
Key Encapsulation Mechanism with Tight
Enhanced Security in the Multi-User Setting:
Impossibility Result and Optimal Tightness

Shuai Han1,2 , Shengli Liu1,2,3(�) , and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. For Key Encapsulation Mechanism (KEM) deployed in a multi-user setting, an
adversary may corrupt some users to learn their secret keys, and obtain some encapsulated
keys due to careless key managements of users. To resist such attacks, we formalize Enhanced
security against Chosen Plaintext/Ciphertext Attack (ECPA/ECCA), which ask the pseu-
dorandomness of unrevealed encapsulated keys under uncorrupted users. This enhanced
security for KEM serves well for the security of a class of Authenticated Key Exchange
protocols built from KEM.

In this paper, we study the achievability of tight ECPA and ECCA security for KEM
in the multi-user setting, and present an impossibility result and an optimal security loss
factor that can be obtained. The existing meta-reduction technique due to Bader et al.
(EUROCRYPT 2016) rules out some KEMs, but many well-known KEMs, e.g., Cramer-
Shoup KEM (SIAM J. Comput. 2003), Kurosawa-Desmedt KEM (CRYPTO 2004), run out.
To solve this problem, we develop a new technique tool named rank of KEM and a new
secret key partitioning strategy for meta-reduction. With this new tool and new strategy,
we prove that KEM schemes with polynomially-bounded ranks have no tight ECPA and
ECCA security from non-interactive complexity assumptions, and the security loss is at least
linear in the number n of users. This impossibility result covers lots of well-known KEMs,
including the Cramer-Shoup KEM, Kurosawa-Desmedt KEM and many others. Moreover,
we show that the linear security loss is optimal by presenting concrete KEMs with security
loss Θ(n). This is justified by a non-trivial security reduction with linear loss factor from
ECPA/ECCA security to the traditional multi-challenge CPA/CCA security.

1 Introduction

The security of a cryptographic primitive is generally formalized by setting up a reasonable security
model and defining a proper security notion. The security model formalizes resources obtained by
an adversary A and also the attacks implemented by A in the real-life settings. For a primitive Π
(or a computational problem P), its security model is described by an experiment (game) ExpΠ in
which the environment (challenger) and an adversary interact with each other. The environment
(challenger) in ExpΠ provides the resources with which A implements attacks, then environment
detects whether A wins. Here A wins in ExpΠ means that the aim of its attacks is achieved.
Without any resources for help, there also exists a threshold winning probability threExpΠ for any
adversary. ThenA’s attacking advantage is given by εA := |Pr[A wins]−threExpΠ |. We call (tA, εA)-
A successfully attacks Π if A’s running time is tA and advantage is εA. Parameters tA and εA
are measured by security parameter λ. If for all probabilistic polynomial-time (PPT) adversaries,
their advantages are all negligible in the security parameter λ, then Π is (asymptotically) secure.

Security Reduction and Tightness. The security proof of primitive Π generally proceeds
with a reduction algorithm R, which transforms a (tA, εA)-adversary A against Π to an algorithm
(tR, εR)-RA against a computational problem P (or another cryptographic primitive). Generally,
we only consider simple black-box reduction [2], where R has oracle access to A by choosing the
inputs for A, running the adversary sequentially and observing its outputs (but not the codes or
internal states of A). Note that the working effort for A to win the security game is measured by

 Ü A�*_ kykRX � T`2HBKBM�`v p2`bBQM Q7 i?Bb T�T2` �TT2�`b BM �aA�*_uSh kykRX h?Bb Bb i?2 7mHH p2`bBQMX

https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

the work factor tA/εA [3], which captures the expected running time of A to break the security.
The quotient of R’s working factor and A’s working factor is defined as the security loss factor
`R, i.e., `R := εA

εR
· tRtA . If `R is a polynomial in the security parameter λ, then the security of

Π is successfully reduced to the hardness of P. This implies that Π is secure as long as P is
computationally hard. On the other hand, a large loss factor `R will lead to a gap between Π’s
security level and P’s hardness. To fill the gap, Π has to choose a large security parameter to make
P hard enough, and this might make Π less efficient. Therefore, the smaller the security loss `R
is, the better the security reduction. If `R is a constant, the reduction is called a tight one. If `R
is an a priori fixed polynomial in λ, then the reduction is called almost tight (or linear-preserving
according to [32]). Such reductions (tight or almost tight) are desirable, since the loss factor is
independent of adversarial behavior.

In cryptography, most of long-standing hard problem assumptions are non-interactive ones
including the Decision Diffie-Hellman (DDH) assumption, the Factoring assumption, the Learning
with Error (LWE) assumption, the existence of one-way function assumption, etc. If the security of
a primitive can be (almost) tightly reduced to a Non-Interactive Complexity Assumption (NICA)
[2], we call the primitive has (almost) tight security.

(Almost) tight security proofs for cryptographic schemes are always preferable. But the first
question to be answered is whether (almost) tight reductions exist for the schemes.

KEM and Its Traditional Security. Key Encapsulation Mechanism (KEM) KEM = (Gen,Encap,
Decap) is an important public-key primitive. Its key generation algorithm Gen is able to generate
a pair of public key pk and secret key sk. With the public key pk, the encapsulation algorithm
Encap can output an encapsulation c and an encapsulated key K. With the secret key sk, the
decapsulation algorithm Decap can recover the encapsulated key K from c. KEM found wide
applications in theoretic community and real world. For example, public-key encryption (PKE)
schemes can always be constructed in a KEM + DEM (Data Encapsulation Mechanism) style
[10], which include the well-known ElGamal scheme [12], Cramer-Shoup (CS) scheme [8, 9, 10],
Kurosawa-Desmedt (KD) scheme [27], etc. Meanwhile, KEM usually serves as an essential building
block in key exchange protocols. For example, the Diffie-Hellman key exchange protocol [11] can be
regarded as exchanging pk = ga, c = gb and establishing K = gab, with (pk = ga, sk = a)← Gen
and (c = gb,K = gab) ← Encap(pk). In [1, 30, 23, 17], the authenticated key exchange (AKE)
protocols are built from KEM and signature schemes. Due to the importance of KEM, NIST
included KEM in their calling list for standards of post-quantum algorithms.

Traditionally, the security of KEM is defined in a single-user setting. In the single-user and
multi-challenge Chosen-Plaintext Attack (mCPA) security model, the adversary sees the public
key pk of KEM, and the environment invokes Encap multiple times to obtain (ci,Ki)← Encap(pk).
The mCPA security of KEM asks the pseudorandomness of {Ki} given pk and {ci} to adversaries.
Multi-challenge Chosen-Ciphertext Attack (mCCA) security of KEM can be similarly defined,
except that the adversary additionally has access to a decapsulation oracle which provides decap-
sulation services for any c other than {ci}.

Multi-User Security for KEM. We note that the traditional mCPA (mCCA) security notion
in the single user setting does not cover the attacks in our real-life deployment of KEM. In the era
of Internet, cryptographic schemes should presume to be deployed in multi-user systems. Moreover,
in reality, we can never rule out the possibility that the secret keys of some users are stolen by
hackers, or leaked to adversaries due to careless key management.

As for KEM, the practical attacks, including corruption of users’ secret keys and revealing of
some encapsulated keys, have to be considered in the security model. Concretely, in a system of
n users with (pki, ski) ← Gen, 1 ≤ i ≤ n, the adversary may corrupt a subset I of users of its
choice and obtain their secret keys {ski}i∈I . For any uncorrupted user j /∈ I, the adversary is able
to see all the encapsulations {cj,t}1≤t≤Q under pkj from a public channel, where (cj,t,Kj,t) ←
Encap(pkj), 1 ≤ t ≤ Q. The adversary may reveal some encapsulated keys {Kj,r}r∈R for a subset
R ⊆ {1, ..., Q}. The security of KEM asks pseudorandomness of the unrevealed keys {Kj,t}j /∈I,t/∈R.

Such a security notion also meets the security requirement for KEM used as a building block
in many applications. For example, in the KEM+DEM framework for constructing PKE [10], if
an adversary sees a pair of plaintext & ciphertext of PKE, then the involved encapsulated key
of KEM might be uniquely determined by the adversary [12] or partially leaked to the adversary
[10, 27]. Another example is AKE schemes built from KEM, where KEM’s public/secret keys
serve as (part of) AKE’s long-term public/secret keys and KEM’s encapsulated keys are used to

2

derive AKE’s session keys [6, 23]. The security model of AKE (like the CK [5], CK+ [26], eCK
[28] models) allows corruption of long-term secret keys and revealing of session keys, which in turn
requires the underlying KEM supporting corruptions and key reveals.

In conclusion, the proper security for KEM in the multi-user setting should allow adversaries
to implement corruptions & key reveals and ask the pseudorandomness of the unrevealed encap-
sulated keys under public keys of uncorrupted users. We name such notion Enhanced security, in-
cluding Enhanced CPA (ECPA) security and Enhanced CCA (ECCA) security. Obviously, ECPA
(resp., ECCA) security is stronger and more desirable than the traditional mCPA (resp., mCCA)
security. There are two natural questions to be answered:

(1) Do the well-known KEM schemes have tight ECPA security (or ECCA security)? For example,
the ElGamal-KEM [12], CS-KEM [8, 9, 10] and KD-KEM [27] are among the most efficient
KEMs. The GHKW-KEM [14] and HLLG-KEM [18] are core building blocks in achieving
(almost) tightly mCCA security for PKE. The Naor-Yung paradigm [34] is a generic approach
to CCA-secure PKE, which further results in Naor-Yung type CCA-secure KEM (NY-KEM)
by encrypting a uniformly random encapsulated key. We would like to investigate whether
they achieve tight ECPA (or ECCA) security.

(2) How to identify those KEMs incapable of achieving tight ECPA or tight ECCA security?

Impossibility Results on Security Tightness of KEM. It is highly desirable to identify
those KEMs for which it is impossible to reduce the ECPA (ECCA) security to any non-interactive
complexity assumption (NICA) tightly.

In [2], Bader et al. made use of meta-reduction [7] to prove impossibility of tight security for
some KEMs, namely, (almost) tight security reduction from multi-user mCPA (mCCA) security
to NICA does not exist for a class of KEM schemes. These KEM schemes are characterized by the
properties of “secret key checkability” and “secret key uniqueness/re-randomizability”. “Secret
key checkability” means that there exists an efficient algorithm checking whether (pk, sk) is a
valid public/secret key pair output by Gen; “Secret key uniqueness” means that there is at most
one valid secret key sk for each pk; “secret key re-randomizability” means that given a valid pair
(pk, sk), there exists an efficient algorithm randomly choosing another secret key sk′ from the set
of secret keys that validly match pk.

Clearly, ECPA (resp., ECCA) security tightly implies multi-user mCPA (resp., mCCA) se-
curity, so all KEM schemes that satisfy “secret key checkability” and “secret key uniqueness/re-
randomizability” do not have (almost) tight enhanced security. Recall that the ElGamal KEM
[12] has public key pk = ga and secret key a, which obviously satisfies “secret key checkability”
and “secret key uniqueness”. This rules out the (almost) tight ECPA security of ElGamal KEM.

However, lots of other KEM schemes, including the CS-KEM [8, 9, 10] and KD-KEM [27], have
neither “secret key uniqueness” nor “secret key re-randomizability”. For example, for the CCA-
secure CS-KEM [8, 9, 10], its public key pk contains h = gz11 g

z2
2 where (z1, z2) ∈ (Zp)2 is part of

secret key sk. For a fixed pk = (h, . . .), the set of valid secret keys is {(z′1, z′2, . . .) | h = g
z′1
1 g

z′2
2 }.

There are at least p valid secret keys, hence “secret key uniqueness” does not hold. Any two secret
keys with distinct (z1, z2) and (z′1, z

′
2) can determine the value of logg1 g2 = (z1 − z′1)(z′2 − z2)−1

mod p, hence solving the discrete logarithm problem. So the CS-KEM does not satisfy the property
of “secret key re-randomizability”, unless the discrete logarithm problem is easy to solve. Therefore,
determining whether tightness impossibility holds for such KEM schemes needs new techniques.

Our Contribution. We work on impossibility of tight reduction on KEM, and show that for
certain KEM schemes, there exists no (almost) tight security reduction from the ECPA (ECCA)
security to non-interactive complexity assumptions (NICA). We also present the optimal tight-
ness bound of security loss factor and identify those KEM schemes that can achieve the optimal
tightness bound. Our contribution is detailed as follows.

– We develop a useful tool named rank of KEM to identify a class of KEM schemes for which
impossibility of (almost) tight reduction holds. More precisely, we proved that as long as the
rank of a KEM scheme is polynomially bounded (in the security parameter λ), the incurred
security loss factor of KEM is Ω(n) when the enhanced security of KEM is reduced to any
NICA. Here n denotes the number of users.

– We compute the ranks or provide upper bounds of ranks for the well-known KEM schemes in-
cluding the ElGamal-KEM [12], CS-KEM [8, 9, 10], KD-KEM [27], GHKW-KEM [14], HLLG-

3

KEM [18], and many instantiations of NY-KEM [34]. Their polynomially-bounded ranks in-
dicate that these KEMs suffer from a security loss factor Ω(n).

– On the other hand, we proved that any tightly mCPA (resp., mCCA) secure KEM is able
to achieve ECPA (resp., ECCA) security with loss factor O(n). As a result, the ElGamal-
KEM [12], CS-KEM [8, 9, 10] and KD-KEM [27] all have ECPA security with security loss
factor Θ(n) when reduced to the DDH assumption. Similarly, the HLLG-KEM [18] has ECCA
security with security loss factor Θ(n) based on the matrix DDH (MDDH) assumption [13]
(which corresponds to the standard DDH, k-Linear assumptions under different parameters).
This suggests that the optimal security loss factor for ECPA (ECCA) is Θ(n) and achievable.

We highlight that our impossibility result is the first that does not impose any requirement on
the (pk, sk) relation (like checkability [2, 19], uniqueness, or re-randomizability [7, 25, 21, 2, 31]),
nor limited to deterministic primitives [32].

1.1 Technique Overview

The Meta-Reduction Paradigm. Our impossibility result about KEM is built upon a line of
research on using “meta-reductions” [4, 7, 25, 21, 2, 35, 32]. To the best of our knowledge, up to
now all known black-box separations using the meta-reduction paradigm only apply to primitives
that either embody some form of uniqueness or re-randomizability [7, 2] or are deterministic ones
like pseudorandom function (PRF) or message authentication code (MAC) with deterministic
tagging [32].

The high-level idea of the meta-reduction paradigm for a primitive works as follows. Let R be
any reduction algorithm from the security of the primitive to any NICA. Firstly, we construct a
hypothetical (inefficient) adversary A∗ that breaks the security of the primitive with advantage
εA∗ ≥ 1−α. Here α means the failure probability ofA∗. Let εRA∗ be the advantage with whichRA∗

breaks the NICA via black-box access to A∗. Secondly, we construct an efficient meta-reduction
algorithm B, which “emulates”A∗ while runningR. Suppose that B emulatesRA∗ perfectly except
with probability at most δ, then B’s advantage εB against NICA satisfies |εB−εRA∗ | ≤ δ. Obviously,
the running time tRA∗ is lower-bounded by tA∗ . Consequently, the loss factor of reduction R is

`R ≥ εA∗
εRA∗

· tRA∗tA∗
≥ 1−α

εB+δ
.

By the NICA assumption, εB is negligibly small for any efficient B. So

`R = Ω(1−α
δ), (1)

which suggests that the failure probability α of A∗ and the failure probability δ of B are the key
factors for the lower bound of loss factor `R.

Let us take [2] and [32] as examples, both of which rule out (almost) tight (i.e., linear-
preserving) reductions for the multi-user security of some primitives. Let n denote the number of
users.

– In [32], α = 1/poly(λ) for some polynomial poly. If MAC is deterministic, then δ = 1/
√
n.1

Therefore, the security reduction for such MACs loses a factor of Ω(
√
n).

Note that the construction of A∗ and meta-reduction B in [32] are tailored for deterministic
primitives like PRF, deterministic MAC, deterministic signature, etc.

– In [2], α = 0. If KEM satisfies the properties of “secret key checkability” and “secret key
uniqueness/re-randomizability”, then δ = 1/n. Therefore, the security reduction for such
KEMs loses a factor of Ω(n).
Note that in [2] the secret keys are partitioned according to an efficient algorithm SKCheck(·, ·)

which checks the relation between pk and sk. For each pk, let SKpk be the set of all secret
keys corresponding to pk, i.e, SKpk := {sk′ | SKCheck(pk, sk′) = 1}. “Secret key uniqueness”
means that there is unique sk in SKpk. “Secret key re-randomizability” requires that there is
another efficient algorithm for sampling sk′ from SKpk uniformly at random, given a pair of
(pk, sk). The construction of A∗ and B in [2] works so that δ = 1/n when (pk, sk) relation has

1 Their results apply to more general reductions supporting rewinding and concurrency, based on
bounded-round interactive complexity assumptions.

4

checkability and uniqueness/re-randomizability. Such a condition is satisfied by the ElGamal-
KEM [12], but lots of other KEMs run out, including the CS-KEM [8, 9, 10], KD-KEM [27],
GHKW-KEM [14], HLLG-KEM [18], etc. Therefore, we have to resort to new techniques to
identity whether these KEMs have (almost) tight ECPA (ECCA) security or not.

New Partitioning Technique: Decapsulation Equivalence of Secret Keys. In this paper,
we take full advantage of the resources provided to adversary in the ECPA (ECCA) game, and
provide a novel technique of partitioning secret keys. We do not impose any requirement on the
(pk, sk) relation (like checkability, uniqueness, or re-randomizability), and the secret keys are no
longer partitioned according to public keys like [2] does. Our new strategy is partitioning secret
keys according to their functionality when they are used to decapsulate a set of ciphertexts X .

We define a decapsulation equivalence relation on the secret key space SK w.r.t. a subset of
ciphertexts X ⊆ CT . Any two secret keys sk, sk′ ∈ SK are decapsulation-equivalent w.r.t. X if
they result in the same decapsulated key for each ciphertext in X . In formula,

sk∼X sk′ ⇐⇒ ∀c ∈ X , Decap(sk, c) = Decap(sk′, c).

Then the equivalence relation parameterized by ciphertext set X is

EquivSK(X) := {(sk, sk′) ∈ SK2 | ∀c ∈ X ,Decap(sk, c) = Decap(sk′, c)}.

Our Meta-Reduction. With the new partitioning of secret keys, we are able to present our
new meta reduction. Here we give a high-level overview of the hypothetical adversary A∗ and
meta-reduction algorithm B in our meta-reduction. Define [n] := {1, 2, · · · , n} and [n \ i] :=
{1, 2, · · · , n} \ {i}. A∗ works as follows.

Hypothetical A∗

• Step 1 (Setup): A∗ receives public keys {pk1, · · · , pkn} of n users, which
are generated by (pki, ski)← Gen.

• Step 2 (Encapsulation): A∗ issues Q encapsulation queries per user,
and obtains nQ encapsulations {ci,j}i∈[n],j∈[Q], where (ci,j ,Ki,j) ←
Encap(pki).

• Step 3 (Key Reveal): A∗ reveals Q− 1 encapsulated keys per user ran-
domly, and obtains n(Q − 1) encapsulated keys {Ki,j}i∈[n],j∈[Q\ji], where
j1, j2, · · · , jn ←$ [Q] are the indices of unrevealed keys.

• Step 4 (Corruption & Check): A∗ corrupts all users except one, and
obtains n− 1 secret keys {ski}i∈[n\i∗], where i∗ ←$ [n] is the index of the
uncorrupted user.

Then A∗ checks whether the decapsulation relation Decap(ski, ci,j) =
Ki,j holds for each i ∈ [n \ i∗] and j ∈ [Q \ ji], and aborts if the check fails.

• Step 5 (Challenge & Output):A∗ obtains a challenge K∗ w.r.t. ci∗,ji∗ ,
which is either the real key Ki∗,ji∗ encapsulated in ci∗,ji∗ or a random key.

By brute-force search, A∗ picks a random sk∗ from the set

{sk ∈ SK | Decap(sk, ci∗,j) = Ki∗,j , ∀j ∈ [Q \ ji∗]}. (2)

Finally, A∗ outputs 1 if and only if K∗ = Decap(sk∗, ci∗,ji∗) holds.

Note that by the perfect correctness of KEM, the real secret key ski∗ of user i∗ also belongs to
the above set shown in (2), so the real secret key ski∗ and the sk∗ chosen by A∗ have the same
decapsulation functionality when they are used to decapsulate the set of ciphertexts {ci∗,j}j∈[Q\ji∗].
Consequently, by the equivalence relation we defined, we have

(sk∗, ski∗) ∈ EquivSK({ci∗,1, · · · , ci∗,Q} \ {ci∗,ji∗}).

Observe thatA∗ will have advantage 1 if EquivSK({ci∗,1, · · · , ci∗,Q}\{ci∗,ji∗}) ⊆ EquivSK({ci∗,ji∗}),
i.e., all the secret keys that have the same decapsulation results on the Q−1 ciphertexts also result

5

in the same decapsulation result on one more ciphertext ci∗,ji∗ . Define

α := max
c1,c2,··· ,cQ

(
Pr

j ←$ [Q]

[
EquivSK({c1, · · · , cQ} \ {cj}) 6⊆ EquivSK({cj})

])
. (3)

Then A∗ has advantage εA∗ ≥ 1− α.
Now we construct a meta-reduction B that emulates A∗ efficiently while running R as the

challenger. Note that all steps of A∗ are efficient except step 5. So B can emulate steps 1-4 of A∗
honestly. Then B adds a rewinding step 4.5 which rewinds the corruption procedure n− 1 times.
With the help of information obtained from the rewindings, B derives a secret key to emulate A∗
with an efficient step 5’, which is different from the step 5 of A∗. A high-level overview of B is as
follows.

Meta-Reduction B

• Steps 1-4: B runs R as the challenger and emulates A∗ honestly. Suppose
that in step 4, the index of the uncorrupted user is i∗.

• Step 4.5 (Rewinding): B rewinds the corruption procedure n− 1 times.
In the ι-th rewind (ι ∈ [n \ i∗]), B corrupts all users except user ι and

obtains the corrupted secret keys {sk(ι)i }i∈[n\ι] from R, where sk
(ι)
i denotes

the corrupted secret key of user i obtained in the ι-th rewind.

• Step 5’ (Challenge & Output): B runs R to obtain the challenge K∗,
but has a different strategy for the output bit.

More precisely, B checks whether it ever obtained a corrupted sk
(ι)
i∗ of

user i∗ in one of the n− 1 rewindings, such that

Decap(sk
(ι)
i∗ , ci∗,j) = Ki∗,j , for ∀j ∈ [Q \ ji∗]. (4)

If B finds such a sk
(ι)
i∗ , then B uses sk

(ι)
i∗ to test whether K∗ =

Decap(sk
(ι)
i∗ , ci∗,ji∗), and returns 1 to R if and only if the equation holds.

In step 5’, as long as there exists a rewinding in which R responds with a corrupted secret key

sk
(ι)
i∗ such that (4) holds, then B will not abort. Since i∗ is randomly chosen from [n], by a similar

argument as [2, 19], we can bound the the probability that B aborts by 1/n. If (4) holds, then the

sk
(ι)
i∗ obtained by B also belongs to the set defined in (2), from which A chooses its sk∗, thus

(sk
(ι)
i∗ , sk

∗) ∈ EquivSK({ci∗,1, · · · , ci∗,Q} \ {ci∗,ji∗}).

In this case, B will perfectly emulate A∗ as long as EquivSK({ci∗,1, · · · , ci∗,Q} \ {ci∗,ji∗}) ⊆
EquivSK({ci∗,ji∗ }), which happens with probability at least 1 − α according to the definition
of α in (3). Taking into account the probability that B aborts, we know that B perfectly emulates
A∗ for R except with probability at most α+ 1/n. Therefore,

|εB − εRA∗ | ≤ δ = α+ 1/n. (5)

By plugging (5) into (1), we obtain a lower bound of the security loss factor in our meta-
reduction:

`R = Ω(1−α
δ) = Ω(1−α

α+1/n),

where α is defined in (3).
Observe that as long as α = O(1/n), the loss factor is `R = Ω(n), at least linear in the number

n of users. Next, we identify a class of KEMs with α = O(1/n) with a new technique tool called
rank of KEM.

New Technique Tool: Rank of KEM. We define the rank of a KEM scheme KEM, de-
noted by RankKEM, as the cardinality of the largest independent subset X ′ ⊆ CT such that
EquivSK(X ′) = EquivSK(CT). Here we explain the intuitions behind this new notion and the
meaning of independent set.

6

– EquivSK(X ′) = EquivSK(CT) indicates that, all the secret keys that have the same decapsula-
tion functionality on X ′ also have the same decapsulation functionality on the whole ciphertext
space CT . Intuitively, this means that X ′ “determines” the decapsulation functionality of se-
cret keys on the whole ciphertext space CT .

– We require X ′ to be an independent set in the sense that every ciphertext c in X ′ contributes
to EquivSK(X ′), i.e., EquivSK(X ′ \ {c}) 6= EquivSK(X ′).

Intuitively, the relation between X ′ and CT is analogous to the relation between a basis and a
linear space, and the rank of KEM is analogous to the size of (the largest) basis (i.e., the dimension
of linear space).

However, we note that in general the decapsulation algorithm Decap of KEM is not a linear
function, especially for CCA-secure KEMs. So the rank of KEM is different from the dimension of
CT even if CT is indeed a linear space. Moreover, we highlight that our notion of rank for KEM is
more general and purely defined based on the equivalence relation “EquivSK” on secret keys, and
we in fact do not require any algebraic structure from CT .

Bounding the Security Loss with KEM’s Rank. The notion of rank for KEM is a useful
tool for analyzing the failure probability α defined in (3) in our meta-reduction. Let us name a
ciphertext c a bad one in X if EquivSK(X \ {c}) 6⊆ EquivSK({c}). We prove an important core
lemma (see Lemma 3 in Subsect. 4.3). The core lemma shows that the number of bad ciphertexts
in any ciphertext subset X is upper bounded by RankKEM. As a result, we have

Pr
c ←$ X

[
EquivSK(X \ {c}) 6⊆ EquivSK({c})

]
≤ RankKEM

#X
. (6)

Combining (6) and (3), we have

α ≤ RankKEM
Q

.

Note thatQ is the number of encapsulation queries made byA∗ for each user. As long as RankKEM is
bounded by an a priori fixed polynomial (in the security paramter λ), we can always choose Q such
that α ≤ RankKEM/Q < 1/n. Then the security loss factor is `R = Ω(1−α

δ) = Ω(1−α
α+1/n) = Ω(n).

Consequently, with our new technique tool, rank of KEM, we identify a class of KEMs for which
impossibility of (almost) tight reduction holds. Namely, any KEM with polynomially-bounded rank
has no (almost) tight (i.e., linear-preserving) reduction from its ECPA (ECCA) security to any
NICA.

A careful computation of ranks for many well-known KEM schemes (including the ElGamal-
KEM [12], CS-KEM [8, 9, 10], KD-KEM [27], GHKW-KEM [14], HLLG-KEM [18] and many
instantiations of NY-KEM [34]) shows that our impossibility result applies to these KEM schemes.
See Subsect. 5.2 and Appendix A for more details.

1.2 Application of Our Impossibility Result in AKE

Authenticated Key Exchange (AKE) is one of the most widely deployed protocols on Internet and
it allows two parties to establish a session key over public channels. Most of AKE constructions
make use of KEM explicitly or implicitly, for instance, the well-known Signed Diffie-Hellman
Protocol, modular AKE constructions in [1, 37, 30, 23, 17]. Therefore, the security of AKE is
closely related to the security of KEM. Defining a proper security for KEM can directly serve the
security proof of AKE.

The well-known security notions of AKE are defined with the CK model [5], eCK model [28] ,
or CK+ model [26], all of which consider both passive attacks and active attacks in the multi-user
setting. Passive attacks allow the adversary to see the messages over public channel, while active
attacks not only allow the adversary to modify, drop, replay, or inject messages on the public
channel, but also allow the adversary to corrupt user’s long-term secret key in AKE and reveal
session keys of some AKE protocol instances. The security of AKE requires the pseudorandomness
of session keys between two users, if the session keys are not revealed and the two users’ long-term
secret keys are not corrupted.

Let us consider the case that the public and secret keys (pkKEM, skKEM) of KEM serve as part
of a user’s long-term public key pkAKE = (pkKEM, · · ·) and secret key skAKE = (skKEM, · · ·) of AKE.
Furthermore, the session key of AKE is derived from the encapsulated key of KEM. As a result, the

7

corruption of skAKE requires the security of the underlying KEM to support corruption of skKEM,
and the reveal of session keys in AKE asks the underlying KEM to support reveal of encapsulated
keys. Therefore, the ECPA (ECCA) security of KEM is exactly the right security notion needed by
AKE in this case. Combined with our impossibility result, any KEM with polynomially-bounded
rank cannot be tightly secure, hence such construction of AKE cannot be tightly secure as well.

Therefore, we have the following rules for constructing tightly secure AKE: either (i) the secret
key of KEM does not appear in the long-term secret key of AKE, like [1, 30, 17]; or (ii) the tight
security proof of AKE relies on the Random Oracle model, like [16, 23, 36]; or (iii) AKE avoids
the usage of KEM with polynomially-bounded rank. Up to now, most of the well-known efficient
KEM schemes with tight mCPA-security in the multi-user setting have polynomially-bounded
rank. Hence rule (iii) eliminates the possibility of constructing tightly AKE with aforementioned
KEMs if KEM’s secret keys are used as AKE’s long-term keys.

1.3 Related Works

Meta-reduction paradigm was proposed in [4] and used to show black-box impossibility results.
Later, Coron [7] made use of meta-reductions to prove the impossibility of tight reductions for
certain digital signature schemes and showed the lower bounds on security loss. This technique
was further extended in [25, 2, 31].

Hofheinz et al. [21] showed that any black-box security proof for a signature scheme with re-
randomizable signatures must have a reduction loss of at least Q, the number of signature queries
from the adversary.

Lewko and Waters [29] used the technique in [21] to identify certain conditions for hierarchical
identity-based encryption (HIBE) under which HIBE has an exponential loss.

Bader et al. [2] developed a new meta-reduction technique to obtain a bundle of impossibil-
ity results. Their results rule out tight reductions from non-interactive complexity assumptions
(NICA) for certain class of public-key encryption (PKE), KEM and digital signatures with multi-
user security allowing secret key corruptions. This class of public-key primitives is characterized
by secret key’s checkable relation with public key and property of secret key uniqueness or re-
randomizibility.

Jager et al. [24] considered symmetric encryption schemes in multi-user setting in which adver-
saries can adaptively corrupt encryption keys. They ruled out linear-preserving black-box reduc-
tions from adaptive multi-user security to single-user security for any authenticated encryption
scheme with a strong “key uniqueness” property.

Very recently, Morgan et al. [32] studied black-box reductions to “standard” assumptions for
message authentication code (MAC). Their black-box reduction is a general one which allows
reduction algorithm to concurrently run or rewind adversary, and the complexity assumption is
extended from NICA to any interactive assumption with pre-defined bounded number of interac-
tions. They showed that linear-preserving security reduction does not exist for adaptive multi-user
secure deterministic stateless MACs. Their results also hold for PRFs and deterministic stateless
signatures. However, the meta-reduction paradigm in [32] only applies to deterministic primitives.

2 Preliminaries

2.1 Notations

Let λ ∈ N denote the security parameter throughout the paper. Let ∅ denote the empty set.
If x is defined by y or the value of y is assigned to x, we write x := y. For n ∈ N, define
[n] := {1, 2, ..., n}, and for i ∈ [n], define [n\ i] := [n]\{i}. For a set {x1, ..., xn} and i ∈ [n], define
{x1, ..., xn \ xi} := {x1, ..., xn} \ {xi}. For a set X , denote by #X the cardinality of X . Denote
by x ←$ X the procedure of sampling x from set X uniformly at random. If D is distribution,
x ←$ D means that x is sampled according to D. All our algorithms are probabilistic unless stated
otherwise. We use y ←$ A(x) to define the random variable y obtained by executing algorithm A
on input x. We use y ∈ A(x) to indicate that y lies in the support of A(x). If A is deterministic
we write y ← A(x). We also use y ← A(x; r) to make explicit the random coins r used in the
probabilistic computation. Denote by tA the running time of A.

8

2.2 Key Encapsulation Mechanisms

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM = (Setup,Gen,Encap,
Decap) consists of four algorithms:

– Setup: The setup algorithm outputs public parameters pp, which determine public key & secret
key spaces PK × SK, an encapsulation key space K, and a ciphertext space CT .

– Gen(pp): Taking pp as input, the key generation algorithm outputs a pair of public key and
secret key (pk, sk) ∈ PK × SK.

– Encap(pk): Taking pk as input, the encapsulation algorithm outputs a pair of ciphertext c ∈ CT
and encapsulated key K ∈ K.

– Decap(sk, c): Taking as input sk and c, the deterministic decapsulation algorithm outputs
K ∈ K ∪ {⊥}.

Correctness require that for all pp ∈ Setup, (pk, sk) ∈ Gen(pp), (c,K) ∈ Encap(pk), it holds that
Decap(sk, c) = K.

We recall the traditional IND-CPA/CCA security notions for KEMs in the single-user and multi-
challenge setting, denoted by IND-mCPA/IND-mCCA for short.

Definition 2 (IND-mCPA/IND-mCCA Security). We say that an adversary A (tA, εA)-

breaks the IND-mCPA (resp., IND-mCCA) security of KEM, if it runs in time tA, and Advind-mcpa
KEM (A) :=

2·
∣∣Pr[Expind-mcpa

KEM (A)⇒ 1]− 1
2

∣∣ ≥ εA (resp., Advind-mcca
KEM (A) := 2·

∣∣Pr[Expind-mcca
KEM (A)⇒ 1]− 1

2

∣∣ ≥ εA),
where the experiments are defined in Fig. 1.

Expind-mcpa
KEM (A), Expind-mcca

KEM (A) :

pp ←$ Setup

(pk, sk) ←$ Gen(pp)

EncList := ∅ �Records the encapsulation queries

b ←$ {0, 1} �challenge bit

b′ ←$ AOEnc(·), ODec(·, ·)
(pp, pk)

If b′ = b: Return 1; Else: Return 0

OEnc():

(c,K) ←$ Encap(pk)

EncList := EncList ∪ {c}
K0 := K; K1 ←$ K
Return (c,Kb)

ODec(c′) :

If c′ /∈ EncList: Return K′ ← Decap(sk, c′)

Else: Return ⊥

Fig. 1. The IND-mCPA security experiment Expind-mcpa
KEM (A) and the IND-mCCA security experiment

Expind-mcca
KEM (A) of KEM, where in the latter the adversary has also access to a decapsulation oracle ODec(·).

2.3 Non-Interactive Assumptions

We recall the definition of non-interactive complexity assumptions (NICA).

Definition 3 (NICA [2]). A non-interactive complexity assumption (NICA) N = (T, V, U)
consists of three algorithms. The instance generation algorithm T outputs a problem instance x
and a witness w. U is a PPT algorithm, which takes x as input and outputs a candidate solution
s. The verification algorithm V takes as input (x,w) and a candidate solution s. If V (x,w, s) = 1,
then we say that s is a correct solution to the challenge x.

We say that an adversary B (tB, εB)-breaks an NICA N = (T, V, U), if it runs in time tB, and
AdvnicaN (B) :=

∣∣Pr[ExpnicaN (B) ⇒ 1] − Pr[ExpnicaN (U) ⇒ 1]
∣∣ ≥ εB, where the experiment ExpnicaN (Z)

(Z ∈ {B, U}) runs (x,w)←$ T , executes s←$ Z(x), and outputs V (x,w, s).

Intuitively, U is an algorithm which implements a suitable “trivial” attack strategy for N , and
Pr[ExpnicaN (U)⇒ 1] is the winning probability of trivial attacks.

9

3 Enhanced Security Notions for KEMs

In this section, we introduce Enhanced CPA/CCA security notions for KEM in the Multi-User
and Multi-Challenge (MUMC) setting, called MUMC-ECPA/ MUMC-ECCA, which allow user
corruptions and encapsulated key reveals.

Definition 4 (MUMC-ECPA/ECCA Security). We say that an adversary A (tA, εA, n,Qe, Qt)-
breaks the MUMC-ECPA (resp., MUMC-ECCA) security of KEM, if it runs in time tA, and
Advmumc-ecpa

KEM,n,Qe,Qt
(A) := 2 ·

∣∣Pr[Expmumc-ecpa
KEM,n,Qe,Qt

(A) ⇒ 1] − 1
2

∣∣ ≥ εA (resp., Advmumc-ecca
KEM,n,Qe,Qt(A) :=

2 ·
∣∣Pr[Expmumc-ecca

KEM,n,Qe,Qt(A) ⇒ 1] − 1
2

∣∣ ≥ εA), where the experiments are defined in Fig. 2 and the
scalar 2 is added so that the advantages are between 0 and 1.

Expmumc-ecpa
KEM,n,Qe,Qt

(A), Expmumc-ecca
KEM,n,Qe,Qt

(A) :

pp ←$ Setup

For i ∈ [n]: (pki, ski) ←$ Gen(pp)

EncList := ∅ �Records the encapsulation queries

RevList := ∅ �Records the reveal queries

CorrList := ∅ �Records the corruption queries

TestList := ∅ �Records the test queries

β ←$ {0, 1} �Single challenge bit

PKList := {pki}i∈[n]

β′ ←$ AOEnc(·), ODec(·, ·) ,ORev(·,·),OCorr(·),OTest(·,·)
(pp,PKList)

If β′ = β: Return 1; Else: Return 0

OTest(i, c): �At most Qt times in total

If (i, c,K) ∈ EncList for some K ∧ (i, c) /∈ RevList ∪ TestList

∧ i /∈ CorrList:

TestList := TestList ∪ {(i, c)}
K0 := K; K1 ←$ K
Return Kβ

Else: Return ⊥

OEnc(i): �At most Qe times in total

(c,K) ←$ Encap(pki)

EncList := EncList ∪ {(i, c,K)}
Return c �Only c is returned

ODec(i, c′) :

If (i, c′, ·) /∈ EncList:

Return K′ ← Decap(ski, c
′)

Else: Return ⊥

ORev(i, c):

If (i, c,K) ∈ EncList for some K

∧ (i, c) /∈ TestList:

RevList := RevList ∪ {(i, c)}
Return K

Else: Return ⊥

OCorr(i):

If (i, ·) /∈ TestList:

CorrList := CorrList ∪ {i}
Return ski

Else: Return ⊥

Fig. 2. The MUMC-ECPA security experiment Expmumc-ecpa
KEM,n,Qe,Qt

(A) and the MUMC-ECCA security exper-
iment Expmumc-ecca

KEM,n,Qe,Qt
(A) of KEM, where in the latter the adversary has also access to a decapsulation

oracle ODec(·, ·). In both experiments, A is allowed to query OEnc at most Qe times and query OTest at
most Qt times.

In the MUMC-ECPA and MUMC-ECCA security experiments defined in Fig. 2, the adversary
A is allowed to make several kinds of oracle queries.

– Encapsulation query. Through OEnc(i) query, A obtains an encapsulation c under pki.
We note that the corresponding encapsulated key K is not given out along with c through
OEnc, different from the IND-mCPA/mCCA experiment (cf. Fig. 1). In contrast, the key K
encapsulated in c can be later revealed by Key Reveal query or tested by Test query.

– Key Reveal query. Upon a Key Reveal query ORev(i, c), if c is an output of OEnc(i), the
key K encapsulated in c is returned to A.

– SBG-style Test query. Upon a Test query OTest(i, c), if c is an output of OEnc(i), the
real key K0 = K encapsulated in c or a random key K1 is returned to A, depending on the
challenge bit β. We note that this is defined in the Single-Bit-Guess (SBG) style [6, 23], which
is desirable due to its well composability with symmetric cryptographic primitives like DEM.
Such an SBG-style security of KEM also serves well as a building block for the SBG-style
security of more sophisticated primitives or protocols like AKE.

– Decapsulation query. A decapsulation oracle ODec(i, c′) is provided in the MUMC-ECCA
security experiment to decapsulate ciphertexts c′ that are not returned by OEnc(i).

– Corruption query. Via OCorr(i) query, A can corrupt a user and obtain its secret key ski.

10

Finally, we stress that some trivial attacks are forbidden. For example, (1) A is not allowed to
both corrupt some user and test encapsulated keys of this user; (2) A is not allowed to reveal an
encapsulated key and test the same key; (3) A is not allowed to test an encapsulated key twice
due to the SBG-style definition we adopt.

The MUMC-ECPA (MUMC-ECCA) security is more reasonable than the mCPA (mCCA)
notion (cf. Definition 2), since it captures the practical attacks, like corrupting users’ secret keys,
revealing users’ encapsulated keys, in the multi-user and multi-challenge setting.

We also define the enhanced security notions in the Multi-User and Single-Challenge (MUSC)
setting, called MUSC-ECPA/MUSC-ECCA, which allow at most one OTest query in total.

Definition 5 (MUSC-ECPA/ECCA Security). We say that an adversary A (tA, εA, n,Qe)-
breaks the MUSC-ECPA (resp., MUSC-ECCA) security of KEM, if it (tA, εA, n,Qe, 1)-breaks the
MUMC-ECPA (resp., MUMC-ECCA) security, and we denote the corresponding advantage func-
tion by Advmusc-ecpa

KEM,n,Qe
(A) (resp., Advmusc-ecca

KEM,n,Qe(A)).

4 Decap-Equivalence of Secret Keys & Rank of KEMs

In this section, we study the equivalence of secret keys for KEM schemes when decapsulating a
set of ciphertexts, and define a new notion called rank for KEMs. This will be our main technique
tool in the establishment of the impossibility result later in Sect. 5.

“Two-Step” Decapsulation. Generally, the decapsulation algorithm Decap(sk, c) of KEM
schemes can be decomposed into two parts according to their functionality: an (optional) verifi-
cation part Decapvrfy(sk, c) checking the well-formedness of ciphertext, and a key-derivation part
Decapkd(sk, c) deriving a decapsulated key K ∈ K from the ciphertext. If Decapvrfy(sk, c) = 1,
then K ← Decapkd(sk, c) is invoked and Decap(sk, c) will output K. If Decapvrfy(sk, c) = 0, then
Decap(sk, c) will output a fixed symbol like ⊥ indicating the mal-formedness of c.

We note that some KEM schemes (like CPA-secure KEMs) do not have Decapvrfy and Decap(sk, c)
= Decapkd(sk, c). Nevertheless, Decapkd(sk, c) contributes the core of Decap(sk, c) in all KEM
schemes. Clearly, if Decap(sk, c) = K ∈ K, it must hold that Decapkd(sk, c) = K.

4.1 Decap-Equivalence of Secret Keys

For KEM schemes, we study the decapsulation equivalence of secret keys when they are used
to decapsulate a set X of ciphertexts. Since Decapkd is the essential part of the decapsulation
algorithm, the decapsulation equivalence is defined with Decapkd, as shown below.

Definition 6 (X -Decap-Equivalence of Secret Keys). Let KEM be a KEM scheme with
ciphertext space CT and secret key space SK. We define a relation EquivSK(X) on SK, parame-
terized by a set of ciphertexts X ⊆ CT , as follows:

EquivSK(X) := {(sk, sk′) ∈ SK2 | ∀c ∈ X ,Decapkd(sk, c) = Decapkd(sk
′, c)}.

We also define EquivSK(∅) := SK2 for the empty set ∅.

Clearly, EquivSK(X) defines an equivalence relation on SK. We show useful properties of EquivSK
in the following lemma.

Lemma 1 (Properties of EquivSK). For all X ,Y ⊆ CT ,

(1) EquivSK(X ∪ Y) = EquivSK(X) ∩ EquivSK(Y).

(2) X ⊆ Y ⇒ EquivSK(X) ⊇ EquivSK(Y).

Proof. Note that (2) follows from (1) directly. It suffices to prove (1). By Definition 6, for any
(sk, sk′) ∈ SK2,

(sk, sk′) ∈ EquivSK(X ∪ Y)

⇐⇒ ∀c ∈ X ∪ Y,Decapkd(sk, c) = Decapkd(sk
′, c)

⇐⇒ ∀c ∈ X ,Decapkd(sk, c) = Decapkd(sk
′, c) ∧ ∀c ∈ Y,Decapkd(sk, c) = Decapkd(sk

′, c)

⇐⇒ (sk, sk′) ∈ EquivSK(X) ∧ (sk, sk′) ∈ EquivSK(Y)

⇐⇒ (sk, sk′) ∈ EquivSK(X) ∩ EquivSK(Y). �

11

We also define independence of a set X ⊆ CT as follows. If c ∈ X but EquivSK(X \ {c}) =
EquivSK(X), then the element c, compared to X \{c}, does not contribute to EquivSK(X). In this
case we call c a dependent element in X . Otherwise, if EquivSK(X \ {c})) EquivSK(X), we call
c an independent element in X . For set X , we call X an independent set, if every c ∈ X is an
independent element in X . Below we present the formal definition.

Definition 7 (Independent Set for Decap-Equivalence). Let X ⊆ CT be a set of cipher-
texts. X is called an independent set, if for all c ∈ X , it holds that

EquivSK(X \ {c})) EquivSK(X).

In particular, we define the empty set ∅ as an independent set.

4.2 Rank of KEMs

For set X , there may exist many independent subsets X ′ such that X ′ ⊆ X and EquivSK(X ′) =
EquivSK(X). We define the rank of X as the cardinality of the largest subset.

Definition 8 (Rank of Set & Rank of KEM for Decap-Equivalence). Let X ⊆ CT be a
set of ciphertexts. The rank of X is defined as

Rank(X) := max{#X ′ |X ′ ⊆ X ∧ EquivSK(X ′) = EquivSK(X) ∧ X ′ is independent}.

In particular, the rank of KEM scheme KEM is defined as RankKEM := Rank(CT), where CT
is the ciphertext space of KEM.

Obviously, we have Rank(X) ≤ #X and RankKEM = Rank(CT) ≤ #CT .

Here, we demonstrate that Rank is well-defined. Namely, there always exists an independent
subset X ′ ⊆ X such that EquivSK(X ′) = EquivSK(X). We find such an X ′ by iteration. In the
first step, we set X ′ := X . Clearly, EquivSK(X ′) = EquivSK(X). If X ′ is independent, then we are
done. Otherwise X ′ is not independent, then ∃c ∈ X ′ such that EquivSK(X ′ \{c}) = EquivSK(X ′).
So, we remove c from X ′, i.e., X ′ ← X ′ \ {c}. Then EquivSK(X ′) = EquivSK(X) still holds, while
#X ′ is reduced by 1. If X ′ is independent, then we are done. Otherwise, we repeat the above
procedures until #X ′ = 0. Since X is a finite set, we can always stop with an independent X ′
after finite steps, possibly with X ′ = ∅ (which is also independent by definition). Therefore, we
can always find an X ′ such that EquivSK(X ′) = EquivSK(X) and X ′ is independent.

We show useful properties of Rank in the following lemma.

Lemma 2 (Properties of Rank). For all X ,Y ⊆ CT ,

(1) X ⊆ Y ⇒ Rank(X) ≤ Rank(Y).

(2) X ⊆ Y and Y is an independent set ⇒ X is an independent set.

(3) If X is an independent set, then Rank(X) = #X .

Proof. To show (1), it suffices to prove Rank(X) ≤ Rank(X ∪ {c}) for a single element c ∈ Y \ X ,
then (1) follows by induction. Suppose X ′ is the largest independent subset such that X ′ ⊆ X and
EquivSK(X ′) = EquivSK(X). By definition, Rank(X) = #X ′. We consider two cases.

– In the case EquivSK(X) = EquivSK(X ∪ {c}), X ′ is also an independent subset such that
X ′ ⊆ X ∪ {c} and EquivSK(X ′) = EquivSK(X ∪ {c}), so Rank(X ∪ {c}) ≥ #X ′.

– In the case EquivSK(X)) EquivSK(X ∪ {c}), X ′ ∪ {c} is an independent subset such that
X ′ ∪ {c} ⊆ X ∪ {c} and EquivSK(X ′ ∪ {c}) = EquivSK(X ′) ∩ EquivSK(c) = EquivSK(X) ∩
EquivSK(c) = EquivSK(X ∪ {c}), so Rank(X ∪ {c}) ≥ #(X ′ ∪ {c}) = #X ′ + 1.

In either case, we have Rank(X) = #X ′ ≤ Rank(X ∪ {c}). This proves (1).
Next, we prove (2). Since Y is an independent set, by definition, for every c ∈ Y, EquivSK(Y \

{c})) EquivSK(Y). Observe that EquivSK(Y) = EquivSK(Y \ {c}) ∩ EquivSK(c), so it implies
that EquivSK(Y \ {c}) 6⊆ EquivSK(c). Then for every c ∈ X , since X ⊆ Y, by Lemma 1, it holds
EquivSK(Y \ {c}) ⊆ EquivSK(X \ {c}). Combining EquivSK(Y \ {c}) ⊆ EquivSK(X \ {c}) with
EquivSK(Y \ {c}) 6⊆ EquivSK(c), we get that EquivSK(X \ {c}) 6⊆ EquivSK(c), and consequently,

12

EquivSK(X \ {c})) EquivSK(X) = EquivSK(X \ {c}) ∩ EquivSK(c). Therefore, X is also an inde-
pendent set.

For (3), when X is an independent set, X itself is the largest independent subset of X such
that EquivSK(X) = EquivSK(X), so Rank(X) = #X . �

Lastly, we stress that we do not require any algebraic structure from the secret key space SK
or the ciphertext space CT . The notions (like independent set, set rank and rank of KEMs) are
purely defined based on the equivalence relation “EquivSK” on secret keys.

4.3 Core Lemma

In this subsection, we develop a core lemma, which is crucial in the establishment of the impossi-
bility result later in Sect. 5.

For the ease of notation, by EquivSK(c1, ..., cQ) we denote EquivSK({c1, ..., cQ}), and by EquivSK
(c1, ..., cQ \ ci) we denote EquivSK({c1, ..., cQ} \ {ci}).

Lemma 3 (Core Lemma). Let KEM be a KEM scheme with ciphertext space CT . For any
ciphertexts c1, ..., cQ ∈ CT with Q ∈ N,

#
{
i ∈ [Q]

∣∣ EquivSK(c1, ..., cQ \ ci) 6⊆ EquivSK(ci)
}
≤ RankKEM. (7)

Proof. Denote by BadIndex the set in the left-hand side of (7) and denote by d the rank of KEM
(i.e., RankKEM = d).

If Q ≤ d, the lemma trivially holds. Now, we consider the case Q ≥ d+ 1. Suppose towards a
contradiction that #BadIndex ≥ d+ 1, which means that BadIndex contains at least d+ 1 distinct
indices, say i1, ..., id+1.

We claim that {ci1 , ..., cid+1
} is an independent set. To prove this claim, it suffices to show

EquivSK(ci1 , ..., cid+1
\ ci)) EquivSK(ci1 , ..., cid+1

) for any i ∈ {i1, ..., id+1}. Since {i1, ..., id+1} ⊆
BadIndex, we have

EquivSK(c1, ..., cQ \ ci) 6⊆ EquivSK(ci) (8)

for each i ∈ {i1, ..., id+1}. We also have EquivSK(c1, ..., cQ \ ci) ⊆ EquivSK(ci1 , ..., cid+1
\ ci) by

Lemma 1, then by combining it with (8), we get that

EquivSK(ci1 , ..., cid+1
\ ci) 6⊆ EquivSK(ci). (9)

(9) in turn implies that

EquivSK(ci1 , ..., cid+1
\ ci)) EquivSK(ci1 , ..., cid+1

\ ci) ∩ EquivSK(ci)

= EquivSK(ci1 , ..., cid+1
).

This shows the independence of set {ci1 , ..., cid+1
}.

Since {ci1 , ..., cid+1
} is an independent subset of CT , by Lemma 2, we have RankKEM =

Rank(CT) ≥ Rank({ci1 , ..., cid+1
}) = d + 1, which contradicts with RankKEM = d. So it must

hold that #BadIndex ≤ d and Lemma 3 follows. �

5 Impossibility of Tight Enhanced Security for KEMs

In this section, we present an impossibility result on the tight enhanced security for a class of
KEMs whose ranks are polynomially bounded. In Subsect. 5.1, we give the main theorem of our
impossibility result. Then in Subsect. 5.2, we compute ranks for some well-known KEM schemes,
and apply our impossibility result to these KEMs. The applications indicate that for these KEMs
there exists no (almost) tight (i.e., linear-preserving) black-box reduction from their enhanced
security to any non-interactive complexity assumption.

13

5.1 Impossibility of Tight Enhanced Security for KEMs

As in [2, 19], we will only consider simple reductions, since most reductions in cryptography are
simple ones. We recall the definition of simple reduction.

Definition 9 (Simple Reduction [2, 19, 32]). We call an algorithm R a (tR, εR, εA, n,Qe)-
reduction from breaking an NICA N = (T,U, V) to breaking the MUSC-ECPA security of KEM,
if R turns an adversary A that (tA, εA, n,Qe)-breaks the MUSC-ECPA security of KEM (cf. Def-
inition 5) into an algorithm B that (tR, εR)-breaks N (cf. Definition 3).

We call R simple, if R has only black-box access to A and executes A only once (and in
particular without rewinding).

The security loss of R is defined by `R := εA
εRA
· tRAtA . If `R is a small constant, R is called a

fully tight reduction; if `R is an a priori fixed polynomial in the security parameter λ, R is called
an almost tight reduction or a linear preserving reduction.

In the following theorem, we show the impossibility of tight MUSC-ECPA security which is
defined in the multi-user and single-challenge setting.

Theorem 1 (Impossibility of Tight MUSC-ECPA Security). Let N = (T,U, V) be a non-
interactive complexity assumption, and let KEM be an MUSC-ECPA secure KEM scheme with
rank RankKEM = d. Then any simple (tR, εR, εA, n,Qe)-reduction R from breaking N to breaking
the MUSC-ECPA security of KEM has to lose a factor that is at least linear in the number n of
users, assuming N is hard and Qe ≥ 3dn(n+ 1).

Proof of Theorem 1. We prove the impossibility result by meta-reduction. Following the meta-
reduction routine [21, 29, 2], we first describe a hypothetical and inefficient adversary A∗, then we
show how to construct an algorithm B simulating A∗ efficiently while running the reduction R.

The Hypothetical Adversary A∗ . Let Q := Qe/n. The hypothetical adversary A∗ attacks
the MUSC-ECPA security of KEM (cf. Definition 5) as follows.

– Setup. A∗ receives (pp,PKList) with PKList = {pki}i∈[n].
A∗ will execute the following procedures, and in particular make the queries therein, in

order.
– Preparation. For each user i ∈ [n],

(1) A∗ makes OEnc(i) query Q times: in the j-th query (j ∈ [Q]), it receives ci,j from OEnc(i);
(2) A∗ picks an index ji ←$ [Q] uniformly at random, and for each j ∈ [Q \ ji], it queries
ORev(i, ci,j) and receives Ki,j .

– Corruption. A∗ picks a user index i∗ ←$ [n] uniformly at random, and for each i ∈ [n \ i∗],
it queries OCorr(i) and receives ski.

– Check. For each i ∈ [n \ i∗], A∗ checks whether Decapkd(ski, ci,j) = Ki,j holds for all
j ∈ [Q \ ji]. It aborts immediately if one of these checks fails.

– Test. A∗ queries OTest(i∗, ci∗,ji∗) and receives a challenge K∗.
– Output.

(1) (Inefficient step) A∗ picks a secret key sk∗ uniformly at random from the set {sk | ∀j ∈ [Q\
ji∗],Decapkd(sk, ci∗,j) = Ki∗,j}, which is an equivalence class of EquivSK(ci∗,1, · · · , ci∗,Q \
ci∗,ji∗).

(2) Using the above sk∗, A∗ computes K := Decapkd(sk
∗, ci∗,ji∗). If K = K∗, it outputs

β′ = 1; otherwise it outputs β′ = 0.

Note that A∗ makes nQ(= Qe) OEnc queries in total and makes at most one OTest query.

Analysis of A∗’s advantage. Let ski∗ denote the secret key of user i∗ chosen by the experiment.
By the perfect correctness of KEM, it holds that Decapkd(ski∗ , ci∗,j) = Decap(ski∗ , ci∗,j) = Ki∗,j

for each j ∈ [Q \ ji∗]. Consequently,

Decapkd(ski∗ , ci∗,j) = Ki∗,j = Decapkd(sk
∗, ci∗,j)

for each j ∈ [Q \ ji∗], where sk∗ is the secret key chosen by A∗. It implies that

(ski∗ , sk
∗) ∈ EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗).

14

Let bad denote the event that EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗) 6⊆ EquivSK(ci∗,ji∗). By Lemma 3
(Core Lemma) and the uniformity of ji∗ over [Q], we have Pr[bad] ≤ d/Q = nd/Qe. Let β denote
the single challenge bit in the experiment.

• In the case β = 0, the K∗ output by OTest is the real key encapsulated in ci∗,ji∗ . By the
perfect correctness of KEM, it holds that Decapkd(ski∗ , ci∗,ji∗) = Decap(ski∗ , ci∗,ji∗) = K∗. If
bad does not occur,

(ski∗ , sk
∗) ∈ EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗) ⊆ EquivSK(ci∗,ji∗),

thus K = Decapkd(sk
∗, ci∗,ji∗) = Decapkd(ski∗ , ci∗,ji∗) = K∗. It implies Pr[β′ = 1 | β =

0 ∧ ¬bad] = 1, and consequently,

Pr[β′ = 1 | β = 0] ≥ Pr[¬bad] · Pr[β′ = 1 | β = 0 ∧ ¬bad]

= Pr[¬bad] · 1 = 1− Pr[bad] ≥ 1− nd/Qe.

• In the case β = 1, the K∗ output by OTest is a random key uniformly chosen from K, so
K = K∗ holds with probability exactly 1/#K. It implies Pr[β′ = 1 | β = 1] = 1/#K.

Overall, the advantage of A∗ in the MUSC-ECPA security experiment is

εA∗ = 2 ·
∣∣Pr[β′ = β]− 1

2

∣∣ = |Pr[β′ = 1 | β = 0]− Pr[β′ = 1 | β = 1]|
≥ 1− nd/Qe − 1/#K.

(10)

The Meta-Reduction B. Next, we construct an efficient algorithm B, which runs reduction
R as a subroutine and attempts to break the NICA N . B will play the role of the hypothetical
adversary A∗ to interact with R. For the sake of efficiently emulating A∗, B will rewind R to
learn more information from the its responses. More precisely, given an instance x of N , where
(x,w) ←$ T , B works as follows.

– Setup. B runs R(x) to obtain (pp,PKList) where PKList = {pki}i∈[n]. B initializes two arrays
of n entries, SK[·] and SK∗[·], by ∅.
B plays the role of adversary, executes the following procedures and makes the queries to

R in order.
– Preparation. For each user i ∈ [n],

(1) B makes OEnc(i) query Q times: in the j-th OEnc(i) query (j ∈ [Q]), it receives ci,j from
R;

(2) B picks an index ji ←$ [Q] uniformly at random, and for each j ∈ [Q \ ji], it queries
ORev(i, ci,j) and receives Ki,j from R.

Let the state after this preparation step be stprep.
B picks a user index i∗ ←$ [n] uniformly at random.

– Rewinding. Next, B will rewind R n times, all starting from state stprep. In the ι-th rewind
(ι ∈ [n]), B proceeds as follows:

(1) B rewinds R to the state stprep. For each i ∈ [n \ ι], B queries OCorr(i) and receives sk
(ι)
i

from R.
(2) For each i ∈ [n \ ι], B checks whether or not Decapkd(sk

(ι)
i , ci,j) = Ki,j holds for all

j ∈ [Q \ ji], and if so, it sets SK[i] := sk
(ι)
i . If ι = i∗, B additionally sets SK∗[i] := sk

(i∗)
i

(3) Let the state at the moment be st
(ι)
rewind. If ι < n, B goes to the next rewind (i.e., ι← ι+1).

– Check. For each i ∈ [n \ i∗], B checks whether or not SK∗[i] 6= ∅ (i.e., Decapkd(sk
(i∗)
i , ci,j) =

Ki,j holds for all j ∈ [Q \ ji]). It aborts immediately if one of these check fails, and sets a flag
checkfail1 := true.

– Test. B rewinds R back to the state st
(i∗)
rewind. B queries OTest(i∗, ci∗,ji∗) and receives a

challenge K∗ from R.
– Output.

(1) B checks whether or not SK[i∗] 6= ∅ (i.e., SK[i∗] = sk
(ι∗)
i∗ for some ι∗ 6= i∗, s.t. Decapkd(sk

(ι∗)
i∗ ,

ci∗,j) = Ki∗,j for all j ∈ [Q \ ji∗]). It aborts if the check fails, and sets a flag checkfail2 :=
true.

(2) Using SK[i∗], B computes K := Decapkd(SK[i∗], ci∗,ji∗). If K = K∗, it outputs β′ = 1 to
R; otherwise it outputs β′ = 0 to R.

15

Finally, B receives a solution s from R, and outputs s to its own challenger.

B’s running time. B essentially runs R one complete run plus (n−1) incomplete runs. Moreover
it executes Decapkd at most n(n− 1)(Q− 1) + 1 times. Thus the total running time of B is

tB ≤ n · tR + n2Q · tDecap = n · tR + nQe · tDecap,

where tDecap denotes the running time of the Decap algorithm of KEM.

Analysis of B’s advantage. Denote by bad the event that EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗) 6⊆
EquivSK(ci∗,ji∗). We first show that in the case of checkfail1 ∨ (¬checkfail2 ∧ ¬bad), B simulates
the hypothetical adversary A∗ perfectly.

• If checkfail1 occurs, B aborts, andA∗ would also abort in the check step since Decapkd(sk
(i∗)
i , ci,j)

6= Ki,j for some i ∈ [n \ i∗] and some j ∈ [Q \ ji]. .
• If ¬checkfail1∧¬checkfail2∧¬bad, B obtains a secret key SK[i∗] such that Decapkd(SK[i∗], ci∗,j)

= Ki∗,j for each j ∈ [Q \ ji∗]. Since A∗’s sk∗ also satisfies Decapkd(sk
∗, ci∗,j) = Ki∗,j for each

j ∈ [Q \ ji∗], it implies that

(SK[i∗], sk∗) ∈ EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗).

Since bad does not occur,

(SK[i∗], sk∗) ∈ EquivSK(ci∗,1, · · · , ci∗,Q \ ci∗,ji∗) ⊆ EquivSK(ci∗,ji∗).

Consequently, the K = Decapkd(SK[i∗], ci∗,ji∗) computed by B is identical to the K =
Decapkd(sk

∗, ci∗,ji∗) computed by A∗, so the simulation is perfect.

Therefore, B simulates A∗ perfectly for R when checkfail1 ∨ (¬checkfail2 ∧ ¬bad), and by the
difference lemma, we have

|εB − εRA∗ | ≤ Pr[¬checkfail1 ∧ (checkfail2 ∨ bad)]

≤ Pr[¬checkfail1 ∧ checkfail2] + Pr[bad].

By Lemma 3 (Core Lemma) and the uniformity of ji∗ over [Q], we have Pr[bad] ≤ d/Q =
dn/Qe. Next we bound the probability Pr[¬checkfail1 ∧ checkfail2]. Note that checkfail2 can only
occur if the event E : ∃i ∈ [n], SK[i] = ∅ occurs. As i∗ is chosen uniformly at random from [n]
and the view of R before the Test query is independent of i∗, we have i ∈ [n \ i∗] with probability
1−1/n. In this case checkfail1 occurs and thus Pr[checkfail1| E] ≥ 1−1/n. Now since checkfail2 ⇒ E
it holds that Pr[¬checkfail1 ∧ checkfail2] ≤ Pr[¬checkfail1 ∧ E] = Pr[¬checkfail1| E] · Pr[E] ≤
Pr[¬checkfail1| E] = 1−Pr[checkfail1| E] ≤ 1/n. Overall, it holds that |εB− εRA∗ | ≤ 1/n+dn/Qe,
thus,

εRA∗ ≤ εB + 1/n+ dn/Qe. (11)

Bounding the security loss. Assuming that no adversary B is able to (tN , εN)-break the
NICA N with tN = tB ≤ n · tR+nQe · tDecap, we must have εB ≤ εN . By combining (10) and (11),
the security loss of reduction R is

`R ≥
εA∗

εRA∗
· tRA

∗

tA∗
≥ 1− dn/Qe − 1/#K

εB + 1/n+ dn/Qe
· 1 ≥ 1− dn/Qe − 1/#K

εN + 1/n+ dn/Qe

≥ n · (1− nεN − dn(n+ 1)/Qe − 1/#K),

where the last inequality holds by inspection, namely, n·(1−nεN−dn(n+1)/Qe−1/#K)·(εN+1/n+
dn/Qe) = 1−dn/Qe−1/#K−(nεN+n2d/Qe)·(nεN+dn(n+1)/Qe+1/#K) ≤ 1−dn/Qe−1/#K.
Thus, any reduction R from breaking N to breaking the MUSC-ECPA security of KEM loses at
least a factor of

` = n · (1− nεN − dn(n+ 1)/Qe − 1/#K),

where n denotes the number of users, εN represents the hardness of NICA N , d is the rank of
KEM, Qe is the number of OEnc queries allowed in the MUSC-ECPA experiment, and #K denotes
the size of the encapsulated key space K.

Assuming that N is hard and Qe ≥ 3dn(n + 1), we compute the security loss factor ` in two
cases as examples. In the first case, we only make very weak assumptions, and in the second case,
we make mild but still far more realistic assumptions.

16

• Weak case (in the concrete setting). In the case that εN ≤ 1/(12n), Qe ≥ 3dn(n + 1)
and #K ≥ 2, we have ` ≥ n/12.

• Mild case (in the asymptotic setting). In the case that εN ≤ 1/(λn), Qe ≥ λdn(n+ 1)
and #K ≥ λ, where λ is the security parameter, we have ` = n(1− 3/λ) = n(1− o(1)) ≈ n.

In either case, the security loss ` is at least linear in n. This completes the proof of Theorem 1. �

Observe that MUSC-ECPA is tightly implied by all of the MUSC-ECCA (multi-user and single-
challenge ECCA), MUMC-ECPA (multi-user and multi-challenge ECPA) and MUMC-ECCA
(multi-user and multi-challenge ECCA) securities. Hence the impossibility of tight MUSC-ECPA
security shown in Theorem 1 directly yields the impossibility of tight MUSC-ECCA, tight MUMC-
ECPA and tight MUMC-ECCA, as well. We conclude these in the following corollary.

Corollary 1 (Impossibility of Tight MUSC-ECCA, MUMC-ECPA & MUMC-ECCA).
Let N = (T,U, V) be a non-interactive complexity assumption, and let KEM be an MUSC-ECCA

(resp., MUMC-ECPA, MUMC-ECCA) secure KEM with rank RankKEM = d. Then any simple
(tR, εR, εA, n,Qe)-reduction R from breaking N to breaking the MUSC-ECCA (resp., MUMC-ECPA,
MUMC-ECCA) security of KEM has to lose a factor that is at least linear in the number n of
users, assuming N is hard and Qe ≥ 3dn(n+ 1).

Remark 1. Following [2], our impossibility results can be naturally generalized to reductions that
may execute the adversary algorithm several times sequentially.

5.2 Applications of Our Impossibility Result to Well-Known KEMs

In the last two decades, many PKE schemes [12, 34, 8, 9, 10, 27, 14, 15, 18] (to name a few)
were proposed, explicitly or implicitly, in the KEM + DEM paradigm [10] and their securities
are proved in the standard model. All the KEMs inherent in these PKEs have their own charm.
For example, the ElGamal-KEM [12], CS-KEM [8, 9, 10] and KD-KEM [27] are among the most
efficient KEMs. The GHKW-KEM [14] and HLLG-KEM [18] are core building blocks in achieving
(almost) tightly IND-mCCA security for PKE. The NY-KEM [34] is a generic approach to CCA-
secure PKE/KEM from CPA-secure PKE, which in turn can be built upon CPA-secure KEM.
Note that these KEMs (except the ElGamal-KEM) have neither secret key uniqueness nor re-
randomizibility, so the impossibility results in existing works [2] do not apply to them.

Next, we will compute the ranks for these KEMs and apply our impossibility result on them.
The computation results show that the ranks of these KEM are either small constants or upper
bounded by small polynomials in λ.

– The CPA-secure ElGamal-KEM [12] has rank 1 (cf. Appendix A).
– The CCA-secure CS-KEM in [8] has rank 1 (cf. Appendix A) and another version in [9, 10]

has rank 2 (see next).
– The CCCA (constrained CCA) secure KD-KEM [27] has rank at most 4 (cf. Appendix A).
– The PCA (plaintext check attacks) secure GHKW-KEM used in the tightly IND-mCCA secure

GHKW-PKE [14] has rank at most 6kλ, with k the parameter of the MDDH assumptions
[13] (e.g., MDDH corresponds to the DDH assumption when k = 1 and includes k-Linear
assumptions for a general k ≥ 2) (cf. Appendix A).

– The tightly mCCA-secure HLLG-KEM [18] has rank at most 2k, with k the parameter of the
MDDH assumptions (cf. Appendix A).

– The CCA-secure NY-KEM [34] has polynomially-bounded rank, as long as the underlying
CPA-secure KEM does (cf. Appendix A). Thus many concrete instantiations of NY-KEM
have polynomially-bounded rank, e.g., the NY-KEMs whose underlying CPA-secure KEMs
are instantiated with the KEMs shown above (such as ElGamal).

Our impossibility result works well on these KEMs. Their polynomially-bounded ranks indicate
that the MUSC-ECPA (or even MUSC-ECCA, MUMC-ECPA, MUMC-ECCA) security of these
KEM schemes suffer from a security loss factor Ω(n) with n the number of users, when reducing
to non-interactive complexity assumptions.

Here we only show how to compute rank for the CS-KEM [9, 10], and put the rank computations
of other KEMs in Appendix A.

17

Rank Computation for Cramer-Shoup’s CCA-secure KEM [9, 10]. Let us first recall
the construction of the CS-KEM in [9, 10].

Let (G, p, g1, g2) be a group of prime order p and with random generators g1, g2. Let H be a
hash function from G2 to Zp.
– The public key is pk := (g1, g2, c, d, h) where c := gx1

1 gx2
2 , d := gy11 g

y2
2 and h := gz11 g

z2
2 for

uniformly chosen x1, x2, y1, y2, z1, z2 ←$ Zp, and the secret key is sk := (x1, x2, y1, y2, z1, z2).
– Encap(pk) samples r ←$ Zp uniformly, computes u1 := gr1, u2 := gr2, α := H(u1, u2), v :=
crdrα, K := hr, and outputs c := (u1, u2, v) and K.

– Decap(sk, c = (u1, u2, v)) outputs K := uz11 u
z2
2 if ux1+y1α

1 · ux2+y2α
2 = v holds, where α :=

H(u1, u2), and outputs ⊥ otherwise.

The secret key space is SK = Z6
p, the ciphertext space is CT = G3, and the key-derivation

part Decapkd(sk, c) outputs K := uz11 u
z2
2 .

We show that the CS-KEM in [9, 10] has rank 2. For a ciphertext c = (u1, u2, v) ∈ CT ,
we can always write u1 = gr11 and u2 = gr21 with r1, r2 ∈ Zp. We compute EquivSK(c): for
any sk = (x1, x2, y1, y2, z1, z2), sk′ = (x′1, x

′
2, y
′
1, y
′
2, z
′
1, z
′
2) ∈ SK, (sk, sk′) ∈ EquivSK(c) ⇐⇒

Decapkd(sk, c) = Decapkd(sk
′, c) ⇐⇒ uz11 u

z2
2 = u

z′1
1 u

z′2
2 ⇐⇒ r1 · z1 + r2 · z2 = r1 · z′1 + r2 · z′2. So,

EquivSK(c) = {(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2)) | r1 · z1 + r2 · z2 = r1 · z′1 + r2 · z′2}.
Consequently, we have the following facts.

(1) EquivSK(CT) =
⋂
c∈CT EquivSK(c) = {(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2)) |

∧
r1,r2∈Zp r1 ·

z1 + r2 · z2 = r1 · z′1 + r2 · z′2} = {(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2)) | z1 = z′1 ∧ z2 = z′2}.
(2) For any two ciphertexts c(1) =

(
u
(1)
1 = g

r
(1)
1

1 , u
(1)
2 = g

r
(1)
2

1 , v(1)
)
, c(2) =

(
u
(2)
1 = g

r
(2)
1

1 , u
(2)
2 =

g
r
(2)
2

1 , v(2)
)
, if (r

(1)
1 , r

(1)
2) ∈ Z2

p is linearly independent of (r
(2)
1 , r

(2)
2), e.g., (r

(1)
1 , r

(1)
2) = (1, 0) and

(r
(2)
1 , r

(2)
2) = (0, 1), the matrix

(
r
(1)
1 r

(1)
2

r
(2)
1 r

(2)
2

)
is invertible, thus

EquivSK(c(1), c(2)) = EquivSK(c(1)) ∩ EquivSK(c(2))

=

{
(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2))

∣∣∣∣∣ r
(1)
1 · z1 + r

(1)
2 · z2 = r

(1)
1 · z′1 + r

(1)
2 · z′2

∧ r
(2)
1 · z1 + r

(2)
2 · z2 = r

(2)
1 · z′1 + r

(2)
2 · z′2

}

=

{
(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2))

∣∣∣∣∣
(
r
(1)
1 r

(1)
2

r
(2)
1 r

(2)
2

)
·
(
z1
z2

)
=

(
r
(1)
1 r

(1)
2

r
(2)
1 r

(2)
2

)
·
(
z′1
z′2

)}
= {(sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2)) | z1 = z′1 ∧ z2 = z′2} = EquivSK(CT).

Clearly, we have both EquivSK(c(1), c(2)) (EquivSK(c(1)) and EquivSK(c(1), c(2)) (EquivSK(c(2)),
thus {c(1), c(2)} is an independent set.

(3) For any three ciphertexts c(1) =
(
u
(1)
1 = g

r
(1)
1

1 , u
(1)
2 = g

r
(1)
2

1 , v(1)
)
, c(2) =

(
u
(2)
1 = g

r
(2)
1

1 , u
(2)
2 =

g
r
(2)
2

1 , v(2)
)
, c(3) =

(
u
(3)
1 = g

r
(3)
1

1 , u
(3)
2 = g

r
(3)
2

1 , v(3)
)
, since the linear space Z2

p has dimension

2, the three vectors (r
(1)
1 , r

(1)
2), (r

(2)
1 , r

(2)
2), (r

(3)
1 , r

(3)
2) in Z2

p must be linearly dependent. Say

(r
(3)
1 , r

(3)
2) = (a · r(1)1 + b · r(2)1 , a · r(1)2 + b · r(2)2) for some coefficients a, b ∈ Zp. Then we have

EquivSK(c(1), c(2)) ⊆ EquivSK(c(3)), as shown below.

For any (sk = (· · · , z1, z2), sk′ = (· · · , z′1, z′2)) ∈ EquivSK(c(1), c(2)), it holds r
(1)
1 · z1 + r

(1)
2 ·

z2 = r
(1)
1 · z′1 + r

(1)
2 · z′2 and r

(2)
1 · z1 + r

(2)
2 · z2 = r

(2)
1 · z′1 + r

(2)
2 · z′2, thus

r
(3)
1 · z1 + r

(3)
2 · z2 = (a · r(1)1 + b · r(2)1) · z1 + (a · r(1)2 + b · r(2)2) · z2

= a · (r(1)1 · z1 + r
(1)
2 · z2) + b · (r(2)1 · z1 + r

(2)
2 · z2)

= a · (r(1)1 · z′1 + r
(1)
2 · z′2) + b · (r(2)1 · z′1 + r

(2)
2 · z′2)

= (a · r(1)1 + b · r(2)1) · z′1 + (a · r(1)2 + b · r(2)2) · z′2 = r
(3)
1 · z′1 + r

(3)
2 · z′2,

so (sk, sk′) ∈ EquivSK(c(3)).
The fact that EquivSK(c(1), c(2)) ⊆ EquivSK(c(3)) implies EquivSK(c(1), c(2), c(3)) = EquivSK(c(1),

c(2)) ∩ EquivSK(c(3)) = EquivSK(c(1), c(2)). Therefore, {c(1), c(2), c(3)} is not independent for
any three ciphertexts c(1), c(2), c(3).

Overall, the largest independent subset X ⊆ CT such that EquivSK(X) = EquivSK(CT) has two
ciphertexts. So, the CS-KEM in [9, 10] has rank 2.

18

6 Enhancedly Secure KEM with Optimal Tightness

In this section, we present KEMs with enhanced security, where the security reduction has a loss
factor Θ(n) with n the number of users. Combining with the impossibility result shown in Sect.
5, the enhanced security of these KEMs are optimal regarding tightness.

More precisely, we will prove that, any IND-mCPA/mCCA secure KEM is itself MUMC-
ECPA/ECCA secure, with security reduction losing a factor of O(n). Therefore, to obtain MUMC-
ECPA/ECCA secure KEMs with optimal security reduction (i.e., security loss = Θ(n)), it suffices
to construct tightly IND-mCPA/mCCA secure KEMs (i.e., the security loss = Θ(1)). Luckily,
there were already a handful of such KEMs.

– The ElGamal public-key encryption (PKE) [12] is tightly IND-mCPA secure based on the
DDH assumption with security loss Θ(1) [33].

– In 2012, Hofheinz and Jager [20] presented the first tightly IND-mCCA secure PKE based on
(matrix) DDH assumptions [13], with security loss Θ(1).

– Recent works [14, 15, 18] proposed efficient IND-mCCA secure PKE schemes based on (matrix)
DDH assumptions [13], with security loss O(λ).

Note that PKE can be used as KEM naturally by encrypting a random key K. These yield (al-
most) tightly IND-mCPA/mCCA secure KEMs with security loss Θ(1) (resp., O(λ)). Combining
with our new result, the KEMs derived from [12, 20, 14, 15, 18] achieve MUMC-ECPA/ECCA
security based on the standard (matrix) DDH assumptions with security loss Θ(n) [12, 20] (resp.,
O(λn) [14, 15, 18]), thus the tightness of their MUMC-ECPA/ECCA security is optimal (resp.,
almost optimal).

The Non-Triviality of Our Reduction. We stress that our reduction from MUMC-ECPA/ECCA
security to IND-mCPA/mCCA security is non-trivial. A straightforward reduction works as fol-
lows. An IND-mCPA/mCCA adversary B simulates the MUMC-ECPA/ECCA experiment for A
by guessing the set of corrupted users, generating the public keys and secret keys of the corrupted
users itself, and embedding the public keys in the IND-mCPA/mCCA experiment into (one of)
the uncorrupted users.

Note that guessing the set of corrupted users will incur two problems in the security reduction.

– Firstly, it will incur an exponential loss factor, since there are 2n possibilities of corrupted
users in total, which is exponentially large when n ≥ λ.

– Moreover, it is hard for B to answer key reveal queries w.r.t. uncorrupted users for A, since
the IND-mCPA/mCCA experiment does not provide a key reveal oracle ORev.

We addressed the above two problems and provide a new reduction which loses only a linear
factor O(n). Our reduction goes with n hybrids. In the η-th hybrid (η ∈ [n]), we change the
encapsulated keys in OTest w.r.t. user η from real keys K0 to random keys K1.

– One user at a time. To avoid an exponential loss factor, our reduction focuses on only
a single user at a time. In the η-th hybrid, our reduction embeds the public key in the
IND-mCPA/mCCA experiment into the public key of user η. There are two cases. If A never
corrupts user η, B can simulate the MUMC-ECPA/ECCA experiment perfectly for A. So the
change of OTest for user η is unnoticeable to A by the IND-mCPA/mCCA security. If A asks
to corrupt user η, B aborts immediately. Note that in the latter case, A is not allowed to query
OTest for user η when user η is (going to be) corrupted. So the change of OTest for user η is
conceptual.

– Key reveal with random keys. To handle key reveal queries for user η, we borrow the
ideas from [30]. If A never corrupts user η, B can output a random key for key reveal queries
since A never sees the secret key of user η. If A asks to corrupt user η, B can also output
a random key for key reveal queries before the corruption and aborts immediately when the
corruption happens.

With only n hybrids, we change all encapsulated keys in OTest to random. This shows the indistin-
guishability of β = 0 and β = 1 in the MUMC-ECPA/ECCA experiment. Overall, our reduction
only loses a linear factor O(n) from MUMC- ECPA/ECCA to the IND-mCPA/mCCA security.

19

Theorem 2 (IND-mCPA/mCCA
O(n)⇒ MUMC-ECPA/ECCA for KEM). Let KEM be

an IND-mCPA (resp., IND-mCCA) secure KEM scheme. Then KEM is MUMC-ECPA (resp.,
MUMC-ECCA) secure.

Concretely, for any adversary A that (tA, εA, n,Qe, Qt)-breaks the MUMC-ECPA (resp., MUMC-
ECCA) security of KEM and makes at most Qtotal times of queries in total, there exists an algo-
rithm B that (tB, εB)-breaks the IND-mCPA (resp., IND-mCCA) security of KEM, with

tB ≤ tA + (n+Qtotal) · tKEM and εB ≥ εA/(2n),

where tKEM is a parameter depending only on the algorithms of KEM and is independent of tA.

Proof of Theorem 2. We prove the theorem only for the CCA case, and the CPA case follows
similarly by simply ignoring the decapsulation queries. We will define a sequence of games G0-Gn,
and show adjacent games indistinguishable.

Game Gη, η ∈ [0, n]: This game is identical to Expmumc-ecca
KEM,n,Qe,Qt(A) (cf. Fig. 2), except that, when

answering OTest(i, c), the challenger outputs the real key K0 for users i > η and outputs a random
key K1 for users i ≤ η. Clearly, G0 = Expmumc-ecca

KEM,n,Qe,Qt(A) where β = 0 and Gn = Expmumc-ecca
KEM,n,Qe,Qt(A)

where β = 1.
By definition, Advmumc-ecca

KEM,n,Qe,Qt(A) = 2 · |Pr[Expmumc-ecca
KEM,n,Qe,Qt(A) ⇒ 1] − 1/2| = |Pr[β′ = 1 | β =

0] − Pr[β′ = 1 | β = 1]| = |Pr[G0 = 1] − Pr[Gn = 1]| ≤
∑
η∈[n] |Pr[Gη−1 = 1] − Pr[Gη = 1]|. We

prove the following lemma.

Lemma 4 (Gη−1 → Gη). For any η ∈ [n], there exist algorithms B1,B2 against the IND-mCCA

security, s.t. tB1
≈ tB2

≤ tA+(n+Qtotal)·tKEM, and |Pr[Gη−1 = 1]−Pr[Gη = 1]| ≤ Advind-mcca
KEM (B1)+

Advind-mcca
KEM (B2).

Proof of Lemma 4. Note that the only difference between Gη−1 and Gη lies in the OTest(η, c)
oracle for user η: in Gη−1, OTest(η, c) outputs the real key K0; in Gη, OTest(η, c) outputs a random
key K1.

Let corrη denote the event that A corrupts user η, i.e., A ever queries OCorr(η) when (η, ·) /∈
TestList and obtains skη. In the case that corrη occurs, η is appended to CorrList, thus A is not
allowed to query OTest(η, c), and Gη−1 and Gη are identical. Consequently,

|Pr[Gη−1 = 1]− Pr[Gη = 1]| = |Pr[Gη−1 = 1 ∧ ¬corrη]− Pr[Gη = 1 ∧ ¬corrη]|. (12)

To bound (12), we introduce an intermediate game G̃η between Gη−1 and Gη, and analyze

|Pr[Gη−1 = 1 ∧ ¬corrη] − Pr[G̃η = 1 ∧ ¬corrη]| and |Pr[G̃η = 1 ∧ ¬corrη] − Pr[Gη = 1 ∧ ¬corrη]|
separately.

Game G̃η, η ∈ [0, n]: This game is identical to Gη, except that, when answering ORev(η, c) for the
user η, if (η, c,K) ∈ EncList and (η, c) /∈ TestList, the challenger outputs a random key R ←$ K
(instead of the real key K in (η, c,K) ∈ EncList).

We have the following two claims, with proofs appeared in Appendix B.

Claim 1. |Pr[Gη−1 = 1 ∧ ¬corrη]− Pr[G̃η = 1 ∧ ¬corrη]| ≤ Advind-mcca
KEM (B1).

Claim 2. |Pr[G̃η = 1 ∧ ¬corrη]− Pr[Gη = 1 ∧ ¬corrη]| ≤ Advind-mcca
KEM (B2).

Taking (12), Claim 1 and Claim 2 together, we have

|Pr[Gη−1 = 1]− Pr[Gη = 1]| ≤ Advind-mcca
KEM (B1) + Advind-mcca

KEM (B2).

This yields Lemma 4. �

Finally, we get Advmumc-ecca
KEM,n,Qe,Qt(A) = |Pr[G0 = 1]− Pr[Gn = 1]|

≤
∑
η∈[n]

|Pr[Gη−1 = 1]− Pr[Gη = 1]| ≤ n · Advind-mcca
KEM (B1) + n · Advind-mcca

KEM (B2).

By unifying B1 and B2 into a single algorithm B attacking the IND-mCCA security, where B
behaves according to B1 with probability 1/2 and according to B2 with probability 1/2, we have
Advmumc-ecca

KEM,n,Qe,Qt(A) ≤ 2n · Advind-mcca
KEM (B). �

20

Acknowledgments. We would like to thank the reviewers for their helpful comments. Shuai
Han and Shengli Liu were partially supported by National Natural Science Foundation of China
(Grant Nos. 62002223, 61925207), Guangdong Major Project of Basic and Applied Basic Re-
search (2019B030302008), Shanghai Sailing Program (20YF1421100), and Young Elite Scientists
Sponsorship Program by China Association for Science and Technology. Dawu Gu was partially
supported by National Key Research and Development Project 2020YFA0712300.

References

[1] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg
(Mar 2015)

[2] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In:
Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 273–304. Springer,
Heidelberg (May 2016)

[3] Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and improved
concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 407–424. Springer, Heidelberg (Apr 2009)

[4] Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.)
EUROCRYPT’98. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (May / Jun 1998)

[5] Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg
(Apr / May 2002)

[6] Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange
protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 767–797. Springer, Heidelberg (Aug 2019)

[7] Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (Apr / May 2002)

[8] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive cho-
sen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25. Springer,
Heidelberg (Aug 1998)

[9] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64.
Springer, Heidelberg (Apr / May 2002)

[10] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

[11] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[12] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In:
Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (Aug
1984)

[13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman
assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–
147. Springer, Heidelberg (Aug 2013)

[14] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In:
Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer,
Heidelberg (May 2016)

[15] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160. Springer, Heidelberg (Aug 2017)

[16] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key ex-
change. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125.
Springer, Heidelberg (Aug 2018)

[17] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated key exchange and
signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part IV. LNCS, vol. 12828, pp. 670–700. Springer, Heidelberg, Virtual Event (Aug 2021)

[18] Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-adaptive hash
proof system. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp.
417–447. Springer, Heidelberg (Aug 2019)

[19] Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 65–94. Springer, Heidelberg (Aug
2018)

[20] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (Aug 2012)

21

[21] Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg
(May 2012)

[22] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (Aug 2007)

[23] Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In:
Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146.
Springer, Heidelberg (Oct 2021)

[24] Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated encryption with
corruptions: Reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol.
10677, pp. 409–441. Springer, Heidelberg (Nov 2017)

[25] Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553. Springer, Heidelberg (Apr
2012)

[26] Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (Aug 2005)

[27] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (Aug 2004)

[28] LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In:
Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg
(Nov 2007)

[29] Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer, Heidelberg (May 2014)

[30] Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication
and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
785–814. Springer, Heidelberg (Dec 2020)

[31] Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 507–536. Springer, Heidelberg (Nov 2018)

[32] Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 724–753. Springer, Heidelberg (Dec 2020)

[33] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In:
38th FOCS. pp. 458–467. IEEE Computer Society Press (Oct 1997)

[34] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In:
22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

[35] Niehues, D.: Verifiable random functions with optimal tightness. In: Garay, J. (ed.) PKC 2021, Part II.
LNCS, vol. 12711, pp. 61–91. Springer, Heidelberg (May 2021)

[36] Pan, J., Qian, C., Ringerud, M.: Signed Diffie-Hellman key exchange with tight security. In: Paterson,
K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 201–226. Springer (2021)

[37] Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via double-key key
encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol.
11273, pp. 158–189. Springer, Heidelberg (Dec 2018)

22

A Computing Ranks for Well-Known KEM Schemes: More Instances

We show the KEM schemes (implicitly) used in many well-known PKE schemes [12, 8, 27, 14, 18,
34] and elaborate how to compute their ranks.

Before presenting the computations, we show a simple but useful lemma which gives an upper
bound on the rank of KEM schemes.

Lemma 5 (Upper Bound on the Rank of KEM). Let KEM be a KEM scheme with cipher-
text space CT . Let d ∈ N. Suppose that every set X containing exactly d + 1 ciphertexts is not
independent. Then we have RankKEM ≤ d.

Proof. According to the definition of RankKEM, there exists an independent ciphertext subset X
such that #X = RankKEM and EquivSK(X) = EquivSK(CT). Suppose towards a contradiction
that RankKEM > d, then #X ≥ d + 1. By Lemma 2, any (d + 1)-sized subset X ′ of X is also
independent. This contradicts to the condition that every ciphertext set of size d + 1 is not
independent. Therefore, it must hold that RankKEM ≤ d. �

Example 1 (ElGamal’s CPA-secure KEM). The ElGamal public-key encryption (PKE) [12]
is tightly IND-mCPA secure based on the DDH assumption with security loss O(1) [33].

We recall the KEM deriving from the ElGamal PKE [12] as follows. Let (G, p, g) be a (mul-
tiplicative) group of prime order p and with random generator g. The public key is pk := (g, h)
where h := gs for a uniformly chosen s←$ Zp, and the secret key is sk := s. The encapsulation al-
gorithm Encap(pk) samples r ←$ Zp uniformly, and outputs (c := gr,K := hr). The decapsulation
algorithm Decap(sk, c) outputs K := (c)sk.

The secret key space is SK = Zp, the ciphertext space is CT = G, and in decapsulation the
essential key deriving part Decapkd is Decap itself.

Next we show that the ElGamal-KEM has rank 1. For a ciphertext c ∈ CT = G, we com-
pute EquivSK(c): for any (sk, sk′) ∈ (SK)2, (sk, sk′) ∈ EquivSK(c) ⇐⇒ Decapkd(sk, c) =
Decapkd(sk

′, c) ⇐⇒ (c)sk = (c)sk
′
. There are two cases:

– If c = 1 ∈ G, (sk, sk′) ∈ EquivSK(c) ⇐⇒ 1sk = 1sk
′ ⇐⇒ 1 = 1, which always holds, so

EquivSK(c) = (Zp)2, the full relation on SK.

– If c ∈ G \ {1}, (sk, sk′) ∈ EquivSK(c) ⇐⇒ (c)sk = (c)sk
′ ⇐⇒ sk = sk′, so EquivSK(c) =

{(sk, sk) | sk ∈ Zp}, the identity relation on SK.

Consequently, we have the following two facts.

(1) For any two ciphertexts c(1), c(2) ∈ CT , it must hold that EquivSK(c(1)) ⊆ EquivSK(c(2))
or EquivSK(c(1)) ⊇ EquivSK(c(2)), thus EquivSK(c(1), c(2)) = EquivSK(c(1)) ∩ EquivSK(c(2)) is
EquivSK(c(1)) or EquivSK(c(2)), which implies that {c(1), c(2)} is not independent.

(2) EquivSK(CT) =
⋂
c∈CT EquivSK(c) = {(sk, sk) | sk ∈ Zp}.

Therefore, the largest independent subset X ⊆ CT such that EquivSK(X) = EquivSK(CT) is
singleton set X = {c} with c ∈ G \ {1}. So, RankKEM = 1.

Example 2 (Cramer-Shoup’s CCA-secure KEM). Cramer and Shoup [8] proposed an ef-
ficient IND-CCA secure PKE (CS-PKE) based on the DDH assumption. We recall the KEM
deriving from the CS-PKE as follows. Let (G, p, g1, g2) be a group of prime order p and with
random generators g1, g2. Let H be a hash function from G2 to Zp.

– The public key is pk := (g1, g2, c, d, h) where c := gx1
1 gx2

2 , d := gy11 g
y2
2 and h := gz1 for uniformly

chosen x1, x2, y1, y2, z ←$ Zp, and the secret key is sk := (x1, x2, y1, y2, z).
– Encap(pk) samples r ←$ Zp uniformly, computes u1 := gr1, u2 := gr2, α := H(u1, u2), v :=
crdrα, K := hr, and outputs c := (u1, u2, v) and K.

– Decap(sk = (x1, x2, y1, y2, z), c = (u1, u2, v)) outputs K := (u1)z if ux1+y1α
1 · ux2+y2α

2 = v
holds, where α := H(u1, u2), and outputs ⊥ otherwise.

The secret key space is SK = Z5
p, the ciphertext space is CT = G3, and the key-derivation part

Decapkd(sk, c) simply outputs K := (u1)z. We note that the Decapkd(sk, c) is identical to the
decapsulation algorithm of ElGamal-KEM. Thus, by a similar analysis, the CS-KEM has rank 1
as well.

23

Example 3 (Kurosawa-Desmedt’s CCCA-secure KEM). Kurosawa and Desmedt [27] pro-
posed the most efficient IND-CCA secure PKE (KD-PKE) based on the DDH assumption by far.
At the heart of their PKE is a more efficient KEM scheme which was later shown to be IND-CCCA
(constrained CCA) secure, a security notion weaker than IND-CCA but stronger than IND-CPA,
in [22].

We recall the KD-KEM as follows. Let (G, p, g1, g2) be a group of prime order p and with
random generators g1, g2. Let H be a hash function from G2 to Zp.

– The public key is pk := (g1, g2, c, d) where c := gx1
1 gx2

2 and d := gy11 g
y2
2 for uniformly chosen

x1, x2, y1, y2 ←$ Zp, and the secret key is sk := (x1, x2, y1, y2).
– Encap(pk) samples r ←$ Zp uniformly, computes u1 := gr1, u2 := gr2, α := H(u1, u2), K :=
crdrα, and outputs c := (u1, u2) and K.

– Decap(sk = (x1, x2, y1, y2), c = (u1, u2)) outputs K := ux1+y1α
1 ·ux2+y2α

2 , where α := H(u1, u2).

The secret key space is SK = Z4
p, the ciphertext space is CT = G2, and the key-derivation part

Decapkd is Decap itself.
Firstly, we compute EquivSK(c) for any ciphertext c = (u1, u2) ∈ CT . We can always write

u1 = gr11 and u2 = gr21 with r1, r2 ∈ Zp the discrete logarithms of u1, u2 w.r.t. g1. Let α :=
H(u1, u2). Then for any sk = (x1, x2, y1, y2), sk′ = (x′1, x

′
2, y
′
1, y
′
2) ∈ SK,

(sk, sk′) ∈ EquivSK(c) ⇐⇒ Decapkd(sk, c) = Decapkd(sk
′, c)

⇐⇒ ux1+y1α
1 · ux2+y2α

2 = u
x′1+y

′
1α

1 · ux
′
2+y

′
2α

2

⇐⇒ r1 · (x1 + y1α) + r2 · (x2 + y2α) = r1 · (x′1 + y′1α) + r2 · (x′2 + y′2α)

⇐⇒ (r1, r2, r1α, r2α) · (x1, x2, y1, y2)> = (r1, r2, r1α, r2α) · (x′1, x′2, y′1, y′2)>.

So, EquivSK(c) = {(sk = (x1, x2, y1, y2), sk′ = (x′1, x
′
2, y
′
1, y
′
2)) | (r1, r2, r1α, r2α)·(x1, x2, y1, y2)> =

(r1, r2, r1α, r2α) · (x′1, x′2, y′1, y′2)>}.
Next, we show that any subset consisting any five ciphertexts {c(1), · · · , c(5)} is not an inde-

pendent set. Let c(i) = (u
(i)
1 = g

r
(i)
1

1 , u
(i)
2 = g

r
(i)
2

1) and α(i) := H(u
(i)
1 , u

(i)
2) for i ∈ [5]. Since the

linear space Z4
p has dimension 4, the five vectors {(r(i)1 , r

(i)
2 , r

(i)
1 α(i), r

(i)
2 α(i))}i∈[5] in Z4

p must be

linearly dependent. Say (r
(5)
1 , r

(5)
2 , r

(5)
1 α(5), r

(5)
2 α(5)) =

∑4
j=1 a

(j) ◦ (r
(j)
1 , r

(j)
2 , r

(j)
1 α(j), r

(j)
2 α(j)) for

some coefficients a(1), · · · , a(4) ∈ Zp, where “◦” denotes scalar multiplication. Then we prove that
EquivSK(c(1), · · · , c(4)) ⊆ EquivSK(c(5)) as follows: for any (sk = (x1, x2, y1, y2), sk′ = (x′1, x

′
2, y
′
1, y
′
2))

∈ EquivSK(c(1), · · · , c(4)) =
⋂4
j=1 EquivSK(c(j)), it holds (r

(j)
1 , r

(j)
2 , r

(j)
1 α(j), r

(j)
2 α(j))·(x1, x2, y1, y2)>

= (r
(j)
1 , r

(j)
2 , r

(j)
1 α(j), r

(j)
2 α(j)) · (x′1, x′2, y′1, y′2)> for all j ∈ [4], thus

(r
(5)
1 , r

(5)
2 , r

(5)
1 α(5), r

(5)
2 α(5)) · (x1, x2, y1, y2)>

=

4∑
j=1

a(j) ◦ (r
(j)
1 , r

(j)
2 , r

(j)
1 α(j), r

(j)
2 α(j)) · (x1, x2, y1, y2)>

=
4∑
j=1

a(j) ◦ (r
(j)
1 , r

(j)
2 , r

(j)
1 α(j), r

(j)
2 α(j)) · (x′1, x′2, y′1, y′2)>

= (r
(5)
1 , r

(5)
2 , r

(5)
1 α(5), r

(5)
2 α(5)) · (x′1, x′2, y′1, y′2)>,

so (sk, sk′) ∈ EquivSK(c(5)). The fact that EquivSK(c(1), · · · , c(4)) ⊆ EquivSK(c(5)) implies EquivSK
(c(1), · · · , c(5)) = EquivSK(c(1), · · · , c(4)) ∩ EquivSK(c(5)) = EquivSK(c(1), · · · , c(4)). Therefore,
{c(1), · · · , c(5)} is not independent for any five ciphertexts.

Finally, by Lemma 5, the KD-KEM has rank at most 4.

Example 4 (Gay-Hofheinz-Kiltz-Wee’s PCA-secure KEM). In 2016, Gay, Hofheinz, Kiltz
and Wee [14] proposed the first (almost) tightly IND-mCCA secure PKE (GHKW-PKE) based
on the matrix DDH (MDDH) assumptions [13] and without pairing. At the heart of their PKE is
a KEM scheme which is (almost) tightly PCA-secure (plaintext check attacks), a security strictly
weaker than IND-CCA but stronger than IND-CPA.

We recall the GHKW-KEM as follows. Let (G, p, g) be a group of prime order p and with
random generators g. We use the implicit representation of elements in G according to [13].

24

For a ∈ Zp, define [a] := ga ∈ G. More generally, for a matrix A = (aij) ∈ Zn×mp , define
[A] := (gaij) ∈ Gn×m. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently
compute [ax] ∈ G and [a + b] ∈ G. Similarly, for A ∈ Zm×np ,B ∈ Zn×tp , given A,B or [A],B or
A, [B], one can efficiently compute [AB] ∈ Gm×t. Let k ∈ N denote the parameter of MDDH
assumption. E.g, k = 1 corresponds to the DDH assumption. Let H be a hash function from Gk
to {0, 1}λ.

– The public key is pk :=
(

[M], ([M>kj,β])1≤j≤λ,β∈{0,1}

)
where M←$ Z3k×k

p and kj,β ←$ Z3k
p ,

and the secret key is sk := (kj,β)1≤j≤λ,β∈{0,1}.

– Encap(pk) samples r ←$ Zkp uniformly, computes [y] := [Mr] ∈ G3k, τ := H([y]) ∈ {0, 1}λ

with y the first k entries of y, K := [r>M>∑λ
j=1 kj,τj] with τj the j-th bit of τ , and outputs

c := [y] and K.

– Decap(sk, c = [y]) computes τ := H([y]) ∈ {0, 1}λ, and outputs K := [y>
∑λ
j=1 kj,τj].

The secret key space is SK = (Z3k
p)2λ, the ciphertext space is CT = G3k, and the key-derivation

part Decapkd is Decap itself.
Firstly, we compute EquivSK(c) for any ciphertext c = [y] ∈ CT . Let τ := H([y]) ∈ {0, 1}λ.

Then for any sk = (kj,β)1≤j≤λ,β∈{0,1}, sk
′ = (k′j,β)1≤j≤λ,β∈{0,1} ∈ SK, (sk, sk′) ∈ EquivSK(c) ⇐⇒

Decapkd(sk, c) = Decapkd(sk
′, c) ⇐⇒ y>

∑λ
j=1 kj,τj = y>

∑λ
j=1 k′j,τj . For the ease of notations,

we let
v>c := ((1− τ1)y>, τ1y

>, (1− τ2)y>, τ2y
>, · · · , (1− τλ)y>, τλy

>) ∈ Z1×6kλ
p

be a row vector determined by c = [y] ∈ CT , and let

usk := (k>1,0,k
>
1,1,k

>
2,0,k

>
2,1, · · · ,k>λ,0,k>λ,1)> ∈ Z6kλ

p

be a column vector determined by sk ∈ SK. Note that with such notations, we have y>
∑λ
j=1 kj,τj =

v>c usk. So, EquivSK(c) = {(sk, sk′) | v>c usk = v>c usk′}.
Next, we show that any subset consisting 6kλ + 1 ciphertexts {c(i)}1≤i≤6kλ+1 is not an inde-

pendent set. Let v>
c(i)
∈ Z1×6kλ

p be the row vector determined by c(i) for 1 ≤ i ≤ 6kλ+1. Since the

linear space Z1×6kλ
p has dimension 6kλ, the 6kλ+ 1 row vectors {v>

c(i)
}1≤i≤6kλ+1 in Z1×6kλ

p must

be linearly dependent. Say v>
c(6kλ+1) =

∑6kλ
j=1 a

(j) ◦ v>
c(j)

for some coefficients a(1), · · · , a(6kλ) ∈
Zp, where “◦” denotes scalar multiplication. Then we prove that EquivSK(c(1), · · · , c(6kλ)) ⊆
EquivSK(c(6kλ+1)) as follows: for any (sk, sk′) ∈ EquivSK(c(1), · · · , c(6kλ)) =

⋂6kλ
j=1 EquivSK(c(j)), it

holds v>
c(j)

usk = v>
c(j)

usk′ for all 1 ≤ j ≤ 6kλ, thus

v>c(6kλ+1)usk =

6kλ∑
j=1

a(j) ◦ v>c(j)usk =

6kλ∑
j=1

a(j) ◦ v>c(j)usk′ = v>c(6kλ+1)usk′ ,

so (sk, sk′) ∈ EquivSK(c(6kλ+1)). The fact that EquivSK(c(1), · · · , c(6kλ)) ⊆ EquivSK(c(6kλ+1)) im-
plies EquivSK(c(1), · · · , c(6kλ), c(6kλ+1)) = EquivSK(c(1), · · · , c(6kλ))∩EquivSK(c(6kλ+1)) = EquivSK
(c(1), · · · , c(6kλ)). Therefore, {c(1), · · · , c(6kλ), c(6kλ+1)} is not independent for any 6kλ+ 1 cipher-
texts.

Finally, by Lemma 5, the GHKW-KEM has rank at most 6kλ.

Example 5 (Han-Liu-Lyu-Gu’s CCA-secure KEM). Han, Liu, Lyu and Gu [18] presented
an (almost) tightly leakage-resilient mCCA secure PKE (HLLG-PKE) based on the matrix DDH
(MDDH) assumptions [13] over pairing-friendly groups. Their PKE contains a KEM scheme which
is also (almost) tightly leakage-resilient mCCA secure.

We recall the HLLG-KEM over symmetric pairing group as follows. Let (G,GT , p, g, gT , e) be
a description of symmetric pairing group, where G,GT are groups of prime order p, e : G×G −→
GT is a non-degenerated bilinear pairing, and g, gT are generators of G,GT respectively with
gT := e(g, g). We use the implicit representations [·] and [·]T to denote elements in G and GT
respectively, according to [13]. Let k ∈ N denote the parameter of MDDH assumption. Let H be
a hash function from G2k to G.

– The public key is pk :=
(

[A], [k>A], [A>K̂A]T , [K̃A]
)

where A ←$ Z2k×k
p , k ←$ Z2k

p , K̂←$

Z2k×2k
p , K̃←$ Z2×2k

p , and the secret key is sk := (k, K̂, K̃).

25

– Encap(pk) samples r←$ Zkp uniformly, computes [y] := [Ar] ∈ G2k, [τ] := H([y]) ∈ G,

[π]T := [r>A>K̂Ar + (1, τ)K̃Ar]T , K := [k>Ar], and outputs c := ([y], [π]T) and K.

– Decap(sk, c = ([y], [π]T)) computes [τ] := H([y]) ∈ G, outputs K := [k>y] if [π]T := [y>K̂y+

(1, τ)K̃y]T holds, and output ⊥ otherwise.

The secret key space is SK = Z2k
p ×Z2k×2k

p ×Z2×2k
p , the ciphertext space is CT = G2k ×GT , and

the key-derivation part Decapkd simply outputs K := [k>y].
Firstly, we compute EquivSK(c) for any ciphertext c = ([y], [π]T) ∈ CT . For any sk =

(k, K̂, K̃), sk′ = (k′, K̂′, K̃′) ∈ SK, (sk, sk′) ∈ EquivSK(c) ⇐⇒ Decapkd(sk, c) = Decapkd(sk
′, c)

⇐⇒ k>y = k′>y. So, EquivSK(c) = {(sk = (k, · · ·), sk′ = (k′, · · ·)) | k>y = k′>y}.
Next, we show that any subset consisting 2k+1 ciphertexts {c(i)}1≤i≤2k+1 is not an independent

set. Let c(i) = ([y(i)], [π(i)]T) for 1 ≤ i ≤ 2k + 1. Since the linear space Z2k
p has dimension 2k, the

2k+1 vectors {y(i)}1≤i≤2k+1 in Z2k
p must be linearly dependent. Say y(2k+1) =

∑2k
j=1 a

(j)◦y(j) for

some coefficients a(1), · · · , a(2k) ∈ Zp, where “◦” denotes scalar multiplication. Then we prove that
EquivSK(c(1), · · · , c(2k)) ⊆ EquivSK(c(2k+1)) as follows: for any (sk = (k, · · ·), sk′ = (k′, · · ·)) ∈
EquivSK(c(1), · · · , c(2k)) =

⋂2k
j=1 EquivSK(c(j)), it holds k>y(j) = k′>y(j) for all 1 ≤ j ≤ 2k, thus

k>y(2k+1) =

2k∑
j=1

a(j) ◦ k>y(j) =

2k∑
j=1

a(j) ◦ k′>y(j) = k′>y(2k+1),

so (sk, sk′) ∈ EquivSK(c(2k+1)). The fact that EquivSK(c(1), · · · , c(2k)) ⊆ EquivSK(c(2k+1)) implies
EquivSK(c(1), · · · , c(2k), c(2k+1)) = EquivSK(c(1), · · · , c(2k)) ∩ EquivSK(c(2k+1)) = EquivSK(c(1), · · · ,
c(2k)). Therefore, {c(1), · · · , c(2k), c(2k+1)} is not independent for any 2k + 1 ciphertexts.

Finally, by Lemma 5, the HLLG-KEM has rank at most 2k.

Example 6 (Naor-Yung’s CCA-secure KEM). The celebrated Naor-Yung [34] paradigm
is one of the principal techniques to construct CCA-secure PKE/KEM. Here we recall the Naor-
Yung paradigm in the setting of KEM, which transforms a CPA-secure KEM and a non-interactive
zero-knowledge proof/argument (NIZK) scheme to a CCA-secure KEM that we call NY-KEM.

We recall the NY-KEM as follows. Let KEMcpa = (Setupcpa,Gencpa,Encapcpa,Decapcpa) be a
CPA-secure KEM with secret key space SKcpa, ciphertext space CT cpa and encapsulated key
space {0, 1}λ, and let NIZK be a suitable NIZK scheme with proof space Π.

– The public key is pk := (pkcpa,0, pkcpa,1) and the secret key is sk := skcpa,0, where (pkcpa,0, skcpa,0)
and (pkcpa,1, skcpa,1) are two public/secret key pairs of the underlying KEMcpa.

– Encap(pk) samples K ←$ {0, 1}λ uniformly, invokes (ccpa,0,Kcpa,0)←$ Encapcpa(pkcpa,0) and
(ccpa,1, Kcpa,1)←$ Encapcpa(pkcpa,1), computes K0 := K ⊕Kcpa,0 and K1 := K ⊕Kcpa,1, gen-
erates a NIZK proof π ∈ Π, and outputs c := (ccpa,0,K0, ccpa,1,K1, π) and K. Here ⊕ denotes
the bitwise XOR operation.

– Decap(sk, c = (ccpa,0,K0, ccpa,1,K1, π)) invokesKcpa,0 ← Decapcpa(skcpa,0, ccpa,0), outputsK :=
Kcpa,0 ⊕K0 if the NIZK proof π is valid, and output ⊥ otherwise.

The secret key space is SK = SKcpa, the ciphertext space is CT = CT cpa×{0, 1}λ×CT cpa×{0, 1}λ×
Π, and the key-derivation part Decapkd simply outputs K := Decapcpa(skcpa,0, ccpa,0)⊕K0.

We compute EquivSK(c) for any ciphertext c = (ccpa,0,K0, ccpa,1,K1, π) ∈ CT . For any sk =
skcpa,0, sk

′ = sk′cpa,0 ∈ SK, (sk, sk′) ∈ EquivSK(c) ⇐⇒ Decapkd(sk, c) = Decapkd(sk
′, c) ⇐⇒

Decapcpa(skcpa,0, ccpa,0) ⊕ K0 = Decapcpa(sk
′
cpa,0, ccpa,0) ⊕ K0 ⇐⇒ Decapcpa(skcpa,0, ccpa,0) =

Decapcpa(sk
′
cpa,0, ccpa,0) ⇐⇒ (skcpa,0, sk

′
cpa,0) ∈ EquivSKcpa(ccpa,0), where EquivSKcpa denotes the

decapsulation equivalence relation of KEMcpa. So,

EquivSK(c) = EquivSKcpa(ccpa,0).

This shows that the relation EquivSK of NY-KEM is essentially the same as the relation
EquivSKcpa of KEMcpa, by simply mapping a ciphertext c = (ccpa,0,K0, ccpa,1,K1, π) of NY-KEM
to a ciphertext ccpa,0 of KEMcpa. Thus the CCA-secure NY-KEM and the underlying KEMcpa have
essentially the same meaning of set independence, set rank, and consequently, the same rank.

Therefore, the CCA-secure NY-KEM has polynomially-bounded rank, as long as the underlying
CPA-KEM scheme KEMcpa does. This suggests that many concrete instantiations of NY-KEM
have polynomially-bounded rank, e.g., the NY-KEMs whose underlying CPA-secure KEMs are
instantiated with the KEMs shown above (such as ElGamal).

26

B Omitted Proofs

B.1 Proof of Claim 1

The only difference between Gη−1 and G̃η lies in the OTest(η, c) oracle and ORev(η, c) for the user

η: in Gη−1, OTest(η, c) outputs the real key K0 and ORev(η, c) outputs the real key K; in G̃η,
OTest(η, c) outputs a random key K1 and ORev(η, c) outputs a random key R.

We construct B1 against the IND-mCCA security of KEM by invoking A. Let b denote the
challenge bit chosen by B1’s challenger. B1 has access to two oracles OEnc() and ODec(·) (cf.
Fig. 1). Given (ppKEM, pk) as input, B1 generates (pki, ski)←$ Gen(ppKEM) for all i ∈ [n \ η], sets
pkη := pk, and sends (ppKEM,PKList := {pki}i∈[n]) to A. B1 initializes a flag corrη := false. Then
B1 answers the oracle queries OEnc(·), ODec(·, ·), ORev(·, ·), OCorr(·), OTest(·, ·) made by A in the
following way.

For oracle queriesOEnc(i),ODec(i, c′),ORev(i, c),OCorr(i),OTest(i, c) where i 6= η, B1 prepares

the responses exactly the same as Gη−1 and G̃η using (pki, ski), and returns the answers to A. In
particular, for OTest(i, c) query where i 6= η, B1 outputs K0 if i > η and outputs K1 if i < η.

Below we show how B1 answers the oracle queries for i = η.

– For query OEnc(η), B1 queries its own oracle OEnc(), obtains (c,Kb), appends (η, c,Kb) to
EncList, and returns c to A. Clearly, B1 simulates oracle OEnc(η) in Expmuc-ecca

KEM,n,Qe,Qt (thus Gη−1

and G̃η) perfectly for A.
– For query ODec(η, c′), B1 returns ⊥ to A if (η, c′, ·) ∈ EncList. Otherwise, B1 queries its own

oracle ODec(c′), obtains K ′, and returns K ′ to A. Clearly, B1 simulates oracle ODec(η, c′) in

Expmuc-ecca
KEM,n,Qe,Qt (thus Gη−1 and G̃η) perfectly for A.

– For query ORev(η, c), if (η, c,K) ∈ EncList for some K = Kb and (η, c) /∈ TestList, B1 appends
(η, c) to RevList, and returns Kb to A. Otherwise, B1 returns ⊥ to A.
Note that, in the case b = 0, Kb = K0 is the real key encapsulated in c, thus B1 simulates
oracle ORev(η, c) in Gη−1 perfectly for A; in the case b = 1, Kb = K1 is a random key uniformly

chosen from K, thus B1 simulates oracle ORev(η, c) in G̃η perfectly for A.
– For query OCorr(η), if (η, ·) ∈ TestList, B1 returns ⊥ to A. Otherwise, B1 sets corrη := true,

terminates the interaction with A, and aborts the game.
– For query OTest(η, c), if (η, c,K) ∈ EncList for some K = Kb and (η, c) /∈ RevList ∪ TestList

and η /∈ CorrList, B1 appends (η, c) to TestList, and returns Kb to A. Otherwise, B1 returns ⊥
to A.
Note that, in the case b = 0, Kb = K0 is the real key encapsulated in c, thus B1 simulates oracle
OTest(η, c) in Gη−1 perfectly for A; in the case b = 1, Kb = K1 is a random key uniformly

chosen from K, thus B1 simulates oracle OTest(η, c) in G̃η perfectly for A.

Finally, B1 receives a guessing bit from A. B1 outputs 1 to its own challenger if and only if A
outputs 1 and ¬corrη. Clearly, tB1 ≤ tA + (n+Qtotal) · tKEM.

For the game simulated by B1,

• In the case b = 0, B1 simulates Gη−1 perfectly for A unless corrη occurs.

• In the case b = 1, B1 simulates G̃η perfectly for A unless corrη occurs.

Therefore, we have

Advind-mcca
KEM (B1) = 2|Pr[B1 ⇒ b]− 1/2| =

∣∣Pr[B1 ⇒ 1 |b = 0]− Pr[B1 ⇒ 1 |b = 1]
∣∣

=
∣∣Pr[A ⇒ 1 ∧ ¬corrη | b = 0]− Pr[A ⇒ 1 ∧ ¬corrη | b = 1]

∣∣
=
∣∣Pr[Gη−1 = 1 ∧ ¬corrη]− Pr[G̃η = 1 ∧ ¬corrη]

∣∣.
This completes the proof of Claim 1.

B.2 Proof of Claim 2

The only difference between G̃η and Gη lies in the ORev(η, c) for the user η: in G̃η, ORev(η, c)
outputs a random key R; in Gη, ORev(η, c) outputs the real key K. We note that, the OTest(η, c)

oracle outputs a random key K1 in both G̃η and Gη.

27

We construct B2 against the IND-mCCA security of KEM by invoking A. B2 behaves almost
the same as the B1 constructed in the proof of Claim 1, except that when answering OTest(η, c)
query made by A, B2 always responds with a random key uniformly chosen from K.

More precisely, B2 works as follows. Let b denote the challenge bit chosen by B2’s challenger. B2
has access to two oracles OEnc() and ODec(·) (cf. Fig. 1). Given (ppKEM, pk) as input, B2 generates
(pki, ski) ←$ Gen(ppKEM) for all i ∈ [n\η], sets pkη := pk, and sends (ppKEM,PKList := {pki}i∈[n])
to A. B2 initializes a flag corrη := false. Then B2 answers the oracle queries OEnc(·), ODec(·, ·),
ORev(·, ·), OCorr(·), OTest(·, ·) made by A in the following way.

For oracle queriesOEnc(i),ODec(i, c′),ORev(i, c),OCorr(i),OTest(i, c) where i 6= η, B2 prepares

the responses exactly the same as Gη−1 and G̃η using (pki, ski), and returns the answers to A. In
particular, for OTest(i, c) query where i 6= η, B2 outputs K0 if i > η and outputs K1 if i < η.

Below we show how B2 answers the oracle queries for i = η.

– For query OEnc(η), B2 queries its own oracle OEnc(), obtains (c,Kb), appends (η, c,Kb) to

EncList, and returns c to A. Clearly, B2 simulates oracle OEnc(η) in Expmuc-ecca
KEM,n,Qe,Qt (thus G̃η

and Gη) perfectly for A.
– For query ODec(η, c′), B2 returns ⊥ to A if (η, c′, ·) ∈ EncList. Otherwise, B2 queries its own

oracle ODec(c′), obtains K ′, and returns K ′ to A. Clearly, B2 simulates oracle ODec(η, c′) in

Expmuc-ecca
KEM,n,Qe,Qt (thus G̃η and Gη) perfectly for A.

– For query ORev(η, c), if (η, c,K) ∈ EncList for some K = Kb and (η, c) /∈ TestList, B2 appends
(η, c) to RevList, and returns Kb to A. Otherwise, B2 returns ⊥ to A.
Note that, in the case b = 0, Kb = K0 is the real key encapsulated in c, thus B2 simulates
oracle ORev(η, c) in Gη perfectly for A; in the case b = 1, Kb = K1 is a random key uniformly

chosen from K, thus B2 simulates oracle ORev(η, c) in G̃η perfectly for A.
– For query OCorr(η), if (η, ·) ∈ TestList, B2 returns ⊥ to A. Otherwise, B2 sets corrη := true,

terminates the interaction with A, and aborts the game.
– For query OTest(η, c), if (η, c,K) ∈ EncList for some K = Kb and (η, c) /∈ RevList ∪ TestList

and η /∈ CorrList, B2 appends (η, c) to TestList, picks R ←$ K randomly, and returns R to A.
Otherwise, B2 returns ⊥ to A.
Note that, R is a random key uniformly chosen from K, thus B2 simulates oracle OTest(η, c)

both in G̃η and Gη perfectly for A.

Finally, B2 receives a guessing bit from A. B2 outputs 1 to its own challenger if and only if A
outputs 1 and ¬corrη. Clearly, tB2

≤ tA + (n+Qtotal) · tKEM.
For the game simulated by B2,

• In the case b = 0, B2 simulates Gη perfectly for A unless corrη occurs.

• In the case b = 1, B2 simulates G̃η perfectly for A unless corrη occurs.

Therefore, we have

Advind-mcca
KEM (B2) = 2|Pr[B2 ⇒ b]− 1/2| =

∣∣Pr[B2 ⇒ 1 |b = 0]− Pr[B2 ⇒ 1 |b = 1]
∣∣

=
∣∣Pr[A ⇒ 1 ∧ ¬corrη | b = 0]− Pr[A ⇒ 1 ∧ ¬corrη | b = 1]

∣∣
=
∣∣Pr[Gη = 1 ∧ ¬corrη]− Pr[G̃η = 1 ∧ ¬corrη]

∣∣.
This completes the proof of Claim 2.

28

Table of Contents

Key Encapsulation Mechanism with Tight Enhanced Security in the Multi-User Setting:
Impossibility Result and Optimal Tightness . 1

Shuai Han , Shengli Liu(�) , and Dawu Gu
1 Introduction . 1

1.1 Technique Overview . 4
1.2 Application of Our Impossibility Result in AKE . 7
1.3 Related Works . 8

2 Preliminaries . 8
2.1 Notations . 8
2.2 Key Encapsulation Mechanisms . 9
2.3 Non-Interactive Assumptions . 9

3 Enhanced Security Notions for KEMs . 10
4 Decap-Equivalence of Secret Keys & Rank of KEMs . 11

4.1 Decap-Equivalence of Secret Keys . 11
4.2 Rank of KEMs . 12
4.3 Core Lemma . 13

5 Impossibility of Tight Enhanced Security for KEMs . 13
5.1 Impossibility of Tight Enhanced Security for KEMs . 14
5.2 Applications of Our Impossibility Result to Well-Known KEMs 17

6 Enhancedly Secure KEM with Optimal Tightness . 19
A Computing Ranks for Well-Known KEM Schemes: More Instances 23
B Omitted Proofs . 27

B.1 Proof of Claim 1 . 27
B.2 Proof of Claim 2 . 27

https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

	Key Encapsulation Mechanism with Tight Enhanced Security in the Multi-User Setting: Impossibility Result and Optimal Tightness
	Introduction
	Technique Overview
	Application of Our Impossibility Result in AKE
	Related Works

	Preliminaries
	Notations
	Key Encapsulation Mechanisms
	Non-Interactive Assumptions

	Enhanced Security Notions for KEMs
	Decap-Equivalence of Secret Keys & Rank of KEMs
	Decap-Equivalence of Secret Keys
	Rank of KEMs
	Core Lemma

	Impossibility of Tight Enhanced Security for KEMs
	Impossibility of Tight Enhanced Security for KEMs
	Applications of Our Impossibility Result to Well-Known KEMs

	Enhancedly Secure KEM with Optimal Tightness
	Computing Ranks for Well-Known KEM Schemes: More Instances
	Omitted Proofs
	Proof of Claim 1
	Proof of Claim 2

