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Abstract. We present a framework GenoPPML for privacy-preserving
machine learning in the context of sensitive genomic data processing. The
technology combines secure multiparty computation techniques based
on the recently proposed Manticore secure multiparty computation
framework for model training and fully homomorphic encryption based
on TFHE for model inference. The framework was successfully used
to solve breast cancer prediction problems on gene expression datasets
coming from distinct private sources while preserving their privacy - the
solution winning 1st place for both Tracks I and III of the genomic pri-
vacy competition iDASH’2020. Extensive benchmarks and comparisons
to existing works are performed. Our 2-party logistic regression compu-
tation is 11× faster than the one in [27] on the same dataset and it uses
only a single CPU core.
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1 Introduction

Advanced machine learning modeling techniques are used extensively on ge-
nomic, epigenomic and proteomic data to address a large class of problems in
the bioinformatics and biomedical fields ranging from developing robust digi-
tal diagnostic tools, better understanding of transcription factor binding and
gene regulation [3], genomic wide association studies (GWAS), mRNA transla-
tion, protein folding [53], protein functions and interactions [33] as well as drug
discovery and molecular design [58].

A large amount of the biomedical data processed by these techniques is pub-
licly available (e.g., ENCODE1, PDB2, TCGA3, etc.). Yet, the massive cost
reduction of human genome sequencing via next generation sequencing tech-
nologies and tools largely increase the available individuals’ genomic data. The
latter helps build better models for the causal relations between predisposition

1 The Encyclopedia of DNA Elements (ENCODE) – https://www.encodeproject.

org
2 The Protein Data Bank (PDB) – http://www.wwpdb.org
3 The Cancer Genome Atlas (TCGA) – official website http://cancergenome.nih.

gov

https://www.encodeproject.org
https://www.encodeproject.org
http://www.wwpdb.org
http://cancergenome.nih.gov
http://cancergenome.nih.gov


to diseases, response to treatments, effect of drugs, and more generally, it en-
ables personal and precision medicine. It also represents a natural candidate for
outsourced machine learning that can benefit from various cloud services and
resources.

A major challenge in the use of individuals’ genomic data for biomedical re-
search and diagnostic tools is the high sensitivity as well as the legal regulations.
For instance, the Genetic Information Nondiscrimination Act of 2008 4 prohibits
genetic discrimination, thus, strictly limiting the disclosure and leakage of data
to third parties (e.g., cloud service providers). To address this challenge, one
needs effective data protection methods that enable accurate and efficient com-
putation without leaking information about the individual genome sequences.
The trade-off between the computational efficiency, the security level and the
accuracy of the result is essential for the practical application of these methods.

The Annual iDASH Privacy and Security Workshop5 brings together experts
on privacy-enhancing technologies (PETs) and secure cryptographic computing
to propose and implement privacy-preserving computation methods applied to
specific problems from the genomic and the bioinformatics fields. The world-
wide iDASH competition evaluates state-of-the-art cryptographic technologies
for practical secure computation such as homomorphic encryption (HE), differ-
ential privacy (DP) among others.

Track III from the 2020 edition featured a privacy-preserving model learning
for cancer prediction using gene expression datasets coming from different parties
without exposing any of the plaintext genomic data. More specifically, numerical
gene expression data for a large number of genes is collected for samples from
both normal and cancerous tissues. The goal is to predict distant metastasis of
breast cancer (see [61] for details). In the second track, a cancer prediction model
available in plaintext is to be used to provide prediction services on encrypted
genomic data.

In this work, we introduce a unified framework GenoPPML that accom-
plishes both tasks. A logistic regression model is trained on a joint genomic
dataset composed of data coming from several private data sources. The model
is subsequently used to perform predictions over individuals’ encrypted genomic
data samples. The privacy of the input dataset, model and the genomic data
samples is guaranteed via a combination of secret sharing, differential privacy
and homomorphic encryption techniques. Note that the methods and the tech-
niques used in GenoPPML are the award-winning solutions submitted by In-
pher’s team for two of the three tracks of the iDASH’2020 competition, the only
minor difference being that the prediction is adapted to better support individ-
ual genomic data samples (as opposed to prediction on batched samples during
the contest). We tested our framework using 3 genomic datasets from TCGA
for privacy-preserving training and predictions of a logistic regression model.

4 https://www.govinfo.gov/content/pkg/PLAW-110publ233/pdf/

PLAW-110publ233.pdf
5 http://www.humangenomeprivacy.org

https://www.govinfo.gov/content/pkg/PLAW-110publ233/pdf/PLAW-110publ233.pdf
https://www.govinfo.gov/content/pkg/PLAW-110publ233/pdf/PLAW-110publ233.pdf
http://www.humangenomeprivacy.org


2 Related work

In this section we review related literature on privacy-preserving machine learn-
ing (PPML) with emphasis to the genomic field. An extensive review and analysis
of the limitations for privacy enhancing technologies used for genomic data is
provided in [45].

Linear and logistic regressions are one of the most basic machine learning
tools used in genomic studies, although most recently, state-of-the-art models
in deep neural networks are successfully applied to prediction problems. During
the last years, there have been numerous approaches to implement computations
securely on medical data; these involve, on the one hand, (a) distributed settings
where two or more parties collectively compute a function such as a linear or
logistic regression, by applying technologies such as garbled circuits [36], in set-
tings limited to two parties, or secret sharing and multiparty computation [17],
through interactive protocols; these solutions require non-colluding computing
parties and heavily rely on communication between them; on the other hand, (b)
outsourced scenarios move the bulk of the computation to an untrusted third
party in a non-interactive setting, either relying on trusted hardware such as
Intel SGX [48,52,21], therefore requiring some degree of trust on the hardware
manufacturer, or homomorphic encryption [4,40,55,56,19,41]. The latter does not
need any assumption on the hardware, as it is solely based on the cryptographic
guarantees of the used cryptosystems, so it can be seen as the most promising
approach for outsourcing medical computations.

The authors of [4] proposed a method for training a logistic regression based
only on additive homomorphic encryption, which requires the client to precom-
pute some intermediate values in order to account for the limited range of oper-
ations (additions). Several works use levelled homomorphic cryptosystems, en-
abling both encrypted additions and a limited number of encrypted products,
to implement the basic logistic regression block, i.e. a Gradient descent algo-
rithm with an approximated Sigmoid function on an encrypted matrix of input
data. Amongst them, Kim et al [40] employed a Nesterov’s accelerated Gradient
descent algorithm with the CKKS cryptosystem, which supports homomorphic
rescaling and approximate arithmetic; Bonte et al [12] implemented one itera-
tion of a simplified fixed Hessian method with the BFV cryptosystem. Carpov
et al [19] implemented a semi-parallel logistic regression training algorithm us-
ing the Chimera framework [14] employing a combination of TFHE and CKKS
HE schemes. The easier task of logistic regression prediction using HE systems
is treated in work [41]. The authors propose several methods, which differ by
the employed HE scheme, with different computational performance vs accuracy
trade-offs.

The closest related work to ours are De Cock et al. [27] and SecureML [46],
which also propose protocols for privately training a logistic regression model
based on secure MPC. The SecureML paper proposes a new protocol for ReLu
activation function and a fast MPC backend. In [27] the authors optimise the
activation function by avoiding the use of full-fledged secure comparison pro-
tocols and improve the MPC computations. Like in our solution, [27] and [46]



are split into an offline and online phase. In our solution and also in [27], the
offline phase is performed by an additional party (different from the computa-
tional parties) which provides so-called multiplication Beaver triples in advance.
In [46] this offline phase is executed by same computational parties that run the
data dependant (online) phase. To compare the three protocols, we apply the
same approach as in [27]: we exclude the data-independent offline stage (different
for SecureML protocol), and we keep only the data dependant phases that give
us protocols in similar settings. We obtain a speed-up of 11 times for GSE2034
dataset and same execution time for BC-TCGA dataset on a weaker machine
and a single-threaded implementation. More details are given in section 5.

3 Background

In this section, we introduce the privacy-enhancing technologies (PETs) and
tools needed for GenoPPML.

3.1 Multi-party computation

Multiparty computation (MPC) is a method for cryptographic computing al-
lowing several parties holding private data to evaluate a public function on
their aggregate data without revealing anything except what is logically im-
plied by the output of the function. Recent works make these protocols practical
[10,38,13,49,37]. MPC computations have been used in different domains with
sensitive data such as genomic studies [26] and other industry verticals in a vari-
ety of use cases including machine learning applications such as linear regressions
and logistic regressions [46,13], decision trees [32,28], neural networks [60], etc.

Several MPC protocols and libraries have been proposed in the literature and
implemented. SecureML [46] provides a practical method for privacy-preserving
machine learning in the two-party setting using a combination of arithmetic,
Boolean and Yao shares. Sharemind [10] together with subsequent extensions
such as [51] for both arithmetic, Boolean secret shares as well as garbled circuits
is a framework providing 1-out-of-3 and full threshold security model.

Manticore [17] is a highly efficient MPC framework operating in semi-
honest security model with an offline trusted dealer (TD), with full-threshold
security across an arbitrary number of players. The trusted dealer is an addi-
tional party (different from the players). The TD generates pre-computed data
(also referred to as triplets and masks) and distributes secret-shares of these
masks to the players. The verifiability of this phase (TD) can be achieved via
standard techniques such as oblivious transfer and cut-and-choose. The TD does
not participate in the online phase and thus, it does see neither the local pri-
vate data, nor the communicated masked data. Furthermore, it does not collude
with any of the parties and all communication between the trusted dealer and
the players, as well as all communication between the players during the online
phase, is end-to-end encrypted. This makes it secure against malicious external



adversaries. By building on top of Manticore, our protocol is secure in the
information-theoretic setting.

The protocol and implementation details are described in [17]. It supports
arithmetic with both real numbers and Booleans (via arithmetic and boolean
secret sharing, as well as garbled circuits). Machine learning algorithms such
as linear and logistic regression [17], as well XGBoost [28] amongst others, are
implemented in Manticore at scale.

The main MPC functionalities of the Manticore framework used in this
work are matrix addition/multiplication and sigmoid evaluation via Fourier ap-
proximation:

– classical approaches based on Beaver triples [7] are used for the evaluation
of linear combinations and multiplications,

– the Fourier approximation method proposed in [13,17] is used for sigmoid
function evaluation. Here, the sigmoid function is approximated uniformly
on a given interval with Fourier series whose coefficients decay exponentially
fast.

We use Manticore, but our GenoPPML framework is agnostic of the
choice of the MPC framework and can thus be implemented on any MPC frame-
work supporting these primitives. In our implementation of GenoPPML pro-
tocol the data owners play the role of the players (computational parties) and
the trusted dealer is either the analyst party (this work), or an additional in-
dependent party or the triplets are interactively generated by the players using
technique as the one proposed in [15]. The drawback of the later is that the MPC
protocol is slower, but the security model is stronger. More details are given in
section 4.

3.2 Homomorphic encryption

Homomorphic encryption (HE) is a PET that allows to perform computations
directly over encrypted data without revealing inputs, outputs or any interme-
diary data. A major difference from MPC is that HE does not need data owner
interaction during the computation phase. Additive/multiplicative HE schemes
are known since the late 1970’s. Yet, the first scheme supporting simultaneously
both addition and multiplication without restriction on the number of operations
was proposed in 2009 by Gentry [35]. The study of HE schemes is an active area
of research and recent advances bring technologies closer to being efficient in
practice.

For security reasons all ciphertexts for HE schemes supporting simultaneously
addition and multiplication, for any prescribed multiplicative depth, include a
noise component. After each homomorphic operation, the noise increases and
once it exceeds a certain threshold, the ciphertext can no longer be correctly
decrypted. HE schemes supporting addition and multiplication for an arbitrary
prescribed multiplicative depth of operations are called leveled homomorphic
encryption (LHE), whereas schemes not limited by the complexity and depth of
the operations are called fully homomorphic encryption (FHE) schemes.



Bootstrapping techniques are used to reduce the noise components in ci-
phertexts to predefined values and thus, convert LHE schemes to FHE schemes.
Several HE schemes have been proposed in the literature: BFV [31], BGV [16],
CKKS [22] and TFHE [23,25]. The first three schemes are suitable for ciphertexts
encrypting multiple plaintext values (SIMD) in LHE mode whereas the TFHE
scheme is well-adapted for ciphertexts encrypting single plaintext value in FHE
mode.

TFHE (Torus Fully Homomorphic Encryption) [23] defines messages and ci-
phertexts over the torus R/Z and keeps track of the noise standard deviation
α� 1, a dynamic parameter that changes after each operation. Therefore, plain-
texts have ` = − log2(α) fractional bits of precision. TFHE can supports different
plaintext space representations. The ones used in GenoPPML are:

– TLWE encrypts individual elements of R/Z,
– TRLWE encrypts packings of N individual torus elements (or vectors in

(R/Z)N ) associated to the coefficients of polynomials modulo ZN + 1.

Various homomorphisms and algebraic structures allow to switch between these
two representations. For each of these plaintext representations, specific encryp-
tion and decryption functions are defined. Below, we describe the functionalities
of TFHE scheme that are used in this work.

– Arithmetic function Add takes as input two TRLWE ciphertexts and adds
the corresponding encrypted messages together in a new TRLWE ciphertext.

– The plaintext-ciphertext multiplication function Mult takes as inputs a pub-
lic polynomial with integer coefficients and a TRLWE ciphertext and returns
a new TRLWE ciphertext encoding their product.

– The coefficient extract operation CoefExtri takes as input a TRLWE cipher-
text and outputs a TLWE ciphertext which encodes the i-th polynomial co-
efficient of the input ciphertext with at most the same noise variance or
amplitude.

– The functional bootstrapping procedure FuncBootf [14] allows to evaluate
arbitrary point-wise defined function f over an TLWE ciphertext message (in
addition to noise reduction). Simple rounding functionality is used in [29,23]
for gate bootstrapping and it was further generalized to arbitrary functions
in [9,24,20].

4 GenoPPML framework

The GenoPPML framework trains a prediction model (logistic regression) on
private genomic datasets and provides private genomic data prediction service
to users. The privacy of the input genomic datasets, the prediction model as well
as the users’ prediction data is guaranteed via a combination of MPC, FHE and
differential privacy (DP).

Figure 1 illustrates the GenoPPML framework. Three types of actors are
involved in the data processing: (i) genomic dataset owners, (ii) data analyst and



Fig. 1. GenoPPML architecture. Private datasets are processed locally for dimension-
ality reduction and outputs are secret shared for model training in MPC. The computed
model is then used for prediction on users’ data encrypted via an FHE scheme. Users
receive and decrypt the computed encrypted predictions.

(iii) final users. In a first phase (learning phase), the database owners train a joint
logistic regression model (requested by the analyst) via MPC. In order to speed-
up the MPC protocol the analyst provides the required Beaver multiplication
triplets and does not collude with any sub-set of data owners. A differential
privacy mechanism is then used in order to ensure the privacy of the genomic
database owners against model inversion attacks [34], [64]. Once the analyst has
the model, it provides a private prediction service to users in a second phase
(prediction phase). Homomorphic encryption is used to protect the privacy of
user genomic data during this phase.

In our threat model, we assume that all communication channels between all
database owners and analyst are private and authenticated (encrypted). More-
over, we assume that the database owners, the analyst and the final users provide
the correct input and follow the protocol. Note that in the case where the final
user does not follow the protocol and perform a large number of requests to
the analyst, the only information that can learn is the model that is already
protected by differential privacy.

In what follows each phase of the GenoPPML is described in more details.

4.1 Model learning phase

The multi-party logistic regression learning is performed in two steps. In the first
step the genomic database owners perform a local preprocessing and afterwards
an MPC protocol is used to find the final model. The objective of the local



preprocessing is to reduce the dimensionality of genomic databases by applying
a feature selection procedure. Genomic databases have the same set of features.

XA

yA

feat. select
XA

yA

PA

XA.PA

PCA

logreg

project

add noise

reveal θ

θ

local to A

MPCdim. reduct.

feat. select

local to B

dim. reduct.

private plaintext secret shares public result
(data remains local) (full thresdold) (ε-DP)

XB

yB

PB

XB .PB

XB

yB

Fig. 2. Example of a 2-party MPC training data-flow chart.

As an example, and also for conciseness, we describe the learning phase re-
stricted to 2 database owners/players. This procedure is illustrated in figure 2.
Here, XA, yA are nA samples known by database owner A (in red in figure 2),
and XB , yB are nB samples known by database owner B (in blue in figure 2).
XA, XB are feature matrices, of dimension respectively nA×k and nB×k, with
the same same number of features k, and the class vectors yA, yB are binary
vectors of length nA and nB , respectively.

Each data owner first executes a local computation on their data: here, a
feature selection/projection and secret-share the outcome (in a secret-shared
distributed database in purple on figure 2). The result of feature selection step
are projection matrices PA, PB which allow to project input datasets from k to
h features, where h � k. Then, both players jointly finish with a secret-shared
multiparty computation using the secret-shared database. At all times, Player
A and Player B keep one share of each input and intermediate variable: a share
has marginal uniform distribution and does not reveal any bit of information
about the variable.

It is only by combining two shares of A and B that a plaintext value can
be reconstructed: such online operation requires the consent of both players,
and is only applied to the final model. By standard security of MPC protocols,
every exchange between player A and B during the whole training process are



uniformly masked and do not carry any bit of information, except the final model
once a suitable level of differential privacy (DP) noise has been added.

In addition to the dimensions nA, nB , k, and projection size h, training
uses differential privacy parameters ε and δ: when δ = 0 ε-differential privacy
is obtained, whereas when δ > 0 (ε, δ)-differential privacy is obtained. When
ε = ∞ (or a very big number), no noise is added and the result is the baseline
model (nothing else is revealed about the input data). The published model θ
is a vector of length k + 1 (intercept and model coefficients) and includes the
DP-noise.
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Fig. 3. Logistic regression learning data-flow program.

The procedure to obtain the (noiseless) baseline logistic regression model is
the following (depicted on figure 3). The full algorithm is described in Algo-
rithm 1.

Local plaintext computation Each player A, B runs locally on its dataset a fea-
tures selection procedure and computes an orthonormal projection matrix PA,
PB , of dimension k×h where h is the hyper-parameter. These matrices are used
in the multi-party computation to project databases to a smaller feature space.
This step are the red and blue arrows/blocks in figure 3. Out of all the feature
selection algorithms we have tried, the best results are obtained using a simple
PCA (principal component analysis). We note that each party can choose its
own value for hyperparameter h as a function of dataset characteristics. In this
work, we use the same h for both parties.



Algorithm 1 Logistic regression MPC learning.

Require: Datasets (XA, yA) and (XB , yB) owned by A and B, respectively.
Require: A hyperparameter h used for local dimensionality reduction.
Require: Differential privacy parameters (ε, δ).
Require: L2-regularization parameter λ satisfying (3)
Ensure: Revealed logistic regression model θ with (ε, δ)-differential privacy noise

Local plaintext computation
1: Players A and B apply principal component analysis locally in order to obtain the

decomposition of rank h: UA ·ΣA ·PTA := PCAh(XA) and UB ·ΣB ·PTB := PCAh(XB)
respectively, and compute XA ·PA and XB ·PB respectively (UA and UB are nA×h
and nB × h matrices, ΣA and ΣB are positive diagonal matrices of size h, PA and
PB are orthogonal k × h matrices).
Multi-party computation

2: Players A and B secret shared XA, yA, PA, XA · PA, XB , yB , PB and XB · PB
respectively. Let X =

(
XA
XB

)
, y =

(
yA
yB

)
and P =

(
PA PB

)
.

3: Player A and B interactively (via MPC) compute X · P =

(
XA · PA XA · PB
XB · PA XB · PB

)
,

using the locally pre-computed XA · PA and XB · PB .
4: Player A and B interactively (via MPC) apply principal component analysis in

order to obtain the decomposition U ·Σ · V T := PCAh(X · P ).
5: Player A and B interactively (via MPC) compute θ = P · V · logregλ,b(U · Σ, y)

where b is a perturbation vector satisfying either (4) for (ε, δ)-differential privacy
with Gaussian noise or (5) for ε-differential privacy with Laplacian noise.

6: return θ



Multi-party computation Let (X, y) denote the joint datasets, X is the (nA +
nB) × k features matrix, y is the classes vector of size (nA + nB) and let P be
the joint projection matrix of dimension k× 2 ·h. A new PCA is performed, this
time in MPC settings.The benefits of the PCA are two-fold:

(i) it removes correlated features from the projected joint dataset and reduces
the dimension of the feature space of the data,

(ii) the change of variables allows us to work on a dataset with orthonormal
columns, which significantly increases the performance and stability of the
algorithm.

Let U · Σ · V T := PCAh(X · P ) be the PCA decomposition of X · P to rank
h. Here, U is n × h matrix whose columns form an orthonormal family, Σ is a
diagonal matrix of size h with positive diagonal entries and V is 2 ·h×h matrix.

To add differential privacy to the model, we have two choices:

output perturbation – add noise to the exact model post-optimization,
objective perturbation – add noise to the cost function pre-optimization and

optimize for the perturbed cost function.

As summarized in [39, p.25.3] and following Dwork [30], for logistic regression
cost functions, objective perturbation achieves a prescribed level (ε, δ) of dif-
ferential privacy with smaller distortion to the minimizer compared to output
perturbation.

For objective perturbation, we choose to add differential privacy with respect
to the PCA-reduced model and input feature matrix. More precisely, letting
b ∈ Rh be a perturbation vector parameter, the objective perturbation of the
cost function in our setting is

L(θ, λ, b) :=
1

n

n∑
i=1

` ((U ·Σ)i, yi, θ) +
λ

2n
‖θ‖+

1

n
〈b, θ〉,

and the minimum for that perturbed function is

logregλ,b(U ·Σ, y) := arg minθL(θ, λ, b).

Here, `(Wi, yi, θ) is the negative log-likelihood cost function:

`(Wi, yi, θ) = −yi ln(σ(Wi · θ))− (1− yi) ln(1− σ(Wi · θ)),

where Wi ∈ Rh is the sample and yi ∈ {0, 1} is the class label. Note the presence
of both the L2-regularization term with parameter λ and a perturbation term
written in terms of b. Both λ and b will be determined in terms of the differential
privacy parameters ε and δ as well as the input matrix X.

The noiseless (baseline) model is

θpriv = P · V · logregλ,b=0(U ·Σ, y).



Detailed description of the logistic regression in the MPC Manticore framework
with b = 0 is presented in [17, §5.1]. The MPC steps are the purple arrows on
Figure 3.

For any θ, the maximal norm among all gradients of individual samples,
Gmax(θ) = maxi |∇` ((U ·Σ)i , yi, θ)| satisfies

Gmax(θ) ≤
√
h · ‖U ·Σ‖∞ ≤

√
h · ‖X‖∞ (1)

and the hessian spectral norm, Hmax(θ) = maxi
∣∣∇2` ((U ·Σ)i , yi, θ)

∣∣ satisfies

Hmax(θ) ≤ h

4
· ‖U ·Σ‖2∞ ≤

h

4
· ‖X‖2∞ . (2)

Letting Gmax := supθGmax(θ) and Hmax := supθHmax(θ), Kifer et al [39] prove
that for any regularization λ ≥ 2Hmax/ε, one achieves:

ε-differential privacy using a Laplacian perturbation to the objective function
with b satisfying:

density(b) ∝ exp

(
− ε‖b‖

2Gmax

)
(ε, δ)-differential privacy for a perturbation vector b satisfying:

b← N
(

0, variance =
8G2

max log(2/δ + 4ε)

ε2

)
,

In particular, combining with the bounds (1) and (2), Kifer’s result implies that
for

λ ≥ h

2ε
· ‖X‖2∞ (3)

and

b← N
(

0, variance =
8h‖X‖2∞ log(2/δ + 4ε)

ε2

)
(4)

we achieve the desired level (ε, δ) of differential privacy. Similarly, if we want
to achieve ε-differential privacy, it suffices to consider a Laplacian perturbation
satisfying

density(b) ∝ exp

(
− ε‖b‖

2
√
h‖X‖∞

)
. (5)

The GenoPPML framework model learning phase can be easily extended
in order fine-tune the model using different values for hyperparameters such as
h and λ. One would execute several (parallel) learning steps and only the best
performing model, as a function of the model cost function or any other model
quality assertion metric, will be revealed.



Implementation details The learning phase is built upon Inpher XOR li-
brary6, which is an implementation of the Manticore [17] framework. This
framework provides a virtual machine allowing multiple players to execute an
MPC algorithm (one virtual machine per player). The built-in compiler included
in the XOR framework is particularly optimized for stable fixed point computa-
tions, such as regression algorithms, and matrix algebra. Once the computation
has been set-up (i.e. compilation of a public algorithm, and data-independent
setup that depends only on public dimensions and hyper-parameters), the com-
putation phase is carried-out in peer-to-peer manner between the data owners.
This set-up phase is performed by the analyst.

The combined action of PCA dimension reduction, and of the L2-regularization
of logistic regression make the overall algorithm numerically stable, robust against
singular features matrices, and resilient against over-fitting. High precision is ob-
tained via a uniform approximation of the sigmoid function via Fourier series
based on the ideas of [13]. Because MPC operates over the full dataset, the algo-
rithm is stable even if the datasets of player A and B are not independent and
identically distributed.

Our protocol does not reveal any intermediate variables, and in particular,
no partial gradients are published. This allows to choose an algorithm that goes
“straight to the point”, like gradient descents over the full dataset. Because MPC
does not restrict the choice of aggregation function, we use accelerated conver-
gence methods, the IRLS (Newton–Raphson) technique via the inverse Hessian,
that make logistic regression converge in 8-10 iterations. This is much smaller
than any stochastic gradient descent (SGD), and/or mini-batched approaches,
that require many more iterations to converge.

Discussion: comparison with pure MPC and FL approaches The learn-
ing phase described above is a hybridization between a pure MPC, local com-
putations and differential privacy. In a pure MPC solution, the data owners
secret share the full joint dataset (X, y) without projecting it using the PCA
matrix and thus, perform the MPC logistic regression training on a larger ma-
trix: (n1 + · · ·+ n`)×k instead of (n1 + · · ·+ n`)× l ·h (here, l is the number of
data owners). Considering that for genomic datasets l ·h is usually several mag-
nitudes lower than k, our framework has a huge computational advantage over a
pure MPC approach. The drawback is that our approach supposes that the input
dataset features are correlated and that a projection over a lower-dimensional
space preserves input dataset information. Note that this limitation does not
apply to genomic datasets because their feature space is highly correlated.

Another alternative for the learning phase is a federated learning approach.
Federated learning (FL) [42,44] is a distributed machine learning approach where
training data is decentralized and typically comes from a large collection of client
devices (e.g., mobile phones, sensors, etc.). Each client trains a local model that
then gets aggregated by a central server. Usually, the aggregating server has

6 More information about Inpher XOR library can be found here https://www.

inpher.io/products#xor.

https://www.inpher.io/products#xor
https://www.inpher.io/products#xor


access to all the model updates of the clients. Knowing these model updates
enables the server to often reconstruct the original clients’ data via the so-called
model inversion attacks [64,34]. To prevent such attacks, one requires the server
aggregation to be performed in privacy-preserving manner. Various methods for
secure aggregation based on differential privacy [1,43], pairwise additive masking
[11,8], homomorphic encryption, additive secret sharing [57], have been proposed
in the literature.

In our framework the only data that is published is the final model, and
it is the only variable that need to be protected by differential privacy noise,
the privacy of all other intermediate variables being protected by MPC in the
information-theoretic security model. The privacy is the same as if the whole
computation had been carried out by an oracle that just publishes the final
result, which is the strongest notion of privacy achievable. In other words, the
use of MPC compared to a federated learning approach allows us to:

1. use noise-less iterations during the gradient descent (much fewer rounds than
solutions that require noise at each step),

2. apply rigorous one-step privacy budget bounds provided in the foundation
papers on differential privacy (not heuristic iterative bounds),

3. derive all regularization and noise parameters directly from the provided ε
and/or δ privacy levels.

As a final bonus: setting ε = ∞ in our solution reveals only the baseline θpriv
model, but no other information on XA, yA, XB , yB . This is much better than
traditional plaintext-aggregation-based federated learning, where ε = ∞ would
leak all the (noiseless) intermediate gradients, which carry a lot of additional
information about the individual datasets, as explained in [34,64].

partial gradients leak info on dataset A

Aggregated gradients with noise
converge very slowly

Plaintext FL: every published step
must be protected with noise

MPC can converge directly!

Dataset A optimum

Dataset B optimum

Optimum

also they point to local dataset optimum

Fig. 4. Compared convergence: MPC versus plaintext-aggregation FL.



The convergence of our method versus a plaintext-aggregation FL approach
is illustrated in figure 4. Traditional FL that publishes local updates have a few
drawbacks:

– Partial gradients that only depend on dataset A leak information on A, to
mitigate the privacy impact, they must be protected with larger noise and
reduced learning rate: both increase the number of iterations, and may affect
the final accuracy.

– Alternating partial updates on A and B will only converge to the barycenter
of datasets A and B optima: reaching the real optimum requires advanced
aggregation of partial gradients with noise, which further increase the num-
ber of iterations. In contrast, our solution of a pure MPC technique converge
directly to the optimum and the noise is added at the end.

4.2 Prediction phase

Once the analyst party obtains the learned model, it can use it to do predictions
for the final users. The prediction is a 3 step process:

– User encrypts and sends feature row-vector [X]HEsk
to the analyst party.

– Analyst computes the model prediction function predθ over X and sends the
prediction result [predθ (X)]HEsk

back to the user.

– User decrypts the prediction result using his secret key sk.

User data is homomorphically encrypted using user secret-key sk. The analyst
party has never access in clear either to user data X, to prediction result or to
any intermediate computation values.

The plain-text logistic regression prediction function is the sign of a matrix
product:

predθ(X) = sign(X · θ).

We consider that X has a constant 1 column appended which corresponds to
model intercept component. In practice, no multiplication between model inter-
cept coefficient and this column is done. Without loss of generality, we suppose
that model θ has integer coefficients.

Data encryption Let user data X be a row-vector size k where k is the number
of features. The row-vector X is split into d = dk/ne contiguous parts, here n
is the number of coefficients in the homomorphic encryption scheme TRLWE
polynomial. Let F (j) =

∑n−1
i=0 Xj·n+i · Zi be its j-th part. Each part F (j), 0 ≤

j < d is encrypted in a TRLWE ciphertext using the coefficient packing strategy.

Since TRLWE ciphertexts encrypt polynomials with Torus coefficients, the
part-polynomial F (j) is rescaled by an analyst-provided factor. The scale factor
is chosen in such a way that the prediction function does not overflow modulo
1. In practice, a 25% error-margin is used.



Encrypted prediction The learned model θ is available in plain to the analyst
party. Prediction is performed by a mix of linear combination and functional
bootstrapping. Algorithm 2 illustrates our approach. The loop performs the dot
product by blocks of n values. On line 3, polynomial T (j) encodes a part of
n model coefficients in reverse order. Observe that the result of homomorphic
multiplication on line 4 encrypts a polynomial whose highest-degree coefficient
is a part of dot product X · θ, in particular coefficient n− 1 is:

n−1∑
i=0

Xj·n+i · θj·n+i.

Other coefficients are dot products with different rotations of T (j) and are not
used. After the loop, the (n− 1) -th coefficient of variable P encodes the full dot
product X · θ. This part of the algorithm uses d plaintext-ciphertext multiplica-
tions and d− 1 ciphertext additions.

Afterwards, line 7, a TLWE encryption of X · θ is extracted from the TRLWE
ciphertext P . In this way, a single coefficient encryption is obtained and the un-
necessary coefficients of P are discarded. A functional bootstrapping procedure,
line 8, evaluates the sign function over X · θ.

Algorithm 2 Homomorphic evaluation of logistic regression prediction.

Require: Encrypted parts TRLWE
(
F (j)

)
where F (j) =

∑n−1
i=0 Xj·n+i · Z

i – for 0 ≤
j < d

Require: Model coefficients θi, for 0 ≤ i < k
Ensure: Encrypted prediction TLWE (sign (X · θ))

1: P ← 0
2: for j = 0, . . . , d− 1 do
3: T (j) =

∑n−1
i=0 θj·n+n−1−i · Zi

4: tmp← Mult
(
T (j),TRLWE

(
F (j)

))
5: P ← Add (P, tmp)
6: end for
7: y ← CoefExtrn−1 (P )
8: return FuncBootsign (y)

Implementation details The prediction phase has been implemented using
the open source TFHE library7. We use TRLWE and TLWE samples of size n =
1024. The standard deviation α = 2−25 is used to sample the initial Gaussian
noise in the TRLWE ciphertexts. The secret key is binary. These parameters
achieve at least 128 bits of security, according to LWE estimator [2]. The library
is used unmodified except for the TLWE sample size n.

7 TFHE library is available at https://github.com/tfhe/tfhe.

https://github.com/tfhe/tfhe


Discussion For performance reasons, one could perform only the dot product
part on the analyst side and let the final user do the sign part. The downside
is that more information about model will leak to user, refer to [5,59,6,54,18]
for different attack vectors exploiting this. A possible solution will be to add
another layer of DP noise to prediction results before sending them back to user.

5 Benchmarks

In our experiments, we have used 3 datasets from the TCGA (The Cancer
Genome Atlas) database, more specifically breast cancer genomic data [62]. The
first dataset BC-TCGA contains gene expression data for 17,814 genes and 590
samples (61 normal tissue samples vs 529 breast cancer tissue samples). Gene
expression value measures the intensity of a gene in a given sample. Depending
on the sequencing type, gene expression data has different ways to be measured
(e.g. normalized intensity values or normalized ratios between measured and con-
trol sample intensities). The second dataset GSE2034 contains gene expression
data for 12,634 genes and 286 samples (107 recurrence tumor samples vs 179 no
recurrence samples). Lastly, the third dataset, which we denote by BC12-TCGA,
contains genomic data (copy number variations) for 25,128 genes and 2713 sam-
ples for 11 tumor locations (201 samples of breast tissue vs 2512 samples of
other 10 tumor sites). First and last datasets are highly unbalanced towards one
output class making learning task theoretically harder. The 3 datasets are rep-
resentative for different kind of genomic studies, more specifically classification
tasks. For more details about refer to [47,?].

Our objective is to predict if a given tissue sample, described by its gene
expression data, belongs to one of 2 groups (e.g. cancerous or normal for BC-
TCGA dataset). We split each dataset (keeping a fixed ratio between the 2
sample groups) into 3 parts: A (40%), B (40%) and C (20%). A joint logistic
regression model is trained between 2-parties over datasets A and B. Dataset
C is used to for asserting model quality. Training and test dataset sizes are
summarized in table 1.

#features
#samples neg. to
train test pos. ratio

BC-TCGA 17,814 471 119 0.12

GSE2034 12,634 228 58 0.60

BC12-TCGA 25,128 2,169 544 0.08
Table 1. Train and test dataset sizes together with positive to negative class ratio.

5.1 Learning phase

In our tests, we use 3 values (5, 20 and 50) for the projection dimension h of local
datasets and 9 configurations for the DP parameters. The privacy budget ε varies



from 3 to 90 and δ is either 0 (ε-DP) or 0.02 ((ε, δ)-DP). Also we have tested
the model with no addition of DP-noise (corresponding to ∞-DP). In order
to compare to a clear-text learned model, we have executed the scikit-learn

library [50] logistic-regression (with default parameters) over the full dataset
(concatenation of parts A and B). AUC score (Area Under the Receiver Oper-
ating Characteristic Curve), well suited for unbalanced datasets, is used to test
model quality. The AUC score varies from 0.5 to 1 (higher is better) and a 0.5
value corresponds to random guessing. Besides, we log the accuracy score (ratio
of correct prediction to total number of predictions) for comparison with exist-
ing works. The model quality varies at each run because the added DP-noise is
random. Each test is executed 10 times. The mean AUC score and the mean
accuracy is used in our results.

Figures 5, 6 and 7 illustrate the obtained AUC scores (each has a sub-figure
for the ε-DP and the (ε, δ)-DP experiments). Solid black line is the AUC score
for the scikit-learn logistic-regression model. Other colored solid lines are the
scores for different hyperparameter h values. Dashed lines correspond to AUC
score for output models with no differential privacy noise (i.e. ∞-DP).

As expected, for the same value of h, better models are obtained when
the weaker (ε, δ)-DP notion is used and also when parameter ε increases. The
scikit-learn full-dataset model obtains the best score, except for the BC12-
TCGA dataset. We suppose that the default training algorithm in scikit-learn

logistic regression is not well suited for this dataset and that it needs hyperpa-
rameter tuning.

In the case of BC-TCGA dataset the best AUC score, over 0.99, is obtained
for h = 5 independently of DP-noise configuration. For other values of h the
score is worse because the added DP-noise is larger. Observe that a projection
of h = 5 is sufficient for this dataset as the noiseless DP model obtains the best
score.

The situation is different in case of GSE2034 and BC12-TCGA datasets.
The projection size h = 5 is no more sufficient to capture complete dataset
information, the noiseless DP model obtains the lowest score. The 0.5 AUC value
for GSE2034 is equivalent to random guessing. We suppose that the maximal
projection size (h = 50) is not yet sufficient for GSE2034 because the noiseless
DP model score is lower than the scikit-learn model score. There is no general
trend in the choice of hyperparameter h. Under the same DP budget (ε value)
the best model depends on value h and on dataset characteristics.

Tables 2, 3 and 4 give training execution times, memory usage and network
communication size for the executed experiments. The tests were performed
on a 4-core Intel(R) Xeon(R) CPU @ 3.10GHz machine with 32GB of RAM
(c2-standard-8 GCP instance). Total training time (local preprocessing phase
and MPC phase) in the worst case (highest value of projection parameter h) for
the 3 datasets is respectively less than 4, 2 and 23 seconds. It is counter-intuitive
that the MPC execution time and the local processing time are comparable, one
would expect the MPC phase to take the largest part of execution time. This
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Fig. 5. BC-TCGA dataset AUC scores.



h 5 20 50

Local CPU 0.49 0.99 1.78
processing RAM 266 267 270

MPC
CPU 0.91 1.30 2.17
RAM 399 437 466

Network 138 164 219
Table 2. BC-TCGA dataset execution times (in seconds per player), RAM usage and
network communication (in MB per player).

h 5 20 50

Local CPU 0.12 0.29 0.51
processing RAM 161 161 161

MPC
CPU 0.37 0.56 1.02
RAM 167 180 276

Network 50 68 106
Table 3. GSE2034 dataset execution times (in seconds per player), RAM usage and
network communication (in MB per player).

h 5 20 50

Local CPU 4.10 6.30 11.31
processing RAM 1294 1294 1294

MPC
CPU 5.87 7.43 11.47
RAM 1892 1925 2005

Network 854 909 1021
Table 4. BC12-TCGA dataset execution times (in seconds per player), RAM usage
and network communication (in MB per player).
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is due to the fact that the local processing is a python implementation without
regard to performance.

The total training time does not count for network communication because
we execute player A and B virtual machines on the same host machine. As an
example, the communication time for parameter h = 50 and dataset BC-TCGA
is less than 2 seconds for a LAN network (1Gbps) and ≈ 18 seconds for a WAN
network (100Mbps). The communication time goes up to ≈ 82 seconds for the
BC12-TCGA dataset in WAN settings.

Figure 8 illustrates the best model accuracy scores obtained for most-secure
(3, 0)-DP, least-secure (90, 0.02)-DP and noiseless ∞-DP settings. In paper [63]
the authors compared different dimensionality reduction techniques before the
classification task for BC-TCGA and GSE2034 datasets. We obtain comparable
accuracy for the BC-TCGA (1.0 vs 0.99) and somewhat better accuracy for the
GSE2034 dataset (0.66 vs 0.62). We compare our noiseless DP setting to [63]
best obtained accuracy.
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Fig. 8. Best obtained model accuracy by dataset and model type.

We compare the learning phase execution performance with results presented
in [27, table 2,3]. Execution times and model accuracy scores are given in ta-
ble 5. We choose the hyperparameter value h for which the best noiseless model



accuracy is obtained (h = 5 and h = 50 for BC-TCGA and GSE2034 respec-
tively). Model accuracy scores obtained in our work are better, although the
difference is not that big. The results from [27] include the communication time
over a LAN network (1Gbps), which is not included in the execution times pre-
sented earlier. For fairness, in table 5 we add an estimate of communication time
based on network transfer sizes: network communication field from tables 2, 3
divided by LAN network speed. To summarize, our execution time include local
processing, MPC and network time estimation. Compared to [27] we use less
powerfull machines: a 4-core 3.1GHz CPU vs a 18-core 3.5GHz CPU (according
to AWS c5.9xlarge specifications). Another difference is that our implemen-
tation is single-threaded. The execution times for BC-TCGA are comparable
in both cases and our protocol is ∼ 11 times faster for the GSE2034 dataset.
The learning task on GSE2034 dataset is harder because the authors of [27] use
223 iterations compared to only 10 for the BC-TCGA dataset. An explanation
of this discrepancy would be that using approximate ReLu instead of sigmoid
function does not work well on the GSE2034 dataset. In our learning phase we
use the same logistic regression parameters for both datasets. We suppose that
we can further increase the execution performance of our implementation by us-
ing multi-threading and by tuning the learning phase parameters (e.g. iteration
count). Another reason why our protocol is faster is because of local processing
which decreases the MPC phase data sizes.

Execution time Accuracy

BC-TCGA GSE2034 BC-TCGA GSE2034

Our work 2.50 2.38 1.000 0.655

[27] 2.52 26.90 0.996 0.648

SecureML 12.73 49.95 - -
Table 5. Execution times (seconds) and model accuracy comparison.

5.2 Prediction phase

The TFHE scheme instantiated with parameters described in section 4.2 has the
following data sizes:

– secret-key – 128B,
– functional boostrapping key – 48MB
– TLWE ciphertext – 4kB
– TRLWE ciphertext – 8kB

The analyst needs a functional bootstrapping key for each final user. An user
enrollment phase is performed during which the analyst receives the 48MB key.
User enrollment is a one-time process. Uploading the bootstrapping key requires
less than 4 seconds on a WAN network (100Mbps).



BC-TCGA GSE2034 BC12-TCGA

d 18 13 25

Request size 144 104 200
Table 6. Number of TRLWE ciphertexts d and encrypted genomic data size in kB
(request size) for one user.

In order to encrypt user genomic data vector (n values) we need d = dn/1024e
TRLWE ciphertexts. The request size the analyst receives from an user has
d × TRLWE ciphertexts. Table 6 illustrates the request sizes for the 3 datasets.
Ciphertext expansion factor is approximately 8 for a request, which is low in
the context of homomorphic encryption. Once the analyst has executed the pre-
diction algorithm it sends the prediction result of size 4kB (a TLWE ciphertext)
as response to the final user. Prediction algorithm execution is very fast and it
takes less than 0.1 seconds. Encryption and decryption times are instantaneous
(≈ 0.01 seconds).

In the prediction phase we have tested a logistic regression model with hy-
perparameter h = 5. Using another model will make no difference in execution
time because the prediction phase uses same sized inputs. We have evaluated the
HE prediction on part C of the split dataset. Even though the logistic regres-
sion model has been scaled-up/rounded to integer coefficients and features were
noisy due to HE, the accuracy of the prediction did not change when compared
to plaintext version. We have also tested the prediction accuracy of other models
(with h = {20, 50} and other differential privacy settings) and also no significant
changes were observed in the AUC score.

6 Conclusions and perspectives

In this paper, we have introduced GenoPPML; an end-to-end framework for
privacy-preserving machine learning applied to genomic data. Multi-party com-
putation is used for model training over datasets from several private genomic
database owners. A differential private joint model is revealed to an analyst
party. No other information about the private genomic databases is revealed.
The analyst uses this model to provide prediction service on homomorphically
encrypted genomic data samples. We have shown that MPC and HE techniques
are practical for genomic data machine learning use-cases and that GenoPPML
framework is particularly well suited for large feature-space data, like genomic
datasets.

Three datasets from TCGA are used in our experiments to train a logistic
regression model. The obtained models achieve state-of-the-art accuracy and
training times are lower when compared to existing works. Even if prediction
over homomorphically encrypted data is used, the prediction phase is almost
instantaneous and can be used in low-latency applications.

The GenoPPML framework is not limited to logistic-regression models only.
More complex machine learning algorithms can be used at a higher computa-



tional cost for the training and the prediction phases. More precisely in figure 3,
the logreg part can be replaced by another classification algorithm, such as
XGBoost described in [28]. Although after a PCA, linear models tend to provide
the best trade-off between accuracy and privacy budget.

One weak point of the GenoPPML is that model accuracy asymptotically
worsens with the increase of the projection size h; which is due to the fact
that differential privacy noise amplitude is proportional to the projection size.
In a future work, we envisage to get rid of the differential privacy part for the
joint model protection. The joint model shall stay encrypted after the learning
phase and some kind of proxy-reencryption shall be used to switch from model
encryption domain to user encryption domain.
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