret-shared data
for deep networks, a 32-bit ring is no longer sufficient.

Privacy-preserving inference. To evaluate the accuracy of our
private inference protocol, we compare the average relative
error between the outputs of our private inference protocol
using ResNet-50, ResNet-101, and ResNet-152 on ImageNet
and compare those against the values obtained from plaintext

10 12 14 16 18 20

0.01

0.1

1

10

100

Bits of Fixed-Point Precision t

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

(%
)

AlexNet, CIFAR-10
ResNet-50, ImageNet

Fig. 3: Average relative error between the model outputs
computed using the private inference protocol in CRYPTGPU
with t bits of fixed-point precision (i.e., an integer x ∈ R is
represented as the nearest integer to x · 2t) and the output
computed using plaintext floating-point inference. Analysis
based on evaluating AlexNet on CIFAR-10 and ResNet-50 on
ImageNet, and averaged over 10 randomly-chosen instances.

ResNet-50 ResNet-101 ResNet-152

Average Relative Error 0.015% 0.020% 0.021%

Top-1 Acc. (CRYPTGPU) 78% 82% 79%
Top-1 Acc. (Plaintext) 78% 82% 79%

Top-5 Acc. (CRYPTGPU) 92% 90% 93%
Top-5 Acc. (Plaintext) 92% 90% 93%

TABLE VI: Comparison of outputs of CRYPTGPU’s private
inference protocol on ImageNet with the ResNet models with
those of the plaintext algorithm (using PyTorch). The average
relative error is computed between the outputs of the private
inference protocol and those of the plaintext execution (on the
same input). The Top-1 and Top-5 accuracies for both settings
are computed based on the outputs of model inference with
respect to the ground truth label. The measurements are taken
over a random set of 100 examples drawn from the ImageNet
validation set.

evaluation. We additionally compute the accuracy of the
predictions (using the standard metrics of Top-1 and Top-5
accuracy—i.e., the model succeeds if the actual class of an
example coincides with the most likely class predicted by the
model or among the top 5 most likely classes predicted by the
model). The results are summarized in Table VI. In particular,
for our chosen set of parameters, we observe that the average
relative error in the classifier output is at most 0.021%, and
in all cases we tested (100 randomly-chosen images from the
ImageNet test set), both the Top-1 accuracy and the Top-5
accuracy exactly match that of the plaintext model.

Privacy-preserving training. We perform a similar set of
experiments to evaluate the accuracy of our private training
protocol. In Fig. 4, we plot the value of the cross-entropy
loss function for a model trained using the private training

15



0 600 1,200 1,800 2,400
0.0

0.5

1.0

1.5

2.0

2.5

Number of Iterations

C
ro

ss
E

nt
ro

py
L

os
s

CRYPTGPU
Plaintext

(a) LeNet on MNIST (trained for 5 epochs
with a batch size of 128).

0 400 800 1,200 1,600

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Number of Iterations

C
ro

ss
E

nt
ro

py
L

os
s

CRYPTGPU
Plaintext

(b) AlexNet on CIFAR-10 (trained for 1 epoch
with a batch size of 32).

0 800 1,600 2,400 3,200

3.5

4.0

4.5

5.0

5.5

Number of Iterations

C
ro

ss
E

nt
ro

py
L

os
s

CRYPTGPU
Plaintext

(c) AlexNet on Tiny ImageNet (trained for 1
epoch on a batch size of 32).

Fig. 4: Moving average of the cross-entropy loss as a function of the number of training iterations using CRYPTGPU and
using a plaintext protocol for different models and datasets. In each setting, we use the same initialization and learning
rate (for stochastic gradient descent) for both private and plaintext training. For LeNet, we use a random initialization. For
the AlexNet experiments, we use PyTorch’s default AlexNet architecture [46] for both the plaintext training and the private
training experiments (which is a variant of the standard AlexNet architecture described in [16]). We use PyTorch’s pre-trained
initialization for AlexNet as our initialization. The moving average is computed over a window of size 20 (i.e., the value
reported for iteration i is the average of the cross entropy loss on iterations i− 10, . . . , i+ 9).

Baseline CRYPTGPU Plaintext

LeNet, MNIST* 10% 93.97% 93.34%

AlexNet, CIFAR-10† 10% 59.60% 59.77%
AlexNet, Tiny ImageNet‡ 2% 17.82% 17.51%

*Trained for 5 epochs (2345 iterations) with a batch size of 128.
†Trained for 1 epoch (1563 iterations) with a batch size of 32.
‡Trained for 1 epoch (3125 iterations) with a batch size of 32.

TABLE VII: Validation set accuracy for different models
trained using CRYPTGPU and the plaintext training algorithm.
For each configuration, both training approaches use the
same initialization and learning rate (for stochastic gradient
descent). For LeNet, we use a random initialization. For
the AlexNet experiments, we use PyTorch’s default AlexNet
architecture [46] for both the plaintext training and the private
training experiments. Here, we use PyTorch’s pre-trained
weights for AlexNet to speed up convergence. We also report
the baseline accuracy for each configuration (i.e., accuracy
of the “random-guess” algorithm). Note that training for
more iterations will increase the accuracy; the intent of this
comparison is to demonstrate a close similarity in model
accuracies for the the model output by the private training
protocol with the model output by plaintext training after a
few thousand iterations of stochastic gradient descent.

protocol of CRYPTGPU as well as for a model trained using
the plaintext training algorithm (using the same initialization
and learning rate for the underlying stochastic gradient descent
optimizer). Fig. 4 shows that the value of the loss function
is slightly higher initially for private training, but the overall
progression closely follows that of plaintext training.

In addition to comparing the evolution of the loss function,

we also compare the model accuracies (as measured on the
validation set) for the models trained using CRYPTGPU and
using the plaintext training algorithm (again with same initial-
ization and learning rate as above). Our results are summarized
in Table VII. On all of the models/datasets we considered, the
accuracy of the model output by CRYPTGPU closely matches
that of the plaintext evaluation. These experiments indicate
that CRYPTGPU efficiently and accurately supports end-to-end
private training for models like AlexNet over moderately-large
datasets like Tiny ImageNet.

Average pooling vs. max pooling. As discussed in Sec-
tion IV-A, we use average pooling in place of max pooling
in the models we consider. To evaluate whether the choice of
pooling makes a significant difference on model performance,
we use PyTorch to train the AlexNet and VGG-16 networks
over the CIFAR-10 dataset where we replace all of the max
pooling layers with average pooling layers. The resulting model
accuracy on the CIFAR-10 test set is shown in Table VIII. In
particular, we observed a 3% drop in accuracy (from 76% to
73%) for AlexNet and a 1% increase in accuracy with VGG-16
(from 82% to 83%). This indicates that using average pooling in
place of max pooling does not lead to a significant degradation
of model performance. We note also that in contrast to AlexNet
and VGG-16 which use max pooling exclusively, the more
recent ResNets use average pooling in all but the initial layer.

V. RELATED WORK

Privacy-preserving machine learning is a special case of
secure computation and can be solved via general cryptographic
approaches such as secure 2-party computation (2PC) [28],
secure multiparty computation [7, 8] or fully homomorphic
encryption [47]. While powerful, these general approaches

16



Max Pooling Average Pooling

AlexNet 76.15% 73.35%
VGG-16 82.37% 83.17%

TABLE VIII: Validation set accuracy for plaintext training of
AlexNet and VGG-16 over the CIFAR-10 dataset using max
pooling vs. average pooling. All networks were trained using
50 epochs using a standard stochastic gradient descent (SGD)
optimizer in PyTorch.

incur significant overhead, and much of the work in developing
concretely-efficient protocols for scalable privacy-preserving
machine learning have focused on more specialized approaches
(that still rely on the general building blocks for designing
sub-protocols). We survey some of these techniques here.

Privacy-preserving inference. Many recent works have devel-
oped specific protocols for the problem of private inference for
deep learning models (c.f., [48, 1, 49, 50, 2, 51, 52, 3, 29, 53, 4,
5, 54, 30, 55, 56, 24, 57, 6] and the references therein). These
works operate in a variety of different models and architectures:
some works consider a 2-party setting (e.g., [1, 51, 52, 4]),
others consider a 3-party (e.g., [2, 3, 6, 5, 29, 30]) or a 4-
party setting (e.g., [55, 56]). Some frameworks assume that the
model is held in the clear (e.g., [52, 4]) while others (including
this work) support secret-shared models (e.g., [6, 5]). With
the recent exceptions of FALCON [6] and CRYPTFLOW [5],
these existing approaches only consider privacy-preserving
inference using shallow neural networks (e.g., less than 10
layers) on relatively small datasets (at the scale of MNIST [11]
or CIFAR [12]). Our focus in this work is designing privacy-
preserving machine learning protocols that are able to support
inference over modern deep learning models (which typically
contain tens of millions of parameters and over a hundred
layers) on large datasets (i.e., at the scale of ImageNet [13],
one of the de facto standards for state-of-the art computer
vision). As shown in Section IV-B, our system outperforms
both FALCON and CRYPTFLOW for inference over sufficiently-
large models and datasets.

Privacy-preserving training. Compared to private inference,
privacy-preserving training of deep neural networks is a
considerably more challenging and computationally-intensive
problem and has received comparably less attention. Of the
aforementioned works, only a few [1, 2, 29, 3, 55, 30, 56, 6]
support privacy-preserving training. Among these systems, the
only one that scales beyond MNIST/CIFAR is FALCON [6],
which is the first system (to our knowledge) that supports
privacy-preserving training at the scale of (Tiny) ImageNet and
for models as large as AlexNet [16] and VGG-16 [17]. Our
work is the first framework to leverage GPUs to demonstrate
significantly better scalability to privately train deep networks
over large datasets.

Privacy-preserving machine learning using GPUs. Most of
the works on privacy-preserving machine learning are CPU-
based and do not leverage GPU acceleration. We discuss some

notable exceptions. Some works [58, 57] use GPUs to accelerate
homomorphic evaluation of convolutional neural networks on
MNIST. DELPHI [4] uses GPUs to compute linear layers (i.e.,
convolutions) to support private inference; however, they still
perform non-linear operations (e.g., ReLU evaluation) on the
CPU and moreover, their scheme assumes the model to be
public (and only the input is hidden). Our design philosophy in
this work is to keep all of the computations on the GPU through
a careful choice of “GPU-friendly” cryptographic protocols.
Slalom [36] shows how to integrate a trusted computing base
(e.g., Intel SGX) with GPUs to enable fast private inference of
neural networks (by offloading convolutions to the GPU and
performing non-linear operations within the trusted enclave).
Recent works proposing scalable private training and inference
protocols highlight the use of GPUs as an important way for
further scalability [6, 5]. Our system is the first to support
private training and inference entirely on the GPU.

Model stealing and inversion attacks. We note that MPC
protocols can only hide the inputs to the computation (e.g., the
model or the dataset) up to what can be inferred from the output.
Several recent works [59, 60, 61, 62, 63] have shown how
black-box access to a model (in the case of an private inference
service) can allow an adversary to learn information about the
model or even recover its training data. Differentially-private
training algorithms [9, 10] provide one defense against certain
types of these attacks. Our focus in this work is on protecting
the computation itself and ensure that there is no additional
leakage about the inputs other than through the output. It is
an interesting question to design a private training/inference
protocol that also provides robustness against specific classes
of model stealing/inversion attacks.

VI. CONCLUSION

In this paper, we introduce CRYPTGPU, a new MPC
framework that implements all of the cryptographic operations
(both linear and non-linear) on the GPU. CRYPTGPU is
built on top of PyTorch [21] and CRYPTEN [24] to make
it easy to use for machine learning developers and researchers.
Our experiments show that leveraging GPUs can significantly
accelerate the private training and inference for modern deep
learning and make it practical to run privacy-preserving deep
learning at the scale of ImageNet and with complex networks.
In addition, our systematic analysis of different cryptographic
protocols provides new insights for designing “GPU-friendly”
cryptographic protocols for deep learning. This will be an
important step towards bridging the roughly 1000× gap that
still remains between private machine learning and plaintext
machine learning (on the GPU).

ACKNOWLEDGMENTS

We thank Pavel Belevich, Shubho Sengupta, and Laurens van
der Maaten for their feedback on system design and providing
helpful pointers. D. J. Wu is supported by NSF CNS-1917414.

17



REFERENCES

[1] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy, pp. 19–38, 2017.

[2] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in ACM CCS, pp. 35–52, 2018.

[3] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

[4] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security, pp. 2505–2522, 2020.

[5] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“CrypTFlow: Secure tensorflow inference,” in IEEE Symposium on
Security and Privacy, pp. 336–353, 2020.

[6] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin,
“FALCON: honest-majority maliciously secure framework for private
deep learning,” Proc. Priv. Enhancing Technol., vol. 2021, 2021.

[7] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
STOC, pp. 218–229, 1987.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in STOC, pp. 1–10, 1988.

[9] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM
CCS, pp. 1310–1321, 2015.

[10] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
ACM CCS, pp. 308–318, 2016.

[11] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database.” http:
//yann.lecun.com/exdb/mnist/.

[12] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “Imagenet
large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115,
no. 3, pp. 211–252, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, pp. 770–778, 2016.

[15] F.-F. Li, A. Karpathy, and J. Johnson, “Tiny ImageNet visual recognition
challenge,” 2017.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NeurIPS, pp. 1106–1114,
2012.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[18] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[19] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” 2006.

[20] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep,
big, simple neural nets for handwritten digit recognition,” Neural Comput.,
vol. 22, no. 12, pp. 3207–3220, 2010.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in NeurIPS, pp. 8024–8035, 2019.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016.

[23] “Cloud tensor processing units (tpus).” https://cloud.google.com/tpu/docs/
tpus.

[24] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets

machine learning,” in Proceedings of the NeurIPS Workshop on Privacy-
Preserving Machine Learning, 2020.

[25] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing
general access structure,” Electronics and Communications in Japan
(Part III: Fundamental Electronic Science), vol. 72, no. 9, pp. 56–64,
1989.

[26] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-throughput
semi-honest secure three-party computation with an honest majority,” in
ACM CCS, pp. 805–817, 2016.

[27] “CUDA libraries documentation.” https://docs.nvidia.com/cuda-libraries/
index.html.

[28] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in FOCS, pp. 162–167, 1986.

[29] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: high
throughput 3pc over rings with application to secure prediction,” in ACM
CCS, pp. 81–92, 2019.

[30] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving machine
learning,” in NDSS, 2020.

[31] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party
computation,” IACR Cryptol. ePrint Arch., vol. 2011, p. 272, 2011.

[32] “cuBLAS.” https://docs.nvidia.com/cuda/cublas/index.html.
[33] “cuDNN.” https://docs.nvidia.com/deeplearning/cudnn/developer-guide/

index.html.
[34] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for

efficient mixed-protocol secure two-party computation,” in NDSS, 2015.
[35] D. Beaver, “Efficient multiparty protocols using circuit randomization,”

in CRYPTO, pp. 420–432, 1991.
[36] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution

of neural networks in trusted hardware,” in ICLR, 2019.
[37] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-throughput

secure three-party computation for malicious adversaries and an honest
majority,” in EUROCRYPT, pp. 225–255, 2017.

[38] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptol., vol. 13, no. 1, pp. 143–202, 2000.

[39] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004.

[40] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, pp. 807–814, 2010.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[42] “PyTorch/CSPRNG.” https://github.com/pytorch/csprng.
[43] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel

random numbers: as easy as 1, 2, 3,” in Conference on High Performance
Computing Networking, Storage and Analysis, SC, pp. 16:1–16:12, 2011.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[45] Sameer Wagh and Shruti Tople and Fabrice Benhamouda and Eyal
Kushilevitz and Prateek Mittal and Tal Rabin, “Falcon: Honest-majority
maliciously secure framework for private deep learning.” Available at
https://github.com/snwagh/falcon-public.

[46] P. Team, “Alexnet.” https://pytorch.org/hub/pytorch vision alexnet/.
[47] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009. crypto.stanford.edu/craig.
[48] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and

J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, pp. 201–210, 2016.

[49] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in ACM CCS, pp. 619–631,
2017.

[50] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
Programmable, efficient, and scalable secure two-party computation for
machine learning.” Cryptology ePrint Archive, Report 2017/1109, 2017.
https://eprint.iacr.org/2017/1109.

[51] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation framework
for machine learning applications,” in ACM CCS, pp. 707–721, 2018.

[52] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in USENIX
Security Symposium, pp. 1651–1669, 2018.

[53] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: xnor-based oblivious deep neural network
inference,” in USENIX Security Symposium, pp. 1501–1518, 2019.

18

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://docs.nvidia.com/cuda-libraries/index.html
https://docs.nvidia.com/cuda-libraries/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
http://www.deeplearningbook.org
https://github.com/pytorch/csprng
https://github.com/snwagh/falcon-public
https://pytorch.org/hub/pytorch_vision_alexnet/
crypto.stanford.edu/craig
https://eprint.iacr.org/2017/1109


[54] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of
quantized neural networks,” Proc. Priv. Enhancing Technol., vol. 2020,
no. 4, pp. 355–375, 2020.

[55] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: fast and
robust framework for privacy-preserving machine learning,” Proc. Priv.
Enhancing Technol., vol. 2020, no. 2, pp. 459–480, 2020.

[56] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4pc
framework for privacy preserving machine learning,” in NDSS, 2020.

[57] A. A. Badawi, J. Chao, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan, X. Nan,
A. M. M. Khin, and V. Chandrasekhar, “Towards the alexnet moment
for homomorphic encryption: HCNN, the first homomorphic cnn on
encrypted data with gpus,” IEEE Transactions on Emerging Topics in
Computing, 2020.

[58] A. A. Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung, “High-
performance FV somewhat homomorphic encryption on gpus: An
implementation using CUDA,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, no. 2, pp. 70–95, 2018.

[59] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali,
and G. Felici, “Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers,” Int. J. Secur.
Networks, vol. 10, no. 3, pp. 137–150, 2015.

[60] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in ACM CCS,
pp. 1322–1333, 2015.

[61] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in USENIX Security
Symposium, pp. 601–618, 2016.

[62] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
provably-secure deep learning,” in Annual Design Automation Conference,
pp. 1–6, 2018.

[63] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High-
fidelity extraction of neural network models,” CoRR, vol. abs/1909.01838,
2019.

APPENDIX A
NETWORK ARCHITECTURE

As discussed in Section IV-A, some of the models we
consider (e.g., AlexNet and VGG-16) were designed for
ImageNet, and are not directly compatible with smaller datasets
such as CIFAR-10 and Tiny ImageNet. As such, when training
or running inference with these models on the smaller datasets,
we make adjustments to their “head architecture” (i.e., the
fully-connected classification layers at the top of the network).
In all settings, we keep the same “base architecture” (adapted
from their description in the original papers [16, 17]). We
describe the base AlexNet architecture we use in Fig. 5 and
the head architectures for the different datasets in Fig. 6. We
describe the base VGG-16 architecture we use in Fig. 7 and
the head architectures for the different datasets in Fig. 8.

19



Layer Input Dimension Description Output Dimension

Convolution 32× 32× 3 11× 11 kernel, 9× 9 padding, 4× 4 stride 10× 10× 96
ReLU 10× 10× 96 ReLU(·) on each input 10× 10× 96
Average Pooling 10× 10× 96 3× 3 kernel, 2× 2 stride 4× 4× 96

Convolution 4× 4× 96 5× 5 kernel, 1× 1 padding, 1× 1 stride 2× 2× 256
ReLU 2× 2× 256 ReLU(·) on each input 2× 2× 256
Average Pooling 2× 2× 256 2× 2 kernel, 1× 1 stride 1× 1× 256

Convolution 1× 1× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 384
ReLU 1× 1× 384 ReLU(·) on each input 1× 1× 384

Convolution 1× 1× 384 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 384
ReLU 1× 1× 384 ReLU(·) on each input 1× 1× 384

Convolution 1× 1× 384 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 256
ReLU 1× 1× 256 ReLU(·) on each input 1× 1× 256

Fig. 5: AlexNet [16] base architecture on CIFAR-10. The same architecture is also used for Tiny ImageNet and ImageNet, but
applied to different input dimensions (64× 64× 3 for Tiny ImageNet and 224× 224× 3 for ImageNet). The head architectures
(classification layers) for CIFAR-10, Tiny ImageNet, and ImageNet vary (as a function of the input size and number of output
classes) and are shown in Fig. 6.

20



Layer Input Dimension Description Output Dimension

Flatten 1× 1× 256 Flatten input into a single dimension 256

Fully Connected 256 256× 256 matrix multiplication 256
ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 256 matrix multiplication 256
ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 10 matrix multiplication 10

(a) Head architecture for CIFAR-10

Layer Input Dimension Description Output Dimension

Average Pooling 4× 4× 256 2× 2 kernel, 2× 2 stride 2× 2× 256
Flatten 2× 2× 256 Flatten input into a single dimension 1024

Fully Connected 1024 1024× 1024 matrix multiplication 1024
ReLU 1024 ReLU(·) on each input 1024

Fully Connected 1024 1024× 1024 matrix multiplication 1024
ReLU 1024 ReLU(·) on each input 1024

Fully Connected 1024 1024× 200 matrix multiplication 200

(b) Head architecture for Tiny ImageNet

Layer Input Dimension Description Output Dimension

Average Pooling 24× 24× 256 4× 4 kernel, 4× 4 stride 6× 6× 256
Flatten 6× 6× 256 Flatten input into a single dimension 9216

Fully Connected 9216 9216× 4096 matrix multiplication 4096
ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 4096 matrix multiplication 4096
ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 1000 matrix multiplication 1000

(c) Head architecture for ImageNet

Fig. 6: Head architecture of AlexNet for CIFAR-10, Tiny ImageNet, and ImageNet.

21



Layer Input Dimension Description Output Dimension

Convolution 32× 32× 3 3× 3 kernel, 1× 1 padding, 1× 1 stride 32× 32× 64
ReLU 32× 32× 64 ReLU(·) on each input 32× 32× 64

Convolution 32× 32× 64 3× 3 kernel, 1× 1 padding, 1× 1 stride 32× 32× 64
ReLU 32× 32× 64 ReLU(·) on each input 32× 32× 64
Average Pooling 32× 32× 64 2× 2 kernel, 2× 2 stride 16× 16× 64

Convolution 16× 16× 64 3× 3 kernel, 1× 1 padding, 1× 1 stride 16× 16× 128
ReLU 16× 16× 128 ReLU(·) on each input 16× 16× 128

Convolution 16× 16× 128 3× 3 kernel, 1× 1 padding, 1× 1 stride 16× 16× 128
ReLU 16× 16× 128 ReLU(·) on each input 16× 16× 128
Average Pooling 16× 16× 128 2× 2 kernel, 2× 2 stride 8× 8× 128

Convolution 8× 8× 128 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256

Convolution 8× 8× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256

Convolution 8× 8× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256
Average Pooling 8× 8× 256 2× 2 kernel, 2× 2 stride 4× 4× 256

Convolution 4× 4× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512

Convolution 4× 4× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512

Convolution 4× 4× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512
Average Pooling 4× 4× 512 2× 2 kernel, 2× 2 stride 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512
Average Pooling 2× 2× 512 2× 2 kernel, 2× 2 stride 1× 1× 512

Fig. 7: VGG-16 [17] base architecture for CIFAR-10 inputs. The same architecture is also used for Tiny ImageNet and
ImageNet, but applied to different input dimensions (64× 64× 3 for Tiny ImageNet and 224× 224× 3 for ImageNet). The
head architectures (classification layers) for CIFAR-10, Tiny ImageNet, and ImageNet vary (as a function of the input size and
number of output classes) and are shown in Fig. 8.

22



Layer Input Dimension Description Output Dimension

Flatten 1× 1× 512 Flatten input into a single dimension 512

Fully Connected 512 512× 256 matrix multiplication 256
ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 256 matrix multiplication 256
ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 10 matrix multiplication 10

(a) Head architecture for CIFAR-10.

Layer Input Dimension Description Output Dimension

Average Pooling 2× 2× 512 2× 2 kernel, 2× 2 stride 1× 1× 512
Flatten 1× 1× 512 Flatten input into a single dimension 512

Fully Connected 512 512× 512 matrix multiplication 512
ReLU 512 ReLU(·) on each input 512

Fully Connected 512 512× 512 matrix multiplication 512
ReLU 512 ReLU(·) on each input 512

Fully Connected 512 512× 200 matrix multiplication 200

(b) Head architecture for Tiny ImageNet.

Layer Input Dimension Description Output Dimension

Average Pooling 6× 6× 512 2× 2 kernel, 2× 2 stride 3× 3× 512
Flatten 3× 3× 512 Flatten input into a single dimension 4608

Fully Connected 4608 4608× 4096 matrix 4096
ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 4096 matrix 4096
ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 1000 matrix 1000

(c) Head architecture for ImageNet.

Fig. 8: Head architecture of VGG-16 for CIFAR-10, Tiny ImageNet, and ImageNet.

23


	Introduction
	Our Contributions

	System Overview
	Background
	System Design and Architecture

	Threat Model and Cryptographic Design
	Threat Model
	Cryptographic Building Blocks for Private Inference
	Additional Building Blocks for Private Training

	System Implementation and Evaluation
	Experimental Setup for System Evaluation
	Benchmarks for Private Training and Inference
	Microbenchmarks
	Accuracy of Privacy-Preserving Protocols

	Related Work
	Conclusion
	References
	Appendix A: Network Architecture

