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Abstract—Machine Learning (ML) algorithms, especially deep
neural networks (DNN), have proven themselves to be extremely
useful tools for data analysis, and are increasingly being deployed
in systems operating on sensitive data, such as recommendation
systems, banking fraud detection, and healthcare systems. This
underscores the need for privacy-preserving ML (PPML) systems,
and has inspired a line of research into how such systems can be
constructed efficiently. We contribute to this line of research by
proposing a framework that allows efficient and secure evaluation
of full-fledged state-of-the-art ML algorithms via secure multi-
party computation (MPC). This is in contrast to most prior
works on PPML, which require advanced ML algorithms to be
substituted with approximated variants that are “MPC-friendly”,
before MPC techniques are applied to obtain a PPML algorithm.
A drawback of the latter approach is that it requires careful fine-
tuning of the combined ML and MPC algorithms, and might lead
to less efficient algorithms or inferior quality ML (such as lower
prediction accuracy). This is an issue for secure training of DNNs
in particular, as this involves several arithmetic algorithms that
are thought to be “MPC-unfriendly”, namely, integer division,
exponentiation, inversion, and square root extraction.

In this work, we propose secure and efficient protocols for
the above seemingly MPC-unfriendly computations (but which
are essential to DNN). Our protocols are three-party protocols
in the honest-majority setting, and we propose both passively
secure and actively secure with abort variants. A notable feature
of our protocols is that they simultaneously provide high accuracy
and efficiency. This framework enables us to efficiently and se-
curely compute modern ML algorithms such as Adam (Adaptive
moment estimation) and the softmax function “as is”, without
resorting to approximations. As a result, we obtain secure DNN
training that outperforms state-of-the-art three-party systems;
our full training is up to 6.7 times faster than just the online phase
of the recently proposed FALCON (Wagh et al. at PETS’21) on
the standard benchmark network for secure training of DNNs. To
further demonstrate the scalability of our protocols, we perform
measurements on real-world DNNs, AlexNet and VGG16, which
are complex networks containing millions of parameters. The
performance of our framework for these networks is up to a
factor of about 12 ∼ 14 faster for AlexNet and 46 ∼ 48 faster
for VGG16 to achieve an accuracy of 70% and 75%, respectively,
when compared to FALCON.

I. INTRODUCTION

Secure multi-party computation (MPC) [58], [21], [5]
enables function evaluation, while keeping the input data

secret. An emerging application area of secure computation
is privacy-preserving machine learning (ML), such as (secure)
deep neural networks. Combining secure computation and deep
neural networks, it is possible to gather, store, train, and derive
predictions based on data, which is kept confidential. This
provides data security and encourages data holders to share
their confidential data for machine learning. As a consequence,
it becomes possible to use a large amount of data for model
training and obtain accurate predictions.

We first briefly review a typical training (or learning)
process of a deep neural network in the clear (i.e., without
secure computation). A deep neural network (DNN) consists of
several layers, and certain functions are sequentially computed
on the training data layer-by-layer. The so-called softmax func-
tion is one of the more common functions computed in the last
layer. Then, a tentative output from the last layer is computed,
and a convergence test is applied to this. Based on the result
of the test, the parameters are updated by an optimization
method, and the above processes will be repeated. A traditional
optimization method is stochastic gradient descent (SGD).
As SGD tends to incur many repetitions (and hence slow
convergence), more efficient approaches have been proposed;
adaptive gradient methods such as adaptive moment estimation
(Adam) [29] are popular optimization methods which improve
upon SGD and are adopted in many real-world tool-kits, e.g.,
[53].

A key challenge towards privacy-preserving ML, especially
for DNN, is how to securely compute functions that are not
“MPC-friendly”. MPC-friendly functions refer to functions
that are easy to securely compute in MPC, and for which very
efficient protocols exist. However, unfortunately, functions
required in DNN are often MPC-unfriendly, especially those
used in more modern approaches to training. In particular,
Adam [29] (and also the softmax function) consist of several
MPC-unfriendly functions, namely, integer division, exponen-
tiation, inversion, and square root computations.

To cope with this challenge, up to now, there have been
two lines of research. First, many works (to name just a
few, [19], [37], [9], [7], [50], [51], [10], [30], [45], [8], [31])
have focused mainly on secure protocols for the prediction
(or inference) process only, which is much more lightweight
compared to the training, as gradient optimization methods



are not required for prediction. Second, and more recently,
there have been a few works in the literature that can handle
secure training. These are done mostly by replacing originally
MPC-unfriendly functions with different ones that are MPC-
friendly and approximate the original function on the domain
of interest. These approximation approaches either can be
done only for elementary optimization methods such as SGD,
as in [43], [56], [42], [11] or require specific “fine-tuning”
of the interaction between ML and MPC, as in [1], such
that the replaced functions will not degrade the quality of
ML architectures significantly (such as lowering prediction
accuracy). In practice, however, this replacement is not easy.
For example, Keller and Sun [25] reported that ASM, which is
widely used as a replacement for the softmax function, reduces
accuracy in training, sometimes significantly.

Due to the rapid advancements in ML, we believe that a
more robust approach to privacy-preserving ML is to achieve
efficient protocols for a set of functions that are often used
in ML but might typically be thought of as MPC-unfriendly.
In this way, the requirement for fine-tuning between ML
and MPC would be only minimal, if any at all, and one
would be able to plug-and-play new ML advancements into
an existing MPC framework to obtain new privacy-preserving
ML protocols, without having to worry about the degradation
on the ML side.

A. Our Contributions

We present a framework that allows seamless implementa-
tion of secure training for DNNs using modern ML algorithms.
Specifically, our contribution is twofold as follows.

New Elementary Three-party Protocols. We propose new
secure and efficient protocols for a set of elementary functions
that are useful for DNN but are normally deemed to be MPC-
unfriendly. These include secure division, exponentiation, in-
version, and square root extraction. Our protocols are three-
party protocols in the honest-majority setting, and we propose
both passively secure and actively secure with abort variants.
A notable feature of our protocols is that they simultaneously
provide high accuracy and efficiency. A key component to this
is our new division protocol, which enables secure fixed-point
arithmetic. To the best of our knowledge, all previous direct
fixed-point arithmetic protocols introduce errors with some
probability which must be mitigated, typically resulting in an
increased overhead or reduced accuracy. In contrast, no such
mitigation step is required for our protocols. Combined with a
range of optimizations suitable for each of the functionalities
we consider, we obtain a set of protocols that are both very
efficient and ensure high accuracy. In fact, our efficient im-
plementations of our protocols provide 23-bit accuracy fixed-
point arithmetic, which is comparable to single-precision real
number operations in the clear. We discuss our construction
techniques further in the following section.

New Applications to ML. We apply our new elementary
MPC protocols to “seamlessly” instantiate secure computations
for softmax and Adam. That is, due to our elementary MPC
protocols, we can securely and efficiently compute softmax
and Adam “as is”, in particular, without approximation using
(MPC-friendly) functions. Consequently, due to the fast con-
vergence of Adam, we obtain fast and secure training (and

prediction) protocols for DNN. Using the DNN architecture
and MNIST dataset typically used as a benchmark, our proto-
col achieved 95.64% accuracy within 117 seconds, improving
upon the state-of-the-art such as ABY3 [42] (94% accuracy
within 2700 seconds reported in [42]) and FALCON [57] (780
seconds for the online phase only)1. Moreover, our training
converges much faster, namely, in one epoch, as opposed to
15 epochs for ABY3 and FALCON. Furthermore, our protocol
achieves the same accuracy as training over plaintext data, us-
ing MLPClassifier in the scikit-learn tool-kit [46] while being
less than six times slower. We further perform measurement
on real-world DNNs from the ML literature, AlexNet [33]
and VGG16 [54], which contain millions of parameters. Com-
paring the total training time (i.e. time to reach a certain
accuracy), the total running time of our framework outperforms
the online phase of FALCON with a factor of about 12 ∼ 14
for AlexNet and 46 ∼ 48 for VGG16 in the LAN setting. A
detailed performance evaluation and comparison considering
different security and network settings, different datasets, and
large DNNs, is given in Section VI.

B. Our Techniques

New Techniques for Secure Truncation. We first briefly
describe the idea behind a common building block for all our
protocols: division (which also implies truncation). Let p be
the size of the underlying ring/field, x be the secret and d is the
divisor (so the desired output is x

d ). Known efficient truncation
protocols, e.g., [42], [43], reconstruct a masked secret x + r
for a random r, divide this by d in the clear, and subtract
r
d . However, in this approach, a large error, −pd , sneaks into
the output when x + r > p because the reconstructed value
becomes x + r − p. To avoid this, the message space has to
be much smaller than p, which leads to reduced accuracy for
a given value of p. Instead, we employ a different approach.
Let x1 and x2 be additive shares of x such that x1 + x2 =
x + qp for q ∈ {0, 1}. Our approach is to securely compute
q and eliminate qp (without exposing q to any parties), which
makes the (local) division of sub-shares be the desired output.
In this way, we can embed a large value into a single share,
which, in turn, enables accurate computation of functions such
as exponentiation.

New Techniques for Elementary Protocols. For securely
computing exponentiation, inversion, division with private di-
visor, square root, and inversion of square root, we utilize
Taylor or Newton series expansions. A key challenge here is
to ensure fast convergence that, in general, is only guaranteed
for a narrow range of input values. We resolve this by con-
structing protocols that use a combination of private input pre-
processing and partial evaluation of the pre-processed input.
We devise private scaling techniques, which allow inputs
to be scaled to fit an optimal input range, and furthermore
allow the protocol to make the most out of the available bit
range in the internal computations. We also utilize what we
call hybrid table-lookup/series-expansion techniques, which
separate inputs into two parts and apply table-lookup and
series-expansion to the respective parts. The details of how
these techniques are used in our protocols differ depending

1The measurements for our protocol and FALCON were done in the
environment described in Section VI, which is roughly comparable to the
one in [42].
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on the functionality of the protocols. We provide detailed
descriptions in Section IV.

C. Related Work

Various ML algorithms have been considered in connection
with privacy preserving ML, include decision trees, linear
regression, logistic regression, support-vector-machine classifi-
cations, and deep neural networks (DNN). Among these, deep
neural networks are the most flexible and have yielded the
most impressive results in the ML literature. However, at the
same time, secure protocols for DNN are the most difficult to
obtain, especially for the training process. We show a table for
comprehensive comparison among PPML systems supporting
DNN in Table I.

Secure DNN Training. Our work focuses on secure training
for deep neural networks (secure inference can be obtained
as a special case). There have been several works on se-
cure DNN training such as SecureML [43], SecureNN [56],
ABY3 [42], Quotient [1], FHE-based SGD [44], Glyph [39],
Trident [11], and FALCON [57]. All of these achieve efficiency
by simplifying the underlying DNN training algorithms (e.g.
replacing functionalities with less-accurate easier-to-compute
alternatives), and optimizing the computation of these. As a
consequence of this approach, they are restricted to simple
SGD optimization, with the exception of Quotient which
implements an approximation to AMSGrad. We emphasize that
we take a fundamentally different approach by constructing
protocols that allow unmodified advanced training to be done
efficiently. In the following, we highlight properties of the
above related works.

Setting/Security. SecureML, Quotient, FHE-based SGD, and
Glyph are two-party protocols, SecureNN, ABY3, and FAL-
CON are three-party protocols, while Trident is a four-party
protocol in a somewhat unusual asymmetric offline-online
setting. SecureML, Quotient, FHE-based SGD, Glyph, and
SecureNN considered semi-honest (passive) security tolerat-
ing one corrupted party, while SecureNN can be extended
to achieve so-called privacy against malicious adversaries
(formalized by [4]). ABY3 improved security upon these by
considering malicious (active) security with abort tolerating
one corrupted party. Trident improved security in term of
fairness (again, tolerating one corrupted party); this comes
with the cost of reducing the tolerated corruption fraction
from 33% to 25%. It should be noted that, unlike the other
schemes, FALCON sacrifice perfect security to compute batch-
normalization more efficiently (see Section V-B).

Efficiency. For secure training over a basic 3-layer DNN on
the MNIST dataset, ABY3 outperforms both SecureML/Se-
cureNN and was state-of-the-art before Trident and FALCON.
FHE-based SGD and Glyph use fully homomorphic encryp-
tion, which makes non-interactive training possible. Glyph is
the most efficient of the two, but is still far less efficient than
ABY3 in terms of execution time. Trident improves the online
phase of ABY3 but with the cost of adding a fourth party
who only participates in offline phase. Most recently, FALCON
also improves upon the online phase of ABY3. As highlighted
above, our framework improves upon FALCON.

Additional Related Works. Note that when considering
only secure inference (but not secure training) for DNN,

BLAZE [45] achieved stronger security (than that of ABY3)
of fairness.

For the less flexible ML algorithms, namely, linear/logistic
regression (which we do not focus on in this work), there
have been recent progresses in secure training. Up to 2018,
ABY3 was the state-of-the-art in terms of performance and
security, achieving the same security as their DNN counterpart.
Recently, for linear/logistic regression, BLAZE [45] improved
ABY3 by 50-2600 times in performance and also achieved
active security with fairness. More recently, SWIFT [31]
achieved the strongest notion, namely, active security with
guaranteed output delivery.

II. PRELIMINARIES AND SETTINGS

Notations for Division. For a, b ∈ Z, we denote by
a

b
∈ R real-

valued division, and by a/b ∈ Z integer division that discards
the remainder. In other words, a/b := ba

b
c.

A. Data Representation

The data representation is an important aspect of efficient
and accurate computation. The algorithms considered in this
paper make use of the following data types:

• Binary values Z2.
• `-bit unsigned and signed integers, Z+

〈`〉 = {a ∈ Z | 0 ≤
a ≤ 2`− 1} and Z〈`〉 = {a ∈ Z | −2`−1 ≤ a ≤ 2`−1− 1},
respectively, where the range of values for signed integers
reflect that a single bit is used to indicate the sign.

• `-bit fixed-point unsigned and signed rational numbers
Q+
〈`,u〉 = {b ∈ Q | b = a

2u , a ∈ Z+
〈`〉} and Q〈`,u〉 = {b ∈

Q | b = a
2u , a ∈ Z〈`〉}, respectively.

We represent these data types as follows. Binary values are
represented as is, i.e. as elements of the field F = Z2. Signed
and unsigned integers are represented as elements of the field
F = Zp for a Mersenne prime p > 2k. This implies that
signed integers are represented using ones’ compliment (i.e. a
negative value −a ∈ Z〈`〉 is represented as p−a, and the most
significant bit, which indicates the sign, will be 1). We will
likewise represent fixed-point values as elements of Fp, and in
order to do so, these are scaled to become integers. Specifically,
we will use a set of (unsigned) `-bit integers 0 ≤ a ≤ 2` − 1,
which we denote Q̂+

〈`,α〉, to represent the values { a2α |0 ≤ a ≤
2` − 1}, and will refer to α as the offset for these. For a
fixed-point value a, we will use the notation a〈α〉 to denote
the integer representation with offset α i.e. a〈α〉 = a · 2α. The
integers in Q̂+

〈`,`〉 are represented as elements of Fp, and we
denote the signed extension by Q̂〈`,`〉.

Note that the representation of fixed-point values requires
the scaling factor to be taken into account for multiplication
(and division). Specifically, for values a〈α〉 and b〈α〉, the cor-
rect representation of the product of a and b is a〈α〉 ·b〈α〉/2α =
(a · b)〈α〉. For simplicity, we use ×α to denote this operation,
i.e. (ordinary) multiplication followed by division by 2α.

Finally note that since p = 2λ − 1 is a Mersenne prime,
modular arithmetic in Fp can be done swiftly via bit-shifting
and addition (e.g. see [6]). Specifically, if a = a02

λ+a1, then
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TABLE I: Comparison among various privacy-preserving ML systems.
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System Secure
Capability

Supported ML
Algorithms

Threat
Model

Based
Techniques

LAN/
WAN

Evaluation
Dataset

Network
Architectures

Theoretical metric Evaluation metric

2PC

MiniONN [37]  #  # #  #     #    #
Chameleon [50]  #  # #  # #        G#

EzPC [9]  #  # #  # #        #
Gazelle [24]  #  # #  #     #    #

SecureML [43]    # #  #     G#  #  #
XONN [49]  #  G# #   #    #    G#
Quotient [1]       # #      #  G#
Delphi [41]  #  # #  #     # #   G#

FHE-based SGD [44]     #  #  # #  #  #  #
Glyph [39]     #  #  # #  #    #

3PC

ABY3 [42]    # #   #    G#  #  #
SecureNN [56]    G# #  G# # #     #  #
CryptFlow [34]  #  # #   # #   #    G#

QuantizedNN [16]  #  G# #    #    #  # G#
ASTRA [10]  #  # #   #      #  #
BLAZE [45]  G#  # #   #      #  #
Falcon [57]     #   # #        
This work        # #        

4PC FLASH [8]  #  # #   # #     G#  #
Trident [47]    # #   #      #  #

“Basic” for Supported ML Algorithms refers to more basic ones such as linear operations, convolution, ReLU, Maxpool, and/or SGD optimizer. “Advance”
refers to advance optimizers, namely, ADAM (considered in this work) and AMSGrad (in Quotient). HE, GC, SS refer to homomorphic encryption, garbled
circuit, and secret sharing, respectively. “Small” for Evaluation Dataset refers to MNIST, except for BLAZE, which uses Parkinson disease dataset and for
Quotient, which uses also MotionSense, Thyroid, and more, besides MNIST (their dimensions are similar to MNIST). “Large” refers to larger datasets such as
the well-known CIFAR-10 in particular (in all the systems that tick except QuantizedNN), or TinyImageNet (in CryptFlow and QuantizedNN, and partially in
Falcon). “Simple” for Network Architectures refers to simple neural networks such as the basic 3-layer DNN (3DNN) from SecureML in particular, or other
slightly different small networks from [37], [56]. “Complex” refers to more complex networks such as the well-known AlexNet and VGG-16 in particular
(both are considered in Falcon and this work, while XONN uses VGG-16 among other networks).  indicates that such a system support a feature, # indicates
that such a system does not so support so, G# refers to fair comparison being difficult due to various reasons. Secure training in BLAZE only considers the
case for less advance ML algorithms e.g., linear/logistic regression, but notably not neural networks. (Their secure prediction, on the other hand, includes
neural networks). XONN, QuantizedNN support simplified or different versions of batch normalization, while SecureNN supports divisions but not batch norm.
SecureML only estimate their WAN evaluation, while ABY3 does not present WAN results for neural networks. SecureNN achieves malicious privacy (but
not including correctness), as defined in [4]. FLASH uses a smaller data set than CIFAR-10. Networks with moderate sizes are experimented: e.g., ResNet-20
(in Quotient), ResNet-32 (in Delphi), ResNet-50, DenseNet-121 (in CryptFlow), MobileNet (in QuantizedNN). Chameleon uses a slightly weaker version of
AlexNet.

a mod p = a02
λ+a1 mod p = a0+a1 mod p holds since

2λ − 1 = 0 mod p. This will allow efficient operations on
shared integers or fixed-point values represented as above.

B. Multi-Party Computation Setting

We consider secret-sharing (SS)-based three-party compu-
tation secure against a single static corruption: There are three
parties P1, P2, P3, a secret is shared among these parties via
SS, any two parties can reconstruct the secret from their shares,
and an adversary corrupts up to a single party at the beginning
of the protocol. For notational convenience, we treat the party
index i ∈ Z as to refer to the i′-th party where i′ ≡ i (mod 3)
and i′ ∈ {1, 2, 3}. For example, P0 = P3 and P4 = P1.

We consider the client/server model. This model is used
to outsource secure computation, where any number of clients
send shares of their inputs to the servers. Hence, both the
input and output of the servers are in a secret-shared form, and
our protocols are thus share-input and share-output protocols.
More precisely, during secure training, the three parties have
shares of training data as input, and then interact with each
other to obtain shares of a trained model. This setting is
composable, i.e., there is a degree of freedom in how the input
and output come in and how they are used. For example, a

client other than the parties may provide input, or the output of
another secure protocol may be used as an input. The resulting
model can be made public, or the prediction can be made while
maintaining the model secret.

Regarding the adversarial behavior, we consider both pas-
sive (semi-honest) and active (malicious) adversaries with
abort. In passive security, corrupted parties follow the protocol
but might try to obtain private information from the transcripts
of messages that they receive. Formally, we say that a protocol
is passively secure if there is a simulator that simulates the
view of the corrupted parties from the inputs and outputs
of the protocol [20]. In active security with abort, corrupted
parties are allowed to behave arbitrarily in attempt to break
the protocol. The probability an active adversary successfully
cheats is parametarized by the statistical security parameter
κ, meaning that probability is bounded by 2−κ.We prove the
security of our protocols in a hybrid model, where parties
run the real protocols, but also have access to a trusted
party computing specified subfunctionalities for them. For a
subfunctionality denoted g, we say that the protocol runs in
the g-hybrid model.

4



C. Secret Sharing Schemes and Their Protocols

In this paper, we use three replicated secret sharing
schemes [23], [15]. We consider the 2-out-of-3 threshold access
structure for the first two schemes. For the third scheme, the
minimal access structure is simply {{1, 2}}, meaning only P1

and P2 can together reconstruct the secret. We denote them as:
J·K-sharing : the 2-out-of-3 replicated sharing in Zp,
[·]-sharing : the 2-out-of-3 replicated sharing in Z2,

〈〈·〉〉-sharing : the simple additive sharing in Zp.

J·K-sharing. This scheme is specified by:

• Share: To share a ∈ Zp, pick random a1, a2, a3 ∈ Zp such
that a = a1 + a2 + a3, then set JaKi = (ai, ai+1) as the
Pi’s share for i = 1, 2, 3. Denote JaK = (JaK1, JaK2, JaK3).
• Reconstruct: Given a pair of shares of a, this protocol with

passive adversary guarantees that all the parties eventually
obtain a. With an active adversary, this functionality pro-
ceeds the same unless JaK is not consistent, where all the
honest parties will abort at the end of the execution.

• Local operations: Given shares JaK and JbK and a scalar
α ∈ Zp, the parties can generate shares of Ja+ bK, JαaK,
and Jα+ aK using only local operations. The notations
JaK+ JbK, αJaK, and α+ JaK denote these local operations,
respectively.

• Multiplications: Given shares JaK and JbK, the parties can
generate JabK by a multiplication protocol [17], [18], [14].
We denote this functionality as Fmult.

[·]-sharing. This is exactly as J·K-sharing but with p = 2.

Combining local operations with multiplication protocols,
the parties can compute any arithmetic/boolean circuit over
shared data, e.g., the parties obtain [a ∧ b] by multiplying [a]
and [b] via Fmult.

〈〈·〉〉-sharing. To share a ∈ Zp, pick random 〈〈a〉〉1, 〈〈a〉〉2 ∈ Zp
such that a = 〈〈a〉〉1 + 〈〈a〉〉2. Set 〈〈a〉〉3 as the empty string.
〈〈a〉〉i is the Pi’s share. Denote 〈〈a〉〉 = (〈〈a〉〉1, 〈〈a〉〉2, 〈〈a〉〉3).

Share Conversions. Our protocols will utilize conversions
among sharing types. Due to limited space, we defer the details
to Appendix A, and provide a summary in Table II below.
Here, for a ∈ Zp we let (a`, . . . , a1) be the bit representation
of a; that is, a =

∑`
i=1 2

i−1ai. Round is of a passively secure
protocol.

TABLE II: Share Conversions
Conversion Functionality name Protocol Round
JaK→ 〈〈a〉〉 ConvertToAdd local operations 0
〈〈a〉〉 → JaK ConvertToRep one J·K-sharing 1
JaK→ ([a`], . . . , [a1]) FBDC – Bit decomposition [28] `+ 1
([a`], . . . , [a1])→ JaK FBC – Bit composition [2] (modified) `+ 1
[a]→ JaK Fmod – Modulus conversion [28] 1

Conditional Assignment. We define a functionality of condi-
tional assignment JzK← FCondAssign(a, b, [c]) via setting z := a
if c = 0 and z := b if c = 1. A protocol for this simply converts
JcK := Fmod([c]), and computes JzK := a · (1− JcK) + JcK · b.

D. Quotient Transfer Protocol

Consider the reconstruction of shared secret, JaK or 〈〈a〉〉,
over N as opposed to Zp for which J·K and 〈〈·〉〉 sharings are
defined. The resulting value would be of the form a+ qp. We
will refer to q as the quotient. The ability to compute q (in
shared form), which we refer to as quotient transfer, will play
an important role in our division protocol.

Kikuchi et al. [28] proposed efficient three-party quotient
transfer protocols for passive and active security. In this paper,
we use their protocols specialized to the following setting;
firstly, we use a Mersenne prime p for the field Zp underlying
the sharings, and we will use 〈〈·〉〉-sharing for passive security
and J·K-sharing for active security. In this setting, a is required
to be a multiple of 2 and 4 in the presence of passive and
active adversaries, respectively. We address this by simply
multiplying 〈〈a〉〉 and JaK by 2 and 4, respectively, before con-
ducting the quotient transfer protocols. It means that a secret
a should satisfy 2a < p and 4a < p for passive and active
security, respectively. These protocols have been implicitly
used as building blocks for other protocols in [28], but were
not explicitly defined. We thus describe them in Appendix B,
as well as a quotient transfer protocol for [·]-sharings, which
is a popular way to obtain the carry for binary addition.

The quotient transfer functionality, FQT, is defined in
Functionality 1. For brevity, FQT is defined for 〈〈a〉〉, but we
additionally use this functionality for JaK and [a]. Note that
for 〈〈a〉〉, q ∈ {0, 1} where 〈〈a〉〉1 + 〈〈a〉〉2 = a + qp; for JaK,
q ∈ {0, 1, 2} where sub-shares a1+ a2+ a3 = a+ qp; and for
[a], and q ∈ {0, 1} where sub-shares a1 + a2 + a3 = a+ 2q.

FUNCTIONALITY 1 (FQT – Quotient transfer):
Upon receiving 〈〈a〉〉, FQT sets q such that 〈〈a〉〉1 + 〈〈a〉〉2 =
a+ qp in N, generates shares 〈〈q〉〉, and sends 〈〈q〉〉i to Pi.

III. SECURE REAL NUMBER OPERATIONS

In this section, we present the division protocols that will
allow us to do fixed-point arithmetic efficiently and securely.
The key to achieve efficient fixed-point computations is the
ability to perform truncation (or equivalently, integer division
by 2k, also called right-shift), as this allows multiplication
of scaled integer representations of fixed-point values, as
introduced in Section II-A.

Our new division protocol is efficient and accurate. The
popular division (truncation) protocol approach used in the
context of machine learning requires a heavy offline phase,
although it is efficient in the online phase. In addition, as
we will see later, there is a possibility of introducing errors
that is much larger than rounding errors. Hence, we present a
protocol that is efficient in its overall cost, i.e., the total cost is
comparable only to the current online cost, while eliminating
the possibility of introducing large errors.

A. Current Secure Division Protocol

In this section, we analyze the approach taken to division
in current multi-party computation protocols [42], [56], [47]
and show why the large error can be introduced in the output.
For simplicity, we consider unsigned integers shared over Zp
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for a general p and a general divisor d, but similar observations
holds for the signed integers and specific p, such as 264.

Let (a1, a2, a3) be the sub-shares of a in the replicated
secret sharing scheme and a = αad+ ra for 0 ≤ ra < d, and
let (b1, b2, b3) be the sub-shares of the output of a division
protocol. Here, the intention is that b1 + b2 + b3 is a value
close to a

d , such as αa, or perhaps αa ± 1.

The typical protocol proceeds as follows. The parties first
prepare a shared correlated randomness (Js′K, JsK), where s′ ←
Zp and s := s′/d. (Note that d is public and known a priori.)
The parties then compute Ja+ s′K, reconstruct (a + s′), and
set JbK = JsK + (a+ s′)/d.

This protocol seems to work well, but the output can in fact
be far from the intended a

d . To see this, let s′ = sd+ rs′ and
p = αpd + rp. Considering the reconstructed value Ja+ s′K
over N, we see that the parties obtain a + s′ − qp, where
q ∈ {0, 1}. Hence, the computed shared secret corresponds to

s+ (a+ s′ − qp)/d
= s+ ((αad+ ra)− (sd+ rs′)− q(αpd+ rp))/d

= αa − qαp + (ra − rs′ + qrp)/d. (1)

Roughly speaking, the third term, (ra − rs′ − qrp)/d, is a
small constant since ra, rs′ , and rp are less than d. Hence, this
term can be considered to be a small rounding error. On the
other hand, the second term, qαp, can be large if q = 1. For
example, if we set p = 264 and d = 212, then αp = 252, and
the reconstructed result will differ from a

d by 252. To address
this, we have to make the probability of q = 1 negligible. If
a protocol conducts several divisions with p = 2k and `-bit
inputs, the probability that q = 1 occurs at least once during
the τ divisions is 1−

(
1− 2−k+`

)τ
. It is likely to happen if we

conduct the division protocol many times. For example, this
probability is over 90% on 15 epochs MNIST training with
the batch-size 128, k = 64, and ` = 36. A single event of
q = 1 does not necessarily lead to a catastrophic error in the
intended function; however, many occurrences of q = 1 can
make the result differ significantly from the intended value.

To keep the probability of an error occurring below a
given threshold, the input space (i.e. the parameter `) can
be adjusted to be sufficiently small such that the required
number of divisions can be accommodated. However, setting
` depending on the required number of divisions is often
problematic, since this number can be difficult to estimate a
priori in an exploratory analysis such as machine learning.
Hence, a common approach is to set ` small enough to ensure
q = 0 with overwhelming probability. This, however, leads
to a larger reduction of the input space, which can negatively
impact the computation being done, due to lower supported
accuracy.

B. Our Protocol for Division by Public Value

1) Intuition: We first give the intuition behind our proto-
cols. In our protocol for input JaK, we locally convert JaK into
〈〈a〉〉 before division. Hence, in the following, we assume the
input is 〈〈a〉〉 and a public divisor d.

First, let us analyze what happens when we simply divide
each share by d. Let 〈〈a〉〉1 + 〈〈a〉〉2 = qp + a in N, where
q ∈ {0, 1}. Here, suppose that 〈〈a〉〉j = αjd+rj , a = αad+ra,

Protocol 1 Secure Division by Public Value in 〈〈·〉〉
Functionality: 〈〈c〉〉 ← Div(2,2)(〈〈a〉〉, d)
Input: Share of dividend 〈〈a〉〉 and (public) divisor d, where a and

d are even numbers.
Output: 〈〈c〉〉, where c ≈ a

d
.

1: Let αp and rp be p = αpd+ rp, where 0 ≤ rp < d.
2: 〈〈q〉〉 ← FQT(〈〈a〉〉)
3: P1 computes 〈〈b〉〉1 ← (〈〈a〉〉1 + d− 1− rp)/d. . “in N” means

no reduction mod p
4: P2 computes 〈〈b〉〉2 ← 〈〈a〉〉2/d in N
5: 〈〈c〉〉 := 〈〈b〉〉 − (αp + 1)〈〈q〉〉+ 1

Protocol 2 Secure Division by Public Value in J·K
Functionality: JcK← Div(2,3)(JaK, d)
Input: Share of dividend JaK and public divisor d, where 0 ≤ a ≤

2|p|−1 − 1
Output: JcK, where c ≈ a

d
.

1: 〈〈a〉〉 ← ConvertToAdd(JaK)
2: 〈〈a′〉〉 := 〈〈2a〉〉, d′ := 2d
3: 〈〈c〉〉 ← Div(2,2)(〈〈a′〉〉, d′)
4: JcK← ConvertToRep(〈〈c〉〉)
5: Output JcK

and p = αpd + rp for j = 1, 2 If each party divide its share
〈〈a〉〉j by d, the new share is αj , i.e., 〈〈a〉〉j/d = αj . Then, the
reconstruction of (α1, α2) will be

α1 + α2 = αa + qαp +
ra + qrp − (r1 + r2)

d
, (2)

which contains extra terms, qαp and (ra+qrp−(r1+r2))
d .

The insight behind our protocols is that the qαp term can
be eliminated, which we essentially achieve via the quotient
transfer protocol [28], that allow us to obtain 〈〈q〉〉 efficiently.
This protocol suits our setting since it requires a prime p,
and prefers a Mersenne prime. The quotient transfer protocol
furthermore requires a to be a multiple of 2, but this is easily
achieved by locally multiplying a and d with 2, and performing
the division using a′ = 2a and d′ = 2d. Note that the output
of the division remains unchanged by this.

For the remaining error term e =
ra+qrp−(r1+r2)

d , each
value ra, rp and rj is less than d, and hence, −1 ≤ e ≤ 2. In
our protocols, we reduce this error to 0 ≤ e ≤ 2 by adding a
combination of 〈〈q〉〉 and appropriate constants to the output.

2) Passively Secure Protocols: We propose passively se-
cure division protocols in Protocol 1 and 2. The first protocol
works for input 〈〈a〉〉, where a is a multiple of 2, and the second
for JaK by extending the first protocol. We further extend our
division protocols to signed integers a in Appendix D.

Both Protocol 1 and 2 have probabilistic rounding that
outputs a/d, a/d+1, or a/d+2. In other words, our protocols
guarantees that there is only a small difference between a

d and
the output of our protocols, while the standard approach to
division protocols have a similar rounding difference and a
large error qαp with a certain probability. The functionalities
of these protocols appear in Appendix C. Note, the most
interesting case in which p is a Mersenne prime and d is a
power of 2, the protocol outputs either a/d or a/d+ 1.

3) Output of Protocols: Consider the reconstruction of the
output shares calculated returned by Protocol 1. We obtain (see
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Section III-B1 for notation):
(〈〈b〉〉1 − (αp + 1)〈〈q〉〉1 + 1) + (〈〈b〉〉2 − (αp + 1)〈〈q〉〉2)
= 〈〈b〉〉1 + 〈〈b〉〉2 − (αp + 1)(〈〈q〉〉1 + 〈〈q〉〉2) + 1

= (〈〈a〉〉1 + d− 1− rp)/d+ 〈〈a〉〉2/d− (αp + 1)q + 1

= (α1d+ r1 + d− 1− rp)/d+ (α2d+ r2)/d− qαp − q + 1

= α1 + α2 − qαp − q + 1 + (r1 − rp + d− 1)/d+ r2/d

From Eq. (2) and the fact that r1 ≤ d − 1, the last equation
equals to

αa − q + 1 +
ra + qrp − r1 − r2

d
+ (r1 − rp + d− 1)/d. (3)

The above computation shows the term qαp being elimi-
nated. The remaining terms are quite small since q ∈ {0, 1},
each ri is smaller than d, and ra+qrp−r1−r2

d and (r1 − rp +
d − 1)/d are at most 1. To see that the output in Eq. (3)
corresponds to the output defined in the ideal functionalities
defined in Appendix C, a more precise analysis is required. In
Appendix E we provide a detailed analysis of both the simpler
specific case of p being a Mersenne prime and d a power of
2, and the general case. Note that this analysis is required to
formally establish the security of our protocols.

Lastly, note that the distribution of the output expressed in
Eq. (3), depends on the value of the input shares (as opposed
to the reconstructed value). We provide a full analysis of
the output distribution in Appendix F. The output range and
distribution of Protocol 2 follows that of Protocol 1.

4) Security: The following theorem establishes security of
Protocol 1.

Theorem 2: Protocol 1 securely computes the division
functionality Fdiv in the FQT-hybrid model in the presence
of a passive adversary.

The proof of this immediately follows from the correctness
discussion in above, since Protocol 1 only consists of local
computations except for FQT.

The security of Protocol 2 follows from that of Protocol 1.
Here, ConvertToRep is the only additional step requiring
communication compared to Protocol 1. This step can easily
be simulated since the output consists only of shares, and the
simulator can simply insert a random share as to simulate
transcripts.

5) Efficiency: We obtain the concrete efficiency of our
protocols by considering efficient instantiations of the required
building blocks.

The quotient transfer protocol in [28] requires 2 bits of
communication and 1 communication round, besides a single
call of Fmod. The modulus conversion protocol in [28] and
ConvertToRep require 3|p| + 3 bits and 2|p| bits of com-
munication, respectively, and both 1 communication round.
Furthermore, we can reduce the number of rounds required in
Protocol 2 by parallel execution2 of FQT and ConvertToRep.
Consequently, instantiating FQT (and Fmod used in QT inter-
nally) by the protocols in [28], Protocol 1 and 2 require 3|p|+5
and 5|p| + 5 bits of communication and 2 communications
rounds in total.

2We change the protocol by skipping ConvertToAdd in step 4 in Proto-
col 10 (hence the output of FQT is JqK) and local computation in step 5 in
Protocol 1 is performed over J·K-sharings by computing ConvertToRep(〈〈b〉〉)
just before this step.

6) Comparison: We compare Protocol 2 with the one
(denoted truncation in the original paper) of ABY3 [42], which
has been used in subsequent literature, such as FALCON.
Since the ABY3 protocol is proposed as truncation, we let
d = 2δ . The ABY3 protocol requires 6(2|p| − δ − 1) bits
and |p| − 1 rounds in the offline phase, and 3|p| bits and 1
round in the online phase, so the total communication cost
is 15|p| − 6δ − 6 bits and |p| rounds. In comparison, our
protocol requires 5|p| + 5 bits and 2 rounds. Thus, the total
cost of our protocol is much better compared to ABY3’s,
and slightly worse than ABY3’s online cost. In addition, the
ABY3’s protocol can contain a large error p

d with a certain
probability. This leads to a small message spaces and/or less
accuracy, as pointed out in Sec. III-A.

7) Active Security: In the above, we have only treated
passively secure protocols. We next outline how we construct a
division protocol satisfying active security with abort. A quo-
tient transfer protocol secure against an active adversary with
abort has already been proposed in [28]. We can thus employ
the same approach as in the passive security: eliminating qαp
via the use of FQT.

The difference between our actively and passively secure
division protocols, is that the only known efficient actively
secure quotient transfer protocol uses input JaK, where a is
required to be a multiple of 4. Hence, our actively secure
division protocol works directly on JaK and essentially executes
the following steps:

1) Ja′K := 4JaK and d′ := 4d
2) JqK← FQT(JaK)
3) Parties divide own sub-shares of Ja′K by d′, and let them

be JbK.
4) JcK := JbK− αpJqK

In addition, we further adjust the output using appropriate
constants to minimize the difference between a

d and the
protocol output. The concrete protocol appears in Appendix G.

Regarding security, as we do not convert to 〈〈a〉〉, the
quotient transfer protocol is the only step that requires com-
munication, and the security of the protocol is thus trivially
reduced to FQT.

IV. ELEMENTARY FUNCTIONS FOR MACHINE LEARNING

In the following, we will present efficient and high-
accuracy protocols for arithmetic functions suitable for ma-
chine learning, such as inversion, square root extraction, and
exponential function evaluation. All of these rely on fixed-
point arithmetic, and will make use of the division protocols
introduced above to implement this. Recall that, the product
of fixed-point values a and b with offset `, written a ×` b,
corresponds to (standard) multiplication of a and b, followed
by division by 2`. To ease notation in the protocols, we use
JaK · JbK to denote Fmult(JaK, JbK), and JaK ×` JbK to denote
Fdiv(JaK · JbK, 2`).

All protocols will explicitly have as parameters the offset
of both input and output values, often denoted α and δ, and in
particular will allow these to be different. This can be exploited
to obtain more accurate computations when reasonable bounds
for the input and output are publicly known. For example,
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consider the softmax function, often used in neural networks,
defined as eui∑k−1

j=0 e
uj

= 1∑k−1
j=0 e

uj−ui for input (u0, . . . , uk−1).
The output is a value between 0 and 1, and to maintain
high accuracy, the offset should be large, e.g. 23 to maintain
23 bits of accuracy below the decimal point. However, the
computation of

∑k−1
j=0 e

uj−ui is often expected to be a large
value in comparison, and a much smaller offset can be used
to prevent overflow e.g. −4. Furthermore, we highlight that
internally, some of the protocols will switch to using an offset
different from α and δ to obtain more accurate numerical
computations. By fine-tuning and tailoring the offsets to the
computations being done, the most accurate computation with
the available ` bits for shared values, can be obtained.

We will first show protocols for unsigned inputs, and defer
the extension to signed inputs to Sect. IV-E.

A. Inversion

In the following, we introduce a protocol for computing the
inverse of a shared fixed-point value. This is a basic operation
required for many computations, including machine learning.

Before presenting the inversion protocol itself, we intro-
duce a specialized bit-level functionality of private scaling
that will compute a representation of the input JaK which
allows us to make full use of the available bit range for shared
values. Specifically, the representation of JaK is JbK = JaK ·JcK,
where 2`−1 ≤ b ≤ 2` − 1 and c is a power of 2 (recall that
shared values are ` bit integers). This functionality corresponds
to a left-shift of the shared value JaK such that the most
significant non-zero bit becomes the most significant bit, where
c represents the required shift to obtain this. We will denote
this operation MSNZBFit (MSNZB denoting Most Significant
Non-Zero Bit) and the corresponding functionality Fmsnzbfit.
The protocol presented in Protocol 3 implements this func-
tionality. Recall that FBC and FBDC are the functionalities of
bit-(de)composition.

Theorem 3: Protocol 3 securely implements Fmsnzbfit in the
(FBDC, FBC, Fmult)-hybrid model in the presence of a passive
adversaries.

Protocol 3 MSNZB Fitting

Functionality: (JbK, JcK)← MSNZBFit(JaK)
Input: JaK
Output: JbK, JcK, where JbK = JaK · JcK, 2`−1 ≤ b ≤ 2` − 1, and

c = 2e for some e ∈ N.
Parameter: `

1: ([a1], . . . , [a`])← FBDC(JaK)
2: [f`] := [a`]
3: for i = `− 1 to 1 do
4: [fi] := [fi+1] ∨ [ai] . fi = 1 for all i corresponding to

MSNZB of a or smaller
5: [x`] := [a`]
6: for i = `− 1 to 1 do
7: [xi] := [fi]⊕ [fi+1] . xi = 1 only for i corresponding to

MSNZB of a
8: JcK← FBC([x`], . . . , [x1]) . Bit-compose [xi] in the reverse

order to obtain c = 2`−1−blog2 ac

9: JbK = JaK · JcK
10: Output JbK and JcK

Protocol 4 Inversion
Functionality: JdK← Inv(JaK)
Input: JaK, where a ∈ Q̂〈`,α〉
Output: JdK, where d ≈

(
1
a

)
〈δ〉

Parameter: (`, I, α, δ), where I is the number of iterations (say,
I = dlog `e) used in the computation

1: (JbK, JcK)← MSNZBFit(JaK) . b = b′ · 2` where b′ ∈ [ 1
2
, 1)

2: Jx1K := 1〈`〉 − JbK
3: Jy1K := 2〈`〉 − JbK
4: for i = 2 to I do
5: JxiK := Jxi−1K×` Jxi−1K
6: JyiK := Jyi−1K×` (1〈`〉 + Jxi−1K)
7: Output JyIK · JcK · 2α+δ−2`

Using MSNZBFit as a building block, we now construct
our inversion protocol. The protocol is based on the Taylor
series for (1− x0)−1 centered around 0, where x ∈ [0; 1

2 ):
1

1− x1
=

∞∑
i=0

xi1 = 1 + x1 + x21 + · · · . (4)

Continuing this Taylor series until the n-degree, yields the
remainder term xn+1

1−x ≤
1
2n , which implies that the approxi-

mation has n bits accuracy.

Firstly, we use MSNZBFit to left-shift input JaK to obtain
JbK = JaK · JcK. Interpreting the resulting value JbK as being
a fixed-point value with offset ` implies that b ∈ [ 12 ; 1). This
representation forms the basis of our computation. (Note that
since b ∈ [ 12 ; 1), we have that 1

b ≤ 2, ensuring that 1
b can be

represented using `+ 1 bits.)

For the computation of 1
b , instead of using Eq. (4) directly,

which requires r multiplications for (r+1)-th degree terms, we
use the following product requiring only log r multiplications.

∞∏
j=0

(1 + x2
j

1 ) = (1 + x1)(1 + x21)(1 + x41) · · · . (5)

Letting b = 1− x1 (which ensures x1 ∈ [0; 1
2 )), our inversion

protocol shown in Protocol 4 iteratively computes Eq. (5) by
first setting x1 = 1 − b and y1 = 1 + x1 = 2 − b (Step 2-3),
and in each iteration computing (1 + xi1) and multiplying this
with yi (Step 4-6). The number of iterations is specified via the
parameter I . Finally, to obtain (an approximation to) J 1

aK, we
essentially only need to scale the computed JyIK = J 1

b K with
JcK (as 1

b · c =
1
ac · c =

1
a ). Note, however, that the output has

to be scaled taking into account the input and output offsets,
as well as the offset used in the internal computation. To see
that the correct scaling factor is 2α+δ−2`, note that for input
a = a′〈α〉 and output b = a · c = b′〈`〉 of MSNZBFit, we have

yI =
2`

b′
=

2`

a′ · 2α · c · 2−`
=

1

a′ · c
· 22`−α

and that the output should be scaled with 2δ .

We define the corresponding functionality FInv in which on
input of shares computes the above Taylor series expansion and
output shares of that output.

Theorem 4: The protocol Inv securely computes inversion
functionality FInv in the (Fmsnzbfit,Fdiv,Fmult)-hybrid model in
the presence of a passive adversary.
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Protocol 5 Integer Division with Private Divisor

Functionality: JzK← Divpriv(JaK, JdK)
Input: JaK, JdK, where a = a′〈α〉 ∈ Q̂〈`,α〉, and d = d′〈β〉 ∈ Q̂〈`,β〉
Output: JzK, where z ≈

(
a′

d′

)
〈δ〉

Parameter: (`, I, α, β, δ) where α and β are the offsets of a and d,
respectively.

1: Jz′K← Inv(`,I,β,δ)(JdK) . z′ =
(

1
d′

)
〈δ〉

2: Output Jz′K · JaK · 2−α

B. Division with Private Divisor

Given our protocol for inversion, it becomes trivial to
construct a high accuracy protocol for division with a private
divisor. Specifically, for values JaK and JdK, we simply com-
pute J 1

dK using Inv, and multiply this with JaK to obtain Jad K.
The resulting protocol, Divpriv, is shown in Protocol 5. Note
that the accuracy of the result is determined by the parameter
I of the inversion protocol. Setting I = log ` gives ` bits of
precision for the inversion, which ensures the result is equal
to a

d for `-bit fixed-point values. We define the corresponding
functionality Fdivpriv that as on input JaK and JdK outputs Jad K
in which J 1

dK is obtained by FInv.

Theorem 5: The protocol Divpriv securely computes fixed-
point division Fdivpriv in the (FInv,Fdiv,Fmult)-hybrid model in
the presence of a passive adversary.

C. Square Root and Inverse Square Root

Computing the inverse of the square root of an input
value, is a useful operation for many computations, e.g.,
normalization of a vector, and is likewise used in Adam.
Hence, having an efficient protocol for directly computing this,
is beneficial.

Our protocol for computing the inverse of a square root
is shown in Protocol 7, and is based on Newton’s method
for the function f(y) = 1

y2 − x for input value x (note
that f(y′) = 0 implies y′ = 1√

x
). This involves iteratively

computing approximations

yn+1 = yn −
f(yn)

f ′(yn)
=
yn(3− x · y2)

2
for an appropriate initial guess y0 (Step 4-5 performs this
iteration). To ensure fast convergence for a large range of input
values, we represent the input x = b · 2e for b ∈ [ 12 ; 1), which
implies

1√
x
=

{(
1√
b

)
· 2−e/2 if e is even(√

2√
b

)
· 2−(e+1)/2 if e is odd

.

Hence, we only need to compute 1√
b

for b ∈ [ 12 ; 1), in which
case using 1 as the initial guess provides fast convergence.
However, the parties should not learn which of the above
two cases the input falls into. We introduce a sub-protocol,
MSNZBFitExt shown in Protocol 6, that computes values r
and c′, where (r, c′) = (0, 2e/2) if x falls into the first case, and
(r, c′) = (1, 2(e+1)/2) otherwise. Note that like MSNZBFit, the
extended MSNZBFitExt right-shifts the input a to obtain an `-
bit value b = a·c, that when interpreted as an element of Q̂〈`,`〉,
represents b ∈ [ 12 ; 1), and that c′ =

√
c. Having r and c′ allows

us to compute 1√
x

as 1√
b
· (1 + r · (

√
2− 1)) · c′. Finally, note

Protocol 6 MSNZBFitExt Sub-protocol for InvSqrt

Functionality: (JbK, Jc′K, JrK)← MSNZBFitExt(JaK)
Input: JaK
Output: (JbK, Jc′K, JrK), where b = b′〈`〉 ∈ Q̂〈`,`〉 and b′ ∈ [ 1

2
; 1),

x = b′ · 2e, and r = 0 if e is even, and r = 1 otherwise.
Parameter: `

1: Parties jointly execute steps 1-9 of protocol MSNZBFit.
2: `′ :=

⌊
`
2

⌋
3: [x′i] := [x`+1−i] for 1 ≤ i ≤ `
4: for i = 1 to `′ − 1 do
5: [yi] := [x′2i]⊕ [x′2i+1]

6: if ` is an even number then
7: [y`′ ] := [x′2`′ ]⊕ [x′2`′+1]
8: else
9: [y`′ ] := [x′2`′ ]

10: [r] := [x′2]⊕ [x′4]⊕ · · · ⊕ [x′
2
⌊
`′
2

⌋]
11: JrK← Fmod([r])
12: Jc′K← FBC([y1], . . . , [y`′ ])
13: Output (JbK, Jc′K, JrK)

Protocol 7 Inversion of Square Root

Functionality: JzK← InvSqrt(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉
Output: JzK, where z ≈

(
1√
a′

)
〈δ〉

Parameter: (`, I, α, δ), where I is the number of iteration (say, I =
dlog `e) in the computation.

1: (JbK, Jc′K, JrK)← MSNZBFitExt(JaK)
2: Jx1K := 3〈`〉 − JbK
3: Jy1K := Jx1K/2
4: for i = 2 to I do
5: JxiK := 3〈`〉 − (Jyi−1K×` Jyi−1K) · JbK
6: JyiK := Jxi−1K×`+1 Jyi−1K . Implicit scaling by 1

2

7: Output JyIK · (1 + JrK · (
√
2− 1)) · Jc′K · 2δ−

3
2
`+α

2

that the output has to be scaled, taking into account the input
and output offsets, as well as the offset used for the internal
computation. To see that the correct scaling factor is 2δ−

3
2 `+

α
2 ,

note that for input a = a′〈α〉 and output b = a · (c′)2 = b′ ∗ 2`
of MSNZBFitExt, we have

yI ≈
2`√
b′

=
2`√

a′ · 2α · (c′)2 · 2−`
=

1√
a′
· 1
c′
· 2`/2−α/2

and that the output should be scaled with 2δ . We define the
functionality FInvSqrt that computes 1√

x
as done in the above

using the Newton’s method.

Theorem 6: The protocol InvSqrt securely computes the
inverse of the square root functionality FInvSqrt in the
(Fmsnzbfit,Fmod,Fdiv,Fmult)-hybrid model in the presence of a
passive adversary.

Given the above protocol InvSqrt for computing 1√
x

, and
noting that

√
x = x√

x
, we can easily construct a protocol for

computing
√
x, simply by running InvSqrt and multiplying

the result with x. The resulting protocol, Sqrt, is shown in
Protocol 8. Let Fsqrt be the functionality that on input JaK
outputs J

√
aK in which J 1√

a
K is obtained by FInvSqrt.

Theorem 7: The protocol Sqrt securely computes the
square root functionality Fsqrt in the (FInvSqrt,Fdiv,Fmult)-

9



Protocol 8 Square Root

Functionality: JzK← Sqrt(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉
Output: JzK, where z ≈ (

√
a′)〈δ〉

Parameter: (`, I, α, δ) where I is the number of iterations used in
the computation.

1: Jz′K← InvSqrt(`,I,α,δ)(JaK) . z′ =
(

1√
a′

)
〈δ〉

2: Output JaK · JzK · 2−α

hybrid model in the presence of a passive adversary.

D. Exponential Function

To obtain a fast and highly accurate protocol for evaluating
the exponential function, we adopt what we call hybrid table-
lookup/series-expansion technique. Intuitively, it utilizes the
table lookup approach for the large-value part of the input,
in combination with the Taylor series evaluation for its small-
value counterpart. We first recall that the Taylor series of the
exponential function is

expx =

∞∑
i=0

xi

i!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · .

which converges fast for small values of x. To minimize the
value for which we use the above Taylor series, we separate
the input a into three parts:

1) µ: a lower bound for the input
2) b`, . . . , b`−t: bit representation of the t most significant bits

of b := a− µ
3) bσ: integer representation of (a− µ)−

∑
`−t≤i≤` 2

i−αbi

which means that we can compute exp(a) as

exp a =

( ∏̀
i=`−t

exp(bi · 2i−α)

)
· exp(bσ) · exp(µ). (6)

Here, α is the input offset and t is a parameter of our protocol
that determines which part of the input we will evaluate using
table lookups, and which part we will evaluate using a Taylor
series. In this product, we evaluate exp(µ) locally (as µ is
public),

∏`
i=`−t exp(bi · 2i) using table lookups, and exp(bσ)

using the Taylor series. The taylor series rapidly converge since
bσ is made small due to the subtraction of µ and the value of
the t most significant bits of a.

More specifically, for the table lookup computation, note
that the binary value bi determines whether the factor exp 2i

will included. Hence, by combining bit decomposition, that
allows parties to compute [bi] from JbK, with the CondAssign
protocol using [bi] as the condition, and the values 1 and
exp 2i, which are public and can be precomputed, we obtain
an efficient mechanism for computing

∏`
i=`−t exp(bi · 2i).

However, to maintain high accuracy, the parties will not use
exp 2i directly, but precompute a mantissa fi and exponent 2εi
such that fi·2εi = exp 2i−α. This allows the parties to compute
the product of fi values separately from the product of 2εi

values, and only combine these in the final step constructing
the output, thereby avoiding many of the rounding errors
that potentially occur in large products of increasingly larger
values.

Protocol 9 Exponential Function

Functionality: JzK← Exponent(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉
Output: JzK, where z ≈ (exp a′)〈δ〉
Parameter: (`, I, α, β, δ, µ, t) where I is the number of iterations

used in the computation, β is the offset of the lookup table values,
t indicates the lookup table vs Taylor series threshold, and µ is
a lower bound for the input.

1: JbK := JaK− µ〈α〉
2: [b`], . . . , [b`−t]← FBDC(JbK) . We use only `− t MSBs while
FBDC outputs ` bits.

3: JbiK← Fmod([bi]) for i = `, . . . `− t.
4: JbσK := JbK−

∑
`−t≤i≤`

2iJbiK . Value of t LSBs of JbK

5: Parties define fi, εi such that exp 2i−α = fi · 2εi .
Precomputed lookup table values

6: Using Jf ′iK ← FCondAssign(1〈β〉, (fi)〈β〉, [bi]), the parties obtain

Jf ′iK =

{
(fi)〈β〉 if bi = 1

1〈β〉 otherwise
for i = `, . . . , `− t

7: Using Jε′iK ← FCondAssign(1, 2
εi , [bi]), the parties obtain Jε′iK ={

2εi if bi = 1

1 otherwise
for i = `, . . . , `− t

8: Jf ′K := Jf ′`K×β . . .×β Jf ′`−tK
9: Jε′K := Jε′`K · . . . · Jε′`−tK

10: bσ,0 := 1
11: for i = 1 to I − 1 do
12: Jbσ,iK← Jbσ,i−1K×α JbσK

13: Jb′σK :=
∑

0≤i<I

Jbσ,iK
i!

. Division using Div

14: Output Jf ′K · Jε′K · Jb′σK · expµ · 2δ−β−α

Lastly, the result is computed as
∏
i fi ·

∏
i 2
εi · exp aσ .

Note that the input and output offsets have to be taken into
account, and the output adjusted appropriately. We define the
functionality Fexp such that on input JaK, ea is computed as
done in the above and output JeaK.

Theorem 8: The protocol Exponent securely computes
the exponential function functionality Fexp in the
(FCondAssign,Fmod,FBDC,Fdiv,Fmult)-hybrid model in the
presence of a passive adversary.

E. Extension to signed integer

We extend the protocols proposed in this section into
those for signed integers. We generically convert the protocols
by extracting sign and absolute of an input at first. The
protocol that extract sign and absolute appears in Appendix H.
Obtaining sign and absolute, we conduct the protocols on the
absolute, and then multiply the sign to obtain the output of
signed integer.

F. Satisfying Active Security with Abort

There are known compilers that convert a passively secure
protocol to an actively secure one (with abort). The compiler
[12] and its extension [27] can be applied to Binary/arithmetic
circuit computation, and each step of our proposed protocols
except FBDC, Fmod, and Fdiv is circuit computation over
modulus 2 and p. Therefore, we can obtain actively secure
versions of our protocols computing elementary functions by
applying that compiler on modulus 2 and p in parallel.

10



V. SECURE DEEP NEURAL NETWORK

The main application we consider in this paper for our
secure protocols, is the construction of secure deep neural
networks. We will first give a brief overview of the functions
required to implement deep neural networks, and then present
secure protocols for these. In particular, we propose efficient
secure protocols for the softmax activation function and the
Adam optimization algorithm for training.

A. Neural Network

In this paper, we deal with feedforward and convolutional
neural networks. A network with two or more hidden layers is
called a deep neural network, and learning in such a network
is called deep learning.

A layer contains neurons and the strength of the coupling of
neurons between adjacent layers described by parameters wi.
Learning is a process that (iteratively) updates the parameters
to obtain the appropriate output.

1) Layer: There are several types of layers. The fully
connected layer is computing the inner product of the in-
put vector with the parameters. The convolutional layer is
a fully-connected layer with removing some parameters and
computations. The max-pooling computes the max value in an
input vector to obtain a representative. The batch normalization
performs normalization and an affine transformation of the
input. To normalize a vector −→x = (x1, . . . , xn), we compute

xi ←
xi − µ√
σ2 + ε

, (7)

where µ and σ are mean and variance of −→x , and ε is a small
constant.

2) Activation Function: In a neural network, the activation
functions of the hidden layer and the output layer are selected
according to purpose.

ReLU Function A popular activation function at the middle
layer is the ReLU function defined as ReLU(u) = max(0, u).
the function ReLU′(u), outputting 0 if u ≤ 0 and 1 otherwise,
is used as (a substitute of) differentiated ReLU function.

Softmax Function Classifications for image identification
commonly use the softmax function softmax(ui) at the output
layer. The softmax function for classification into k classes is
as follows:

softmax(ui) =
eui∑k−1
j=0 e

uj
=

1∑k−1
j=0 e

uj−ui
. (8)

3) Optimization: A basic method of parameter update is
stochastic gradient descent (SGD). This method is relatively
easy to implement but has drawbacks such as slow conver-
gence and the potential for becoming stuck at local maxima.
To address these drawbacks, optimized algorithm have been
introduced. [52] analyzed eight representative algorithms, and
Adam [29] was found to be providing particularly good
performance. In fact, Adam is now used in several machine
learning framework [26], [53].

The process of Adam includes the equation
Wt+1 =Wt −

η√
V̂t+1 + ε

◦ M̂t+1, (9)

TABLE III: Environment

OS CentOS Linux release 7.3.1611
CPU Intel Xeon Gold 6144k (3.50GHz 8 core/ 16 thread) × 2

Memory 768 GB
NW Intel X710/X557-AT 10G Ring configuration

where t indicates the iteration number of the learning process,
W, V̂ , and M̂ are matrices, ◦ denotes the element-wise multi-
plication, and η and ε are parameters.

B. Secure Protocols for Deep Neural Networks

The softmax function, Adam, and batch-normalization are
quite common and popular algorithms for deep neural network
due to their superior performance compared to alternatives.
However, efficient secure protocols for these have been elusive
due to intractability of computing the elementary functions
the depend on. The softmax function requires exponentiation
and inversion, as shown in Eq. (8), and Adam and batch-
normalization require the inverse of square roots, as shown
in Eq. (9) and (7). Therefore, the softmax function has often
been approximated by a different function [43], which always
reduces accuracy, sometimes significantly [25], and only SGD,
an elemental optimization method is used. Although FALCON
realized the secure batch-normalization [57], it is not perfectly
secure because it leaks the magnitude of b = σ2 + ε, i.e., α
such that 2α ≤ b < 2α+1, to compute 1√

b
.

However, the efficient secure protocols for the elementary
functions including exponentiation, division, inversion, and
the inverse of square root presented in Section IV allow
us to implement secure deep neural network using softmax,
Adam, and batch-normalization, as opposed to resorting to
approximations and less efficient learning algorithms.

We further prepare building blocks other than the softmax,
Adam, and batch-normalization as follows. A popular process
in layers is matrix multiplication. We apply [12] to compute the
inner products with the same communication cost of a single
multiplication. Since the ReLU′ function extracts the sign of
the input, we can use the same approach as in Protocol 15. The
ReLU function can be obtained by simply multiplying the input
with the output of ReLU′. Secure max-pooling computes the
maximum value and a flag (that is required in backpropagation)
to indicate which is the maximum value by repeatedly applying
the comparison protocol [28].

These building blocks are combined to form a secure deep
learning system. More details can be found in Appendix J,
which includes discussion about other ML related techniques.

VI. EXPERIMENTAL EVALUATION

Environment. We implemented our protocols using p = 261−1,
and instantiated FBC, Fmod, and FQT with the bit-composition,
modulus-conversion, and quotient transfer protocols from [28],
respectively. We set the statistical security parameter for active-
with-abort security to κ = 8.3 All experiments are run in the

3While this parameter is relatively small compared to a somewhat more
standard parameter like κ = 40 [3], an active adversary will have only a single
chance to cheat for the implemented techniques [12], [27] and an honest party
can detect it with probability over 99%.
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execution environment shown in Table III, artificially limiting
the network speed to 320Mbps and latency to 40ms when
simulating a WAN setting.

A. Accuracy and Throughput

We measured the accuracy and throughput of our division
protocol and elementary functions. Due to space limitation, the
details of our experiments are deferred to Appendix K. In the
following, we highlight our key findings.

• Output of our division protocol is close to real-valued
division, with an L1-norm error of 0.335/2t for input with
offset t.

• All elementary functions have at least 23-bit accuracy.
• The throughput for the elementary functions are an order

of magnitude faster than Sharemind [48] when processing
1M records.4

B. Secure Training of DNNs

We measured the performance of training the DNN archi-
tectures highlighted below. The parameters for Adam in all
our experiments are β1 = 0.09, β2 = 0.999, η = 2−10(η′ =
10), ε = 0, which are the recommended parameters in [29]
(except ε).

Network Architectures We consider three networks in our
experiments: (1) 3DNN, a simple 3-layer fully-connected net-
work introduced in SecureML [43] and used as a benchmark
for privacy preserving ML, (2) AlexNet, the famous winner
of the 2012 ImageNet ILSVRC-2012 competition [33] and
a network with more than 60 million parameters, and (3)
VGG16, the runner-up of the ILSVRC-2014 competition [54]
and a network with more than 138 million parameters. While
the first network is typically used as a performance benchmark
for privacy preserving ML, measurements with the latter two
networks provide insight into the performance when using
larger more realistic networks.

Datasets We use two datasets for our experiments: (1)
MNIST [36], a collection of 28 x 28 pixel images of hand-
written digits typically used for benchmarks, and (2) CIFAR-
10 [32], a collection of colored 32 x 32 pixel images picturing
dogs, cats, etc. We used MNIST in combination with 3DNN for
benchmarking, and CIFAR-10 in combination with the larger
networks AlexNet and VGG16.

Comparison For experimental comparison with related work,
we will focus on the state-of-the-art three-party protocol,
FALCON [57]. We note that the two-party protocols, Se-
cureML [43] and Quotient [1], are outperformed by any of
the three-party protocols by almost an order of magnitude
in terms of running time, and among the three-party pro-
tocols, FALCON improves upon ABY3, which again is an
improvement upon SecureNN. Furthermore, FALCON is the
only other related work considering larger networks, AlexNet
and VGG16.

Concretely, for all experiments, we ran the code from
[57] in the same experimental environment and measured the

4Note that [48] seems like the most relevant comparison; ABY3 does not
implement similar elementary functions, but replaces these with MPC-friendly
functions.

TABLE IV: Comparison of training time of 3DNN over the
MNIST dataset.

Security/NW Methods Epochs Time [s] Accuracy [%]
FALCON Passive/LAN SGD 15 780 -

Ours Adam 1 117 95.64
FALCON Active/LAN SGD 15 2, 355 -

Ours Adam 1 570 95.61
FALCON Passive/WAN SGD 15 16, 110 -

Ours Adam 1 4, 537 95.64
FALCON Active/WAN SGD 15 37, 185 -

Ours Adam 1 11, 516 95.61

execution time. We note that FALCON provides only 13-
bit accuracy and sacrifices perfect security for performance,
whereas our protocols provide 23-bit accuracy and perfect se-
curity. Furthermore, the code from [57] implements the online
phase only, and hence, the measurements do not include the
corresponding offline phase, which would make a significant
contribution to the total running time. Lastly, the code does
not update the parameters of the model, which makes the
accuracy of the obtained model unclear. We emphasize that
the measurements for our protocols are for the total running
time and a fully trained model. Despite this, we treat the
obtained measurements as comparable to ours. This is in favor
of FALCON.

Results for 3DNN We measured the running time and
accuracy for training 3DNN on the MNIST dataset for passive
and active security, in the LAN and WAN settings. The results
for our protocols and FALCON can be seen in Table IV.
Compared to FALCON, ours is between 3.2 to 6.7 times faster,
depending on the setting. We again highlight that these results
are achieved despite the advantages provided to FALCON in
this comparison (measuring online time only, 13-bit vs. 23-bit
accuracy, and imperfect security). For reference, we note that
ours is only a factor of less than 6 slower than training in the
clear using MLPClassifier from [46] (17.7 seconds, 95.54 %
accuracy) on a single machine.

Results for AlexNet and VGG16 In the original paper of
FALCON [57], the total running time for training on AlexNet
and VGG16 was estimated through extrapolation since these
networks require a significant amount of computation for
training, even in the clear. We follow this method to estimate
the running time of ours and FALCON (re-evaluated in our
environment) in the same way.

In Table V, we show the measured running time to com-
plete a single epoch for AlexNet and VGG16 using the CIFAR-
10 dataset, both for passive and active security, as well as in
the LAN and WAN settings. The table include measurements
for both FALCON and our protocols. Note, however, that
the time to complete a single epoch is not indicative of
the overall performance difference between FALCON and
our framework, as the underlying optimization methods are
different, and require a different number of epochs to train a
network achieving a certain prediction accuracy.

To determine the number of epochs needed for Adam
(implemented in our framework) and SGD (implemented in
FALCON), we ran Adam and SGD for AlexNet and VGG16
on CIFAR-10 in the clear, and measured the achieved accuracy.
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TABLE V: Measured running time per epoch for training
AlexNet and VGG16 on CIFAR-10.

Security Setting AlexNet [s] VGG16 [s]
FALCON Passive LAN 10, 892 523, 127

Ours Passive LAN 3, 139 43, 150
FALCON Active LAN 41, 537 2, 051, 751

Ours Active LAN 15, 021 161, 481
FALCON Passive WAN 23, 489 575, 699

Ours Passive WAN 49, 833 347, 928
FALCON Active WAN 75, 838 2, 240, 515

Ours Active WAN 159, 781 1, 293, 226

(a) AlexNet

(b) VGG16

Fig. 1: Accuracy of AlexNet and VGG16 trained with Adam
and SGD on CIFAR-10.

The results are illustrated in Figure 1. For AlexNet, we see that
accuracy converges towards 75% ∼ 78%, with Adam achiev-
ing a maximum of 77.15% and SGD a maximum of 75.98% in
our test. We note that Adam achieves an accuracy exceeding
70% after 25 epochs, whereas SGD requires 107 epochs. For
VGG16, we see that Adam significantly outperforms SGD, and
after relatively few epochs, achieves an accuracy not obtained
by SGD, even after 150 epochs. We note that achieving an
accuracy exceeding 75% requires 6 and 23 epochs for Adam
and SGD, respectively, whereas an accuracy of 80% requires
8 and 45 epochs, respectively.

Based on the observations above, we estimate the running

TABLE VI: Estimated running time for training of AlexNet
(70% accuracy) and VGG16 (75% accuracy) on CIFAR-10.

Security Setting AlexNet [h] VGG16 [h]
FALCON Passive LAN 324 3, 342

Ours Passive LAN 22 72
FALCON Active LAN 1, 235 13, 108

Ours Active LAN 104 269
FALCON Passive WAN 698 3, 678

Ours Passive WAN 346 580
FALCON Active WAN 2, 254 14, 314

Ours Active WAN 1, 110 2, 155

time of achieving an accuracy of 70% for AlexNet and 75%
for VGG16, for active and passive security in the LAN and
WAN setting. The result is shown in Table VI. We see that
in the LAN setting, the total running time of our framework
outperforms the online phase of FALCON with a factor of
about 12 ∼ 14 for AlexNet and 46 ∼ 48 for VGG16, whereas
in the WAN setting, the factors are about 2 and 6, respectively.

The above comparison illustrates the advantage of the ap-
proach taken in our framework; by constructing efficient (and
highly accurate) protocols that allow advanced ML algorithms
such as Adam to be evaluated, despite these containing “MPC-
unfriendly functions”, we gain a significant advantage in
terms of overall performance compared to previous works like
FALCON, that attempt to achieve efficiency by simplifying
the underlying ML algorithms, and optimizing the evaluation
of these. As shown, the advantage when considering larger
more realistic networks can in some cases be significantly
more pronounced than suggested by the evaluation results on
benchmark networks such as 3DNN, which is illustrated by
the obtained 46 times faster evaluation of VGG16 in the LAN
setting. We again highlight that this is obtained despite the
advantages offered to FALCON in the comparison.

Note on Trident Finally, for completeness, we note that
Trident [47] improves upon the online phase of ABY3 by
increasing the number of servers to four and pushing more of
the computation to the offline phase. Note that being a four-
party protocol (tolerating a single corruption), Trident obvi-
ously increases cost in terms of the required number of servers,
but also weakens security compared to the above mentioned
three-party protocols, and is hence not directly comparable to
our framework. Nevertheless, from the measurements which
are provided in [47], we estimate that, for active security,
the online phase of Trident is somewhat faster in the LAN
setting and somewhat worse in the WAN setting compared to
the total running time for our protocols when considering the
simple 3DNN network.5 However, including the offline phase,
which is significant for Trident, will add considerably to the
running time6. This strongly indicates that, despite being a
four-party protocol, Trident offers worse overall performance

5From the measurements reported in [47], we estimate that the online
phase of Trident in their environment would require 306s and 30264s to train
3DNN on the MNIST dataset in the LAN and WAN setting, respectively. The
corresponding total time for our protocols are 570s and 11516s, respectively.

6Note that the offline phase in Trident is slower than the semi-honest
ABY3 implementation (see [47][Appendix E.B]), which is already heavy.
Furthermore note that the offline communication cost in Trident is the same
or larger than in the online phase for all the 12 protocols in [47], except bit
extraction.
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than our protocols, in particular in the WAN setting, while at
the same time relying on simplifications of the underlying ML
learning algorithms. Additionally, Trident does not implement
batch normalization required for AlexNet, and does not report
any measurements for larger networks, for which we expect
our framework to have a greater advantage. Since the source
code is furthermore not available, such measurements are not
easily obtainable.

VII. CONCLUSION

In this paper, we proposed a framework that enables
efficient and secure evaluation of ML algorithms via three-
party protocols for MPC-unfriendly computations. We first
proposed a new division protocol, which enables efficient and
accurate fixed-point arithmetic computation, and based on this,
efficient protocols for machine learning, such as inversion,
square root extraction, and exponential function evaluation.
These protocols enable us to efficiently compute modern ML
algorithms such as Adam and the softmax function as is. As a
result, we obtain secure DNN training that outperforms state-
of-the-art three-party systems in all tested settings, with the
most pronounced advantage for large networks in the LAN
setting.
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APPENDIX A
DEFERRED DETAILS ON SHARE CONVERSIONS

This section provides details for share conversions, deferred
from Section II-C. Our protocols will utilize the following
share conversions.
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JaK → 〈〈a〉〉: Let JaKi = (ai, ai+1) be Pi’s share for i =
1, 2, 3. The conversion from JaK to 〈〈a〉〉, which we denote
〈〈a〉〉 ← ConvertToAdd(JaK), is a local operation: P1 and P2

set 〈〈a〉〉1 := a1 and 〈〈a〉〉2 := a2 + a3, respectively.

〈〈a〉〉 → JaK: The conversion from 〈〈a〉〉 to JaK, which we
denote JaK ← ConvertToRep(〈〈a〉〉), is achieved via a simple
protocol from [28]: P1 and P2 secret-share their shares 〈〈a〉〉1
and 〈〈a〉〉2 using a J·K-sharing, and send J〈〈a〉〉1Ki and J〈〈a〉〉1Ki,
respectively, to party Pi. Each Pi adds the received shares as
JaKi = J〈〈a〉〉1Ki+J〈〈a〉〉2Ki locally. We can further optimize this
algorithm by using a pseudo-random number generator [13],
to achieve a communication cost of two field elements among
three parties in a single round.

JaK→ [a`], . . . , [a1]: This conversion decomposes a shared
secret a into shares of its bit representation a`, . . . , a1, which
is also known as bit-decomposition. Note that we only decom-
pose the least significant ` bits of a. The ideal functionality
for bit-decomposition, which we denote FBDC, is given in
Functionality 9. A protocol that securely computes FBDC in
the presence of passive and active adversaries appear in [28].

FUNCTIONALITY 9 (FBDC – Bit decomposition):
Upon receiving JaK, FBDC reconstructs a, generates shares
([a1], . . . , [a`]), where a =

∑`
i=1 2

i−1ai and sends
([a1]i, . . . , [a`]i) to Pi.

[a`], . . . , [a1] → JaK: This conversion constructs shares
of a secret a from shares of its bit representation a`, . . . , a1,
which is also known as bit-composition. The ideal function-
ality for bit-composition, which we denote FBC, is given
in Functionality 10. In Appendix I, we present an efficient
bit-composition protocol based on quotient transfer presented
below. This is a modified version for modulus p while the
known bit composition protocol [2] works in only modulus
2n.

FUNCTIONALITY 10 (FBC – Bit composition):
Upon receiving [a1], . . . , [a`], FBDC reconstructs a1, . . . , a`,
computes a :=

∑`
i=1 ai · 2

i, generates shares JaK, and sends
JaKi to Pi.

[a] → JaK: This conversion essentially changes the mod-
ulus of the underlying field of the shares while maintaining
the secret i.e. shares [a]i ∈ Z2 for a secret a ∈ {0, 1} are
converted to shares JaKi ∈ Zp. The ideal functionality of this
modulus-conversion is given in Functionality 11. Protocols that
securely compute Fmod in the presence of passive and active
adversaries appear in [28].

FUNCTIONALITY 11 (Fmod – Modulus conversion):
Upon receiving [a], Fmod reconstructs a, generates shares JaK,
and sends JaKi to Pi.

APPENDIX B
QUOTIENT TRANSFER PROTOCOL

We describe the quotient transfer protocols for J·K, 〈〈·〉〉,
and [·].

Protocol 10 Quotient Transfer for 〈〈·〉〉
Functionality: 〈〈q〉〉 ← QT(〈〈a〉〉)
Input: 〈〈a〉〉 where a is a multiple of 2.
Output: 〈〈q〉〉 where 〈〈a〉〉1 + 〈〈a〉〉2 = a+ qp

1: P0 and P1 secret-share LSBs of 〈〈a〉〉1 and 〈〈a〉〉2 in modulo 2,
respectively. Let them be [〈〈a〉〉(1)1 ] and [〈〈a〉〉(1)2 ].

2: [q] := [〈〈a〉〉(1)1 ]⊕ [〈〈a〉〉(1)2 ].
3: JqK← Fmod([q])
4: 〈〈q〉〉 ← ConvertToAdd(JqK)
5: Output 〈〈q〉〉

Protocol 11 Quotient Transfer for J·K
Functionality: JqK← QT(JaK)
Input: JaK where a is a multiple of 4.
Output: JqK where a1 + a2 + a3 = a+ qp

1: P0 and P1 locally generate shares of the second LSBs of a1,
a2, and a3 in modulo 2, respectively. Let them be [a

(1)
1 ], [a(2)1 ],

[a
(1)
2 ], [a(2)2 ], [a(1)3 ], and [a

(2)
3 ].

2: [q1] := [a
(1)
1 ]⊕ [a

(1)
2 ]⊕ [a

(1)
3 ].

3: [c]← ([a
(1)
1 ]⊕ [a

(1)
3 ]) · ([a(1)2 ]⊕ [a

(1)
3 ])⊕ [a

(1)
3 ].

4: [q1] := [a
(2)
1 ]⊕ [a

(2)
2 ]⊕ [a

(2)
3 ]⊕ [c].

5: Jq1K← Fmod([q1])
6: Jq2K← Fmod([q2])
7: Output JqK := Jq1K + 2Jq2K

Informally speaking, the main idea of this protocol is that if
we use an odd prime and the secret’s LSB is zero, the addition
of the truncated shares’ LSBs corresponds to q.

The quotient transfer protocol uses multiplication and mod-
ulus conversion protocols. In the protocol, we describe them
as functionalities Fmult and Fmod. Please see [28] for their
instantiations.

In the presence of passive adversaries, we use 〈〈a〉〉 as an
input of the quotient transfer protocol. Because 〈〈a〉〉 consists
of two sub-shares, the quotient q is 0 or 1 and the (single)
LSB must be 0.

In the presence of active adversaries, we use JaK as an
input of the quotient transfer protocol. Because JaK consists of
three sub-shares, the quotient q is 0, 1, or 2, and the second
LSBs must be 0s to contain 2. The step 3 and the last term
of step 4 come from the fact that the carry of a1, a2, a3 is
(a1 ⊕ a3)(a2 ⊕ a3) ⊕ a3. This protocol is secure against an
active adversary with abort using general compiler such as
[12]. Note, in the step 1, the “share of sub-shares” can be
generated locally. For details, see Section 4.4 in [28].

We can also introduce the quotient transfer protocol for [·]
[2]. This protocol computes the carry, which means whether
or not there are at least two sub-shares are 1.

APPENDIX C
FUNCTIONALITIES OF DIVISION PROTOCOLS

We give the functionalities for division by a public value,
Fdiv and Fdiv general, corresponding to division in the specific
and general case, respectively, in Functionality 12 and Func-
tionality 13.
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FUNCTIONALITY 12 (Fdiv – Division by a public value):
Upon receiving 〈〈a〉〉1 and 〈〈a〉〉2, Fdiv reconstructs a ≡ 〈〈a〉〉1 + 〈〈a〉〉2 and computes ra = a mod d, and r1 = 〈〈a〉〉1 mod d.
Then, Fdiv sets b as follows:

• b = a/d if
(
(〈〈a〉〉1 ≤ a) ∧ (ra < r1)

)
∨
(
(a < 〈〈a〉〉1) ∧ (ra − 1 < r1)

)
,

• b = a/d+ 1 otherwise.
Then, Fdiv randomly picks 〈〈b〉〉1 ← Fp, sets 〈〈b〉〉2 ≡ b− 〈〈b〉〉1, and hands the parties P1 and P2 their shares 〈〈b〉〉1 and 〈〈b〉〉2,
respectively.

FUNCTIONALITY 13 (Fdiv general – Division by a public value in general case):
Upon receiving 〈〈a〉〉1 and 〈〈a〉〉2, Fdiv reconstructs a ≡ 〈〈a〉〉1 + 〈〈a〉〉2 and computes ra = a mod d, rp = p mod d, and
r1 = 〈〈a〉〉1 mod d. Then, Fdiv sets b as follows:

• b = a/d if
(
(〈〈a〉〉1 ≤ a) ∧ (ra < r1 ≤ rp)

)
∨
(
(a < 〈〈a〉〉1) ∧

(
(ra + rp < r1) ∨ (ra + rp − d < r1 ≤ rp)

))
.

• b = a/d + 1 if
(
(〈〈a〉〉1 ≤ a) ∧

(
(r1 ≤ ra) ∧ (r1 ≤ rp)

)
∨
(
(ra < r1) ∧ (rp < r1)

))
∨
(
(a < 〈〈a〉〉1) ∧

(
(rp < r1 ≤

ra + rp) ∨ (r1 ≤ ra + rp − d)
))

.
• b = a/d+ 2 if (〈〈a〉〉1 ≤ a) ∧ (rp < r1 ≤ ra).

Then, Fdiv randomly picks 〈〈b〉〉1 ← Fp, sets 〈〈b〉〉2 ≡ b− 〈〈b〉〉1, and hands the parties P1 and P2 their shares 〈〈b〉〉1 and 〈〈b〉〉2,
respectively.

Protocol 12 Quotient Transfer for [·]
Functionality: [q]← QT([a])
Input: [a] (no restriction of a)
Output: [q] where a1 + a2 + a3 = a+ 2q

1: P0 and P1 locally generate shares of a1, a2, and a3 in modulo
2, respectively. Let them be [a1], [a2], and [a3].

2: [q]← ([a1]⊕ [a3]) · ([a2]⊕ [a3])⊕ [a3].
3: Output [q]

APPENDIX D
DIVISION PROTOCOL FOR SIGNED INTEGERS

We extend our division protocols to signed integers in
Protocol 13.

Protocol 13 Secure Division by Public Value in J·K with Signed
Integers

Functionality: JcK← DivS
(2,3)(JaK, d)

Input: Share of dividend JaK and (public) divisor d, where
−2|p|−2 − rω ≤ a ≤ 2|p|−2 − rω − 1

Output: JcK, where c ≈ a
d

Parameter: ω :=
⌈
2|p|−2

d

⌉
and rω such that ωd = 2|p|−2+rω

1: JbK← Div(2,3)(Jwd+ aK, d)
2: JcK← JbK− JwK
3: Output JcK

APPENDIX E
PRECISE ANALYSIS OF OUR DIVISION PROTOCOL

A. Specific Case

First, we focus on an the important case (for our appli-
cation) in which p is a Mersenne prime and d is a power of
2.

In that case, rp = d− 1 and Eq. (3) is

αa − q + 1 +
ra + q(d− 1)− r1 − r2

d
+ r1/d

= αa − q + 1 +
ra + q(d− 1)− r1 − r2

d
(10)

since r1 < d.

Next, we separate the cases of q = 0 and q = 1. If q = 0
(that means 〈〈a〉〉1 ≤ a), Eq. (10) is

αa + 1 +
ra − r1 − r2

d
.

Since 〈〈a〉〉1+ 〈〈a〉〉2 ≡ a and q = 0, the equation (α1d+ r1)+
(α2d+ r2) = αad+ r holds and converts to

ra − r1 − r2
d

= α1 + α2 − αa.
Since α1, α2, and αa are integers, r − r1 − r2 must be a
multiple of d. In addition, since r, r1, and r2 are less than d,
ra − r1 − r2 is either 0 or −d. Precisely,

ra − r1 − r2
d

=

{
−1 if ra < r1
0 otherwise.

Therefore, in the case of q = 0, the output is as follows.

αa + 1 +
ra − r1 − r2

d
=

{
αa if ra < r1
αa + 1 otherwise

. (11)

We then switch to the case of q = 1 (that means a < 〈〈a〉〉1).
Eq. (10) is

αa +
ra + rp − r1 − r2

d
.

Since 〈〈a〉〉1+〈〈a〉〉2 ≡ a and q = 1, (α1d+r1)+(α2d+r2) =
(αad+ ra) + (αpd+ rp) and

ra + rp − r1 − r2
d

= α1 + α2 − (αa + αp).

Since all the terms in the right equation are integers, ra+rp−
r1− r2 is a multiple of d. In addition, since ra, r1, and r2 are
less than d and rp = d− 1, ra + rp − r1 − r2 can be either 0
or 1. Precisely,

ra + rp − r1 − r2
d

=

{
0 if ra − 1 < r1
1 otherwise,
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and we have the following in the q = 1 case.

αa +
ra + rp − r1 − r2

d
=

{
αa if ra − 1 < r1
αa + 1 otherwise .

(12)

Let b be the secret of our protocol’s output and recall that
αa = a/d. From Eq. (11) and 12, we conclude that

b =


a/d if

(
(〈〈a〉〉1 ≤ a) ∧ (ra < r1)

)
∨
(
(a < 〈〈a〉〉1) ∧ (ra − 1 < r1)

)
a/d+ 1 otherwise

(13)

B. General Case

On input an additive share 〈〈a〉〉 and divisor d, we show
that our division protocol outputs 〈〈a/d〉〉, 〈〈a/d+ 1〉〉, or
〈〈a/d+ 2〉〉 for a general p and d.

We first consider the q = 0 case. In this case, Eq. (3) is

αa + 1 +
ra − r1 − r2

d
+ (r1 − rp + d− 1)/d.

For the term of ra−r1−r2
d , the same discussion in the specific

case holds.

We then consider the last term (r1 − rp + d − 1)/d. If
r1−rp ≤ 0, 0 ≤ r1−rp+d−1 < d since −(d−1) ≤ r1−rp.
Otherwise, d ≤ r1 − rp + d− 1 < 2d since r1 − rp ≤ d− 1.
Therefore,

(r1 − rp + d− 1)/d =

{
0 if r1 ≤ rp
1 otherwise

(14)

Therefore, we have the following equation in the q = 0 case.

αa + 1 +
ra − r1 − r2

d
+ (r1 + d− 1− rp)/d

=


αa if ra < r1 ≤ rp
αa + 1 if

(
(r1 ≤ ra) ∧ (r1 ≤ rp)

)
∨
(
(ra < r1) ∧ (rp < r1)

)
αa + 2 if rp < r1 ≤ ra

. (15)

Next, we consider the q = 1 case. In this case, Eq. (3) is

αa +
ra + rp − r1 − r2

d
+ (r1 − rp + d− 1)/d.

The same discussion as in the specific case holds and
ra+rp−r1−r2

d must be a multiple of d. However, rp can be
small in the general case, and it affects the possible values of
this term; namely, ra + rp − (r1 + r2) can be −1 in addition
to 0 and 1. Precisely,

ra + rp − r1 − r2
d

=


−1 if ra + rp < r1
0 if ra + rp − d < r1 ≤ ra + rp
1 otherwise

(16)
The term (r1−rp+d−1)/d is the same as Eq. (14). Therefore,
combining the conditions of Eq. (14) and 16,

αa +
ra + rp − r1 − r2

d
+ (r1 − rp + d− 1)/d

=

{
αa if (ra + rp < r1) ∨ (ra + rp − d < r1 ≤ rp)
αa + 1 if (rp < r1 ≤ r + rp) ∨ (r1 ≤ ra + rp − d)

.

(17)

Let b be the secret of our protocol’s output and recall that
αa = a/d. From Eq. (15) and (17), we conclude that b = a/d

if(
(〈〈a〉〉1 ≤ a) ∧ (ra < r1 ≤ rp)

)
∨(

(a < 〈〈a〉〉1) ∧
(
(ra + rp < r1) ∨ (ra + rp − d < r1 ≤ rp)

))
,

b = a/d+ 1 if(
(〈〈a〉〉1 ≤ a) ∧

(
(r1 ≤ ra) ∧ (r1 ≤ rp)

)
∨
(
(ra < r1) ∧ (rp < r1)

))
∨
(
(a < 〈〈a〉〉1) ∧

(
(rp < r1 ≤ ra + rp) ∨ (r1 ≤ ra + rp − d)

))
,

and b = a/d+ 2 otherwise.

APPENDIX F
PROBABILITY OF EACH OUTPUT FOR RANDOM SHARES

In this section, we specify how the output of our passively
secure division protocol depends on d, a, p, 〈〈a〉〉1 (and their
dependent variables αa, ra, αp, rp, 〈〈a〉〉2, r1, and r2). In
this section, we assume that 〈〈a〉〉1 is uniformly random in
mod p. This is the case for our application – multiply-then-
truncate. An output of multiplication protocol is uniformly
random share, and an input of the division protocol is always
the output of a multiplication protocol.

A. Specific Case

As in the correctness discussion, we first focus on the case
in which p is a Mersenne prime and d is a power of 2.

From Eq. (13), we count integers that satisfying (〈〈a〉〉1 ≤
a) ∧ (ra < r1) or (a < 〈〈a〉〉1) ∧ (ra − 1 < r1). We observe
that (〈〈a〉〉1 ≤ a) ∧ (ra < r1) is true if
〈〈a〉〉1 ∈ {md+ n | 0 ≤ m ≤ αa − 1, ra + 1 ≤ n ≤ d− 1}.

The number of integers satisfying the above is αa(d−ra−1).
We then observe that (a < 〈〈a〉〉1) ∧ (ra − 1 < r1) is true if

〈〈a〉〉1 ∈{md+ n | αa ≤ m ≤ αp, ra ≤ n ≤ d− 1}
\ {αad+ ra, αpd+ d− 1}.

The number of integers satisfying the above is (αp − αa +
1)(d− ra)− 2.

Therefore, the probability that the output is a/d is
αa(d− ra − 1) + (αp − αa + 1)(d− ra)− 2

p

=
αpd+ (d− 1)− αpra − αa + ra − 1

p

=
p− ra(αp − 1)− αa − 1

p
,

and the probability that the output is a/d+ 1 is

1− p− ra(αp − 1)− αa − 1

p
=
ra(αp − 1) + αa + 1

p

B. General Case

We show the probability of each output for general p and d,
including when d is not a power of 2. The probability depends
on two relations: magnitude relations between r and rp, and
d and ra + rp.
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Case 1: rp < ra and ra + rp < d

First, we consider the q = 0 case, i.e., 〈〈a〉〉1 ≤ a. If rp <
ra, Eq. (15) equals to

αa + 1 +
ra − (r1 + r2)

d
+ (r1 + d− 1− rp)/d

=

{
αa + 1 if (r1 ≤ rp) ∨ (ra < r1)

αa + 2 if rp < r1 ≤ ra
(18)

Recall that q = 0 means 〈〈a〉〉1 ≤ a and r1 = 〈〈a〉〉1 mod d.
Therefore,

Pr[(q = 0) ∧ ((r1 ≤ rp) ∨ (r < r1))]

=
(d− ra + rp)αa + rp + 1

p
and

Pr[(q = 0) ∧ (rp < r1 ≤ ra)]

=
(ra − rp)(αa + 1)

p

Next, we consider the q = 1 case, i.e., a < 〈〈a〉〉1. If ra +
rp < d, Eq. (17) equals to

αa +
ra + rp − (r1 + r2)

d
+ (r1 − rp + d− 1)/d

=

{
αa if (ra + rp < r1) ∨ (r1 ≤ rp)
αa + 1 if (rp < r1 ≤ ra + rp).

(19)

Therefore, if rp < r,
Pr[(q = 1) ∧ ((ra + rp < r1) ∨ (r1 ≤ rp)]

=
(αp − αa)(d− r)− 1

p
and

Pr[(q = 1) ∧ (rp < r1 ≤ ra + rp)]

=
(αp − αa − 1)ra + rp

p

In summary, if rp < ra and ra + rp < d,
Pr[output is αa]
= Pr[(q = 1) ∧ (ra + rp < r1) ∨ (r1 ≤ rp)]

=
(αp − αa)(d− ra)− 1

p
and

Pr[output is αa + 1]

= Pr

[
((q = 0) ∧ ((r1 ≤ rp) ∨ (ra < r1)))

∨ ((q = 1) ∧ (rp < r1 ≤ ra + rp))

]
=

(d− ra + rp)αa + rp + 1

p
+

(αp − αa − 1)ra + rp
p

=
(d− 2ra + rp)αa + 2rp + (αp − 1)ra + 1

p
and

Pr[output is αa + 2] = Pr[(q = 0) ∧ (rp < r1 ≤ r)]

=
(ra − rp)(αa + 1)

p

Case 2: rp < ra and d ≤ ra + rp

The q = 0 case is the same as the case 1.

If d ≤ ra + rp, Eq. (17) equals to

αa +
ra + rp − (r1 + r2)

d
+ (r1 − rp + d− 1)/d

=

{
αa if (ra + rp − d < r1 ≤ rp)
αa + 1 if (rp < r1) ∨ (r1 ≤ ra + rp − d).

If rp < ra,
Pr[(q = 1) ∧ (ra + rp − d < r1 ≤ rp)]

=
(αp − αa)(d− ra)− 1

p
and

Pr[(q = 1) ∧ ((rp < r1) ∨ (r1 ≤ ra + rp − d))]

=
(αp − αa − 1)ra + rp

p

In summary, if rp < ra and d ≤ ra + rp,
Pr[output is αa]
= Pr[(q = 1) ∧ (ra + rp − d < r1 ≤ rp)]

=
(αp − αa)(d− ra)− 1

p
and

Pr[output is αa + 1]

= Pr

[
((q = 0) ∧ ((r1 ≤ rp) ∨ (r < r1)))

∨ ((q = 1) ∧ ((rp < r1) ∨ (r1 ≤ ra + rp − d)))

]
=

(d− (ra − rp))αa + rp + 1

p
+

(αp − αa − 1)ra + rp
p

=
(d− 2ra + rp)αa + 2rp + (αp − 1)ra + 1

p
and

Pr[output is αa + 2] = Pr[(q = 0) ∧ (rp < r1 ≤ ra)]

=
(ra − rp)(αa + 1)

p

The above shows the probability of cases 1 and 2 are the
same.

Case 3: ra ≤ rp and d ≤ ra + rp

If ra ≤ rp, Equation 15 equals to

αa + 1 +
ra − (r1 + r2)

d
+ (r1 + d− 1− rp)/d

=

{
αa if ra < r1 ≤ rp
αa + 1 if (r1 ≤ ra) ∨ (rp < r1)

Similar to the previous case, we have

Pr[(q = 0) ∧ (ra < r1 ≤ rp)] =
(rp − ra)αa

p
and

Pr[(q = 0) ∧ ((r1 ≤ ra) ∨ (rp < r1))]

=
(d− rp + ra)αa + ra + 1

p

The q = 1 case, if ra ≤ rp,
Pr[(q = 1) ∧ ((ra + rp < r1) ∨ (r1 ≤ rp)]

=
(αp − αa)(d− ra)− 1 + rp − ra

p
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and

Pr[(q = 1) ∧ (rp < r1 ≤ ra + rp)] =
(αp − αa)ra

p

In summary, if ra ≤ rp and ra + rp < d,
Pr[output is αa]

= Pr

[
((q = 0) ∧ (r < r1 ≤ rp))
∧ ((q = 1) ∧ (ra + rp < r1) ∨ (r1 ≤ rp))

]
=

(rp − r)αa
p

+
(αp − αa)(d− r)− 1 + rp − r

p

=
(αp − αa)d+ rpαa − αpra − 1 + rp − r

p

=
p− a+ rpαa − αpra − 1

p
and

Pr[output is αa + 1]

= Pr

[
((q = 0) ∧ ((r1 ≤ ra) ∨ (rp < r1)))

∨ ((q = 1) ∧ (rp < r1 ≤ ra + rp))]

]
=

(d− rp + ra)αa + ra + 1

p
+

(αp − αa)ra
p

=
(d− rp)αa + (αp + 1)ra + 1

p

=
a− rpαa + raαp + 1

p

Case 4: ra ≤ rp and d ≤ ra + rp

The q = 0 case is the same as the case 3. If ra ≤ rp,
Pr[(q = 1) ∧ (ra + rp − d < r1 ≤ rp)]

=
(αp − αa)(d− ra)− 1 + rp − ra

p
and

Pr[(q = 1) ∧ ((rp < r1) ∨ (r1 ≤ ra + rp − d))]

=
(αp − αa)ra

p

In summary, the probability is the same as that in the case
3.

APPENDIX G
DIVISION PROTOCOL SECURE AGAINST AN ACTIVE

ADVERSARY WITH ABORT

We show the division protocol secure against an active
adversary with abort in Protocol 14. In addition to canceling
qαp out, we adjust the output to make the difference between
a
d and the output small by adding constants. Experimental
analysis of the output of this protocol is provided in Sect. VI,
which shows on average the relative error is about 0.5. Precise
analysis of the output distribution will be provided in the full
version.

Protocol 14 Actively Secure Division by Public Value

Functionality: JcK← DivMal
(2,3)(JaK, d)

Input: JaK and d, where a and d are multiples of 4
Output: JcK, where c ≈ a

d
1: Let αp and rp be p = αpd+ rp, where 0 ≤ rp < d.
2: JqK← FQT(JaK)

3: z :=

{
1 if rp ≥ d/2
0 otherwise

4: Let ai be a sub-share of JaK, i.e., a1+a2+a3 = a mod p
5: for 1 ≤ j ≤ 3 do
6: Pj and Pj+1 compute bj :={

aj + (d− rp) + (d− rp)/2 in N if j = 0

aj otherwise

7: Pj and Pj+1 set b′j :=

{
bj/d+ 1 if bj

d − bj/d ≥
d
2

bj/d otherwise

8: Jb′Ki := (b′i, b
′
i+1) for i = 1, 2, 3

9: Output Jb′K− (αp + z)JqK− 1

APPENDIX H
EXTENSION TO SIGNED VALUES

Some of our protocols are only suitable for computation
over unsigned values. To extend the domain of these to include
signed values, we make use of a functionality that extracts
the sign and the absolute value of a share. This allows us to
do computation over the absolute value, and later adjust the
result according to the sign. We denote by ExtSignAbs the
function that extracts the sign and absolute value of the input,
and functionality Fextsignabs

Theorem 14: The protocol in Figure 15 securely imple-
ments Fextsignabs in the (FBDC,Fmod)-hybrid model in the
presence of a passive adversaries.

Protocol 15 Extract Sign and Absolute for Signed Integer

Functionality: (JfK, JbK)← ExtSignAbs(JaK)
Input: JaK
Output: (JfK, JbK), where f = 1 if 0 ≤ a and f = −1

otherwise, and the least ` bits of b is |a|.
Parameter: `, where ` is the bit-length of a, i.e., −2` < a <

2`.
1: Ja′K = 2`+1 + JaK
2: ([a`+1], . . . , [a1])← FBDC(JaK).
3: Ja`+1K← Fmod([a`+1]). . a`+1 = 1 if a is positive and
a`+1 = 0 otherwise

4: JfK := 2Ja`+1K− 1 . f = 1 if a is positive and f = −1
otherwise

5: JbK := (1− Ja`+1K)2`+1 + JfK · Ja′K
6: Output (JfK, JbK)

APPENDIX I
BIT COMPOSITION PROTOCOL

We will make use of functionalities for bit decomposition
and composition of shared values, denoted FBDC and FBC,
respectively. The former was discussed in Sect. II. The known
bit composition protocol [2] works in only mod 2n, we,
therefore, propose the bit composition protocol in mod p.
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Protocol 16 Bit Composition

Functionality: J
∑
i<`

2iaiK← BC([a1], . . . , [a`])

Input: [a1], . . . , [a`]

Output: J
∑̀
i=1

2iaiK

Parameter: The bit-length of secret `
1: Each Pi sets [b1]i := [0] . Set its sub-share as (0, 0)
2: [a′1] := [a1]
3: [q′1]← FQT([a

′
1])

4: for i = 2 to ` do
5: [a′i] := [ai]− [q′i−1]− [bi−1]
6: [bi] := ((1− [ai]) + [bi−1]) · ([qi−1] + [bi−1]) + [bi−1] .

[bi] is the borrow of i-th bits
7: [q′i]← FQT([a

′
i])

8: Jb`K← Fmod([b`])
9: Jq′`K← Fmod([q

′
`])

10: Ja′Kj ←
∑
i≤`

2i−1[a′i]j mod p

11: Output Ja′K− 2`(Jb`K + Jq′`K)

In the bit-composition protocol, we want to obtain the
composed value JaK on input of its binary representation
[a1], ..., [a`] by computing addition as

∑
i 2
i−1[ai]. However,

this computation does not work since each [ai] has the quotient
qi so 2i−1(2qi + ai) = 2iqi + 2i−1ai is added at the i-th bit.
The known bit-composition protocol in [2] cancel 2iqi out by
computing qi recursively for i ≤ `−1, and they does not need
to obtain qi for ` < i; their underlying secret sharing is on
modulus 2` so 2`qi will be 0. However, this is not the case
in modulus p so we have to yield another approach to cancel
2`ai out.

In our protocol, we resolve this problem by using the mod-
ulus conversion protocol. By converting shares from modulus
2 into p, 2qi + ai is changed into pqi + ai, which is ai in
modulus p. The protocol we use to implement the latter is
shown in Figure 16. The round complexity of this protocol is
`+ 1 if we instantiate FQT and Fmod by Protocol 12 and that
in [28], where ` is the maximum bit-length of shared secret.

Theorem 15: The protocol in Figure 16 securely imple-
ments FBC in the (FQT, Fmult, Fmod)-hybrid model in the
presence of a passive adversary.

APPENDIX J
DETAILS OF SECURE DEEP NEURAL NETWORK

A. Notation

L denotes the layer number, and when the number of
hidden layers is n, the input layer is L = 0 and the output
layer is L = n + 1. The value dL=j denotes the number of
neurons in layer j, and N i

j denotes the i-th neuron in layer
L = j. The strength of the coupling of neurons is described by
parameters wi. Learning is a process that (iteratively) updates
the parameters to obtain the appropriate output.

In this section, the unit of processing is a matrix, so we
use different notation. Let A = (ai,j) denote a matrix, A±B
and A ·B denote the matrix addition/subtraction and product,
and A ◦ B denote the element-wise multiplication. When we

apply an algorithm Func with each element ai,j in a matrix
A, we describe it as Func(A), such as

√
A and FBDC(A).

B. Details of Adam

We introduce the main process used in Adam. The process
is the same in each layer so we omit the layer index. A variable
t indicates the iteration number of the learning process, e.g., the
value Gt denotes the gradient of the t-th iteration. In addition,
M,V, M̂, V̂ are matrices of the same size as G, and M and
V are initialized by 0. Here the superscript t, such as βt,
represents the t-th power of β. Adam proceeds as follows.

Mt+1 = β1Mt + (1− β1)Gt
Vt+1 = β2Vt + (1− β2)Gt ◦Gt

M̂t+1 =
1

1− βt1
Mt+1

V̂t+1 =
1

1− βt2
Vt+1

Wt+1 =Wt −
η√

V̂t+1 + ε
◦ M̂t+1 (20)

where ◦ denotes the element-wise multiplication of matrices.

C. Secure Protocols for Neural Network

1) ReLU and ReLU′ functions: The ReLU′ function ex-
tracts the sign of the input as a bit value b ∈ {0, 1}. Hence,
we can use the same approach as in Protocol 15 to implement
this. The ReLU function can obtained by simply multiplying
the input with the output of ReLU′. We show secure protocols
for the ReLU′ and ReLU functions in Protocol 17 and 18.

Protocol 17 Secure ReLU′ Function
Functionality: JZK← ReLU′(JUK)
Input: A matrix JUK
Output: JZK, where each element zi,j in Z is 0 if zi,j ≤ 0 and 1

otherwise
Parameter: `, where each element in Z is between 2−` + 1 and

2` − 1.
1: JU ′K = 2`+1 + JUK . Add 2`+1 to each element
2: ([U (`+1)], . . . , [U (1)])← FBDC(JUK)
3: JZK← Fmod([U

(`+1)]). . Each element in U (`+1) is 1 if the
corresponding element in U is positive and 0 otherwise

4: Output JZK

Protocol 18 Secure ReLU Function
Functionality: JY K← ReLU(JUK)
Input: A matrix JUK
Output: JY K, where Y ← ReLU(U).
Parameter: `, where each element in U is between 2−` + 1 and

2` − 1.
1: JZK = ReLU′(JUK)
2: JY K← JZK ◦ JUK

2) Softmax function: As shown in Eq. 8, the softmax
function is computed via exponential and inversion functions,
which we can implement via Protocol 9 and 4, respectively. We
show a secure protocol for the softmax function in Protocol 19.
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Protocol 19 Secure Softmax Function
Functionality: JY K← softmax(JUK)
Input: A matrix JUK = (Ju1,1K, . . . , Jum,nK)
Output: JY K, where Y ← softmax(U).

1: J−→uiK := (Jui,1K, . . . , Jui,nK)
2: for i = 1 to m (in parallel) do
3: for j = 1 to n (in parallel) do
4: Set J−→u i,jK = (Jui,jK, . . . , Jui,jK) of length n . all the

elements are the same.
5: J

−→
b iK← J−→u iK− J−→u i,jK

6: J−→c iK← Exponent(J
−→
b iK) . J−→c iK is

(Jeui,1−ui,j K, . . . , Jeui,n−ui,j K)
7: J

∑n
k=1 e

ui,k−ui,j K :=
∑n
k=1Jci,kK . Sum all the

elements in C
8: Jyi,jK← Inv(J

∑n
k=1 e

ui,k−ui,j K)
9: JY K := (Jy1,1K, . . . , Jym,nK)

3) Simultaneous offset management and right shift: The
deep neural network computations are done using fixed-point
arithmetic, and hence require truncation of the lower bits after
each multiplication. At the same time, in the training process,
we have to divide intermediate values with the batch size m,
and additionally, results are scaled with the learning rate η,
which is typically small e.g., 0.001.

This opens up the possibility of an optimization in which
the above operations, where appropriate, can be performed
simultaneously using a single arithmetic right-shift. In par-
ticular, setting the batch size as a multiple of 2, such as
m = 27 = 128, and using an approximate learning rate
η′ := 2−10 ≈ 0.001, makes this optimization very simple
to implement. Note that all of our protocols are designed to
allow the input and output offsets to be chosen freely, and
adding optimization such as the above, by adjusting the offsets,
is trivial. In the following, we use the notation ·H to denote
(matrix) multiplication with an additional right-shift H , and
InvSqrt(·, ν) to denote computation of the inverse square root
with an additional right-shift ν.

4) Secure Feedforward Deep Neural Networks with Adam:
Let n be the number of hidden layers, β̂1,t = 1

1−βt1
, and

β̂1,t =
1

1−βt2
. We show a protocol for secure feedforward deep

neural networks with Adam in Protcool 20. In the protocol
description, for brevity, we omit the division for signed and
unsigned integers required by fixed-point multiplication. This
should be done following the inner product and element-wise
multiplication.

5) Extension to Convolutional Deep Neural Networks: In
order to extend the feedforward neural network to the covolu-
tional neural network, we need to implement a convolutional
layer, batch normalization, and max-pooling. The convolu-
tional layer can be computed as the usual fully connected
layer, and batch-normalization can be computed trivially as
long as the inverse of square root can be computed, since
the rest is a linear operation. In the max-pooling, we need
the maximum value in a vector and a flag indicating location
of the maximum value to compute forward and backward
propagation. We obtain those by repeatedly compare values
in the vector.

The secure max-pooling is shown in Protocol 21. This
protocol is defined as a recursive function. We define several

Protocol 20 Secure Feedforward Neural Network with Adam
Functionality: JW lK ← FFNN Adam(JXK, JT K, JW 0K, . . . ,

JWnK, JM0K, . . . , JMnK, JV 0K, . . . , JV nK)
Input: Features of trained data JXK, their label JT K, initialized

parameters JW lK, and vectors initialized by 0 JM lK and JV lK
for 0 ≤ l ≤ n

Output: Updated parameters JW lK for 0 ≤ l ≤ n
Parameter: η′, β1, β2, β̂1,t, β̂2,t

1: —Forward propagation—
2: JU1K← JW 0K · JXK
3: JY 1K← ReLU(JU1K)
4: for i = 1 to n− 1 do
5: JU i+1K← JW iK · JY iK
6: JY i+1K← ReLU(JU i+1K)
7: JUn+1K← JWnK · JY nK
8: JY n+1K← softmax(JUn+1K)
9: —Back propagation—

10: JZn+1K← JY n+1K− JT K
11: JZnK← ReLU′(JUnK) ◦ (JZn+1K · JWnK)
12: for i = 1 to n− 1 do
13: JZn−iK← ReLU′(JUn−iK) ◦ (JZn−i+1K · JWn−iK)
14: —Gradient evaluation—
15: JG0K← JZ1K ·H JT K
16: for i = 1 to n− 1 do
17: JGiK← JZi+1K ·H JY iK
18: JGnK← JZn+1K ·H JY nK
19: —Parameter update by Adam—
20: for i = 0 to n do
21: JM iK← β1JM iK + (1− β1)JGiK
22: JV iK← β2JV iK + (1− β2)JGiK ◦ JGiK
23: JM̂ iK← β̂1,tJM iK
24: JV̂ iK← β̂2,tJV iK
25: JĜiK← InvSqrt(JV̂ iK, η′)
26: JĜiK← JĜiK ◦ JM̂ iK
27: JW iK← JW iK− JĜiK

functionalities and notations for this protocol: Let Fcompare
be the functionality on input J−→a K = (Ja1K, . . . , JanK) and
J
−→
b K = (Jb1K, . . . , JbnK) outputs J−→c K, where ci = 1 if ai ≥ bi

and 0 otherwise for 1 ≤ i ≤ n. A parallel execution of
a comparison protocol, e.g., [28], can realize Fcompare. Let
FCondAssignShare be the functionality that is similar to FCondAssign,
but assigned values are not plaintexts but shares: on input of
(J
−→
b K, J−→a K, J−→c K) such that ci ∈ {0, 1}, outputs J

−→
d K, where

di = ai if ci = 1 and di = bi otherwise for 1 ≤ i ≤ n. This
functionality can be realized in a similar way that computes
JciK · JaiK + (1 − JciK)JbiK using multiplication protocol in
parallel. For two vectors J−→e K = (Je1K, . . . , JenK) and J

−→
f K =

(Jf1K, . . . , JfmK), J−→e K||J
−→
f K denote the concatenation of the

vectors, i.e., J−→e K||J
−→
f K = (Je1K, . . . , JenK, Jf1K, . . . , JfmK).

D. Possibilities of other ML-related algorithms

This section mentions some ML-related algorithms that
can be implemented in secure computation, other than those
mentioned in the text.

Shortcut [22] is a technique to add input not only to the
next layer but also to a latter layer. This technique is easy to
implement in secure computation by adding the input to the
later layer.
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Protocol 21 Secure max-pooling

Functionality: (JyK, J
−→
f K)← MaxFlag(J−→x K)

Input: A vector of length n, J−→x K = (Jx1K, . . . , JxnK)
Output: The maximum JyK and its original location J

−→
f K =

(Jf1K, . . . , JfnK), where y = max1≤i≤n xi and fj = 1 if y = xj
and fj = 0 otherwise for 1 ≤ j ≤ n.7

1: if n = 1 then return Jx1K, (J1K).
2: else
3: m = n/2
4: J−→a K := (Jx1K, . . . , JxmK)
5: J

−→
b K := (Jxm+1K, . . . , JxnK)

6: J−→c K← Fcompare(J−→a K, J
−→
b K)

7: J
−→
d K← FCondAssignShare(J

−→
b K, J−→a K, J−→c K)

8: if n mod 2 = 0 then
9: (JyK, J−→e K)← MaxFlag(J

−→
d K)

10: J−→z K← Fmult(J−→e K, J−→c K)
11: J

−→
f K := J−→z K||(J−→e K− J−→z K)

12: else
13: (JyK, J−→e K||JrK)← MaxFlag(J

−→
d K||JxnK)

14: J−→z K← Fmult(J−→e K, J−→c K)
15: J

−→
f K := J−→z K||(J−→e K− J−→z K)||JrK

Dropout [55] is a method of dropping the information from
random neurons to prevent overlearning. This method can also
be implemented in secure computation. If it is public which
neurons will be dropped, the parties generate a random number
and set the weight of the neuron, corresponding to the random
number, to 0. If we want to hide the location of a neuron to
be dropped, the parties generate J0K or J1K for each neuron,
shuffle them [35], and then multiply them by the weight.

Although we implemented Adam in this paper, other opti-
mization methods, such as Adabound [40] and RAdam [38],
consist of square root, reciprocal, and division. Therefore, it
should be possible to implement these by using our seamless
paradigm. This is a future work to implement them and
compare their efficiency in the context of secure computation.

APPENDIX K
ACCURACY AND THROUGHPUT OF DIVISION AND

ELEMENTARY FUNCTIONS

A. Accuracy

We compare the output of our secure division and other
elementary protocols with the real-valued function in the clear.

Measuring Error in Division. We first give our experimental
results on division and truncation, summarized in Table VII.
We measured the error of the L1-norm as follows. We use
inputs from 1 to n, where n = 10, 000. The average-case
and worst-case error refers to the value 1

n

∑
i

∣∣∣ai−cici

∣∣∣ and

maxi

∣∣∣ai−cici

∣∣∣, respectively, where ci is the correct output and
ai is the output of our protocol. From the table, we can observe
that the output of our protocol is close to the real-valued
division. For example, the L1 error of passively secure division
protocol is 0.335 on average, meaning that the actual error is
0.335
2t if the input offset is t.

Measuring Error in Elementary Protocols. We summarize
the experimental results for error in elementary protocols

TABLE VII: Accuracy of division and truncation

Passive Active
Average Worst Average Worst

Truncation 0.3304 1.000 0.483 1.875
Division 0.335 1.059 0.495 2.000

in Table VIII. Again, we use inputs from 1 to n, where
n = 10, 000. We set the offset as ` = 10. We set the
divisor in the division with private divisor as 3, with offset
being 0. Average-case and worst-case accuracy number refers
to the value − log

(
1
n

∑
i

∣∣∣ai−cici

∣∣∣) and − log
(
maxi

∣∣∣ai−cici

∣∣∣),
respectively, where ci is the correct output and ai is the output
of our protocol. This accuracy number x implies that the most
significant x bits in the output of the protocols will be equal
to those of a corresponding function in the clear. We prepare
the correct output ci by using functions implemented in the C
Language with double precision.

TABLE VIII: Accuracy of elementary functions

Passive Active
Ave [bit] Worst [bit] Ave [bit] Worst [bit]

Inversion 29.62 27.27 28.97 26.77
Division (private diviser) 29.61 27.2 28.99 26.59

Square root 29.33 27.02 28.88 26.64
Inverse of square root 29.34 27.05 28.86 26.55

Exponential 25.75 24.1 25.34 23.13

In the implementation, we use an internal precision that
represents how many bits we used to represent intermediate
values to obtain high accuracy of the output. The accuracy
also depends on how many terms we compute of the Taylor
of Newton series. In this experiment, we used 29-bit internal
precision and computed by the 4-th term of the Taylor series
for the inversion, 28-bit and the 6-th term for the inverse of
square root, 25-bit and the 4-th term for exponential functions.
The threshold for our hybrid table-lookup/series-expansion
technique for exponential functions is set to t = 4.

The results show that our protocols achieve more than 23-
bit accuracy, even in the worst case. Therefore, our protocols
of elementary functions is as accurate as the Single-precision
number, which also have 23-bit accuracy.

B. Throughput

We show the throughput of our protocol in Table IX.
Note that for throughputs, higher is better. A secret of 29-
bit length is used on this experiment. We listed the throughput
results of state-of-the-art protocols from the latest version of
Sharemind [48] as a reference.8 In the settings where the
number of records is large, our implementation is an order of
magnitude faster than [48], while, in the setting with a small
number of records, they are comparable.

8It is difficult to compare throughputs directly. They used a different
machine and a similar but different modulus, and their throughput is for
floating-point arithmetic. The last comes from the fact that the throughput of
the fixed-point arithmetic is slower than that of the floating-point arithmetic
in [48].
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TABLE IX: Throughput of elementary functions [M op/s]

Passive Active
1,000 [records] 1,000,000 1,000,000

Ours

Truncation 0.612 14.80 4.51
Inversion 0.0219 1.179 0.236

Square root 0.0147 0.608 0.136
Exponential 0.0355 1.017 0.237

[48]

Truncation 0.833 1.82 -
Inversion 0.0547 0.0567 -

Square root 0.0559 0.0574 -
Exponential 0.0350 0.0391 -

APPENDIX L
ADDITIONAL EXPERIMENTS WITH VARYING PARAMETERS.

In this section, we describe additional experiments, de-
ferred from Section VI. We measured the running time when
varying parameters such as the batch size, the number of
neurons, the number of hidden layers, and the number of input
records. These numbers are useful to estimate the running time
for different networks and data.

Varying Batch Sizes. We show how the running time (for 1
epoch) depends on batch sizes when n = 2, d1 = d2 = 128
in Table X. Execution time for 1 epoch is almost in inverse
proportion to batch size. Therefore, increasing the batch size
helps to implement faster learning. This likely comes from the
fact that the large batch size implies fewer parameter updates.

TABLE X: Execution Time for each Batch Size

Batch Size 64 128 256 512
Execution Time [s] 225 117 64 37

Varying the Number of Neurons. We show the running
time (for 1 epoch) depends on the number of neurons when
n = 2,m = 128 in Table XI. Even for a large number of
neurons, i.e., 256, the execution time is only 198 seconds.

TABLE XI: Execution Time for each # of Neurons

# of Neurons 32 64 128 256
Execution Time 68 85 117 304

Varying the Number of Hidden Layers. We show how the
running time (for 1 epoch) depends on the number of hidden
layers when m = 128, d1 = d2 = 128 in Table XII. For 4
hidden layers, the execution time is less than 3 minutes. This
result roughly shows that we need approximately 15 seconds
more to have another hidden layer. This helps us estimate
execution time for deeper networks.

TABLE XII: Execution Time for each # of Hidden Layers

# of Hidden Layers 1 2 3 4
Execution Time 102 117 133 149

Large Data: 100 Features × 10 Million Data Samples.
Table XIII shows the execution time per epoch using 100

attributes × 10 million data samples. The parameters n =
2, d0 = 100, d1 = d2 = 128, d3 = 10 are used.

TABLE XIII: Execution Time for 100 Attributes and 10
Million Data [s]

Batch Size Our Protocol
512 4, 047 [s] (1.12 [h])
1024 2, 724 [s] (0.76 [h])
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