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ABSTRACT

This paper presents OnionPIR and stateful OnionPIR, two single-
server PIR schemes that significantly improve the response size and
computation cost over state-of-the-art schemes. OnionPIR scheme
utilizes recent advances in somewhat homomorphic encryption
(SHE) and carefully composes two lattice-based SHE schemes and
homomorphic operations to control the noise growth and response
size. Stateful OnionPIR uses a technique based on the homomor-
phic evaluation of copy networks. OnionPIR achieves a response
overhead of just 4.2x over the insecure baseline, in contrast to the
100x response overhead of state-of-the-art schemes. Our stateful
OnionPIR scheme improves upon the recent stateful PIR frame-
work of Patel et al. and drastically reduces its response overhead
by avoiding downloading the entire database in the offline stage.
Compared to stateless OnionPIR, Stateful OnionPIR reduces the
computation cost by 1.8 ∼ 22x for different database sizes.

1 INTRODUCTION

Protecting user privacy is becoming a critical concern to cloud ap-
plications and service providers. Private information retrieval (PIR)
is an important cryptographic primitive to protect user privacy
when fetching data from the cloud. Informally, PIR allows a user
to retrieve a particular entry from a public database without re-
vealing the identity of the entry to the database server. Recently,
PIR has been suggested for various applications, including anony-
mous communication [5, 51], privacy-preserving media streaming
[40], ad delivery [39], location routing [32], contact discovery [11],
password-checking [2], and safe-browsing [46].

At a high level, PIR schemes can be classified into single-
server [2, 4, 14, 19, 33, 47, 49, 50, 53] ones and multi-server
ones [7, 8, 23, 24, 30, 30, 36, 60, 61, 61]. Multi-server schemes are
generally more efficient but they need the stronger trust assump-
tion of multiple non-colluding servers. This requires coordination
from multiple organizations makes them hard to deploy in practice.
In this paper, we will focus on single-server PIR, which has thus
far been quite inefficient. The central goal of this project is to sub-
stantially improve the efficiency of single-server PIR schemes and
enable them for practical adoption.

In PIR, there are three main performance measures: the request
size, the response size, and the server’s computation cost. There are
often trade-offs between these measures. For example, a trivial
(singer-server) PIR scheme is to download the whole database. This
trivial scheme involves no server computation and has almost zero
request size, but it incurs a huge response size. State-of-the-art
single-server PIR schemes have achieved a reasonably small request
size. For example, SealPIR’s request size can be made only 32 KB
(after applying a standard optimization discussed in Section 4.3)

∗The work was partially done when Hao Chen was at Microsoft Research.

for a database with up to four million entries [4]. But they are still
very expensive in terms of response size and server computation,
as we elaborate below.

• Large response. State-of-the-art single-server PIR schemes incur
around 100x overhead in response size. That means to fetch a 30
KB entry (e.g., an ad), the client needs to download 3 MB of data.
• Heavy computation. State-of-the-art single-server PIR schemes
require heavy computation on the server. For example, SealPIR
requires about 400 seconds of server computation to fetch a 30
KB file from a database with one million entries.

This paper addresses the above two performance issues of single-
server PIRs.

Main contribution 1. We first present a new single-server PIR
scheme we call OnionPIR that significantly improves the response
size. The main technique is to carefully control the noise growth
from the ciphertext operations on the server with the help of re-
cent advances in homomorphic encryption schemes. OnionPIR
has a mere 4.2x response size overhead (over the insecure base-
line), in contrast to the 100x overhead in state-of-the-art schemes
like SealPIR. Concretely, to download a 30 KB entry, the client in
OnionPIR only needs to download 128 KB of data.

OnionPIRmaintains a similar computation cost as SealPIR. The
small downside of OnionPIR is a slight increase in the client request
size for small databases. Specifically, for a database with one million
entries, the request size in OnionPIR is 64 KB, which is about twice
as large as SealPIR’s request size of 32 KB. However, we note that
the request size for OnionPIR remains 64 KB even for all realistic
database sizes in practice. In contrast, the request size for SealPIR
starts to increase quickly once the database size exceeds fourmillion:
it becomes 64 KB for a database with 16millions entries and around
512 KB for one billion entries.

Main contribution 2. Next, to address the computation issue, we
improve the Stateful PIR paradigm of Patel et al. [54] and integrate it
with OnionPIR. In stateful PIR, the client has a local state and uses
that state to make PIR queries cheaper [26, 54]. The original stateful
PIR scheme of Patel et al. can already improve computation but it
requires the client to download the whole database in the offline
phase, which drastically increases the amortized response size. We
develop a new technique based on homomorphic evaluation of copy
networks [28, 48] to reap the computation savings of stateful PIR
while increasing the amortized response size by only a factor of
two over stateless OnionPIR. The benefit of our stateful OnionPIR
scales with the size of the database. For database sizes from 216 to
224, the reduction in computation over stateless OnionPIR ranges
from 1.8x to 22x. Similarly, compared to the original stateful PIR
scheme of Patel et. al., the response size is reduced by 27 ∼ 3, 900x.
These reductions also translate into better monetary costs of stateful



OnionPIR, which are 1.3 ∼ 22x less than stateless OnionPIR and
10 ∼ 107x less than Patel et al..
Concurrent works. Concurrent works of Park and Tibouchi [53]
and Ali et al. [2] also study how to reduce response size in (stateless)
single-server PIR. At a high level, they used different techniques
from us and also achieved a substantial reduction in response size
over SealPIR. But OnionPIR is more efficient than their scheme in
all three metrics as we elaborate in Section 7.

2 BACKGROUND AND PRELIMINARY

2.1 Somewhat Homomorphic Encryption

State-of-the-art single-server PIR schemes rely on lattice-based
somewhat homomorphic encryption (SHE). The security of lattice-
based SHE is based on the hardness of Learning With Errors (LWE)
or its variant on the polynomial ring (RLWE). We will use RLWE-
based SHE schemes, in particular, BFV [31] and RGSW [22, 34].

As its name suggests, a SHE scheme supports a limited num-
ber of homomorphic addition and multiplication operations on the
ciphertexts. All known constructions of SHE produce noisy cipher-
texts. Homomorphic operations on the ciphertexts increase the
noise level in the resulting ciphertext. After a certain number of
operations, the noise in the ciphertext would become too large and
the ciphertext could no longer be decrypted. It is important to note
that ciphertext multiplications result in the noise to multiply and
hence blow up rapidly. Thus, to keep the noise growth under con-
trol, existing PIR schemes have to introduce expensive techniques.
This is a major source of their inefficiency that we will address in
this work.
BFV encryption. The BFV SHE scheme is defined over a fixed
polynomial ring 𝑅 = Z/(𝑥𝑛 + 1). Here, 𝑛 is the degree of the poly-
nomial and is usually a power of two. In the BFV SHE scheme, the
secret key 𝑠 is a polynomial sampled from a distribution of “small”
(e.g., with binary coefficients) polynomials in 𝑅. Let 𝑞 and 𝑡 denote
the coefficient modulus for the ciphertext and plaintext, respec-
tively. A plaintext message𝑚 is a polynomial in 𝑅 mod 𝑡 . Each
ciphertext consists of two polynomials in 𝑅 mod 𝑞, and is given
as (𝑐0, 𝑐1) = (𝑎, 𝑏 + 𝑒 +𝑚) where 𝑎 is sampled uniformly at random
from 𝑅 mod 𝑞, 𝑏 = 𝑎 · 𝑠 + 𝑒 , and 𝑒 is a noise polynomial with coeffi-
cients sampled from a bounded Gaussian distribution. The message
𝑚 is encoded in the most significant bits of the coefficients of the
second polynomial. A ciphertext can be decrypted by computing
𝜇 = 𝑐1 − 𝑐0 · 𝑠 = 𝑒 +𝑚. Since the message is encoded in the most
significant bits and the noise 𝑒 is small, rounding 𝜇 recovers𝑚.
Ciphertext expansion factor. An efficiency metric critical to our
purpose is the ciphertext expansion factor, which is denoted as 𝐹 and
defined as the ratio between the ciphertext size and the plaintext
size. For BFV,

𝐹 =
2 log𝑞
log 𝑡

because the ciphertext is a pair of polynomials modulo 𝑞 whereas
the plaintext is a polynomial modulo 𝑡 . The ciphertext expansion
factor 𝐹 directly affects the response size of the PIR protocol. One
of the main tasks in this paper is to reduce 𝐹 .
RGSW encryption. We will use a second SHE scheme called
RGSW [20]. Given a base 𝐵 and a parameter 𝑙 , a RGSW scheme has

a gadget vector defined as:

𝑔 (𝑙×1) = (𝐵log𝑞/log𝐵−1, 𝐵log𝑞/log𝐵−2, · · · , 𝐵log𝑞/log𝐵−𝑙 )

The base 𝐵 and the gadget vector length 𝑙 give a trade-off between
efficiency and noise growth. The gadget vector then gives a gadget
matrix as follows:

G = I2 ∨ 𝑔 =

[
𝑔 0
0 𝑔

]
∈ 𝑅 (2𝑙×2) .

A RGSW encryption of a plaintext polynomial𝑚 ∈ 𝑅 is

C = Z +𝑚 · G

where each row of Z ∈ 𝑅 (2𝑙×2) is a BFV encryption of 0. Following
the BFV decryption, Z satisfies that ∥Z · (−𝑠, 1)∥∞ is small. Note
that the bottom half of the matrix C consists of 𝑙 BFV ciphertexts
encrypting base-𝐵 decompositions of the plaintext𝑚.

2.2 Noise Growth and Computational Cost of

Homomorphic Operations

As we have mentioned before, each homomorphic operation in SHE
increases the noise in the output ciphertext. Different operations
result in drastically different noise growth, and this will significantly
impact our design decisions. These operations also have different
computation costs, usually dominated by the number of polynomial
multiplications required. We elaborate below on the approximate
noise growth and computation costs of different operations and
summarize them in Table 1. Let Err(ct) denote the variance of the
noise term in a ciphertext ct.
BFV ciphertext addition. This operation adds two BFV cipher-
texts 𝑐1 and 𝑐2, and outputs a BFV ciphertext encrypting the plain-
text sum. The noise in the output ciphertext grows additively, i.e.,
the noise of the output is the sum of the noise terms from the two
inputs. This operation does not involve polynomial multiplication
and its cost is very small compared to the other operations below.
BFV ciphertext-plaintext multiplication. This operations takes
as input a plaintext polynomial𝑚 and a BFV ciphertext ct encrypt-
ing 𝑚′. The output is a BFV ciphertext encrypting the product
𝑚 ·𝑚′. The noise term is multiplied with the plaintext [31]. This
operation requires two polynomial multiplications.
BFV ciphertext multiplication. This operations takes as input
two BFV ciphertexts 𝑐1 and 𝑐2, and outputs a BFV ciphertext en-
crypting the plaintext product. This operation increases the noise
by a factor of 𝑡 (the plaintext modulus). This operation also requires
an expensive relinearization step and its computation cost is about
4 + 2𝑙 polynomial multiplications, where 𝑙 is usually the same as
the decomposition factor 𝑙 in RGSW. Note that this operation is
expensive in terms of both noise growth and computation cost, and
it is the main culprit for the inefficiency of existing PIR schemes.
We will not use this operation and will not go into details about it.
External Product. The external product operation takes as input
a BFV ciphertext d encrypting𝑚𝑑 , and a RGSW ciphertext C en-
crypting𝑚𝐶 , with respect to same secret key 𝑠 . The output is a BFV
ciphertext encrypting their plaintext product𝑚𝐶 ·𝑚d.

It is not important to understand the details of the external prod-
uct operation for the purpose of understanding our PIR schemes.
But we give a brief description of the external product below for



Operation Cost Noise Growth
BFV ciphertext addition − 𝑂 (Err(ct1) + Err(ct2))
BFV ctxt-ptxt mult. 2 𝑂 (Err(ct) · |𝑚 |)
BFV ciphertext mult. 4 + 2𝑙 𝑂 (𝑡 · (Err(ct1) + Err(ct2)))
External product 2𝑙 𝑂 (𝐵 · Err(𝐶) + Err(𝑑))

Table 1: Comparison of computational costs and noise

growths of homomorphic operations. The computational

cost of BFV ciphertext multiplication and external product

depends on 𝑙 . Typically, 𝑙 is set to 5. The noise growth is mul-

tiplicative in BFV ciphertext and ctxt-ptxt multiplications.

In contrast, the noise growth in the external product is addi-

tive, which allows the evaluation of deeper circuits.

completeness. Readers can refer to [22] for more details. We first
define a vector v’s gadget decomposition, denoted as𝐺−1 (v) ∈ 𝑅2𝑙 .
Intuitively, the gadget decomposition of a vector has small coeffi-
cients and whenmultiplied by the matrix𝐺 , gives an approximation
of the original vector. More precisely, 𝐺−1 (v) has coefficients in
(−𝐵/2, 𝐵/2] and the decomposition error

𝐺−1 (v) ·𝐺 − v∞ is up-
per bounded by 𝐵log𝑞/log𝐵−𝑙 . Also, note that the result is a BFV
ciphertext and we never need to decrypt RGSW ciphertexts in this
paper, which is why we did not discuss RGSW decryption.

The noise after external product is bounded by 𝑂 (
𝐺−1 (𝑑)∞ ·

Err(𝐶) + |𝑚𝐶 | · Err(𝑑)). In our PIR schemes,𝑚𝐶 will always be a
single bit (i.e., either 0 or 1). Also note that

𝐺−1 (𝑑)∞ is 𝐵/2. Thus,
the resultant noise term is roughly 𝑂 (𝐵 · Err(𝐶) + Err(𝑑)).

It is important to note that external product operations increase
noise additively. That is to say, if we perform a series of 𝐿 external
products, the final noise will be roughly 𝐿 times larger. In sharp
contrast, if we apply the previous two types of multiplication oper-
ations 𝐿 times in a row, the final noise term will be exponential in
𝐿. This is why we will use external products in most steps of our
OnionPIR schemes.

3 OVERVIEW AND LIMITATIONS OF

CURRENT PROTOCOLS

The most basic single-server PIR scheme is given in Figure 1. The
database is represented as an array of size 𝑁 . To access an entry,
the client generates a query vector of 𝑁 ciphertexts. The ciphertext
corresponding to the target entry encrypts 1 whereas all the other
ciphertext encrypts 0. The server homomorphically computes a dot-
product between the query vector and the plaintext database to
generate a response. The client decrypts the response to get the
desired entry in the database.

The above basic PIR has a request size linear in the database size.
To reduce the request size, three techniques have been suggested
by existing PIR schemes. The first technique is hierarchical query,
which dates back to the earliest works on PIR [25, 59]. It represents
a database as a multi-dimensional hypercube. To access a database
entry, the client now sends 𝑑 query vectors, each consisting of 𝑑

√
𝑁

ciphertexts, where𝑑 is the number of dimensions. In all existing pro-
tocols, 𝑑 is set to 2, and this reduces request size to 2 2√

𝑁 ciphertexts.
Another method to reduce PIR request size is query compression,
proposed recently by SealPIR [4]. Instead of encrypting one bit per
ciphertext, the client packs many bits within one (BFV) ciphertext.

Inputs: The client inputs an index idx ∈ [𝑁 ] and the server
inputs database DB of size 𝑁 .

(1) Pre-processing database DB: The server database is en-
coded in an amenable format.

(2) Query Generation: For 𝑖 from 1 to 𝑁 , the client sets 𝑐𝑖 ,
the 𝑖-th encrypted query ciphertext, to Enc(𝑝𝑘, 1) if 𝑖 = idx
and Enc(𝑝𝑘, 0) if 𝑖 ≠ idx. The client sends encrypted query
vector 𝑐 to the server.

(3) Response Generation: The server computes 𝑟 =
∑𝑁
𝑖=1 𝑐𝑖 ·

DB𝑖 using homomorphic ciphertext-plaintext multiplica-
tions and ciphertext additions. The server then returns 𝑟
to the client..

(4) Output The client decrypts 𝑟 to get database entry corre-
sponding to idx.

Figure 1: Basic single-server PIR protocol.

The server can then unpack this ciphertext into a list of ciphertexts,
each encrypting a single bit. The total number of bits packed in a
single ciphertext is equal to the degree of ciphertext polynomial 𝑛.
In SealPIR, 𝑛 is set to 2048, so for a database with up to four million
entries, the 2 2√

𝑁 -sized query can be packed into two ciphertexts.
The third method is to send only the second component of a fresh
BFV ciphertext together with the seed used to generate the first
component pseudorandomly [21]. This method reduces the size of
the request in half. We will further discuss these optimizations in
Section 4.3.

SealPIR is a state-of-the-art single-server PIR scheme. Combin-
ing the above techniques (SealPIR did not incorporate the third
technique but could easily do), SealPIR would achieve a request
size of only 32 KB for databases with up to four million entries.
After that, the request size will increase proportionally to 2√

𝑁 .
However, as mentioned earlier, existing single-server PIR

schemes including SealPIR still suffer from large response size
and high computation cost, which we explain in more detail below.

Why response size is large. The cause for the large response
size lies in the way state-of-the-art schemes use homomorphic
operations in hierarchical PIR. Figure 2 illustrates state-of-the-art
schemes like XPIR [50] and SealPIR [50] for a database of size
𝑛 = 16. The database is represented as a two-dimensional matrix of
size 4 × 4 and the query consist of 2 vectors each consisting of 4
BFV ciphertexts 1 . As shown in the figure, for the first dimension,
the server performs a dot-product between each column of the
plaintext database and the query vector. The output of this dot-
product is a vector of ciphertexts corresponding to the matrix row
containing the requested entry 2A . However, these ciphertexts are
not directly used in the dot product with the second query vector.
Instead, each of these ciphertexts is first split into 𝐹 chunks where
𝐹 is the ciphertext expansion factor as described in Section 2. (Recall
that a ciphertext is 𝐹 times larger than a plaintext.) Then, each
chunk is treated as a plaintext in the dot-product with the second
query vector 2B . The reason behind this ciphertext split design is
to avoid homomorphic ciphertext multiplications that would have
added very large noise to the resulting ciphertext as discussed in
Section 2. Of course, the downside of this design is that now the
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response consists of 𝐹 BFV ciphertexts 3 . Although we used 𝐹 = 4
as an example, the actual SealPIR implementation has 𝐹 = 10. The
overall response overhead would be 𝐹 2, which is around 100x.
Why computation cost is high. The computation cost is 𝑂 (𝑁 )
since every entry in the database is involved in a homomorphic
operation. In fact, one can argue that this is a fundamental barrier
in the standard PIR model rather than a drawback of SealPIR
or any particular scheme. If some entries are not involved in the
computation, it would reveal to the server that these entries are not
what the client is interested in, which violates the privacy guarantee
of PIR. Thus, there seems to be little room for computation reduction
in the standard PIR model. Looking ahead, we will incorporate the
stateful PIR framework [54] to reduce computation.

4 RESPONSE EFFICIENT PIR

4.1 A Warm-up Protocol

We first present a warm-up protocol that drastically reduces the
response size at the expense of higher computation. This basic pro-
tocol will serve as a stepping stone to introduce our mainOnionPIR
protocol, which will improve both response size and computation.
We adopt the SHE and the hierarchical query framework. The top
part of Figure 3 illustrates a sample execution of the warm-up proto-
col. Compared to prior works such as SealPIR and XPIR, we make
three key changes.
Use of external products. The first change is that the client query
vectors now consist of RGSW ciphertexts and the server uses ex-
ternal product (instead of ciphertext-plaintext multiplication) 1 .
Recall that SealPIR had to split the intermediate ciphertexts af-
ter the first multiplication because BFV ciphertext multiplications
increase noise rapidly. In contrast, as mentioned in Section 2, the
noise only grows additively after each external product operation.
Therefore, we no longer have to split the intermediate ciphertexts
and can use them directly for the multiplications in the second 2

and the third 3 dimensions. As a result, the response, which is the
output of the third multiplication, is only a single BFV ciphertext
4 , rather than 𝐹 BFV ciphertext. In other words, the response
overhead is now simply the ciphertext expansion factor 𝐹 , down
from 𝐹 2.
Parameterization for smaller ciphertext expansion factor 𝐹 .

The smaller noise growth from external product already gives an
improvement in 𝐹 over prior works: for a fixed ciphertext modulus
𝑞, if the noise growth is smaller, we can leave less room for noise

growth and use a larger plaintext modulus 𝑡 . But we can optimize
the parameter choices of BFV to further reduce 𝐹 . We will use a
larger ciphertext modulus 𝑞. One can see from Table 1 that the
noise growth does not depend on 𝑞. Thus, increasing 𝑞 allows more
room for a larger 𝑡 , and hence decreases 𝐹 . However, a larger 𝑞
means a bigger ciphertext, which in turn implies a larger request
size. Therefore, we use a moderately large 𝑞 in our implementation;
concretely, we use 124-bit 𝑞 and it allows a 60-bit 𝑡 .

Higher-dimensional cube.While prior works represent the data-
base as a two-dimensional matrix, we can represent the database
as a higher-dimensional cube, again thanks to the smaller noise
growth of the external product. Using a higher dimension will help
us further decrease the ciphertext expansion factor 𝐹 for reasons
that will become clear later in Section 4.3.

Limitation of the warm-up protocol. Unfortunately, the warm-
up protocol suffers from higher computational costs. Recall from
Section 2 that the computational cost of the external product is 2𝑙
polynomial multiplications. Thus, the total computation (measured
by the number of polynomial multiplications) of the warm-up proto-
col from the first dimension alone is 2𝑙𝑁 . In comparison, SealPIR’s
computation bottleneck lies in its first dimension, which involves 𝑁
BFV ciphertext-plaintext multiplications. Each of these operations
requires only 2 polynomial multiplications, giving a total computa-
tional cost of 2𝑁 . Typically 𝑙 = 5, so the computational cost of the
warm-up protocol is at least 5x higher than SealPIR.

4.2 Optimizing the Computation

As mentioned, the warm-up protocol achieves a small noise growth
and response size, at the expense of higher computation. Here is
a simple method to improve the computation cost: revert to BFV
ciphertext-plaintext multiplication in the first dimension and make
the first dimension slightly larger than the remaining dimensions.
Let 𝑁𝑖 denote the size of 𝑖-th dimension. With some foresight, we
will set the first dimension size to be 𝑁1 = 128 and subsequent
dimension sizes to 𝑁2 = 𝑁3 = . . . = 4. This way, the total computa-
tion cost is once again dominated by the first dimension and will
be comparable to the prior art.

But as mentioned in Section 2, BFV ciphertext-plaintext multipli-
cation introduce large noise, on the order of the plaintext modulus 𝑡 .
This will force us to reduce 𝑡 which hurts the ciphertext expansion
factor. Therefore, we need a scheme that strikes a balance between
noise growth and computational cost for the first dimension.



651'st Query Vector

87
2

4

1

3 external product

0

1

1

0 1

2

1

0

3'rd Query Vector

Response

3 4

7 8
3 4

8
4 8

2'nd Query Vector

Plaintext

BFV Ciphertext

RGSW Ciphertext

1'st Query Vector
10

12

9

11

13 14

1615

2

4

1

3

5 6

87

Plaintext

0

1

0 1 RGSW Ciphertext

2

1

0

3'rd Query Vector

Response

3 4

11 12
3 4

12
4 12

2'nd Query Vector

1

0

0BFV Ciphertext

external product

Figure 3: The warm-up protocol (top) and the improved protocol (bottom) using RGSW ciphertexts and external products.

In the warm-up protocol, the client queries are RGSW ciphertexts for all dimensions and the output of each dimension are

BFV ciphertexts. In the improved protocol, the first dimension’s query vector consists of BFV ciphertexts and the remaining

dimensions are RGSW ciphertexts; furthermore, the first dimension is slightly larger than the other dimensions so that the

first dimension dominates the computation cost.

(1) pt′ = {pt1, pt2} ← DecompPlain(pt): Decompose input
pt into two parts each of size log(𝑡)/2 bits.

(2) ct′ = {ct1, ct2} ← DecompEncrypt(𝑏): Takes as input a
query bit 𝑏, and output two BFV ciphertexts encrypting
{𝑏 · 2log(𝑡 )/2, 𝑏}.

(3) ct ← DecompMul(pt′, ct′): Computes the dot-product
between pt′ and ct′ and outputs a BFV ciphertext.

Figure 4: Decomposed ciphertext-plaintext product. This op-

eration increases noise by about log(𝑡)/2 bits.

Inspired by the external product technique which reduces noise
growth by decomposing a ciphertext into smaller parts, our solution
is to decompose the plaintext before multiplying them with the
encrypted query vector. A similar approach is proposed in [35].

The details of this technique are given in Figure 4. We found that
decomposing into two components gives us good enough noise
growth with our parameter choices. In this case, each DecompMul
operation adds about log(𝑡)/2 bits of noise. The server first uses the
DecompPlain function to decompose each database entry. Similarly,
the client encrypts the first query vector using DecompEncrypt for
each bit. The server then performs the first dimension of dot product
using DecompMul operations. All subsequent dimensions will use
external products to control noise growth.

Algorithm 1:QueryPack algorithm used in OnionPIR

Input: {𝑏𝑖 }𝑑𝑖=1, a set of plaintext query vectors one for each
dimension.

Output: 𝑐 , a single BFV ciphertext packing all the query
vectors.

Notation :

- 𝑑 , number of dimensions.
- 𝑁𝑖 , size of 𝑖-th dimension.
- 𝑓 , number of components for each kind of encryption.
- 𝑏𝑖, 𝑗 , 𝑗-th bit in 𝑖-th vector.

1 𝑝𝑡𝑟 = 0
2 Sets plaintext pt as follows:
3 for 𝑖 = 1 : 𝑑 do

4 for 𝑗 = 1 : 𝑁𝑖 do

5 for 𝑘 = 1 : 𝑓 do

6 ⊲ 𝑓 = 2 for first-dimension and 𝑓 = 𝑙 for rest.
7 pt𝑝𝑡𝑟 = 𝑏𝑖, 𝑗 [𝑘]
8 𝑝𝑡𝑟 = 𝑝𝑡𝑟 + 1
9 end

10 end

11 end

12 BFV-encrypts pt to get 𝑐 = BFV(pt) and outputs 𝑐 .



Algorithm 2:QueryUnpack algorithm adopted from algo-
rithm 4 in [20]. We assume that secret-key encryption 𝐴

is provided by the client at the time of initialization. This
algorithm outputs a single encrypted query vector for each
dimension.
Input: (𝑐), a single BFV ciphertext packing all the query

vectors; 𝐴 = RGSW(−𝑠), RGSW encryption of the
client’s secret key.

Output: (CBFV, {CRGSW
𝑖 }𝑑−1
𝑖=1 ), unpacked encrypted query

vectors.
Notation :

- CBFV, query vector of BFV ciphertexts for the first dimension.
- CRGSW

𝑖 , query vector of RGSW ciphertexts for the 𝑖-th
dimension.

- expandRlwe, BFV expansion procedure in Algorithm 3 of [20].
- Remaining as defined in Algorithm 1.

1 c = expandRlwe(𝑐) ⊲ a flat array of all expanded ciphertexts.
2 for 𝑗 = 0 : 𝑁1 − 1 do
3 ⊲ setting first query vector.
4 CBFV 𝑗 [0] = 𝑐 [2 𝑗 + 1]
5 CBFV 𝑗 [1] = 𝑐 [2 𝑗 + 2]
6 end

7 𝑝𝑡𝑟 = 2𝑁1
8 for 𝑖 = 1 : 𝑑 − 1 do
9 ⊲ setting higher query vectors.

10 for 𝑗 = 0 : 𝑁𝑖+1 − 1 do
11 for 𝑘 = 1 : 𝑙 do
12 CRGSW

𝑖
𝑗
[𝑘 + 𝑙] = c[𝑝𝑡𝑟 + 𝑗𝑙 + 𝑘]

13 CRGSW
𝑖
𝑗
[𝑘] = externalProduct(𝐴, c[𝑝𝑡𝑟 + 𝑗𝑙+𝑘])

14 end

15 end

16 𝑝𝑡𝑟 = 𝑝𝑡𝑟 + 𝑙𝑁𝑖

17 end

18 Outputs (CBFV, {CRGSW
𝑖 }𝑑−1
𝑖=1 ).

4.3 Query Compression

Sending one ciphertext per query bit results in a large request size.
Previous works have proposed the query compression technique [4,
20] to reduce the query size. The high-level idea is that the client
can pack many independent bits into a single ciphertext. The server
then obliviously unpacks this ciphertext into encryptions of single
bits. In OnionPIR we adopted the query compression algorithm
given by Chen et al. [20].
Query packing. Algorithm 1 is the query packing algorithm in
OnionPIR. All the query vectors are packed into a single plaintext
𝑝𝑡 , which is then encrypted using BFV encryption. Chen et al. [20]
show that for RGSW encryption of a query bit 𝑏, it is sufficient to
only pack 𝑙 values, corresponding to first 𝑙 rows ofRGSW ciphertext.
Similarly, for the first dimension, we pack 2 values for each bit in the
first query vector. Later in the section, we show that in OnionPIR
a single plaintext is sufficient to pack all the query vectors.

Query unpacking. Algorithm 2 is the query unpacking algorithm
(also called query expansion) in OnionPIR. The algorithm first calls
the BFV expansion procedure given in Algorithm 3 of [20]. This pro-
cedure outputs an array of BFV ciphertexts, encrypting individual
values. The algorithm sets the first query vector directly from the
output array. For the remaining query vectors, BFV expansion only
gives the bottom 𝑙 rows of each RGSW ciphertext. To get the top 𝑙
rows for each RGSW ciphertext, the algorithm performs external
products between the RGSW encryption of the client secret-key
and the bottom 𝑙 rows. We refer readers to Section 4.3 of [20] for
further explanation on this trick.

As it turns out, query compression increases noise in the output
ciphertext. The noise growth is multiplicative to the number of
entries packed in one ciphertext. So, it is desirable to have fewer
entries to pack. This is why we opt to represent the database as a
high-dimensional hypercube (cf. Section 3) and set all dimensions
small, i.e., 𝑁2 = 𝑁3 = . . . = 4, after the first dimension of 𝑁1 = 128
(cf. Section 4.2). This makes the number of dimensions𝑑 logarithmic
in the database size, or concretely, 𝑑 = 1 + ⌈log4 (𝑁 /128)⌉.

We pack two values for each query bit, hence, in total 256 values
for the first dimension (cf. Section 4.2). Likewise, for the remaining
𝑑 − 1 dimensions combined, we have 4𝑙 (𝑑 − 1) values to pack.
Concatenating them gives a plaintext vector of size 256 + 4𝑙 (𝑑 − 1).
This means that for a database with one million entries and 𝑙 =

5, a total of 386 values will be packed. In our implementation,
each ciphertext has 𝑛 = 4096 plaintext slots, so we pack all these
plaintexts into a single BFV ciphertext. Unpacking these entries will
add only a small amount of noise in the resulting ciphertexts. We
remark that even for very large databases (with up to 2390 entries)
we can still pack all the query vectors in a single BFV ciphertext.

Pseudorandomfirst component in ciphertexts.We can further
reduce the request size by using a simple optimization from [21].
Recall that each BFV ciphertext consists of two components (𝑐0, 𝑐1),
and in a fresh ciphertext, the first component 𝑐0 is sampled uni-
formly randomly from 𝑅 mod 𝑞. Thus, instead of sending a truly
random 𝑐0, the client can generate a pseudorandom 𝑐0 from a short
random seed and send the seed to the server. This optimization
reduces the request size in half.

4.4 OnionPIR Full Protocol

The finalOnionPIR protocol is given in Algorithm 3. We have intro-
duced all the components of the algorithm separately in previous
sections. Below we describe the protocol putting together all the
techniques.

The database is represented as a hypercube of 𝑑 dimensions. The
size of the first dimension is 𝑁1 = 128 and each of the remaining
dimensions is of size 4. The total number of dimensions is thus
𝑑 = 1 + ⌈log4 (𝑁 /𝑁1)⌉.

As a pre-processing step of the protocol, the server decomposes
each entry of the database into two parts. The client represents
the desired index idx into 𝑑 query vectors, one for each dimension
of the hypercube. The client then packs all of the query bits into
a single BFV ciphertext and sends the ciphertext to the server
using Algorithm 1. The server unpacks this ciphertext into separate
encrypted query vectors using Algorithm 2. Each entry in the first



Algorithm 3: OnionPIR Protocol.
Input:

- DB server database of size 𝑁 .
- id, the index of the client’s desired entry.
Notation :

- Notations used in Algorithm 2.
- 𝑁 , database size.
- DB𝑖 , 𝑖-th entry.
- DB

′
, intermediate database.

- All the notations defined in Algorithm 1 and 2.
- shaded part is executed by server.

1 Server computes {pt𝑗 }𝑁𝑗=1 = {DecompPlain(DB𝑗 )}𝑁𝑗=1

2 Client converts idx into a vector (𝑖1, · · · 𝑖𝑑 ), where 𝑖 𝑗 is the
position of 𝑖𝑑𝑥 entry in 𝑗-th dimension of the hypercube.

3 Client generates query vectors {𝑏 𝑗 }𝑑𝑗=1 corresponding to
(𝑖1, · · · 𝑖𝑑 ), such that 𝑏 𝑗 [𝑖 𝑗 ] is 1 and rest are 0.

4 Client computes 𝑐 = QueryPack({𝑏 𝑗 }𝑑𝑗=1), and sends 𝑐 to
the server.

5 Server computes:
(CBFV, {CRGSW

𝑖 }𝑑−1
𝑖=1 ) = QueryUnpack(𝑐).

6 for 𝑗 = 0 : 𝑁 /𝑁1 − 1 do
7 ⊲ first dimension dot-product.

DB′ 𝑗 =
∑𝑁1
𝑘=1 DecompMul(CBFV𝑘 , pt𝑘+( 𝑗∗𝑁1) )

8 end

9 for 𝑖 = 2 : 𝑑 do

10 ⊲ remaining dot-products.
11 for 𝑗 = 0 : |DB′ |/𝑁𝑖 − 1 do
12 D̃B𝑗 =∑𝑁𝑖

𝑘=1 externalProduct(CRGSW
𝑖−1
𝑘

,DB′𝑘+( 𝑗∗𝑁𝑖 ) )
13 end

14 DB′ = D̃B
15 end

16 Server sends 𝑟 = DB′ (a single entry now) to the client.

17 Client decrypts 𝑟 to get data of record 𝑖𝑑 .

encrypted query vector consists of two BFV ciphertext and each
entry in subsequent encrypted query vectors is a RGSW ciphertext.

For the first dimension, the server performs a dot-product (using
theDecompMul operation) between the first query vector and each
(plaintext) column of the hypercube. The output is an encrypted
hypercube of one fewer dimension. The server then continues to
process higher dimensions in the same manner but now using
external products. After the dot-product at each dimension, the
output is an intermediate hypercube of one fewer dimension and
it is used as the input to the next dot-product. The final output
after the last dot-product is a single BFV ciphertext encrypting the
desired entry. This is sent back to the client as the response and
the client decrypts it to get the desired database entry.

Request size.The request of OnionPIR is a single BFV ciphertext.
Using the pseudorandom seed optimization discussed in Section 4.3,
the request size is 64 KB.
Response size.We set the ciphertext modulus𝑞 to 124 bits (padded
to 128 bits in the implementation). The plaintext modulus 𝑡 is set
to 60 bits. This gives a ciphertext expansion factor 𝐹 ≈ 4.2. The
response is thus only 4.2x larger than the plaintext entry.
Computational cost. Query unpacking requires around 𝑤 · 𝑙2
polynomial multiplications where𝑤 is the total number of packed
bits [20]. Because of the high dimensions, only a logarithmic num-
ber of bits are packed. Therefore, query unpacking is not the com-
putation bottleneck.

The total number of polynomial multiplications required by the
dot product operations is about 2 ·𝑁 + 4 · 𝑙 · ( 𝑁

𝑁1
+ 𝑁

4𝑁1
+ 𝑁

16𝑁1
+ · · · ).

Recall that 𝑁1 = 128 is the size of the first dimension. Thus, the
term 𝑁 /𝑁1 is very small, and the computational cost is dominated
by the 2𝑁 polynomial multiplications in the first dimension.

Due to the larger 𝑡 and the larger polynomial degree 𝑛 = 4096,
each ciphertext in our protocol contains 30 KB of plaintext data.
This is 10 times more than SealPIR. On the other hand, the first
dimension in our protocol uses decomposition and is hence twice as
expensive as SealPIR. Furthermore, each polynomial multiplication
in our protocol is about 4x more expensive because of our doubled
values of log𝑞 and 𝑛. Therefore, in theory, the computation cost of
our protocol will be about 1.25x better than SealPIR. In our actual
implementation and experiments, we found that the computational
costs of OnionPIR and SealPIR are almost identical.
Noise growth estimate. In OnionPIR, the noise in the out-
put ciphertext largely results from the query unpacking and the
ciphertext-plaintext multiplications in the first dimension.

The noise in the unpacked ciphertext (RGSW and BFV both) is
bounded by [20]:

Err(ct𝑒𝑥𝑝 ) ≤ 𝑂 (𝑤2) · Err(BFV)

Here, Err(BFV) is the initial noise in the packed input ciphertext
and 𝑤 is the number of packed bits. Since fewer bits need to be
packed in OnionPIR, query expansion adds less noise than prior
art.

In the dot-product of the first dimension, the noise increases
by a factor of 𝑂 (𝑁1𝐵′). Here, 𝑁1 = 128 is the size of the first
dimension and it appears due to the homomorphic additions; 𝐵′ is
the maximum value of the decomposed plaintext. Therefore, the
estimated total noise after the first dimension is around:

Err(ct1) = 𝑂 (𝑤2𝑁1𝐵
′) · Err(BFV)

Subsequent dimensions use external products and the noise increase
is additive and insignificant.

From the above analysis, the total noise in the response cipher-
text is bounded by:

Err(ct𝑟𝑒𝑠𝑝.) ≤ Err(ct1) +𝑂 (𝑑) · Err(ct𝑒𝑥𝑝 )

As a comparison, we remark that had we used BFV ciphertext
multiplications instead of external products, the noise in the out-
put ciphertext would have grown exponentially to Err(ct𝑟𝑒𝑠𝑝.) ≤
𝑂 (𝑡𝑑 · 𝑁 ) · Err(BFV). This noise grows too fast with the number
of dimensions 𝑑 , which is why prior works were limited to 𝑑 = 2.



5 STATEFUL PIR

Although OnionPIR has very small response size and request size,
the computational burden on the server is still quite large (about
the same as the prior art SealPIR). Note that the server has to
perform at least one ciphertext-plaintext multiplication per database
entry, resulting in 𝑂 (𝑁 ) computation cost on the server. This is
a somewhat fundamental barrier in computation in the standard
PIR model: if some entries are not involved in the computation, it
would reveal to the server that these entries are not what the client
is interested in, which violates the privacy guarantee of PIR.

To overcome this computation bottleneck, Patel et. al [54] pro-
posed an elegant framework called Private Stateful Information
Retrieval (PSIR). PSIR significantly outperforms prior best single-
server PIR schemes in terms of computation. The main idea of the
PSIR framework is that the client is often stateful and can store
some helper data retrieved in an offline phase. Then, in the online
phase, the client uses its state (helper data) to make cheaper PIR
queries.

The challenge is how to retrieve the required state privately in
the offline phase. The approach recommended by Patel et al. is to
simply download the entire database, which is clearly impractical
for many applications.

To address the above limitation and make the PSIR framework
practical, we propose a technique that allows the client to efficiently
and privately retrieve the required state. We further integrated
OnionPIR with our proposed offline technique into a stateful PIR
framework. The resulting scheme achieves about 1.3 ∼ 22x re-
duction in computation cost over stateless OnionPIR for different
database sizes. Compared to the Patel et al. scheme, our stateful
scheme reduces the amortized response size by 27 ∼ 3900x at the
expense of a slight increase in request size and a moderate increase
in the computation.

In the remainder of this section, we will first provide a high-level
overview of the PSIR framework of Patel et al. and then present
our improved offline phase.

5.1 Private Stateful Information Retrieval

At a high level, the PSIR protocol by Patel et al. [54] has an offline
phase and an online phase:
Offline phase. In the offline phase, the client privately retrieves
some states from the server. This step is defined as Private batched
sum retrieval (PBSR) problem in [54], which is defined as follows:
Given 𝑐 subsets 𝑆1, · · · , 𝑆𝑐 where each subset consists of 𝑘 random
indices, privately fetch the sum of all the entries in each subset. The
privacy of PBSR requires that the server does not learn anything
about the 𝑐 subsets 𝑆1, · · · , 𝑆𝑐 . The trade-offs associated with the
choices of 𝑐 and 𝑘 will be discussed in Section 6.2.
StreamPBSR. To perform PBSR, the main protocol of Patel et al.
ultimately decides that the server simply streams the entire database
to the client. For many applications, streaming the entire database
to the client is impractical. For example, for private video streaming
application with database sizes in terabytes downloading the entire
database for millions of users is essentially impractical.
BatchCodePBSR. In Appendix E.3 of Patel et al. [54], the authors
also sketch a construction based on batch codes and homomor-
phic encryption. In this construction, the database is encoded using
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batch codes and the client runs a batched PIR protocol given in [4]
to privately retrieve the subset sums. Although this construction
avoids streaming the entire database, the authors found that the
computational overhead of this construction is so high that it nul-
lifies any computation improvement of stateful PIR over stateless
PIR.
Online phase. In the online phase, the client uses the subset sums
she obtained from the server to retrieve the entries. In this paper, we
will not modify the online phase of Patel et al., so it is not important
to understand its details. But we still briefly describe it below for
completeness.

Suppose in the online phase the client wants to retrieve an entry
𝑖 , the client will find an unused subset in the local storage that does
not contain 𝑖 . Let that subset and its corresponding sum be denoted
as 𝑆 ′ and 𝑠 ′. After that, the client generates a random ordered
partition of the database such that (i) there are 𝑚 = 𝑁 /(𝑘 + 1)
partitions 𝑃1, 𝑃2, · · · , 𝑃𝑚 , each of size 𝑘 + 1 and (ii) one partition
𝑃𝑟 is equal to 𝑆 ′ ∪ 𝑖 , where 𝑟 is picked uniformly randomly from
[𝑚]. The client then sends a succinct description of the partition
to the server. The server then represents the database in the form
of a matrix where each row contains entries corresponding to a
partition and add up each row. The client then performs a stateless
PIR to retrieve the 𝑟 -th sum. The client can now recover the 𝑖-th
entry by subtracting 𝑠 ′ from it. Once the client runs out of subset
sums to use, it will perform the offline phase again. The privacy
of the protocol is based on the privacy of the offline PBSR and the
online PIR.

Observe that in the online phase, the client’s PIR query is eval-
uated on a database of size 𝑁 /𝑚 where 𝑚 = 𝑘 + 1. This results
in a factor of𝑚 = 𝑘 + 1 reduction in server computation. The on-
line phase is hence quite efficient. In the next subsection, we will
provide an efficient construction for the offline PBSR phase.

5.2 Efficient Private Batch Sum Retrieval

In this subsection, we introduce a novel PBSR construction. Al-
though we motivated our construction for stateful PIR, it can be of
independent interest. Our key observation is that the PBSR problem
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has a similar interface to copy networks. We will also use a variant
of PIR called batched PIR.
Batched PIR. Batched PIR allows the server to answer a batch of
PIR queries at a lower cost than answering each query indepen-
dently. Angel et al. gives an efficient framework to transform any
single-query PIR to a batched PIR. In their scheme, to retrieve a
batch of queries the total server computation is 3x of the single-
query PIR. Therefore per query computation cost is significantly
smaller. We provide a brief overview of the scheme below and refer
readers to [4] for details.

Batched PIR can be defined using three functions. In the setup
stage, the server calls BatchPIR.Setup, which encodes the database
into 𝑏 buckets randomly where 𝑏 = 1.5𝑟 and 𝑟 is the number of en-
tires the client wishes to retrieve. Each bucket is treated as a smaller
independent database on which the client can perform PIR queries.
The client who wishes to retrieve entries at indexes 𝐼 = {𝑖1, · · · , 𝑖𝑟 }
from the server can locally callBatchPIR.QueryGenwhich provides
encrypted PIR queries such that all the desired entries are retrieved.
BatchPIR.QueryGen guaranteed that no bucket is queried more
than once. The server then calls BatchPIR.Response, which uses
each of these queries to run a separate PIR on the corresponding
buckets. This results in 𝑏 PIR responses that the server can forward
to the client. The client decrypts the responses to retrieve the de-
sired entries. In [4], the authors used SealPIR as the underlying
PIR scheme. Naturally, we will plug in our OnionPIR to get a more
efficient batched PIR.
Copy Networks. A copy network is a computer network that can
replicate input packets from various sources simultaneously. More
concretely, a copy network can be configured on the fly to copy
each input value for a desired number of times to the destinations.

For our PBSR construction, we are going to use the Beneš copy
network. It is a 𝑁 × 𝑁 interconnection network with 2 log𝑁 − 1
stages. Each stage contains 𝑁 /2 nodes where each node is a 2 × 2
switch. Each switch can be configured to pass through or swap the
incoming packets, or replicate one of the incoming packets. The
only restriction of Beneš copy network is that the total number
of desired copies should not exceed the number of destinations.
Figure 5 depicts an example of a five-stage Beneš copy network.
The network replicates the first input packet twice and the second
and third input packets three times each.

Deng et. al. [28] provides an efficient algorithm to find the con-
figuration of the Beneš copy network so that all the copy requests
are satisfied. Specifically, their configuration algorithm takes as
input a set of indexes and the desired number of corresponding
copies and outputs configurations of all the network switches. We
refer interested readers to [28] for further details on the Beneš copy
networks and their configuration algorithm.

Note that the network structure of the Beneš copy network is
independent of the input values or the copy requests. Therefore
as long as the switching logic is evaluated homomorphically, the
server does not learn any information. Observe that each switch
in the Beneš copy network could be configured in one of the four
configurations. In Figure 6 we show that such a switch can be
constructed using two mux gates. Chillotti et al. [22] use external
product to construct a homomorphic mux gate. Specifically, each
input is a BFV ciphertext and the control bit is a RGSW ciphertext.

Therefore, to homomorphically evaluate the copy network, the
client can send two encrypted control bits (RGSW ciphertexts) for
each switch and the server will use these bits to homomorphically
evaluate each switch. Once again, the client will use the query
compression technique to pack these encrypted bits into as few
BFV ciphertexts as possible. Each input to the copy network passes
through 2 log𝑁 − 1 switches, so the noise in the output ciphertext
only increases logarithmically in 𝑁 .
PBSR construction. Putting batched PIR and homomorphic copy
network together, our final PBSR protocol is presented below.
(1) The client picks 𝑐 random subsets of size 𝑘 , such that 𝑐𝑘 ≤ 𝑁 .
(2) The client union these 𝑐 subsets into a set 𝐼 and pad 𝐼 to have

size 𝑐𝑘 by adding dummy indices.
(3) The client and server run Batched PIR with 𝐼 as the client input

and the database 𝐷𝐵 as the server input.
One difference is that the batched PIR response will be kept at
the server side (denoted as an array 𝐴 of size 𝑏 = 1.5𝑐𝑘) instead
of being sent back to the client.

(4) For each index in 𝐼 , the client counts the number of subsets
that include the index. The client inputs the indices and their
counts to the copy network routing algorithm to obtain the
configurations of all the switches.

(5) The client and the server then homomorphically evaluate the
copy network on the encrypted set 𝐴.
At the end of this step, the server holds 𝑏 = 1.5𝑐𝑘 encrypted
entries containing the desired number of copies for each element
in 𝐴.

(6) The client and the server homomorphically permute the output
using a permutation network [20].

(7) The client asks the server to homomorphically add these copies
into 𝑐 subset sums and return the results. If an entry is included
in multiple subsets, the client will pick a different copy for each
subset sum.
Note that after step (5), the server knows that the adjacent entries

are likely copies of the same database entry. This may leak informa-
tion to the server about how subsets overlap. This is why we need
the permutation step. After the permutation step, the server has no
information about the subsets and whether/how they overlap.
Comparison. Table 2 compares the asymptotic complexity of our
proposed PBSRwith the two PBSR schemes given by Patel et al. [54].



StreamPBSR BatchCodePBSR Our PBSR
Response 𝑂 (𝑁 ) 𝑂 (𝑐) 𝑂 (𝑐)
Request − 𝑂 (𝑐2𝑘 + 𝑁 ) 𝑂 (𝑐𝑘 log(𝑐𝑘) + 𝑁 )

Computation − 𝑂 (𝑐2𝑘 + 𝑁 ) 𝑂 (𝑐𝑘 log(𝑐𝑘) + 𝑁 )

Table 2: Comparison of response, request and computation

of our proposed PBSR scheme with StreamPBSR and Batch-

CodePBSR. Our PBSR has significantly smaller response

than StreamPBSR and much better request size and compu-

tation than BatchCodePBSR (since 𝑐 ≫ log(𝑐𝑘)).

Our construction has a significantly smaller response size than
StreamPBSR. The response size of BatchCodePBSR is similar to
our construction, but its request size and server computation are
quadratic in the number of subsets 𝑐 ; in our construction, they are
quasi-linear in 𝑐 .

6 IMPLEMENTATION AND EVALUATIONS

6.1 Implementation Details

We implemented OnionPIR atop the SEAL Homomorphic Encryp-
tion Library version 3.5.1. SEAL only provides a BFV encryption
scheme. So we implemented RGSW and external products in SEAL.
We also implemented the CRT representation of RGSW encryp-
tion, which is more efficient than using multi-precision arithmetic
operations.

Optimizing polynomial multiplications. In SEAL the polyno-
mial multiplications are performed using number-theoretic trans-
formation (NTT). Each NTT operation has a complexity of 𝑛 log𝑛,
where 𝑛 is the size of the polynomial. However, we notice that
the NTT implementation in SEAL is quite slow, which hurts the
computation time of our protocol. Thus, for NTT, we instead use
NFLlib [55], an efficient library that uses several arithmetic opti-
mizations and AVX2 specialization for arithmetic operations over
polynomials. The NTT implementation in NFLlib is 2 − 3x faster
than SEAL. We integrated NFLlib’s NTT into SEAL. In total, our
modifications consist of around 3000 lines of C++ code.

6.2 Experimental Setup

We run our experiments on Amazon EC2 instances. Specifically,
we used a t2.2xlarge instance with 32 GB ram and 8 CPU cores
with AVX enabled. We have not implemented batched PIR, so the
offline phase computation cost is simulated. All the other results
are obtained by running each experiment 10 times and taking the
average. We also report server monetary cost, which is the sum
of CPU cost for server computation and the server-side cost of
network traffic. These costs were computed using standard rates
from Amazon EC2 Instance prices [3], which at the time of writing
are one cent per CPU-hour and nine cents per GB of Internet traffic.

Parameters. We set the polynomial degree 𝑛 to 4096 and the size
of coefficient modulus 𝑞 to 124 bits. We use SEAL’s default values
for standard deviation error and secret key distribution. The LWE
estimator by Albrecht et al. [1] suggests these parameters yield
about 111 bits of computational security. Due to the lower noise
growth, we can set plaintext modulus 𝑡 to 60 bits. This gives a
ciphertext expansion factor 𝐹 = 4.2x. SealPIR, in comparison, sets

𝑛 to 2048 and 𝑞 to 60 bits, which provides 115 bits of security. They
set 𝑡 to 12 bits, which gives a ciphertext expansion factor of 𝐹 = 10.

In our experiments, we set each database entry to be 30 KB. With
𝑛 = 4096 and 60-bit 𝑡 , 30 KB of plaintext data can fit in a single
ciphertext. In SealPIR, each ciphertext could accommodate only 3
KB of plaintext data, so each database entry is split into 10 chunks.
We will evaluate OnionPIR and stateful OnionPIR with database
sizes ranging from 216 to 224.

For stateful OnionPIR, recall that 𝑐 is the number of subset sums
the client retrieves in each offline phase (also the size of the client
state); 𝑘 is the size of each subset. We set 𝑐 to 500 for both stateful
OnionPIR and Patel et al. across all the database sizes. A larger 𝑘
saves more online computation but increases the request size in
the online phase since the client has to send 𝑘 + 1 random seeds for
the succinct description of the partitions. For stateful OnionPIR, a
larger 𝑘 also increases the computation in the offline phase. Thus,
for stateful OnionPIR, we pick a relatively small 𝑘 that gives a
good trade-off: for databases of size 216, 218, 220, 224, 𝑘 is set to
8, 16, 16, 64, respectively. For Patel et al., we set 𝑘 =

√
𝑁 /2 following

their original paper.

6.3 Evaluation Results of OnionPIR

We evaluate OnionPIR with different database sizes, report the
computational cost, request size, and response size and compare
with SealPIR in Table 3.
Computation. In OnionPIR and SealPIR, the server mainly per-
forms two tasks: query unpacking and dot-products between the
query vectors and the (intermediate) database. Query unpacking
in OnionPIR takes much less time than SealPIR because we pack
only a logarithmic number of query bits (q.v. Section 4.3), while
in SealPIR 2 2√

𝑁 bits are packed in query ciphertexts. Overall, the
dot-products account for most of the server computation. The com-
putational cost of OnionPIR is almost identical to SealPIR across
all database sizes.

For both SealPIR andOnionPIR, the computation time increases
linearly with the database size. This results in a quite high compu-
tation time for large databases. For example, for a database with 16
million entries, the server computation time is around 1.7 hours.
Request Size. For databases with up to four million entries, the
request size in OnionPIR is twice as large as SealPIR. This is be-
cause each ciphertext in OnionPIR is four times bigger than the
SealPIR ciphertext. But for larger databases, the request size of
OnionPIR will remain 64 KB while the request size of SealPIR will
start to increase and eventually exceed OnionPIR. For example,
for a database with one billion entries (not shown in the table) the
request size of SealPIR will be 512 KB.
Response Size. OnionPIR shines in response size. Specifically, the
response size is only 128 KB where the response size in SealPIR is
3, 200 KB.
Servermonetary Cost. The server monetary cost heavily depends
on the database size. For smaller databases, the server monetary
cost is dominated by network traffic, and OnionPIR is orders of
magnitude cheaper than SealPIR. But for bigger databases, compu-
tation becomes the dominating factor in the server monetary cost,
and the two schemes become almost equal. As an example, for a
database with 65, 536 entries, the server cost of OnionPIR is four



SealPIR OnionPIR

𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224 𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224

Response size (KB) 3, 200 3, 200 3, 200 3, 200 128 128 128 128

Request size (KB) 32 32 32 64 64 64 64 64

Query Unpack (sec) 5.4 10.7 21.5 86.3 3.6 4.1 4.6 5.5

Dot-Products (sec) 20.7 91.2 381.6 6, 362.1 21.3 97.0 396.3 6, 410.7

Total Computation (sec) 26.1 101.9 403.1 6, 448.4 24.9 101.1 400.9 6, 416.2

Server cost (US cents) 0.034 0.055 0.139 1.818 0.008 0.029 0.112 1.792

Table 3: Performance comparison of OnionPIR and SealPIR for different database sizes. Red boxes represent worse efficiency

and blue boxes represent better efficiency.

Stateful OnionPIR Patel et al. Scheme

𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224 𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224

Online
Response size (KB) 128 128 128 128 3, 200 3, 200 3, 200 3, 200

Request size (KB) 64.1 64.2 64.2 64.5 34 36 40 64

Computation (sec) 3.1 6.3 25.1 200.5 0.1 0.4 0.8 3.1

Response size (KB) 128 128 128 128 3, 932 15, 728 62, 914 1, 006, 632

Offline Request size (KB) 11.0 23.1 24.6 66.5 − − − −
Computation (sec) 10.6 23.2 25.0 87.1 − − − −
Response size (KB) 256 256 256 256 7, 132 18, 928 66, 114 1, 009, 832

Total Request size (KB) 75.1 87.3 88.8 131.0 34 36 40 64

(amortized) Computation (sec) 13.7 29.5 50.1 287.6 0.1 0.4 0.8 3.1

Server Cost (US cents) 0.006 0.010 0.016 0.081 0.061 0.162 0.567 8.668

Table 4: Comparison of stateful OnionPIR with Patel et al. scheme for various database sizes.

times less than SealPIR; but for a database with one million entries,
OnionPIR’s server cost is just 19% lower.

6.4 Evaluation Results of Stateful OnionPIR

In Table 4, we compare the performance of stateful OnionPIR with
the Patel et al. scheme using StreamPBSR [54] in the offline phase
and SealPIR in the online phase.

Comparison with OnionPIR. Stateful OnionPIR significantly
reduces the computation cost over stateless OnionPIR. The reduc-
tion in computational time scales with the database size, ranging
from 1.8x to 22x in our experiments. The trade-offs are request size
and response size. Specifically, response size is doubled and the
request size increased by 1.1 ∼ 2x for different database sizes. In
terms of monetary cost, stateful OnionPIR is 1.3 ∼ 22x cheaper
over stateless OnionPIR.

Comparison with Patel et al.. The Patel et al. scheme has quite
a large amortized response size due to downloading the entire
database in the offline phase. With our proposed PBSR scheme,

the amortized response size in stateful OnionPIR is significantly
reduced. For all the databases in Table 4, the amortized response
size of stateful OnionPIR is only 256 KB, which is a reduction of
27 ∼ 3, 900x compared to Patel et al.. A trade-off here is that Patel
et al. have very small computation. This is because their offline
phase does not require any computation and we picked a much
bigger subset size 𝑘 for their scheme, which significantly reduces
their online computation. Despite the better computation, their
significantly larger response size results in a higher monetary cost.
Overall, the stateful OnionPIR has around 10 ∼ 107x cheaper
monetary cost than Patel et al..

7 RELATEDWORK

Early single-server PIR schemes. Some of the early single-
server PIR protocols are based on additively homomorphic encryp-
tion (AHE). These schemes followed the blueprint of Kushilevitz and
Ostrovsky [47]: the database is represented as a high-dimensional
hypercube and the client’s request is encrypted under an AHE. The



original protocol of the Kushilevitz and Ostrovsky scheme has a re-
quest size of𝑂 (

√
𝑁 log𝑁 ) and a response size of𝑂 (

√
𝑁 ). Cachin et

al. [14] proposed a PIR protocol based on the 𝜙-Hiding assumption
with a request size of 𝑂 (log4 𝑁 ) and a response size of 𝑂 (log𝑑 𝑁 ).
Gentry and Ramazan [33] generalized Cachin et al.’s approach and
proposed a communication-efficient PIR protocol with a request size
of 𝑂 (log3−𝑜 (1) 𝑁 ). Chang [19] follows the Kushilevitz-Ostrovsky
scheme but uses Pailer homomorphic encryption to construct PIR
with 𝑂 (

√
𝑁 log𝑁 ) request size and 𝑂 (log𝑁 ) response size. Lip-

maa [49] generalizes it to the Damgard-Jurik encryption [27] to
achieve 𝑂 (log2 𝑁 ) request size and 𝑂 (log𝑁 ) response size.

Unfortunately, Sion and Carbunar [57] observe that these
schemes in practice often perform slower than downloading the
entire database when the network bandwidth is just a few hundred
Kbps. The poor performance is because, in all of these schemes,
the server needs to perform at least 𝑁 big-integer modulus multi-
plications or modulus exponentiations. The computation cost of
these operations is often higher than simply sending the data to
the client.
Recent practical single-server PIR schemes. Recent single-
server PIR constructions are based on lattice-based cryptography,
and in particular, Ring Learning with error (RLWE) encryption.
Aguilar-Melchor et al. [50] present XPIR. To retrieve a 30 KB en-
try from a database with one million entries, their protocol takes
around 383 seconds of server computation, which is slightly less
than OnionPIR. However, the downside of their protocol is that
the request size is 17 MB and the response size overhead is 100𝑥 .
SealPIR [4] addresses the request size bottleneck by introducing
the query compression technique. This results in a significant re-
duction in request size (to 32 KB) at a cost of a slight increase in
overall computation. But the response size is still 100𝑥 , similar to
XPIR.
Concurrent works. Very recently, Park and Tibouchi [53] present
a construction based on external products that improve the re-
sponse overhead to 16x; but their computation cost more than
doubled compared to SealPIR. Ali et al. [2] also gives a protocol
that improves upon SealPIR’s response size. Their main technique
is to use BFV ciphertext multiplication in the second dimension fol-
lowed by modulus switching to reduce the response size. To handle
the higher noise growth from BFV ciphertext multiplication, their
protocol requires larger FHE parameters, which increases server
computation cost. Overall, ourOnionPIR performs better than their
scheme in all the metrics. Concretely, to retrieve 60 KB entry1 from
a database with one million entries requires around 900 seconds
of server computation, 357 KB response size, and 119 KB request
size. In comparison, for the same setting, OnionPIR requires 800
seconds of computation, 256 KB response size, and 64 KB request
size.
Multi-server PIR. While the focus of our paper is single-server
PIR, we mention that there also exist many PIR protocols based
on multiple non-colluding servers [6–8, 23, 24, 30, 36, 60, 61]. The
first multi-server PIR schemes are proposed by Chor et al. [24]
and they provide information-theoretic security. At a high level,

1Ali et al.’s schemework best when the entry size is a multiple of 20KBwhileOnionPIR
works best when the record size is multiple of 30 KB. This is why we chose 60 KB for
a fair comparison.

the client sends XOR-based secret shares of the query to each
server and the server performs plaintext XOR operations. The re-
quest size is 𝑂 (

√
𝑁 ) with two servers. Protocols with better re-

quest sizes are known using three or more non-colluding servers.
The best existing three-server schemes have a request size of
2𝑂 (
√
log𝑁 log log𝑁 ) [30, 61]. Gilboa et al. [36] proposed a two-server

computationally secure PIR scheme with a poly-logarithmic request
size based on distributed point functions. The server computation
consists of 𝑂 (𝑁 ) PRG evaluations and XOR operations. Overall,
these multi-server schemes have superior computational efficiency
than single-server schemes because their server computation does
not involve costly public-key operations.

Stateful PIR. Patel et al. [54] introduced stateful PIR where the
client retrieves some helper data in the offline phase and uses them
to make the online phase cheaper. The construction of Patel et
al. uses a single server. The amortized computation cost of their
framework is still linear in the database size, but most of the op-
erations involve only symmetric-key cryptography. The number
of public-key operations dropped to sub-linear, which leads to a
substantial reduction in amortized computation cost over stateless
PIR. However, their scheme requires the client to download the
entire database in the offline phase. For applications with large
database sizes downloading the entire database is not practical.

In recent pioneering work, Corrigan-Gibbs and Kogan have
proposed two-server stateful PIR schemes with amortized sublin-
ear computation complexity [26, 46]. This two-server PIR scheme
shows promising efficiency in both theory and practice. Corrigan-
Gibbs and Kogan also proposed a single-server variant of their
stateful PIR utilizing FHE. This single-server variant, however, is
much less efficient. Specifically, the single-server variant needs to
run the offline phase again after every single online query. There-
fore, it only reduces the online cost while the overall cost is actually
much worse than stateless PIR.

Orthogonal directions to improve PIR computation.Wemen-
tion two orthogonal directions to reduce server computation in PIR.
One direction is batched PIR. This general strategy has been adopted
in a setting where the queries comes from a single client [4, 42, 43]
or multiple clients [9, 44]. OurOnionPIR can be extended to support
batched queries and we have used it in our PBSR construction. But
we remark that batched PIR is not always applicable because, in
many scenarios, the client has only one query to make at a time.

Another direction is PIR with preprocessing, first proposed by
Beimel et al. [9]. In their scheme, the server first performs a lin-
ear preprocessing step; after that, the server’s work per query is
sub-linear. Their protocol requires multiple non-colluding servers.
Recently, Canetti et al. [15] and Boyle et al. [13] constructed single-
server PIR with preprocessing, which is also called doubly efficient
PIR. These schemes have been proposed in both symmetric-key and
public-key settings. In the symmetric-key variant, the database can
only be accessed by a single client, which does not fully match the
public database model of PIR. In other words, this would require
the server to store a separate copy of the prepossessed database
for each client. On the other hand, the current public key variant
requires strong cryptographic assumptions such as obfuscation,
which makes them impractical at the moment.



Related privacy-preserving primitives. Oblivious RAM
(ORAM) is another primitive that provides access pattern pri-
vacy [37, 38, 58]. It solves a related but different problem since it is
designed for a private database that can only be accessed by a single
client. Conventional ORAM constructions must incur a logarithmic
response overhead. To reduce this overhead, SHE-based ORAM
constructions have been proposed [20, 29]. These works have also
partially inspired the design in this paper.

Even though ORAM has sublinear computation and constant
bandwidth. These schemes could not be used for PIR because they
do not support multiple clients [10, 45]. Several works have consid-
ered extending ORAM schemes to enable access to a large group of
clients [12, 16–18, 52] but these works have limitations; they either
require inter-client communication, a trusted proxy that manages
client-server communication, or the computation increases with
the number of clients.

Hamlin et al. recently introduced Private Anonymous Data Ac-
cess (PANDA) [41]. PANDA is built on symmetric-key doubly effi-
cient PIR, with the additional feature that the server is stateful and
maintains information between multiple requests.

The scheme guarantee privacy if the number of corrupted clients
is below a certain threshold but the downside is that the client and
server computation is linear in the number of colluding clients.

8 CONCLUSION

In this paper, we have proposed a OnionPIR, response-efficient
single-server PIR scheme with a response overhead of just 4.2x of
an insecure baseline. The computation cost of OnionPIR is compa-
rable or slightly better than the prior art. We improve the stateful
PIR framework of [54] by introducing a novel and efficient offline
phase. We integrate OnionPIR into the stateful PIR framework
and achieve a 1.8 ∼ 22x improvement in computation time over
stateless OnionPIR.

Future Directions. Even with all our improvements, single-server
PIR (both stateless and stateful) still requires considerable server
computation for large databases. It is interesting to explore further
improvements to stateless single-server PIR (which is used in both
the offline and online phases of our stateful PIR) as well as the PBSR
problem.

One potential avenue is through better implementation or hard-
ware acceleration. In our experiments, we noticed that over 80% of
the server compute time is due to number-theoretic transformation
(NTT) (which is the bottleneck of polynomial multiplication). In our
implementation of OnionPIR, we have used the NFLlib library that
has implemented NTT using AVX2 specialization. Recent research
efforts have demonstrated that GPU and FPGA can significantly
speed up polynomial multiplications [56]. An interesting future
direction is to integrate them into PIR.

Another direction is to try to get rid of the expensive public-key
operations in the online phase of stateful PIR. One such construction
is given in [26] and it has a very cheap online phase. But the client
has to rerun the offline phase after every online query. Finding an
efficient online phase that does not require public-key operations
or rerunning the offline phase every time is a promising future
direction.

One limitation of the stateful PIR framework is that it currently
only applies to the static database. An interesting direction is to
explore how to support updates to the database in stateful PIR.
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