
Farid Javani* and Alan T. Sherman

AOT: Anonymization by Oblivious Transfer
Abstract: We introduce AOT, an anonymous communication
system based on mix network architecture that uses oblivious
transfer (OT) to deliver messages. Using OT to deliver mes-
sages helps AOT resist blending (n−1) attacks and helps AOT
preserve receiver anonymity, even if a covert adversary con-
trols all nodes in AOT.
AOT comprises three levels of nodes, where nodes at each
level perform a different function and can scale horizontally.
The sender encrypts their payload and a tag—derived from a
secret shared between the sender and receiver—with the pub-
lic key of a Level-2 node and sends them to a Level-1 node.
On a public bulletin board, Level-3 nodes publish tags associ-
ated with messages ready to be retrieved. Each receiver checks
the bulletin board, identifies tags, and receives the associated
messages using OT.
A receiver can receive their messages even if the receiver is of-
fline when messages are ready. Through what we call a “hand-
shake” process, communicants can use the AOT protocol to
establish shared secrets anonymously.
Users play an active role in contributing to the unlinkability
of messages: periodically, users initiate requests to AOT to re-
ceive dummy messages, such that an adversary cannot distin-
guish real and dummy requests.

Keywords: Anonymity by Oblivious Transfer (AOT), anony-
mous communication, anonymous secret sharing, blending at-
tack, mixnets, oblivious transfer.

1 Introduction

Communication systems should not only support confidential-
ity and authentication of messages; they should also provide
untraceability and unlinkability. Failure to protect communica-
tions against traffic analysis poses serious threats to individual
privacy and organizational operations. We introduce AOT [1],
an anonymous communication system (ACS) based on mix net-
work (mixnet) architecture that uses oblivious transfer (OT)

*Corresponding Author: Farid Javani: Cyber Defense Lab, University
of Maryland, Baltimore County, USA, E-mail: javani1@umbc.edu
Alan T. Sherman: Cyber Defense Lab, University of Maryland, Balti-
more County, USA, E-mail: sherman@umbc.edu

to deliver messages. Our approach resists active attacks, sup-
ports message delivery for offline users, and provides receiver
anonymity even if a covert active adversary controls the entire
network.

Although Kilian [40] proved that OT is complete for two-
party secure computations, to our knowledge, we are the first
to show how to build an ACS with OT. Desirable properties of
AOT mentioned above flow in part from the use of OT.

Figure 1 highlights the keystone of AOT—message deliv-
ery using OT. In AOT, a sender does not provide the recipient’s
address. Instead, they send an ordered pair (M, tag), where M
is an encrypted payload (encrypted with the public key of the
recipient), and tag is a unique tag derived from a shared se-
cret between sender and receiver. For messages ready to be
retrieved, AOT posts their associated tags on a public bulletin
board. Recipients monitor the board and request via OT the
payloads they wish to receive. Neither AOT nor network ad-
versaries learn which recipients receive which messages.

Instead of using OT to retrieve messages, one could use
private information retrieval (PIR) [19]. Whereas PIR pro-
vides only receiver security, OT provides both receiver and
sender security (see Sections 7.2, 9.1). Using OT helps AOT
resist active attacks.

AOT is a mixnet comprising a three-level cascade of
nodes, where each level performs a different function. The
sender encrypts their payload and tag with the public key of
a Level-2 node and sends them to a Level-1 node. Level-1
nodes strip the sender information from messages and send
them to Level-2 nodes in batches. Level-2 nodes decrypt the
messages, create dummy messages, and send the real and the
dummy messages to Level-3 nodes in batches. Dummy mes-
sages help resist blending (n − 1) attacks. At each level, all
nodes at that level perform the same function and can scale
horizontally (more nodes can be added at each level to im-
prove performance and reliability).

Each sender-receiver pair needs to share a secret. Through
what we call a “handshake” process, communicants can use
the AOT protocol to establish shared secrets, confidentially
and anonymously. This handshake is of independent interest
and can support other applications.

Since Chaum [12] introduced ACSs in 1981, they have
evolved in terms of efficiency, network topology, communi-
cation latency, robustness, and privacy [36, 43, 51, 64]. For
example, cMix by Chaum et al. [14, 16] uses precomputa-
tion to support fast mixing with minimal real-time asymmet-
ric cryptographic operations. Many recent systems, includ-

AOT: Anonymization by Oblivious Transfer 2

ing [43, 55, 65–67], aim to resist active attacks, as does AOT.
An advantage of AOT over cMix is its resistance to active at-
tacks.

Fig. 1. Message delivery using OT. When sender As sends a mes-
sage through AOT to Br , receiver Br retrieves the message as fol-
lows. As sends an ordered pair (MAs,Br , kAs,Br) to AOT, where
MAs,Br is the encrypted payload and kAs,Br a tag derived from a
shared secret between As and Br . The payload includes the mes-
sage and some additional information, as described in Equation 2.
AOT publishes kAt,Bt . Then, Bt detects kAt,Bt and asks for the
corresponding encrypted payload using OTγ1 , where γ is the num-
ber of other tags that Bt chooses to be in the OT session. Only Br
can decrypt the encrypted payload, and AOT does not learn which
message Br received.

Our contributions:

1. We introduce AOT, an anonymous communication system
that uses oblivious transfer for message delivery and to
resist active attacks.

2. AOT scales horizontally in that additional nodes can be
added to each level to increase performance and reliabil-
ity.

3. We show how two communicants can use AOT to estab-
lish a shared secret anonymously.

4. We explain how AOT resists standard active and passive
mixnet attacks.

2 Background and Related work

We briefly overview anonymous communication systems
(ACSs), oblivious transfer (OT), and applications of OT in se-

lected cryptographic protocols. To our knowledge, we are the
first to use OT to build an ACS.

2.1 Anonymous Communication
Networks

In 1981, Chaum [12] introduced the concept of mix networks,
or mixnets for short. Mixnets are ACSs, where a cascade of
servers, called mixnodes, break the links between communi-
cants. Each sender encrypts the payload and the address of the
receiver using the public keys of the mixnodes, starting from
the last node in the cascade, and then sends the message to the
first node in the cascade. Upon receiving an encrypted mes-
sage, each mixnode decrypts the outer layer of encryption us-
ing its private key. Each mixnode gathers incoming messages
into a fixed-size batch, shuffles the messages within the batch,
and sends the batch to the next node in the cascade. The last
node in the cascade decrypts the last layer of the encryption
and delivers the messages to the recipients.

To prevent an adversary from linking incoming and out-
going messages based on length, mixnets typically allow only
messages of a fixed length. Hybrid mixnets, introduced by
Pfitzmann and Waidner [54], allow arbitrary length messages.
Hybrid mixnets perform bulk data encryption with symmetric-
key cryptography; they use public-key cryptography to encrypt
symmetric keys. Jackobson et al. [36], Ohkubo et al. [49], and
Moller [44] propose combinations of public-key cryptography
and symmetric-key cryptography for hybrid mixnets.

In mixnets and hybrid mixnets, message length is propor-
tional to the number of mixnodes, because the sender has to
perform one encryption for each node in the cascade. These
layers of encryption increase computation on the user side
and increase message length. In re-encryption mixnets, intro-
duced by Park et al. [51], the sender encrypts only once us-
ing the public key of the mixnet. Instead of decrypting the
outer later of encryption, each mixnode re-encrypts the ci-
phertext received from the previous node (using an encryption
system that permits re-encryption) and forwards it to the next
node. The last node in the cascade produces plaintext. Golle et
al. [31] introduce universal re-encryption mixnets, where re-
encrytion does not require knowledge of the public key.

Most mixnets rely heavily on users and servers to per-
form computationally expensive public-key operations online.
Performing such operations in an offline precomputation can
significantly improve the online running time. Adida and Wik-
strom [2] and Jakobsson [35] study precomputation tech-
niques, with Adida and Wikstrom focusing on server compu-
tations, and Jakobsson focusing on user computations. Chaum
et al.’s cMix [16] is a precomputation mixnet that eliminates
almost all online public-key operations.

AOT: Anonymization by Oblivious Transfer 3

By routing messages through a cascade of nodes, mixnets
increase message latency. They also can introduce de-
lays caused by grouping messages into the batches needed
for anonymization. Therefore, mixnets, despite their strong
anonymity properties, are not suitable for low-latency appli-
cations such as web browsing.

Onion routing [59] is an anonymization technique that
neither uses batches nor a fixed cascade of nodes. In com-
parison with mixnets, they can have lower latency but often
are vulnerable to traffic analysis attacks [57, 58]. Intermediary
proxy nodes break the communication links, and they can vary
with each communication session. Each sender may choose
the communication path and which nodes will act as the proxy
routers. The sender encrypts a message using the keys of the
proxies in the path, starting with the key of the last node. Prox-
ies decrypt the (onion) layers of encryption and forward the
message. Tor [64] is a widely used system built using onion
routing; other examples of ACSs built on onion routing in-
clude [11, 18, 50].

Riffle [43] is an anonymous communication and file shar-
ing system in which users download messages or files us-
ing private information retrieval (PIR) [19]. Riffle focuses on
communications between users within a group. To enhance
anonymity, all users should send and receive messages even
if they are not participating in any communications. Messages
are initially broadcast to all group members. After users learn
the index of the message corresponding to them within the
group, they can receive messages using this index and PIR—
instead of receiving all messages through broadcast.

Dissent [67] is a group ACS build on DC-nets [13] and
verifiable shuffles [10, 29]. Leveraging a user-server architec-
ture, Dissent increases the efficiency of DC-nets and tolerates
user-side slowness and disruptions.

Loopix [55] is a mixnet in which nodes are grouped in dif-
ferent layers, where nodes in each layer can communicate with
all of the nodes in the immediately previous and following
layers. Loopix adds independent delays to incoming message
(Poisson mixing) to obfuscate message timing. An important
property of Loopix is the so called “loop message,” a message
that a sender sends to itself; loop messages help Loopix resist
blending attacks (see Section 6.1). As explained in Section 4.4,
every message in AOT is a loop message.

Vuvuzela [66] is an efficient anonymous messaging proto-
col that can support millions of users. It is built on a mixnet ar-
chitecture and offers privacy guarantees based on differential
privacy [26]. Users place and retrieve messages from virtual
locations (“deaddrops”) on mixnode memories. Vuvuzula has
a “dialing protocol” (similar to AOT’s handshake) that users
can use to start a conversation. Unlike AOT’s handshake, Vu-
vuzela’s dialing protocol is distinct from its conversation pro-
tocol. Moreover, in Vuvuzela, the adversary can distinguish

whether a receiver is participating in a dialing or conversa-
tion protocol, whereas in AOT the adversary cannot make this
distinction. Stadium [65] adds horizontal scalability and verifi-
able mixing to Vuvuzela. Deaddrops and AOT’s message tags
(See Section 4.1) are similar to the rendezvous hash value of
the UDM protocol of Chaum et al. [17].

2.2 Oblivious Transfer

We briefly review our main building block—oblivious transfer
(OT)—including selected OT protocols and their security and
efficiency.

Introduced in 1981 by Rabin [56], an OT protocol enables
a receiver to receive a piece of information from a sequence of
pieces of information from a sender, while hiding the selection
of information from the sender and hiding the rest of the infor-
mation from the receiver. In 1-out-of-2 OT, denoted OT2

1, the
sender has two strings s0, s1 and transfers sb to the receiver,
where the receiver selects b ∈ {0, 1} and the following two
conditions hold: (1) the sender does not know the value of b,
and (2) the receiver does not learn anything about s1−b.

We use the generalization 1-out-of-n OT, denoted OTn1 :
the sender has n strings and transfers one string to the receiver,
without knowing which string it transferred, and the receiver
does not learn anything about the other n− 1 strings. An ideal
implementation of OT might use a trusted third party: after ob-
taining the strings from the sender, and the index choice from
the receiver, the party sends the chosen string to the receiver.

OT can be implemented using public-key cryptography
without a trusted third party. For example, OT2

1 can be im-
plemented as follows: the receiver creates two random public
keys but knows the private key corresponding to only one of
them. The receiver sends the two public keys to the sender.
The sender encrypts each string with a different public key and
sends the resulting ciphertexts to the receiver. Because the re-
ceiver knows the private key corresponding to only one of the
public keys, the receiver can decipher only one of the strings,
and the receiver will learn nothing about the other string.

Implementing OT with public-key operations, however, is
computationally expensive. Seeking faster implementations,
researchers have explored the possibility of implementing
OT using symmetric-key cryptography, but Impagliazzo and
Rudich [33] showed that it is unlikely to find black-box con-
structions of OT using one-way functions. Beaver [7], how-
ever, shows that using one-way functions, a small number of
base OTs can be extended to any number of OTs. Namely, a
small number of OTs that are built using expensive public-
key operations can be extended to create a large number of
OTs using symmetric cryptographic primitives. After Beaver’s
seminal work, more efficient extensions of oblivious transfer

AOT: Anonymization by Oblivious Transfer 4

have been introduced that are secure against passive adver-
saries [3, 34], and secure against active adversaries [4, 47].

Seeking greater efficiency, Bellare and Micali [8] created
an OT2

1 that requires two rounds. Naor and Pinkas [45] re-
duced the number of exponentiations during run-time in Bel-
lare and Micali from two to one on the sender’s side. They also
extended OT2

1 to OTn1 . In this OTn1 technique, the sender per-
forms n exponentiations in an initialization step, and uses the
resulting values for all subsequent transfers.

Noar and Pinkas [46] showed how to extend any OT2
1

protocol to an OTn1 protocol—with O(n logn) calls to OT2
1—

that provides sender and receiver security computationally, if
the underlying OT2

1 provides sender and receiver security (see
Section 7.2 for definitions). Among the most efficient OT pro-
tocols that are secure against active adversaries (including pos-
sibly the sender and receiver) are [5, 20, 52].

Chou and Orlandi [20] computed more than 10, 000 OT2
1s

per second using one thread of an Intel Core i7-3537U proces-
sor. Even with the overhead of building each OTn1 from OT2

1s
using Noar and Pinkas’s technique, the OTn1 s for message de-
livery in AOT should run sufficiently quickly for typical ACS
applications. Moreover, considering the horizontal scalability
of Level-3 nodes, OTn1 should not be a bottleneck in AOT for
message delivery for large numbers of users.

2.3 Applications of Oblivious Transfer

OT is a powerful primitive that alone can be used to implement
any two-party or multiparty secure computation [22, 40]. We
briefly point out some examples.

Nurmi et al. [48] used OTn1 to enable a trusted election
authority to distribute credentials to each of n voters such that
the election authority does not learn the credential of any voter.
Hence, when each voter uses their credential to cast their bal-
lot, the election authority cannot link ballots to voters.

Even et al. [27] used OT to sign contracts. Two parties use
OT2

1 to exchange secrets, where knowledge of the other’s se-
cret implies their commitment to the contract. Here, OT guar-
antees that each party sends its secret correctly, and both par-
ties simultaneously exchange their secrets.

Fagin et al. [28] used OT to enable two parties to compare
their secrets without revealing them (e.g., a user wants to prove
their identity using a password but does not trust the medium).

Javani and Sherman [37] use OT to provide perfect bal-
lot secrecy and ensure correct vote casting in a self-tallying
boardroom voting protocol.

OT has also been used in mental poker [21], fair compu-
tation [30], and zero-knowledge proofs [24].

3 Overview

We explain AOT’s communication model, adversarial model,
goals, and three-level architecture.

3.1 Communication Model

Senders and receivers communicate with AOT using a trusted
user application (e.g., running on a smartphone or worksta-
tion). We refer to user applications simply as senders and re-
ceivers. We assume users have access to a public-key infras-
tructure and know the public keys of the other users and the
AOT nodes.

Each sender sends a message and associated tag to AOT,
which posts the tag on a public bulletin board. Recipients de-
tect tags related to them, and using OT, download the asso-
ciated messages. Each pair of users who want to communi-
cate with each other must establish a shared secret, which the
sender uses to generate a tag. Users do not need to establish
shared secrets with any of the mixnodes.

3.2 Adversarial Model

We consider two types of adversaries: active and covert, each
with the same capabilities. Their common goal is to identify
communicants, or to link senders and receivers of messages.
We do not consider denial-of-service attacks.

The adversary can be any of the users, AOT nodes, or a
Dolev-Yao network intruder [25]. The adversary cannot con-
trol all of the AOT users at the same time.

We assume authenticated and encrypted communications
(e.g., TLS) between users and AOT, and among all nodes
within AOT. We assume that the adversary cannot defeat stan-
dard cryptographic functions.

An active adversary can monitor traffic between users and
AOT, as well as traffic among nodes within AOT. An active
adversary can also delay incoming messages for an arbitrary
amount of time, remove legitimate incoming messages, and
inject arbitrarily many messages into the system. An active
adversary can attempt to replay and modify messages.

A covert adversary [6] seeks to keep the execution of any
attack, and their involvement in it, undetected.

3.3 Goals

Our design goal is an ACS that has the following properties:

1. Unlinkability. The adversary should not be able to link
senders and receivers of the communications. AOT pro-

AOT: Anonymization by Oblivious Transfer 5

vides receiver anonymity even if a covert adversary com-
promises the entire network (see Section 7).

2. Scalability. The system should be able to scale with in-
creasing numbers of users.

3. Integrity. Either AOT delivers the messages unaltered to
receivers, or it detects message modification and identifies
the source of the modification.

3.4 Architecture

As explained in Figure 2, AOT comprises a cascade of nodes
organized in three levels. Each level performs a different func-
tion, and all nodes within the same level perform the same
function. Each level can have a different number of nodes.

Each level can scale “horizontally” (adding more nodes
to that level) and independently of the other levels. Scaling
nodes horizontally serves two purposes: (1) to have higher
availability and efficiency by distributing the load among mul-
tiple nodes, and (2) to make it harder for the adversary to con-
trol the entire network.

Communications between levels are digitally signed and
encrypted using public-key cryptography.

We denote each node as Ni,j , where 1 ≤ i ≤ 3 is the
node’s level, and j is the node’s position within that level. For
each Level i, let Qi denote the number of nodes at Level i.

Level-1 nodes. Level-1 nodes receive messages, strip
sender information from them, arrange messages into batches
of size β1, called containers, shuffle the messages within each
container, and send the containers to Level-2 nodes.

Level-2 nodes. Each Level-2 node decrypts the messages
that it receives from Level-1 nodes, arranges them in batches
of size β2, shuffles the messages within each batch, adds
dummy messages, and sends the batches to Level-3 nodes. We
assume β2 = Q1β1; however, β2 > β1 can have arbitrary
values. Dummy messages and dummy requests by users (see
Section 6.1) help mitigate blending attacks.

Level-3 nodes. Level-3 nodes enable receivers to retrieve
messages sent to them. For each round, Level-3 nodes orga-
nize themselves into “active” and “passive” nodes, and com-
municate this organization to Level-2 nodes. Passive nodes re-
ceive the dummy messages; active nodes receive genuine mes-
sages. Each receives messages in batches of size β2 and deliv-
ers them.

Fig. 2. Summary of how AOT works. Senders send encrypted mes-
sages with associated tags to Level-1 nodes of AOT. Level-1 nodes
receive messages, remove the sender information from them, ar-
range the messages into batches of size β1, shuffle the mes-
sages within each batch, and send the batches to Level-2 nodes.
Level-2 nodes receive messages from Level-1 nodes, arrange them
into batches of size β2, add additional dummy messages to these
batches, shuffle the real messages within each batch, send the
real messages to active nodes at Level-3, and send the dummy
messages (denoted by dashed lines) to passive nodes at Level-3.
Level-3 nodes receive messages from Level-2 nodes, select collec-
tions of messages to publish, and publish the tags of these selected
messages (denoted by small shaded circles and the end of lines).
Receivers detect tags related to them and request the associated
encrypted payloads from Level-3 nodes using OT. Dummy mes-
sages help mitigate blending attacks, as explained in Section 6.1.

4 Anonymization by Oblivious
Transfer

We describe the AOT protocol (including how users send mes-
sages, how AOT processes them, how AOT uses message tags,
and how it publishes messages), the user app, and two-way
communications using AOT. Table 2 summarizes our notation.

4.1 Message Tags

AOT requires each sender and receiver to have a shared se-
cret. Users may establish these secrets anonymously using
any method they choose, including using AOT through a pro-
cess called a handshake (see Section 5). Let σA,B denote the
shared secret between users A and B. Communicants use the
shared secrets to compute tags, which AOT posts when mak-

AOT: Anonymization by Oblivious Transfer 6

ing messages ready for delivery. Receivers recognize messages
by their tags; hence each tag should be identifiable only by its
intended recipient.

For each message sent from A and B, users compute a
tag kA,B = f(σA,B , c), where c is a counter and f is a cryp-
tographic key-derivation function (see [41, 42]). Specifically,
c denotes the number of successful communications between
A and B, where a successful communication is a communica-
tion in which the recipient of the message replies back to the
sender, or sends an acknowledgment of receiving the message.
Section 4.4 explains how AOT uses c, including how AOT han-
dles synchronization issues.

4.2 Sending and Processing Messages

Figure 3 shows how messages flow through AOT. Suppose a
sender A wishes to send a payload xA,B to a receiver B. To
begin, A encrypts the payload by computing

MA,B = E [pB , (xA,B , n)] , (1)

where pB is the public key of B and n is a nonce. E[pB ,M]
denotes public-key encryption ofM using the public key pB—
that provides confidentiality and ciphertext integrity—as de-
scribed, for example, by Bernstein’s [9] (see Appendix A.4).1

Next, A chooses a Level-1 node N1,i and a Level-2 node
N2,j at random, for some 1 ≤ i ≤ Q1 and 1 ≤ j ≤ Q2.
Sender A generates and sends the following message to N1,i:

m =
(
E

[
pN2,j , (MA,B , kA,B , N2,j , ts)

]
, N2,j

)
, (2)

where pN2,j is the public key of node N2,j ; the value kA,B
is the tag of MA,B ; and ts is the timestamp for when m was
created. To prevent the adversary from linking incoming and
outgoing messages based on their sizes, AOT uses a fixed size
for all message payloads and tags.

For 1 ≤ j ≤ Q2, each Level-1 node maintains one con-
tainer Cj of messages for each Level-2 node N2,j . Upon re-
ceiving the messages from senders, each Level-1 node strips
the sender information off the messages and puts them in the
container corresponding to the specified Level-2 node. When-
ever any container is filled with β1 messages, the Level-1 node
shuffles the order of messages in the container, sends the mes-

1 Alternatively, instead of using public-key encryption, A could encrypt
the payload (xA,B , n) using symmetric-key encryption, where the key is
derived from the shared secret (in a fashion similar to how AOT computes
the message tags). Nevertheless, A would still have to encrypt their com-
munication using the public key of a Level-2 node. For consistency, we
choose to use E for both encryptions.

sages to the corresponding Level-2 node, and empties the con-
tainer.

For 1 ≤ j ≤ Q2, node N2,j receives β1 messages of the
following form from a Level-1 node:

E
[
pN2,j , (MA,B , kA,B , N2,j , ts)

]
. (3)

N2,j then decrypts these messages, puts them in batches of
size β2, and permutes the order of the messages within each
batch. Level-1 and Level-2 nodes commit to these permu-
tations using a perfectly hiding commitment scheme [32],
broadcasting the commitments to the other nodes.

To prevent replay attacks, Equation 2 includes a times-
tamp ts. Each Level-2 node maintains a record of the (mes-
sage, tag)-pairs of the messages that it has processed during
the last T minutes. If they receive a message with an old times-
tamp that has been created within last T minutes, they check
the record of previously processed messages. If the message
had been processed, they drop the message (see Section 6.2).

Each round is the interval during which Level-2 nodes re-
ceive β2 messages and send them to the Level-3 nodes. For
l = 1, 2, . . . , let Rl denote round l, and let Ψl denote the
batch processed at round l, where the first round isR1.

During each round, AOT divides the Level-3 nodes into
α active nodes and ρ passive nodes (see Section 4.6). Inde-
pendently for each batch, the active nodes randomly partition
the set of messages in the batch into α subsets. Let P denote
the corresponding partition of message indices. Each active
node then receives one of the subsets of β2/α messages from
the partition. AOT partitions the nodes into active and passive
nodes so that a compromised Level-3 node cannot process all
of the batches (see Section 9.1.6).

The batch Ψl that N2,j processes at round Rl comprises
β2 tuples of (encrypted payload, tag)-pairs:

Ψl =
{ (
MAs1 ,Br1

, kAs1 ,Br1

)
,(

MAs2 ,Br2
, kAs2 ,Br2

)
,

...(
MAsβ2

,Brβ2
, kAsβ2

,Brβ2

) }
,

(4)

whereAs1 , Br1 , As2 , Br2 , . . . , Asβ2
, Brβ2

denote the senders
and receivers of messages in the batch.

For each batch Ψl that node N2,j processes, N2,j creates
ρβ2/α dummy messages. As specified by partition P , node
N2,j sends β2/α real messages from the batch to each ac-
tive Level-3 node, and N2,j sends β2/α dummy messages to
each passive node. We call each of these sets of β2/α mes-
sages, real or dummy, buckets and denote each bucket by Φ.
Although dummy messages increase the communication load

AOT: Anonymization by Oblivious Transfer 7

among the mixnodes, they do not create any additional com-
putational load because users do not ask to receive dummy
messages, except possibly in some dummy requests.

4.3 Publishing Messages

AOT enables receivers to retrieve messages through two steps:
publication and delivery. Each Level-3 node maintains a mes-
sage repository, publication repository, and public bulletin
board. During publication, the Level-3 node moves messages
from its message repository into its publication repository and
posts the associated message tags on its bulletin board. During
delivery, the recipient engages the Level-3 node in an OT to
retrieve the messages it recognized from their associated tags.

As explained in Figure 4b, upon receiving buckets of mes-
sages from Level-2 nodes, each Level-3 node puts messages
into its message repository. The repository consists of mes-
sages from the latest λ buckets received.

During the publication step, each Level-3 node chooses
β2/λα messages randomly from each of the λ buckets in its
message repository and moves them to its publication repos-
itory. The node also posts their tags on its bulletin board in
a publication list. Thus, Level-3 nodes do not deliver mes-
sages in exactly the same order in which they receive them
from Level-2 nodes.

Each Level-3 node maintains γ messages in its publica-
tion repository, deleting the oldest messages as needed. Recip-
ients do not need to be online when their messages reach the
publication repository; they can retrieve their messages when
they return online (provided the messages still remain).

Figure 4a shows how a Level-3 node moves messages
from its message repository into its publication repository. The
node stores each message in its message repository for less
than τ seconds. If the rate of incoming messages to AOT is
β2τ/λ messages per second, with λ batches in each message
repository, and if Level-3 nodes perform their publication step
every τ/λ seconds, the maximum delay caused by the publi-
cation step is τ seconds for each message. The parameters can
be adjusted for any rate of incoming messages.

During the delivery step, a receiver recognizes a tag in
the publication list of a Level-3 node. Using OT, the receiver
asks for the message corresponding to the tag from the Level-
3 node that published the tag. The receiver engages in an OTζ1
session with the node and receives the message corresponding
to the chosen tag. Here, ζ ≤ γ is a parameter set by AOT (see
Section 9.3).

When delivering the chosen message, the Level-3 node
sends the encrypted payload and tag together with a signed
message authentication code (MAC) of the encrypted payload

and tag. This MAC is necessary to assure message integrity
(see Section 6.3).

In case of node failures, messages could be processed
by other nodes at the same level. If a node at Level 1 fails,
senders resend the messages to another Level-1 node. If an
active Level-3 node fails, the Level-2 node that processed the
batch sends the messages to another Level-3 node. If a Level-2
node fails, the sender recreates the message for another Level-
2 node; the need to resend the message in this case also arises
in similar situations for fixed cascades and free-routing mix
networks.

4.4 User App and Its Roles

Senders and receivers interact with AOT through a trusted user
app running on the user’s machine (possibly a smartphone).
This app helps the user carry out the AOT protocol, manage
user keys and counters, and perform security-enhancing tasks.

The app facilitates message delivery by monitoring the
bulletin boards. When it notices a recognizable tag, it initiates
an OTγ1 with the associated Level-3 node.

For each communicant, the app manages the associated
shared secret and message counter, which it uses to compute
tags. The message counters of senders and receivers might lose
synchronization due, for example, to a dropped message or
failed delivery. To deal with such possible issues, the app can
try all values of the counter within some range (e.g., current
value plus or minus up to some constant ξ, say ξ = 2).

The app helps senders perform two integrity checks. First,
after sending each message, the sender checks that the associ-
ated tag has been posted on some bulletin board. The sender in-
forms the appropriate Level-1 node of the result of this check.
Because the user’s app monitors the bulletin board for coming
messages, this check does not add any additional overhead.
As a result of this check, each message in AOT is a loop mes-
sage [55], without requiring the sender to list their own address
as the address of the receiver. Second, at random times, each
sender asks for the messages that they have sent to the sys-
tem to verify the system’s integrity (see Section 6.3). These
times are chosen at random from the interval [1, T1], The sec-
ond check can also be performed by the app, using the same
functionality for retrieving messages sent by others. Users in-
form Level-1 nodes if any of these checks fail; see Section 6.3.

We assume that the rate of incoming messages to AOT is
β2τ/λ messages per second. AOT should receive β1Q1Q2/2
on average before sending a batch of size β2 to Level-3 nodes
(see Section 7). Therefore, senders should expect their mes-
sages to be published within τ + (Q2τ/(2λ)) seconds.

The app also initiates dummy message requests to Level-
3 nodes (see Section 6.1). Each user makes a dummy request

AOT: Anonymization by Oblivious Transfer 8

Fig. 3. Detailed view of how messages flow through AOT. Each Level-1 node maintains a container, denoted Ci, for each Level-2
node N2,i. Crossing lines denote shuffling of messages. Level-2 nodes add dummy messages (denoted by dashed lines). Thick blue
lines identify the route of a message from sender As to receiver Br .

at random times, where the time to the next request is chosen
at random with uniform distribution from the interval [1, T2].

4.5 Return Path, Delivery
Acknowledgment, and Resending
Messages

A strong property of AOT is that return paths can be im-
plemented easily without any change in the communication
model, enabling two-way anonymous communications. Be-
cause users ask for messages from AOT using OT, AOT does
not require the sender to specify the recipient’s address. This
property enables AOT to process each message in two-way
communications in a stateless form, without requiring infor-
mation about any previous message. None of the nodes in AOT
can distinguish between forward and return messages. Upon
receiving a message from a Level-3 node, the receiver can send
a return message as follows: update the counter c from previ-
ous communications with the sender, create a new tag, create
the message tuple with new payload and tag, and send it to any
Level-1 node. Although AOT processes messages in a stateless

fashion, senders and receivers operate in a stateful fashion that
requires knowledge of the counter value.

A recipient can acknowledge receipt of a message as fol-
lows. They send a return message, as described above. By ob-
serving the resulting posted tag, the sender learns that the re-
cipient received the message, even if the sender does not re-
trieve the posted return message.

If a sender does not receive any acknowledgment of mes-
sage receipt, the sender can resend the message. Because re-
cipients request messages using OT, Level-3 nodes do not
know which messages were received. Known bounds on the
latency caused by AOT, and on the time tags remain in the
bulletin board, facilitate such checking by senders.

4.6 Dividing Level-3 Nodes into Active
and Passive Nodes

Level-3 nodes partition themselves into α active nodes and ρ
passive node where (1/3)ρ ≤ α ≤ (3/4)ρ and α + ρ = Q3.
Partitioning the Level-3 nodes has two phases: 1) Initiation,
and 2) Division. Initiation happens when AOT first starts op-
erating. Nodes perform the division phase for each round.

AOT: Anonymization by Oblivious Transfer 9

1: procedure P(τ , λ, j) . Collect messages to
publish

2: M ← Empty Message Repository
3: Add dummy messages to M
4: while Node is alive do
5: Add the new bucket Φλ,j to M
6: loop every τ/λ seconds
7: L← Empty set of messages to be pub-

lished
8: for 1 ≤ i ≤ λ do
9: Choose β2/(αλ) messages at ran-

dom from bucket Φi,j in M
10: Add chosen messages to L
11: Remove chosen messages from

Φi,j
12: Publish L

(a) Procedure P used by each Level-3 node to collect a list of messages
to publish. Each node N3,j randomly selects messages from each of its
past λ buckets Φ1,j , . . . ,Φλ,j . The procedure guarantees that every in-
coming message is published in less than τ seconds from its arrival.

(b) Message repository for each Level-3 node. Representative node
N3,j maintains a message repository of the λ most recent buckets
Φ1,j , . . . ,Φλ,j of messages received, where Φλ,j is the most recent
bucket. Each square denotes β2/(αλ) messages. For each 1 ≤ i ≤ λ,
bucket Φi,j (denoted by dashed lines) has iβ2/(αλ) messages; the
repository has a total of β2(λ+ 1)/(2α) messages.

Fig. 4. How each Level-3 node collects messages from its message repository to publish in the AOT bulletin board. To increase the
anonymity set and to obfuscate the flow of the messages within the system, each Level-3 node collects messages from its λ most recent
buckets of messages received.

4.6.1 Initiation phase

For each 1 ≤ j ≤ Q3, node N3,j generates a random value
v3,j and broadcasts a commitment of it to all Level-2 nodes
and other Level-3 nodes. After each N3,j receives the com-
mitment from all other nodes, it broadcasts v3,j to all Level-2
nodes and all other Level-3 nodes. Level-2 nodes and Level-3
nodes compute ⊕Q3

j=1v3,j , where ⊕ denotes bit-wise XOR.

4.6.2 Division phase

At each round Rl, the Level-2 node that pro-
cesses the batch, and all Level-3 nodes, compute
Vl = g(⊕Q3

j=1v3,j , l), where g is a cryptographic key-
derivation function (see [41, 42]). Each node then divides
Vl into Q3 bit strings of the same length, denoted by Vl,j ,
such that Vl = Vl,1||Vl,2|| . . . ||Vl,Q3 , where || denotes con-
catenation. Each node creates the tuples

(
Vl,j , N3,j

)
for all

1 ≤ j ≤ Q3 and sorts the list of tuples based on their first
elements. The first α nodes in the sorted list are actives nodes
of the round.

The bit-length of Vl should be set such that the probability
of having Vl,j1 = Vl,j2 where j1 6= j2 is negligible.

5 Handshake Process

We explain how the AOT protocol can be used by any two
communicants to establish a shared secret anonymously, in
what we call a handshake process. Any adversary that mon-
itors these communications should be unable to identify the
communicants or determine that they engaged in a handshake
process. This process can be used by senders and receivers, as
needed, to establish the shared secrets needed for message de-
livery in AOT (see Section 4.2), as well as for any application
unrelated to AOT. The handshake process leverages the fact
that the communicants know each other’s public keys.

For a sender A to establish a shared secret with a receiver
B, the sender generates the message

(
E

[
pN2,j , (E [pB , (B,RA, ts)] , kHS , N2,j , ts)

]
, N2,j

)
,

(5)
and sends it to AOT as they would any other message. All such
messages include the same global constant tag kHS , generated
by AOT and sent to all users. Here, B is the receiver’s identity
and RA is a random value generated by A.

Whenever any user application detects the special tag
kHS on a bulletin board, they ask for the corresponding mes-
sageE [pB , (B,RA, ts)] using OT, but onlyB can decrypt the

AOT: Anonymization by Oblivious Transfer 10

message. The receiver B decrypts the message and computes
σA,B = h(RA) as the shared secret of A and B, where f is a
cryptographic hash function.

Henceforth, A and B can communicate through AOT. For
example, using the session shared key kB,A = f(σA,B , 1), B
can reply to A with the message

(
E

[
pN2,j , (E [pA, (xB,A, n)] , kB,A, N2,j , ts)

]
, N2,j

)
.

(6)
If a sender and a receiver already share a suitable value, they
do not need to perform the handshake.

AOT treats messages with the special tag kHS the same
as all other messages. Therefore, any OT session for the hand-
shake process is indistinguishable from any other OT session,
except that anyone can recognize how many special tags were
posted on the bulletin board.

6 Security Notes

We explain how AOT resists blending attacks and other stan-
dard attacks against mixnets. We also explain how AOT
achieves message authenticity and protocol integrity. Section 7
defines the security of OT and analyzes its anonymity, includ-
ing stating and proving its receiver anonymity property.

6.1 Resisting Blending Attacks

AOT resists blending attacks with dummy messages generated
by Level-2 nodes and dummy requests initiated by users. In a
blending (or n−1) attack [61], an active adversary attempts to
determine the receiver of a message by allowing only the tar-
geted message into the system—the adversary blocks or delays
all other messages, or fills the system with its own messages.
The adversary then tries to determine the receiver by observing
who receives the targeted message.

Let mXY =
(
E

[
pN2,j , (MX,Y , kX,Y , N2,j , ts)

]
, N2,j

)
be the targeted message. The adversary knows that user X
generated and sent message mXY ; the adversary does not
know the ciphertext MX,Y or the tag kX,Y .

Without dummy requests, the adversary could identify the
receiver as the sole user to retrieve a message from the cur-
rent publication lists. Without dummy messages, the adversary
could identify—by the process of elimination—the sole mes-
sage referenced in these lists not created by the adversary.

With dummy messages, the adversary could infer only
that the targeted message is one among several (the tar-
geted message and the dummy messages). Furthermore, with
dummy requests, the adversary could infer only that the re-

ceiver is one among many (the receiver and any user who made
a dummy request).2

Thus, under a blending attack, the adversary can reduce
the size of the receiver anonymity set size for the targeted mes-
sage to the number of dummy requests initiated by users dur-
ing the time that the targeted message is in a publication list.

For example, if U users make dummy requests every T2
minutes, with Q3 level three nodes that hold each message
for H hours in their publication repositories, AOT will receive
HU/(T2Q3) dummy requests during the time that any mes-
sage is in a publication repository. Considering that each user
will make more than one dummy request in H hours, the ad-
versary cannot reduce the receiver anonymity set.

6.2 Resisting Standard Attacks

We explain how AOT resists replay, traffic-analysis, tagging,
and intersection attacks.

6.2.1 Replay attacks

AOT resists replay attacks because Level-2 nodes detect and
drop any recent message that has been previously processed.
Level-2 nodes drop the messages that are not created within
the last T minutes. Level-2 nodes also drop any message that
has been created within the last T minutes and has a (pay-
load, tag)-pair that is equal to a (payload, tag)-pair of some
previously processed message. If a user wants to resend their
message, they recreate the message with the same encrypted
payload, a new tag (with a new counter—see Section 4.4), and
a new timestamp.

6.2.2 Traffic-analysis attacks

AOT resists traffic-analysis attacks through standard message
and batch sizes and message reordering. AOT accepts only
messages of a fixed size. Each Level-1 node sends messages
in batches of size β1, and each Level-2 node sends batches
of size β2/α (dummy or real). Furthermore, each Level-1 and
Level-2 node reorders all messages within each batch.

6.2.3 Tagging attacks

In a tagging attack, the adversary modifies (“tags”) a message
before it enters the anonymity network and observes the output
messages to recognize the modified message. The only pub-
lished outputs of AOT are the message tags, which senders
compute from shared secrets that the adversary does not know.

2 The chance that the tag of a real message collides with the tag of a
dummy message is negligible.

AOT: Anonymization by Oblivious Transfer 11

If the adversary could replace a message with a modified one
that had a different tag, the intended recipient would not recog-
nize the modified tag, and the adversary would gain no useful
information. Moreover, since messages are encrypted using an
encryption algorithm that provides ciphertext integrity, the ad-
versary cannot alter the messages without being detected.

6.2.4 Intersection attacks

AOT resists intersection attacks through dummy requests. In
an intersection attack [23], the adversary attempts to break the
anonymity of communications by correlating the behaviors of
users. For example, if a receiver B always receives a message
whenever the sender A sends one, the adversary might con-
clude that A and B are communicating. Mitigating intersec-
tion attacks is challenging and many anonymity systems are
vulnerable to such attacks [16, 38, 43, 67]. In AOT, dummy
requests (including by actual receivers) help hide the corre-
lations of user behaviors from the adversary. As explained in
Sections 6.1 and 7.2, the recipient of any published message is
indistinguishable from the users who send dummy requests.

6.3 Protocol Integrity

We explain how entities detect certain possible integrity errors
and what they do about such errors. Such error detection is
possible because users encrypt their payloads using an encryp-
tion algorithm that provides ciphertext integrity, and nodes
protect their communications with other nodes using TLS. As
in cMix [15], we define the protocol integrity as follows:

Definition 1. A protocol maintains integrity if at the end of
each run involving honest users:

1. either, all the messages are delivered unaltered to the in-
tended recipients;

2. or, a malicious mixnode is detected with a non-negligible
probability, and no honest party is proven malicious.

If the users and the mixnodes in AOT follow the protocol
correctly, AOT delivers messages anonymously to recipients
without modification.

Whenever users or mixnodes detect an altered message,
AOT will begin an audit process. During the audit process
AOT traces the message from the step during which the al-
teration is detected, back to the sender of the message. So
tracing a message is possible because the Level-1 and Level-2
nodes commit to the shuffles that they apply to messages in
containers and batches. Because AOT delivers messages using
OT, tracing an altered message to its sender does not violate
anonymity. The adversary cannot detect the receiver of a mes-

sage, nor can it link the sender and the receiver of a message
by incorrectly claiming that the message has been altered.

We consider three scenarios where users and/or AOT
nodes act maliciously.

Level-2 nodes detect an altered message. Each Level-2
node checks each in-coming user message for integrity. If the
integrity check fails, the Level-2 node asks the forwarding
Level-1 node to prove that it has not modified the message.
If the Level-1 node can prove that it did not modify the mes-
sage, then AOT assumes that the input received by the Level-1
node was in error (e.g., by the sender or in transit).

AOT publishes an altered message. Each receiver
should check the received message for integrity. If a receiver
detects an integrity error caused by a malicious node, the re-
ceiver can notify the sender using AOT. The sender can ask
for the message and notify the Level-1 node that received the
message. When users notify AOT that an altered message has
been published, nodes will then trace the message and detect
the malicious node.

Moreover, after a sender sends a message, they can ask
for the message and verify if it has been altered. Senders also
send dummy messages to verify the integrity of the system.

Level-3 nodes send a signed hash of the encrypted (pay-
load, tag)-pair, along with the tuple in the delivery step. There-
fore, Level-3 nodes cannot alter the message during the publi-
cation and delivery steps, or use the unaltered message during
an audit, without being detected.

Honest parties cannot be proven malicious. Senders en-
crypt messages with a public-key encryption system that pro-
vides ciphertext integrity. Therefore, malicious nodes cannot
alter a message and incorrectly claim that some user modified
the message. Moreover, all of the communications between
mixnodes and users, and among the mixnodes, are signed. If
any party is accused of altering a message, they can use the
signed messages that they receive from other parties as proof
of their correct behavior.

7 Anonymity Analysis

We analyze the anonymity of AOT in two ways. First, we
bound the size of the anonymity set. Second, we show that
AOT has receiver anonymity even if all nodes are compro-
mised.

7.1 Receiver and Sender Anonymity Sets

We bound the size of the sender anonymity set and receiver
anonymity set in AOT. We do so without considering that the
adversary may be able to reduce the size of the anonymity

AOT: Anonymization by Oblivious Transfer 12

sets—though we are not aware of any such attacks. For ex-
ample, the adversary may be able to reduce the size of the
anonymity sets if they have additional information about the
communication (e.g., time or location), or if the protocol has
vulnerabilities. As such, our calculations should be interpreted
as upper bounds on the sizes of the anonymity sets. With sim-
ilar caveats, we also show that members within the anonymity
sets are equally like to be the sender or the receiver.

In Section A.3, we also analyze the anonymity of a ver-
sion of AOT without the latency limit τ using an information-
theoretic definition of anonymity.

Chaum [13] introduced the concept of anonymity set in
1988. As defined by Pfitzmann and Kohntopp [53], anonymity
“is the state of being not identifiable within a set of subjects,
the anonymity set.” Kesdogan et al. [39] define anonymity set
as the set of users that have a non-zero probability of being
the sender or receiver of a particular message. Pfitzmann and
Kohntopp argue that stronger anonymity is associated with a
larger anonymity set and an even chance of being the sender
or receiver among members of the set.

We assume that messages arrive into AOT at the rate of
β2τ/λ messages per second, and that on average, Level-2
nodes receive an equal number of messages per second from
Level-1 nodes. We also assume that, when Level-2 nodes first
process and send real messages to Level-3 nodes, each of the
Level-3 nodes has dummy messages in their repository.

As explained in Figure 4a, during the publication step,
each Level-3 node publishes β2/α tags of messages that they
randomly select from the λ most recent buckets—β2/(αλ)
from each bucket—for publication from the node’s message
repository. Altogether, Level-3 nodes publish β2+ρβ2/αmes-
sages. Assuming receivers select active and passive nodes uni-
formly at random for each round, on average ρβ2/α of the
selected messages are dummy messages.

7.1.1 Sender Anonymity Set

Each published tag could have been selected from λ recent
batches of size β2 that Level-2 nodes processed. We explain:
for 1 ≤ i ≤ λ, let Φi,j denote the λ buckets in a Level-3
node N3,j , where Φλ,j denotes the most recent bucket. As
explained in Figure 4b, before any publication, the message
repository of active node N3,j contains iβ2/(αλ) messages
from buckets Φi,j , for all 1 ≤ i ≤ λ. During each publi-
cation step, node N3,j chooses β2/(αλ) messages from each
Φi,j . Therefore, N3,j selects messages from λ recent batches
received from Level-2 nodes.

Level-1 nodes accumulate incoming messages in the con-
tainers Cj before sending them to the Level-2 nodes N2,j , for
1 ≤ j ≤ Q2. Assuming that senders choose Level-1 nodes and
Level-2 nodes uniformly at random, an incoming message can

go to any of the Q1Q2 containers with approximately equal
probability of ≈ 1/(Q1Q2). Containers will accumulate mes-
sages at a similar rate. Each container should have β1 mes-
sages before its messages are sent to a Level-2 node.

Therefore, on average, Level-1 nodes will receive
β1Q1Q2/2 incoming messages before sending β2 messages
to a Level-2 node in batches of size β1. Whenever any Level-3
node publishes a message, it came from λ recent Level-2
batches. Therefore, the size of the sender anonymity set in
AOT is λβ1Q1Q2/2.

7.1.2 Receiver Anonymity Set

Because OT hides the messages that receivers request, for any
Level-3 node and for any message in its publication list, any
receiver that initiates an OT session with the node while the
message is in the list could be the receiver of the message.
Assuming that receivers ask for all messages that AOT pub-
lishes, for each Level-3 node, the receiver anonymity set is at
most γ (the maximum number of messages in the publication
lists) plus the number of dummy requests to the node during
the same time period (minus the number of users who make
real requests to receive messages as well as dummy requests).
In Section 7.2, we show that the adversary cannot reduce the
receiver anonymity set of any message below the number of
dummy requests made to the publishing node.

7.2 Receiver Anonymity with Corrupted
Nodes

Adapting definitions from Naor and Pinkas [46], we state def-
initions of receiver and sender security for OT.

Definition 2. Receiver security in OT. An OTm1 provides
receiver security if and only if, for any probabilistic
polynomial-time sender A with m strings s1, s2, . . . sm,
given any 1 ≤ i < j ≤ m where the receiver chose either
si or sj ,A cannot distinguish whether the receiver chooses si
or sj .

Sender security is defined in terms of a comparison between
the information the receiver learns in the ideal implementa-
tion of OT and the information the receiver learns in the real
implementation.

Definition 3. Sender security in OT. An OTλm1 provides
sender security if and only if, for every probabilistic
polynomial-time receiver B, substituting B in the real im-
plementation of the protocol, there exists a probabilistic
polynomial-time machine B′ for the receiver’s role in the
ideal implementation such that, for every sequence of strings

AOT: Anonymization by Oblivious Transfer 13

s1, s2, . . . sλm of the sender, the outputs of B and B′ are com-
putationally indistinguishable.

OT protocols introduced in [5, 20, 52] satisfy Definitions 2 and
3 against malicious senders and receivers.

A strength of AOT’s design is that it preserves receiver
anonymity, even if a covert adversary corrupts all of the nodes.
This property follows from three sources: receivers retrieve
messages using OT; receivers issue dummy message requests;
and Level-1 nodes verify that their messages have been posted.

For example, a malicious Level-3 node might attempt to
find the recipient of a targeted message by posting only the
targeted message, along with a set of γ−1 fake messages. This
attack would fail for two reasons: First, some receivers would
issue dummy requests. Therefore, the Level-3 node could not
uniquely identify the receiver. Second, because senders always
verify that their messages have been posted, senders would
notice that their messages were not posted.

These observations lead to the following theorem.

Theorem 1. If the oblivious transfer protocol used in AOT
provides receiver security according to Definition 2, AOT pro-
vides receiver anonymity as defined in Definition 4 (below),
even if a covert adversary controls all the nodes in AOT.

Section A.2 presents a proof of Theorem 1 using a game be-
tween a challenger and an adversary.

8 Comparison with Other
Anonymity Systems

We compare design features and security and efficiency prop-
erties of AOT with those of selected other ACSs: original
mixnet (OM) [12], cMix [16], Riffle [43], Stadium [65], Vu-
vuzela [66], and Loopix [55]. Table 1 summarizes the compar-
ison.

AOT has two novel design features, which contribute to
its security and performance. First, each level in the cascade
of nodes performs a different function. Second, during each
round, AOT assigns each Level-3 node an active or passive
role, where AOT sends batches of dummy messages to passive
nodes.

Systems that resist active attacks use dummy messages
and dummy requests in a variety of ways. To hide communi-
cation patterns, many systems that resist active attacks require
users to engage in every round of communication, even if the
users do not send or receive genuine messages in every round.
In AOT and Loopix, however, users do not have to participate
in every round.

Most of the systems in our comparison group are scalable
to support a large number of users (e.g., Loopix). Riffle is de-
signed for communications of users within groups. AOT (see
Section 9.1.3), Stadium, and Loopix scale horizontally.

All of the systems in our comparison group resist global
passive adversaries (GPA), who observe all traffic between
nodes of the system and between users and the system. We
now describe how each system mitigates blending attacks.

Serjantov et al. [61] define two properties of blending at-
tacks: an attack is exact if the attacker can determine the re-
ceiver of a message with probability 1; an attack is certain if
the adversary can always isolate and trace the target message.

cMix and OM follow the threshold mixing strategy; there-
fore, as noted by Serjantov et al. [61], an adversary can per-
form an exact and certain blending attack on both systems.
Through sending loop messages, Loopix renders blending at-
tacks uncertain and inexact. With loop messages Loopix deter-
mines if the adversary is blocking incoming traffic, enabling its
nodes to change their behavior when under such attack. Since
loop messages are indistinguishable from normal messages,
the most an adversary can do is to guess which messages are
loop messages.

Vuvuzela and Stadium resist blending attacks by having
all users make dummy requests in every round. Because send-
ing messages is indistinguishable from receiving messages, to
perform a blending attack in these two systems, the adversary’s
attempt to block incoming traffic also blocks the targeted mes-
sage from reaching its intended recipient. In both systems,
however, the adversary is able to reduce the anonymity set
to a smaller group of communicants as follows. To begin,
the adversary hypothesizes the composition of some subgroup
of users who are communicating frequently. The adversary
blocks all incoming messages, except for those that originate
from within this subgroup. If the majority of the message lo-
cations in the memory of the last mixnode in the cascade
are accessed twice—once for writing and once for reading a
message—the adversary can conclude that users within the
subgroup are frequently communicating with each other.

AOT and Loopix are the only systems that provide offline
message delivery and that do not rely on synchronous rounds
for security. Synchronous rounds require mandatory user par-
ticipation in every round.

As shown in Section 7.2, AOT preserves receiver
anonymity even if a covert adversary controls all nodes; none
of the other systems has this property.

AOT: Anonymization by Oblivious Transfer 14

Table 1. Comparison of AOT with selected ACSs with respect to design characteristics, security, and efficiency. The comparison set
comprises original mixnet (OM) [12], cMix [16], Riffle [43], Stadium [65], Vuvuzela [66], and Loopix [55].

(a) Design characteristics and features of selected ACSs. Two unique properties of AOT are nodes with different functionality, and grouping of nodes for
each batch into active and passive nodes.

Different
Functionality

per Level

Includes
Passive
Nodes

Dummy
Requests

Dummy
Messages

Fixed
Routes

Horizontal
Scalability

Participation
per Round

OM 1981 × × × × X × ×
Vuvuzela 2015 × × X X X × X

Riffle 2016 × × X X × × X

cMix 2017 × × × × X × ×
Stadium 2017 × × X X × X X

Loopix 2017 × × X X × X ×
AOT 2021 X X X X × X ×

(b) Security and efficiency properties of selected ACSs. GPA denotes Global Passive Adversary, and RAC denotes Receiver Anonymity with Compromised
network. AOT provides receiver anonymity, even if a covert active adversary subverts all nodes.

GPA
Resistance

Active Attack
Resistance

Scalable
Deployment

Low
Latency

Asynchronous
Messaging

Offline
Storage RAC

OM 1981 X × × × X × ×
Vuvuzela 2015 X X X × × × ×

Riffle 2016 X X × X × × ×
cMix 2017 X × X X X × ×

Stadium 2017 X X X × × × ×
Loopix 2017 X X X X X X ×

AOT 2021 X X X X X X X

9 Discussion

We explain our key design decisions, calculate the storage re-
quirement for Level-3 nodes, comment on the choice of the
number of messages in each OT, and state some open prob-
lems. Section A.3 analyzes how converting AOT into a pool
mix would affect anonymity and latency,

9.1 Key Design Decisions

We discuss several important design decisions.

9.1.1 Using Oblivious Transfer

The central design decision was to use OT in message delivery.
At the cost of executing an OT protocol, OT contributes sig-
nificantly to receiver anonymity: OT receiver security ensures
that neither AOT nor the adversary learns which message the
receiver retrieves.

An alternative design would be to post each message tag
and its encrypted payload MA,B on the bulletin board. In this
alternative design, the receiver could request messages with
PIR [19] rather than with OT. We chose to use OT rather than

PIR because OT provides both sender and receiver security,
while PIR provides only receiver security.

Receiver security of OT increases the cost of the following
two attacks:

a) The adversary downloads a (message, tag)-pair, re-
encrypts it with the public key of a Level-2 node (adding
a new timestamp), and sends the ciphertext to the Level-
2 node, while also blocking new messages from reach-
ing AOT with a blending attack. The adversary observes
which receivers request messages, in the hope of associ-
ating a receiver with the replayed message.

b) The adversary monitors the frequency by which users ini-
tiate OT sessions with AOT. When a sender resends a
message (when they do not receive an acknowledgment
of delivery or a response to their message), the adversary
notices a change in the number of OT sessions.

With sender security of OT, an adversary must perform one
OT for each (message, tag)-pair retrieved in this fashion. With
PIR, the adversary could download all (message, tag)-pairs at
once, monitoring all published (message, tag)-pairs with, say,
two OT sessions per day.

AOT: Anonymization by Oblivious Transfer 15

9.1.2 Shared Secrets

A key enabling design decision was to assume that each pair
of communicants shared a secret, and to leverage this shared
secret to enable each pair of communicants to recognize the
tag of messages sent between them. The cost is requiring each
pair of communicants to establish a shared key, and we show
how AOT can be applied to do so.

9.1.3 Multiple Nodes Per Level

We designed AOT to scale horizontally for each level, per-
mitting multiple nodes per level. This decision enhances load
balancing, reliability, and security. The work of each level is
spread over several nodes. In case a node fails, other nodes on
that level could process the messages. To control a level, the
adversary would have to control several nodes on that level.

9.1.4 Message Batches at Level 1 and Level 2

Following a fundamental technique of mixnets, AOT pro-
cesses messages in batches, where AOT permutes the order of
the messages within each batch. Doing so enhances anonymity
but can introduce delays. Unlike most mixnets, AOT uses dif-
ferent batch sizes at the first two levels; this property enables
AOT to distribute the processing of messages between Level-1
and Level-2 nodes without introducing delays.

9.1.5 Number of Handshake Tags

Section 5 proposes to use a single global handshake tag. A
consequence of this choice is that every user who initiates a
handshake must request all messages with this tag. To reduce
this overhead, one could use multiple handshake tags—for
example, one per geographic region. This alternative choice
would come at the cost of revealing more information about
communication patterns.

9.1.6 Active and Passive Nodes

We chose, for each round, to partition Level-3 nodes into ac-
tive and passive nodes, where active nodes handle real mes-
sages, and passive nodes handle dummy messages. An alter-
native choice would be for each Level-3 node to handle real
messages and to generate some additional dummy messages.
Our choice aims to obfuscate the internal flow of messages.

9.2 Storage Requirements for Level-3
Nodes

We calculate the amount of storage required by each Level-3
node, for one choice of parameters. Let v denote the rate of

incoming messages to the AOT (in Procedure P , Figure 4a,
we assume v = β2τ/λ messages per second). AOT publishes
v + (ρv/α) real and dummy messages per second, where α
is the number of active nodes and ρ is the number of passive
nodes. The rate of the incoming messages and published real
messages are equal—regardless of number of previous batches
λ in the publication repository and the maximum delay τ for
messages in the publication repository.

For example, if AOT keeps the messages in each publica-
tion list for 12 hours before removing them, with v = 10, 000
messages per second, 300 bytes message size, and Q3 = 5,
each Level-3 node will store about 260 gigabytes of data.

9.3 Number of Messages in Each
Oblivious Transfer

One of the parameter choices in AOT is the number of mes-
sages ζ from which users select a message in each OT. This
choice affects the running time of OT and receiver anonymity.
Currently, we use ζ = γ, the length of the publication list. An
alternative decision would be to choose ζ < γ and to allow
each user to select from which tags to choose in OT (e.g, set
ζ = γ/10). This alternative decision would permit a larger γ,
when messages in the publication list could be maintained for
a longer time, allowing users to be offline longer. This choice,
with its shorter list of tags, might also reduce the size of the
receiver anonymity set.

9.4 Open Problems

Open problems include: (1) Formally state and prove the se-
curity properties of AOT, and (2) perform a formal-methods
analysis of the AOT protocol using a protocol-analysis tool
such as CPSA [62].

10 Conclusion

We introduced AOT, an anonymous communication system
with mixnet architecture that provides offline message deliv-
ery and horizontal scalability. Through using oblivious trans-
fer for message delivery, AOT resists blending attacks, and
provides receiver anonymity even if a covert adversary con-
trols the entire network. The handshake protocol, which ap-
plies AOT to enable two communicants to establish a shared
key anonymously, is of independent interest. AOT illustrates
the power and flexibility of oblivious transfer as a building
block in protocol design to enhance security properties.

AOT: Anonymization by Oblivious Transfer 16

Acknowledgments

We thank David Chaum and Jonathan Katz for helpful com-
ments. Sherman was supported in part by the National Sci-
ence Foundation under SFS grant DGE-1753681, and by the
U.S. Department of Defense under CySP grants H98230-19-
1-0308 and H98230-20-1-0384.

References

[1] REDACTED, unpublished document by one of the authors,
2021.

[2] ADIDA, B., AND WIKSTRÖM, D. Offline/online mixing. In
ICALP 2007 (2007), pp. 484–495.

[3] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER, M.
More efficient oblivious transfer and extensions for faster se-
cure computation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (2013),
pp. 535–548.

[4] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER, M.
More efficient oblivious transfer extensions with security for
malicious adversaries. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(2015), Springer, pp. 673–701.

[5] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER,
M. More efficient oblivious transfer extensions. Journal of
Cryptology 30, 3 (2017), 805–858.

[6] AUMANN, Y., AND LINDELL, Y. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Theory
of Cryptography Conference (2007), Springer, pp. 137–156.

[7] BEAVER, D. Correlated pseudorandomness and the com-
plexity of private computations. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing
(1996), pp. 479–488.

[8] BELLARE, M., AND MICALI, S. Non-Interactive oblivious
transfer and applications. In Conference on the Theory and
Application of Cryptology (1989), pp. 547–557.

[9] BERNSTEIN, D. J. Cryptography in NaCl.
[10] BRICKELL, J., AND SHMATIKOV, V. Efficient anonymity-

preserving data collection. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (2006), pp. 76–85.

[11] CAMENISCH, J., AND LYSYANSKAYA, A. A formal treatment of
onion routing. In Annual International Cryptology Conference
(2005), Springer, pp. 169–187.

[12] CHAUM, D. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM 4, 2
(1981), 84–88.

[13] CHAUM, D. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. Journal of Cryptol-
ogy 1, 1 (1988), 65–75.

[14] CHAUM, D. Precomputed and transactional mixing. United
States Patent, No. 10375042, Aug. 6, 2019.

[15] CHAUM, D., DAS, D., JAVANI, F., KATE, A., KRASNOVA, A.,
DE RUITER, J., AND SHERMAN, A. T. cMix: Anonymization
by high-performance scalable mixing. In Cryptology ePrint

Archive, Report 2016/008 (2016). (2016). https://eprint.iacr.
org/2016/008.pdf.

[16] CHAUM, D., DAS, D., JAVANI, F., KATE, A., KRASNOVA, A.,
DE RUITER, J., AND SHERMAN, A. T. cMix: Mixing with mini-
mal real-time asymmetric cryptographic operations. In Inter-
national Conference on Applied Cryptography and Network
Security (2017), Springer, pp. 557–578.

[17] CHAUM, D., MARIO, SHERMAN, A., AND JOERI. Udm: User
discovery with minimal information disclosure. Arxiv, ac-
cepted to Cryptologia, 2020.

[18] CHEN, C., ASONI, D. E., BARRERA, D., DANEZIS, G., AND

PERRIG, A. Hornet: High-speed onion routing at the network
layer. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (2015),
pp. 1441–1454.

[19] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND SUDAN,
M. Private information retrieval. In Proceedings of IEEE
36th Annual Foundations of Computer Science (1995), IEEE,
pp. 41–50.

[20] CHOU, T., AND ORLANDI, C. The simplest protocol for obliv-
ious transfer. In International Conference on Cryptology
and Information Security in Latin America (2015), Springer,
pp. 40–58.

[21] CRÉPEAU, C. A zero-knowledge poker protocol that achieves
confidentiality of the players’ strategy or how to achieve an
electronic poker face. In Conference on the Theory and
Application of Cryptographic Techniques (1986), Springer,
pp. 239–247.

[22] CRÉPEAU, C., VAN DE GRAAF, J., AND TAPP, A. Committed
oblivious transfer and private multi-party computation. In An-
nual International Cryptology Conference (1995), Springer,
pp. 110–123.

[23] DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or
intersection attacks on anonymity systems. In International
Workshop on Information Hiding (2004), Springer, pp. 293–
308.

[24] DESANTIS, A., DICRESCENZO, G., AND PERSIANO, G. Zero-
knowledge arguments and public-key cryptography. Informa-
tion and Computation 121, 1 (1995), 23–40.

[25] DOLEV, D., AND YAO, A. On the security of public key proto-
cols. IEEE Trans. Inf. Theor. 29, 2 (Sept. 2006), 198–208.

[26] DWORK, C., AND ROTH, A. The algorithmic foundations of
differential privacy. Theoretical Computer Science 9, 3-4
(2014), 211–407.

[27] EVEN, S., GOLDREICH, O., AND LEMPEL, A. A randomized
protocol for signing contracts. Communications of the ACM
28, 6 (1985), 637–647.

[28] FAGIN, R., NAOR, M., AND WINKLER, P. Comparing infor-
mation without leaking it. Communications of the ACM 39, 5
(1996), 77–85.

[29] FURUKAWA, J., AND SAKO, K. An efficient scheme for proving
a shuffle. In Annual International Cryptology Conference
(2001), Springer, pp. 368–387.

[30] GOLDWASSER, S., AND LEVIN, L. Fair computation of gen-
eral functions in presence of immoral majority. In Confer-
ence on the Theory and Application of Cryptography (1990),
Springer, pp. 77–93.

[31] GOLLE, P., JAKOBSSON, M., JUELS, A., AND SYVERSON, P.
Universal re-encryption for mixnets. In Cryptographers’ Track
at the RSA Conference (2004), Springer, pp. 163–178.

https://eprint.iacr.org/2016/008.pdf
https://eprint.iacr.org/2016/008.pdf

AOT: Anonymization by Oblivious Transfer 17

[32] HALEVI, S., AND MICALI, S. Practical and provably-secure
commitment schemes from collision-free hashing. In An-
nual International Cryptology Conference (1996), Springer,
pp. 201–215.

[33] IMPAGLIAZZO, R., AND RUDICH, S. Limits on the provable
consequences of one-way permutations. In Proceedings of
the Twenty-First Annual ACM Symposium on Theory of Com-
puting (New York, NY, USA, 1989), STOC ’89, Association for
Computing Machinery, p. 44–61.

[34] ISHAI, Y., KILIAN, J., NISSIM, K., AND PETRANK, E. Extend-
ing oblivious transfers efficiently. In Annual International
Cryptology Conference (2003), Springer, pp. 145–161.

[35] JAKOBSSON, M. Flash mixing. In Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Distributed
Computing (1999), pp. 83–89.

[36] JAKOBSSON, M., AND JUELS, A. An optimally robust hybrid
mix network. In Proceedings of the Twentieth Annual ACM
Symposium on Principles of Distributed Computing (2001),
pp. 284–292.

[37] JAVANI, F., AND SHERMAN, A. T. BVOT: Self-tallying
boardroom voting with oblivious transfer. arXiv preprint
arXiv:2010.02421 (2020). https://arxiv.org/abs/2010.02421.

[38] KEDOGAN, D., AGRAWAL, D., AND PENZ, S. Limits of
anonymity in open environments. In International Workshop
on Information Hiding (2002), Springer, pp. 53–69.

[39] KESDOGAN, D., EGNER, J., AND BÜSCHKES, R. Stop-and-go-
mixes providing probabilistic anonymity in an open system.
In International Workshop on Information Hiding (1998),
Springer, pp. 83–98.

[40] KILIAN, J. Founding crytpography on oblivious transfer. In
Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing (1988), pp. 20–31.

[41] KRAWCZYK, H. Cryptographic extraction and key deriva-
tion: The HKDF scheme. In Annual Cryptology Conference
(2010), Springer, pp. 631–648.

[42] KRAWCZYK, H., AND ERONEN, P. MAC-based extract-and-
expand key derivation function (HKDF). Internet Engineering
Task Force (IETF), Request for Comments: 5869, May 2010.
https://tools.ietf.org/html/rfc5869.

[43] KWON, A., LAZAR, D., DEVADAS, S., AND FORD, B. Riffle:
An efficient communication system with strong anonymity.
Proceedings on Privacy Enhancing Technologies 2016, 2
(2016), 115–134.

[44] MÖLLER, B. Provably secure public-key encryption for
length-preserving chaumian mixes. In Cryptographers’ Track
at the RSA Conference (2003), Springer, pp. 244–262.

[45] NAOR, M., AND PINKAS, B. Efficient oblivious transfer pro-
tocols. In 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (2001), pp. 448–457.

[46] NAOR, M., AND PINKAS, B. Computationally secure oblivious
transfer. Journal of Cryptology 18, 1 (2005), 1–35.

[47] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND BURRA,
S. S. A new approach to practical active-secure two-party
computation. In Annual Cryptology Conference (2012),
Springer, pp. 681–700.

[48] NURMI, H., SALOMAA, A., AND SANTEAN, L. Secret ballot
elections in computer networks. Computers & Security 10, 6
(1991), 553–560.

[49] OHKUBO, M., AND ABE, M. A length-invariant hybrid mix.
In International Conference on the Theory and Application

of Cryptology and Information Security (2000), Springer,
pp. 178–191.

[50] ØVERLIER, L., AND SYVERSON, P. Improving efficiency and
simplicity of tor circuit establishment and hidden services. In
International Workshop on Privacy Enhancing Technologies
(2007), Springer, pp. 134–152.

[51] PARK, C., ITOH, K., AND KUROSAWA, K. Efficient anonymous
channel and all/nothing election scheme. In Workshop on
the Theory and Application of of Cryptographic Techniques
(1993), Springer, pp. 248–259.

[52] PEIKERT, C., VAIKUNTANATHAN, V., AND WATERS, B. A
framework for efficient and composable oblivious trans-
fer. In Annual International Cryptology Conference (2008),
Springer, pp. 554–571.

[53] PFITZMANN, A., AND KÖHNTOPP, M. Anonymity, unobserv-
ability, and pseudonymity—a proposal for terminology. In
Designing Privacy Enhancing Technologies (2001), Springer,
pp. 1–9.

[54] PFITZMANN, A., AND WAIDNER, M. Networks without user
observability—design options. In Workshop on the The-
ory and Application of of Cryptographic Techniques (1985),
Springer, pp. 245–253.

[55] PIOTROWSKA, A. M., HAYES, J., ELAHI, T., MEISER, S.,
AND DANEZIS, G. The Loopix anonymity system. In 26th
USENIX Security Symposium (USENIX Security 17) (2017),
pp. 1199–1216.

[56] RABIN, M. O. How to exchange secrets with oblivious trans-
fer. Technical Report TR-81, Aiken Computation Lab, Har-
vard University (1981).

[57] RACKOFF, C., AND SIMON, D. R. Cryptographic defense
against traffic analysis. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing (1993),
pp. 672–681.

[58] RAYMOND, J.-F. Traffic analysis: Protocols, attacks, design
issues, and open problems. In Designing Privacy Enhancing
Technologies (2001), Springer, pp. 10–29.

[59] REED, M., SYVERSON, P., AND GOLDSCHLAG, D. Anonymous
Connections and Onion Routing. IEEE J-SAC 16, 4 (1998),
482–494.

[60] SERJANTOV, A., AND DANEZIS, G. Towards an information
theoretic metric for anonymity. In International Workshop on
Privacy Enhancing Technologies (2002), Springer, pp. 41–
53.

[61] SERJANTOV, A., DINGLEDINE, R., AND SYVERSON, P. From a
trickle to a flood: Active attacks on several mix types. In In-
ternational Workshop on Information Hiding (2002), Springer,
pp. 36–52.

[62] SHERMAN, A. T., LANUS, E., LISKOV, M., ZIEGLAR, E.,
CHANG, R., GOLASZEWSKI, E., WNUK-FINK, R., BONYADI,
C. J., YAKSETIG, M., AND BLUMENFELD, I. Formal methods
analysis of the secure remote password protocol. In Logic,
Language, and Security: Essays dedicated to Andre Sce-
drov on the occassion of his 65th birthday (February 2020),
e. a. Nigam, Ed., vol. 12300 of LNCS Festscrift, Springer,
pp. 103–126. Available as https://arxiv.org/pdf/2003.07421.
pdf.

[63] SYTA, E., CORRIGAN-GIBBS, H., WENG, S.-C., WOLINSKY,
D., FORD, B., AND JOHNSON, A. Security analysis of account-
able anonymity in dissent. ACM Transactions on Information
and System Security (TISSEC) 17, 1 (2014), 1–35.

https://arxiv.org/abs/2010.02421
https://tools.ietf.org/html/rfc5869
https://arxiv.org/pdf/2003.07421.pdf
https://arxiv.org/pdf/2003.07421.pdf

AOT: Anonymization by Oblivious Transfer 18

[64] SYVERSON, P., DINGLEDINE, R., AND MATHEWSON, N. Tor:
The secondgeneration onion router. In USENIX Security
(2004), pp. 303–320.

[65] TYAGI, N., GILAD, Y., LEUNG, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Stadium: A distributed metadata-private mes-
saging system. In Proceedings of the 26th Symposium on
Operating Systems Principles (2017), pp. 423–440.

[66] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Vuvuzela: Scalable private messaging resistant
to traffic analysis. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), pp. 137–152.

[67] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND

JOHNSON, A. Dissent in numbers: Making strong anonymity
scale. In 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (2012), pp. 179–182.

A Appendix
A.1 Notation

Table 2. Notation.

C container of nodes at Level 1
Ψ batch of messages at Level-2 nodes
Φ bucket of messages at Level-3 nodes
β1 batch size at Level-1 nodes
β2 batch size of real messages at Level-2 nodes
γ number of messages in pub. lists of Level-3 nodes
ζ number of messages from which to choose in OT
ρ number of passive Level-3 nodes
α number of active Level-3 nodes

σA,B shared secret between sender A and receiver B
kAj ,Bj

tag of message j from sender A to receiver B
P partition of the set of β2 indexes
xj payload of message j

E[k,M] encryption of message M under key k
pb public key of B
sb secret key of B
h hash function
λ number of batches in each message repository
Ri round i
ω residual pool size
Ω number of incoming messages into pool
T1 maximum interval for verifying messages
T2 maximum interval for dummy requests
n nonce
ts timestamp
ξ counter deviation bound

A.2 Proof of Theorem 1

One way to reason about the anonymity properties of AOT is
in terms of a game between a challenger C and an adversaryA

[10, 15, 63]. The challenger C performs the protocol on behalf
of honest mixnodes and users, while adversary A—a proba-
bilistic polynomial time (PPT) Turing machine—performs the
protocol on behalf of compromised mixnodes and users.

The covert adversary can compromise all of the mixnodes
and a fraction of the users. The adversary can observe the in-
ternal states of all compromised mixnodes, and the adversary
may inject, drop, or delay messages. The adversary can also
eavesdrop on communications between mixnodes and users.

The game between the challenger and the adversary works
as follows:

Step 1. The challenger C runs AOT for all of the honest users,
and shares all public information with the adversary.

Step 2. For as many times as the adversary A wants, C sim-
ulates the honest users, and A runs the protocol with β2
messages with inputs from C.

Step 3. The adversary chooses two honest users c0 and c1 and
a message m. The challenger chooses a bit b at random
by tossing a uniform random coin. The challenger sets cb
to be the receiver of the message m, sets c1−b to be a
user who does not have a message in the publication list,
and initiates a dummy request with AOT. Let m′ be the
message in the publication list that c1−b pretends to ask
for. C runs the protocol with cb and c1−b and sends m′ to
A.

Step 4. After the challenge phase, the adversary runs the AOT
protocol with β2 messages as many times as it desires to.

Step 5. The adversary outputs its guess for b.

Let 〈A|C〉 denote the adversary’s output in the game.
The adversary’s advantage in the anonymity game is
|Pr[〈A|C〉 = b]− 1/2|.

Definition 4. A protocol maintains receiver anonymity if the
adversary’s advantage in the anonymity game is negligible.

Proof. (of Theorem 1)
We reduce the receiver security of OT to the receiver

anonymity of AOT.
Define the OTRS Problem as follows: in an OTη1 obliv-

ious transfer session with the sender AOT with η strings
s1, s2, . . . sη , given 1 ≤ i < j ≤ η where the receiver chooses
either si or sj , distinguish whether the receiver chose si or sj .

We define the OTRS game between the challenger COT
and the adversary AOT as follows:

Step 1. AOT runs the protocol for the sender, and COT runs
the protocol for the receiver.

AOT: Anonymization by Oblivious Transfer 19

Step 2. For as many times as AOT wants to, COT engages in
OTη1 with AOT .

Step 3. AOT generates the strings s1, s2, . . . sη . COT chooses
a string with OTη1 ; let sa denote COT ’s choice. COT sends
the indexes i and j, for all 1 ≤ i < j ≤ η, to AOT where
a ∈ {i, j}.

Step 4. For as many times as AOT wants to, COT engages in
OTη1 with AOT .

Step 5. AOT outputs its guess of a.

Any instance of the OTRS game can be transformed into an
instance of the anonymity game as follows.

In Step 1 of the anonymity game, C will initiate an OTRS
game with the challenger COT . In Step 2 of the anonymity
game, C simulates the honest users as many times asA desires.

In Step 3 of the anonymity game, after C receives the tar-
get message m and two honest users c0 and c1 from A, it
chooses cb (by tossing a coin) to be the recipient of m, and
c1−b to be user that initiates a dummy request to the publica-
tion list. C will set the message that OTβ2

1 will pretend to ask
for in the dummy request to be the choice of COT in the obliv-
ious transfer in the OTRS game. C will run the protocol for cb
and c1−b as follows.

In C’s simulation of cb, user cb will ask for m with OTβ2
1

from A. To simulate c1−b, challenger C starts Step 3 of the
OTRS game with COT , where C’s strings are the messages
in the publication list of the Level-3 node. During the OTβ2

1
oblivious transfer session of the OTRC game, when C receives
a message from COT , it will send the message toA, pretending
that the message originated from c1−b. When c1−b receives a
message fromA, C will forward the message to COT , pretend-
ing that the message originated from C.

At the end of Step 3 of the OTRS game, COT sends the
indexes i and j to C. Let mi and mj denote the messages cor-
responding to i and j, respectively, from the publication repos-
itory, and let ma denote COT ’s choice. At the end of Step 3 of
the anonymity game—as its guess for ma—C sends mi to A.
If A guesses the value b correctly, the challenger C knows that
its guess for ma is correct and A has concluded that c1−b has
asked for mi in a dummy request. Therefore, in this case, C
outputs i for its guess of a to COT . If A guesses the value b
incorrectly, then C outputs j for its guess of a.

IfA’s advantage in the anonymity game is non-negligible,
then AOT can distinguish between si or sj , contradicting the
fact that AOT uses an OT protocol that provides receiver secu-
rity.

A.3 Anonymity of a Pool-Mix AOT

Using entropy, we analyze the anonymity of a pool-mix ver-
sion of AOT. Pool-mixes offer additional defenses to blending
attacks.

A pool mix [61] stores a residual pool of ω messages
(similar to AOT’s message repository); whenever it receives
Ω messages, it adds them into the pool, selects Ω messages
randomly from the ω + Ω messages in the pool and outputs
them. The random selection of messages causes some of the
messages to be delayed for a long time—potentially infinitely.
By contrast, in AOT, Level-3 nodes store messages before pub-
lication for less than τ seconds; that is, messages are chosen
from the message repository from the last λ batches such that
each message is published in less than τ time after it enters a
Level-3 node.

If this maximum delay is removed from the system, AOT
can be converted into a pool mix as follows: AOT selects β2/α

messages randomly from β2(λ+1)/(2α) messages in the mes-
sage repository—as opposed to selecting β2/(αλ) from each
bucket—for each publication (see Figure 4b).

When AOT selects messages randomly from each bucket
in the message repository, AOT publishes messages from each
of the last λ rounds with the same probability. Therefore,
the size of the anonymity set is an appropriate measure of
anonymity. Serjantov and Danezis [60], however, show that
anonymity set is not an appropriate measure to analyze the
anonymity of pool mixes, because size of the anonymity set
does not reflect that messages from different rounds have dif-
ferent probabilities of exiting the mix at each round. Instead,
Serjantov and Danezis propose using entropy to measure the
anonymity of pool mixes.

Serjantov and Danezis define the effective size of the
sender anonymity set as 2E , where E is the entropy of the
probability distribution U , and U is “the attacker’s a-posteriori
probability distribution” of all the users being the sender of a
specific message. The same definition applies for the receiver
anonymity set.

Applying the analysis of Serjantov and Danezis, for a pool
mix with pool size ω, where Ω messages are output at each
round, when the number of rounds k approaches infinity, we
have:

lim
k→∞

E =
(

1 + ω

Ω

)
log (ω + Ω)− ω

Ω logω. (7)

Considering the message repository of each Level-3 node
in AOT, to compare the anonymity sets of AOT with those of

AOT: Anonymization by Oblivious Transfer 20

a pool-mix version of AOT, we set ω = β2(λ − 1)/(2α) and
Ω = β2/α. For each Level-3 node we have:

lim
k→∞

E = log λβ2
α

+ log (λ+ 1)
λ+1

2

2λ(λ− 1)
λ−1

2
, (8)

where λβ2/α is the size of the anonymity set of each Level-3
node in AOT.

Therefore, removing the maximum delay from AOT and
converting AOT to a pool mix will add

log (λ+ 1)
λ+1

2

2λ(λ− 1)
λ−1

2
(9)

to the entropy of the probability distribution U . That is, in a
pool-mix version of AOT, the sender anonymity set size will
increase by a factor of

2

(
log (λ+1)

λ+1
2

2λ(λ−1)
λ−1

2

)
. (10)

A poll-mix version of AOT will result in the following
latency: messages will be published after an average of (λ +
1)/2 rounds, with a variance of (λ+ 1)2(λ− 1)/8 rounds. By
contrast, regular AOT publishes messages after an average of
λ/2 rounds, with a variance of (λ2 − 1)/12 rounds.

For example, if we set λ = 9, for each Level-3 node, the
size of the effective anonymity set of a pool-mix version of
AOT will be larger than the size of anonymity set of AOT by a
factor of 20.44 ≈ 1.35—at the expense of potentially delaying
some messages infinitely. It will take the pool version of AOT
5 rounds on average to deliver a message with a variance of
100 rounds.

A.4 Public-Key Encryption with
Ciphertext Integrity

AOT requires the encryption function E (Section 4.2) to pro-
vide confidentiality and integrity. For example, AOT could use
Bernstein’s [9] crypto_box function, which performs public-
key encryption as follows.

1. Generate a symmetric key at random.
2. Encrypt the packet using the symmetric key.
3. Hash the encrypted packet using a cryptographic hash

function.
4. Sign the hash value using Alice’s secret key.
5. Encrypt the symmetric key, hash, and signature using

Bob’s public key.
6. Concatenate the ciphertext (from Step 5) with the en-

crypted packet (Step 2).

A.5 Acronyms and Abbreviations

ACS Anonymous Comumnication System
AOT Anonymity by Oblivious Transfer
GPA Global Passive Adversary
OT Oblivious Transfer
MAC Message Authentication Code
PIR Private Information Retrieval
PPT Probabilistic Polynomial-Time Turning Machine
RAC Receiver Anonymity with Compromised network

	AOT: Anonymization by Oblivious Transfer
	1 Introduction
	2 Background and Related work
	2.1 Anonymous Communication Networks
	2.2 Oblivious Transfer
	2.3 Applications of Oblivious Transfer

	3 Overview
	3.1 Communication Model
	3.2 Adversarial Model
	3.3 Goals
	3.4 Architecture

	4 Anonymization by Oblivious Transfer
	4.1 Message Tags
	4.2 Sending and Processing Messages
	4.3 Publishing Messages
	4.4 User App and Its Roles
	4.5 Return Path, Delivery Acknowledgment, and Resending Messages
	4.6 Dividing Level-3 Nodes into Active and Passive Nodes
	4.6.1 Initiation phase
	4.6.2 Division phase

	5 Handshake Process
	6 Security Notes
	6.1 Resisting Blending Attacks
	6.2 Resisting Standard Attacks
	6.2.1 Replay attacks
	6.2.2 Traffic-analysis attacks
	6.2.3 Tagging attacks
	6.2.4 Intersection attacks

	6.3 Protocol Integrity

	7 Anonymity Analysis
	7.1 Receiver and Sender Anonymity Sets
	7.1.1 Sender Anonymity Set
	7.1.2 Receiver Anonymity Set

	7.2 Receiver Anonymity with Corrupted Nodes

	8 Comparison with Other Anonymity Systems
	9 Discussion
	9.1 Key Design Decisions
	9.1.1 Using Oblivious Transfer
	9.1.2 Shared Secrets
	9.1.3 Multiple Nodes Per Level
	9.1.4 Message Batches at Level 1 and Level 2
	9.1.5 Number of Handshake Tags
	9.1.6 Active and Passive Nodes

	9.2 Storage Requirements for Level-3 Nodes
	9.3 Number of Messages in Each Oblivious Transfer
	9.4 Open Problems

	10 Conclusion
	A Appendix
	A.1 Notation
	A.2 Proof of Theorem 1
	A.3 Anonymity of a Pool-Mix AOT
	A.4 Public-Key Encryption with Ciphertext Integrity
	A.5 Acronyms and Abbreviations

