
Automated Detection of Side Channels in
Cryptographic Protocols: DROWN the ROBOTs!

Jan Peter Drees
University of Wuppertal

jan.drees@uni-wuppertal.de

Pritha Gupta
Paderborn University
prithag@mail.upb.de

Eyke Hüllermeier
LMU Munich

eyke@ifi.lmu.de

Tibor Jager
University of Wuppertal

tibor.jager@uni-wuppertal.de

Alexander Konze
achelos GmbH

alexander.konze@achelos.de

Claudia Priesterjahn
achelos GmbH

claudia.priesterjahn@achelos.de

Arunselvan Ramaswamy
Paderborn University
arunr@mail.upb.de

Juraj Somorovsky
Paderborn University

juraj.somorovsky@upb.de

Abstract—Currently most practical attacks on cryptographic
protocols like TLS are based on side channels, such as padding
oracles. Some well-known recent examples are DROWN, ROBOT
and Raccoon (USENIX Security 2016, 2018, 2021). Such attacks
are usually found by careful and time-consuming manual analysis
by specialists.

In this paper, we consider the question of how such attacks
can be systematically detected and prevented before (large-scale)
deployment. We propose a new, fully automated approach, which
uses supervised learning to identify arbitrary patterns in network
protocol traffic. In contrast to classical scanners, which search
for known side channels, the detection of general patterns might
detect new side channels, even “unexpected” ones, such as those
from the ROBOT attack.

To analyze this approach, we develop a tool to detect
Bleichenbacher-like padding oracles in TLS server implemen-
tations, based on an ensemble of machine learning algorithms.
We verify that the approach indeed detects known vulnerabilities
successfully and reliably. The tool also provides detailed informa-
tion about detected patterns to developers, to assist in removing
a potential padding oracle. Due to the automation, the approach
scales much better than manual analysis and could even be
integrated with a CI/CD pipeline of a development environment,
for example.

I. INTRODUCTION

Many recent attacks on cryptographic protocols deployed
in practice do not break the cryptographic algorithms directly.
Instead, they are based on side-channel information. For in-
stance, this includes many recent attacks on TLS, probably the
most widely-used and well-analyzed cryptographic protocol on
the Internet, such as DROWN [1], ROBOT [6], Raccoon [42],
POODLE [38], and many more.

One particularly important family are padding oracle at-
tacks, such as the attacks by Bleichenbacher [5], Manger
[34], and Vaudenay [53]. Padding oracle attacks have found
countless applications. Since the original publication of Blei-
chenbacher’s attack in 1998, follow-up works have developed
many different approaches which construct the padding oracle
required for this attack, which then often yields an efficient
attack on the considered implementation or application [1, 2,
11, 13, 26, 29, 36, 48, 59].

Particularly surprising constructions of padding oracles were
shown in the ROBOT attack by Böck et al. [6]. This work

demonstrated that padding oracles can appear in very subtle
and quite unexpected forms. For example, one would probably
expect that the TCP protocol, which is used to transport TLS
messages, cannot provide an exploitable padding oracle, be-
cause it is merely a transport protocol that operates on a com-
pletely different network layer. The protocol is independent
of the cryptographic keys used in higher-layer protocols (such
as TLS running over TCP), and therefore should not be able
to leak any information. However, Böck et al. showed, very
surprisingly, that certain TLS implementations may terminate
a TCP session in different ways, depending on whether a
padding error occurred or not. This could be used to construct
a new padding oracle. The authors of the ROBOT paper also
found new vulnerabilities in commercial products by Cisco,
Citrix, F5, Symantec, and Cavium, and even demonstrated
a forgery of a valid digital signature using Facebook’s RSA
certificate that was based on a padding oracle provided by
Facebook’s custom TLS server implementation.

All padding oracle attacks appearing in the literature so far
seem to have been found “manually”, that is, via careful anal-
yses of TLS server responses by specialized expert security
researchers, who thoroughly analyzed one popular implemen-
tation after another. Of course, this approach does not scale
well with a growing number of implementations. Furthermore,
even for experts it is very difficult to find “unexpected” side
channels that go beyond what one is specifically looking for,
such as the aforementioned TCP side channel [6], for instance.

Research challenge: The development of techniques that
are capable of finding such cryptographic side channels auto-
matically, without the need for time-consuming manual analy-
sis, is a foundational open problem. The main difficulty is that
in order to be able to identify even unexpected side channels,
it is not sufficient to check against a list of known or typical
vulnerabilities. Instead, one has to analyze the behavior of an
implementation and efficiently recognize general patterns that
depend on the validity of the padding, and thus might give
rise to a padding oracle.

For example, in the context of TLS implementations, we
would like to have a tool that can be executed against any
concrete TLS implementation, possibly after every significant

code modification or before every release of a new software
version. Such a tool should not require any extensive and
time-consuming manual analysis or supervision by an expert
security researcher. Instead, it should be usable without expert
knowledge, ideally in a fully-automated way that allows to
run automated tests, possibly in the regression testing phase
of a CI/CD pipeline. This would significantly reduce the attack
surface of practical applications.

Our contributions: We propose an automated approach to
detect side channels such as padding oracles in cryptographic
protocol implementations, which uses a variety of classifica-
tion algorithms from machine learning to automatically detect
general patterns in network protocol traffic that might give
rise to a padding oracle. Our solution does not merely use the
predictions of a pre-trained model but relies on the ability to
learn patterns of interest.

In order to analyze this general approach, we consider
Bleichenbacher-like attacks on TLS as a concrete use case.
This class of attacks provides a prime example of a cryp-
tographic side channel attack on the protocol level. A long
sequence of research papers appearing on leading academic
security conferences [1, 2, 5, 6, 11, 13, 26, 29, 36, 48, 59]
showed that such vulnerabilities appear repeatedly in popular
open-source software and widely-used commercial products.
Hence, this is an ideal reference for the development and
analysis of an automated methodology to detect side channel
attacks on the protocol level.

In order to minimize the probability that a padding oracle
vulnerability remains undetected in the automated analysis, we
propose to train an ensemble of machine learning algorithms
and aggregate them. Concretely, we consider 10 algorithms
from different families, including for instance Logistic Regres-
sion, Support Vector Machines, Decision Trees, Random For-
est, and Boosting algorithms. Since detection of vulnerabilities
is most useful when one can also provide information of the
origin of recognized patterns (e. g., which particular protocol
message exhibits the pattern), we focus on machine learning
(ML) algorithms that are amenable to feature importance
techniques.

We implement and analyze this approach in a tool which
automatically analyses a given TLS server implementation.
The tool implements a TLS client to generate training and
testing data and then applies the machine learning algorithms
to detect potential side channels.

We confirm that the tool is indeed able to detect known
vulnerabilities in TLS server implementations reliably. Con-
cretely, the tool correctly identifies the vulnerability identified
in [29] in OpenSSL version 0.9.7a, while no vulnerability is
identified in version 0.9.7b (which patches this vulnerability).
We also confirm that the tool reliably detects all padding
oracle vulnerabilities described in the ROBOT paper [6].
Since some of these vulnerabilities were found in proprietary
implementations (e. g., Facebook’s and Cisco’s) which are
not publicly available for analysis, we patched an mbedTLS1

1https://tls.mbed.org/

server according to the description of the behavior of these
implementations from the ROBOT paper [6] to simulate these
padding oracles. Finally, we analyze the most recent versions
of 13 different popular open source TLS implementations (cf.
Table II), but (as expected) without finding any new vulner-
abilities. We conclude that the tool is able to reliably detect
known vulnerabilities, with a general and generic approach.
We consider this as an indicator that the approach will also
work for future, new side channels that exhibit distinguishable
patterns on the network layer.

To assist in removing identified potential vulnerabilities, the
tool also provides detailed feedback about detected patterns to
developers, for which we rely on feature importance tech-
niques of the considered ML algorithms.

We hope that the ideas developed here may potentially
detect new subtle and complex side channels in the future
before large-scale deployment of an implementation.

Supplementary material: We make the tool and all data
publicly available as open source. The full source code of the
tool is available on Github.2

II. RELATED WORK

a) Attacks based on Bleichenbacher’s: The original
padding oracle considered in [5] was based on distinguishable
error messages returned by a TLS server implementation.3

Subsequent protocol versions then required indistinguishable
error messages, in order to remove this particular way to
construct a padding oracle.

The difficulty of detecting and preventing all possible side
channels that may give rise to a padding oracle has been
demonstrated by many research papers that appeared since
the original publication of Bleichenbacher’s attack in 1998.
Klı́ma et al. [29] introduced a new variant (a “bad version
oracle”, a special case of a padding oracle) and also used
timing as a new way to construct the padding oracle required
for Bleichenbacher’s attack. Jager et al. [26] showed that
XML Encryption inherently provides a padding oracle, which
is based on application layer properties of Web services and
XML. Degabriele et al. [11] described attacks on the Europay-
Mastercard-Visa (EMV) specification. Bardou et al. [2] devel-
oped a clever variant of Bleichenbacher’s algorithm that may
improve the performance of attacks significantly. They also
found new padding oracles in several applications, including
RSA SecurID tokens and several other hardware tokens,
Siemens CardOS smartcards, hardware security modules, and
even the cryptography implementation of the Estonian ID card.
Meyer et al. [36] found several new padding oracles in the
Java Secure Socket Extension (JSSE) TLS implementation and
in hardware security appliances using the Cavium NITROX
SSL accelerator chip. The DROWN attack [1] discovered

2Following the submission guidelines, we do not yet provide a Github
link here. You can access the source code and datasets for review instead at
https://www.dropbox.com/sh/8gwwg0v1vlmlbbt/AAAsNx5Ptb2Kx72WCkdzr9Xea

3Early versions of TLS were actually called SSL, and re-named to TLS
with the specification of TLS 1.0 by the IETF in 1999. We use the term TLS
for all protocols versions.

another new vulnerability in OpenSSL that was present in
OpenSSL releases from 1998 to early 2015, which gave rise to
extremely efficient Bleichenbacher-style attacks, by leveraging
an additional vulnerability in OpenSSL even in less than
one minute on a single CPU. In 2018, Felsch et al. found
new padding oracles in widely used IPSec implementations
by Cisco, Huawei, Clavister, and ZyXEL [13]. Zhang et al.
[59] and Ronen et al. [48] considered settings where the
attacker is able to run code on the same physical machine as
the victim, which circumvents many countermeasures to the
aforementioned attacks. Even though this is a strong attacker
model, it seems very reasonable in certain applications, such
as cloud computing.

b) Automated scanning for vulnerabilities: Recent anal-
yses on new side-channel vulnerabilities come with large-
scale evaluations of frequently used servers to estimate the
attack impact. Such analyses were performed for ROBOT [6],
RACCOON [42], or CBC padding oracle attacks [35]. All
these analyses have in common that the used scanners send test
vectors to the servers and evaluated the potential side channels
based on differences in server responses. Nevertheless, such an
approach comes with potential false positives and negatives,
resulting from unstable Internet connections and server behav-
iors; one broken TCP connection or connection timeout can
change the server response resulting in a different behavior and
thus in a potential side channel report. Merget et al. attempted
to solve these problems by rescanning vulnerable servers and
by careful statistical tests [35]. The results of these approaches
were integrated into common TLS scanning tools, such as
SSLlabs4 or testssl.sh.5 Therefore, the tools are now able to
cover a very wide range of specific and known vulnerabilities.

While the statistical tests developed in [35, 42] are well-
suited for precisely finding padding oracle vulnerabilities, the
side channels they search for have to be manually defined
by the researchers. For example, TLS-Attacker, which was
used in [35, 42], explicitly searches for side channels resulting
from different messages, message counts, and TCP connection
state differences. All these side channels have been defined
after careful manual vulnerability assessments performed in
the previous years [6, 35, 42]. It is not guaranteed that the list
of the side channels TLS-Attacker and other scanners search
for is final. Unexpected behavior in the TLS implementation or
the underlying TCP stack can reveal new side channels beyond
message differences and TCP connection states, which are not
explicitly analyzed. This gap is addressed in our research; our
tool observes the whole TLS communication and provides it
to the machine learning algorithms, which are able to detect
side channels without previous assumptions and explain the
potential vulnerability to the developer.

c) Machine learning in side channel analysis: Previ-
ously, machine learning algorithms have been applied to detect
side channel attacks on the algorithmic and hardware level (cf.
[9, 24, 32, 33], for instance, [20] for a recent survey, as well

4https://www.ssllabs.com/ssltest/
5https://testssl.sh/

as [57, 58] for more recent works). To best of our knowledge,
ours is the first approach to consider side channel attacks on
the cryptographic protocol level. A different research direction
was proposed by Beck et al., who analyzed the automatic
exploitation of adaptive chosen ciphertext attacks [3]. In their
work, they assumed a vulnerable implementation allowing an
attacker to modify ciphertexts. They concentrated on the auto-
matic exploitation development with SAT and SMT solvers
based on the malleability characteristics of the encryption
scheme. Our work extends this interdisciplinary research di-
rection by analyzing machine learning (ML) algorithms for
detecting new side channels.

III. PRELIMINARIES

This section gives a brief introduction to Bleichenbacher’s
attack in the context of TLS in Section III-A. We particularly
consider TLS 1.2. We further summarize relevant concepts and
terminology from machine learning in Section III-B.

A. Bleichenbacher’s Attack on TLS

a) The TLS 1.2 Handshake: The TLS 1.2 [45] hand-
shake, shown in Figure 1, is an essential first step in the
establishment of a secure TLS connection. Performing the
handshake, client and server agree on which cryptographic
algorithms and parameters to use, they exchange the secret
keys they later use to encrypt the actual data being transmitted,
and the server proves its identity to the client:

Client Server

ClientHello

ServerHello
Certificate

ServerHelloDoneClientKeyExchange
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Encrypted
Data

1.

3.

2.

4.

Fig. 1: A typical TLS 1.2 handshake

The TLS Handshake consists of the following sequence of
messages.

(1) The client initiates the connection with the
ClientHello message, and proposes different sets of
cryptographic algorithms (so-called “cipher suites”) it
supports.

(2) The server selects a cipher suite and sends it to the client
in the ServerHello message. It then proves its identity
with a digital signature with respect to a certificate signed
by a trusted third party. The ServerHelloDone message
signals the end of this message flow. In the following, we will

a1 22 [...] 58 18 00 d6 a8 [...] ac 88

Block
Type

Padding String

Separator
PreMasterSecret

Randomness

03 03

TLS Version

0200

Fig. 2: Padded Premaster Secret PMS.

consider a setting where a cipher suite based on RSA key
transport is used.6

(3) The client uses the agreed-upon algorithms to perform
the actual key exchange with the ClientKeyExchange
(CKE). In the case of RSA-based key transport, the client gen-
erates a new random key called the pre-master secret (PMS)
and encrypts it with RSA, such that only the server can decrypt
it. It then signals that the remainder of the conversation will be
encrypted with this PMS by sending a ChangeCipherSpec
(CCS) message. Finally, the Finished (FIN) message con-
tains a cryptographic checksum overall key exchange mes-
sages, computed with a key derived from the PMS.

(4) The server decrypts the PMS and uses it to derive
several cryptographic keys, which are then used to decrypt
and verify the checksum of the FIN message. It concludes the
handshake by sending CCS and FIN messages. Thereafter, all
communication is protected using the keys derived from the
PMS. Note that all cryptographic keys used for a TLS session
are derived from PMS and other public values (such as nonces
sent in plain text in the ClientHello and ServerHello
messages).

b) RSA-PKCS#1v1.5 Encryption: All TLS cipher suites
based on RSA key transport use the RSA-PKCS#1 v1.5
encryption scheme [44] in order to transport the PMS from
the client to the server. Essentially, this encryption scheme
prepends the PMS with constants and random bytes, as defined
in Figure 2. The PMS is a random 48-byte string. The leading
00 02, the separator byte 00, and the TLS version number
03 03 (which refers to TLS 1.2) are constants. The padding
string is chosen at random from all byte strings that do not con-
tain a 00 byte (to guarantee that the separator byte is uniquely
identified), and such that the total length of the padded string
(including the PMS and all constants) is equal to the size of
the RSA modulus N . The resulting padded string M is then
encrypted with the “textbook” RSA encryption function as
c = Me mod N . We will say that a ciphertext is PKCS#1
v1.5-conformant or has valid padding, if M = c1/e mod N
satisfies the padding scheme from Figure 2.

c) Bleichenbacher’s Attack: Bleichenbacher’s attack as-
sumes that a “padding oracle” is available, which takes as

6For instance, the only cipher suite which is mandatory to implement
in TLS 1.2 is of this type (TLS_RSA_WITH_AES_128_CBC_SHA). RSA-
based key transport was removed from TLS 1.3, due to the large number
of Bleichenbacher-like attacks. However, somewhat counter-intuitively, even
TLS 1.3 might be vulnerable to such attacks in the most common practical
deployment setting [27].

input a ciphertext, and returns whether the ciphertext contains
a plaintext with valid PKCS#1 v1.5 padding, with respect
to a given target public key (N, e). Such an oracle may be
constructed in many different ways, e. g., based on error
messages returned by a TLS server implementation. A long se-
quence of research papers has developed many different ways
to concretely construct such an oracle for certain concrete
implementations or applications [1, 2, 5, 6, 11, 13, 26, 29,
36, 48, 59].

Bleichenbacher described a seminal algorithm [5] which is
able to use such an oracle in order to effciently compute the
RSA decryption function c 7→ c1/e mod N with respect to
any number c mod N . Note that this can in particular be
used to decrypt RSA PKCS#1 v1.5 ciphertexts, but also to
compute valid RSA signatures with respect to the RSA key
(N, e) contained in a server’s certificate.

Essentially, the idea of Bleichenbacher’s algorithm is as fol-
lows. Suppose that c =Me mod N be a PKCS#1-conformant
ciphertext. This is without loss of generality, because if c
is not, then one can use the oracle to “randomize” c by
computing ĉ = cρe = (Mρ)e mod N for random ρ, until
ĉ is PKCS#1-conformant, and then continue with ĉ. Thus, the
number c =M1/e mod N lies in the interval [2B, 3B), where
B denotes the number modulo N whose binary representation
is

B = 00 01 ... 00 = 28(`−2)

and where ` is the byte-length of the RSA modulus N .
Bleichenbacher’s algorithm chooses a small integer s, com-

putes
c′ = (c · se) mod N = (Ms)e mod N,

If the padding oracle reveals that c′ has a valid padding, then
this implies that 2B ≤Ms− rN < 3B, for some r, which is
equivalent to

2B + rN

s
≤M <

3B + rN

s
.

Thus, M must lie in the interval

M ∈ [d(2B + rN)/se, b(3B + rN)/sc).

By repeatedly choosing new s, this yields a set of intervals
that narrows down the possible values of M , until only one
possibility is left, which has to be the plaintext.

The perfomance of Bleichenbacher’s algorithm mainly de-
pends on the provided oracle, and how precisely it checks the
validity of the padding. Bardou et al. described an improve-
ment to Bleichenbacher’s algorithm [2], and also analyzed the
concrete efficiency for various types of oracles.

B. Machine Learning

Machine learning (ML) deals with the development and
analysis of learning algorithms that can automatically im-
prove (their performance), using past experience [37]. ML
algorithms build learning models using a training dataset,
in order to make future predictions without being explicitly
programmed to do so [30].

There are many different approaches in ML, which are
broadly divided into three categories based on the type of
data provided to the learning algorithms: supervised learning,
unsupervised learning and reinforcement learning. Out of
these, the simplest and most popular one is supervised learn-
ing. Here, the learning algorithm is provided with example
inputs (training dataset) and their desired outputs (labels).
These are used to learn a general mapping from the input
space, often represented as d-dimensional real-valued vectors,
to the required output, often a real value [37]. The underlying
assumption in supervised learning is that the data (input) is
generated from an unknown distribution and there exists a
mapping from the input space to the desired output space
called the target function, which in principle is unknown to
us. In this paper, we use the classification supervised learning
approach, in which the goal is to learn a mapping from
input to finitely many categories, represented by a natural
number called the class-label. For example, the instances can
be features of shoes, (x = (price, color, size, healtype)) and the
label y could represent categorizes of shoes like (’flat’, ’pencil,
’platform’) [37]. We call class-labels which are provided by
some expert or a user ground-truth class-labels.

a) Classification: Let X ∈ Rd be the set of all possible
inputs and let Y be the set of all possible classes. For the
sake of simplicity, we let Y = {0, 1, . . . ,K − 1} = [K],
where 2 ≤ K < ∞ represents the number of classes, also
referred as class-label. The goal of classification is to find
a mapping f : X → Y , using the available training dataset
D = {(x1, y1), . . . , (xN , yN)}. It consists of |D| = N
training instances in form of tuples (xi, yi), such that yi ∈ Y
is the class-label associated with input instance xi ∈ X .
The learning problem is called multi-class classification when
the number of classes is K > 2 and binary classification if
K = 2 [37]. Formally speaking, the goal in binary classifica-
tion, is to find a mapping or target function f : X → Y , that
maximizes the prediction accuracy over the training dataset
D. For a given input instance (x, y) ∈ D, let y = f(x)
be the corresponding label (ground-truth class-label), and let
ŷ = f̂(x) be the algorithm prediction, such that f is the target
function and f̂ be the predicted function.

Accuracy and Error-rate: The average accuracy on the

given data is defined as dbc(ŷ,y) =
1

N

∑N
i=1J(f̂(xi) ==

f(xi))K, where N is the number of training instances;
y and ŷ are the vectors consisting of ground-truth class-
labels and corresponding predicted class-labels, respectively;
J(f̂(xi) == f(xi))K is the indicator function that equals 1
iff f̂(xi) = f(xi)), else it takes value 0. This naturally gives
rise to the following definition of training loss called the error-
rate, `bc(ŷ,y) = 1− dbc(ŷ,y) [37]. It may be noted that the
predicted function(f̂) is learned by minimizing the training
loss and, f̂ is an approximation of the required target function
f . For the classification problem, this training loss is the error-
rate, `bc calculated on the given training data [37].

Evaluation: Evaluating the performance of f̂ is an im-
portant problem, since it only minimizes the error-rate on the

given dataset. In other words, it minimizes the in-sample error
(Ein). However, this may not be an accurate representation
of the general performance of f̂ , especially on unseen data.
Hence, we wish to find a function that not only minimizes
Ein, but also the error-rate on unseen data, i.e., minimize the
out-of-sample error (Eout). For this, one typically divides the
given dataset into training and test data. The predicted function
is obtained by minimizing the training loss over the training
data, and its performance is evaluated on the test data. To better
evaluate the performance of f̂ , we use the Monte Carlo cross-
validation (MCCV) approach, in which the dataset is split into
many pairs of train-test datasets, uniformly at random [49,
55]. For a given test set, the remaining dataset constitutes the
training set and it is observed that different training and testing
sets overlap, i.e. the binary classifier is trained and tested on
the same instances in different splits. But one can create a large
number of train-test pairs, which in-turn decreases the variance
of the mean estimate of the out-of-sample performance of
f̂ [43, 49, 52].

b) Binary Classifiers: A learning algorithm used for
solving a binary classification task is called a binary classifi-
cation algorithm and the learning model produced by training
on the given dataset is called binary classifier. Each binary
classification algorithm has defined a set of functions called
the candidate space7 which the algorithm uses to find the
predicted function that fits the given training dataset most
accurately [37]. The candidate space together with the learning
algorithm is also referred to as the “Learning Model” [37].

Among the most commonly used binary classifiers pro-
posed in the literature are Perceptron Learning Algorithm
(PLA) [16], Logistic Regression (LR) [56], and Ridge Clas-
sifier (RC) [21]. These algorithms are limited in that they
are only able to solve binary classification problems involving
linearly separable data (separable by a hyperplane). Support
Vector Machine (SVM) is a popular algorithm that can classify
data that is not linearly separable using a kernel trick, i.e. its
candidate space also contains non-linear functions [10, 41].
Decision Tree (DT) is another important approach that learns a
set of rules which can be used to classify the input x ∈ X [47].

Given the different properties of the described algorithms, it
is a common approach to combine more than one classifier to
solve a classification problem. This constitutes the ensemble
based approach, in which multiple classifiers are trained on
the given dataset and aggregated to obtain the final predicted
function [46]. The first ensemble-based approach is bagging,
in which each classifier is trained on a sub-sample of the given
training dataset. The trained binary classifier is called the base
learner. There are two popular bagging approaches with DT
as a base learner, Extra Tree (ET) (mean aggregation) [18] and
Random Forest (RF) (majority voting aggregation) [8].

Another way to build an ensemble is to use boosting, in
which a set of weak learners are combined to create a single
strong learner [46]. The weak learners are successively trained

7In the literature, this set is referred to as the “Hypothesis Space”. Since we
use the term hypothesis for explaining the hypothesis test, we use “candidate
space” instead.

and at each round more weights are given to the wrongly
classified instances. Three popular approaches of this category
are Ada Boost (AB) [15], Gradient Boosting (GB) (uses better
optimization) [17] and Histogram Gradient Boosting (HGB)
(faster than GB) [28]. All ensemble approaches mentioned
here take DT as the base classifier or weak learner to build
the complete binary classifier. These classifiers are explained
in more detail in Section A.

Hyperparameter Optimization (HPO): Hyperparameters
are used by the learning algorithm to control the learning
process. ML algorithms, especially tree-based and boosting
approaches have different hypeparameters apart from the
model-parameters, that should be set for an algorithm, such as
for RF the number of estimators, maximum depth of each DT,
for linear models the learning rate of the LR, PLA and so on.
The hypeparameters, define the structure of a learning model,
and the value of each hypeparameter has a huge impact on the
performance of algorithms and these parameters are dependent
on each [22]. This motivates us to find the right combination
of their values which can help us to achieve a learned model
that produces minimum loss or maximum accuracy. The class
of optimization approaches used to solve the task of choosing
a set of optimal hypeparameters for a learning algorithm is
called HPO and the approach itself is called Hyperparam-
eter Optimizer (HPOR) [22]. Typically, an Hyperparameter
Optimizer (HPOR), defines a range of possible values each
hypeparameter can take, based on the given algorithm and
it runs for a given number of maximum iterations. For each
iteration, it applies one combination of hypeparameter values
from this defined range and evaluates its performance using
a loss function. Generally, we set aside a validation dataset
sampled from the training dataset, for performance evaluation
the loss-function or metric used is called the validation loss
or validation accuracy. For binary classification the error-rate
is used as the validation loss, as defined above as `acc. In
this paper, we use Bayesian Optimization techniques with the
Gaussian Processes to perform the HPO for different binary
classifiers [14].

c) Hypothesis Tests: Comparing the performance of two
algorithms is a common problem in ML. In our approach, we
want to compare the binary classifiers listed in the previous
section with the Random Guessing (RG) baseline. For a given
dataset D = {(xi, yi), . . .}, RG generates each class-label
(yi ∈ {0, 1}) uniformly at random without using the input
xi. Assuming that the proportion of class-label 0 and 1 is
equal in the given dataset, the accuracy of approximately
50% implies that the input features x are not used to predict
corresponding class-labels ŷ. For K = 2 the RG produces an
estimated average Eout or accuracy of 50%. So, one can say
that if a binary classifier is using input features x to predict
the corresponding class-labels ŷ, its estimated out-of-sample
accuracy would be greater than 50% (Eout > 0.5). A binary
classifier can only produce accuracy lower than 50% if there
exists noise in the dataset, i.e. if our testing dataset is not large
enough or the number of accuracy estimates ns is very low.
Therefore, we use the MCCV approach to produce a large

number of (ns = 30) estimates, with 30% of the data used for
testing (ts = 0.7) [4].

One way to imply that the binary classifier can learn
something about the class-labels using the input vectors x
is to consider the differences of the mean accuracies of RG
and the given binary classifier. However, this approach can
be misleading as it is hard to know whether the difference
between the mean accuracies (1−Eout) is real or a result of
a statistical fluke. For this reason, well-established techniques
compare two resulting populations, rather than just their mean
differences. For comparing the performance of two classifiers,
there are two statistical tests which are proposed in the
literature, the paired t-test [12] and the Wilconson-Signed
Rank test [54].

Paired t-test: The paired t-test is used to study if there
is a statistical difference between two samples observed from
two populations. Mathematically, it approaches the problem by
assuming a null hypothesis H0(aj == arg). After applying
the t-test, if the null hypothesis H0(aj == arg) is rejected,
it indicates that the groups are different with high probability.
Here, aj ,∀j ∈ {1, . . . , 10} represents the population of the
out-of-sample accuracy estimates of the binary classifier j and
arg represents the population out-of-sample accuracy estimates
of RG [7, 12].

The t-statistic value is used with the Student-t distribution
with N − 1 degrees of freedom to quantify the p-value by
calculating the area under the t-distribution curve at value t,
which is computed as

µ =
1

N

N∑
i=1

(di = ai−rgi), σ2 =
1

N

N∑
i=1

(µ− di)2

N − 1
, t =

µ

σ
.

(1)
The p-value pj is the probability of obtaining test results
at least as extreme as the results observed during the test,
assuming that the null hypothesis is correct [12, 31]. The
critical value α of a statistical test defines the boundaries
of the acceptance region of the test [12, 31], i.e. if we
nhave p-value pj < α for binary classifier cj , then the null
hypothesis H0(cj == crg) is rejected and we can say that cj
is significantly different/better than RG.

Corrected Paired t-test: A problem with using the Paired
Student’s t-test (and Wilconson-Signed Rank) is that the ac-
curacy estimates of the binary classifiers are not independent.
This is because the same data is used to train the model mul-
tiple times. This lack of independence in the evaluation means
that the Paired Student’s t-Test is optimistically biased. Nadeo
and Bengio [39] showed that the violation of independence
in the paired t-test might lead to an underestimation of the
variance of differences. To solve this problem with the paired
Student’s t-test, they propose to correct the variance estimate
by taking this dependency into account. The corrected variance

is given by σ2
Cor = σ(

1

N
+

ts

1− ts
), where ts is fraction

of training datasets used by MCCV [4, 39]. The t-statistic is
calculated in the similar manner as in Equation (1), such that
t =

µ

σCor
.

Holm-Bonferroni: In statistics, this method is used to
aggregate the the p-values of multiple hypothesis tests [23].
To describe the process, we assume that we compared J
classifiers with RG and produced p-values p1, . . . , pJ and the
corresponding hypothesis are H1, . . . ,HJ . The significance
level is defined for complete family, α = 0.01. For each
p-value, test whether pj <

α

J + 1− j
, If so, reject Hj

and the index j identifies the first p-value that is not low
enough to validate rejection. Then the rejected hypotheses are
H1, . . . ,Hj−1 and the accepted hypotheses are Hj , . . . ,HJ .
For our experiments, j ≥ 2 (i.e., if at least one hypothesis
is rejected) implies that performance significantly better than
RG was achieved. In this case, we conclude that there exists
a mapping between input space x to class-labels y, and reject
the null hypothesis, for the family of classifiers. If j = 1
then no p-values were low enough for rejection, therefore
no null hypotheses H1, . . . ,HJ are rejected (i.e., all null
hypotheses are accepted). In this case, the analysis result will
be given as “vulnerable”, while the analysis concludes with
“non-vulnerable” otherwise.

d) Feature Importance: Feature importance refers to
techniques that assign a score to each input feature based on
how useful they are for predicting the class-label ŷ. Generally,
tree-based binary classifiers like, DT are used to calculate
feature importance. For instance, it can be used in real-world
applications like credit card fraud detection to identify persons
that are more likely to commit fraud. The DT quantifies feature
importance based on the depth of the node on which the
feature was used to split the data. The lower the depth, the
higher the importance. See Appendix A for details. RF uses
many individual DT for training and each DT calculates the
feature importance. Then we take the mean of the feature
importances. The advantage of taking the mean value is to
reduce the variance and noise in the calculation.

IV. IMPLEMENTATION OF AUTOMATED SIDE CHANNEL
DETECTION

In this section, we describe how we implement our pro-
posed approach in a software tool. The tool consists of the
components shown in Figure 3, running after each other in
four discrete stages:

Stage 1: The manipulated TLS client connects to the TLS
server which is to be tested. The client then executes a
pre-configured number of requests with manipulated padding
while a network tap records all the exchanged messages. We
describe this client in Section IV-A. We treat the server as a
black box and run it in a docker container. For the network
tapping, we record all traffic on the respective docker interface
with tcpdump.

Stage 2: The raw data recorded in Stage 1 is transformed
into a dataset that is suitable for machine learning. The feature
extractor achieves this by extracting real-valued features from
the messages contained in the network trace. It also matches
these handshakes with the manipulation information from the
manipulated TLS client, labeling each handshake with the

associated padding manipulation. This is described in depth
in Section IV-B.

Stage 3: The dataset is used to train and test classifiers.
After training, the learned models are executed on the test
data sets, testing the accuracy of their predictions. This process
is repeated for different splits into test and training sets and
the overall accuracy is determined. This process is presented
in Section IV-C.

Stage 4: The results of the machine learning process are
evaluated. The performance of each machine learning model
is compared to a simple Random Guessing (RG) algorithm,
applying the Holm-Bonferroni test for significance. The final
report then contains information on whether a model was
able to significantly outperform RG, which would indicate the
presence of a padding side channel. Feature importance is also
included in the report as feedback to the software developer.
This is shown in Section IV-D.

A. Manipulated TLS Client

For Bleichenbacher’s attack, we need to recognize patterns
in protocol network traffic that make it possible to distin-
guish messages with incorrect padding from messages with
correct padding. Therefore we implement a TLS client that
executes handshakes with valid and invalid paddings. The
client builds upon TLS-Attacker [50],8 a Java-based tool that
allows for sending arbitrary TLS protocol messages with
flexible modifications. It has already been used to detect new
Bleichenbacher side channels [50] and implements several
modified protocol flows. We use TLS-Attacker in our tool to
execute n TLS handshakes (where n is a parameter, we will
use later: n ∈ {500, 50000}), using a TLS Cipher Suite based
on RSA key exchange.

8https://github.com/tls-attacker/TLS-Attacker

Manipulated
TLS Client TLS Server

Network Tap

Feature
Extraction

Classification
Model

Learning

Report
Generation

Stage 1

Stage 2

Stage 3

Stage 4

Fig. 3: Components of the tool

The structure of the PKCS#1 v1.5 padded
ClientKeyExchange (CKE) message offers several
distinct ways in which a handshake may not conform to the
specification. We call each of these deviations a manipulation.
TLS-Attacker already supports sending CKE messages with
various padding manipulations. These manipulations include
all attack vectors presented by Böck et al. in the ROBOT
paper [6], extended with attack vectors by Meyer et al. [36]
and Klı́ma et al. [29]. We use the following manipulations
for our experiments:

• Correctly formatted PKCS#1 message: Standard-
compliant message, the real pre-master secret (PMS)
replaced with a random string of appropriate length

• Incorrect first byte: Replacing the first byte of the mes-
sage, which should be 0x00, with a non-zero value (we
chose a constant, 0x17)

• Incorrect Second Byte: Replacing the second byte of
the message (block type), which should be 0x02, with
a different constant (0x17)

• Invalid TLS version in PMS: Setting the TLS version
bytes in the payload to an incorrect constant (0x42 0x42,
a non-existing version)

• No 0x00 separator byte: Except for the first byte, all other
bytes in the padded string that are 0x00 (particularly the
separator byte) are replaced with 0x01

• 0x00 in PKCS#1 padding: The second byte of the padding
string, which should be non-zero, is replaced with 0x00

• 0x00 in PKCS#1 padding: Replacing the ninth byte of
the padding string, which should be non-zero, with 0x00

• PMS is the empty string: Placing the 0x00 separator at
the last byte, creating a payload of length 0.

• 0x00 On the last-but-one: Placing the 0x00 separator at
the last-but-one byte, creating a payload of size 1.

• Correctly formatted, but short |PMS| = 47: Valid padding
for a 47 bytes PMS, which should be 48 bytes long

• Correctly formatted, but 1 byte shorter: An otherwise
correctly padded message, but with the the total length
being one byte too short (not matching the RSA modulus
size)

This aims to cover the majority of classes of padding
errors one might expect. Of course, completeness cannot be
guaranteed, but the set of considered manipulations can be
easily extended, if considered useful in a particular context.

The client chooses at random whether and which manipu-
lation to apply to a ciphertext. It then executes the handshake
with the (manipulated) ciphertext. This process is repeated
n times. The client logs which padding manipulation from
the list above was applied to each handshake, which will
be used in Stage 2 to match the observed network traffic to
the manipulation. For example, when choosing “Incorrect first
byte”, the client manipulates the padding by replacing the first
byte (which should be 0x00) with a different constant. For
the handshake message corresponding to a correct padding,
the PMS is replaced with randomness, in order to ensure
that the handshake will still fail as soon as the Finished

(FIN) message is processed. This corresponds to a step in
the Bleichenbacher attack where the decrypted message has
correct padding by chance, but where the actual PMS contained
has not been found yet. This way of randomly selecting a
manipulation for each new handshake eliminates information
leakage from the order of execution of the handshakes while
producing balanced datasets for sufficiently large dataset sizes.

Our client also supports several different “workflows” of the
TLS handshake. The first workflow we use is that of a “reg-
ular” handshake, consisting of CKE, ChangeCipherSpec
(CCS), and FIN messages. It is also necessary to test with
a shortened workflow of a single CKE, without a CCS or
FIN message, to trigger some vulnerabilities discovered in
ROBOT [6]. The workflow (full or shortened) and the padding
manipulation are selected at random when executing a hand-
shake.

Note that the missing CCS and FIN messages can result in
server connection timeouts. Because of the timeout caused by
the shortened workflow waiting for a potential response from
the server, this becomes a limiting factor in client throughput.
Consequently, the timeout for the client disconnecting from
an idle session needs to be set high enough to not miss any
messages from the server. We used a timeout of one second
for experiments in a local environment and three seconds for
remote servers, which turned out to be appropriate for the
respective network delays and gave the analyzed TLS libraries
enough time for their responses.

B. Feature Extraction

The “padding oracle” in Bleichenbacher’s attack is essen-
tially an abstraction of a way that enables the attacker to
efficiently distinguish whether the tested server acts differently
on validly or invalidly padded ciphertexts. We consider an
attacker that is able to observe and record the entire network
traffic. Therefore we need to ensure that the same information
is available to the machine learning (ML) algorithms, includ-
ing the labeled padding modifications performed by the TLS
client.

The data obtained in Stage 1 is the traffic exchanged
between the manipulated TLS client and the TLS server,
recorded using tcpdump. This results in a .pcap file containing
all messages in their original binary representation, as well as
their metadata. The feature extractor transforms the raw data
into a feature representation that is applicable for training a
classifier. A standard approach is to use datasets consisting of
labeled real-valued vectors, where the label contains the class
the particular vector (called “instance”) belongs to.

In our case, each handshake corresponds to a single instance
in the dataset, with the padding manipulation used as the
class label for the instance. Thus, handshakes with the same
manipulation end up as instances of the same class in the
dataset. An instance has to be represented by an n-dimensional
real-valued vector, where each dimension corresponds to a
feature. Hence, we have to reduce all network messages
belonging to a handshake to a single vector. This is necessary
because these messages are intrinsically linked with each other

through the handshake process and have to be treated as a
single entity in ML, in order to be able to capture patterns
exhibited by combinations of messages.

To achieve this transformation, we build upon the popular
network analysis tool Wireshark, which our tool automatically
interacts with using the Python library pyshark. By taking all
the protocol fields from the Wireshark output, we can trans-
form the messages into real-valued feature vectors compatible
with ML.

The result of this transformation is a vector of high dimen-
sionality. We need to make sure its dimensionality is not too
high, as this affects the performance of most ML algorithms
negatively due to a phenomenon often called the “curse of
dimensionality” or the “peaking phenomenon” [25, 51]. The
peaking phenomenon states that the predictive power of a
learning model (classifier) first increases with the number of
features in the dataset, but after a certain number it starts
deteriorating instead of improving steadily [51]. One way to
mitigate this problem is by increasing the size of the dataset to
at least 5 training instances for each dimension in the dataset,
or by reducing the dimensionality of the feature vectors [51].

The dimensionality of our dataset is higher, if the feature
vector contains more messages or more network protocol
fields. We can discard all messages sent by the server before
it receives the manipulated Client Key Exchange itself, as
they cannot be influenced by the padding manipulation. This
reduces the number of messages contained in the vector
reducing the dimensionality at the same time.

We also chose to only export data on the TCP and TLS
layer in our experiments. Our decision was based on the
previous works on side-channel attacks [6, 35], which only
detected behavioral differences on the TCP layer and above.
Our reductions dramatically reduce the feature dimensionality,
making the experiments feasible with limited resources.

Note that in this first step of the development of our
approach, we do not yet consider timing of messages, even
though several attacks construct a padding oracle using timing.
The treatment of timing information requires further consider-
ation. We decided to configure the current feature extractor
to filter out all timing-related features in our experiments
to prevent accidental leak of padding status from the client
side. A non-constant-time client implementation (like TLS-
Attacker) could inadvertently leak information about the used
padding manipulation into the timing features, causing false
positives.

Finally, because we are using supervised machine learning,
we label the vector with the padding manipulation applied by
the client in this handshake.

C. Classification Model Learning

In this section, we discuss the steps taken by the ML
component in order to determine the existence of a pattern in
the dataset, which would imply the existence of a side channel.
This process is illustrated in Figure 4.

a) Multi-class to binary conversion: The dataset ob-
tained in Stage 2 consists of handshakes, involving either a

correctly padded message or one of 10 plaintext manipulations.
When using a multi-label classifier on the dataset, we observed
that the performance was poor. This was because of the fact
that many different manipulations may lead to the same server
behavior. In its stead we formulate K binary classification
problems, since we are interested in distinguishing any of the
K manipulations from the correct padding, as this indicates
information leakage. Recall that every instance x is associated
with a discrete valued class-label y ∈ {0, 1, . . . ,K} = [K].
It takes value 0 when there is no manipulation, and values
between 1 and K are directly related to the types of manipu-
lation. Our binary classifier considers manipulation k, where
1 ≤ k ≤ K and tries to distinguish it from the correct plaintext
for all K manipulations individually.

 , where
 is the -th binary classifier

 Manipulations Incorrect Message
Correct Message : 0

Instances (,)

Extract binary classification datasets

 Monte-Carlo Samples
for with best hyperparameters

Corrected Paired t-test: p-value for

Holm-Bonferroni Test

Check side channel existence

, where
represents binary classification data for

-th manipulation/side channel

 Run Hyperparameter
Optimization for

Evaluation
of

Dataset
Conversion

Report
Generation

Fig. 4: Classification Model Learning. As an input into our
algorithm, we use a d-dimensional real-valued feature vector
x ∈ Rd generated with TLS handshakes with one correct
and K = 10 incorrect messages. The algorithm detects a side
channel based on the results from the used binary classifiers.

b) Evaluation: At the core of the process described in
Figure 4 is a familiy of binary classifiers that are trained to
distinguish between correct padding and a specific manipu-
lation. Evaluating the performance of the classifiers outside
the given dataset is pertinent, since we do not want the
classifiers to overfit the given dataset. Within our framework,
overfitting refers to the problem of finding a pattern within
the dataset that does not exist in general. We use Monte

Carlo cross-validation (MCCV) technique for this purpose, see
Section III-B for details. Another key step in training a binary
classifier successfully is to tune its hyperparameters, for this
we use Hyperparameter Optimization (HPO), see Section III-B
for details. Finally, note that we train multiple classifiers
independently, to increase the robustness of our verdict.

Since the binary classifier needs to be significantly better
than the RG to imply information leakage, we apply the
corrected paired t-test from statistics, see Section III-B for
details. This test provides a t-score and a p-value. The t-score
quantifies the performance difference between the binary clas-
sifier and RG. The associated p-value gives us the confidence
that the t-score represents the true performance difference.
Note that a better performance than RG typically implies a
high classification accuracy. To summarize, we return the p-
values of the family of binary classifiers for each manipulation,
which are subsequently interpreted in stage 4. In order to
conduct the experiments in a fair and unbiased way, we use
a family of classifiers listed in Section III-B. We use the
scikit-learn [40] library, which implements the required ML
algorithms, cross-validation (CV) techniques and evaluation
measures. For HPO we also use the scikit-optimize [19] li-
brary, which implements different Hyperparameter Optimizers
(HPORs) compatible with the binary classifiers implemented
in scikit-learn [40].

D. Error Correction and Report Generation

As explained in the previous section, in order to increase
the test robustness, we use an ensemble of binary classifiers.
Because it is not known in advance which classifier might
perform particularly well on a new, unknown side channel,
trying several in an ensemble increases the chance that a
suitable one is among them.

a) Family-wise error rate: Since we have multiple clas-
sifiers, the false positive rate when combining them is higher
than if only a single one were used, as a single classifier
outperforming the RG is already sufficient to conclude that
implementation is vulnerable. The p-values obtained from the
multiple independent tests of each classifier, therefore, need to
be adjusted and then aggregated to give us a final verdict on the
vulnerability of the server with respect to the manipulation. We
use the Holm-Bonferroni test [23] as described in Section III-B
to correct for this error.

b) Feedback: We aim to provide detailed information
about any detected side channels to support software devel-
opers in removing them. The first information we provide
is which manipulations were distinguishable from correct
padding. This indicates which padding check is at fault. An-
other important part of the report is whether this side channel
was detectable with the full (CKE, CCS, FIN) handshake or
the shortened one (CKE only). The random forest classifier
additionally provides information about the importance of fea-
tures in the dataset. This can provide valuable feedback for the
software developer about which parts of a network trace need
to be investigated and what the cause of the potential padding
oracle vulnerability could be. For example, as explained in the

analysis below, a different TLS alert message in response to
a padding failure can be easily pointed out, since this is the
single most important feature in the dataset.

V. ANALYSIS

We explore the capabilities of our proposed methodology by
applying the tool described in Section IV to various TLS server
implementations. In Section V-A, we explain our experimental
setup. In Section V-B, we describe the results of a first basic
validation of the approach, which executes our tool against a
completely insecure implementation, and one implementation
which is considered secure. The test confirms that the vulnera-
bilities are found and that the secure implementation does not
exhibit any noticeable patterns. In Section V-C we continue
the analysis by testing the ability to spot diverse real-world
side channels. To this end, we investigate the side channels
discovered in ROBOT [6] and the side channel in OpenSSL
Version 0.9.7a from [29]. Again, the analysis confirms that
the tool can successfully and reliably detect all of these side
channels. Finally, in Section V-E we also present the results
of an analysis of the most recent versions of a large number
of popular open-source implementations, which does not yield
any new unknown vulnerabilities.

A. Test Setup

The tool performs and captures n ∈ {500, 50000} hand-
shakes. Usually we run 50,000 handshakes, since machine
learning (ML) algorithms often tend to classify more reliably
based on larger datasets. For the ROBOT attack, we exper-
imented with 500 handshakes, as this size is better suited
for a large-scale scan of public servers and more appropriate
for a quick scan as part of automated regression testing.
Depending on the network conditions and timeout settings,
the 500 handshakes can be completed in as few as fifteen
seconds, with the feature extraction taking about ten seconds.
The training process of the classifiers is by far the most time-
consuming stage of the process, but for a dataset of this size
it remains under three minutes. In comparison, the overall
running time for the big 50,000 handshake datasets is just
under two hours.

Our analysis showed that this is a reasonably large number
of requests to provide a sufficient confidence in the analysis
result. Detailed analysis of the proper dataset size is covered in
Appendix B. All handshakes are executed sequentially without
any waiting time.

The servers are running on the same machine as the rest of
the setup, isolated in docker containers. The network traffic
is captured on the docker virtual network interface, which
ensures there is no interfering traffic. Since both server and
client run on the same physical machine, we introduce an
artificial 2ms delay on the interface. Otherwise the very low
delay could cause aggressive TCP retransmissions, which ap-
pear as noise in the collected dataset and make the automated
detection of patterns more difficult and less reliable. The 2ms
delay produces TCP behavior which is closer to the real
world, while still being low enough not to negatively influence

the timeout of the client, which is set to 50ms, or overall
performance.

The tool is executed on an otherwise idle workstation with
an AMD Ryzen 9 3950X 16-core CPU, 64GB RAM and
an Nvidia RTX 2080 Super GPU, running Debian 10.7 and
Python 3.7.3.

When executing the machine learning component, we get 30
accuracy estimates samples using ns = 30 Monte Carlo cross-
validation (MCCV) train-test datasets. This sample size allows
applying the Holm-Bonferroni test at a significance level of
α = 0.01, which is shown as a horizontal bar in the figures.
This 99% confidence threshold appears to be a good tradeoff
between false positives and false negatives.

B. Basic Approach Validation

We use the newest OpenSSL version 1.1.1i as our baseline
for a non-vulnerable server implementation, as it is considered
to be secure against Bleichenbacher padding oracle attacks,
based upon the scrutiny of both the open source community
as well as the attention of security researchers. Our base-
line for a vulnerable server implementation is DamnVulnera-
bleOpenSSL9, a patched TLS implementation which intention-
ally contains a padding oracle vulnerability for experimental
and educational purposes.

Figure 5 shows how the different classifiers perform on
our two baseline datasets. For the non-vulnerable OpenSSL
1.1.1i, all classifiers achieve an accuracy of approximately
50%. Consequently, none of the p-values exceeds the threshold
for acceptance, i.e., to be considered potentially vulnerable.
For DamnVulnerableOpenSSL, some classifiers perform quite
well while some others, like Perceptron Learning Algorithm
(PLA) or Support Vector Machine (SVM), do not outperform
Random Guessing (RG). This is also reflected in the associated
p-values. The performance of the classifiers Decision Tree
(DT) and Extra Tree (ET) is somewhat higher than 50%.
However, their p-values indicate that we cannot rule out that
this happened by chance. The performance of other classifiers,
e.g Random Forest (RF), which significantly outperform RG
when applying the Holm-Bonferroni correction, means that we
can still conclude this server is vulnerable. We consider this
as support of the approach of using many different machine
learning algorithms in parallel.

Table I shows the most important features in the random
forest algorithm for DamnVulnerableOpenSSL. This is the
feedback that the tool provides to a software developer on the
detected side channel. The highest importance is associated to
the TLS alert message. Since DamnVulnerableOpenSSL was
specifically crafted to return a different TLS alert for incorrect
paddings (handshake failure instead of bad record
mac), this confirms that the tool provides correct feedback.

Our approach was also able to spot another subtle change
in the error handling; in case of a padding failure, the server
disconnects the TCP connection slightly differently, by send-
ing a TCP reset right after a TCP finished message, instead

9https://github.com/tls-attacker/DamnVulnerableOpenSSL

Feature Name Importance

Description of first TLS Alert 1.0
TCP ACK number of 2nd TCP Disconnect 0.93
TCP RST of the 2nd TCP Disconnect 0.90

TABLE I: Most important features leading to a side channel
in DamnVulnerableOpenSSL extracted automatically using the
random forest algorithm.

of waiting for the client to acknowledge the TCP finished.
This causes the RST TCP flag on the second disconnect
message to be set only when processing incorrect padding,
which consequently appears as the third most important feature
in telling the two classes apart. This behavior also causes a
shift in the acknowledgement numbers, which was detected
and used by the random forest algorithm, as indicated by the
second-highest feature importance score. Hence, the approach
is also capable of identifying such subtle side channels.

C. Detecting Klı́ma-Pokorný-Rosa Side Channels

As a next step, we analyzed the detection of real-world side
channels in old implementations. According to the OpenSSL
changelog,10 prior versions of this implementation exposed
several side channels. The first changes were applied prior to
version 0.9.5, where Bleichenbacher’s attack was fixed after
publication of the original paper in 1998. As mentioned in the
release notes, this fix was not sufficient, as the error caused
by a padding failure was not properly ignored. Even worse,
the countermeasures were accidentally removed in version
0.9.5. This is explained in the release notes for version 0.9.6b
(released in 2001), claiming that this version then contained
the first working protection against Bleichenbacher’s attack.
Unfortunately, the source code of these versions is no longer
available for download.

Versions 0.9.6j and 0.9.7b (released in 2003) then contained
another change, this time to address the recently published
Klı́ma-Pokorný-Rosa bad version oracle attack [29]. Version
0.9.7a (vulnerable) and 0.9.7b (not vulnerable to the Klı́ma-
Pokorný-Rosa attack) are available and can be compiled, so
we use them to analyze the approach when faced with a bad
version side channel.

TLS handshakes with manipulated
ClientKeyExchange (CKE) messages containing an
incorrect TLS version resulted in different server behavior
of version 0.9.7a. This was correctly detected by our tool.
The classifiers were able to significantly outperform RG.
The tool consequently detected the Klı́ma-Pokorný-Rosa bad
version side channel present in 0.9.7a. We then tested 0.9.7b
and no classifier was able to outperform RG, with the tool
returning a “not vulnerable” result. This indicates that the
applied countermeasures are successful in preventing these
side channels.

10https://www.openssl.org/news/changelog.html

0%
20%
40%
60%
80%

100%

A
cc

ur
ac

y

DamnVulnerable
OpenSSL

OpenSSL
1.1.1i

OpenSSL
0.9.7a

OpenSSL
0.9.7b

0.000

0.002

0.004

0.006

0.008

0.010

p-
va

lu
e

Random Guesser
Perceptron Learning Algorithm
Logistic Regression

Ridge Classifier
Support Vector Machine

Decision Tree
Extra Tree

Random Forest
Ada Boost

Gradient Boosting
Histogram Gradient Boosting

Fig. 5: Performance of different classifiers. The two plots on the left are obtained in the basic approach validation, considering
DamnVulnerableOpenSSL and OpenSSL 1.1.1i and DamnVulnerableOpenSSL. The two plots on the right are obtained in the
analysis of the Klı́ma-Pokorný-Rosa attack [29].

0%
20%
40%
60%
80%

100%

A
cc

ur
ac

y

cnblogs.com Cisco ACE F5 v1 Facebook v2 Netscaler GCM PAN OS

0.000
0.002
0.004
0.006
0.008
0.010

p-
va

lu
e

Random Guesser
Perceptron Learning Algorithm

Logistic Regression
Ridge Classifier

Support Vector Machine
Decision Tree

Extra Tree
Random Forest

Ada Boost
Gradient Boosting

Histogram Gradient Boosting

Fig. 6: Performance of different classifiers for the ROBOT servers generated with manipulated ClientKeyExchange (CKE)
messages containing 0x17 instead of 0x00 as the first byte of the PKCS#1 v1.5 padding. Each server was successfully labeled
as vulnerable by at least one of the used classifiers.

D. Detecting ROBOT Side Channels

Another range of real-world side channels to apply our
tool on was presented in the ROBOT paper [6], where Böck,
Somorovsky and Young found numerous side channels in
public web servers. Most of these were found in closed
source TLS server implementations. The authors informed the
affected vendors, most of which published updated software
versions for their devices. Consequently, we expect these side
channels to be no longer present in most web-facing TLS
servers.

To verify our approach is also suitable for large-scale inter-
net scans, we ran our tool on the domains in the Alexa Top 500
web page ranking. Because this scan necessitates connecting
to machines outside of our control, the workstation used for
the scans serves an informational web page with contact
information for concerned server operations that want to opt
out of the scans. The tool was set up to execute an independent
test consisting of 500 handshakes with each of the domains
in the Alexa Top 500 ranking. For 5 domains the hypothesis
test rejected, indicating a possible vulnerability. To investigate
further, a larger test with 50000 handshakes was executed

with these servers. This revealed that 4 of the 5 were false
positives. The fifth, cnblogs.com, is a genuinely vulnerable
server, with the result of the initial 500-handshake scan shown
in Figure 6. This was confirmed using the established ssllabs11,
tls-scanner12 and testssl.sh13 TLS scanners, which were able
to detect the side channel as well. We then reached out to the
server operators and notified them of the issue.

This confirms that our approach scales to hundreds of
web servers, albeit at the cost of an increased running time
compared to other ROBOT scanners. On the other hand, our
approach requires less assumptions about the nature of the side
channel. Additionally, this test also proves that the tool can
be applied outside of lab conditions in the real world, where
network behavior has a bigger influence on the recorded traffic
traces.

We have thus determined that almost all of the side channels
covered in ROBOT have since been removed from high-profile
web servers. To evaluate if our tool would be able to detect

11https://www.ssllabs.com/ssltest
12https://github.com/tls-attacker/TLS-Scanner
13https://testssl.sh/

Name Version

BearSSL 0.6
BoringSSL commit 3743aafd
Botan 2.17.3
Bouncy Castle 1.64
GnuTLS 3.7.0
LibreSSL 3.2.3
MatrixSSL 4.3.0
Mbed TLS 2.25.0
OCaml-TLS 0.12.8
OpenSSL 1.1.1i
s2n 0.10.25
tlslite-ng 0.8.0-alpha40
wolfSSL 4.4.0

TABLE II: Open source TLS servers tested

these side channels nonetheless, we deliberately recreated
them by imitating their behavior in modified versions of
mbedTLS. We decided to imitate five ROBOT vulnerabilities
that cover a representative set of server behaviors:
• When F5 v1 (CVE-2017-6168) and Facebook v2 are

tested with the reduced workflow of a single CKE mes-
sage, this should result in a TCP timeout caused by the
server waiting for the ChangeCipherSpec (CCS) and
Finished (FIN) message. For incorrect paddings, these
servers do not wait but abort prematurely with a TLS alert
or a TCP disconnect (TCP finished message).

• Cisco ACE (CVE-2017-17428) responds with a TLS alert
47 instead of alert 20 if the padding check fails.

• Citrix Netscaler (CVE-2017-17382) gives a TLS alert
51 for correct padding, but does not send any data for
incorrect padding, causing the TCP session to time out.

• PAN OS (CVE-2017-17841) sends the same TLS alert
40 in both cases, but also sends a duplicate of the alert
in case of a padding failure.

Again, we performed 500 handshakes to generate the
datasets as we did in the Alexa 500 scan. As can be seen
in Figure 6, the tool was able to correctly classify all servers
as vulnerable. This was confirmed by a Holm-Bonferroni test,
with at least one classifier significantly outperforming RG in
each experiment.

E. Testing open-source implementations

After establishing that our method is indeed able to detect
known side channels, we applied it to up-to-date open source
TLS server implementations. Table II shows all software
versions we investigated. For this experiment, we executed
50.000 handshakes each.

After applying the Holm-Bonferroni correction, we con-
cluded that no classifier significantly outperformed random
guessing for any of the servers we tested. We therefore
conclude not a single of these TLS servers is vulnerable to
a padding oracle attack.

VI. CONCLUSIONS AND OPEN PROBLEMS

We propose, implement, and analyze an approach to auto-
matically detect protocol-level side channels in implementa-
tions of cryptographic protocols such as TLS. We consider

Bleichenbacher’s attack as a concrete use case, due to its
repeated appearance in many popular open-source implemen-
tations and widely-used commercial products.

A major advantage of our approach is that the side channel
vulnerability detection is fully automated, robust, and therefore
scales much better than manual analysis. In particular, it
could be applied as a standard test before every release of
a new version of an implementation, possibly automatically
in a CI/CD pipeline. This would also prevent the accidental
removal of countermeasures, as happened in version 0.9.5 of
OpenSSL, for example.

Our analysis confirms that this approach, despite being fully
automated, is able to reliably recognize the patterns in network
traffic on which the padding oracles identified by Klı́ma,
Pokorný, and Rosa [29] and ROBOT [6] are based. We did not
yet find new weaknesses in the popular TLS implementations
that we have analyzed with our tool. However, we were able
to reliably detect the aforementioned padding oracles with a
general and generic approach, which provides confidence that
it will also work for future, new side channels that exhibit
distinguishable patterns on the network layer.

In our analyses, we showed that a single binary clas-
sification algorithm is not reliable enough to detect every
side channel; the used classification algorithms performed
differently based on the tested TLS server side channels. The
robustness of our approach was achieved by the usage of
an ensemble of machine learning algorithms for the task of
detecting vulnerabilities. This is further reinforced by the use
of a family-wise statistical test to greatly reduce the chance
that a vulnerability found by our ensemble is an accident.
This technical knowledge can be used by designing future
approaches for side channel analyses.

We have intentionally focused on machine learning (ML)
algorithms amenable to feature importance techniques, be-
cause we consider an automated tool particularly useful, if
it is able to provide concrete feedback on potential vulnera-
bilities. An interesting future direction could be to investigate
other learning methods, such as deep learning (DL) methods,
where the explainability of detected side channels is an open
problem. Handling imbalanced datasets is another challenge
that warrants further investigation. Since our tool is based on
scikit-learn and will be made publicly available, it provides a
good basis for such extensions.

We believe that the techniques developed in this paper
are applicable more generally, beyond Bleichenbacher’s at-
tack on the network layer. Possible future extensions could
additionally take timing or local states of implementations, as
in [48, 59], into account by using them as additional features.
Furthermore, one could consider other types of padding oracle
attacks, such as Vaudenay’s [53], or even completely different
cryptographic side channel attacks beyond padding oracles.

REFERENCES

[1] Nimrod Aviram et al. “DROWN: Breaking TLS Us-
ing SSLv2”. In: 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10-
12, 2016. Ed. by Thorsten Holz and Stefan Savage.
USENIX Association, 2016, pp. 689–706.

[2] Romain Bardou et al. “Efficient Padding Oracle Attacks
on Cryptographic Hardware”. In: Advances in Cryptol-
ogy – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 608–625. DOI: 10.1007/
978-3-642-32009-5 36.

[3] Gabrielle Beck, Maximilian Zinkus, and Matthew
Green. “Automating the Development of Chosen Ci-
phertext Attacks”. In: 29th USENIX Security Sympo-
sium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 1821–1837.

[4] Yoshua Bengio and Yves Grandvalet. “No Unbiased
Estimator of the Variance of K-Fold Cross-Validation”.
In: 5 (Dec. 2004), pp. 1089–1105.

[5] Daniel Bleichenbacher. “Chosen ciphertext attacks
against protocols based on the RSA encryption standard
PKCS #1”. In: Advances in Cryptology — CRYPTO
’98. Ed. by Gerhard Goos et al. Vol. 1462. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 1–12.
DOI: 10.1007/BFb0055716.

[6] Hanno Bock, Juraj Somorovsky, and Craig Young. “Re-
turn Of Bleichenbacher’s Oracle Threat (ROBOT)”. In:
27th USENIX Security Symposium (USENIX Security
18). 2018, p. 17.

[7] Remco R. Bouckaert and Eibe Frank. “Evaluating
the Replicability of Significance Tests for Comparing
Learning Algorithms”. In: Advances in Knowledge Dis-
covery and Data Mining. Ed. by Honghua Dai, Ramakr-
ishnan Srikant, and Chengqi Zhang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 3–12.

[8] Leo Breiman. “Random Forests”. In: Machine Learn-
ing 45.1 (Oct. 2001), pp. 5–32. DOI: 10 . 1023 / A :
1010933404324.

[9] Mathieu Carbone et al. “Deep Learning to Evaluate Se-
cure RSA Implementations”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019.2 (2019), pp. 132–161. DOI:
10.13154/tches.v2019.i2.132-161.

[10] Corinna Cortes and Vladimir Vapnik. “Support-vector
networks”. In: Machine Learning 20.3 (Sept. 1995),
pp. 273–297. DOI: 10.1007/BF00994018.

[11] Jean Paul Degabriele et al. “On the Joint Security
of Encryption and Signature in EMV”. In: Topics in
Cryptology – CT-RSA 2012. Ed. by Orr Dunkelman.
Vol. 7178. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 116–135. DOI: 10 .1007/978- 3- 642-
27954-6 8.

[12] Janez Demšar. “Statistical Comparisons of Classifiers
over Multiple Data Sets”. In: J. Mach. Learn. Res. 7
(Dec. 2006), pp. 1–30. DOI: 10.5555/1248547.1248548.

[13] Dennis Felsch et al. “The Dangers of Key Reuse:
Practical Attacks on IPsec IKE”. In: (2018), p. 18.

[14] Matthias Feurer, Jost Tobias Springenberg, and Frank
Hutter. “Initializing Bayesian Hyperparameter Opti-

mization via Meta-Learning”. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelli-
gence. AAAI’15. Austin, Texas: AAAI Press, 2015,
pp. 1128–1135.

[15] Yoav Freund and Robert E Schapire. “A Decision-
Theoretic Generalization of On-Line Learning and an
Application to Boosting”. In: J. Comput. Syst. Sci. 55.1
(Aug. 1997), pp. 119–139. DOI: 10 . 1006 / jcss . 1997 .
1504.

[16] Yoav Freund and Robert E. Schapire. “Large Margin
Classification Using the Perceptron Algorithm”. In:
Machine Learning 37.3 (Dec. 1999), pp. 277–296. DOI:
10.1023/A:1007662407062.

[17] Jerome H Friedman. “Greedy function approximation:
a gradient boosting machine”. In: Annals of statistics
29 (Nov. 2001), pp. 1189–1232. DOI: 10 . 1214 / aos /
1013203451.

[18] Pierre Geurts, Damien Ernst, and Louis Wehenkel.
“Extremely Randomized Trees”. In: Mach. Learn. 63.1
(Apr. 2006), pp. 3–42. DOI: 10.1007/s10994-006-6226-
1.

[19] Tim Head et al. scikit-optimize/scikit-optimize. Ver-
sion v0.8.1. Sept. 2020. DOI: 10.5281/zenodo.4014775.

[20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu.
“Applications of machine learning techniques in side-
channel attacks: a survey”. In: Journal of Cryptographic
Engineering (Apr. 2019). DOI: 10.1007/s13389- 019-
00212-8.

[21] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regres-
sion: Biased Estimation for Nonorthogonal Problems”.
In: Technometrics 12.1 (Feb. 1970), pp. 55–67. DOI:
10.1080/00401706.1970.10488634.

[22] Matthew Hoffman, Eric Brochu, and Nando de Freitas.
“Portfolio Allocation for Bayesian Optimization”. In:
Proceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence. UAI’11. Barcelona,
Spain: AUAI Press, 2011, pp. 327–336.

[23] Sture Holm. “A Simple Sequentially Rejective Multiple
Test Procedure”. In: Scandinavian Journal of Statistics
6.2 (1979). Full publication date: 1979, pp. 65–70. DOI:
10.2307/4615733.

[24] Gabriel Hospodar et al. “Machine learning in side-
channel analysis: a first study”. In: J. Cryptogr. Eng.
1.4 (2011), pp. 293–302. DOI: 10.1007/s13389- 011-
0023-x.

[25] G. Hughes. “On the mean accuracy of statistical pattern
recognizers”. In: IEEE Transactions on Information
Theory 14.1 (1968), pp. 55–63. DOI: 10.1109/TIT.1968.
1054102.

[26] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky.
“Bleichenbacher’s Attack Strikes again: Breaking
PKCS#1 v1.5 in XML Encryption”. In: Computer
Security – ESORICS 2012. Ed. by David Hutchison
et al. Vol. 7459. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 752–769. DOI: 10.1007/978-3-
642-33167-1 43.

[27] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On
the Security of TLS 1.3 and QUIC Against Weaknesses
in PKCS#1 v1.5 Encryption”. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16,
2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher
Kruegel. ACM, 2015, pp. 1185–1196. DOI: 10.1145/
2810103.2813657.

[28] Guolin Ke et al. “LightGBM: A Highly Efficient Gradi-
ent Boosting Decision Tree”. In: Proceedings of the 31st
International Conference on Neural Information Pro-
cessing Systems. Vol. 30. NIPS’17. Long Beach, Cali-
fornia, USA: Curran Associates Inc., 2017, pp. 3149–
3157. DOI: 10.5555/3294996.3295074.

[29] Vlastimil Klı́ma, Ondrej Pokorný, and Tomáš Rosa.
“Attacking RSA-Based Sessions in SSL/TLS”. In:
Cryptographic Hardware and Embedded Systems -
CHES 2003. Ed. by Gerhard Goos et al. Vol. 2779.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 426–440. DOI: 10.1007/978-3-540-45238-6 33.

[30] John R. Koza, Forrest H. Bennett, and Martin A.
Andre Davidand Keane. “Automated Design of Both
the Topology and Sizing of Analog Electrical Circuits
Using Genetic Programming”. In: Artificial Intelligence
in Design ’96. Ed. by John S. Gero and Fay Sudweeks.
Springer Netherlands, 1996, pp. 151–170. DOI: 10 .
1007/978-94-009-0279-4 9.

[31] Erich L Lehmann and Joseph P Romano. Testing statis-
tical hypotheses. Springer Science & Business Media,
2006.

[32] Liran Lerman et al. “Template Attacks vs. Machine
Learning Revisited (and the Curse of Dimensional-
ity in Side-Channel Analysis)”. In: Constructive Side-
Channel Analysis and Secure Design - 6th International
Workshop, COSADE 2015, Berlin, Germany, April 13-
14, 2015. Revised Selected Papers. Ed. by Stefan Man-
gard and Axel Y. Poschmann. Vol. 9064. Lecture Notes
in Computer Science. Springer, 2015, pp. 20–33. DOI:
10.1007/978-3-319-21476-4\ 2.

[33] Houssem Maghrebi, Thibault Portigliatti, and Em-
manuel Prouff. “Breaking Cryptographic Implemen-
tations Using Deep Learning Techniques”. In: Secu-
rity, Privacy, and Applied Cryptography Engineering
- 6th International Conference, SPACE 2016, Hy-
derabad, India, December 14-18, 2016, Proceedings.
Ed. by Claude Carlet, M. Anwar Hasan, and Vishal
Saraswat. Vol. 10076. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 3–26. DOI: 10.1007/978-3-
319-49445-6\ 1.

[34] James Manger. “A Chosen Ciphertext Attack on RSA
Optimal Asymmetric Encryption Padding (OAEP) as
Standardized in PKCS #1 v2.0”. In: Advances in Cryp-
tology — CRYPTO 2001. Ed. by Joe Kilian. Lec-
ture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2001, pp. 230–238. DOI: 10 . 1007 / 3 - 540 -
44647-8 14.

[35] Robert Merget et al. “Scalable Scanning and Automatic
Classification of TLS Padding Oracle Vulnerabilities”.
In: 28th USENIX Security Symposium (USENIX Secu-
rity 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1029–1046.

[36] Christopher Meyer et al. “Revisiting SSL/TLS Imple-
mentations: New Bleichenbacher Side Channels and
Attacks”. In: (2014), p. 17.

[37] Tom M. Mitchell. Machine learning, International
Edition. McGraw-Hill Series in Computer Science.
McGraw-Hill, 1997.

[38] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE Bites: Exploiting The SSL 3.0 Fallback.

[39] Claude Nadeau and Yoshua Bengio. “Inference for the
Generalization Error”. In: Machine Learning 52.3 (Sept.
2003), pp. 239–281. DOI: 10.1023/A:1024068626366.

[40] Fabian Pedregosa et al. “Scikit-Learn: Machine Learn-
ing in Python”. In: J. Mach. Learn. Res. 12.null (Nov.
2011), pp. 2825–2830.

[41] John C. Platt. “Fast Training of Support Vector Ma-
chines Using Sequential Minimal Optimization”. In:
Advances in Kernel Methods: Support Vector Learning.
Cambridge, MA, USA: MIT Press, 1999, pp. 185–208.
DOI: 10.5555/299094.299105.

[42] “Raccoon Attack: Finding and Exploiting Most-
Significant-Bit-Oracles in TLS-DH(E)”. In: 30th
USENIX Security Symposium (USENIX Security 21).
Vancouver, B.C.: USENIX Association, Aug. 2021.

[43] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-
Validation”. In: Encyclopedia of Database Systems. Ed.
by LING LIU and M. TAMER ÖZSU. Boston, MA:
Springer US, 2009, pp. 532–538. DOI: 10.1007/978-0-
387-39940-9 565.

[44] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC
2313 (Informational). RFC. Obsoleted by RFC 2437.
Fremont, CA, USA: RFC Editor, Mar. 1998. DOI: 10.
17487/RFC2313.

[45] T. Dierks and E. Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard). RFC. Obsoleted by RFC 8446, updated by
RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685,
7905, 7919, 8447. Fremont, CA, USA: RFC Editor,
Aug. 2008. DOI: 10.17487/RFC5246.

[46] Lior Rokach. “Ensemble-based classifiers”. In: Artificial
Intelligence Review 33.1 (Feb. 2010), pp. 1–39. DOI:
10.1007/s10462-009-9124-7.

[47] Lior Rokach and Oded Maimon. “Decision Trees”.
In: Data Mining and Knowledge Discovery Handbook.
Ed. by Oded Maimon and Lior Rokach. Boston, MA:
Springer US, 2005, pp. 165–192. DOI: 10.1007/0-387-
25465-X 9.

[48] Eyal Ronen et al. “The 9 Lives of Bleichenbacher’s
CAT: New Cache ATtacks on TLS Implementations”.
In: 2019 IEEE Symposium on Security and Privacy
(SP). San Francisco, CA, USA: IEEE, May 2019,
pp. 435–452. DOI: 10.1109/SP.2019.00062.

[49] Padhraic Smyth. “Clustering Using Monte Carlo Cross-
Validation”. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing. KDD’96. Portland, Oregon: AAAI Press, 1996,
pp. 126–133.

[50] Juraj Somorovsky. “Systematic Fuzzing and Testing
of TLS Libraries”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security. CCS ’16. Vienna, Austria: Association for
Computing Machinery, 2016, pp. 1492–1504. DOI: 10.
1145/2976749.2978411.

[51] Sergios Theodoridis and Konstantinos Koutroumbas.
“Chapter 5 - Feature Selection”. In: Pattern Recog-
nition (Fourth Edition). Ed. by Sergios Theodoridis
and Konstantinos Koutroumbas. Fourth Edition. Boston:
Academic Press, 2009, pp. 261–322. DOI: https://doi.
org/10.1016/B978-1-59749-272-0.50007-4.

[52] Gitte Vanwinckelen and Hendrik Blockeel. “On esti-
mating model accuracy with repeated cross-validation”.
In: BeneLearn 2012: Proceedings of the 21st Belgian-
Dutch conference on machine learning. 2012, pp. 39–
44.

[53] Serge Vaudenay. “Security Flaws Induced by CBC
Padding — Applications to SSL, IPSEC, WTLS...” In:
Advances in Cryptology — EUROCRYPT 2002. Ed. by
Lars R. Knudsen. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2002, pp. 534–545. DOI:
10.1007/3-540-46035-7 35.

[54] Frank Wilcoxon. “Individual Comparisons by Ranking
Methods”. In: Breakthroughs in Statistics: Methodology
and Distribution. Ed. by Samuel Kotz and Norman L.
Johnson. New York, NY: Springer New York, 1992,
pp. 196–202. DOI: 10.1007/978-1-4612-4380-9 16.

[55] Qing-Song Xu and Yi-Zeng Liang. “Monte Carlo cross
validation”. In: Chemometrics and Intelligent Labora-
tory Systems 56.1 (2001), pp. 1–11. DOI: https://doi.
org/10.1016/S0169-7439(00)00122-2.

[56] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin.
“Dual Coordinate Descent Methods for Logistic Re-
gression and Maximum Entropy Models”. In: Machine
Learning 85.1–2 (Oct. 2011), pp. 41–75. DOI: 10.1007/
s10994-010-5221-8.

[57] Gabriel Zaid et al. “Ranking Loss: Maximizing the
Success Rate in Deep Learning Side-Channel Analysis”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.1
(2021), pp. 25–55. DOI: 10.46586/tches.v2021.i1.25-55.

[58] Jiajia Zhang et al. “A Novel Evaluation Metric for
Deep Learning-Based Side Channel Analysis and Its
Extended Application to Imbalanced Data”. In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020),
pp. 73–96. DOI: 10.13154/tches.v2020.i3.73-96.

[59] Yinqian Zhang et al. “Cross-Tenant Side-Channel At-
tacks in PaaS Clouds”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security - CCS ’14. Scottsdale, Arizona, USA:

ACM Press, 2014, pp. 990–1003. DOI: 10 . 1145 /
2660267.2660356.

APPENDIX A
BINARY CLASSIFIERS

A binary classifier in our application considers two cate-
gories: 0 for secure implementation, and 1 for the considered
side channel, cf. Figure 4. For our training dataset, we extract
real-valued features from the network traffic (x) and label each
instance with the class-label, which represents the side channel
corresponding to the type of error in the message (1) or if the
message passed was correct. If there is an information leak
or existence of a side-channel in the server under test (SUT),
then we can say that a classification algorithm can be used to
learn an appropriate function/mapping between the network
data and class-label. In particular, each data point is a two-
tuple (x, y), where x is the real-valued d-dimensional feature
vector extracted from network traffic, and y is its ground-
truth class-label, see Section III-B. The label y, takes one
of two values which is determined by the property of the
ciphertext. It is 0 when the padding is correct, and 1 when
the padding is incorrect. We say that the SUT is vulnerable
when the classification algorithm is able to learn on the
binary classification data for the given manipulation, with
high accuracy. This in turn implies an ability to distinguish
between server reactions for the correct and incorrectly padded
plaintext Section III. Hence, when a server is secure, then
all binary classifiers will not be able to label the instances
x correctly, i.e. the accuracy should be very low. Using this
concept, we determine the existence of the side channel with
respect to a particular manipulation.

To ensure the robustness of our system, we employ multiple
binary classification algorithms and aggregate the correspond-
ing binary classifiers in order to decide on the vulnerability of
the SUT. Recall that solving a binary classification task is akin
to finding an unknown target function. As explained in Sec-
tion III-B each binary classification algorithm is associated
with a candidate space for the aforementioned target function.
By employing a large set of binary classification algorithms,
we are increasing the chance of finding mapping that is
very close to the target function. Then we will be searching
for the target function within in the union of the candidate
space. We obtain a set of binary classification models by
training the set of binary classification algorithms [37]. Each
binary classification algorithm can therefore be thought of as
searching its candidate space, for a predicted function that
fits the given training dataset most accurately [37]. Then we
aggregate these learned models to make our final prediction.

a) Linear Models: The first category of algorithms that
we use are the linear models. These models assume that the d-
dimensional input vector x is linearly dependent on the label,
thus falling under the category of linear models. It learns the
model-parameters in form of a weight-vector w ∈ Rd. such
that wẋ, gives us a real-value which is used to classify the
instances as positive or negative. Based on the approach used
to learn the weight-vector and interpretation of the obtained

real-value, different algorithms are proposed in the literature.
Out of them we chose the following algorithms Perceptron
Learning Algorithm (PLA) [16], Logistic Regression (LR) [56]
and Ridge Classifier (RC) [21].

b) Support Vector Machine (SVM): Since, the underlying
function can also be non-linear, we use the more powerful
technique like SVM, which uses the kernel methods to learn
non-linear objective function [10, 41]. This means that the
relationship between the model-parameters w and input in-
stances can be considered as non-linear, for, eg. polynomial.
SVM is also robust in the manner that apart from finding
a plane separating the positive from negative instances like
linear models, it tries to increase the margin between the
positive and negative instances closer to the plane.

c) Decision Trees: Decision Trees (DTs) are more pow-
erful classification approaches than the linear models and
could learn even more complicated functions [47]. In this
approach, the goal is to learn a set of simple decision rules
inferred from the data features that predict the final class of the
instance. DT learns a tree, by splitting the dataset into smaller
subsets using a feature at every node. For. e.g, if we are given
a set of people, we can split them based on their gender, age,
or income. The condition of the split is represented by leaf
nodes of the tree and possible outcomes by the branches. This
splitting process continues until all the instances are classified
with maximum accuracy or maximum depth of the tree is
reached. The number of instances that are successfully split
by the feature, divided by the total number of instances gives
us information gain (IG) for that feature, which can also be
seen as the decrease in entropy [47]. IG is used to decide which
feature has the highest gain, for splitting the data at every node.
Naturally, this would mean that the feature which the highest
importance would be nearer to the root node [47]. Feature
importance is calculated as the increase in the IG divided by
the probability of reaching that node. The node probability is
the number of instances that reach the node divided by the
total number of instances [47].

d) Ensemble Methods: These methods are inspired by
the approach of solving a real-life problem by asking multiple
experts since it is highly unlikely that each expert will make
the same mistake. Based on this the ensemble methods were
designed, in which a set of learned models F̂ = {f̂1, ..., f̂M}
are used trained on the same data [46]. This set of learned
models F̂ is called an “ensemble” and each learner is referred
as a base learner [46]. At the time of prediction, each members
of the “ensemble” is queried with an instance xi, and the
final prediction is acquired by aggregating the predictions from
these models f̂(xi) = AGG(f̂1(xi), ..., f̂M (xi)).

Now in principle, these learning models should be in-
dependent of each other, but this is a non-trivial issue in
machine learning (ML) because the models are eventually
trained on the same data. Even then, these methods have been
proven to increase the accuracy with large margins [46]. The
high accuracy was achieved by introducing the diversification
amongst the learned models, by either modifying the learning
process or the data for each learner [46].

• Bagging The data can be modified, by the method of sub-
sampling, i.e. by providing each learner a sub-sample of
a given training dataset called the bootstrap. In bagging,
we use a binary classifier as a base learner and each
one of them is trained on a bootstrap dataset. The final
prediction of a Bagging model is acquired by providing
the query x to these learned model f̂i, i ∈ [M] and
then aggregating the predictions of these models, using a
defined aggregation operator AGG() [46]. There are two
popular algorithms under this, the Extra Tree (ET) [18]
which used mean voting aggregation method to acquire
the prediction and Random Forest (RF) which used
majority voting [8] and base learner used for learning
on each bootstrap is DT.

• Boosting The main idea behind boosting, is to combine a
set of weak learners to create a single strong learner [46].
This is achieved by training the first learner on the
training dataset, then creating a second classifier that
attempts to rectify the errors produced by the first model.
The weak learners are added until the perfect performance
is achieved on the training set or a maximum number
of models are added [46]. These approaches are more
susceptible to noise but can learn complex functions [46].
The requirements for the weak learners in boosting are
that it should be able to accept weighted training ex-
amples (most algorithms can be generalized correspond-
ingly), e.g. shallow DTs (e.g., decision stumps), and
linear models. A popular algorithm under this category
is Ada Boost (AB), which fits a classifier on the original
dataset and then fits additional copies of the classifier on
the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent
classifiers focus more on difficult cases (instances closer
to the boundary) [15]. Gradient Boosting (GB) is also
similar to AB and it allows for the optimization of
arbitrary differentiable loss functions [17]. Histogram
Gradient Boosting (HGB) approach is much faster than
GB for big datasets and can handle missing values in a
dataset [28].

APPENDIX B
MINIMUM DATASET SIZES

For a given learning model, in-sample error (or accuracy)
Ein is its performance on the training dataset, and the out-
of-sample error (or accuracy) Eout is its performance on the
test data. The plot consisting of the evolution of the two
error/accuracy scores as the size of the training set increases
are called learning curves. For small n, the in-sample accuracy
Ein might be much lower since it’s quite easy to perfectly fit
fewer data points, however, the out-of-sample error Eout will
be very large. The reason behind this might be that the learning
model is built around a small data, and it almost certainly
won’t be able to generalize accurately on data the learner
hasn’t seen before. Generally, for the large training set size,
the learning model cannot fit perfectly anymore the training

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

0%
10%
20%
30%
40%
50%
60%
70%

Perceptron

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Support Vector
Machine

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Decision
Tree

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Random
Forest

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Histogram Gradient
Boosting

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

0%
10%
20%
30%
40%
50%
60%
70%

E
rr

or
-R

at
e

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

Number of Training Instances

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

In-Sample Error Ein Out-of-Sample Error Eout

Damn Vulnerable OpenSSL

OpenSSL 1.1.1i

Fig. 7: Learning curves of different classifiers for class-label “Wrong First Byte (0X00 Set To 0X17)” for Damn Vulnerable
OpenSSL and Slope 1.1.1g

set and the training error becomes larger, while the out-of-
sample error Eout decreases, because the model is trained on
more data, so it manages to fit the test dataset better. After a
certain number of training instances N , the Eout stays roughly
the same, which implies that adding more training instances
won’t produce significantly better models. According to the
VC-dimension theory, this N represents the sample complexity
of an algorithm, i.e. the number of training examples that are
required to successfully learn a target function. More precisely,
the sample complexity is the number of training-samples that
we need to supply to the algorithm, so that the function
returned by the algorithm is within an arbitrarily small error
of the best possible function, with probability arbitrarily close
to 1.

We plot different the learning curves of the subset of
binary classifiers, PLA from linear models, DT, SVM, RF
from bagging and HGB from boosting models, as shown in
Figure 7. As seen in Figure 7, most of the binary classifiers
show no significant decrease in the out-of-sample error after
a certain number of instances. We can use this concept to
determine the number of samples that should be generated by
the SUT for each class-label. For OpenSSL 1.1.1i, we can
see that the PLAs and SVM require less than 200 instances
to converge, i.e. to reach minimum possible error-rate i.e. 0.5
same as Random Guessing (RG). While more complex binary
classifiers like DT, RF and HGB are not able to converge
even with 3600 instances. So, we cannot say with confidence
if the system is not vulnerable, since it can be the case that
the vulnerability exists but the existing models are not able to
capture it yet. While for the DamnVulnerable OpenSSL server,
almost all complex models like DT, bagging and boosting

techniques require less then 50 instances to converge, i.e. to
reach minimum possible error-rate i.e. 0.0. The learning curves
for PLA is interesting as it requires very more 400. As we
have seen in Section IV-C, even if one of the classifiers can
significantly perform better than RG, after applying the Holm-
Bonferroni adjustment, the SUT will be marked as vulnerable
to the given class-label. Summarizing these curves, we can
imply that if there exists a vulnerability or Side-Channel in
the SUT, our approach should be able to detect it for the
countable number of instances with high probability. But, we
cannot imply non-vulnerability or absence of Side-Channel in
the SUT since it might be the case that the side-channel exists
but the current models are not able to identify it yet.

