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Abstract

Secure aggregation is a critical component in federated learning, which enables
the server to learn the aggregate model of the users without observing their local
models. Conventionally, secure aggregation algorithms focus only on ensuring the
privacy of individual users in a single training round. We contend that such designs
can lead to significant privacy leakages over multiple training rounds, due to partial
user selection/participation at each round of federated learning. In fact, we show
that the conventional random user selection strategies for federated learning lead to
leaking users’ individual models within number of rounds linear in the number of
users. To address this challenge, we introduce a secure aggregation framework with
multi-round privacy guarantees. In particular, we introduce a new metric to quantify
the privacy guarantees of federated learning over multiple training rounds, and
develop a structured user selection strategy that guarantees the long-term privacy
of each user (over any number of training rounds). Our framework also carefully
accounts for the fairness and the average number of participating users at each
round. We perform several experiments on MNIST and CIFAR-10 datasets in the
IID and the non-IID settings to demonstrate the performance improvement over
the baseline algorithms, both in terms of privacy protection and test accuracy.

1 Introduction

Federated learning (FL) enables collaborative training of machine learning models over the data
collected and stored locally by multiple data-owners (users). Training in FL is coordinated by a
central server who maintains a global model that is updated locally by the users. The local updates
are then aggregated by the server to update the global model. Throughout the training process, users
never share their data with the server, i.e., the data is always kept on device, rather, they only share
their local models. However, as has been shown recently, local models may still reveal substantial
∗Equal contribution.
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Figure 1: A multi-round secure aggregation example, where the server can reconstruct the model of user 3.
At round t, the set of participating users is S(t) = {1,2,3}. At round t + 1, the set of participating users is
S(t+1) = {1,2}. If the local models do not change significantly over the two rounds (e.g., the models start to
converge), the server can reconstruct the model of user 3 from the aggregated models of the two rounds.

information about the local datasets, and the private training data can be reconstructed from the local
models through inference or inversion attacks (see e.g., [1, 2, 3, 4]).

To prevent such information leakage, secure aggregation protocols are proposed (e.g., [5, 6, 7, 8, 9])
to protect the privacy of individual local models, both from the server and other users, while still
allowing the server to learn their aggregate. More specifically, secure aggregation protocols ensure
that, at any given round, the server can only learn the aggregate model of the users, and beyond that
no further information is revealed about the individual local model of a particular user.

Secure aggregation protocols, however, only ensure the privacy of the individual users in a single
training round, and do not consider their privacy over multiple training rounds. On the other hand,
due to partial user selection [10, 11, 12, 13], the server may be able to reconstruct the individual
models of some users using the aggregated models from the previous rounds. As a simple illustrative
example, consider the setting in Fig.1. Although model aggregation in each round is secure (in the
sense that the server only learns the aggregate model of the active users), the server can still combine
the aggregate models of the two rounds to approximate the individual model update of user 3.

As such motivated, we study long-term user privacy in federated learning. We first introduce a new
metric to quantify the privacy guarantees of a secure aggregation protocol over multiple training
rounds. Then, we formulate the user selection problem with long-term privacy guarantees, by also
taking into account the fairness and the average number of participating users (which then controls
the convergence rate) in the selection process. Finally, we develop Multi-RoundSecAgg, a practical
user selection strategy that guarantees user privacy across any number of training rounds.

Multi-RoundSecAgg has provable privacy and convergence guarantees, and provides a trade-off
between privacy and convergence rate. In particular, as we demonstrate in our theoretical analysis,
stronger privacy guarantees require fewer number of participating users per training round, which
slows down the convergence of the training. We also show that conventional random user selection
strategies for FL, while maximizing the convergence rate, can be vulnerable to attacks that span
multiple training rounds. Through extensive numerical experiments on the MNIST and CIFAR-
10 datasets on both IID and non-IID settings, we have observed that Multi-RoundSecAgg can
achieve comparable accuracy to the random user selection strategy, while ensuring long-term privacy
guarantees for the individual users. In summary, our specific contributions are as follows.

1. We introduce a new metric to capture long-term privacy guarantees in FL for the first time. This
long-term privacy condition requires that the server cannot reconstruct any individual model using
the aggregated models from any number of training rounds. Using this metric, we show that the
conventional random user selection schemes can result in leaking the individual user models after
a sufficient number of rounds, even if secure aggregation is employed at each round.

2. We propose Multi-RoundSecAgg, a privacy-preserving structured user selection strategy that
ensures the long-term privacy of the individual users over any number of training rounds. This
strategy also takes into account the fairness of the selection process and the average number of
participating users at each round.
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3. We demonstrate that Multi-RoundSecAgg creates a trade-off between the long-term privacy
guarantee and the average number of participating users. In particular, as the average number of
participating users increases, the long-term privacy guarantee becomes weaker.

4. We provide the convergence analysis of Multi-RoundSecAgg, which shows that the long-term
privacy guarantee and the average number of participating users control the convergence rate. The
convergence rate is maximized when the average number of participating users is maximized (e.g.,
the random user selection strategy maximizes the average number of participating users at the
expense of not providing long-term privacy guarantees). As we require stronger long-term privacy
guarantees, the average number of participating users decreases and a larger number of training
rounds is required to achieve the same level of accuracy as the random selection strategy.

5. Finally, we conduct extensive experiments in both IID and non-IID settings on MNIST and CIFAR-
10 datasets and demonstrate that Multi-RoundSecAgg achieves almost the same test accuracy
compared to random selection scheme while providing better long-term privacy guarantees.

2 Related Work

The underlying principle of the secure aggregation protocol in [5] is that each pair of users exchange a
pairwise secret key which they can use to mask their local models before sharing them with the server.
The pairwise masks cancel out when the server aggregates the masked models, allowing the server to
learn the aggregate of the local models. These masks also ensure that the local models are kept private,
i.e., no further information is revealed beyond the aggregate of the local models. This protocol incurs
a significant communication cost due to exchanging and reconstructing the pairwise keys. Recently,
several works have developed communication-efficient exchange protocols [6, 7, 9, 14, 15], which are
complementary to and can be combined with our work. Another line of work focused on designing
partial user selection strategies to overcome the communication bottleneck in FL while speeding up
the convergence by selecting the users based on their local loss [10, 11, 12, 13].
Previous works, either on secure aggregation or on partial user selection, however, do not consider
the potential privacy leakage as a result of partial user participation and the server observing the
aggregated models across multiple training rounds. This is the first study to address this challenge,
where we identify a novel metric to quantify the long-term privacy of secure aggregation, and develop
a privacy-preserving user selection strategy with provable long-term privacy and fairness guarantees.

3 System Model

In this section, we first describe the basic federated learning model in Section 3.1. Next, we introduce
the multi-round secure aggregation problem for federated learning and define the key metrics to
evaluate the performance of a multi-round secure aggregation protocol in Section 3.2.

3.1 Basic Federated Learning Model

We consider a cross-device federated learning setup consisting of a server and N devices (users).
User i ∈ [N] has a local dataset Di consisting of mi = |Di | data samples. The users are connected to
each other through the server, i.e., all communication between the users goes through the server (no
direct links exist between the users) [16, 5, 17]. The goal is to collaboratively learn a single global
model x with dimension d, using the local datasets that are generated, stored, and processed locally
by the users. The training task can be represented by minimizing a global loss function,

min
x

L(x) s.t. L(x) =
N∑
i=1

wiLi(x), (1)

where Li is the local loss function of user i and wi ≥ 0 is a weight parameter assigned to user
i to specify the relative impact of the user, where

∑
i wi = 1. A common choice for the weight

parameters is wi =
mi

m , where m =
∑N

i=1 mi [17]. We define the optimal model parameters x∗ and x∗i
as x∗ = arg minx∈Rd L(x) and x∗i = arg minx∈Rd Li(x).

Federated Averaging with Partial User Participation. To solve (1), the most common algorithm
is the FedAvg (federated averaging) algorithm proposed in [16]. FedAvg is an iterative algorithm,
where model training is done by repeatedly iterating over individual local updates. At the beginning
of each training round, the server sends the current state of the global model, denoted by x(t) at round
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t, to the users. Each round consists of two phases, local training and aggregation. In the local training
phase, user i ∈ [N] updates the global model by carrying out E (≥ 1) local stochastic gradient
descent (SGD) steps and sends the updated local model x(t)i to the server. One of key features of
cross-device federated learning is partial device participation. Due to various reasons such as being
offline, unreliable wireless connectivity, or battery issues, at any given round, only a fraction of the
users are available to participate in the protocol. We refer to such users as available users throughout
the paper. In the aggregation phase, the server selects K ≤ N users among the users that are available
in that training round and aggregates the local models of the selected users. After receiving the local
updates from the users, the server updates the global model as follows

x(t+1) =
∑
i∈S(t )

x(t)i = X(t)>p(t), (2)

where p(t) ∈ {0,1}N denotes a participation vector at round t whose i-th entry is 0 when user i is not
selected and 1 when user i is selected. X(t) denotes the concatenation of the weighted local models at
round t, i.e., X(t) =

[
w1x(t)1 , . . . ,wNx(t)N

]>
∈ RN×d . Finally, the server broadcasts the updated global

model x(t+1) to the users for the next round.

3.2 Multi-round Secure Aggregation

Conventional secure aggregation protocols only consider the privacy guarantees over a single training
round. While secure aggregation protocols have provable privacy guarantees at any single round,
in the sense that no information is leaked beyond the aggregated models at each round, the privacy
guarantees do not extend to attacks that span multiple training rounds. Specifically, by using the
aggregated models and participation information across multiple rounds, an individual model may be
reconstructed from the aggregated models. For instance, consider the following user participation
strategy across three training rounds, p(1) = [1,1,0]>, p(2) = [0,1,1]>, and p(3) = [1,0,1]>. Assume a
scenario where the local updates do not change significantly over time (e.g., models start to converge,
or the server fixes the global model over consecutive rounds). Then, the server can single out all
individual models xi even if a secure aggregation protocol is employed at each round.

In this paper, we study secure aggregation protocols with long-term privacy guarantees (which
we term multi-round secure aggregation) for the cross-device FL setup which (to the best of our
knowledge) has not been studied before. We assume that user i ∈ [N] drops from the protocol at each
round with probability pi . U(t) denotes the index set of available users at round t and u(t) ∈ {0,1}N
is a vector indicating the available users, such that {u(t)}j = 1{ j ∈ U(t)} where {u}j is j-th entry of
vector u and 1{·} is an indicator function. The server selects K users fromU(t), if |U(t) | ≥ K , based
on the history of selected users in previous rounds. The local models of the selected users are then
aggregated via a secure aggregation protocol (i.e., by communicating masked models), at the end of
which the server learns the aggregate of the local models of the selected users. Our goal is to design a
user selection algorithm A(t) : {0,1}t×N × {0,1}N → {0,1}N ,

A(t)
(
P(t),u(t)

)
= p(t) such that ‖p(t)‖0 ∈ {0,K}, (3)

to prevent the potential information leakage over multiple rounds, where p(t) ∈ {0,1}N is the
participation vector defined in (2), ‖x‖0 denotes the L0-“norm” of a vector x, K denotes the maximum
number of selected users. We note that A(t) can be a random function. P(t) is a matrix representing
the user participation information up to round t, and is termed the participation matrix, given by

P(t) =
[
p(0),p(1), . . . ,p(t−1)]> ∈ {0,1}t×N . (4)

If |U(t) | < K , the server skips the aggregation phase that round, by setting p(t) = 0.
Key Metrics. A multi-round secure aggregation protocol can be represented by A = {A(t)}t∈[J],
where A(t) is the user selection algorithm at round t defined in (3) and J is the total number of
rounds. The inputs of A(t) are a random vector u(t), which indicates the available users at round t,
and the participation matrix P(t) defined in (4) which can be a random matrix. Given the participation
matrix P(J), where J is the total number of rounds, we evaluate the performance of the corresponding
multi-round secure aggregation protocol through the following three key metrics.
1. Multi-round Privacy Guarantee. We consider a security model where the server is honest-

but-curious. A multi-round privacy guarantee of T requires that, any non-zero partial sum of
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the local models that the server can construct, through any linear combination X>P(J)>z, where
z ∈ RJ \ {0} and J is the total number of rounds, must be of the form2

X>P(J)>z =
∑
i∈[n]

ai
∑
j∈Si

xj = a1
∑
j∈S1

xj + a2
∑
j∈S2

xj + · · · + an
∑
j∈Sn

xj, (5)

where |Si | ≥ T,ai , 0,∀i ∈ [n] and n ∈ Z+. Here all the sets Si , the number of sets n, and each
ai could all depend on z. In equation (5), we consider the worst-case scenario, where the local
models do not change over the rounds. That is, X(t) = X ∀t ∈ [J]. Intuitively, this guarantee
ensures that the best that the server can do is to reconstruct a partial sum of T individual user
models which corresponds to the case where n = 1. When T ≥ 2, this condition implies that the
server cannot get any individual user model from the aggregated models of all training rounds (the
best it can obtain is the sum of two local models).
Remark 1. (Weaker Privacy Definitions). It is worth noting that, one can also define a weaker
privacy notion requiring that ‖P(J)>z‖0 ≥ T for any z such that P(J)>z , 0. When T = 2, this
definition requires that the server cannot reconstruct any individual model (the best it can do is to
obtain a linear combination of two local models). This definition, however, allows constructions
in the form of axi + bxj for any a, b ∈ R \ {0} (this does not violate the definition). When a � b,
however, this is almost the same as recovering xi perfectly, hence this privacy criterion is weaker
than that of (5).
Remark 2. (Multi-round Privacy Guarantee of Random Selection). In Section 6, we empirically
show that a random selection strategy in which K available users are selected at random at each
round does not ensure multi-round privacy guarantee even with respect to the weaker definition of
Remark 1. Specifically, the individual local models can be reconstructed within a number of rounds
that is linear in N . We also show theoretically in Appendix G that when min(N − K,K) ≥ cN ,
where c > 0 is a constant, then the probability that the server can reconstruct all individual models
after N rounds is at least 1 − 2e−c

′N for some constant c′ that depends on c. In addition, we show
in Appendix G that a random selection scheme in which the users are selected in an i.i.d fashion
according to Bern( K

N (1−p) ) also reveals all individual models to the server after N rounds with
probability that converges to 1 exponentially fast.
Remark 3. (Worst-Case Assumption). In Equation (5), we considered the worst-case assumption
where the models do not change over time. When the local models change over rounds, the
multi-round privacy guarantee becomes even stronger as the number of unknowns increases.

2. Aggregation Fairness Gap. The average aggregation fairness gap quantifies the largest gap
between any two users in terms of the expected relative number of rounds each user has participated
in training. Formally, the average aggregation fairness gap is defined as follows

F = max
i∈[N ]

lim sup
J→∞

1
J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
− min

i∈[N ]
lim inf
J→∞

1
J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
, (6)

where 1{·} is an indicator function, {p(t)}i is i-th entry of the vector p(t), and the expectation is
over the randomness of the user selection algorithm A and the user availability.

3. Average Aggregation Cardinality. The aggregation cardinality quantifies the expected number
of models to be aggregated per round. Formally, it is defined as

C = lim inf
J→∞

E
[ ∑J−1

t=0 ‖p
(t)‖0

]
J

, (7)

where the expectation is over the randomness in A and the user availability.

3.3 Baseline Schemes

In this subsection, we introduce three baseline schemes for multi-round secure aggregation.
Random Selection. In this scheme, at each round, the server selects K users at random from the set
of available users. If less than K users are available, the server skips this round.
Random Weighted Selection. This scheme is a modified version of random selection to reduce the
average aggregation fairness gap when the dropout probabilities of the users are not equal. In this

2We assume that wi =
1
N ,∀i ∈ [N] in this paper, but the definition can be modified if this is not the case.
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scheme, the server selects K users at random from the available users with the minimum frequency
of participation in previous rounds. If less than K users are available, the server skips this round.
User Partitioning (Grouping). In this scheme, the users are partitioned into G = N/K equal-sized
groups denoted as G1,G2, · · · ,GG . At each round, the server selects one of the groups provided that
none of the users in this group has dropped out. If multiple groups are available, in order to reduce
the average aggregation fairness gap, the server selects a group including a user with the minimum
frequency of participation in previous rounds. If no group is available, the server skips this round.

4 Proposed Scheme: Multi-RoundSecAgg

In this section, we present Multi-RoundSecAgg, which has two components as follows.

• The first component designs a family of sets of users that satisfy the multi-round privacy
requirement. The inputs of the first component are the number of users N , the number of users
desired to be selected at each round K and the desired multi-round privacy guarantee T . The
output is a family of sets of K users that satisfy the multi-round privacy guarantee T , termed as a
privacy-preserving family. This family is represented by a matrix B.

• The second component selects a set from this designed family to satisfy the fairness guarantee.
The inputs to the second component are the privacy-preserving family B, the set of available users
at round t,U(t) and the frequency of participation of each user. The output is the set of users that
will participate at round t.

We now describe the two components of Multi-RoundSecAgg in detail.

Component 1 (Batch Partitioning (BP) of the users to guarantee multi-round privacy). The
first component of Multi-RoundSecAgg designs a family of RBP sets, where RBP is given in (8),
satisfying the multi-round privacy requirement T . We denote the RBP×N binary matrix corresponding
to these sets by B = [b1, · · · ,bRBP ]

>, where ‖bi ‖0 = K for all i ∈ [RBP]. That is, the rows of B are
the characteristic vectors of those sets. The main idea of our proposed scheme is to restrict certain
sets of users of size T , denoted as batches, to either participate together or not participate at all. This
guarantees a multi-round privacy T as we show in Section 5. To construct a family of sets with this
property, the users are first partitioned into N/T batches. At any given round, either all or none of the
users of a particular batch participate in training. The server can choose K/T batches to participate
in training, provided that all users in any given selected batch are available. Since there are

(N/T
K/T

)
possible sets with this property, then the size of this privacy-preserving family of sets is given by3

RBP
def
=

(
N/T
K/T

)
. (8)

Figure 2: Example of our construction
with N = 8, K = 4 and T = 2.

In the extreme case when T = 1, this strategy specializes to the
random selection strategy where the server can choose any set
from the

(N
K

)
possible sets of K users. In the other extreme case

where T = K , this strategy specializes to the user partitioning
strategy where there are N/K possible sets. We next provide
an example to illustrate the construction of B further.
Example 1 (N = 8,K = 4,T = 2). In this example, the users
are partitioned into 4 batches as G1 = {1,2},G2 = {3,4},G3 = {5,6} and G4 = {7,8}. The server
can choose any two batches out of these 4 batches, hence we have RBP =

(4
2
)
= 6 possible sets. Fig. 2

shows our construction for this example, which ensures T = 2.

Component 2 (Available batch selection to guarantee fairness). At round t, user i ∈ [N] is
available to participate in the protocol with a probability 1 − pi ∈ (0,1]. Given the set of available
users at round t, U(t) and the frequencies of participation f (t−1) = ( f (t−1)

1 , · · · , f (t−1)
N )>, the server

selects K users according to the available rows in B and the frequency of participation. f (t)i represents
the frequency of participation of users i up to t rounds, i.e., f (t)i =

∑t−1
j=0 1

{
{p(j)}i = 1

}
.

To do so, the server first finds the submatrix of B denoted by B(t) corresponding to the set of available

3We assume for simplicity that N/T and K/T are integers.
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users at round t,U(t). Specifically, the i-th row of B denoted by b>i is included in B(t) provided that
supp(bi) ⊆ U

(t). Next, the server selects a row vector from B(t). If B(t) is an empty matrix, then
the server skips this round. Otherwise, the server selects a row from B(t) uniformly at random if
pi = p,∀i ∈ [N]. If the users have different dropout probabilities, the server selects a row from B(t)

that includes the user with the minimum frequency of participation `(t−1)
min

def
= arg mini∈U(t ) f (t−1)

i . If
there are many such rows, then the server selects one of them at random.

Overall, the algorithm first designs a privacy-preserving family of sets of K users such that any set can
be selected at any given round while ensuring the multi-round privacy guarantee T . Then a specific
set is selected from this family at each round to ensure fairness in the user selection. We describe the
two components of Multi-RoundSecAgg in Algorithm 1 and 2, which are provided in Appendix D.

5 Theoretical Results
We provide the theoretical and convergence guarantees of Multi-RoundSecAgg in Sec. 5.1 and 5.2.

5.1 Theoretical Guarantees of Multi-RoundSecAgg

We first establish the theoretical guarantees of Multi-RoundSecAgg in terms of the multi-round
privacy guarantee, aggregation fairness gap and average aggregation cardinality.

Theorem 1. Multi-RoundSecAgg with parameters N,K,T ensures a multi-round privacy guarantee
of T , an aggregation fairness gap F = 0, and an average aggregation cardinality given by

C = K ©«1 −
N/T∑

i=N/T−K/T+1

(
N/T

i

)
qi(1 − q)N/T−iª®¬, (9)

where q = 1 − (1 − p)T , when all users have the same dropout probability p.

We provide the proof of Theorem 1 in Appendix A.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 3: An illustration of the trade-off between the multi-round privacy guarantee T and the average
aggregation cardinality C. In this example, N = 120 and K = 12.

Remark 4. (Trade-off between “Multi-round Privacy Guarantee” and “Average Aggregation
Cardinality”). Theorem 1 indicates a trade-off between the multi-round privacy guarantee and the
average aggregation cardinality since as T increases, C decreases which slows down the convergence
rate as we show in Section 5.2. We illustrate this trade-off in Figure 3.

Remark 5. (Necessity of Batch Partitioning (BP)). We show that any strategy that satisfies the privacy
guarantee in Equation (5) must have a batch partitioning structure, and for given N,K,T,K ≤ N/2,
the largest number of distinct user sets in any strategy is at most

(N/T
K/T

)
, which is achieved in our

design in Section 4. We provide the proof in Appendix C.

Remark 6. (Non-linear Reconstructions of Aggregated Models). The privacy criterion in Equation
(5) considers linear reconstructions of the aggregated models. One may also consider more general
non-linear reconstructions. Long-term privacy guarantees of batch partitioning hold even under such
reconstructions, as the users in the same batch always participate together or not participate at all, the
server cannot separate individual models within the same batch even through non-linear operations.
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5.2 Convergence Analysis of Multi-RoundSecAgg

We now provide the convergence guarantees of Multi-RoundSecAgg, by first introducing a few
common assumptions [18, 19] needed for our analysis.
Assumption 1. L1, . . . , LN in (1) are all ρ-smooth: for all a,b ∈ Rd and i ∈ [N], Li(a) ≤ Li(b) +
(a − b)>∇Li(b) +

ρ
2 ‖a − b‖2.

Assumption 2. L1, . . . , LN in (1) are all µ-strongly convex: for all a,b ∈ Rd and i ∈ [N], Li(a) ≥
Li(b) + (a − b)>∇Li(b) +

µ
2 ‖a − b‖2.

Assumption 3. Let ξ(t)i be a sample uniformly selected from the local dataset Dk . The variance of
the stochastic gradients at each user is bounded, i.e., E‖∇Li(x

(t)
i , ξ

(t)
i ) − ∇Li(x

(t)
i )‖

2 ≤ σ2
i for i ∈ [N].

Assumption 4. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E‖∇Li(x

(t)
i , ξ

(t)
i )‖

2 ≤ G2 for all i ∈ [N].

We now state the convergence guarantees of Multi-RoundSecAgg.
Theorem 2. Consider a federated learning setup with N users to train a machine learning model
from (1). Assume K users are selected by Multi-RoundSecAgg with average aggregation cardinality
C defined in (7) to update the global model from (2), and all users have the same dropout rate, hence
Multi-RoundSecAgg selects a random set of K users uniformly from the set of available user sets at
each round. Then, the following is satisfied,

E[L(x(J))] − L∗ ≤
ρ

γ + C
K E J − 1

(
2(α + β)

µ2 +
γ

2
E‖x(0) − x∗‖2

)
, (10)

where α = 1
N

∑N
i=1 σ

2
i +6ρΓ+8(E−1)2G2, β = 4(N−K)E2G2

K(N−1) , Γ = L∗−
∑N

i=1 L∗i , and γ = max
{

8ρ
µ ,E

}
.

We provide the proof of Theorem 2 in Appendix B.
Remark 7. Theorem 2 shows how the average aggregation cardinality affects the convergence. When
the average aggregation cardinality is maximized, i.e., C = K, the convergence rate in Theorem
2 equals that of random selection algorithm provided in Theorem 3 of [18]. In (10), we have the
additional term E (number of local epochs) in front of J compared to Theorem 3 of [18] as we use
global round index t instead of using step index of local SGD. As the average aggregation cardinality
decreases, a greater number of training rounds is required to achieve the same level of accuracy.
Remark 8. (Different Dropout Rates). When the dropout probabilities of the users are not the same,
characterizing the theoretical and convergence guarantees of Multi-RoundSecAgg is challenging. This
is due to the fact that batch selection based on the frequency of participation breaks the conditional
unbiasedness of the user selection, which is required for the convergence guarantee.

6 Experiments

Our experiments consist of two parts. We first numerically demonstrate the performance of Multi-
RoundSecAgg compared to the baseline schemes of Section 3.3, in terms of the key metrics defined in
Section 3.2. Next, we implement convolutional neural networks (CNNs) for image classification with
MNIST [20] and CIFAR-10 [21] datasets to investigate how the key metrics affect the test accuracy.
Setup. We consider a FL setting with N = 120 users, where the server aims to choose K = 12 users
at every round. We study two settings for partitioning the CIFAR-10 dataset across the users.

• IID Setting. In this setting, the 50000 training samples are shuffled and partitioned uniformly
across the N = 120 users, where each user receives 417 or 416 samples.

• Non-IID dataset. In this setting, we utilize the data-sharing strategy proposed in [22], where the
50000 training samples are divided into a globally shared dataset G and private dataset D. We
set |G| = 200 and |D| = 49800. Then, we sort D by the labels, partition the sorted dataset into
120 shards of size 415, and assign each of the 120 users one shard. Each user has 200 samples of
globally shared data and 415 samples of private dataset with one label.

For both settings, we implement LeNet [23]. While the state-of-the-art models [24, 25] achieve 99%
accuracy, LeNet is sufficient for our needs, as our goal is to evaluate various schemes, not achieve the
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Figure 4: The key metrics with N = 120 (number of users), K = 12 (number of selected users at each round).

best accuracy. The hyperparameters of our experiment are provided in Appendix F.
Modeling user dropouts. At each round, user i ∈ [N] drops from the protocol with probability pi .
In the IID setting, pi is selected from {0.1,0.2,0.3,0.4,0.5} uniformly at random. In the non-IID
setting, in order to investigate how the aggregation fairness gap affects the test accuracy, we assume
that pi depends on the label of private data. Specifically, the dropout probability of the users with the
label 0 is 0.1 while each user with label 9 has a dropout probability of 0.5.
Implemented Schemes. For the benchmarks, we implement the three baseline schemes introduced
in Section 3.3, referred to as Random, Weighted Random, and Partition. For the proposed Multi-
RoundSecAgg, we construct three privacy-preserving families of sets with different target multi-round
privacy guarantees, T = 6, T = 4, and T = 3 which we refer to as Multi-RoundSecAgg (T=6), Multi-
RoundSecAgg (T=4), and Multi-RoundSecAgg (T=3), respectively. One can view Weighted Random
and Partition as extreme cases of Multi-RoundSecAgg with T = 1 and T = K , respectively. Table 1
summarizes the family size R defined in (8).

Table 1: Family size with N = 120, K = 12.

Scheme Family
size (= R)

Random selection ∼ 1016

Weighted random selection ∼ 1016

User partition 10
Multi-RoundSecAgg, T=6 190
Multi-RoundSecAgg, T=4 4060
Multi-RoundSecAgg, T=3 91389
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Figure 5: Trade-off between multi-round privacy guarantee
versus average aggregation cardinality with N = 120 and
K = 12.

Key Metrics. To numerically demonstrate the performance of the six schemes in terms of the key
metrics defined in Section 3.2, at each round, we measure the following metrics.

• For the multi-round privacy guarantee, we measure the number of models in the partial sum that
the server can reconstruct, which is given by T (t) B minz∈RJ } ‖z>P(t)‖0, s.t. P(t)>z , 0. This
corresponds to the weaker privacy definition of Remark 1. We use this weaker privacy definition as
the random selection and random weighted selection strategies provide the worst privacy guarantee
even with this weaker definition, as demonstrated later. On the other hand, Multi-RoundSecAgg
provides better privacy guarantees with both the strong and the weaker definitions.

• For the aggregation fairness gap, we measure the instantaneous fairness gap, F(t) B maxi∈[N ] F(t)i −

mini∈[N ] F(t)i where F(t)i =
1

t+1
∑t

l=0 1
{
{p(l)}i = 1

}
.

• We measure the instantaneous aggregation cardinality as C(t) B 1
t+1

∑t
l=0 ‖p

(l)‖0.

We demonstrate these key metrics in Figure 4. We make the following key observations.

• Multi-RoundSecAgg achieves better multi-round privacy guarantee than both the random
selection and random weighted selection strategies, while user partitioning achieves the best
multi-round privacy guarantee, T = K = 12. However, the partitioning strategy has the worst
aggregation cardinality, which results in the lowest convergence rate as demonstrated later.
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• Figure 5 demonstrates the trade-off between the multi-round privacy guarantee T and the average
aggregation cardinality C. Interestingly, Multi-RoundSecAgg when T = 3 or T = 4 achieves
better multi-round privacy guarantee than both the random selection and the weighted random
selection strategies while achieving almost the same average aggregation cardinality.
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(b) Non-IID data distribution.

Figure 6: Training rounds versus test accuracy of LeNet in [23] on the CIFAR-10 with N = 120 and K = 12.
Key Metrics versus Test Accuracy. To investigate how the key metrics affect the test accuracy, we
measure the test accuracy of the six schemes in the two settings, the IID and the non-IID settings.
Our results are demonstrated in Figure 6. We make the following key observations.

• In the IID setting, the Multi-RoundSecAgg schemes show test accuracies that are comparable to
the random selection and random weighted selection schemes while the Multi-RoundSecAgg
schemes provide higher levels of privacy. Specifically, the Multi-RoundSecAgg schemes achieve
T = 3,4,6 based on the privacy-preserving family design while the random selection and random
weighted selection schemes have T = 1, i.e., the server can learn an individual local model.

• In the non-IID setting, Multi-RoundSecAgg not only outperforms the random selection scheme
but also achieves a smaller fairness gap as demonstrated in Fig. 4(b).

• In both IID and non-IID settings, the user partitioning scheme has the worst test accuracy as its
aggregation cardinality is much smaller than the other schemes as demonstrated in Figure 4(c).

We also implement additional experiments on MNIST and make similar observations in Appendix E.

7 Conclusion
Partial user participation may breach user privacy in federated learning, even if secure aggregation is
employed at every training round. To address this challenge, we introduced the notion of long-term
privacy, which ensures that the privacy of individual models are protected over all training rounds.
We developed Multi-RoundSecAgg, a structured user selection strategy that guarantees long-term
privacy while taking into account the fairness in user selection and average number of participating
users, and showed that Multi-RoundSecAgg provides a trade-off between long-term privacy and
average number of participating users (hence the convergence rate). Our experiments on the MNIST
and CIFAR-10 datasets on both the IID and non-IID settings show that Multi-RoundSecAgg achieves
comparable accuracy to the random selection strategy (which does not ensure long-term privacy),
while ensuring long-term privacy guarantees.
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Organization. These appendices are organized as follows.

(A) In Appendix A, we prove Theorem 1.

(B) In Appendix B, we prove Theorem 2.

(C) In Appendix C, we show that batch partitioning is necessary to satisfy the multi-round
privacy definition given in (5).

(D) In Appendix D, we provide the two components of Multi-RoundSecAgg which are Algorithm
1 and Algorithm 2.

(E) Appendix E provides additional experiments on the MNIST dataset.

(F) Appendix F provides additional details and the hyperparameters of the experiments of
Section 6 and Appendix E.

(G) In Appendix G, we theoretically show that the random selection strategy discussed in
Remark 2 that aims to select K available users at each round and the random selection
strategy that selects the users in i.i.d fashion both have a multi-round privacy T = 1 with
high probability. We also empirically demonstrate that the local models can be reconstructed
accurately when random selection is used.

A Theoretical Guarantees of Multi-RoundSecAgg: Proof of Theorem 1

In this appendix, we provide the proof of Theorem 1.

Proof. 1. First, we prove that Multi-RoundSecAgg ensures a multi-round privacy of T . We first
partition the matrix B into R × T matrices as B = [B(1),B(2), · · · ,B(N/T )] and the aggregated
models as X = [X(1)>,X(2)>, · · · ,X(N/T )>]>. We can then express any linear combination of the
aggregated models X>B>z, where z ∈ RR \ {0}, as follows

X>B>z =
N/T∑
i=1

X(i)>B(i)>z. (11)

Denote the j-th column of B(i) by b(i)j which is either a zero vector or all ones vector due to the

batch partitioning structure. That is, b(i)j ∈ {0,1}. Hence, B(i)>z ∈ {0,ai .1} for some ai ∈ R\{0}.
Therefore, we have

X(i)>B(i)>z =


0 B(i)>z = 0,

ai
iT∑

j=(i−1)T+1
xj otherwise,

(12)

∀i ∈ [N/T], which shows that Multi-RoundSecAgg achieves a multi-round privacy T .

2. Next, we prove that Multi-RoundSecAgg has an aggregation fairness gap F = 0.

It is clear that the total number of times user i is being selected up to time J is the same as that of
user j who lies in the same batch as user i. This follows since all users in the same batch either
participate together or they do not participate at all.

It suffices to show that the expected number of selections of user i up to time J is the same as
that of user j, where user i and user j are in different batches. The main observation is that
our protocol is symmetric. Indeed, the only randomness in the system are the user availability
randomness and the set selection randomness when there are multiple user sets satisfying the
requirements. We note that for any realization of random variables such that the batch of user i is
selected at time t, there is a corresponding realization of random variables such that the batch of
user j is selected at time t and all other selections remain exactly the same. Hence, Fi = Fj for
any i , j.
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3. Finally, we characterize the average aggregation cardinality of Multi-RoundSecAgg. The average
aggregation cardinality can be expressed as follows

C = K (1 − Pr[No row of B is available])

= K
(
1 − Pr[At least

N
T
−

K
T
+ 1 batches are not available]

)
= K ©«1 −

N/T∑
i=N/T−K/T+1

(
N/T

i

)
qi(1 − q)N/T−iª®¬ , (13)

where q is the probability that a certain batch is not available, which is given by q = 1 − (1 − p)T .

�

B Convergence Analysis of Multi-RoundSecAgg : Proof of Theorem 2

The proof of Theorem 2 is divided into two parts. In the first part, we introduce a new sequence to
represent the local updates in each user with respect to step index while we use the global round
index t for x(t) in (2). We carefully define the sequence and the step index, and then provide the
convergence analysis of the sequence. In the second part, we bridge the newly defined sequence and
x(t) in (2), and provide convergence analysis of x(t).

First Part (Convergence analysis of local model updates).

Let w(j)i be the local model updated by user i at the j-th step. Note that this step index is different
from the global round index t in (2) as each user updates the local model by carrying out E(≥ 1)
local SGD steps before sending the results to the server. Let IE be the set of global synchronization
steps, i.e., IE = {nE |n = 0,1,2, . . .}. Importantly, we define the step index j such it increases from
nE to nE + 1 only when the server does not skip the selection, i.e., there are at least K available users
at step nE + 1 for n ∈ {0,1,2, . . .}. We denote by HnE the set selected by Multi-RoundSecAgg at
step index nE and from the definition, |HnE | = K for all n ∈ {0,1,2, . . .}. Then, the update equation
can be described as

vj+1
i = wj

i − η
j∇Li

(
wj

i , ξ
j
i

)
, (14)

wj+1
i =

{
vj+1
i if j + 1 ∈ IE

1
K

∑
k∈H j+1 vj+1

k
if j + 1 < IE

, (15)

where we introduce an additional variable vj+1
i to represent the immediate result of one step SGD

from wj
i . We can view wj+1

i as the model obtained after aggregation step (when j + 1 is a global
synchronization step). Motivated by [26, 18], we define two virtual sequences

vj
=

1
N

N∑
i=1

vj
i , (16)

wj
=

1
N

N∑
i=1

wj
i . (17)

We can interpret vj+1 as the result of single step SGD from wj . When j < IE , both vj and wj

are not accessible. We also define g j
= 1

N

∑N
i=1 ∇Li

(
wj

i

)
and g j = 1

N

∑N
i=1 ∇Li

(
wj

i , ξ
j
i

)
. Then,

vj+1
= wj

− η jg j .

Now, we state our two key lemmas.

Lemma 1 (Unbiased selection). When j + 1 ∈ IE , the following is satisfied,

EH j+1 [w
j+1
] = vj+1. (18)

14



Proof. LetHj+1 = {i1, . . . , iK }. Then, we have

EH j+1 [w
j+1
] =

1
K

EH j+1


∑

k∈H j+1

vj+1
k

 =
1
K

EH j+1

[
K∑
k=1

vj+1
ik

]
= EH j+1 [v

j+1
ik
]

=

N∑
k=1

1
N

vj+1
k
= vj+1 (19)

where (19) follows as Pr[ik = j] = 1
N for i ∈ [N]. This is because the sampling probability of each

user is identical due to the symmetry in the construction and the fact that all users have the same
dropout probability. �

Now, we provide the convergence analysis of the sequence wj defined in (17). We have,

‖wj+1
−w∗‖2 = ‖wj+1

− vj+1
+ vj+1

−w∗‖2

= ‖wj+1
− vj+1

‖2 + ‖vj+1
−w∗‖2 + 2

(
wj+1

− vj+1
)> (

vj+1
−w∗

)
. (20)

When the expectation is taken overHj+1, the last term in (20) becomes zero due to Lemma 1. For
the second term in (20), we have

‖vj+1
−w∗‖2 ≤ (1 − η j µ)‖wj

−w∗‖2 + α(η j)2, (21)

where α = 1
N

∑N
i=1 σ

2
i + 6ρΓ + 8(E − 1)2G2 and (21) directly follows from Lemma 1,2,3 of [18].

The first term in (20) becomes zero if j + 1 ∈ IE , and if j + 1 < IE , from Lemma 5 of [18], it is
bounded by

EH j+1 ‖w
j+1
− vj+1

‖2 ≤ β(η j)2, (22)

where β = 4(N−K)E2G2

K(N−1) . By combining (20) to (22), we have

E‖wj+1
−w∗‖2 ≤ (1 − η j µ)‖wj

−w∗‖2 + (α + β)(η j)2. (23)

Then by utilizing the similar induction in [18], we can show that

E‖wj+1
−w∗‖2 ≤

1
γ + t − 1

(
4(α + β)

µ2 + γE‖w0
−w∗‖2

)
, (24)

where γ = max
{

8ρ
µ ,E

}
. By combining (24) with ρ-smoothness of the global loss function in (1), we

have

E[L(wI
)] − L∗ ≤

ρ

γ + I − 1

(
2(α + β)

µ2 +
γ

2
E‖w0

− x∗‖2
)
. (25)

Second Part (Convergence analysis of global model).

Now, we bridge the sequence wT and x(t) in (2) to provide the convergence analysis of x(t). Since we
define the step index j such that j increases from nE to nE + 1 only when the server does not skip
the selection, we have

E[L(x(J))] = E[L(w(JEφ))] (26)

where φ is the probability that there are at least K available users at a certain synchronization step, and
φ = C

K due to the fact that C = K · Pr[at least one row of B is available] = Kφ. By combining (25)
and (26), we have that,

E[L(x(J))] − L∗ ≤
ρ

γ + C
K E J − 1

(
2(α + β)

µ2 +
γ

2
E‖x(0) − x∗‖2

)
, (27)

which completes the proof.
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C Necessity of Batch Partitioning (BP)

In this appendix, we show that batch partitioning is necessary to satisfy the multi-round privacy
guarantee of Equation (5) and our strategy is optimal in the sense that no other strategy can have
more distinct user selection sets than our strategy.

Proof. Consider any scheme which selects sets from an R × N matrix V = [v1, · · · ,vN ]
>. Denote

the linear coefficients multiplying them by zi , i ∈ [R]. Then, the i-th element of V>z is given by

{V>z}i =
∑

j∈supp(vi )

zi . (28)

We now claim that we can cluster the entries using equivalence of linear functions to groups, where
each group must have a size of at least T except for the group corresponding to the zero function. To
show this, we choose each zi

i.i.d.
∼ U[0,1], and the key observation is that if two entries have different

linear functions then their final value after this assignment would be different with probability one.
Since the scheme satisfies a multi-round privacy T , this implies that for each non-zero linear function
of the form of Equation (28), there must be at least T of them. If we group the entries according to
the equivalence of linear functions, we get at most N/T groups (ignoring the group of constant zero).

Then, we show that the total number of possible sets R is upper-bounded by
(N/T
K/T

)
. We observe that

the total number of non-zero groups we can choose for each vector is at most K/T due to the size of
each group, so the total number of distinct vectors satisfying the weight requirement is at most

R ≤ Rmax
def
=

(
D
E

)
, (29)

where D ≤ N/T is the total number of groups corresponding to the non-zero linear functions, and
E ≤ K/T is the total number of groups we may select in each round. Next, we have

Rmax =

(
D
E

)
(i)
≤

(
N/T

E

)
(ii)
≤

(
N/T
K/T

)
= RBP, (30)

where (i) follows since
(D
E

)
is monotonically increasing w.r.t D, and (ii) follows as

(D
E

)
is

monotonically increasing w.r.t E if E ≤ D/2. �

D The Two Components of Multi-RoundSecAgg : Algorithms 1 and 2

In Algorithm 1 and 2, we describe the two components of Multi-RoundSecAgg, which is proposed
in Section 4.

Algorithm 1 Batch Partitioning Privacy-preserving Family Generation
Input: Number of users N , row weight K and the desired multi-round privacy guarantee T .
Output: Privacy-preserving Family B ∈ {0,1}RBP×N , where RBP =

(N/T
K/T

)
Initialization: B = 0RBP×N .

1: Partition index sets {1,2, . . . ,N} into N
T sets, G1, . . . ,GN

T
, where |Gi | = T for all i ∈ [ NT ].

2: Generate all possible sets each of which is union of K
T sets out of N

T sets (G1, . . . ,GN
T

) without
replacement. Denote the generated sets by L1, . . . ,LRBP .

3: for i = 1,2, . . . ,RBP do
4: for j = 1,2, . . . ,N do
5: if j ∈ Li then {bi}j = 1
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Algorithm 2 Available Batch Selection

Input: A family of sets B, set of available users U(t), the frequency of participation vector f (t−1),
and the selection mode λ. . λ = 0 when pi = p,∀i ∈ [N] and 1 otherwise
Output: A participation vector p(t).
Initialization: B(t) = [ ], `(t−1)

min B arg mini∈U(t ) f (t−1)
i .

1: for i = 1,2, . . . ,RBP do
2: if supp(bi) ⊆ U

(t) then B(t) = [B(t)>,bi]
>.

3: if B(t) = [ ] then
4: b(t)

r(t)
= 0.

5: else if λ = 0 then . Uniform selection
6: Select a row from B(t), b(t)

r(t)
, uniformly at random.

7: else . Fairness-aware selection
8: Select a row from B(t), b(t)

r(t)
, uniformly at random from the rows that include `(t−1)

min .

9: p(t) = b(t)
r(t)

.

10: Update f (t) = f (t−1) + p(t)

E Additional Experiments

To further investigate the performance of Multi-RoundSecAgg, we implement a simple CNN [16]
with two 5 × 5 convolution layers, a fully connected layer with ReLU activation, and a final Softmax
output layer. This standard model has 1,663,370 parameters and is sufficient for our needs, as our
goal is to evaluate various schemes, not to achieve the best accuracy. We study the two settings for
partitioning the MNIST dataset across the users.

• IID Setting. In this setting, the 60000 training samples are shuffled and partitioned uniformly
across the N = 120 users, where each user receives 500 samples.

• Non-IID dataset. In this setting, we first sort the dataset by the digit labels, partition the sorted
dataset into 120 shards of size 500, and assign each of the 120 users one shard. This is similar to
the pathological non-IID partitioning setup proposed in [16], where our partition is an extreme
case as each user has only one digit label while each user in [16] has two.
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(a) IID data distribution.
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(b) Non-IID data distribution.

Figure 7: Training rounds versus test accuracy of CNN in [16] on the MNIST with N = 120 and K = 12.

We measure the test accuracy of the six schemes in the two settings, the IID and the Non-IID settings,
for both IID and non-IID settings. Our results are demonstrated in Figure 7. We make the following
key observations, which are similar to the observations on the CIFAR-10 dataset.

• In the IID setting, the Multi-RoundSecAgg schemes show comparable test accuracy to the random
selection and random weighted selection schemes while the Multi-RoundSecAgg schemes
provide better multi-round privacy guarantee T .

• In the non-IID setting, the Multi-RoundSecAgg schemes outperform the random selection
scheme while showing comparable test accuracy to the weighted random selection scheme. This
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is because Multi-RoundSecAgg schemes have better aggregation fairness gaps as demonstrated
in Figure 4(b), which results in better test accuracy in the non-IID setting.

• In both IID and non-IID settings, the user partitioning scheme has the worst test accuracy as its
average aggregation cardinality is much smaller than the other schemes.

F Experiment Details

In this section, we provide more details about the experiments of Section 6 and Appendix E.

We summarize the test accuracy of CIFAR-10 and MNIST dataset in Table 2 and Table 3, respectively.
For both dataset, we run experiments five times with different random seeds and present the average
value of the test accuracy in Table 2 and Table 3.

Table 2: Test accuracy of LeNet in [23] on the CIFAR-10 dataset with N = 120 and K = 12.

Scheme IID Setting Non-IID Setting

Random selection 64.64% 45.20%
Weighted random selection 65.06% 47.89%

User partition 55.70% 37.74%
Multi-RoundSecAgg, T=6 65.01% 46.35%
Multi-RoundSecAgg, T=4 64.95% 47.00%
Multi-RoundSecAgg, T=3 64.80% 47.21%

Table 3: Test accuracy of the CNN in [16] on the MNIST dataset with N = 120 and K = 12.

Scheme IID Setting Non-IID Setting

Random selection 98.21% 85.79%
Weighted random selection 98.10% 94.04%

User partition 93.94% 75.26%
Multi-RoundSecAgg, T=6 97.72% 89.88%
Multi-RoundSecAgg, T=4 98.11% 92.51%
Multi-RoundSecAgg, T=3 98.15% 94.16%

Hyperparameters and computing resources. For a fair comparison between 6 schemes, we find
the best learning rate from {0.1,0.03,0.01,0.003,0.001,0.0003,0.0001}. Given the choice of the best
learning rate η, η is decayed to 0.4η every 400 and 800 rounds to train the LeNet on the CIFAR-10
dataset while η is not decayed in the CNN on the MNIST dataset. To train the LeNet on the CIFAR-10
dataset, we use the mini-batch size of 50 and E = 1 local epoch for both IID and Non-IID settings.
To train the CNN on the MNIST dataset, we use the mini-batch size of 100 and E = 1 local epoch for
both IID and Non-IID settings. All experiments are conducted with users equipped with 3.4 GHz
4 cores i-7 Intel CPU and NVIDIA Geforce 1080, and the users communicate amongst each other
through Ethernet to transfer the model parameters.

G Multi-round Privacy Analysis of the Conventional Random User
Selection Strategies

In this appendix, we first theoretically study the multi-round privacy of two random user selection
strategies, and show that they have a very weak multi-round privacy of T = 1 with high probability
(for the case where pi = p,∀i ∈ [N]). Furthermore, we also provide additional experiments showing
that the server can reconstruct the local models of all users with high accuracy when a random
selection strategy is used. In the theoretical analysis, to simplify the problem, we assume that the
model of the users have converged and don’t change from one round to the next. However, in the
experiments, we empirically evaluate the error in approximating the individual models of the users
(via least-squares error estimation), and show that the server can approximate individual models with
very small error.
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G.1 Theoretical Analysis of the Random Selection Strategies

We start by our theoretical results, where we consider the following two random selection schemes.

1. K-uniform Random Selection. In this scheme, at round t, K users are selected uniformly at
random from the set of available usersU(t) if |U(t) | ≥ K . Otherwise, the server skips this round.

2. I.I.D Random Selection. In this scheme, at round t, each user is selected with probability K
N (1−p)

independently from the other available users, where K < N(1 − p). Hence, the expected number
of selected users at each round is K user.

For both schemes, we show that the server can reconstruct all individual models after N rounds in
the worst-case scenario (assuming that the models do not change over N rounds). Specifically, we
show that the participation matrices in both schemes have full rank with high probability after N
rounds. This, in turn, implies that the server can reconstruct all local models after N rounds with high
probability in both schemes. We provide our results formally next in Theorem 3.

Theorem 3. (Random Selection Schemes have multi-round privacy guarantee of T = 1).

1. Consider the K-uniform random selection scheme, where min(K,N − K) ≥ cN . In this scheme,
the server can reconstruct all individual models of the N users after N rounds with probability at
least

1 − 2e−c
′N , (31)

for some constant c′ > 0 that depends on c.

2. Consider the i.i.d random selection scheme, where the users are selected according to
Bern( K

N (1−p) ) distribution and let t = K/N . In this scheme, the server can reconstruct the
individual models of the N users after N rounds with probability at least

1 − 2N(1 − t)N − (1 + oN (1))N(N − 1)(t2 + (1 − t)2)N , (32)

which converges to 1 exponentially fast if t ∈ (0,1/2) is a fixed constant.

Proof. We first note that if the participation matrix has full rank after N rounds, then the server
can reconstruct the model of each individual user. Hence, we analyze the probability of the N × N
participation matrix being full rank. We now consider each scheme separately.

1. In the K-uniform random selection scheme, the probability that the participation matrix after N
rounds P(N ) has full rank is lower-bounded as follows [27], when min(K,N − K) ≥ cN ,

Pr[P(N ) has full rank] ≥ 1 − 2e−c
′N ,

for some constant c′ > 0 that depends on c. Hence, it follows that the server can reconstruct all
individual models with probability at least 1 − 2e−c

′N .

2. In the i.i.d random selection scheme, the probability that the participation matrix after N rounds
P(N ) has full rank is lower-bounded as follows [28]

Pr[P(N ) has full rank] ≥ 1 − 2N(1 − t)N − (1 + oN (1))N(N − 1)(t2 + (1 − t)2)N ,

which converges to 1 exponentially fast if t = K/N ∈ (0,1/2) is a fixed constant. Hence, it
follows that the probability the server can reconstruct all individual models is lower-bounded by
the same probability.

�

Remark 9. Our experimental results in Section 6 also show that the multi-round privacy guarantee
of the K-uniform random selection scheme goes to 1 after almost N rounds as shown in Fig. 4(a).
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G.2 Experimental Results

We now empirically evaluate the error in approximating the individual models of the users (via least-
squares error estimation), and show that the server can approximate individual models of all users
with very small error. To do so, we implement a reconstruction algorithm utilizing the least-squares
method, and measure the L2 distance between the original model and reconstructed model.

We consider a FL setting with N = 40 users, where the server aims to choose K = 8 users at every
round, to train the CNN in [16] on the MNIST dataset with IID setting. After a sufficiently large
number of rounds t0, the global model at the server converges and does not change much across the
rounds, which results in that local models also do not change much across the rounds. Then, we have

X(t0;t1)
global = P(t0;t1)X(t0)individual + Z, (33)

where X(t0;t1)
global denotes the concatenate of the global models from round t0 to round t1 − 1, i.e.,

X(t0;t1)
global =

[
x(t0), . . . x(t1−1)]> ∈ R(t1−t0)×d for t1 > t0, P(t0;t1) ∈ {0,1}(t1−t0)×N is the participation matrix

from round t0 to round t1 − 1, X(t0)individual denotes the concatenate of the individual models at round t0,

i.e., X(t0)individual =
[
x(t0)1 , . . . ,x(t0)N

]>
∈ RN×d , and Z denotes the perturbation (or noise) incurred by the

local updates across the rounds.

The server can then estimate X(t0)individual by utilizing the least-squares method as follows

X̂(t0)individual =
(
P(t0;t1)>P(t0;t1)

)−1
P(t0;t1)>X(t0;t1)

global, (34)

and we measure the reconstruction error as follows

e(t0)i =
‖x(t0)i − x̂(t0)i ‖

2

‖x(t0)i ‖
2

, (35)

where x̂(t0)i denotes the reconstructed model of user i, which corresponds to i-th row of X̂(t0)individual in
(34). Figure 8 shows the histogram of the reconstruction error of the individual models of N = 40
users with t0 = 260 and t1 = 300. We observe that the K-uniform random selection scheme has a
very small average reconstruction error 1

N

∑N
i=1 e(t0)i = 1.72 × 10−3, which implies that the server can

reconstruct all local models as the K-uniform random selection scheme has the multi-round privacy
guarantee T = 1.
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Figure 8: Histogram of the reconstruction error defined in (35) of N = 40 users when the K(= 8)-uniform
random selection scheme is used to train the CNN [16] on the MNIST dataset.

20


