
Efficient Asynchronous Byzantine Agreement
without Private Setups

Yingzi Gao1,3, Yuan Lu1, Zhenliang Lu2, Qiang Tang2, Jing Xu1, and Zhenfeng Zhang1

1 Institute of Software, Chinese Academy of Sciences
{yingzi2019,luyuan,xujing,zhenfeng}@iscas.ac.cn

2 School of Computer Science, The University of Sydney
zhlu9620@uni.sydney.edu.au,qiang.tang@sydney.edu.au

3 University of Chinese Academy of Sciences

Abstract. Though recent breakthroughs greatly improved the efficiency of asynchronous Byzan-
tine agreement (BA) protocols, they mainly focused on the setting with private setups, e.g.,
assuming established non-interactive threshold cryptosystems. Challenges remain to reduce the
large communication complexities in the absence of such setups. For example, Abraham et al.
(PODC’21) recently gave the first private-setup free construction for asynchronous validated BA
(VBA) with expected O(n3) messages and O(1) rounds, relying on only public key infrastruc-
ture (PKI), but the design still costs O(λn3 logn) bits. Here n is the number of parties, and λ
means the cryptographic security parameter capturing the length of hash, digital signature, etc.
We reduce the communication of private-setup free asynchronous BA to expectedO(λn3) bits. At
the core of our design, we present a systematic treatment of reasonably fair common randomness
protocols in the asynchronous network, and proceed as:
– We give an efficient reasonably fair common coin protocol in the asynchronous setting

with only PKI setup. It costs only O(λn3) bit and O(1) asynchronous rounds, and ensures
that with at least 1/3 probability, all honest parties can output a common bit that is as
if randomly flipped. This directly renders more efficient private-setup free asynchronous
binary agreement (ABA) with expected O(λn3) bits and expected constant rounds.

– Then, we lift our common coin to attain perfect agreement by using a single ABA. This
gives us a reasonably fair random leader election protocol with expected O(λn3) commu-
nication and expected constant rounds. It is pluggable in all existing VBA protocols (e.g.,
Cachin et al., CRYPTO’01; Abraham et al., PODC’19; Lu et al., PODC’20) to remove the
needed private setup or distributed key generation (DKG). As such, the communication of
private-setup free VBA is reduced to expected O(λn3) bits while preserving fast termina-
tion in expected O(1) rounds. Moreover, our result paves a generic path to private-setup
free asynchronous BA protocols, as it is not restricted to merely improve Abraham et al.’s
specific VBA protocol in PODC’21.

Our results and techniques could be found useful and interesting for a broad array of applications
such as asynchronous DKG and DKG-free asynchronous random beacon.

1 Introduction

Recently, following the unprecedented demand of deploying BFT protocols on the Internet for robust
and highly available decentralized applications, renewed attentions are gathered to implement more
efficient asynchronous Byzantine agreements [5,45,54,39,52,61]. Nevertheless, asynchronous protocols
have to rely on randomized executions to circumvent the seminal FLP “impossibility” result [33].
In particular, to quickly decide the output in expected constant rounds of interactions, many asyn-
chronous protocols [20,55,54,17,16,5,52,39,45,22,13,1,4] essentially need common randomness, given
which for “costless”, one at least can construct optimally resilient asynchronous Byzantine agreement
(BA) protocols that cost expected O(n2) messages and expected O(1) rounds [5,52,55,17,16,23].

However, efficient ways to implement asynchronous common randomness in practice mostly rely
on different varieties of private setups. For example, initiated by M. Rabin [60], it assumes that a
trusted dealer directly uses secret sharing to distribute a large number of random secrets among the
participating parties before the protocol starts, so the parties can collectively reconstruct a sequence
of common randomness while running the protocol. Later, Cachin et al. [17] presented how to set

up a non-interactive threshold pseudorandom function (tPRF) by assuming that a trusted dealer can
faithfully share a short tPRF key, which now is widely used by existing practical asynchronous BFT
protocols including [5,45,54,52].

These private setups might cause unpleasant deployment hurdles, preventing asynchronous pro-
tocols from being widely used in broader settings. Hence, it becomes critical to reduce the setup
assumptions for easier real-world deployment.

Existing efforts on reducing setups. There are a few known approaches to construct private-setup
free asynchronous BA, but most are costly or even prohibitively expensive.

Back to 1993, Canetti and Rabin [20] gave a beautiful common coin construction (CR93) centering
around asynchronous verifiable secret sharing (AVSS), from which a fast and optimally resilient asyn-
chronous binary agreement (ABA) can be realized. Here, AVSS is a two-phase protocol that allows a
dealer to confidentially “commit” a secret across n participating parties during a sharing phase, after
which a reconstructing phase can be invoke to let the honest parties collectively recover the earlier
committed secret. The resulting common coin is reasonably fair, as it ensures all honest parties to
output either 0 or 1 with some constant probability. Though this reasonably fair common coin attains
constant asynchronous rounds and can be directly plugged into many binary agreement constructions
[55,20,23], it incurs tremendous O(n6) messages and O(λn8 log n) bits, where λ is the cryptographic
security parameter. The huge complexities of CR93 are dominated by its expensive AVSS. Since then,
many more efficient private-setup free AVSS protocols [15,9,6,10] were proposed and can directly im-
prove it. For example, Cachin et al. [15] gave an AVSS to share n secrets with only O(n2) messages
and O(λn3) bits, but the resulting common coin and ABA protocols (CKLS02) still incur O(n3) mes-
sages and O(λn4) bits, which remains expensive and exists an O(n) gap between the message and the
communication complexities.

Recently, Kokoris-Kogias et al. [47] (KMS20) presented a new path to reducing the common coin
primitive to AVSS.1 In particular, KMS20 incurs O(λn4) bits and O(n) asynchronous rounds to gen-
erate a single random coin, which is seemingly worse than CKLS02. Nonetheless, once being boot-
strapped, it can continually generate coins at a lower per-coin cost of O(λn2) bits and O(1) rounds,
thus being cheaper in an amortized way. In another recent breakthrough, Abraham et al. [4] presented
an elegant asynchronous validated Byzantine agreement (VBA) protocol (AJM+21) without private
setup. It costs expected O(n3) messages, constant rounds, and O(|m|n2 + λn3 log n) bits for |m|-bit
input,2 and only assumes the presence of a bulletin PKI that can facilitate the management of public
keys. At the core of AJM+21 VBA, it lifts reasonably fair common coin to a new random proposal
election primitive, such that with a constant probability, the honest parties can randomly decide a
common value proposed by some non-corrupted party. As such, a certain VBA protocol called No-
Waitin’ HotStuff (NWH) was tailored to cater for this special proposal election primitive. However,
this election notion is too specific to be used in other existing VBA constructions [5,52,16], due to the
imperfect of necessary agreement. Still, AJM+21 VBA costs O(λn3 log n) bits, and leaves room for
further reducing the communication cost asymptotically by removing the log n factor.

Bearing the state-of-the-art, it calls to systematically treat the fundamental basis of more efficient
(reasonably fair) common randomness protocols, such that we can make them private-setup free and
pluggable in the existing asynchronous Byzantine agreement designs, thus overcoming the current
deployment hurdles of asynchronous protocols. That said, the following question remains open:

Can we design efficient asynchronous common randomness protocols with
fewer setup assumptions, thus reducing the expected communication cost of
asynchronous Byzantine agreements (e.g., ABA and VBA) to O(λn3) bits?

1 KMS20 requires a strengthened AVSS with high-threshold secrecy: the adversary cannot learn the secret
before n− 2f honest parties start to reconstruct (where f is the number of corrupted parties). In contrast,
the classic AVSS notion [20] only preserves secrecy, before the first honest party activates reconstruction.

2 Through the paper, we consider the input size |m| of VBA to be at most λn bits, so the |m|n2 term does not
dominate the communication complexity, thus ignored. For larger input, it can be an orthogonal problem
to push the |m|n2 term to |m|n, as discussed by many “extension” protocols [52,58,57,36] for multi-valued
BA.

2

1.1 Our contribution

We give an affirmative answer to the above question. At the core of our solution, we develop a set of
new techniques to design an efficient private-setup free construction for reasonably fair common coin
that are pluggable in many existing ABA protocols [20,55,23]; more interestingly, we formalize and
construct an efficient (reasonably fair) leader election notion with perfect agreement, by lifting our
common coin protocol to be always agreed. This leader election primitive can be directly plugged in
all existing VBA protocols [16,5,52,38,37] to remove their reliance on private setups.

Table 1: Comparison of private-setup free asynchronous BA protocols
ABA/Coin VBA/Election Adaptive

Security?
Cryptographic
Assumption

Setup
AssumptionComm. Round Comm. Round

CKLS02 [15] § O(λn4) O(1) - - Yes Dlog+hash global param ∗

KMS20 [47] † O(λn4) O(n) O(λn4) O(n) No? RO+DDH? PKI]

AJM+21 [4] †‡ O(λn3 logn) O(1) O(λn3 logn)¶ O(1) No RO+SXDH PKI

This paper O(λn3) O(1) O(λn3) O(1) No RO+SXDH PKI
Yes RO+DDH PKI, 1-time rnd ∗∗

∗ Global parameters capture some minimal setups such as an agreed group description and group generators. For some
schemes relying on collision-resistant hash [15,47], a one-time common random string is needed to key the hash functions.

§ CKLS02 [15] did not construct VBA or leader election. We also do not realize any complexity-preserving reductions to it.
? KMS20 states that it might be adaptively secure by using the pairing-based adaptively secure threshold signature [50],

and this might cause it rely on SXDH assumption instead of only DDH assumption.
] The PKI setup in KMS20 can be removed by recent high-threshold AVSS presented in [6].
† Note that KMS20 and AJM+21 did not present an explicit construction for random leader election (Election). Nevertheless,

they gave asynchronous distributed key generation protocols (ADKG) that can bootstrap threshold verifiable random
function and thus can set up Election (and also common coin) schemes via ADKG.

‡ AJM+21 only presents an explicit VBA construction but does not construct ABA. However, VBA implies ABA with same
complexities, because there is a simple complexity-preserving reduction from ABA to VBA in the PKI setting, cf. [16].

¶ The communication of AJM+21 can be reduced to O(λn3) by a recent reliable broadcast protocol [25], but this only applies
to the specific AJM+21 VBA construction, while our result is generic and can be adapted to all existing VBA protocols.

∗∗ 1-time rnd means a one-time common random string can be published after PKI registration but before protocol execution.

In greater details, our technical contribution is three-fold:

– We implement O(λn3)-bit and O(1)-round common coin and ABA with only PKI setup in
the asynchronous network, conditioned on SXDH assumption and random oracle.
The crux of our design is a novel efficient construction for the reasonably fair common coin in
the bulletin PKI setting (in the random oracle model). Different from CR93 (that used n2 AVSS
instances), we use verifiable random function in combination with more efficient AVSS construc-
tion to reduce the number of necessary AVSS instances by an O(n) order. This private-setup free
common coin costs only O(λn3) bits and constant asynchronous rounds. With our common coin
protocol at hand, we can implement private-setup free ABAs with expected O(n3) message com-
plexity and O(λn3) communication complexity with only bulletin PKI. As illustrated in Table 1,
it closes the O(n) gap between the message and the communication complexities in the earlier
private-setup free ABA protocols such as CKLS02 [15], while preserving other benefits such as the
maximal n/3 resilience and the optimal expected constant rounds. Even comparing with a recent
work due to Abraham et al. [4] that presents a more efficient VBA construction and improves ABA
as a by-product,3 our approach still realizes a log n factor improvement.

– We also realize O(λn3)-bit and O(1)-round random leader election and VBA with only PKI
in the asynchronous setting, assuming SXDH assumption and random oracle.
At the core of this contribution, we use one single ABA protocol to lift our common coin and
clean up the possible disagreement among honest parties, and then obtain an efficient random
leader election protocol with reasonable fairness and also perfect agreement in the absence of
private setups. The leader election protocol costs expected O(λn3) bits and expected constant
asynchronous rounds, and can directly be plugged in all existing VBA protocols (i.e., multi-valued
Byzantine agreement with external validity) [16,5,52,38,37] to replace its counterpart relying on
private setups. The resulting VBA protocols can realize the maximal n/3 resilience and optimal

3 Remark that there might exist efficient reduction from ABA to VBA in the public key infrastructure setting,
which was discussed in [16]. Therefore, the recent private-setup free VBA protocol in [4] also improves ABA.

3

expected constant rounds, with costing expected O(n3) messages and O(λn3) bits. As shown in
Table 1, this construction closes the O(log n) gap between the message and the communication
complexities of VBA protocols.

– Along the way, we develop a set of crucial techniques that could be of independent interests.
We set forth a new primitive called weak core-set selection (WCS) to simplify the cumbersome
component of information gather in CR93 [20] and AJM+21 [4]. Recall that information gather is
a multi-sender extension of reliable broadcast [14], such that each party reliably broadcasts a value
and then outputs a set of values that is a superset of some (n− f)-sized core-set. Selecting a core-
set out of n broadcasted values requires another 2n reliable broadcasts in [20]. We conceptually
weaken the primitive in a way that f+1 honest parties (instead of all honest parties) are ensured to
output a superset of the core-set. This appropriate weakening significantly simplifies the protocol
(i.e., replace a couple of reliable broadcasts by only two multicast rounds), and still it is a powerful
building block, from which we can implement efficient common coin in the PKI setting.
We also give an efficient AVSS construction (satisfying the classic CR93 notion [20]) with only
bulletin PKI setup (under the discrete logarithm assumption). The AVSS protocol is adaptively
secure, and costs only O(n2) messages and O(λn2) bits when sharing a λ-bit secret. Prior art
with the same communication complexity either relies on private setup [8,42,43] or incurs at least
O(λn3) bits [15,9] (except two recent work [6,62], yet they still have an extra log n factor).

1.2 Challenges and our techniques

Remaining efficiency hurdles. To flip coins, both CR93 and AJM+21 let each party commit an
unbiased secret gathered from enough parties. In CR93, everyone plays a role of “delegate” for each
party to share a secret through AVSS, then everyone picks and commits n − f secrets from distinct
“delegates”, the aggregation of which is uniformly distributed. In AJM+21, each party again plays a
role of “delegate” to choose a random secret for everyone, which is hidden in form of aggregatable
public verifiable secret sharing (PVSS). Every party now combines n − f PVSS scripts from distinct
“delegates” to obtain an aggregated PVSS, which also hides an unbiased secret. Then, the aggregated
PVSS script, which has O(λn) bits, can be committed via a reliable broadcast (the broadcast of PVSS
can be analog to AVSS, though no explicit AVSS invocation).

After enough parties commit their unbiased secrets, it invokes a procedure to select a core-set of
these secrets. That means, all parties would choose a set of indices corresponding to some indeed
committed (yet unknown) secrets, and more importantly, the honest parties’ choices shall have a large
enough intersection (called core-set). Hence, a simple trick to flip the coin can be imagined: each party
just reconstructs the secrets, then the lowest bit of the largest reconstructed secret becomes the coin.
This works because the largest secret has a constant probability to appear in the core-set. Usually,
such a core-set is obtained via several reliable broadcasts [7,1,20], whose input is a set of O(n) indices.

As such, further reducing the communication of the CR93 and AJM+21 frameworks seems chal-
lenging, because every party reliably broadcasts and/or verifiably shares at least O(λn) bits. While,
on the other side, although KMS20 gives a workaround to the above steps and reduces the number of
secrets to share by an O(n) order, it on the contrary causes slow termination of O(n) rounds.

Aggregatable
PVSS

Broadcasted
Seeding

VRF

Efficient AVSS
w/o private setup

Weaker and efficient
core-set selection

Common Coin
w/o perfect agreement

Leader Election
with agreement

Efficient Binary BA
w/o private setup

Efficient Validated BA
w/o private setup

Fig. 1: Our new path to constructing efficient asynchronous common randomness and Byzantine agreement
protocols in the absence of private setups.

4

Techniques to efficient common coin from PKI. We present a collection of new techniques to
circumvent the efficiency hurdles lying in the phases of committing secrets and selecting core-set, as
illustrated in Figure 1. In greater detail, we proceed as:

An efficient construction of private-setup free AVSS. The underlying AVSS shall cost at most quadratic
communication, if we aim at common coin with cubic communication. We realize this by lifting Peder-
sen’s verifiable secret sharing [59] to asynchronous network, through exploiting the wisdom of hybrid
secret sharing [48]. First, the dealer just collects n − f signatures from distinct parties for the same
Pedersen’s polynomial commitment [59]. Such that these signatures can ensure that at least f + 1
honest parties receive the same commitment binding a unique encryption key. Then, the dealer uses
the key to encrypt its actual secret, and leverages the n−f solicited signatures to convince the honest
parties to participate into a reliable broadcast for the ciphertext. By the design, it avoids reliably
broadcasting the large polynomial commitment to the whole network.

Weakening Core-Set selection for more efficient construction. As earlier pointed out, the selection of
core-set is important to harvest some reasonable probability to make the honest parties output some
common randomness. And we further tackle the problem of how to efficiently attain core-set. Our
main observation is that if the core-set primitive is used to pick some confidentially shared secrets
that come with some “proofs” attesting the unbiased generation, e.g., VRFs, we might slightly weaken
the primitive. I.e., only f + 1 honest parties obtain the core-set, instead of all honest parties. This
works because if the largest VRF appears in this weaker core-set, f + 1 parties can reconstruct this
largest VRF, and then multicast it to let all parties accept it. The weaker notion can be easily designed
in the PKI setting: each party multicasts its input set, and then waits for n−f signatures returned by
distinct parties, indicating that at least f+1 honest parties have a superset. This becomes an efficient
workaround to avoid O(n) reliable broadcasts in the conventional core-set selection [20,4,1,7].

A broadcast version “coin” to patch VRF. With efficient AVSS and core-set selection at hand, it is
enticing to let every party confidentially share its own VRF evaluation with proof via AVSS (instead
of gathering an unbiased secret from many parties). Then, the weak core-set selection can ensure that
at least f + 1 honest parties get the core of n− f shared VRFs. As such, the largest VRF seemingly
can appear in the core-set with a constant probability, and its least significant bits would naturally
become the common coin.

However, the above seemingly appealing idea does not work in the bulletin PKI setting, because
if the VRFs are evaluated on deterministic seeds. Corrupted parties can simply exploit malicious key
generation to bias its own VRF, for example: just run key generation for polynomial times, choose
the most favorable VRF key pair, and register the verification key at PKI. As such, VRFs evaluated
by corrupted parties gain great advantage to be the largest. Thus, the adversary at least can nearly
always know the flipped coin in advance.

To patch VRF with providing an unpredictable seed, we set forth a notion called reliable broad-
casted seeding (Seeding) and construct it from aggregatable PVSS [40]. To some extent, Seeding can
be viewed as a broadcast version common coin, which “broadcasts” an unpredictable VRF seed and
is led by the party who evaluates the VRF. Moreover, as long as an honest party gets the VRF seed
from the Seeding protocol, all honest parties would do so, and thus all parties can verify the leader’s
VRF evaluation on the seed. On the other side, if a corrupted Seeding leader intentionally blocks the
protocol, no honest party can verify its VRF evaluation, and this actually “harm” the corrupted leader
itself, because no honest party would support to solicit it into the core-set.

Putting everything together, we design a novel Coin framework, Then a weak core-set can gather
n− f AVSSes that share VRFs (patched by Seeding). With 1/3 probability, the largest VRF appears
in the core and is also evaluated by some honest party, and its lowest bits become the flipped coin.

Lifting agreement for Leader Election. Although common coin is a powerful tool to enable asyn-
chronous Binary agreement, it faces a few barriers for implementing the interesting class of validated
Byzantine agreements (VBA), thus missing the key step to reduce the communication complexity of
expected constant-round ADKG [4]. The main issue stems from the fact that most existing VBAs
[16,5,52] require a leader election with at least one significant strengthening relative to common coin,
i.e., ensuring agreement all the time.

5

Noticing that our Coin protocol only lacks agreement in some unlucky cases (when the largest VRF
does not appears in the core-set), we introduce a single ABA instance along with a set of voting rules
to “detect” the possible disagreement, thus lifting Coin to attain perfect agreement.

In particular, everyone reliably broadcasts the speculative largest VRF heard at the end of Coin
execution, and then waits for n − f such broadcasted VRFs. If there exists a majority VRF (out of
the n − f received) that is also the largest, they vote 1 to ABA; otherwise, they vote 0. When ABA
returns 0, it is okay for the honest parties to elect a default leader, e.g., the first party; while if ABA
outputs 1, any two honest parties shall not have two distinct VRF evaluations that is both largest and
majority, because the VRF evaluation satisfying the rules must be unique, so they can just select the
leader according to the lower bits of this VRF evaluation. This fixes the lack of agreement in common
coin without incurring extra factors in the asymptotic complexities.

1.3 Application scenarios

ABA and VBA protocols are at the core of many asynchronous fault-tolerant systems (e.g., BFT state-
machine replication and robust MPC service) deployed over the unstable wide-area network [54,39,51].
Our techniques can remove unpleasant setup assumptions of them, and therefore have a broad array
of applications. Here are a couple of typical examples:
Fast asynchronous DKG with cubic communication. Our new path to efficient VBA protocols
can be used to replace the VBA instantiation in AJM+21 [4] to improve the same paper’s asynchronous
distributed key generation (ADKG) protocol, thus reducing the communication cost from O(λn3 log n)
to O(λn3) with preserving all other benefits such as fast termination in expected constant rounds and
optimal resilience, cf. Section 7.3 for details.
Asynchronous random beacon without DKG. Our random leader election protocol can be easily
adapted to realize randomness beacon, which can continually output a sequence of unbiased random
strings in the asynchronous network. Here an unbiased random string means that its distribution
is uniform (taken over all possible executions) despite the adversary. Conceptually, the construction
only has to sequentially run many leader election protocols, and thus preserves expected O(λn3)
communication and O(1) rounds. Different from prior asynchronous randomness beacon [17] that has
to run ADKG [4,47,25] to bootstrap, our implementation does not go to ADKG, thus being more
friendly for dynamic join and leave, cf. Section 7.3 for more details.

2 Other Related Work

Byzantine agreement was introduced by Shostak, Pease and Lamport [49]. Since then, it has been
extensively studied in various settings with different flavors [34,32,30,2,28,56,26,44,13]. In the asyn-
chronous network, the Byzantine agreement problem has to be solved via randomized protocols, and
was initially studied by Ben-Or [11] and Rabin [60], respectively.

Kokoris-Kogias et al. [47] and Abraham et al. [4] also lifted their private-setup free Byzantine
agreement protocols towards asynchronous distributed key generation (ADKG), thus emulating the
trusted dealer of threshold cryptosystems against asynchronous adversary. The rationale behind ADKG
is that it might amortize the cost of asynchronous protocols, if the threshold cryptosystem is used for
many times. The latter study (AJM+21) is the state-of-the-art ADKG approach with using private-
setup free VBA as the core building block. Our new path to VBA can directly reduce its communication
cost by a log n factor.

Cohen et al. [22] constructed an asynchronous common coin with sub-optimal resilience using
VRFs, but it uses pre-determined nonce for VRFs. So it actually takes an implicit assumption that
either a trusted third-party performs honest VRF key generations on behalf of all parties or a common
random string can be provided after all parties register at PKI. Gągol et al. [35] presented how to
efficiently re-configuring asynchronous random beacon by running over permissioned directed acyclic
graph (DAG). However, their bootstrapping might similarly need a common random string (generated
after the registration of parties). We insist on more stringent setting without on-line common random
strings. In addition, our leader election can be plugged in such DAG-based protocols [35,45] to make
them efficient and private-setup free.

6

There are many AVSS protocols [8,42] that can realize optimal communication with relying on
private setups. Prior to this paper and a concurrent work [25], the best known result are a couple of
recent studies [6,62] that incurs O(n2) messages and O(λn2 log n) bits for λ-bit input secret. Some
AVSS protocols [42,6] also focus on linear amortized communication for sufficiently large input se-
cret, but they remain to exchange quadratic messages and bits while sharing a short secret. Our
AVSS can easily combine the information dispersal technique [18] to realize the same linear amortized
communication.

In the informational theoretic setting, a few interesting studies explored asynchronous leader elec-
tion and byzantine agreement [41,46], but they realized sub-optimal resilience and non-constant asyn-
chronous rounds with a security guarantee of only 1− 1/poly(n). Our results and the prior art [4,18]
in the computational setting can attain optimal n/3 resilience and (expected) constant asynchronous
rounds, with overwhelming probability 1− 1/superploy(n, λ), conditioned on the hardness of under-
lying cryptographic assumptions.

Common coin can also circumvent the Dolev-Strong bound [29] to fasten the termination of (par-
tially) synchronous protocols [27,3,44,31]. Technique-wise, Afgjort [27] can be thought of our counter-
part in the (partially) synchronous setting with the extra help from on-line common random strings,
it also gathers VRFs in a core-set, and then uses the least significant bits of the maximal VRF to toss
coins. However, Afgjort explicitly relies on the (partial) synchrony assumption to wait for that the
largest VRF appears in the core-set. In contrast, we make two significant enhancements to adapt our
private-setup free asynchronous setting. First, unpredictable seeds are generated on the fly to patch
VRFs due to the lack of on-line common random string. Second, AVSS and a special asynchronous
core-set selection protocols are designed to ensure that honest parties’ VRFs are not leaked until a
large enough core-set is fixed.

Note on results in a concurrent work [25]. A concurrent work from Das et al. [25] presented the
technique of asynchronous data dissemination (ADD) to improve the efficiency of reliable broadcast
and relevant protocols such as AVSS. It can reduce the communication of the specific AJM+21 VBA
protocol to O(n3) by replacing the reliable broadcast building block. It also has applications to reduce
the communication of AJM+21 ADKG to cubic. Though Das et al.’s reliable broadcast and some of
their proposed AVSS protocols can be adaptively secure, their applications to VBA and ADKG are
also in the random oracle model against only static corruptions.

Different from Das et al. that focused on improving the broadcast components, we present a set
of very different techniques to simplify the protocol structures of common coin and random leader
election, which are the basis protocols of fast-terminating Byzantine agreement. In particular, our
common coin and leader election can be directly plugged into any Byzantine agreement protocols
that requires such a building block to improve the efficiency of their private-setup free variants, while
ADD only explicitly helps the specific AJM+21 VBA (e.g., if without our results or future studies
on asynchronous common randomness). In addition, our leader election protocol can be adapted
into a reconfiguration-friendly random beacon protocol with DKG, while Das et al.’s results can only
bootstrap random beacon protocol through DKG. Moreover, it might be interesting to explore the new
design space provided by the combination of ADD and our techniques towards practical private-setup
free asynchronous protocols.

3 Models

Fully asynchronous system without private setup. There are n designated parties, each of
which has a unique identity (i.e., P1 through Pn) known by everyone. Moreover, we consider the
fully-meshed asynchronous message-passing model with Byzantine corruptions and bulletin public
key infrastructure (PKI). In particular, our system and threat models can be detailed as:

– Bulletin PKI. There exists a PKI functionality that can be viewed as a bulletin board, such
that each party Pi ∈ {Pj}j∈[n] can register some public keys (e.g., the verification key of digital
signature) bounded to its identity via the PKI before the start of protocol. Once a public key is
registered, we assume all parties can receive them immediately from the PKI.

7

– Computing model. Following [16,5] and modern cryptographic practices, we let the n parties and
the adversary A be probabilistic polynomial-time interactive Turing machines (ITMs). A party
Pi is an ITM defined by the given protocol: it is activated upon receiving an incoming message
to carry out some polynomial steps of computations, update its states, possibly generate some
outgoing messages, and wait for the next activation. Moreover, we explicitly require the bits of the
messages generated by honest parties to be probabilistic uniformly bounded by a polynomial in
the security parameter λ, which naturally rules out infinite protocol executions and thus restrict
the running time of the adversary through the entire protocol.

– Up to n/3 Byzantine corruptions. The adversary can choose up to f out of n parties to corrupt
and fully control. No asynchronous BA protocols can tolerate more than f = b(n − 1)/3c such
Byzantine corruptions, so this is the optimal resilience. We also consider that the adversary can
control the corrupted parties to generate their key materials maliciously, which captures that the
compromised parties might exploit advantages while registering public keys at PKI.

– Fully asynchronous network. We assume that there exists an established p2p channel between any
two parties. The channels are considered as secure, which means the adversary cannot modify
or drop the messages sent between honest parties and it is computationally infeasible for the
adversary to learn any information of the messages except their lengths. Moreover, the adversary
must be consulted to approve the delivery of messages, namely, it can arbitrarily delay and reorder
messages. Here we assume asynchronous secure channels (instead of merely reliable asynchronous
channels) for presentation simplicity, and they can be obtained from the bulletin PKI through
authenticated key exchange, and therefore are not extra assumptions.

– Miscellany. All system parameters, such as n, are (probably unfixed) polynomials in the security
parameter λ [16,5,52].

Quantitative performance metrics. Since we are particularly interested in constructing efficient
asynchronous protocols, e.g., for generating common randomness or reaching consensus, without pri-
vate setup, it becomes needed to introduce quantitative metrics to define the term “efficiency” in the
context. To this end, we consider the following widely adopted notions to quantify the performance
of protocols in the asynchronous network:

– Communication complexity is defined as the bits of all messages exchanged among honest parties
during a protocol execution. Sometimes, an asynchronous protocol might have randomized exe-
cutions, so we might consider the upper bound of expected communication complexity (averaged
over all possible executions) under the influence of adversary.

– Message complexity captures the number of messages exchanged among honest parties in a protocol
execution. Similar to communication’s, we sometimes might consider the upper bound of expected
message complexity.

– Asynchronous rounds. The eventual delivery of asynchronous network might cause that the pro-
tocol execution is somehow independent to “real time”. Nevertheless, it is needed to characterize
the running time of asynchronous protocols. A standard way to do so is: for each message the
adversary assigns a virtual round number r, subject to the condition that any (r − 1)-th round
messages between any two correct parties must be delivered before any (r + 1)-th round message
is sent [20]. We then can measure the running time by counting such asynchronous “rounds”.

Note on “private-setup free” . More precisely, our private-setup free model admits bulletin PKI
with some system parameters that are just group descriptions and random group generators. These
parameters are indeed one-time setup (belonging to a global system instead of just for ours), and are
usually ignored in the literature [4,25]. Except that, we consider other structured common reference
strings such as that of KZG polynomial commitment [43] fall into the category of private setups.
We might consider that no one can stay on-line to provide a trusted common random string after
PKI registration, which is the subtle reason why we have to patch VRF with a broadcasted seeding
protocol.

Note on static/adaptive adversary. Some of our results (e.g., our AVSS protocol) can be secure
against an adaptive adversary that can corrupt up to f parties while the protocol is running. While
our common coin and random leader election protocols are secure in the static model, in which the

8

adversary is restricted to corrupt parties before the protocol starts. However, this is only because the
existing aggregatable PVSS scheme is not proven to be adaptively secure (which actually is the same
reason why AJM+21 [4] is statically secure). To demonstrate that, we can introduce a one-time online
common random string assumption, thus avoid the broadcasted seeding protocol that relies on PVSS,
and then show that our common coin (as well as random leader election) become adaptively secure.
Namely, we can assume a trusted one-time randomness that is announced after PKI registration but
before protocol execution, and adaptive security can be realized by our protocols in the setting, as
PVSS is no longer needed, cf. more detailed discussions in Section 6.

Moreover, the assumption of adaptively secure private channels can be easily realized by existing
techniques (e.g., in the erasure model [19]).

4 Preliminaries

Reliable broadcast (RBC) [14] is a protocol among a set of n parties, in which a party called sender
aims to send a value to all. It satisfies the next properties:

– Agreement. If any two honest parties output v and v′ respectively, v = v′.
– Totality. If an honest party outputs v, then all honest parties output v.
– Validity. If an honest sender inputs v, all honest parties would output v.

Digital signature. A digital signature scheme consists of a tuple of algorithms (KenGen,Sign,SigVerify):

– KenGen(1λ)→ (sk, pk) is a probabilistic algorithm generating the signing and verification keys.
– Sign(sk,m)→ σ takes a signing key sk and a message m as input to compute a signature σ.
– SigVerify(pk,m, σ)→ 0/1 verifies whether σ is a valid signature produced by a certain party with

verification key pk for the message m or not.

We require the digital signature scheme to be existentially unforgeable under an adaptive chosen-
message attack (i.e., EUF-CMA secure). In the bulletin PKI setting, every party is bounded to a unique
verification key for signature. For presentation brevity, in a protocol with an explicit identifier ID, we
might let SignIDi (m) denote Sign(ski, 〈ID,m〉), which means a specific party Pi signs a message m with
using its private key, and also let SigVerifyIDi (m,σ) to denote SigVerify(pki, 〈ID,m〉, σ), where pki is
the public key of a certain party Pi.

Verifiable random function. A verifiable random function (VRF) [53] is a pseudorandom function
that also returns a proof to attest that the correctness of its evaluation result. It consists of three
algorithms (VRF.Gen,VRF.Eval,VRF.Verify):

– VRF.Gen(1λ)→ (sk, pk) is a probabilistic algorithm that generates a pair of private key and public
verification key for verifiable random function.

– VRF.Eval(sk, x)→ (r, π) takes a secret key sk and a value x as input and outputs a pseudorandom
value r with a proof π.

– VRF.Verify(pk, x, r, π)→ 0/1 verifies whether r is correctly computed from x and sk using π and
the corresponding pk.

VRF shall satisfy unpredictability, verifiability and uniqueness. Here verifiability conventionally
means Pr[VRF.Verify(pk, x,VRF.Eval(sk, x)) = 1 | (sk, pk)← VRF.Gen(1λ)] = 1. Unpredictability re-
quires that for any input x, it is computationally infeasible to distinguish the value r = VRF.Eval(sk, x)
from another uniformly sampled value r′ without access to sk. Uniqueness requires that it is com-
putationally infeasible to find x, r1, r2, π1, π2 such that r1 6= r2 but VRF.Verify(pk, x, r1, π1) =
VRF.Verify(pk, x, r2, π2) = 1.

Taking the bulletin PKI for granted, everyone can be associated to a unique VRF public key. For
example, an honest party Pi runs VRF.Gen to generate a unique pair of private key ski and public key
pki, and then registers its pki via the PKI. However, traditional VRF notion [53] does not malicious
key generation done by corrupted parties. To capture such threat, we actually require a stronger
unpredictability property called unpredictability under malicious key generation due to David et al.
[26] throughout the paper, which means that even if the adversary is allowed to corrupt some parties

9

to conduct malicious key generation, VRF remains to perform like a random oracle. Such VRF ideal
functionality can be achieved in the random oracle (RO) model under CDH assumption [26].

Notation-wise, we let VRF.EvalIDi (x) be short for VRF.Eval(ski, 〈ID, x〉), where ski represents the
private key of a party Pi, and ID in our context is an explicit session identifier of a protocol instance.
Similarly, VRF.VerifyIDi (x, r, π) then denotes VRF.Verify(pki, 〈ID, x〉, r, π).

(Aggregatable) public verifiable secret sharing. A (n, t) non-interactive PVSS scheme can be
described as a tuple of non-interactive algorithms as follows (with taking param as an implicit input):

– Deal(ek, s)→ pvss is an algorithm that takes a secret s as input and outputs a script pvss.
– VrfyScript(ek, pvss)→ 0/1 is a deterministic algorithm that takes all encryption keys as input, and

can verify whether a PVSS script pvss is valid in the sense that pvss commits a fixed polynomial
that can be reconstructed collectively by n parties (i.e., output 1) or not (i.e., 0).

– GetShare(dki, pvss)→ shi is executed by the party Pi, takes a valid pvss script and Pi’s decryption
key dki as input, and outputs the secret share shi of the secret committed to pvss.

– VrfyShare(j, shj , pvss) → 0/1 takes the PVSS script pvss and party Pj ’s secret share shj as input,
and verifies whether shj is the correct jth share of the polynomial committed to pvss or not.

– AggShares({(j, shj)}t) → a takes t valid secret shares from distinct parties regarding an implicit
PVSS script pvss, and computes the secret a committed to the pvss.

– VrfySecret(s, pvss)→ 0/1 verifies whether a secret s is indeed committed to pvss or not.

Gurkan et al. [40] recently proposed to lift PVSS scheme to further enjoy aggregability, which
need to slightly adapt the syntax. Here we only highlight the small adaptions to these algorithmic
interfaces:

– Deal(ek, ski, s)→ pvss. Now the algorithm takes an extra secret signing key ski as input, which is
needed to make the pvss script to carry an unforgeable weight tag bounded to the identity Pi.

– VrfyScript(ek, vk, pvss)→ 0/1. It takes some verification keys vk besides ek and pvss as input. The
output still represents whether pvss is valid or not.

– AggScripts(pvss1, pvss2) → pvss. This is a newly introduced algorithm that takes two valid PVSS
scripts pvss1 and pvss2 as input and outputs a valid PVSS script pvss.

– Weights(pvss)→ w. This is another new algorithm. It takes a valid pvss script as input and outputs
an n-sized vector w, every jth element in which belongs to N0 and represents that the pvss script
indeed aggregates a certain pvss script from the party Pj .

The aggregatable PVSS scheme due to Gurkan et al. [40] satisfies a few nice security properties
such as verifiable commitment, verifiable aggregation and secrecy. Informally, verifiable commitment
means that any party can verify that a PVSS script pvss indeed commits a fixed secret s that can
later be collectively reconstructed by the participating parties; secrecy means that it is infeasible for
an adversary to compute the committed secret from the PVSS script; verifiable aggregation means if
Weights(pvss) returns (w1, w2, · · · , wn), then the secret s committed to pvss indeed equals

∑n
i=1 wisi,

where si is the secret committed to some PVSS script pvssi that is solely generated (and signed) by
the party Pi. We defer the detailed descriptions of these properties to Appendix B.

5 Warm-up: AVSS and Weaker Core Set from PKI

As briefly mentioned in Introduction, our common coin and leader election protocols require a more
efficient private-setup free AVSS instantiation and an efficient construction for a weaker core-set se-
lection (WCS) notion. When construing our common coin, AVSS is used to let everyone confidentially
share an unbiased VRF evaluation, and WCS can be used let enough honest parties hold an intersect-
ing core-set containing at least n−f completed AVSSes. Thus, with a constant probability, the largest
VRF evaluated by some honest party can appear in the core-set, and its lowest bits are ensured to be
the common coin.

This Section focuses on the needed preparing building blocks — AVSS and core-set selection. The
AVSS protocol to present attains O(λn2) bits in the PKI setting.4 Then, we put forth to and construct
a weak core-set selection, which can ensure f + 1 honest parties (instead of all) to get some superset
of a (n− f)-sized core-set.
4 Through the paper, the input secret to AVSS is assumed small, e.g., O(λ) bits.

10

5.1 Efficient Private-Setup Free AVSS

Instead of varieties of strengthened AVSSes, we focus on the hereinbelow classic AVSS notion defined
by Canetti and Rabin in 1993 [20].

Definition 1 (Asynchronous Verifiable Secret Sharing [20]). An AVSS consisting of a tuple of
protocols (AVSS-Sh,AVSS-Rec) can be defined as follows.

Syntax. In each AVSS-Sh instance with a session identifier ID, a designated dealer PD inputs a
secret and each party outputs a string (e.g., a share of the input secret). In the corresponding AVSS-Rec
instance, the parties input their outputs of AVSS-Sh to collectively reconstruct the shared secret.

Properties. AVSS satisfies next properties except with negligible probability:

– Totality. If some honest party outputs in the AVSS-Sh instance associated to ID, then every honest
party activated to execute the AVSS-Sh instance would complete the execution and output.

– Commitment. When an honest party outputs in the AVSS-Sh instance for ID, there exists a
fixed value m∗, such that when all honest parties are activated to run the corresponding AVSS-Rec
instance, all of them can reconstruct the same value m∗.

– Correctness. If the dealer is honest and inputs secret m in AVSS-Sh, then:
• If all honest parties are activated to run AVSS-Sh on ID, all honest parties would output in the

AVSS-Sh instance;
• If any honest party reconstructs some value m∗ in the corresponding AVSS-Rec instance, m∗ =
m.

– Secrecy. In any AVSS-Sh instance, if the dealer is honest, the adversary shall not learn any infor-
mation about the input secret from its view (which includes all internal states of corrupted parties
and all messages sent to the corrupted parties), before the first honest party starts the correspond-
ing AVSS-Sh instance. This can be formalized as that the adversary has negligible advantage in the
Secrecy game (deferred to Appendix A).

High-level rationale. The intuitions behind our AVSS construction is simple. Inspired by the hybrid
approach of secret sharing [48], our sharing sub-protocol is split into two steps: (i) it first takes the
advantage of PKI model to let the dealer multicast a polynomial commitment to an encryption key
and then collect enough signatures (e.g., n−f) on the commitment, thus ensuing at least f +1 honest
parties commit the same encryption key, and (ii) then the dealer multicasts the n − f signatures
solicited from the first step to convince the whole network to participate into a reliable broadcast to
disseminate the ciphertext encrypting the actual secret.

While in the reconstruction phase, probably only f+1 honest parties might output the polynomial
commitment to the decryption/encryption key, though all honest parties have the ciphertext. This
seemingly causes some parties fail to reconstruct the secret (because they cannot decrypt). Neverthe-
less, the f +1 honest parties holding the correct commitment can recover the decryption key and then
multicast it to all parties. So all honest parties can count whether the same key is from f + 1 distinct
parties, and finally use it to decrypt the secret.

Constructing AVSS without private setups. The rationale behind our AVSS construction is
straightforward. The sharing phase splits the hybrid approach of secret sharing [48] into two steps: (i)
it first takes the advantage of PKI model to let the dealer collect enough signatures (e.g., n− f) on a
polynomial commitment [59] to an encryption key, thus ensuing at least f + 1 honest parties commit
the same encryption key, and (ii) then the dealer multicasts the n − f signatures solicited from the
first step to convince the whole network to participate into a reliable broadcast to disseminate the
ciphertext encrypting the actual secret.

In particular, the sharing protocol AVSS-Sh proceeds in the following steps:

1. Key sharing (Line 1-6, 11-15). In this phase, the dealer distributes the key shares to all parties
using Pedersen’s VSS scheme [59]. The dealer randomly constructs two polynomials A(x) and
B(x) of degree at most f . Let A(0) = key. Then, the dealer computes a commitment C = {cj}
to the polynomial A(x) with using B(x) for hiding, where each element cj = g

aj
1 g

bj
2 , and aj and

bj represent the jth coefficients of A(x) and B(x), respectively. The dealer sends a KeyShare
message to each party Pj containing the commitment C as well as A(j) and B(j).

11

Algorithm 1 AVSS-Sh protocol with identifier ID and dealer PD
/* Protocol for the dealer PD */

1: upon receiving input secret m ∈ Zq do
2: choose two random polynomials A(x) and B(x) from Zq[x] of degree at most f
3: let aj to be the jth coefficient of A(x) and bj to be that of B(x) for j ∈ [0, f],
4: let key ← a0 = A(0), i.e., A(0) is also called key
5: compute cj ← g

aj
1 g

bj
2 for each j ∈ [0, f], and let C ← {cj}j∈[0,f]

6: send KeyShare(ID,C , A(j), B(j)) to Pj for each j ∈ [n]

7: upon receiving KeyStored(ID, σj) from Pj s.t. SigVerifyIDj (C , σj) = 1 do
8: Π ← Π ∪ {(j, σj)}
9: if |Π | = n− f then
10: cipher ← key ⊕m and multicast Cipher(ID,Π ,C , cipher) to all parties

/* Protocol for each party Pi */
11: shA ← ⊥, shB ← ⊥, cmt← ⊥
12: upon receiving KeyShare(ID,C ′, A′(i), B′(i)) from PD for the first time do
13: parse C ′ as {c′0, c′1, . . . , c′f}
14: if gA

′(i)
1 g

B′(i)
2 =

∏f
k=0 c

′
k
ik then

15: record A′(i), B′(i) and C ′, σ ← SignIDi (C ′), send KeyStored(ID, σ) to PD
16: upon receiving Cipher(ID,Π , C, cipher) from PD for the first time do
17: wait for a valid KeyShare message s.t. A′(i), B′(i) and C ′ are recorded
18: if C′ = C and Π has n− f valid signatures for C from distinct parties then
19: shA ← A′(i), shB ← B′(i) and cmt← C′

20: multicast Echo(ID, cipher) to all parties

21: upon receiving 2f + 1 Echo(ID, cipher) from distinct parties do
22: multicast Ready(ID, cipher) to all parties if Ready not sent yet

23: upon receiving f + 1 Ready(ID, cipher) from distinct parties do
24: multicast Ready(ID, cipher) to all parties if Ready not sent yet

25: upon receiving 2f + 1 Ready(ID, c) from distinct parties do
26: output (cipher, shA, shB , cmt)

Once a party Pi receives KeyShare message from the dealer, it checks that C indeed commits
A(i) with using B(i) for blinding, and returns a signature for C to the dealer via a KeyStored
message.

2. Cipher broadcast (Line 7-10, 16-26). After receiving n−f valid KeyStored messages from distinct
parties, the dealer sends a Cipher message to all parties containing a ciphertext cipher encrypting
its input m, the commitment C , and a quorum proof Π containing n− f valid signatures for C .
The remaining process of the phase is similar to a Bracha’s reliable broadcast for cipher [14],
except that a party would not “echo” cipher if not yet receiving valid Π for C . At the end of the
phase, each party can output (cipher,A(i), B(i),C), where A(i), B(i) and C can be ⊥.

Then, the AVSS-Rec phase can be activated to proceed in the next two phases:

1. Key recovery (Line 1-10). For each party Pi that activates AVSS-Rec with taking the output of
AVSS-Sh as input, it sends KeyRec message containing A(i) and B(i), in case these variables
are not ⊥. At least f + 1 honest parties have already received the commitment C , so they can
eventually solicit f+1 valid shares of the polynomial committed to C through KeyRec messages,
and then interpolate the shares to reconstruct A(x) and compute key = A(0).

2. Key amplification. After a party obtains decryption key, it multicasts key via a Key message. So
all honest parties can receive f + 1 Key messages containing the same key, and then compute
and output m = key ⊕ cipher.

For the sake of completeness, we also present formal pseudocode descriptions for AVSS-Sh and
AVSS-Rec in Alg. 1 and Alg. 2, respectively.

12

Algorithm 2 AVSS-Rec protocol with identifier ID, for each party Pi
Initialization: Φ← ∅

1: upon being activated with input (cipher, shA, shB , cmt) do
2: if cmt 6= ⊥, shA 6= ⊥ and shB 6= ⊥ then
3: multicast KeyRec(shA, shB) to all parties

4: upon receiving KeyRec(shA,j , shB,j) from Pj for the first time do
5: if cmt 6= ⊥ then
6: parse cmt as {c0, c1, . . . , cf}
7: if gshA,j

1 g
shB,j

2 =
∏f
k=0 ck

jk then
8: Φ← Φ ∪ (j, shA,j)
9: if |Φ| = f + 1 then
10: interpolate polynomial A(x) from Φ and compute key ← A(0)
11: multicast Key(ID, key) to all parties

12: upon receiving f + 1 Key messages containing the same key do
13: m← key ⊕ cipher and output m

Security analysis of AVSS. The intuition of proving our simple AVSS protocol is clear: the totality
is mainly because our construction employs Bracha broadcast’s message pattern for distributing the
ciphertext encrypting the input secret and the hash of polynomial commitment; the secrecy follows
the information theoretic argument due to Pedersen [59] about his verifiable secret sharing; the com-
mitment is ensured by Pedersen commitment and the unforgeability of signatures. More formally, the
security of our AVSS protocol can be proved as follows.

Lemma 1. If any two honest parties Pi and Pj output (cipher, ·, ·, ·) and (cipher′, ·, ·, ·) in AVSS-Sh[ID],
respectively, then cipher = cipher′ except with negligible probability.

Proof. Suppose that cipher 6= cipher′, Pi receives 2f + 1 Ready messages containing cipher, the
senders of which include at least f + 1 honest parties; in the same way, Pj must have received at least
f + 1 Ready messages containing cipher′ from honest parties; so it induces that at least one honest
party sent two different messages, which is impossible. So there is a contradiction if cipher 6= cipher′,
implying cipher = cipher′.

Lemma 2. If some honest party outputs in the AVSS-Sh instance associated to ID, then every honest
party activated to execute the AVSS-Sh instance would complete the execution and output.

Proof. Assume that an honest party outputs in the AVSS-Sh, it must have received 2f + 1 Ready
messages. At least f + 1 of the messages are sent from honest parties. Therefore, all parties will
eventually receive f + 1 Ready messages from these f + 1 honest parties and send a Ready message
as well. Then, all honest parties will eventually receive 2f + 1 valid Ready messages and output. So
the totality property always holds.

Lemma 3. When some honest party outputs in the AVSS-Sh instance for ID, there exists a value m∗
that is fixed associated to ID.

Proof. Firstly, we prove that if any two honest parties record cmt and cmt′ respectively, then cmt =
cmt′. Note that honest party will record a cmt only if it receives a valid Π containing n − f valid
signatures for cmt. Suppose that cmt 6= cmt′, Pi receives a Π, which means at least f + 1 honest
parties have signed for cmt; in the same way, Pj receives a Π ′ and at least f + 1 honest parties have
signed for cmt′. So according to the unforgeability of digital signatures, at least one honest party
signed for both cmt and cmt′, which is impossible. Thus, cmt = cmt′. Moreover, C is computationally
binding conditioned on DLog assumption, so all honest parties agree on the same polynomial A∗(x)
committed to C , which fixes a unique key∗. From Lemma 1 and the totality of AVSS, when some
honest party outputs in the AVSS-Sh instance for ID, all honest parties receive the same cipher cipher.
So there exists a unique m∗ = cipher ⊕ key∗, which can be fixed once some honest party outputs in
AVSS-Sh.

13

Lemma 4. When all honest parties activate AVSS-Rec on ID, each of them can reconstruct the same
value m∗

Proof. Any honest party outputs in the AVSS-Sh subprotocol must receive 2f + 1 Ready messages
from distinct parties, at least f + 1 of which are from honest parties. Thus, at least one honest party
has received 2f+1 Echo messages from distinct parties. This ensures that at least f+1 honest parties
get the same commitment C and a valid quorum proof Π. Since the signatures in Π are unforgeable,
at least f + 1 honest parties did store valid shares of A∗(x) and B∗(x) along with the corresponding
commitment C except with negligible probability. So after all honest parties start AVSS-Rec, there
are at least f + 1 honest parties would broadcast KeyRec messages with valid shares of A∗(x) and
B∗(x). These messages can be received by all parties and can be verified by at least f + 1 honest
parties who record C . With overwhelming probability, at least f + 1 parties can interpolate A∗(x) to
compute A∗(0) as key and broadcast it, and all parties can receive at least f + 1 same key∗ and then
output the same m∗ = cipher ⊕ key∗ as they obtain the same ciphertext cipher from AVSS-Sh.

Lemma 5. If the dealer is honest and all honest parties are activated to run AVSS-Sh on ID, all
honest parties would output in the AVSS-Sh instance.

Proof. If the dealer is honest and all honest parties are activated, it is clear that (i) all honest parties
can eventually wait the shares of A(x) and B(x) as well as the same commitment C so all honest
parties will sign for C . Thus, the honest dealer must can collect at least n− f valid digital signature
for C from distinct parties to form valid Π and (ii) all honest parties can eventually broadcast the
same Echo messages and the same Ready messages after receiving the shares of A(x) and B(x) as
well as the same C , thus finally outputting in the AVSS-Sh instance.

Lemma 6. If the dealer is honest and inputs secret m, the value m∗ reconstructed by any honest party
in the corresponding AVSS-Rec instance must be equal to m, for all ID.

Proof. From Lemma 4, we have proved that all honest parties will reconstruct the m∗ which is fixed
when some honest party completes the AVSS-Sh. So all we need is to prove that the fixed m∗ is equal
to the m that the honest dealer inputs in the AVSS-Sh. It is easy to see that (i) any honest party must
output a ciphertext cipher same to the ciphertext computed by the honest sender and (ii) due to the
correctness and binding of commitment scheme honest parties must receive the same C to A(x) and
B(x), where A(x) and B(x) are chosen by the honest deader. So m∗ = cipher ⊕A(0) = m.

Lemma 7. In any AVSS-Sh instance, if the dealer is honest, the adversary shall not learn any infor-
mation about the key shared by the dealer from its view.

Proof. The adversary’s view in an AVSS-Sh execution with an honest dealer would include the commit-
ment C , the ciphertext cipher, some signatures for C , the secret shares received by up to f corrupted
parties as well as all public keys and corrupted parties secret keys. The signatures leak nothing related
to the shared key (even if the adversary can fully break digital signature to learn the private signing
keys). Thus, following the information-theoretic argument in [59], since the commitment C is perfectly
hiding and f shares of Shamir’s secret sharing scheme also leaks nothing about the key, the adversary
can learn nothing about key.

Theorem 1. The algorithms shown in Alg. 1 and Alg. 2 realize AVSS as defined in Definition 1,
in the asynchronous message-passing model with n/3 adaptive byzantine corruption and bulletin PKI
assumption without private setups, conditioned on the hardness of Discrete Log problem and EUF-CMA
security of digital signature.

Proof. Here prove that Alg. 1 and Alg. 2 satisfy AVSS’s properties one by one:

– Totality. Totality can be proved immediately from Lemma 2.
– Commitment. Commitment can be proved from Lemma 3 and Lemma 4.
– Correctness. Correctness can be proved from Lemma 5 and Lemma 6

14

– Secrecy. From Lemma 7, if the dealer is honest, the adversary can learn nothing about key. So
the adversary cannot distinguish the distribution of cipher = key⊕mb and a uniform distribution
(otherwise, the adversary can be invoked to break Lemma 7). Therefore, the adversary’s advantage
in the Secrecy game Advsec is negligible.

Remark on adaptive security. Our AVSS protocol is adaptively secure. This is because our
AVSS-Sh sub-protocol is similar to that of [15], which use Pedersen’s polynomial commitment in
combination of Shamir’s secret sharing to consistently distribute the secret shares (of an encryption
key) to the participating parties, which avoids the shortage of using static cryptographic primitive
such as non-interactive PVSS. While the major difference between [15] and our AVSS-Sh is that we
concatenate n− f EUF-CMA secure digital signatures to form a quorum proof attesting that enough
honest parties have received the consistent secret shares. Nevertheless, this doesn’t sacrifice adaptive
security, because the quorum proof ensures that there must exist f+1 honest parties that can never be
corrupted and also received the consistent secret shares, and hence these f + 1 forever honest parties
can help all other honest parties to recover the same encryption key during the AVSS-Rec protocol.

Complexities of AVSS. The complexities of the AVSS protocol shown in Alg. 1 and Alg. 2 can be
easily seen: Both AVSS-Sh and AVSS-Rec protocols cost at most a constant number of asynchronous
rounds to terminate. Each round at most exchanges n2 messages, indicating O(n2) message complexity.
Moreover, there are O(n) messages having O(λn) bits and O(n2) messages having O(λ) bits, thus the
communication complexity of the protocol is of overall O(λn2) bits. Recall that λ captures the size of
cryptographic objects.

5.2 Weak Core Set Selection

Core-set selection is a critical component while flipping a coin in the asynchronous network [20,4].
It allows each party to output a set of indices representing some completed reliable broadcasts [4]
or completed AVSSes [20], and more importantly, the the intersection of all honest parties’ outputs
corresponds to an always large enough core-set (e.g., n− f).

Instead of this widely known approach, here we introduce a weakened core set selection primitive
in which probably only f + 1 honest parties can receive the core. In the presence of PKI, it can be
constructed very efficiently, and remains to be an expressive notion while flipping a coin. The idea is
to use it select a core-set of AVSSes that hide some VRFs. With a constant probability, the largest VRF
can luckily appear in the core-set, so at least f + 1 honest parties can reconstruct this largest VRF
and multicast it to the whole network, thus still ensuring all honest parties to get the largest VRF.

Let us focus on this weakened notion and its efficient construction. More formally, we can define
the weak core-set notion as follows.

Definition 2 (Weak Core-Set Selection). A protocol among n parties with up to f Byzantine
corruptions realizes a weak core-set selection, if has syntax and properties as follows.

Syntax. For each protocol instance with session identifier ID, every party Pi inputs a set of
indices Si s.t. |Si| ≥ n − f . Note that each index belongs to [n], and each honest party’s input set
Si can monotone increase over the protocol execution. Then, every honest party Pi outputs a set of
indices Ŝi.

Properties. It satisfies the next properties except with negligible probability:

– Termination. If any index in any honest party’s input set can eventually appear in all honest
parties’ input sets, then every honest party would output.

– (f + 1)-Supporting Core-Set. Once the first honest party outputs, there exists a core-set S∗

consisting of at least n−f distinct indices, and S∗ must be the intersection of at least f+1 honest
parties’ output sets.

– Validity. Any index in the honest parties’ outputs can be found in some honest party’s input set.

Intuitively, the above definition captures our purpose that after each party conducts reliable broad-
cast or verifiable secret sharing, each party can invoke the primitive to output a set of indices repre-
senting which reliable broadcasts or AVSSes are indeed completed. More importantly, the output sets

15

Algorithm 3 WCS protocol with identifier ID, for each party Pi
1: S̃ ← ⊥, Ŝ ← ⊥
2: upon receiving the input set S and |S | ≥ n− f do
3: S̃ ← S and multicast Lock(ID, S̃) to all parties

4: upon receiving Lock(ID, S̃j) from Pj for the first time do
5: if |S̃j | ≥ n− f then
6: wait for S̃j ⊆ S
7: σji ← SignIDi (S̃j) and send Confirm(ID, σji) to Pj

8: upon receiving Confirm(ID, σij) from Pj s.t. SigVerifyIDj (S̃ , σij) = 1 do
9: Σ ← Σ ∪ {j, σij}
10: if |Σ| = n− f then
11: multicast Commit(ID, Σ, S̃) to all parties

12: upon receiving Commit(ID, Σj , S̃j) message from Pj for the first time do
13: if Σj contains n− f valid signatures for S̃j from distinct parties then

B I.e., check |{k | (k, σjk) ∈ Σj}| = n− f ∧ ∀(k, σjk) ∈ Σj , SigVerify
ID
k (S̃j , σ

j
k) = 1

14: Ŝ ← S and output Ŝ

of at least f + 1 honest parties share a (n − f)-sized intersection, representing that all these honest
parties have output in these reliable broadcasts or AVSSes.

Constructing WCS without private setup. Here we present a concise construction of weak core
set WCS (formally shown in Alg. 3):

1. Once an honest party Pi receives an input local set S which contains n − f values, it takes a
“snapshot” S̃ of S and multicasts S̃ to all parties. Note that Pi’s local S can increase monotonically
after the multicast, as new indices might be added to S . Then, if receiving some S̃j sent from some
party Pj , the party Pi checks |S̃j | = n − f , and waits for that its local S eventually becomes a
superset of S̃j , after which, it returns a signature for S̃j to Pj .

2. Eventually, Pi might collect n − f distinct signatures for its multicasted “snapshot” S̃ , which
corresponds to a quorum proof Σ for S̃ . Finally, Pi multicasts Σ and S̃ to all parties. After
receiving a valid quorum proof Σj for S̃j from some party Pj , the party Pi can immediately
output its current local set S (without halt).

Security analysis of WCS. The security intuition of our WCS construction is that when the first
honest party outputs, it must receive a valid quorum proof attesting that at least f + 1 honest parties
have signed the same set consisting of (n − f) indices. Thus, these f + 1 honest parties must have a
(n−f)-sized intersection in their outputs. More formally, we can prove the following security theorem.

Theorem 2. The algorithm shown in Alg. 3 realizes WCS against n/3 adaptive byzantine corrup-
tions in the asynchronous message-passing model, conditioned on that the underlying digital signature
scheme is EUF-CMA secure.

Proof. We prove that Alg. 3 realizes the properties of WCS in Def. 2 one by one:

– Termination. If any value v in some honest party’s input set will eventually be included into all
honest parties’ input sets, any honest Pi’s S̃i will be included in all honest parties’ local sets. So
any honest Pi can collect a set Σi containing at least n− f signatures for its S̃i and multicast it
to all parties via a Commit message. For any honest party Pi, once it receives a valid Σj for the
first time, it will fix a Ŝ and output.

– (f+1)-Supporting Core-Set. When the first honest party outputs from the protocol, it has received
a valid Σj with n− f signatures for Sj and at least f + 1 signatures are signed by honest parties.
Note that an honest party Pi will sign for some Sj only if Sj ≥ n− f and Sj ⊆ Si. Thus, trivially
from the unforgeability of digital signatures, with all but negligible probability, once the first

16

honest party receives a valid Σj for Sj and outputs, there exists a core set S∗ = Sj which is subset
of at least f + 1 forever honest parties’ local S . After that, if some of the f + 1 forever honest
parties can output a set Ŝ , then S∗ ⊆ Ŝ .

– Validity. The validity of WCS is trivial since each honest party outputs its local set S which is the
input of itself.

Remark on adaptive security. We concatenate n − f EUF-CMA secure signatures from distinct
parties to attest the existence of a core set, and therefore, whenever any so-far honest party outputs,
there must exist f + 1 honest parties that have signed the core set and can never be corrupted by
the adaptive adversary, and at least these f + 1 forever honest parties would share a (n − f)-sized
intersection in their output sets. This facts prevent the adaptive adversary from corrupting parties
posteriorly to make the core-set is received by less than f + 1 honest parties.

Complexities of WCS. The complexities of the WCS protocol can be easily seen. All parties can
terminate after three asynchronous rounds (i.e., Lock, Confirm and Commit). The over message
complexity is O(n2), because each honest party sends at most 3n messages. Each message contains at
most O(λn) bits, so the overall communication cost is O(λn3).

6 Backbone: Reasonably Fair Common Coin from PKI

This section presents a novel way to private-setup free ABA. At the core of the design, it is a new
reasonably fair common coin (Coin) which can be instantiated by AVSS, WCS along with using VRFs
in the bulletin PKI setting. The Coin protocol attains constant running time, O(n3) messages and
O(λn3) bits. Thus, many existing ABA protocols [23,55] can directly adopt it for reducing private
setup, and preserve other benefits such as expected constant rounds and optimal resilience, with
incurring expected cubic communicated bits.

6.1 Common coin without private setup

The backbone of our results is an efficient private-setup free common coin (Coin) protocol that costs
only O(λn3) communicated bits and terminate in constant rounds. Formally, we consider the common
coin notion defined as follows:

Definition 3 ((n, f, f + k, α)-Common Coin). A protocol realizes (n, f, f + k, β)-Coin, if it is ex-
ecuted among n parties with up to f static byzantine corruptions and has syntax and properties as
follows.

Syntax. For all executions of each protocol instance with session identifier ID, every party takes
the system’s public knowledge (i.e., λ and all public keys) and its own private keys as input, and
outputs a single bit.

Properties. It satisfies the next properties except with negligible probability:

– Termination. If all honest parties are activated on ID, every honest party will output a bit for
ID.

– Reasonably fair bit-tossing. Prior to that k honest parties (1 ≤ k ≤ f+1) are activated on ID,
the adversary A cannot fully guess the output. More precisely, consider the predication game: A
guesses a bit b∗ before k honest parties activated on ID, if b∗ equals to some honest party’s output
for ID, we say that A wins; we require Pr[A wins] ≤ 1− α/2.
Here α represents the lower-bound probability that all honest parties would output the same bit that
is as if uniformly distributed over {0, 1}, while 1−α captures the possibility that the adversary might
predicate/bias the output (which also capture the case that the honest parties output differently).

Intuitively, with at least α probability taken over all possible Coin executions, the adversary cannot
predict the output bit better than guessing. A Coin protocol is said to be perfect, if α = 1. Nevertheless,
many ABA constructions [20,55] actually do not necessarily need perfect Coin, and can terminated
in expected constant rounds with optimal n/3 resilience, as long as using a (n, n/3, n/3 + k, α)-Coin

17

scheme, where α < 1 is a certain constant. This is mainly because such constructions can tolerate
the probable disagreement of such imperfect coins, and then repeat by iterations to explore the α-
probability good case for terminating.

Tackling the seed of VRF. As briefly mentioned in Introduction, our Coin construction relies
on VRF to let each party evaluate an unbiased random output, thus reducing the number of needed
AVSSes. Before elaborating our Coin construction, it is worth mentioning an issue of this cryptographic
primitive in the PKI setting. Different from many studies that implicitly assume the private key of
VRF is generated by a trusted third-party [22], we aim to opt out of such private trusted setup for
VRFs. So the VRF key generation is conducted by each participating party itself. That means, if
the Coin protocol also uses some deterministic seeds for VRF evaluations, a compromised party can
register at PKI with some maliciously chosen VRF keys, and probably can bias the distribution of its
VRF during the protocol execution.

Trusted nonce from “genesis”. In many settings, this might not be an issue, since there could be
a trusted nonce generated after all parties have registered their VRF keys (e.g., the same rationale
behind the “genesis block” in some Proof-of-Stake blockchains [26]), which can be naturally used as
the VRF seed. Such a functionality was earlier formalized by David, Gazi, Kiayias and Russell in [26]
as an initialization functionality to output an unpredictable VRF seed.

Generating VRF seed on the fly. Nevertheless, we might still expect less setup assumptions to get
rid of the trusted “genesis block”. and therefore have to handle the issue by generating unpredictable
VRF seeds on the fly during the course of the coin protocol. To this end, we put forth a new notion
called reliable broadcasted seeding (Seeding) as amendment to patch VRF with unpredictable nonce
(or called seed interchangeably). Intuitively, the notion can be understood as a “broadcast” version of
common coins, and might not terminate if encountering malicious leader. Seeding is a protocol with
two successive committing and revealing phases, and can be defined as follows.

Definition 4 (Reliable Broadcasted Seeding). Seeding is a protocol with two successive commit-
ting and revealing phases, and can be defined as follows.

Syntax. For each protocol instance with an identifier ID, it has a designated party called leader
PL and is executed among n parties with up to f byzantine corruptions. Each party takes as input the
system’s public knowledge and its private keys, and then sequentially executes the committing phase
and the revealing phase, at the end of which it outputs a λ-bit string seed.

Properties. It satisfies the next properties with all but negligible probability:

– Totality. If some honest party outputs in the Seeding instance associated to ID, then every honest
party activated to execute the Seeding instance would complete the execution and output.

– Correctness. For all ID, if the leader PL is honest and all honest parties are activated on ID, all
honest parties would output for ID.

– Committing. Upon any honest party completes the protocol’s committing phase and starts to run
the protocol’s revealing phase on session ID, there exists a fixed value seed, such that if any honest
party outputs for ID, then it outputs value seed .

– Unpredictability. Prior to that k honest parties (1 ≤ k ≤ f+1) are activated to run the protocol’s
revealing phase on session ID, the adversary A cannot predicate the output seed. Namely, A guesses
a value seed∗ before k honest parties are activated on ID, then the probability that seed∗ = seed
shall be negligible, where seed is the output of some honest party for ID.

Remark on committing and unpredictability. Combining the committing and unpredictabil-
ity properties would ensure that no one can predicate the output, before the seed to output is already
fixed, which is critical to guarantee that VRFs evaluated on the output seed cannot be biased by
manipulating the seed generation. Intuitively, if the adversary still can bias its own VRF’s output,
it must can query the VRF oracle (which performs as random oracle [26]) with the right seed in a
number of polynomial queries (before seed is committed), which would raise contradiction to break
the unpredictability property.

Remark on totality. The totality property ensures that no honest party would receive some
output seed solely. I.e., if an honest party gets seed, we can assert that all honest parties will do so.

18

Lemma 8. In the asynchronous message-passing model with bulletin PKI assumption, there exists
a Seeding protocol among n parties that can tolerate up to f < n/3 static byzantine corruptions,
terminate in constant asynchronous rounds, and cost O(n2) messages and O(λn2) bits, assuming
EUF-CMA secure digital signature and SXDH assumption.

The recent elegant result of aggregatable public verifiable secret sharing (PVSS) due to Gurkan et al.
[40] lift a PVSS scheme to enjoy aggregability. Employing this aggregatable PVSS, we can construct
an exemplary Seeding protocol. Intuitively, it is simple to let each party send an aggregatable PVSS
script carrying a random secret to the leader, so the leading party can aggregate them to produce
an aggregated PVSS script committing an unpredictable nonce contributed by enough parties (e.g.,
2f + 1). Then, before recovering the unpredictable secret hidden behind the aggregated PVSS script,
the leader must send it to at least 2f + 1 parties to collect enough digital signatures to form a
“certificate” to prove that the nonce is fixed and committed to the PVSS script. Only after seeing
such proof, each party would decrypt its corresponding share from the committed PVSS script, thus
ensuring the unpredictability and commitment properties. We defer the proof for Lemma 8 along with
the exemplary construction (cf. Alg. 7) in Appendix B.

Seeding1

Seeding2

Seeding3

Seeding4

seed1

seed2

seed3

VRF seed1(1)

VRF seed2(2)

VRF seed3(3)

Weak
Core
Set

AVSS
-Sh1

AVSS
-Sh2

AVSS
-Sh3

AVSS
-Sh4

AVSS
-Rec1

AVSS
-Rec2

AVSS
-Rec3

AVSS
-Rec4

VRF seed{ 1(1)

 VRF seed2(2)

 VRF seed3(3)

 VRF seed4(4)}

VRF seed{ 2(2)

 VRF seed4(4)}

1, 2, 3, 4{ }

VRF seed1(1)

VRF seed2(2)

VRF seed3(3)

VRF seed{ 2(2)

 VRF seed3(3)

 VRF seed4(4)}2, 3, 4{ }

2, 4{ }

core-set

largest VRF

largest VRF

With a constant probability (1/3),
the largest VRF appears in core-set
and also is evaluated by honest parties

Wait for n-f AVSS-Sh

VRFs sharing Core-set selecting VRFs revealing Largest-VRF amplifying

Fig. 2: Overview of our Coin protocol. VRFs (patched by Seeding) are shared via AVSSes. Then, f + 1 honest
parties get a core-set representing n− f completed AVSSes. After that, the VRFs are revealed, and each party
multicasts the largest VRF seen by it.

Constructing private-setup free Coin. With Seeding at hand, we are ready to present our Coin
construction (formally shown in Alg. 4), which has four main steps:

1. VRFs sharing (Line 1-8). Each party activates a Seeding process as leader and participants in all
other Seeding processes to get the seeds. A party Pi activates its own AVSS-Sh instance as dealer
to share its VRF evaluation-proof after obtaining its own VRF seed seedi; once obtaining seedj
besides seedi, Pi also activates the corresponding AVSS-Sh instance as a participant.

2. Core-set selecting (Line 9-12). Each party Pi records a local set S of indices representing the
completed AVSS-Sh instances. Once the local S of Pi contains n − f indices, it activate WCS
taking S as input.

3. VRFs revealing (Line 13-24). Once WCS outputs Ŝ , an honest party Pi starts to reconstruct AVSS
associated to the indices in Ŝ . After reconstructions, it might get some valid VRF evaluation-proof,
and then multicasts the VRF with maximum evaluation to all parties.

4. Largest-VRF amplifying (Line 25-31). After receiving n − f Candidate messages encapsulating
valid VRF evaluation-proof pairs, Pi selects the index l̂ of the largest evaluation and outputs the
lowest bit of rl̂.

Security analysis of Coin. The main security properties of Coin can be bridged to the next two key
lemmas. Intuitively, Lemma 9 states that every party can choose a speculative largest VRF evaluation.
This is because at least n− f Seedings and n− f AVSSes must complete to ensure the completeness
of WCS, and implies the termination of Coin. While, Lemma 10 bounds the probability of good case,

19

Algorithm 4 Coin protocol with identifier ID, for each party Pi
1: S ← ∅, Σ ← ∅,R ← ∅, C ← ∅, X ← 0
2: Ŝ ← ⊥, seedj ← ⊥ for each j in [n]
3: activate Seeding[〈ID, j〉] for each j ∈ [n] with being the leader in Seeding[〈ID, i〉]

B If a trusted nonce η is provided by “genesis” (generated by an initialization functionality after all have
registered at PKI, cf. [26]), this line can be replaced by “seedj ← η, for each j ∈ [n]”

4: upon seedj ← Seeding[〈ID, j〉] do
5: if j = i then
6: (r, π)← VRF.EvalIDi (seedj), and activate AVSS-Sh[〈ID, j〉] as dealer with taking (r, π) as input
7: else
8: activate AVSS-Sh[〈ID, j〉] as a non-dealer participant

9: upon receiving output from AVSS-Sh[〈ID, j〉] do
10: S ← S ∪ {j}
11: if |S | = n− f then
12: activate WCS taking S as input

13: wait for WCS outputs Ŝ
14: send RecRequest(ID, k) to all parties for every k ∈ Ŝ

15: wait for that for every k ∈ Ŝ , AVSS-Rec[〈ID, k〉] outputs (rk, πk) do
16: for each k ∈ Ŝ do
17: if VRF.VerifyIDk (seedk, rk, πk) = 1 then
18: R← R ∪ (k, rk, πk)

19: if R 6= ∅ then `← argmaxk{rk | (k, rk, πk) ∈ R} B Index of the largest VRF in R
20: else `← ⊥, r` ← ⊥, π` ← ⊥
21: send Candidate(ID, `, r`, π`) to all parties

22: upon receiving RecRequest(ID, k) from any party for the first time do
23: wait for Ŝ 6= ⊥ and that AVSS-Sh[〈ID, k〉] outputs ssk do B If Ŝ becomes ∅, it is no longer ⊥
24: activate AVSS-Rec[〈ID, k〉] with taking ssk as input

25: upon receiving Candidate(ID, `′, r`′ , π`′) from Pj for the first time do
26: if `′ = ⊥ then X ← X + 1
27: else if VRF.VerifyID`′ (seed`′ , r`′ , π`′) = 1 then B Verifying VRF implicitly waits for seed`′ 6= ⊥
28: C ← C ∪ (j, `′, r`′ , π`′)

29: if |C|+X = n− f then
30: ˆ̀← argmaxˆ̀{rˆ̀|(j, ˆ̀, rˆ̀, πˆ̀) ∈ C} B Index of the largest VRF in C
31: output the lowest bit of rˆ̀

and states that with a constant probability α, all honest parties could decide the same speculative
largest VRF evaluation rl̂ that is also evaluated by some honest party. This implies that with constant
probability, the output bit is as uniformly flipped.

Lemma 9. (Termination) If all honest parties are activated on ID, every honest party will decide
a speculative largest VRF evaluation rl̂ with a valid proof πl̂, and all honest parties can eventually
receive the same seedl̂ that rl̂ is evaluated on.

Proof. According to the correctness and commitment of Seeding, if all honest parties participate in
Seeding[〈ID, j〉], every party will get the same seedj regarding an honest Pj , which means that all
honest parties can complete their Seedings, compute their VRFs and activate their AVSS-Sh instances
that would finally joined by all honest parties. So every honest party will eventually complete at least
n − f AVSS-Sh instances and record a (n − f)-sized set S including the indexes of which AVSS-Sh
instances it participants in. Then every honest party activates WCS taking its set S .

From the totality of AVSS, if some honest party completes AVSS-Sh instance on ID, all honest
parties will complete. So any index in some honest party’s input set can eventually appear in all
honest parties’ set. From the termination of WCS, all honest parties will output a set Ŝ and send
RecRequest messages.

20

From the validity of WCS and the totality of AVSS, all honest parties would complete all AVSS-Sh
instances corresponds to its Ŝ and then start AVSS-Recs. According to the totality and commitment
of AVSS, all secrets corresponds to its Ŝ can be reconstructed. Recall that for each k ∈ Ŝi, Pi partici-
pants in AVSS-Sh[ID, k]. An honest party activates an AVSS-Sh[ID, k] only if it receives a seedk from
Seeding[〈ID, k〉]. This means that for each k ∈ Ŝ , Pi can output in Seeding[〈ID, k〉] to get a common
seedk. So for each k ∈ Ŝ , it can check whether (k, rk, πk) is a validated VRF result, and pick up the
maximum rl among all valid rk.

Finally, every honest party sends the picked (l, rl, πl) using a Candidate message to all parties. All
honest parties can eventually receive at least n−f valid Candidate from different parties. According
to the totality and commitment of Seeding, if any honest party gets seedj from Seeding[〈ID, j〉], all
honest parties would obtain the same seedj so all honest parties can get common VRF seeds and
mutually consider whether others’ Candidate messages are valid, and then output (j, r, π) where r
is the maximum of all rl among valid Candidate messages.

Lemma 10. (Good-case bound) Let Eventgood to denote the case in which the (f+1)-supporting
core-set S∗ solicits an honest party’s VRF evaluation r that is also largest among all parties’ VRF.
The remaining case denoted by Eventbad to cover all other possible executions. Then, Pr[Eventgood] ≥
α = 1/3, under the ideal functionality of VRF in [26] (which is realizable in the random oracle model
with CDH assumption).

Proof. From the (f + 1)-support core set of WCS, at the moment when the first honest party outputs
from WCS and invokes any AVSS-Rec instance, there has existed a core set S∗ including 2n/3 indices,
each of which represents a shared VRF’s evaluation and at most f < n/3 indices of which are shared by
adversary. Each VRF’s evaluation has a 1/n probability to be the maximal. Otherwise, the adversary
directly breaks the pseudorandomness of VRF by biasing the distribution of corrupted parties’ VRF
evaluations (which is infeasible because according to the commitment and unpredictability of Seeding,
VRF seeds generated by Seeding protocols are unpredictable before it is committed, and once the
Seeding completing the committing phase, the VRF seeds are fixed). Thus, the probability that the
Eventgood occurs is at least

2n
3 −

n
3

n = 1
3 .

Lemma 11. If Eventgood defined in Lemma 10 occurs, there does not exist a polynomial adversary
which can predicate the lowest bits(e.g. lowest λ/2 bits) of rl̂.

Proof. Recall that the honest dealers’ AVSS-Recs leak nothing about their VRF’s evaluations so at
the moment when S∗ is fixed, the adversary learns nothing about honest parties’ VRF evaluations.
Thus when Eventgood defined in Lemma 10 occurs, the adversary cannot predicate the lowest bits of
output better than guessing. Otherwise it can break the pseudorandomness of VRF by predicating
the lowest bits of honest parties VRF’s evaluations without accessing their secret keys.

Lemma 12. If Eventgood defined in Lemma 10 occurs, all honest parties will output the same bit b.

Proof. When Eventgood defined in Lemma 10 occurs, at least f + 1 honest parties will receive the
largest VRF’s evaluation r from some honest party and multicast it with Candidate messages. All
honest parties can receive at least one Candidate message containing r so that all honest parties will
output the lowest bit of r.

Theorem 3. In the the bulletin PKI setting and the random oracle model, our Coin protocol (formally
described in Alg. 4) realizes (n, f, 2f + 1, 1/3)-Coin against n/3 static Byzantine corruptions in the
asynchronous message-passing model, conditioned on that the underlying primitives are all secure.

Proof. We prove that Alg. 4 realizes the properties of Coin in Def. 3 one by one:

– Termination. Termination can be proved directly from Lemma 9,
– Reasonably fair bit-tossing. From Lemma 10, the Eventgood occurs with a probability α = 1/3.

Before f + 1 honest parties are activated to run the protocol, the adversary cannot predicate
the protocol execution will fall into which case because no one can predicate the VRF seeds
and thus even the corrupted parties cannot compute their VRF evaluations. Following the same

21

argument, from Lemma 11, before f + 1 honest parties run the protocol, and when Eventgood
occurs, the adversary cannot predicate the lowest bit of the largest VRF’s evaluation better than
guessing. Moreover, in this case, all honest parties output the same bit according to Lemma 12.
Therefore, the adversary succeeds in predicating some honest party’s output with α/2 probability.
When Eventbad occurs with 1− α probability, honest parties may not be able to output the same
value, i.e., some honest parties output 0 and some may output 1. In this case, the adversary can
always guess a bit b which is equal to some honest parties’ output. Therefore, the probability that
adversary wins in the predication game is Pr[A wins] ≤ 1− α+ α/2 = 1− α/2, where α = 1/3.

Remark on static security. The reason why our common coin cannot tolerate adaptive corruptions
is that the Seeding protocol is static, which is further caused by using Gurkan et al.’s statically-secure
non-interactive PVSS instantiation [40]. Note that if there is a one-time common random string η
announced after PKI registration, we do not have to use Seeding to pack VRF, and it is fine to
directly use η as VRF seed (cf. Line 3 in Algorithm). In such setting, our protocol actually can be
adaptive secure, because AVSS and WCS are adaptively secure to ensure that: there must exist f + 1
forever honest parties that hold a set of VRF evaluation-proof pairs with an intersection consisting
of at least n − f common VRFs, so Lemmas 9 and 10 still hold against an adaptive adversary in
such setting. Namely, given the extra setup assumption of one-time common random string, our coin
protocol (and also our later results including Election, ABA and VBA constructions) can be adaptively
secure.

Complexities of Coin. The Coin protocol incurs O(n3) messages, because it activates one WCS, n
AVSSes and n Seedings in addition to n2 Candidate messages and n3 RecRequest messages. The
overall communication complexity is O(λn3), because each AVSS and Seeding incurs O(λn2) bits, the
WCS protocol exchanges O(λn3) bits, and the size of each Candidate and RecRequest messages is
O(λn)-bit and O(n)-bit, respectively. Also, the Coin can terminate in constant asynchronous rounds,
mainly because all underlying building blocks would output in constant rounds deterministically.

6.2 Resulting ABA without private setup

Given the new private-setup free Coin protocol, one can construct more efficient asynchronous binary
agreement (ABA) with expected constant running time and cubic communications with PKI only. In
particular, we primarily focus on ABA with the following standard definition [17,55].

Definition 5 (Asynchronous Binary Agreement). A protocol realizes ABA, if it has syntax and
properties defined as follows.

Syntax. For all execution of each protocol instance with an identifier ID, each party input a single
bit besides some implicit input including all parties public keys and its private key, and outputs a bit
b.

Properties. It satisfies the next properties with all but negligible probability:

– Termination. If all honest parties are activated on ID, then every honest party outputs for ID.
– Agreement. Any two honest parties that output associated to ID would output the same bit.
– Validity. If any honest party outputs b for ID, then at least an honest party inputs b for ID.

Constructing ABA. We refrain from reintroducing the ABA protocols presented in [55] and [23], as we
only need to plug in our Coin primitive to instantiate their reasonably fair common coin abstraction.
More formally,

Theorem 4. Given our (n, f, 2f + 1, 1/3)-Coin protocol, [55] and [23] can implement ABA in the
asynchronous message-passing model with n/3 static Byzantine corruption and bulletin PKI assump-
tion, and cost expected constant asynchronous rounds, expected O(n3) messages and expected O(λn3)
bits.

The proofs for termination, agreement and validity can be found in [55] and [23], respectively.
The complexity of resulting ABAs is dominated by our (n, f, 2f + 1, 1/3)-Coin protocol, because given
costless Coin, both protocols can terminate in expected constant rounds and exchange only O(n2)
bits.

22

7 Augment: Towards Leader Election with Agreement

This Section presents our efficient asynchronous leader election (Election) protocol without relying on
private setup. This is the key step to realize fast, efficient and private-setup free multi-valued validated
byzantine agreement (VBA) in the asynchronous network environment. Considering that VBA is the
quintessential core building block for efficient asynchronous DKG [4], our technique essentially can be
plugged in the existing fast-terminating AJM+21 ADKG protocol to reduce its communication com-
plexity from O(λn3 log n) to O(λn3), thus initialing a new path to easy-to-deploy replicated services
in the asynchronous network.

7.1 Leader election without private setup

The aim of the Election primitive, in our context, is to randomly elect someone of the participating
parties [5]. More importantly, the primitive shall prevent the adversary from fully predicating which
party would be elected, otherwise, the adversary might schedule message deliveries and cause the
higher level protocol to never stop (or at least cause slow termination). For example, in Abraham et
al’s VBA [5], Election is invoked after n − f input broadcasts are completed, and the termination of
this VBA protocol requires Election to luckily choose an indeed completed input broadcast. Clearly, if
the adversary can always predicate the Election result in advance, it can always delay the to-be-elected
broadcast to make it not appear in the n−f completed broadcasts, thus causing VBA not to terminate.

Necessity of Agreement. In addition, different from Coin that only ensures agreement with a con-
stant probability (e.g., 1/3), Election always has agreement. This is particularly important in many
VBA constructions, because Election is usually used to decide which party’s input becomes the final
output, so lacking agreement in Election might immediately break VBA’s agreement. Essentially, the
main task of this Section is to lift our Coin protocol to realize the necessary agreement.

Formally, we would design an Election protocol realizing the following properties in the asyn-
chronous network without private setups:

Definition 6 ((n, f, f + k, α)-Leader Election). A protocol is said to be (n, f, f + k, β)-Election,
if it is among n parties with up to f static byzantine corruptions, and has syntax and properties as
follows.

Syntax. For each protocol instance with session identifier ID, every party takes the system’s public
knowledge (i.e., λ and all public keys) and its own private keys as input, and outputs a value ` ∈ [n].

Properties. It satisfies the next properties except with negligible probability:

– Termination. Conditioned on that all honest parties are activated on ID, every honest party would
output a value ` ∈ [n].

– Agreement. For any two honest parties Pi and Pj that output `i and `j for ID, respectively, there
is `i = `j.

– Reasonably fair leader-election. Before k honest parties (1 ≤ k ≤ f + 1) are activated on ID,
the adversary A cannot always predicate the elected leader. More precisely, consider the predication
game: A guesses `∗ before k honest parties activated on ID, if `∗ equals to some honest party’s
output for ID, we say that A wins; we require Pr[A wins] ≤ 1− α+ α/n.
Here α represents the lower-bound probability that the output is as if uniformly distributed over
[n], while 1− α captures the possibility that the adversary might predicate/bias the output.

Remarks. When plugging in a (n, f, f+k, α)-Election with agreement (k ≥ 1), most VBA constructions
[16,5,52] can preserve their securities and still terminate in expected constant rounds, as long as α is
a certain constant between (0, 1]. Also, sometimes it can be important to realize larger k (e.g., f + 1)
to clip the power of asynchronous adversary as in the VBA constructions of [5,52], and we present a
(n, f, 2f + 1, 1/3)-Election protocol.5

5 Note that (n, f, 2f + 1, 1/3)-Election can prevent an adaptive adversary from always proposing the output
in some VBA constructions [5,52] (which give the honest parties a chance to output their proposals). Sim-
ilar to AJM+21 [4], our Election protocol has the potential to realize adaptive security if the underlying
aggregatable PVSS can be adaptively secure. So we lift k = f + 1 to maximize the strength of results.

23

Fig. 3: Overview of our Election protocol. Each party inputs 1 to ABA if there exists a VRF evaluation which
is the largest and majority among all RBC outputs. If ABA outputs 1, wait for G∗ ⊆ Gi and output.

High-level rationale. Our starting point of constructing Election is our Coin protocol, at the end of
which each party can have a speculative largest VRF. Recall Lemma 9 and Lemma 10 that reflect the
essential properties of Coin.

Lemma 10 states that: with a constant probability α, the speculative largest VRF of all honest
parties is essentially same. So our Coin construction essentially can be thought of a leader election
realizing agreement with only α probability. Thus, lifting perfect agreement boils down to the problem
of cleaning up the possible disagreement in the else 1− α worse cases.

Furthermore, an in-depth thinking on Lemma 9 brings to light that all honest parties can get the
seeds needed to verify the speculative largest VRFs of all parties at the end of Coin execution. This
hints a possibility that they can cross-check the largest VRFs for each other, and then vote on whether
a common largest VRF indeed exists. I.e., each party verifies some speculative largest VRFs from at
least n− f parties, and then votes 1 (resp. 0) to an asynchronous binary agreement (ABA), according
to whether there exists a largest and majority VRF out of the n − f verified VRFs (resp. or not).
This efficient voting procedure through one single ABA can resolve the possible disagreement on the
speculative largest VRF at the end of coin execution, because the largest and majority VRF in the
n− f verified VRFs must be unique if ABA returns 1.

Algorithm 5 Election protocol with identifier ID, for each party Pi
1: G ← ∅, G∗ ← ∅, ballot← 0, activate RBC[〈ID, j〉] for each j ∈ [n]
2: run the code of Coin in Alg. 4 with replacing Line 31 by “vrfmax ← (ˆ̀, rˆ̀, πˆ̀)"
3: wait for vrfmax is assigned by (ˆ̀, rˆ̀, πˆ̀), i.e., Line 31 of modified Coin algorithm is executed
4: input vrfmax to RBC[〈ID, i〉]

5: upon RBC[〈ID, j〉] outputs vrfmax,j = (`j , r`j , π`j) do
6: if VRF.VerifyID`j (seed`j , r`j , π`j) = 1 then B Verifying VRF implicitly waits for seed`j 6= ⊥
7: G← G ∪ (j, `j , r`j , π`j)
8: if |G| = n− f then
9: if exist (·, `∗, r∗, ·) matching the majority elements in G then
10: if r∗ is the largest VRF evaluation among all elements in G then

B Namely, there exists r∗ that is the largest and majority VRF among G
11: ballot← 1
12: activate ABA[ID] with ballot as input
13: wait for that ABA[ID] outputs b
14: if b = 1 then
15: wait for ∃ G∗ ⊂ G s.t. |G∗| = n− f and G∗ has a largest and major VRF evaluation
16: output (r∗ mod n) + 1, where r∗ is the largest and majority VRF among G∗

17: else output the default index, i.e., 1

24

Constructing Election. Our a reasonably fair random Election protocol is formally shown in Alg. 5,
and it has three main steps that proceeds as follows:

1. Committing the largest VRF (Line 1-4). Each party firstly runs the code of Coin protocol, and
obtains the speculate largest VRF’s evaluation seen in its view, i.e., get vrfmax = (ˆ̀, rˆ̀, πˆ̀), where
ˆ̀ represents that this speculative largest VRF is evaluated by which party, and rˆ̀ and πˆ̀ are
the VRF evaluation and proof, respectively. After that, the party broadcasts vrfmax to commit
this speculative largest VRF evaluation. Here Bracha’s reliable broadcasts (RBC) [14] are used
to prevent the corrupted parties from committing different speculative largest VRF to distinct
parties.

2. Voting on how to output (Line 5-13). A party can eventually output in n− f RBCs, each of which
can return a valid VRF evaluation-proof pair (which can be verified because the needed seed can
be waited from Seeding protocols). Then, the party checks if there exists a RBC output s.t. (i) it
carries a VRF evaluation same to the majority of n− f RBC outputs’, and (ii) it also carries the
largest VRF evaluation among all n− f VRF evaluations received from RBCs. If such an element
exists, the party activates ABA with input 1, otherwise, it activates ABA with input 0.

3. Output decision (Line 14-17). If ABA outputs 1, then each party waits for that there exists a (n−f)-
sized subset G∗ of all valid speculative largest VRFs received from RBCs, s.t. there exists r∗ that
is the largest and majority VRF evaluation among all VRFs in G∗, then it outputs (r∗ mod n)+1.
If ABA outputs 0, all parties would output a default index, e.g., 1.

Security Analysis of Election. The random leader election protocol presented in Algorithm 5 securely
realizes (n, f, 2f + 1, 1/3)-Election in the asynchronous message-passing model. Here we prove its
securities.

Lemma 13. For any two parties Pi and Pj, if there exists (·, `, r, ·) matching the majority elements in
G∗i and r is the largest VRF evaluation among all elements in G∗i , and there exists (·, `′, r′, ·) matching
the majority elements in G∗j and r′ is the largest VRF evaluation among all elements in G∗j , then the
(`, r) = (`′, r′).

Proof. We prove this by contradiction. Suppose r 6= r′. By the code, (·, `, r, ·) and (·, `′, r′, ·) match
the majority of G∗i and G∗j , respectively, which means that the number of their appearance in G∗i and
G∗j are at least f + 1, respectively. Without loss of generality, we assume that r > r′. Note that there
are n− f elements in G∗j , so at least one valid (·, `, r, ·) must be included in G∗j , because all elements
in G∗i and G∗j are obtained via reliable broadcast that ensures agreement. Since r′ is the largest VRF
evaluation among all elements in G∗j , it also means r′ > r, which is a contradiction to the assumption.
Hence, (`, r) = (`′, r′).

Lemma 14. For any two honest parties output b = 1 from ABA, they will output the same elected
leader.

Proof. If b = 1, from the validity of ABA, there is at least one honest party activates ABA with input
1, which implies that at least one honest party record a G∗ where exists (·, `∗, r∗, ·) matching the
majority elements in G∗ and r∗ is the largest VRF evaluation among all elements in G∗. Since all
elements are the outputs of RBCs. From the totality, all honest parties can receive all elements in this
G∗. Hence, each honest party can wait for a G∗ ⊆ G and then output. According to the Lemma 13,
any valid G∗ has the same (·, `, r, ·) which matches the majority elements in G∗ and r is the largest
VRF evaluation. Hence, all honest parties output the same value (r mod n) + 1.

Lemma 15. When the Eventgood defined in Lemma 10 occurs, the polynomial-time adversary cannot
predicate the elected leader better than guess.

Proof. From Lemma 12, when the Eventgood occurs, all honest parties will output the same vrfmax =
(`∗, r∗, π∗) after running the code of Coin. In this case, all honest parties have the same (`∗, r∗, π∗) and
send it by RBC. Following the validity of RBC, each honest party can receive at least n− f messages
from distinct RBC instances, at least n− 2f ≥ f + 1 of which are sent by distinct honest parties and
contain the same (`∗, r∗, π∗). So all honest parties can collect a G∗, in which (·, `∗, r∗, ·) matches the

25

majority elements and r∗ is the largest VRF. Then all honest parties activate ABA with 1 as input.
According to the validity of ABA, all honest parties will output 1 from ABA, then all honest parties
output the same value (r∗ mod n) + 1 according to Lemma 14.

Following Lemma 11, with a probability α = Pr[Eventgood] = 1/3, the adversary cannot predict
` = (r∗ mod n) + 1 better than guessing. Thus in this case, the probability that the adversary A
succeeds in predicting some honest party’s output is no more than α

n .

Theorem 5. In the bulletin PKI setting, Alg. 5 realizes (n, f, 2f+1, 1/3)-Election in the asynchronous
message-passing model against n/3 static Byzantine corruptions, conditioned on that the underlying
primitives are all secure.

Proof. Here we prove that Alg. 5 satisfies the properties of Election given in Def. 6 one by one:

– Termination. From Lemma 9, each honest party will output a vrfmax = (`∗, r∗, π∗), then each
honest party will broadcast its (`∗, r∗, π∗) using RBC. According to the validity of RBC, each
honest party can eventually collect a set G containing at least n− f RBC outputs. For an honest
party, if there exists (·, `∗, r∗, ·) matching the majority elements in G and r∗ is the largest VRF
evaluation among all elements in G, activates the ABA[ID] with 1 as input, otherwise, inputs 0
into ABA[ID].
According to the termination and agreement of ABA, if all honest parties participate in the ABA,
then all of them will output the same bit b. If b = 0, all honest parties output the default index,
i.e., 1. If b = 1, from Lemma 14, all honest parties will output a same value.

– Agreement. According to the termination and agreement of ABA, if all honest parties participate
in the ABA, all of them would output from ABA with the same bit b. We analyze it in two cases:
(i), If b = 0, it is obvious that all honest parties will output the default index, i.e., 1. (ii), If
b = 1, from Lemma 14, all honest parties will output (r mod n) + 1, where r is the largest VRF’s
evaluation.

– Reasonably fair leader-election. We use the Eventgood and Eventbad defined in the Lemma 10 to
discuss this property by two cases. Case (i): With probability α, the Eventgood occurs, then from
Lemma 15, the probability that the adversaryA succeeds in predicting the output ` which coincides
with some honest party’s output is no more than α

n . Case (ii): if the Eventbad occurs, the adversary
A might lead up to different honest parties to obtain different vrfmax, so that some honest parties
would not be able to find the majority elements (·, `∗, r∗, ·), where r∗ is the largest VRF evaluation
in G. Nevertheless, it cannot be worse than that ABA always outputs 0 and the adversary always
predicates the output.
In sum, the probability that adversary wins in the predication game is Pr[A wins] ≤ 1−α+α/n,
where α = 1/3.

Complexities of Election. The overall message complexity is expected O(n3), because the execution
of Coin part spends O(n3) messages, n RBC incurs O(n3) messages, and the ABA instance costs
expected O(n3) messages. The overall exchanged bits are O(λn3) bits on average, because each RBC
instance costs O(λn2) bits and the ABA instance incurs expected O(λn3) bits. Moreover, the Election
protocol can terminate in expected O(1) asynchronous rounds, which is mainly dominated by the
underlying ABA instance.

7.2 Resulting VBA without private setup

Given our Election protocol, we are ready to construct the private-setup free validated Byzantine
agreement (VBA), which is essentially a special Byzantine agreement with external validity. As afore-
mentioned, it is the core building block in many asynchronous protocols, such as atomic broadcast
[39] and fast-terminating asynchronous DKG [4]. More formally, it can be defined as follows.

Definition 7 (Asynchronous Validated Byzantine Agreement (VBA)).
Syntax. For each VBA instance with an identifier ID and a polynomial-time computable global

predicate QID, each party inputs a value (besides the implicit inputs including all public keys and its
own private key), and outputs a value.

Properties. It satisfies the next properties with all but negligible probability:

26

– Termination. If all honest parties activate on ID with an input satisfying QID, then every honest
party outputs for ID.

– Agreement. Any two honest parties that output associated to ID would output the same value.
– External-Validity. If any honest party outputs v for ID, then QID(v) = 1.

Constructing VBA without private setup. Most existing VBA constructions [16,5,52] rely on a
pre-configured non-interactive threshold PRF (tPRF) [17] to implement a Leader Election primitive
that can uniformly elect a common party out of all parties. Alternatively, our reasonably fair Election
protocol is pluggable in all VBA implementations [16,5,52] to replace tPRF, thus removing the possible
unpleasant private setup of it. More formally,

Theorem 6. In the bulletin PKI setting, given our (n, f, 2f + 1, 1/3)-Election protocol, [16,5,52] im-
plement VBA in the asynchronous message-passing model with n/3 static Byzantine corruption, and
cost expected constant rounds, expected O(n3) messages, and expected O(λn3) bits (w.r.t. λn-bit or
shorter inputs).

Proofs for VBA properties can be found in [16,5,52] with some trivial adaptions. Here we briefly
discuss the security intuition behind the securities and the resulting complexities, with using Abraham
et al.’s VBA construction [5] as an example.

Recall that each iteration of Abraham et al.’s VBA [5] proceeds as follows: every party begins as
a leader to perform a 4-stage provable-broadcast (PB) protocol to broadcast a key proof (carrying a
value as well), a lock proof, and a commit proof, where each proof is essentially a quorum certificate;
following key-lock-commit proofs, each party can further generate and multicast a completeness
proof, attesting that it delivers these proofs to at least f + 1 honest parties, which is called leader
nomination; then, after at least n − f 4-staged PBs are proven to complete leader nominations, a
Election primitive is needed to sample a party called leader in a perfect fair (or reasonably fair) way;
so with some constant probability, i.e., 2/9 in case of plugging our (n, f, 2f + 1, 1/3)-Election protocol,
the elected leader already finished its nomination and delivered a commit proof to at least f + 1
honest parties, and these parties can output the value received from the leader’s 4-stage PB; and after
one more round to multicast and amplify the proofs, all parties also output the same value; otherwise,
it is a worse case with 7/9 probability, in which no enough honest parties commit regarding the
elected leader, and the protocol enters the next iteration; nonetheless, the nice properties of the key
and lock proofs would ensure that the parties can luckily output in the next iteration with the same
2/9 chance.

Thus, plugging our Election primitive into Abraham et al.’s VBA would preserve its constant
running time. For message complexity, no extra cost is placed except our Election primitive, so it
becomes dominated by the O(n3) messages of Election. For communication complexity, it is worth
noticing that non-interactive threshold signature scheme is used to form short quorum certificates in
the 4-staged provable-broadcast (PB) protocols; nevertheless, such instantiation of quorum certificate
can be replaced by trivially concatenating digital signatures from n− f distinct parties in the bulletin
PKI setting, which only adds an O(n) factor to the size of quorum certificates, thus causing O(λn3)
communication complexity to this private-setup free VBA instantiation (for λn-bit input).

7.3 Applications

Application to asynchronous DKG. The resulting VBA protocols can be plugged in AJM+21
ADKG [4] to reduce the communication to O(λn3) bits, with preserving fast termination in expected
O(1) rounds and optimal n/3 resilience.

The basic idea (cf. Section 7.5 in [4]) lets each party multicast an aggregatable PVSS hiding a
random secret. Then, everyone gathers and combines n − f PVSS from distinct parties. So they can
input the aggregated PVSS to one VBA instance (with external validity specified to check the input is
indeed PVSS aggregated by n−f parties’ contributions). Finally, each party can get a consistent PVSS
script returned by VBA, and therefore can decrypt it to get its key share. The resulting communication
cost is O(λn3), because all PVSS scripts are O(λn)-bit.

27

Application to random beacon w/o DKG. Our Election protocol can be slightly adapted to realize
an asynchronous random beacon service that all participating parties can proceed by consecutive
epochs and continually output an unbiased and unpredictable value in each epoch. Here unbiased
means the output is uniformly distributed [12,24]; and the unpredictable means that the adversary
cannot tell the random output of next epoch better than guessing, unless f + 1 honest parties already
output in the current epoch.

To implement asynchronous random beacon, we can let all parties to execute a sequence of Election
protocols, with the following minor changes: (i) when ABA unluckily returns 0 and thus no largest
VRF is agreed, the honest parties do not output the default value, and they directly move into the
next Election instance; (ii) instead of returning a short index belong [n], the parties can output the
lowest O(λ) bits of the selected largest VRF, e.g., the half least-significant bits of the largest VRF
evaluation. The former adaption ensures that a non-default value will be output with a probability of
1 − (1− α)

k after sequentially running k Election instances, and thus a random value can always be
output after expected constant rounds.

For bias-resistance, according to the committing and unpredictability of Seeding, the adversary
cannot manipulate the generation of VRF seeds so that they cannot bias the VRFs evaluated on the
seed or immediately break the unpredictability of VRF. The unpredictability is similar, because before
f + 1 honest parties invoke Seeding protocols, the adversary cannot predicate the output VRF seeds,
so all VRF evaluations in the next epoch would remain secret to the adversary.

References

1. Abraham, I., Aguilera, M.K., Malkhi, D.: Fast asynchronous consensus with optimal resilience. In: Inter-
national Symposium on Distributed Computing. pp. 4–19 (2010)

2. Abraham, I., Chan, T.H., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.: Communication complexity of
byzantine agreement, revisited. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. pp. 317–326 (2019)

3. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine agreement with ex-
pected o(1) rounds, expected o(n2) communication, and optimal resilience. In: International Conference
on Financial Cryptography and Data Security. pp. 320–334. Springer (2019)

4. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Reaching consensus for
asynchronous distributed key generation. In: Proceedings of the 40th Symposium on Principles of Dis-
tributed Computing (2021)

5. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asynchronous byzantine agree-
ment. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. pp. 337–346
(2019)

6. AlHaddad, N., Varia, M., Zhang, H.: High-threshold avss with optimal communication complexity. In:
International Conference on Financial Cryptography and Data Security (2021)

7. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and advanced topics, vol. 19.
John Wiley & Sons (2004)

8. Backes, M., Datta, A., Kate, A.: Asynchronous computational vss with reduced communication complexity.
In: Topics in Cryptology – CT-RSA 2013. pp. 259–276

9. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Advances in Cryp-
tology – ASIACRYPT 2011. pp. 590–609

10. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous byzantine agreement
revisited. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing. pp.
295–304 (2018)

11. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely asynchronous agreement
protocols. In: Proceedings of the second annual ACM symposium on Principles of distributed computing.
pp. 27–30. ACM (1983)

12. Bhat, A., Shrestha, N., Luo, Z., Kate, A., Nayak, K.: Randpiper – reconfiguration-friendly random beacons
with quadratic communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. pp. 3502–3524 (2021)

13. Blum, E., Katz, J., Liu-Zhang, C.D., Loss, J.: Asynchronous byzantine agreement with subquadratic
communication. In: Theory of Cryptography Conference. pp. 353–380 (2020)

14. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130–143
(1987)

28

15. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable secret sharing and proactive
cryptosystems. In: Proceedings of the 9th ACM Conference on Computer and Communications Security.
pp. 88–97 (2002)

16. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols.
In: Annual International Cryptology Conference. pp. 524–541. Springer (2001)

17. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asynchronous byzantine
agreement using cryptography. In: 19th Annual ACM Symposium on Principles of Distributed Computing
(2000)

18. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th IEEE Symposium on
Reliable Distributed Systems (SRDS’05). pp. 191–201. IEEE (2005)

19. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosys-
tems. In: Annual International Cryptology Conference. pp. 98–116 (1999)

20. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing. pp. 42–51 (1993)

21. Cascudo, I., David, B.: SCRAPE: Scalable randomness attested by public entities. In: Proc. ACNS 2017.
pp. 537–556

22. Cohen, S., Keidar, I., Spiegelman, A.: Not a coincidence: Sub-quadratic asynchronous byzantine agreement
whp. In: 34th International Symposium on Distributed Computing (DISC 2020) (2020)

23. Crain, T.: Two more algorithms for randomized signature-free asynchronous binary byzantine consensus
with t < n/3 and O(n2)messages and O(1) round expected termination. arXiv preprint arXiv:2002.08765
(2020)

24. Das, S., Krishnan, V., Isaac, I.M., Ren, L.: Spurt: Scalable distributed randomness beacon with transparent
setup. In: 2022 IEEE Symposium on Security and Privacy (SP)

25. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (2021)

26. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 66–98 (2018)

27. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A partially synchronous
finality layer for blockchains. In: International Conference on Security and Cryptography for Networks.
pp. 24–44. Springer (2020)

28. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement. Journal of the ACM
(JACM) 32(1), 191–204 (1985)

29. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal on Computing
12(4), 656–666 (1983)

30. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35, 288–323
(1988)

31. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM
Journal on Computing 26(4), 873–933 (1997)

32. Fischer, M., Lynch, N., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Dis-
tributed Computing 1, 26–39 (2005)

33. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process.
Tech. rep., Massachusetts Inst of Tech Cambridge lab for Computer Science (1982)

34. Fitzi, M., Garay, J.: Efficient player-optimal protocols for strong and differential consensus. In: PODC ’03
(2003)

35. Gągol, A., Leśniak, D., Straszak, D., Świętek, M.: Aleph: Efficient atomic broadcast in asynchronous
networks with byzantine nodes. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. pp. 214–228 (2019)

36. Ganesh, C., Patra, A.: Optimal extension protocols for byzantine broadcast and agreement. Distributed
Computing 34(1), 59–77 (2021)

37. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon and ditto: Network-
adaptive efficient consensus with asynchronous fallback. In: Proc. FC 2022

38. Guo, B., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Speeding dumbo: Pushing asynchronous bft closer
to practice. In: Proc. NDSS 2022

39. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: Faster asynchronous bft protocols. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security. pp. 803–818 (2020)

40. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Aggregatable distributed
key generation. In: Advances in Cryptology – EUROCRYPT 2021

41. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous byzantine agreement and
leader election with full information. ACM Transactions on Algorithms (TALG) 6(4), 1–28 (2010)

29

42. Kate, A., Miller, A., Yurek, T.: Brief note: Asynchronous verifiable secret sharing with optimal resilience
and linear amortized overhead. arXiv preprint arXiv:1902.06095 (2019)

43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applica-
tions. In: International conference on the theory and application of cryptology and information security.
pp. 177–194. Springer (2010)

44. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agreement pp. 445–462 (2006)
45. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is dag. In: Proceedings of the 40th

Symposium on Principles of Distributed Computing (2021)
46. King, V., Saia, J.: Byzantine agreement in polynomial expected time. In: Proceedings of the forty-fifth

annual ACM symposium on Theory of computing. pp. 401–410 (2013)
47. Kokoris Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key generation for

computationally-secure randomness, consensus, and threshold signatures. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 1751–1767 (2020)

48. Krawczyk, H.: Secret sharing made short. In: Advances in Cryptology – CRYPTO 1993. pp. 136–146
49. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on Programming

Languages and Systems (TOPLAS) 4(3), 382–401 (1982)
50. Libert, B., Joye, M., Yung, M.: Born and raised distributively: Fully distributed non-interactive adaptively-

secure threshold signatures with short shares. Theoretical Computer Science 645, 1–24 (2016)
51. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.: Honeybadgermpc and asynchromix:

Practical asynchronous mpc and its application to anonymous communication. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. pp. 887–903 (2019)

52. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued validated asynchronous byzantine
agreement, revisited. In: Proceedings of the 39th Symposium on Principles of Distributed Computing. pp.
129–138 (2020)

53. Micali, S., Vadhan, S., Rabin, M.: Verifiable random functions. In: Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science. p. 120 (1999)

54. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 31–42. ACM (2016)

55. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary byzantine consensus with
t < n/3, O(n2) messages, and O(1) expected time. Journal of the ACM (JACM) 62(4), 31 (2015)

56. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
57. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broad-

cast and agreement. In: 34th International Symposium on Distributed Computing (DISC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

58. Patra, A., Rangan, C.P.: Communication optimal multi-valued asynchronous byzantine agreement with
optimal resilience. In: International Conference on Information Theoretic Security. pp. 206–226 (2011)

59. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Annual in-
ternational cryptology conference. pp. 129–140 (1991)

60. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on Foundations of Computer
Science (sfcs 1983). pp. 403–409. IEEE (1983)

61. Yang, L., Park, S.J., Alizadeh, M., Kannan, S., Tse, D.: DispersedLedger: High-Throughput byzantine
consensus on variable bandwidth networks. In: 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22) (2022)

62. Yurek, T., Luo, L., Fairoze, J., Kate, A., Miller, A.K.: hbacss: How to robustly share many secrets. IACR
Cryptol. ePrint Arch. 2021, 159 (2021)

Appendix A Secrecy Game for AVSS

Secrecy Game. The Secrecy game between an adversary A and a challenger C is defined as follows
to capture the secrecy threat in the AVSS protocol among n parties with up to f static corruptions in
the bulletin PKI setting:

1. A chooses a set Q̄ of up to f parties to corrupt, a dealer PD (PD /∈ Q̄) and a session identifier
ID, and also generates the secret-public key pairs for each corrupted party in Q̄, and sends Q̄, PD,
ID and all relevant public keys to C.

2. The challenger C generates the secret-public key pair for every honest party in [n] \ Q̄, and sends
these public keys to the adversary A.

3. A chooses two secrets s0 and s1 with same length and send them to C.

30

4. The challenger C decides a hidden bit b ∈ {0, 1} randomly, executes the AVSS-Sh protocol on ID
(for all honest parties) to share sb via interacting with A (that are on behalf of the corrupted
parties). During the execution, A is consulted to schedule all message deliveries and would learn:
(i) the protocol scripts sent to the “corrupted parties”, and (ii) the length of all messages sent
among the honest parties.

5. The adversary A guesses a bit b′.

The advantage of A in the above Secrecy game Advsec is |Pr[b = b′]− 1/2|.

Recall that the secrecy requirement of AVSS requires that the adversary’s advantage in the above
game shall be negligible.

Appendix B An Implementation of Seed Generation

Here we give an exemplary construction for reliable leaded seeding (Seeding) through the elegant idea
of aggregatable public verifiable secret sharing (PVSS) in [40]. The general idea of [40] is to lift the
beautiful Scrape PVSS scheme [21] to enable the aggregation of PVSS scripts from distinct participating
parties, and along the way, it presents a way of using knowledge-of-signatures to allow each party to
attach an aggregatable “tag” attesting its contribution in the aggregated PVSS script, thus ensuring
that anyone can check the finally aggregated PVSS script pvss (and tag) to verify whether pvss indeed
commits a polynomial collectively “generated” by more than f parties while preserving the size of
communicated scripts minimal.

It thus becomes immediate to follow the nice idea to construct an efficient Seeding protocol as
shown in Alg. 7 in the PKI setting, in which: (i) each party firstly generates a Scrape PVSS script
along with a knowledge-of-signature, such that the leader can collect and aggregate 2f+1 Scrape PVSS
scripts and multicast the aggregated PVSS script along with a vector of knowledge-of-signatures and
some other metadata (called tag by us) to the whole network, later (ii) each party returns to the
leader a signature for the aggregated PVSS script, so the leader can collect and multicast a quorum
certificate containing at least 2f + 1 signatures to attest that it has “committed” a consistent PVSS
script collectively contributed by at least 2f + 1 parties across the whole network, finally (iii) it
becomes simple for every party to multicast its own secret share regarding to the final PVSS script,
thus reconstructing the secret collectively generated by at least 2f + 1 parties, which is naturally the
random seed to output.

For sake of completeness, we briefly review the cryptographic abstraction of the aggregatable PVSS
scheme (with unforgeable tags attesting contributions) among n parties with a secrecy threshold t due
to Gurkan et al. [40]. Note that we mainly focus on abstracting the needed properties to construct
and prove our Seeding protocol.

B.1 Aggregatable PVSS

Gurkan et al. [40] constructed aggregable PVSS by lifting Scrape PVSS scheme from Cascudo et al.
[21]. We slightly rephrase Gurkan et al.’s algorithm description, and present it in Alg. 6. Note that
the participating parties use the same CRS consisting of (1) a bilinear group description bp (which
fixes g1 ∈ G1 and ĥ1 ∈ G2), (2) a group element û1 ∈ G2 (3) encryption keys eki ∈ G2 for every
party Pi with corresponding decryption keys dki ∈ F known only to Pi such that eki = hdki and (4)
verification keys vki ∈ G2 for every party Pi with corresponding secret keys ski ∈ F known only to
Pi such that vki = g1

ski .
Conditioned on SXDH assumption and PKI setup, the above aggregatable PVSS scheme has a few

nice security properties such as verifiable commitment, verifiable aggregation and secrecy:

– Verifiable commitment indicates that any sharing script pvss can be verified by the public
to tell whether it is valid to commit a fixed secret F ∗(0) or not. Namely, if pvss is valid due to
VrfyScript(ek, vk, pvss) = 1, it is guaranteed that:
• There exists a fixed secret F ∗(0), such that VrfySecret(F ∗(0), pvss) = 1.
• Any t decryption shares validated by VrfyShare with regard to the pvss script from distinct

parties (including up to f malicious ones) can recover a secret F (0) same to F ∗(0).

31

Algorithm 6 Implementation of Aggregatable PVSS [40]

Deal(ek, ski, a0)→ pvss
– initialize (w1, .. , wn) ← (0, ..., 0); (C1, .. , Cn) ← (⊥, ..., ⊥); (σ1, .. , σn) ← (⊥, ..., ⊥),
– wi ← 1; Ci ← g1

a0 ; σi ← SoK.Sign(Ci, ski, ci)
– randomly choose (a1, ..., at) from Ft
– F (X)←

∑t
i=0 aiX

i

– F0, ..., Ft ← g1
a0 , ..., g1

at ; û2 ← ûa01 ; A1, ..., An← g1
f(ω1), ..., g1f(ωn); Ŷ1, ..., Ŷn← ek1

f(ω1), ..., eknf(ωn)

– return F, û2, A, Ŷ, (C1, ..., Cn), (w1, ..., wn), (σ1, ..., σn)

VrfyScript(ek, vk, pvss)→ 0/1
– F, û2, A, Ŷ, C w, σ ← parse(pvss)
– α

$← F
– check

∏n
j=1Aj

lj(α) =
∏t
j=0 F

αj

j , lj(X) denotes the Lagrange polynomial equal to 1 at ωj and 0 at
ωi 6= ωj

– check e(F0, û1) = e(g1, û2)
– check e(g1, Ŷj) = e(Aj , ekj) for each 1 ≤ j ≤ n
– for 1 ≤ i ≤ n: if wi 6= 0, then check SoK.Vrfy(vki, Ci, σi) = 1
– check Cw1

1 ...Cwn
n = F0

– return 1 if all checks pass, else return 0

AggScripts(pvss1, pvss2)→ pvss
– (F1,0, ..., F1,t), û1,2, (A1,1, ..., A1,n), (Ŷ1,1, ..., Ŷ1,n), (C1,1, ..., C1,n), (w1,1, ..., w1,n), (σ1,1, ..., σ1,n)← parse(pvss1)
– (F2,0, ..., F2,t), û2,2, (A2,1, ..., A2,n), (Ŷ2,1, ..., Ŷ2,n), (C2,1, ..., C2,n), (w2,1, ..., w2,n), (σ2,1, ..., σ2,n)← parse(pvss2)
– for 0 ≤ i ≤ t: Fi ← F1,iF2,i

– for 1 ≤ i ≤ n:
• Ai ← A1,iA2,i; Ŷi ← Ŷ1,iŶ2,i; wi ← w1,i + w2,i

• if σ1,i 6= ⊥: σi ← σ1,i, else: σi ← σ2,i

• if C1,i 6= ⊥: Ci ← σ1,i, else: Ci ← σ2,i

– û2 ← û1,2û2,2

– return F, û2, A, Ŷ, C, w, σ

GetShare(dki, pvss)→ shi
– F, û2, A, Ŷ, C, w, σ ← parse(pvss)
– return Ŷdki

−1

i

VrfyShare(j, shj , pvss)→ 0/1.
– F, û2, A, Ŷ, C, w, σ ← parse(pvss)
– check e(Aj , ĥ1) = e(g1, shj)
– return 1 if the check pass, else return 0

AggShares({(j, shj)}t)→ a
– S ← ∅
– for all input (j, shj): if VrfyShare(j, shj , pvss) = 1, then S ← S ∪ (j, shj)
– return

∏
i∈S shi

lS,i(0)

VrfySecret(s, pvss)→ 0/1
– check e(F0, ĥ1) = e(g1, s))
– return 1 if the check pass, else return 0

Weights(pvss)→ w
– F, û2, A, Ŷ, C, w, σ ← parse(pvss)
– return w

– Verifiable aggregation means that any verified PVSS script pvss with weight tag w must indeed
commit a secret that is a linear combination of participating parties’ secrets due to w.

• If Pi is honest, it is infeasible for the adversary to compute a PVSS script pvssi by itself
(without query Pi to get pvssi) s.t., VrfyScript(ek, vk, pvssi) = 1 and Weights(pvssi) returns w
with a non-zero ith position.

32

• Moreover, F ∗(0) =
∑n
i=1 wiF

∗
i (0). Here F ∗(0) is the secret committed to a PVSS script pvss,

wi is the ith element in w = Weights(pvss), and F ∗i (0) represents the secret that is committed
to some PVSS script pvssi that is computed by the party Pi.

– Secrecy means that the adversary learns nothing besides the public knowledge through the PVSS
script pvss, unless the adversary gets the decrypted secret shares of t− f honest parties.

With the above properties at hand, we actually see that the adversary to have negligible probability
to win the following Prediction game. The property is also called unpredictability by us, and captures
the major threats in our Seeding protocol (soon to be explained). It intuitively states that if each
honest party Pi randomly chooses the input secret si committed to its PVSS script pvssi, then the
adversary cannot compute the aggregated secret s committed to any valid pvss, as long as pvss has a
non-zero weight to reflect some honest party’s PVSS script pvssi is indeed aggregated to it.
Prediction game. The Prediction game between an adversary A and a challenger C is defined as fol-
lows for a (n, t) aggregatable PVSS scheme with weight tags in the presence of up to f static corruptions
(f + 1 ≤ t):

1. The adversary chooses a set Q̄ of f corrupted parties, generates the public-private key pairs for
each corrupted party in Q̄, and sends all the public keys to the challenger C.

2. The challenger C generates all public-private key pairs for all honest parties, and sends these public
keys to the adversary A.

3. The adversary A queries C for each party Pi in [n] \ Q̄, such that C randomly chooses si ∈ Zq,
computes pvssi ← Deal(ek, ski, si) and sends pvssi to A. The adversary now produces a valid pvss
script such that Weights(pvss) outputs w containing more than f + k positions (where 1 ≤ k ≤
n− f), and then sends pvss to C.

4. The adversary asks the challenger to compute at most t− f − 1 decryption shares on the received
pvss and then send these shares back, and then the adversary guesses a value s∗ ∈ Zq.

The adversary wins if s∗ = s, where s is the actual secret committed to pvss.

Lemma 16 (Unpredictability). There exists an aggregatable PVSS construction [40] based on
SXDH assumption, such that no static adversary controlling up to f parties can win Prediction game
with all but negligible probability.

Note that Gurkan et al. [40] did not formalize unpredictability for their aggregatable PVSS scheme
in our way. Nevertheless, as a trivial corollary, their construction satisfies the unpredictability property
(that can simplify the proof for the security of our Seeding protocols), because failing to satisfy
unpredictability would directly break the authors’ DKG scheme (as the adversary can directly tell the
aggregated secret key to break DKG).

B.2 Seeding from Aggregatable PVSS

Here down below we describe an exemplary Seeding construction from the (n, 2f + 1) aggregatable
PVSS scheme (as detailed by Alg. 7). Recall that the protocol is a two-phase protocol (including a
committing phase and a revealing phase), and its execution can be briefly described as follows:

– Committing Phase I – Seed aggregation (Line 1-2, 18-22).In this phase, each party invokes Deal
to create a pvss script and send this script to the leader PL. When the leader receives pvssj from
Pj , it verifies the pvss using ek and checks if the weights of pvssj are all zeros but one at the jth
position. Once collecting 2f + 1 valid pvss scripts, the leader aggregates them and send it using a
AggPvss message.

– Committing Phase II – Seed commitment (Line 3-8, 23-27). After receiving a AggPvss message
with a valid pvss. Each party sign for it and send the signature σi to the leader to commit the
same pvss. Upon receiving 2f +1 valid signature for the pvss, the leader send a AggPvssCommit
message containing a signature set Σ. After receiving a valid AggPvssCommit messages from
the leader, each party confirms that the output is actually fixed, and it takes the pvss as a input
in GetShare to output a share shi regarding the secret committed to pvss.

33

Algorithm 7 Seeding protocol with identifier ID and leader PL
/* Protocol for each party Pi */

1: upon being activated do
2: randomly sample a secret s, pvssi ← Deal(ek, ski, s), and send PvssScript(ID, pvssi) to PL
3: upon receiving AggPvss(ID, pvss) message from PL for the first time do
4: if VrfyScript(ek, vk, pvss) = 1 ∧ (Weights(pvss) contains 2f + 1 ones) then
5: record pvss, σi ← SignIDi (pvss) and send AggPvssStored(ID, σi) to PL
6: upon receiving AggPvssCommit(ID, Σ) from PL for the first time do
7: if Σ contains 2f + 1 valid signatures for a recorded pvss from distinct parties then
8: shi ← GetShare(pvss) and send SeedShare(ID, shi) to PL
9: upon receiving Seed(ID, Σ, seed) from PL for the first time do
10: if VrfySecret(seed, pvss) = 1 ∧ (Σ contains 2f + 1 valid signatures for pvss from distinct parties) then
11: send SeedEcho(ID, seed) to all parties

12: upon receiving 2f + 1 SeedEcho(ID, seed) from distinct parties do
13: send SeedReady(ID, seed) to all parties if SeedReady not sent yet

14: upon receiving f + 1 SeedReady(ID, seed) from distinct parties do
15: send SeedReady(ID, seed) to all parties if SeedReady not sent yet

16: upon receiving 2f + 1 SeedReady(ID, seed) from distinct parties do
17: output seed

/* Protocol for the leader PL */
18: upon receiving PvssScript(ID, pvssj) from Pj for the first time do
19: if VrfyScript(ek, pvssj) = 1 ∧ (the weights of pvssj are all zeros but one at the jth position) then
20: K ← K ∪ {pvssj}
21: if |K| = 2f + 1 then
22: pvss← AggScripts(K) and send AggPvss(ID, pvss) to all parties

23: upon receiving AggPvssStored(ID, σj) message from Pj for the first time do
24: wait for pvss is recorded
25: if SigVerifyIDj (pvss, σj) = 1 then
26: Σ ← Σ ∪ {(j, σj)}
27: if |Σ| = 2f + 1 then send AggPvssCommit(ID, Σ) to all parties

28: upon receiving SeedShare(ID, shj) message from Pj for the first time do
29: if VrfyShare(shj , pvss) = 1 then
30: S ← S ∪ {(j, shj)}
31: if |S| = 2f + 1 then seed← AggShares(S) and send Seed(ID, Σ, seed) to all parties

– Revealing Phase – Seed recovery (Line 9-17, 28-31). The leader collects 2f + 1 valid shares which
are committed to pvss and aggregates them to a seed. Then the seed is sent to all parties with Σ.
Once honest parties receiving a valid seed with a hash value of pvss and 2f + 1 valid signatures
for pvss, the execution is just like a reliable broadcast. Specifically, each party sends SeedEcho
to all parties. After receiving 2f + 1 SeedEcho messages, honest parties send SeedReady to all
parties. If an honest party receives f + 1 SeedReady messages of same value and SeedReady
has not been sent, it sends SeedReady. When receiving 2f + 1 SeedReady messages of same
value, honest parties output the seed.

Lemma 17. Upon any honest party completes the committing phase, any two valid AggPvssCommit
messages AggPvssCommit(ID, Σ) and AggPvssCommit(ID, Σ′) must have Σ and Σ′ containing
n− f valid signatures for the same pvss, and there exists a fixed value seed associated to this pvss.

Proof. Assume that Pi is the first party who starts to run the revealing phase of Seeding protocol, it
implies that Pi received a valid AggPvssCommit(ID, Σ) messag from leader PL. If another honest
party Pj also received a valid message AggPvssCommit(ID, Σ′) from leader PL, where signatures
in Σ are signed for pvss while signatures in Σ′ are signed for pvss′, since a valid Σ contains 2f + 1

34

valid signatures for a same pvss from distinct parties. According to the the unforgeability of digital
signatures, it induces that at least one honest party signed for both pvss and pvss′, which is impossible
because each honest party signs at most once. Hence, when some honest party Pi starts to run the
revealing phase, theΣ from any valid AggPvssCommit(ID, Σ) message is for the same pvss. Following
the commitment of the PVSS scheme, there exists a fixed value seed corresponding to the pvss.

Lemma 18. If any twos honest party output for ID, then they output the same value.

Proof. Suppose that some honest party outputs seed′ from the Seeding. By the code, it receives
2f + 1 SeedReady messages containing seed′. Then at least one honest party received 2f + 1 valid
SeedEcho messages with the same seed′ from distinct parties, which means that at least f + 1
honest parties received valid Seed(ID, Σ, seed′) message from the leader. From the previous analysis,
no honest party will accept a seed′ 6= seed from PL or multicast it. Thus, seed′ = seed.

Deferred proofs for Lemma 8. Here we prove that the protocol in Alg. 7 satisfies all properties
of Reliable Broadcasted Seeding given in Definition 4 and analyze how does it incur only quadratic
messages and communications.

Proof. Here prove that Alg. 7 satisfy the Seeding properties one by one:

– Totality. Assume that an honest party outputs in the Seeding, it must have received 2f + 1
SeedReady messages. At least f + 1 of the messages are sent from honest parties. Therefore,
all parties will eventually receive f + 1 SeedReady messages from these honest parties and then
send a SeedReady messages as well (if a SeedReady message has not been sent yet). So the
totality property always holds.

– Correctness. In the seed aggregation phase, the leader will collect 2f + 1 valid pvssi scripts and
aggregate them into a pvss whose weight has 2f + 1 positions to be 1. In the seed commitment
phase, all honest parties sign for this pvss so that the leader can collect at least n − f valid
signatures for pvss to form valid Σ. In the seed recovery phase, the leader can collect at least
n − f valid shares which are committed to the pvss they have signed for. All honest parties can
receive the same Σ and seed that pass verifications. So they would broadcast the same SeedEcho
message and the same SeedReady messages, thus finally outputting in the Seeding instance.

– Commitment. From Lemma 17, upon any honest party completes the protocol’s committing phase,
there exists a fixed value seed corresponding to the unique pvss. From Lemma 18, if any honest
party outputs for ID, then it outputs value seed. Thus the commitment can be proved.

– Unpredictability. Prior to f+1 honest parties are activated to run the revealing phase of the Seeding
protocol, the adversary can only collect at most 2f decryption shares for the committed pvss script.
Trivially according to the unpredictability of PVSS with weight tags, since the aggregated pvss has
a weight with 2f+1 non-zero positions, it is infeasible for the adversary to compute a seed∗ = seed
at the moment, where seed is the actual secret committed to the aggregated pvss script.

The complexities can be easily seen as follows: The message complexity of Seeding is O(n2), which
is due to each party sends n SeedEcho and SeedReady messages; considering that the input secret
s and pvss both are O(λ) bits, and there are O(n) messages with O(λn) bits and O(n2) messages with
O(λ) bits, thus the communication complexity of the protocol is of overall O(λn2) bits.

35

	Efficient Asynchronous Byzantine Agreement without Private Setups

