
Opportunistic Algorithmic Double-Spending:
How I learned to stop worrying and hedge the Fork?

Nicholas Stifter1,2, Aljosha Judmayer1,2, Philipp Schindler1,2, and
Edgar Weippl1,2

1 University of Vienna, Vienna, Austria
2 SBA Research, Vienna, Austria

(firstletterfirstname)(lastname)@sba-research.org

Abstract. In this paper, we outline a novel form of attack we refer to as
Opportunistic Algorithmic Double-Spending (OpAl). OpAl attacks avoid
equivocation, i.e., do not require conflicting transactions, and are carried
out automatically in case of a fork. Algorithmic double-spending is facili-
tated through transaction semantics that dynamically depend on the con-
text and ledger state at the time of execution. Hence, OpAl evades com-
mon double-spending detection mechanisms and can opportunistically
leverage forks, even if the malicious sender themselves is not responsible
for, or even actively aware of, any fork. Forkable ledger designs with ex-
pressive transaction semantics, especially stateful EVM-based smart con-
tract platforms such as Ethereum, are particularly vulnerable. Hereby,
the cost of modifying a regular transaction to opportunistically perform
an OpAl attack is low enough to consider it a viable default strategy.
While Bitcoin’s stateless UTXO model, or Cardano’s EUTXO model,
appear more robust against OpAl , we nevertheless demonstrate scenar-
ios where transactions are semantically malleable and thus vulnerable.
To determine whether OpAl-like semantics can be observed in practice,
we analyze the execution traces of 922 562 transactions on the Ethereum
blockchain. Hereby, we are able to identify transactions, which may be
associated with frontrunning and MEV bots, that exhibit some of the
design patterns also employed as part of the herein presented attack.

1 Introduction

Double-spending attacks in cryptocurrencies are primarily considered in two gen-
eral categories. In the first category, an adversary is either themselves capable, or
is able to coerce others, to carry out an attack that undermines the expected se-
curity guarantees of the underlying consensus protocol [71,75,86]. Hereby, attack
vectors such as information withholding [26,65] and information eclipsing [34,3],
as well as exploiting the rational behavior of participants [8,53,39], have received
particular attention. The second category of double-spending attacks leverages
inadequately chosen security parameters by merchants, i.e, they provide goods
or services while the probability of the payment transaction being reverted is

? A condensed version of this work will be presented at ESORICS 2022



2 N. Stifter et al.

non-negligible [42,75]. In this regard, the probabilistic consensus guarantees of
Nakamoto consensus [67] may be misunderstood in practice, which contributes to
insecure behavior by its users [75,58]. Regardless of the attack category, it is pre-
dominantly assumed that the adversary proactively performs double-spending
through equivocation [36], i.e., by creating mutually exclusive transactions.

We hereby challenge this status quo and discuss an alternative attack, which
we refer to as opportunistic algorithmic double-spending, whereby the intent to
double-spend is intentionally encoded as part of the transaction semantics. Al-
gorithmic double-spending does not require equivocating transactions and is fa-
cilitated through distributed ledgers that exhibit two properties, namely i) the
ability to define transaction semantics that dynamically depend on the ledger
state or execution context, which we refer to as semantic malleability, and ii)
probabilistic consensus decisions, i.e., protocols without finality, or where secu-
rity failures have compromised the safety of consensus decisions.

If these two conditions are fulfilled, OpAl can be used as a free riding gadget
to profit from any sufficiently deep blockchain fork. OpAl attacks do not stand
in contradiction to the security guarantees and desirable properties [29,67] of-
fered by Nakamoto-style distributed ledgers. The existence of state instability,
i.e. forks, is abstracted away in idealized ledgers by waiting sufficiently long for
the relevant actions, e.g. transactions, to be included in the common prefix with
high probability [10]. However, determining the correct choice of security param-
eters for real-world system settings is difficult [75,37] and unforeseen technical
failures, or attacks, that undermine a ledger’s security assumptions through deep
forks, can happen in practice [54], (see App. 3). Especially during such extraordi-
nary events the threat of OpAl attacks can prove particularly severe. Even under
the assumption that the ledger’s security guarantees hold, algorithmic double-
spending can be of concern in cases where users exhibit an insecure interaction
model, referred to as hasty players [10], whereby actions are taken based on un-
stable state. We crucially note that such patterns are commonly encountered in
real-world ledgers such as Ethereum, e.g., in the context of decentralized finance
(DeFi), where hastiness can be financially advantageous [16,89]. Our empirical
analysis of Ethereum transactions in Section 7 also reveals that OpAl -like se-
mantics are being used by entities which, according to block explorers, may be
associated with MEV (miner extractable value) bots.

1.1 Paper Structure

An introduction and executive summary that outlines the concept of OpAl and
highlights the contributions of this paper is presented in Section 1. In Section 2
we discuss related work and background literature. Section 3 provides a definition
of what is meant by OpAl . To gain a better understanding of the principles be-
hind OpAl , we first define prerequisites and properties of semantic malleability
in Section 4, and use them to investigate three different ledger designs (Sec-
tions 5 and 6). A proof-of-concept OpAl attack in the context of Ethereum is
also presented in Section 6. In Section 7 we empirically analyze transaction traces
from Ethereum to identify and characterize transactions where ledger context is



OpAl : How I learned to stop worrying and hedge the Fork 3

accessed. Finally, we consider possible mitigation strategies against algorithmic
double-spending (Section 8) and highlight future research directions in Section 9.

2 Related Work

Beyond the related work on double-spending that was mentioned in the introduc-
tion, it is important to highlight that prior art has identified a range of security
issues in distributed ledgers that tie-into the discussion of OpAl .

Luu et al. [55] outlines the problem of transaction-order dependence (TOD)
in the context of smart contracts, whereby the ordering in which transactions
are executed can lead to unintended state updates that may affect security. As a
counter-measure, the utilization of guard-functions is suggested, which constrain
transaction validity to desirable input states. Another security issue they cover is
timestamp dependence in smart contracts. However, Luu et al. does not discuss
the possibility that transactions could be designed to intentionally carry out
adversarial actions based on the state upon which they are executing. More
importantly, TOD and timestamp dependence is only analyzed in regard to
adversarial ordering and the impact of forks by block producers, and not how
regular network participants could also leverage such events to their advantage.

Natoli et al. [64] report an artifact related to semantic malleability that
they observe in practice in private blockchain networks, which they refer to as
the blockchain anomaly in analogy to the paxos anomaly [7]. The blockchain
anomaly derives from the property that causality between transactions may be
violated if there are no corresponding transaction ordering constraints imposed
at the consensus level, leading to unintended outcomes.

Gazi et al. [30] describe a form of long-range attack in proof-of-stake systems
referred to as stake bleeding, whereby an adversary may replay valid user trans-
actions from the honest chain in a simulated attack chain in order to collect the
transaction fees and increase their stake. This is done to render the simulation
more plausible to a victim and avoid having to compromise old staking keys.
One of the mitigation strategies they propose is context-sensitive transactions,
whereby the transaction validity is tied to a particular ledger state through in-
cluding a previous block hash.

Sergey and Hobor [74] introduce the analogy that smart contracts and ac-
counts in Ethereum are like concurrent objects and threads accessing those ob-
jects. Following this analogy helps to explain why user interactions with smart
contracts can behave like non-deterministic executions that exhibit issues oth-
erwise known from parallel processing. As a remedy, the work suggests using
synchronization methods such as locks within smart contract logic. The key dif-
ference to guard functions from Luu et al. is that this counter-measure is applied
on a per-contract basis. Kolluri et al. [48] extends upon this analogy and provides
an automated tool for discovering event ordering (EO) bugs in smart contracts.

McCorry et al. [59,60] presents constructions for (hard-) fork oracles which
are used in the context of atomic cross-chain trading protocols for betting on
the outcome of hardforks and trustless smart-contract based bribing.



4 N. Stifter et al.

Daian et al. [16] documents and outlines the widespread utilization of ar-
bitrage bots for performing frontrunning and transaction reordering in decen-
tralized exchanges, and highlights how the existence of miner extractable value
(MEV) may lead to consensus instability, e.g., through time-bandit attacks. In a
time-bandit attack an adversary may attempt to rewrite the suffix of a forkable
blockchain through a 51% attack, for which it seeks to subsidize the cost for the
required computational power by inserting profitable trades that harvest MEV
from previous transactions and ledger states. At a high level, the effect of a
successful OpAl attack can be comparable to the (retroactive) insertion of such
a profitable trade, and it appears conceivable that opportunistic time-bandit
attacks can also be realized through the herein presented mechanism.

Botta et al. [10] discusses MPC protocols in the context of forking blockchains.
Specifically, the paper considers a model with hasty players that respond to
actions which have not yet stabilized on the ledger by becoming part of the
common prefix. They outline the issue of an adversary potentially being able to
adaptively play different strategies on forks, gain knowledge from player moves in
other forks, and the possibility of replaying insecurely created transactions from
one fork in another. The mitigation strategy to the aforementioned issues that is
presented is comparable to the replay protection in Gazi et al. [30], whereby the
validity of transactions is tied to the state of a particular blockchain fork. We note
that while Botta et al. appears closest to the topics discussed within the paper
at hand, and effectively highlights the possible detrimental effects of blockchain
forks as well as the practical implications of probabilistic finality, the notion of
algorithmic double-spending is not considered at all, and double-spending only
discussed in the context of the therein presented protocol.

To the best of our knowledge we are the first to identify and make the class
of algorithmic double-spending attacks explicit, and also demonstrate the prac-
ticability and applicability of OpAl to current real-world systems.

3 What is Algorithmic Double-Spending?

In this section we revisit and define double-spending and propose that there
exists the overlooked class of algorithmic double-spending, which does not ne-
cessitate conflicting actions, i.e., equivocation. We then discuss the implications,
such as the possibility of unintentional double-spending, and raise the question
whether double-spending requires economic damage. We observe that while re-
search on double-spending provides concrete descriptions and formal analyses of
particular instantiations of double-spending attacks, e.g., [42,2,43,36], a general
definition of double-spending appears to be outstanding. A clearer definition
may not only aid with classification efforts, but could also help identify new or
overlooked attack forms. Motivated by this novel class of algorithmic double-
spending attacks we present within this work, we hereby set out to propose such
a more general definition:

Definition 1 (Double-Spending Attack). In a double-spending attack, an
adversary attempts to deceive a victim into performing an economic transaction



OpAl : How I learned to stop worrying and hedge the Fork 5

directed at the adversary on the basis of a presumed valid system state, which
is later revealed to be stale or invalid. Hereby, the adversary’s goal is to be able
to reuse any of the resources that form the basis of the economic transaction for
other purposes. We distinguish between the following double-spending attacks:

– Equivocation-Based, whereby the adversary issues multiple conflicting ac-
tions in the system, one of which is aimed at fooling the victim, and where
at most one of the issued actions can eventually be performed in the system.

– Algorithmic, whereby the adversary performs a single action that can have
different semantic meanings, depending on the system state in which they
are interpreted, and where the interpretation of this action in some stale or
invalid system states can be used to deceive the victim.

At the core of this work lies the insight, that double-spending may be facilitated
through other means than the classical notion of requiring equivocation-based
conflicting actions by an adversary. Algorithmic double-spending builds on a
simple property that can be observed in various real-world distributed ledger
designs with expressive transaction semantics:

Observation 1 (semantic malleability) Given a transaction t, it may have
different semantic outcomes, depending on the ledger state and environment upon
which t is executed.

We refer to this property as semantic malleability due to the fact that external
factors, such as the consensus protocol and its ordering guarantees [45,87,51,44],
as well as other actors in the system who may be rushing [49] e.g., in the context
of frontrunning [23,16], and sandwich-attacks [89], are able to transition the state
in a way that is able to malleate the intended semantics of transactions. From this
observation, we can rather intuitively derive a basic strategy for an algorithmic
double-spending attack: An adversary can encode both, the regular payment to
the merchant, as well as an alternative malicious action, e.g., payment to herself,
as different execution paths within a single transaction. The control flow of the
transaction is designed to conditionally branch, depending on the ledger state σ
at the time the transaction is processed by a miner. If the same transaction is
included in a different state σ′, i.e., a fork, the “hidden” algorithmic double-spend
is triggered without active participation from the attacker. Figure 1 illustrates
this difference to equivocation-based double-spending.

The concept of algorithmic double-spending raises interesting challenges, two
of which we outline in more detail. First, up until now unintentional double-
spending, for example as a result of technical failures, did not appear of partic-
ular concern. Prior art identifies potential vulnerabilities that arise from order
dependence in smart contracts [55,74,48] and violations of transaction causality
in forks that can have unintended side-effects, which relate to the Paxos anomaly
[64]. We expand upon these insights by highlighting that semantic malleability
can lead to unintentional algorithmic double-spending as a result of unantici-
pated transaction reordering that causes state changes within a blockchain fork.



6 N. Stifter et al.

Hereby, it is difficult to distinguish between an intentional attack or unfortu-
nate circumstances. Consider the following example: a user wishing to perform
a payment with the stablecoin DAI on the Ethereum network first purchases the
required amount in a preceding transaction through a decentralized exchange
(DEX) [88], e.g., Uniswap [1]. If a blockchain fork occurs, replaying the above
transaction sequence in the same order may not guarantee the same outcome
e.g., if the necessary amount of DAI for the trade to be successfully executed
is not (yet) available on the DEX because another user’s trade transaction that
would have provided sufficient DAI was not yet processed due to reordering.

Fig. 1. Conceptual difference between equivocation- and algorithmic double-spending.
Notice that in the former case t 6= t′ while in the latter case t = t.

Second, in stateful smart contract systems double-spending may not only be
performed solely at the economic level through coin-reuse. For example, Botta
et al. [10] highlights the need for mitigation strategies against an adversary
leveraging forks in MPC protocols with hasty players. In this regard, double-
spending attacks can be aimed at biasing the outcome of a MPC, which may
not be quantifiable in terms of economic gain. Similarly, increasing the miner fee
of a transaction may require a user to equivocate, raising the question if such
behavior should be subsumed under the notion of double-spending. This presents
the interesting problem how any divergent system behavior within forks, be it
through equivocation- or algorithmic double-spending, should be addressed if it
is not immediately apparent that they were intended for unjust economic gain.
Notice that in our Definition 1 for double-spending, we assume some economic
transaction from the victim to the adversary.

4 System Model and Assumptions

Within this section, we identify prerequisites and underlying properties that
enable algorithmic double-spending. Our analysis is based on an intentionally
simple system model to accommodate different ledger designs. We define the
concept of semantic malleability that we introduced in Section 3 and argue that



OpAl : How I learned to stop worrying and hedge the Fork 7

ledgers with semantically malleable transactions are vulnerable to algorithmic
double-spending, and thus OpAl attacks. In our analysis, we show that any dis-
tributed ledger that is robust to semantic malleability must satisfy two necessary
properties, namely, eventual replay validity and replay equivalence.

Following Luu et al. [55], we conceptually view a blockchain as a transaction-
based RSM, where its state is updated after every transaction. We denote S the
set of all possible system states and σ ∈ S a single system state. The initial
starting state of a blockchain is defined as σ0. A valid transition from state σ

to σ′, via transaction t, is denoted as σ
t−→ σ′. past(σn) is defined as the or-

dered list of transactions T = (t1, t2, . . . , tn), that, when applied to σ0, lead
to state σn. If there exists a non-empty sequence of transactions starting from
state σa to state σb, we call σa a predecessor of σb, in short σa ≺ σb. The
predicate valid(t, σ) represents the transaction validation rules of the under-
lying protocol and returns True iff the transaction t is considered valid (ex-
ecutable) in state σ. We only consider transactions that are non-trivial, and
that no equivocation of transactions happens. A transaction t is non-trivial if
it produces a different output state when executed on some valid input state,

i.e., ∃σ, σ′ ∈ S,valid(σ
t−→ σ′) ∧ σ 6= σ′ We assume that block producers, e.g.,

miners, adhere to protocol rules and transaction liveness is guaranteed, i.e., any
valid transaction will eventually be executed.

Executing a transaction t in state σ alters (part of) the state σ and thus
results in a new state σ′. The changes are captured by the function diff(t, σ).
For example, consider a state σ = {Alice: 6, Bob: 5,Carol: 4} represented as an
account-value mapping, and a transaction t, where Alice gives 2 coins to Bob.
Then diff(t, σ) = {Alice: −2,Bob: +2} captures the balance changes of Alice
and Bob while other parts of the state (Carol’s balance) remain unaffected. In
this example a single account-value mapping is called a substate. Note that it
is possible that the effects of executing the same transaction t in two different
states are equal, i.e., (σa 6= σb) ∧ (diff(t, σa) = diff(t, σb)).

We consider a transaction t to be a sequence of operations (computations)
that lead to a state transition. A transaction is semantically malleable, if the
available operations, which are used to define the semantics of the transaction,
allow the control flow of the execution to branch conditionally based on the
particular input state σ. The following two properties we define are necessary,
but not sufficient, for a ledger to be robust against semantic malleability. We refer
to these properties as replay equivalence and eventual replay validity. Replaying
the same ordered set of transactions on some initial state σ0 should always yield
the same state transitions and final state, and the validity of transactions should
not be affected by the environment, e.g., the number and size of already mined
blocks.

Definition 2 (replay equivalence). Assuming that no transaction equivoca-
tion happens: A transaction t satisfies replay equivalence, if executing t in all
candidate states where t is executable (valid) leads to the same changes in the
respective (sub)states:



8 N. Stifter et al.

∀σa, σb ∈ S,
(valid(t, σa) ∧ valid(t, σb)) =⇒ (diff(t, σa) = diff(t, σb)) .

(1)

Definition 3 (eventual replay validity). Assuming that no transaction equiv-
ocation happens: If a transaction t is found executable (valid) in some state σa,
then it either remains executable (valid) or has already been executed in prede-
cessor states of σa:

∀σa, σb ∈ S,
(valid(t, σa) ∧ σa ≺ σb) =⇒ (t ∈ past(σb) ∨ valid(t, σb)) .

(2)

Definition 4 (semantic malleability). A transaction t is semantically mal-
leable if it violates replay equivalence and/or eventual replay validity. 3

5 Semantic Malleability of Bitcoin and Cardano

For the following investigation, we set aside the orthogonal topic of how to cre-
ate blockchain forks of sufficient depth to facilitate double-spending attacks.
Instead, we are interested in identifying if, in principle, the designs are vulnera-
ble to semantic malleability by evaluating whether the aforementioned necessary
properties are violated. We first consider Bitcoin and Cardano within this Sec-
tion, and then cover Ethereum separately in Section 6. Each ledger represents
an instantiation of a Nakamoto-style blockchain with distinct design differences.
Bitcoin [63] is UTXO based and facilitates a highly limited, non-Turing com-
plete scripting language for transaction semantics.[4] Cardano [15] adopts the
EUTXO model [11], which leverages advantages of a stateless UTXO design
with the expressiveness of Turing-complete smart contracts that can carry state.

Bitcoin: In Bitcoin, transactions are based on the so-called unspent transac-
tion outputs (UTXO) model [18] and contain simple (deterministic) Boolean
functions, called Scripts, that determine the transaction semantics [4]. Bitcoin’s
UTXO model is stateless and non-Turing complete. A key aspect of the UTXO
model is that transactions are deterministic and bound to a single execution
by committing to the exact input (sub)states, i.e., UTXOs, that a transaction
consumes, and a precise set of output UTXOs, that the transaction produces.
We refer the interested reader to Atzei et al. for a formal model of Bitcoin
transactions and Script.[4]

Furthermore, within Bitcoin transactions the access to external ledger state
is not made explicitly by including it as an input in the transaction, but implic-
itly through Scripts or when defining the validity of the transaction in terms of
the block height or current time at the protocol level. There currently exist only
a limited number of primitives that can be used to constrain the validity of a

3 An equivalent standalone definition of this property is given in Appendix B.



OpAl : How I learned to stop worrying and hedge the Fork 9

transaction to some external context. Specifically, it is possible to define some
relative or absolute time, in relation to that of the ledger context, from which
point onward a transaction may become valid [77]. However, it is not possible
to permanently invalidate a previously valid transaction that depends on ledger
context, i.e., in a live blockchain, there is a future point in time where this depen-
dency is satisfied. Therefore, in principle, the Bitcoin UTXO model could satisfy
eventual replay validity. However, we show that in case of deep forks, eventual
replay validity can be violated by coinbase transactions, making Bitcoin-like
UTXO cryptocurrencies theoretically vulnerable to semantic malleability.

Theorem 2 (Semantic malleability of Bitcoin-like UTXO cryptocur-
rencies with coinbase transaction). A Bitcoin-like UTXO based cryptocur-
rency is affected by semantic malleability if it programmatically allows the is-
suance of special per-block transactions as payout, i.e., coinbase transactions,
transferring collected fees and/or rewards for block creation.

Proof. We show that A Bitcoin-like UTXO cryptocurrency is affected by seman-
tic malleability by constructing a counterexample violating the eventual replay
validity property: Let σa be some blockchain state and tc 6= t′c two different coin-
base transactions (e.g., rewarding different miners) that are valid in this state if
included by a newly mined block, i.e., Valid(tc, σa) ∧ Valid(t′c, σa). Let there

be a blockchain with a new block containing tc st. σa
tc−→ σb and thus σa ≺ σb.

In Bitcoin-like UTXO cryptocurrencies, the coinbase transaction can only be
issued at the beginning of each block and is tied to the respective block height4.
Therefore, the other coinbase transaction t′c cannot be included anymore in state
σb. The reason for this is that executing the block containing tc (and potentially
other transactions) necessarily leads to a state σb with increased block height.
Therefore, there exists a σb st. t′c 6∈ past(σb) ∧ ¬Valid(t′c, σb) which violates
eventual replay validity. �

In practice, the potential consequences of the semantic malleability of coin-
base transactions are mitigated by the maturation period of 100 blocks, after
which transactions can be included that spend coinbase UTXOs. As an attack
example, consider a transaction with an output from a recent coinbase trans-
action that is spendable (i.e., has matured for 100 Blocks) as one of its input
UTXOs. If a sufficiently deep blockchain fork, of say 144 blocks, occurs and
this coinbase transaction does not exist in the chain anymore, the depending
transaction using its UTXO as input can not be replayed within a fork and
becomes invalid. Therefore, coinbase transactions could facilitate algorithmic
double-spending.

The design of forkable Nakamoto-style cryptocurrencies, which provide pay-
outs in terms of fees/block rewards to incentivize participation, necessarily re-
quire payments depending on the state of the blockchain, i.e., context, which
inherently violates eventual replay validity. Thus, in Section 8.1, we raise the
question whether characterizing Nakamoto-style ledgers as replicated state ma-
chines (RSM) is accurate in light of algorithmic double-spending.

4 cf. https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki


10 N. Stifter et al.

Cardano: Cardano [15] is based on a line of research on provably secure proof-
of-stake Nakamoto-style blockchains [47,17,5,46], which we subsume under the
term Ouroboros. Ouroboros is a provably secure proof-of-stake Nakamoto-style
blockchain protocol. Ouroboros, as it is currently realized in Cardano, offers
probabilistic finality guarantees and the existence of temporary blockchain forks
is possible. Cardano adopts the Extended UTXO (EUTXO) model [14,11], that
was conceived to leverage desirable properties of Bitcoin’s UTXO design for
more expressive transaction semantics [14]. Conceptually, to support stateful
Turing-complete smart contracts in EUTXO, the UTXO model is extended in
the following (from Chakravarty et al. [14]): i) outputs can contain arbitrary
contract-specific data; ii) Scripts, which are referred to as validators in the EU-
TXO model, receive the entire transaction information, including its outputs,
as context next to the contract specific data, and can impose arbitrary validity
constraints on the transaction; iii) a validity interval is added for transactions,
which is specified as an interval of “ticks”5, whereby any Scripts which run dur-
ing validation can assume that the current time is within that interval, but do
not know the precise value of the current tick;

A key property the EUTXO model inherits from the UTXO model is that
the execution of a transaction during validation is entirely deterministic and
solely determined by its inputs. Equivocation is hence required to achieve a dif-
ferent semantic result. In terms of our necessary properties to achieve robustness
against semantic malleability, replay equivalence follows analogous to Bitcoin.

However, as Brünjes and Gabbay [11] crucially point out, the EUTXO model
allows restricting the validity of transactions to time intervals, which renders the
result of transaction processing dependent on the ledger context. Unlike Bitcoin,
in Cardano transactions can be permanently invalidated based on ledger context.
Hence, eventual replay validity is not satisfied and semantic malleability possible.

Corollary 1 (Semantic malleability of Cardano-like EUTXO cryptocur-
rencies that support limited validity transactions). A EUTXO based cryp-
tocurrency is affected by semantic malleability, if it programmatically allows the
issuance of limited validity transactions which are valid at some point in the
chain, but become invalid after a certain block height or time interval.

Proof. We show that Cardano-like EUTXO cryptocurrencies that support lim-
ited validity transactions are semantically malleable, by pointing out that the
desired properties of such transactions directly negate and thus violate eventual
replay validity. Let tv be a limited validity transaction and σa be some blockchain
state where Valid(tv, σa), which is true when the specified criteria (block height
or time) is satisfied. By definition of a limited validity transaction, there must
exist a state σa ≺ σb st. ¬Valid(tv, σb). Due to forks, or congestion, it might
be the case, that tv is not included until σb is reached, thus tv 6∈ past(σb).
Therefore, tv is invalidated after this point and cannot be included in any other

5 Chakravarty et al. [14] assume that in practice a tick will correspond to a block
number or block height.



OpAl : How I learned to stop worrying and hedge the Fork 11

subsequent block. Hence, by the construction of limited validity transactions,

∃σa, σb (Valid(tv, σa) ∧ σa ≺ σb ∧ tv 6∈ past(σb) ∧ ¬Valid(tv, σb)) ,

which is exactly the negation of our definition of eventual replay validity. �

As an example, consider a payment transaction to a merchant where the va-
lidity is constrained to a specific block height. Thus, an OpAl attack is triggered
if the transaction does not make it into a block in time during a fork.

6 Semantic Malleability in Ethereum

Ethereum [82] adopts an account-based model and offers expressive transaction
semantics that can draw upon stateful Turing-complete smart contract function-
ality. Due to the various ways in which replay equivalence and eventual replay
validity can be violated in Ethereum, we omit a formal analysis and directly
discuss a proof-of-concept (PoC) OpAl attack and its practical implications.

Our attack design is inspired, on the one hand, by hardfork oracles, which
McCorry et al. [59] discusses in the context of atomic-trade protocols during
hardforks, and, on the other hand, by the notion of context sensitive transac-
tions Gaži et al. [30] describes as a replay protection mechanism in stake-bleeding
attacks. An informal statement that encapsulates the intended transaction se-
mantics for our PoC OpAl attack is the following:

“ IF this transaction is included in a blockchain that contains a block with
hash 0xa79d THEN pay the merchant, ELSE don’t pay the merchant.”

Essentially, our attack is based on the insight that a transaction can act as its
own fork oracle for conditionally branching its execution. In the following, we
first outline the construction of such a fork oracle in more detail and then present
a PoC attack that allows transactions with the above semantics to be created.

6.1 How to Construct an OpAl Fork Oracle in Ethereum

The concept of employing a fork oracle to distinguish between branches of
(hard)forks within a transaction or smart contract execution was proposed in
cryptocurrency communities [57,24], as well as research [59,60,38]. Hereby, a
frequent goal is achieving replay protection [59]. McCorry et al. [59] outlines
how fork oracles can be leveraged to realize atomic trades across hardforks.
Constructing a smart contract based fork oracle if the underlying forks do not
offer replay protection can be challenging [59]. McCorry et al. [60] demonstrate
through history revision bribery how (equivocation-based) double-spending can
be leveraged to realize a fork oracle for a smart contract based bribing scheme for
incentivizing forks. Hereby, the fork oracle is not used to facilitate (algorithmic)
double-spending. Rather, the mutually exclusive outcomes of the double-spend
in different forks are relied upon to actually implement the oracle. Surprisingly,
to the best of our knowledge, the idea of using fork oracles to algorithmically
trigger double-spending was not yet considered.



12 N. Stifter et al.

Block-Hash Based Fork Oracle The fork oracle we propose is inspired by a
simple and elegant technique to achieve replay protection considered in the proof-
of-stake (PoS) setting [52,30]. Hereby, the hash of a recent block is included in
a transaction, and the transaction is only considered valid for blockchains that
contain this block in their prefix. Gaži et al. [30] refer to this mechanism as
context sensitive transactions. Essentially, context sensitive transactions already
implicitly realize the attack semantics described above.6 In case a fork of suffi-
cient depth occurs, this replay protection mechanism ensures that transactions
become invalid at the protocol level, and the double-spending “attack” is real-
ized algorithmically through the underlying protocol rules. Ethereum does not
natively support context sensitive transactions, however, this functionality can
be emulated with smart contract code using EVM primitives that expose ledger
context, such as the Blockhash opcode [82]. It is hence possible to program-
matically act upon the existence of a particular block, or other ledger context,
as part of an Ethereum transaction.

Fork Oracle Discussion A downside of hash-based fork oracles is the reliance
on a commitment to previous ledger state, thereby requiring a fork of at least
depth-2 to trigger the attack. However, it is also possible to construct oracles
for forks of depth-1. The key difference between a depth-1 fork oracle and a
hash-based fork oracle is that the latter is based on ledger state which is known,
whereas the former is based on some prediction of the future state at the time
the transaction is processed. Hence, depth-1 fork oracles generally offer weaker
probabilistic guarantees for identifying forks. For example, consider the EVM
coinbase opcode that returns the current block’s beneficiary address [82]. In-
stead of specifying the highest known block hash as the branching condition, an
adversary could use the beneficiary address of a large mining pool 7 in a depth-1
OpAl attack. Hereby the transaction semantics depend on whether the transac-
tion is included in a block from the targeted mining pool or some other miner.
Generally speaking, in Nakamoto-style proof-of-work ledgers the next block pro-
ducer is not known in advance. However, we note that in some PoS protocols
this can be different [73], thereby allowing for more reliable depth-1 fork oracles.

Another limitation of the hash-based fork oracle specific to the EVM is the
restriction that the blockhash opcode only returns hashes within a 256 block
lookback window, and 0 otherwise [82]. Hence, if a transaction is processed in
a block that exceeds 257 blocks after the height of the blockhash commitment,
the oracle will falsely report a fork and trigger the attack branch. We argue that
in the case of our intended OpAl semantics this limitation is unproblematic, as
the transaction would simply transfer the funds back to the attacker.

6 Thereby introducing the possibility of unintentional OpAl attacks (see Section 3).
7 We note that in Ethereum address reuse in the coinbase by miners is prevalent.



OpAl : How I learned to stop worrying and hedge the Fork 13

1 pragma solidity 0.8.4;
2 // This contract acts as an OpAl forwarding proxy for transactions.
3 contract Opal {
4 address public owner;
5
6 modifier onlyOwner () {
7 require(isOwner(msg.sender));
8 _;
9 }

10 constructor () {
11 owner = msg.sender;
12 }
13
14 fallback () external payable {}
15 receive () external payable {}
16
17 function isOwner(address addr) public view returns(bool) {
18 return addr == owner;
19 }
20
21 function cashOut(address payable _to) public onlyOwner {
22 _to.transfer(address(this).balance);
23 }
24
25 // forwarding function implementing opportunistic double -spending (OpAl)
26 function forward(address payable destination , bytes32 commitblockHash ,
27 uint commitblockNumber , bytes memory data)
28 onlyOwner public payable returns(bool success) {
29 if (blockhash(commitblockNumber) == commitblockHash)
30 assembly { success := call(gas(), destination , callvalue (),
31 add(data , 0x20), mload(data), 0, 0)
32 }
33 }
34 }

Listing 1.1. Solidity OpAl contract that implements a basic fork oracle by only
forwarding transactions if the provided commitment to a block hash can be resolved.

6.2 Proof of Concept OpAl Attack Contract

Di Angelo and Salzer present a comprehensive empirical analysis of wallet con-
tracts on Ethereum [19,20]. Of the identified properties, in particular, designs
that support flexible transactions, i.e., forwarding of arbitrary calls, appear suit-
able for augmentation to support the creation of OpAl transactions. Their em-
pirical data shows that at least tens of thousands of contracts supporting flexible
transactions are currently deployed in Ethereum, suggesting practical use-cases
for such contract patterns, even without an OpAl augmentation. Our attack
requires minimal modifications, and the interaction pattern is almost identical.

In the following, we present a minimal fully viable PoC OpAl attack smart
contract written in Solidty [81], that relies on the aforementioned hash-based fork
oracle. Our contract code (Listing 1.1) is loosely based on the Executor contract
from the Gnosis-Safe Wallet [61], which allows the forwarding of arbitrary func-
tion calls. Instead of forwarding a call directly, the contract first evaluates if the
block hash at a particular height of the current ledger matches the commitment
hash that is provided as an additional parameter in the transaction data. This
is realized through the blockhash() function [25]. If the blockhash matches the



14 N. Stifter et al.

commitment, the function call is forwarded. Else, no action is performed, i.e.,
the action is reversed whenever the transaction is replayed in a fork.

Outline of the Attack An adversary wishing to engage in OpAl first needs to
deploy the attack contract. Once the contract is successfully deployed, whenever
they wish to perform a transaction with OpAl functionality, instead of calling a
function f() in the target contract or sending funds directly, they simply forward
this call to the forward() function (Line 15 in Listing 1.1) of the deployed attack
contract, together with the appropriate parameters. Specifically, the adversary
generates transaction t that calls forward in the attack contract with the fol-
lowing parameters: i) the target address; ii) the block hash and height h of the
current chain tip; iii) the encoded function name to be called at the target f()
together with its parameters; iv) any Ether that shall be sent; and broadcasts t
to the network. Ideally, the transaction fee is high enough for t to be immediately
included in the next block h+ 1. Otherwise, the required fork depth increases in
the number of blocks the chain grows between the creation and inclusion of t.

To the recipient of t, the interaction pattern will appear as if the user em-
ployed a regular wallet contract. Unless they perform an analysis of the execution
trace, the malicious behavior only becomes apparent once the attack conditions
are triggered, i.e., during a fork. In case the adversary is lucky and a fork at, or
before, height h occurs, and their transaction is replayed within this fork, the
alternative attack branch of the contract is executed automatically.

6.3 Cost Overhead of PoC Attack in Ethereum

We quantify the additional costs incurred when augmenting a transaction with
OpAl capabilities by deploying our attack contract in a private Ethereum test-
net and measuring the gas utilization for basic interactions, such as ERC-20
token [79] transfers. Our PoC OpAl attack adds a constant overhead of gas that
depends on the number of parameters supplied to the target function f(). The
deployment transaction for the contract in Listing 1.1 required 393 175 gas. As
it is not essential for the contract to be deployed in a recent block, and can be
done well in advance of any attacks, we assume a gas price of 50 GWei, which
translates to deployment costs of ≈ 0.02 Ether or, at an exchange rate of 2 000
USD, approximately 40 USD. Note that this contract needs to be deployed once,
after which the only overhead derives from using the forwarding function. For
ERC-20 token interactions (approve, transfer, transferFrom), using OpAl adds
≈ 3 000 gas, which equates to ≈ 8% overhead. At the time of writing, assuming
a gas price of 100 GWei for timely inclusion8 of the transaction, this overhead
translates to ≈ 0.6 USD higher fees if a transaction is augmented to support
OpAl attacks, rendering our attack a viable default strategy for most cases.

8 For simplicity we consider legacy transactions and omit pricing based on EIP-1559.



OpAl : How I learned to stop worrying and hedge the Fork 15

7 Empirical Analysis of Ethereum Transaction Traces

We empirically analyze the execution traces of 922 562 transactions from 5 000
Ethereum blocks in order to identify and characterize transactions where ledger
context is accessed. Hereby, block selection for the analysis was performed in
batches of 100 consecutive blocks every 1000 blocks, starting from block height
14 010 000 up to block 14 059 099 to obtain a sample spread over a wider time
window. The selection of blocks for our analysis was necessitated due to the
steep storage and processing requirements for analyzing full execution traces. For
every considered block, we parse the execution trace of all included transactions
and record whether the trace contains EVM opcodes that are characteristic
for accessing the ledger context. The specific opcodes9 that we considered are
highlighted in Table 1. Our analysis reveals that 231 271 transactions, or ≈ 25%,
include at least one of these opcodes, whereby roughly every 5th transaction uses
TIMESTAMP, while the other opcodes are encountered considerably less often.

Opcode (OP) TI
ME
ST
AM
P

SE
LF
BA
LA
NC
E

NU
MB
ER

BA
LA
NC
E

CH
AI
NI
D

BA
SE
FE
E

BL
OC
KH
AS
H

CO
IN
BA
SE

DI
FF
IC
UL
TY

GA
SL
IM
IT

TX containing OP 199731 63594 36859 4324 8253 777 3425 3882 1251 906

% of TX with OP 21.65% 6.893% 3.995% 0.469% 0.895% 0.084% 0.371% 0.421% 0.136% 0.098%

Blocks cont. OP 4886 4767 4529 2265 3071 641 1830 1897 812 545

% of Blocks with OP 97.72% 95.34% 90.58% 45.3% 61.42% 12.82% 36.6% 37.94% 16.24% 10.9%

Table 1. EVM Opcode occurrence within the analyzed block range.

Of particular interest are transactions that include both BLOCKHASH and
NUMBER opcodes in their traces, as this combination is also present in our PoC
OpAl attack. We are able to identify 3 338 transactions with such an OpAl -like
opcode signature within 1 823 (≈ 36%) of the analyzed blocks. Table 2 in the Ap-
pendix shows the top 10 contract addresses that these transactions were directed
at, as well as a generalized categorization of their purpose based on publicly avail-
able information. Analyzing the decompiled10 bytecode of the contract with the
second most OpAl -like transaction interactions, we indeed discover an OpAl -like
pattern. Listing 1.2 highlights the relevant code section, which, in plaintext, eval-
uates whether the first 4 Bytes of the previous block hash match those stored
as part of the transaction data and reverts the execution otherwise. We further
confirm this behavior by observing transactions to the aforementioned contract
that were reverted due to an incorrect commitment11. While we believe that this
pattern is likely intended to render the transaction context sensitive to prevent
execution in an undesirable state, it could nevertheless be used for OpAl attacks
simply by subsequently using the transferred/traded funds for payments to a
victim.

9 Cf. the Ethereum Yellow paper [82] for details on EVM opcodes and their behavior.
10 Cf. https://ethervm.io/decompile/0x000000000035B5e5ad9019092C665357240f594e
11 Cf. txn: 0x2368617cf02cf083eed2d8691004c1ad0176976b6fa83873bc6b0fd7de4cc7fc

https://ethervm.io/decompile/0x000000000035B5e5ad9019092C665357240f594e


16 N. Stifter et al.

1 function func_060C () {
2 if (msg.data[0x04:0x24] >> 0xe0 ==
3 block.blockHash(block.number + ~0x00) >> 0xe0) { return; }
4 // ... code omitted for brevity
5 revert(memory [0x60:0xc4]); }

Listing 1.2. Code snippet from decompiled contract (tagged as MEV bot) showing
OpAl-like pattern. Notice that ~0x00 corresponds to −1 in Two’s complement
representation.

8 Mitigation Strategies against OpAl

Having outlined the principles behind algorithmic double-spending, we now dis-
cuss possible prevention or mitigation strategies. Hereby, we broadly distinguish
between two categories: i) Approaches that address instability in consensus, i.e.,
a lack of finality. ii) Approaches that seek to limit the effects of semantic mal-
leability. Finally, we discuss if the characterization of blockchains as replicated
state machines is accurate in light of semantic malleability.

Mitigating OpAl through stronger consensus guarantees: Essentially,
the majority of distributed ledgers rely on consensus 12 to agree upon the or-
der of transactions among participants in order to prevent double-spending [33].
Thus, one possible defensive approach against OpAl attacks is to prevent players
from concurrently interacting with malleable ledger state until it has sufficiently
stabilized. However, such a pattern may not be desirable for users, as it can lead
to long waiting periods. In this regard, it appears advantageous to achieve fast
and guaranteed consensus finality, which remains an active research topic for de-
centralized ledger designs [12,68,66]. Our Definition (Def. 1) of double-spending
highlights the requirement of some stale or invalid system state in order to fool a
victim. The existence of hasty players who are willing to act opon such state ren-
ders double-spending attacks feasible in practice, even if the consensus protocol
in principle could provide stronger guarantees. In this regard, effective mitigation
strategies to combat double-spending may also entail the stricter enforcement
of safe interaction patterns in client software and cryptocurrency wallets, and a
better understanding of the behavior and mental models of cryptocurrency users
[22,50,58].

However, if the security assumptions of the underlying system are compro-
mised, in particular, Nakamoto-style distributed ledgers can suffer from deep
forks where previously assumed stable ledger state is reverted. Aside from the
potential of targeted attacks against the protocol [3,78], technical failures13 can
also lead to such a violation of the security assumptions [59,54,62]. Table 3 in
the Appendix highlights several documented unintentional forks in Bitcoin and

12 An interesting recent result in this regard is presented in Guerraoui et al. [33], which
proves that for simple asset transfer consensus is, in principle, not necessary for
double-spending prevention.

13 We note that scheduled protocol updates carry a risk of unintentional forks, and an
adversary may try to leverage this by performing OpAl transactions at that time.



OpAl : How I learned to stop worrying and hedge the Fork 17

Ethereum due to technical failures. Notice that in this regard there is a crucial
difference between OpAl and equivocation-based double-spending. In the latter,
an adversary has to actively monitor the network for forks and disseminate con-
flicting double-spending transactions that are at risk of being easily detected
and prevented at the peer-to-peer layer [42,31]. OpAl attacks and algorithmic
double-spending, on the other hand, may prove particularly severe. Any trans-
action that was included in a blockchain that is replayed on a fork faces the
risk of triggering a hidden OpAl attack without requiring any active participa-
tion from the initial creator of the transaction. If a fork in excess of k blocks
occurs, triggered OpAl attacks have a high probability of success, as the corre-
sponding economic transaction is likely to have already happened. A possible
mitigation strategy to limit the effects of OpAl in deep forks is the utilization of
checkpointing [41]. Another line of research seeks to strengthen the guarantees of
Nakamoto consensus by achieving consensus finality [12,69,21,66]. It may also be
preferable to sacrifice liveness by halting execution rather than risking systemic
risk through OpAl attacks.

Mitigating Semantic Malleability: As we have shown in Sections 3 and 4,
semantic malleability lies at the core of enabling algorithmic double-spending.
Semantically malleable transactions allow for different state transitions, depend-
ing on the input state and execution environment at the time of processing – a
property that is generally observed within smart contract platforms. In this re-
gard, we believe that the expressive transaction semantics associated with smart
contract functionality poses a fundamental challenge when trying to combat al-
gorithmic double-spending. Drawing upon the concept of guard functions from
Luu et al. [55] and context sensitive transactions Gaži et al. [30] and Botta et al.
[10] rely on, transaction validity should more explicitly be constrained to input
states that only lead to desirable outcomes for the sender. While such patterns do
not prevent the possibility of algorithmic double-spending, they can avert that
a user’s transaction executes in a state that leads to an undesirable outcome. In
light of recent research in regard to order-fairness in consensus [45,87,51,44], the
aforementioned pattern could also help to mitigate the potential negative impact
of malicious orderings. Similar to the concept of the Let’s Go Shopping Defense
[37], a highly questionable mitigation strategy might be to oneself proactively
engage in OpAl (counter-) attacks in order to reduce counterparty risk and try
to hedge against the potentially detrimental effects of any deep blockchain fork,
should it ever occur.

Another mitigation strategy by which to address semantic malleability and
algorithmic double-spending is through the analysis and classification of transac-
tion semantics, in order to try and identify potential threats and malicious behav-
ior. Hereby, the challenges lie on the one side, in finding efficient techniques for
static and dynamic code analysis that can be applied, in real-time, to identify po-
tentially malicious transactions before they are processed, and on the other side,
in how to define what is considered malicious behavior and also enforce any trans-
action rejection policies within decentralized systems [70,80,27,83,85,35,28,9]



18 N. Stifter et al.

For platforms that do not support expressive transaction semantics, it may
appear that the solution to this problem is to enforce only a single valid state
transition for transactions, such as the EUTXO model [14] employed by Cardano.
However, in this case the possibility of algorithmic double-spending still arises
if the validity of a transaction can be tied to particular ledger states, which is
generally the case. In the UTXO model of Bitcoin [4], transaction expressiveness
and access to ledger state are sufficiently constrained to prevent practicable OpAl
attacks, apart from the possibility of using recent coinbase transactions to limit
replay validity in case of deep-forks. However, since the mechanism design of most
cryptocurrencies relies on the issuance of rewards to incentivize participation
[13], it is unclear if the underlying issue could be completely avoided in practice.

8.1 Can Blockchains be Characterized as State Machines?

In his seminal work on the state machine approach, F. B. Schneider provides the
following semantic characterization of a replicated state machine (RSM): “Out-
puts of a state machine are completely determined by the sequence of requests
it processes, independent of time and any other activity in a system.” [72] In-
terestingly, while blockchains are often considered to realize RSMs, e.g., in the
model we adopt from Luu et al., we observe (Section 5) that in practice, ledger
designs appear to actually deviate from this characterization.

First, consider the herein discussed property of semantic malleability in trans-
actions. The existence of Semantic malleability in itself does not violate the above
characterization, as a mere reordering of transactions, i.e., requests, may lead to
semantic malleability without requiring any access to time or activity within the
system. However, in practice, ledger designs often allow transaction semantics
to depend on external ledger context that is not solely defined by such requests,
i.e., time or other external data (See Section 6). In essence, being able to define
functions that can act upon such context within transaction semantics, such as
previous block hashes, the block height, coinbase transactions, or block time,
can cause a violation of replay equivalence or eventual replay validity, both of
which can be directly derived as required properties of a RSM from the above
characterization.

Second, blockchain designs generally offer rewards as an incentive mechanism
for block producers to participate in the consensus protocol. Under the assump-
tion that a block merely represents an ordered set of transactions, i.e., requests,
and transactions can not access any external state defined within blocks, this
model would appear to realize a RSM. However, if we include the fact that block
rewards represent transactions or state transitions that depend on a particular
external state, namely the block itself that justifies the reward, the model is no
longer independent of the system state.

We note that one possibility to amend this issue is to either include the cre-
ation of blocks as requests, or model state updates entirely from the perspective
of blocks and not at the transaction level. The latter approach is, for instance,
taken by formal models that analyze Nakamoto consensus [29,67,6]. Neverthe-
less, even if one considers state machine replication only from the perspective of



OpAl : How I learned to stop worrying and hedge the Fork 19

blocks and not individual transactions, there can still exist external dependencies
on the environment, in particular on time. Consider that receiving late or early
blocks may render them (temporarily) invalid by the protocol rules, leading to
different possible interpretations of the same sequence of requests and resulting
final state depending on the current system time.

9 Conclusion

We have described and analyzed a novel class of double-spending attacks, called
(opportunistic) algorithmic double-spending (OpAl), and shown that OpAl can
readily be realized in stateful smart contract platforms, by presenting a proof-
of-concept implementation for EVM-based designs. OpAl itself does not increase
the likelihood or severity of blockchain forks, which are a prerequisite for most
double-spending attacks. Instead, OpAl allows regular transactions performed by
anyone to opportunistically leverage forking events for double-spending attacks
while evading common detection strategies and offering a degree of plausible
deniability. A particularly worrying property of OpAl is the ability for already
processed transactions to trigger hidden double-spending attacks whenever they
are replayed in a fork. Hereby, our empirical analysis of 922 562 transaction traces
in Ethereum reveals that transactions with OpAl -like semantics already exist in
practice. While these transactions are likely intended for a different use case, the
effect in case of a fork could still lead to unintentional double-spending. Attacks
or technical failures that lead to deep forks may hence pose an even greater
systemic risk than previously assumed. It would appear that the most promising
mitigation strategy against OpAl is achieving fast consensus finality, combined
with avoiding semantic malleability in transactions.

We believe that the introduction of algorithmic double-spending as a novel
attack category opens up new research directions and highlights the intercon-
nectedness of many important insights in the domain of distributed ledgers. The
advent of expressive smart contract systems has created a vast new range of excit-
ing use-cases, but with them also come novel security challenges [56,40,16,39,89]
that need to be thoroughly addressed.

Acknowledgment

This material is based upon work partially supported by (1) the Christian-
Doppler-Laboratory for Security and Quality Improvement in the Production
System Lifecycle; The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the Nation Foundation for Research, Technol-
ogy and Development and University of Vienna, Faculty of Computer Science,
Security & Privacy Group is gratefully acknowledged; (2) SBA Research; the
competence center SBA Research (SBA-K1) funded within the framework of
COMET Competence Centers for Excellent Technologies by BMVIT, BMDW,
and the federal state of Vienna, managed by the FFG; (3) the FFG Industrial
PhD projects 878835 and 878736. (4) the FFG ICT of the Future project 874019



20 N. Stifter et al.

dIdentity & dApps. (5) the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 826078 (FeatureCloud). We would
also like to thank our anonymous reviewers for their valuable feedback and sug-
gestions.

References

1. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.
Tech. rep., Tech. rep., Uniswap (2021)

2. Androulaki, E., Capkun, S., Karame, G.O.: Two Bitcoins at the Price of One?
Double-Spending Attacks on Fast Payments in Bitcoin. In: CCS (2012), http:

//eprint.iacr.org/2012/248.pdf

3. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
375–392. IEEE (2017)

4. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin
transactions. In: Proceedings of the 22nd International Conference on Financial
Cryptography and Data Security (FC). Springer (2018), http://fc18.ifca.ai/
preproceedings/92.pdf

5. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
pp. 913–930 (2018)

6. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a Transaction
Ledger: A Composable Treatment (2017), https://eprint.iacr.org/2017/149.
pdf, published: Cryptology ePrint Archive, Report 2017/149

7. Birman, K., Malkhi, D., Van Renesse, R.: Virtually synchronous methodology for
dynamic service replication. Appears as Appendix A in [4] (2010)

8. Bonneau, J.: Why buy when you can rent? Bribery attacks on Bitcoin consensus.
In: BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain
Research (Feb 2016), http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

9. Bose, P., Das, D., Chen, Y., Feng, Y., Kruegel, C., Vigna, G.: Sailfish: Vetting smart
contract state-inconsistency bugs in seconds. arXiv preprint arXiv:2104.08638
(2021)

10. Botta, V., Friolo, D., Venturi, D., Visconti, I.: Shielded computations in smart
contracts overcoming forks. In: Financial Cryptography and Data Security-25th
International Conference, FC. pp. 1–5 (2021)

11. Brünjes, L., Gabbay, M.J.: Utxo-vs account-based smart contract blockchain pro-
gramming paradigms. In: International Symposium on Leveraging Applications of
Formal Methods. pp. 73–88. Springer (2020)

12. Buterin, V., Griffith, V.: Casper the Friendly Finality Gadget (2017), https://
arxiv.org/pdf/1710.09437.pdf, published: arXiv:1710.09437

13. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 154–167. ACM (2016),
https://www.cs.princeton.edu/~smattw/CKWN-CCS16.pdf

14. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended utxo model. In: International Conference on Financial
Cryptography and Data Security. pp. 525–539. Springer (2020)

http://eprint.iacr.org/2012/248.pdf
http://eprint.iacr.org/2012/248.pdf
http://fc18.ifca.ai/preproceedings/92.pdf
http://fc18.ifca.ai/preproceedings/92.pdf
https://eprint.iacr.org/2017/149.pdf
https://eprint.iacr.org/2017/149.pdf
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
https://arxiv.org/pdf/1710.09437.pdf
https://arxiv.org/pdf/1710.09437.pdf
https://www.cs.princeton.edu/~smattw/CKWN-CCS16.pdf


OpAl : How I learned to stop worrying and hedge the Fork 21

15. Corduan, J., Vinogradova, P., Gudemann, M.: A formal specification of the cardano
ledger (2019)

16. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927. IEEE (2020)

17. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018)

18. Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin utxo set. In: International Conference on Financial Cryp-
tography and Data Security. pp. 78–91. Springer (2018)

19. Di Angelo, M., Salzer, G.: Wallet contracts on ethereum. In: 2020 IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC). pp. 1–2. IEEE
(2020)

20. Di Angelo, M., Salzer, G.: Wallet contracts on ethereum–identification, types, us-
age, and profiles. arXiv preprint arXiv:2001.06909 (2020)

21. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A
partially synchronous finality layer for blockchains. In: International Conference
on Security and Cryptography for Networks. pp. 24–44. Springer (2020)

22. Eskandari, S., Barrera, D., Stobert, E., Clark, J.: A first look at the usability
of bitcoin key management. In: Workshop on Usable Security (USEC) (2015),
http://users.encs.concordia.ca/clark/papers/2015_usec_full.pdf

23. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: front-running
attacks on Blockchain. In: arXiv preprint arXiv:1902.05164 (2019), https://

arxiv.org/pdf/1902.05164.pdf

24. Ethereum Community: Replay attack protection: Include blocklimit and blockhash
in each transaction issue#134 ethereum/eips (Jul 2016), https://github.com/

ethereum/EIPs/issues/134

25. Ethereum Community: Units and globally available variables (Aug
2021), https://github.com/ethereum/solidity/blob/develop/docs/

units-and-global-variables.rst

26. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security. pp. 436–454. Springer (2014), http:
//arxiv.org/pdf/1311.0243

27. Ferreira Torres, C., Baden, M., Norvill, R., Jonker, H.: Ægis: Smart shielding of
smart contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 2589–2591 (2019)

28. Ferreira Torres, C., Iannillo, A.K., Gervais, A., et al.: The eye of horus: Spotting
and analyzing attacks on ethereum smart contracts. In: International Conference
on Financial Cryptography and Data Security, Grenada 1-5 March 2021 (2021)

29. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Advances in Cryptology-EUROCRYPT 2015. pp.
281–310. Springer (2015), http://courses.cs.washington.edu/courses/cse454/
15wi/papers/bitcoin-765.pdf

30. Gaži, P., Kiayias, A., Russell, A.: Stake-Bleeding Attacks on Proof-of-Stake
Blockchains (2018), https://eprint.iacr.org/2018/248.pdf, published: Cryp-
tology ePrint Archive, Report 2018/248

http://users.encs.concordia.ca/ clark/papers/2015_usec_full.pdf
https://arxiv.org/pdf/1902.05164.pdf
https://arxiv.org/pdf/1902.05164.pdf
https://github.com/ethereum/EIPs/issues/134
https://github.com/ethereum/EIPs/issues/134
https://github.com/ethereum/solidity/blob/develop/docs/units-and-global-variables.rst
https://github.com/ethereum/solidity/blob/develop/docs/units-and-global-variables.rst
http://arxiv.org/pdf/1311.0243
http://arxiv.org/pdf/1311.0243
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf
https://eprint.iacr.org/2018/248.pdf


22 N. Stifter et al.

31. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting Transaction Ac-
cumulation and Double Spends for Topology Inference in Bitcoin. In: 5th
Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer (2018), http://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final10.pdf

32. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: International Conference on Financial Cryptography
and Data Security. pp. 201–226. Springer (2020)

33. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The con-
sensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 307–316 (2019)

34. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse Attacks on Bitcoin’s
Peer-to-Peer Network. In: 24th USENIX Security Symposium (USENIX Security
15). pp. 129–144 (2015), https://www.usenix.org/system/files/conference/

usenixsecurity15/sec15-paper-heilman.pdf

35. Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J., Zhou, K., Liu,
Y.: Transaction-based classification and detection approach for ethereum smart
contract. Information Processing & Management 58(2), 102462 (2021)

36. Iqbal, M., Matulevičius, R.: Exploring sybil and double-spending risks in
blockchain systems. IEEE Access 9, 76153–76177 (2021)

37. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Estimating (miner) extractable
value is hard, let’s go shopping! (2021), https://ia.cr/2021/1231

38. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.: Pay to win: Cheap, crowdfundable, cross-chain algorithmic incentive
manipulation attacks on pow cryptocurrencies (2019), https://ia.cr/2019/775

39. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gaži, P., Meiklejohn,
S., Weippl, E.: Sok: Algorithmic incentive manipulation attacks on permissionless
pow cryptocurrencies. In: International Conference on Financial Cryptography and
Data Security. pp. 507–532. Springer (2021)

40. Juels, A., Kosba, A., Shi, E.: The ring of Gyges: Investigating the future of
criminal smart contracts. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 283–295. ACM (2016),
http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf

41. Karakostas, D., Kiayias, A.: Securing proof-of-work ledgers via checkpointing. In:
2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
pp. 1–5. IEEE (2021)

42. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. pp. 906–917 (2012)

43. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbe-
havior in Bitcoin: A Study of Double-Spending and Accountability. In: ACM
Transactions on Information and System Security (TISSEC). vol. 18, p. 2. ACM
(2015), http://www.syssec.ethz.ch/content/dam/ethz/special-interest/

infk/inst-infsec/system-security-group-dam/research/publications/

pub2015/tissec15_karame.pdf, issue: 1
44. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting

(2021)
45. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-

sensus. In: Annual International Cryptology Conference. pp. 451–480. Springer
(2020)

http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final10.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final10.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://ia.cr/2021/1231
https://ia.cr/2019/775
http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf


OpAl : How I learned to stop worrying and hedge the Fork 23

46. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy (SP).
pp. 157–174. IEEE (2019)

47. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

48. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting the laws of
order in smart contracts. In: Proceedings of the 28th ACM SIGSOFT international
symposium on software testing and analysis. pp. 363–373 (2019)

49. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: Symposium on
Security & Privacy. IEEE (2016), http://eprint.iacr.org/2015/675.pdf

50. Krombholz, K., Judmayer, A., Gusenbauer, M., Weippl, E.R.: The Other
Side of the Coin: User Experiences with Bitcoin Security and Pri-
vacy. In: International Conference on Financial Cryptography and Data
Security (FC) (2016), https://www.sba-research.org/wp-content/uploads/

publications/TheOtherSideOfTheCoin_FC16preConf.pdf

51. Kursawe, K.: Wendy, the Good Little Fairness Widget. arXiv preprint
arXiv:2007.08303 (2020)

52. Larimer, D.: Transactions as proof-of-stake (November 2013),
https://github.com/super3/invictus.io/blob/master/assets/pdf/

TransactionsAsProofOfStake10.pdf

53. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 264–279.
Springer (2017), http://www.cs.umd.edu/jkatz/papers/whale-txs.pdf

54. Lovejoy, J.P.T.: An empirical analysis of chain reorganizations and double-spend
attacks on proof-of-work cryptocurrencies. Master’s thesis, Massachusetts Institute
of Technology (2020)

55. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. In: 23rd ACM Conference on Computer and Communications Security
(ACM CCS 2016) (Oct 2016), https://eprint.iacr.org/2016/633.pdf

56. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the
consensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. pp. 706–719. ACM (2015), http:

//www.comp.nus.edu.sg/prateeks/papers/VeriEther.pdf

57. Maersk, N.: Thedaohardforkoracle (Jul 2016), https://github.

com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/

TheDAOHardForkOracle/TheDAOHardForkOracle.sol

58. Mai, A., Pfeffer, K., Gusenbauer, M., Weippl, E., Krombholz, K.: User mental
models of cryptocurrency systems-a grounded theory approach. In: Sixteenth Sym-
posium on Usable Privacy and Security ({SOUPS} 2020). pp. 341–358 (2020)

59. McCorry, P., Heilman, E., Miller, A.: Atomically Trading with Roger: Gambling on
the success of a hardfork. In: CBT’17: Proceedings of the International Workshop
on Cryptocurrencies and Blockchain Technology (Sep 2017), http://homepages.
cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf

60. McCorry, P., Hicks, A., Meiklejohn, S.: Smart Contracts for Bribing Miners. In:
5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer (2018), http://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final14.pdf

http://eprint.iacr.org/2015/675.pdf
https://www.sba-research.org/wp-content/uploads/publications/TheOtherSideOfTheCoin_FC16preConf.pdf
https://www.sba-research.org/wp-content/uploads/publications/TheOtherSideOfTheCoin_FC16preConf.pdf
https://github.com/super3/invictus.io/blob/master/assets/pdf/TransactionsAsProofOfStake10.pdf
https://github.com/super3/invictus.io/blob/master/assets/pdf/TransactionsAsProofOfStake10.pdf
http://www.cs.umd.edu/ jkatz/papers/whale-txs.pdf
https://eprint.iacr.org/2016/633.pdf
http://www.comp.nus.edu.sg/ prateeks/papers/VeriEther.pdf
http://www.comp.nus.edu.sg/ prateeks/papers/VeriEther.pdf
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf


24 N. Stifter et al.

61. Meissner, R., Gnosis community: Gnosis safe contracts - ex-
ecutor. https://github.com/gnosis/safe-contracts/blob/

34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol,
accessed: 2021-09-07

62. Moroz, D.J., Aronoff, D.J., Narula, N., Parkes, D.C.: Double-spend counterattacks:
Threat of retaliation in proof-of-work systems. arXiv preprint arXiv:2002.10736
(2020), https://arxiv.org/pdf/2002.10736.pdf

63. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (Dec 2008), https:
//bitcoin.org/bitcoin.pdf

64. Natoli, C., Gramoli, V.: The blockchain anomaly. In: Network Computing and
Applications (NCA), 2016 IEEE 15th International Symposium on. pp. 310–317.
IEEE (2016), https://arxiv.org/pdf/1605.05438.pdf

65. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. In: 1st IEEE European Symposium
on Security and Privacy, 2016. IEEE (2016), http://eprint.iacr.org/2015/796.
pdf

66. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
446–465. IEEE (2021)

67. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 643–673. Springer (2017), https:

//eprint.iacr.org/2016/454.pdf
68. Pass, R., Shi, E.: Thunderella: Blockchains with Optimistic Instant Confirmation

(2017), http://eprint.iacr.org/2017/913.pdf, published: Cryptology ePrint
Archive, Report 2017/913

69. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–33. Springer (2018)

70. Rodler, M., Li, W., Karame, G.O., Davi, L.: Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks (2018), https://arxiv.org/pdf/1812.

05934.pdf, published: arXiv:1812.05934
71. Rosenfeld, M.: Analysis of Hashrate-Based Double Spending, vol. abs/1402.2009

(2014), https://arxiv.org/pdf/1402.2009.pdf, publication Title: CoRR
72. Schneider, F.B.: Implementing fault-tolerant services using the state machine

approach: A tutorial. In: ACM Computing Surveys (CSUR). vol. 22, pp. 299–
319. ACM (1990), http://www-users.cselabs.umn.edu/classes/Spring-2014/

csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf, issue: 4
73. Schwarz-Schilling, C., Neu, J., Monnot, B., Asgaonkar, A., Tas, E.N., Tse, D.:

Three attacks on proof-of-stake ethereum. In: International Conference on Finan-
cial Cryptography and Data Security (2022)

74. Sergey, I., Hobor, A.: A Concurrent Perspective on Smart Contracts (2017),
https://arxiv.org/pdf/1702.05511.pdf, publication Title: arXiv preprint
arXiv:1702.05511

75. Sompolinsky, Y., Zohar, A.: Bitcoin’s Security Model Revisited. arXiv preprint
arXiv:1605.09193 (2016), http://arxiv.org/pdf/1605.09193.pdf

76. Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses
against cross-shard consensus in sharded distributed ledgers. In: 2020 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 294–308. IEEE (2020)

77. Todd, P.: Op checklocktimeverify (Oct 2014), https://github.com/bitcoin/

bips/blob/master/bip-0065.mediawiki

https://github.com/gnosis/safe-contracts/blob/34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol
https://github.com/gnosis/safe-contracts/blob/34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol
https://arxiv.org/pdf/2002.10736.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1605.05438.pdf
http://eprint.iacr.org/2015/796.pdf
http://eprint.iacr.org/2015/796.pdf
https://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/454.pdf
http://eprint.iacr.org/2017/913.pdf
https://arxiv.org/pdf/1812.05934.pdf
https://arxiv.org/pdf/1812.05934.pdf
https://arxiv.org/pdf/1402.2009.pdf
http://www-users.cselabs.umn.edu/classes/Spring-2014/csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf
http://www-users.cselabs.umn.edu/classes/Spring-2014/csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf
https://arxiv.org/pdf/1702.05511.pdf
http://arxiv.org/pdf/1605.09193.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki


OpAl : How I learned to stop worrying and hedge the Fork 25

78. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A Stealthier Partition-
ing Attack against Bitcoin Peer-to-Peer Network. In: To appear in Proceed-
ings of IEEE Symposium on Security and Privacy (IEEE S&P) (2020), https:

//erebus-attack.comp.nus.edu.sg/erebus-attack.pdf

79. Victor, F., Lüders, B.K.: Measuring ethereum-based erc20 token networks. In: In-
ternational Conference on Financial Cryptography and Data Security. pp. 113–129.
Springer (2019)

80. Wang, X., He, J., Xie, Z., Zhao, G., Cheung, S.C.: Contractguard: Defend ethereum
smart contracts with embedded intrusion detection. IEEE Transactions on Services
Computing 13(2), 314–328 (2019)

81. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). pp. 2–8. IEEE (2018)

82. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

83. Wu, L., Wu, S., Zhou, Y., Li, R., Wang, Z., Luo, X., Wang, C., Ren, K.: EthScope:
A Transaction-centric Security Analytics Framework to Detect Malicious Smart
Contracts on Ethereum. arXiv:2005.08278 [cs] (May 2020), http://arxiv.org/

abs/2005.08278, arXiv: 2005.08278
84. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez,

P., Kiayias, A., Knottenbelt, W.J.: SoK: Communication Across Distributed
Ledgers. IACR Cryptology ePrint Archive, 2019: 1128 (2019), https://eprint.
iacr.org/2019/1128.pdf

85. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: {TXSPECTOR}: Uncovering attacks in
ethereum from transactions. In: 29th {USENIX} Security Symposium ({USENIX}
Security 20). pp. 2775–2792 (2020)

86. Zhang, R., Preneel, B.: Lay down the common metrics: Evaluating proof-of-work
consensus protocols’ security. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP). IEEE (2019), https://www.esat.kuleuven.be/cosic/publications/
article-3005.pdf

87. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consen-
sus without byzantine oligarchy. In: 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). pp. 633–649 (2020)

88. Zhou, L., Qin, K., Gervais, A.: A2mm: Mitigating frontrunning, transaction re-
ordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371 (2021)

89. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 428–445. IEEE (2021)

A Responsible Disclosure and Ethical Considerations

After careful consideration and review of the potential impact of this work,
we believe that the presentation of opportunistic algorithmic double-spending
and OpAl attacks does not require prior notification or responsible disclosure.
As we outline within this paper, the presented double-spending techniques do
not fundamentally increase the success probability of attacks aimed at causing
blockchain forks, which are a necessary prerequisite for performing most double-
spending attacks. Hence, exchanges, merchants, and users that adhere to best

https://erebus-attack.comp.nus.edu.sg/erebus-attack.pdf
https://erebus-attack.comp.nus.edu.sg/erebus-attack.pdf
http://arxiv.org/abs/2005.08278
http://arxiv.org/abs/2005.08278
https://eprint.iacr.org/2019/1128.pdf
https://eprint.iacr.org/2019/1128.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf


26 N. Stifter et al.

practices and wait for sufficiently many confirmations on transactions do not
appear to face substantially higher risk compared to other forms of double-
spending.

However, we do see a potential for systemic risks in case of severe techni-
cal failures or attacks that cause deep forks, because of blockchain interlink-
ing [84,76], layer-two protocols [32] and the existence of large centralized cryp-
tocurrency exchanges, which all face the risk of becoming victims of algorithmic
double-spending during such events. The principal mechanisms that can lead to
unintentional algorithmic double-spending are already present in various smart
contracts today. Consider the slippage tolerance users can specify as part of a
trade when interacting with DEXs such as Uniswap [1]. In case of a deep fork,
the necessary preconditions for a user’s trade to be executed within a transac-
tion may change, e.g., due to transaction reordering. The effect can be similar
or even equivalent to intentional OpAl attacks.

We are hence convinced that raising awareness of these potential issues
through openly publishing our findings is the best course of action.

B Definition of Semantic Malleability

Definition 5 (semantic malleability). A transaction t is semantically mal-
leable if at least one of the following conditions hold:

1. Executing t on two states σa, σb results in different changes to their respective
substates, i.e., diff(t, σa) 6= diff(t, σb).

∃σa, σb (valid(t, σa) ∧ valid(t, σb) ∧ diff(t, σa) 6= diff(t, σb)) (3)

2. After a transaction t becomes valid for execution in state σa, t is invalidated
at some future state σb without being executed.

∃σa, σb (valid(t, σa) ∧ σa ≺ σb ∧ t 6∈ past(σb) ∧ ¬valid(t, σb)) (4)

C Additional Data on OpAl-like Transactions and Forks

D Alternative OpAl Attack Designs in Ethereum

We hereby illustrate alternative constructions to the OpAl attack that is out-
lined in Section 6. Figure 2 shows two different attack scenarios that rely on
depth-1 fork oracles. Hereby the first part of the illustration (left) captures an
attack that relies on querying the coinbase address of the current block and con-
ditionally branches if a particular mining pool address is returned. The second
part of the illustration (right) shows a scenario where the block height is used
to trigger the attack. Figure 3 serves to illustrate how OpAl attacks can also
be facilitated through invalidation of transactions, for example if the underlying
protocol supports context sensitive transactions. Hereby, the transaction may
only be valid for specific blockchain states, or during specific time intervals, at
the protocol level, preventing the transaction, such as a payment, to be replayed
in a fork.



OpAl : How I learned to stop worrying and hedge the Fork 27

Contract Address TX int. Purpose Name Source Opcode Purpose

0xc5F85281d4402850ff436b959a925a0e811D78d3 557 Game/Token CnMGame yes randomness?

0x000000000035B5e5ad9019092C665357240f594e 411 MEV Bot? ? no context sensitivity?

0xEef86c2E49E11345F1a693675dF9a38f7d880C8F 313 MEV Bot? ? no context sensitivity?

0x5E4e65926BA27467555EB562121fac00D24E9dD2 264 Layer 2 rollup optimism.io yes caching/processing

0x56a76bcC92361f6DF8D75476feD8843EdC70e1C9 227 Layer 2 rollup metis.io yes caching/processing

0xB6eD7644C69416d67B522e20bC294A9a9B405B31 222 Token 0xbitcoin.org yes context sensitivity

0xd6e382aa7A09fc4A09C2fb99Cfce6A429985E65d 221 Game/Token
Doomsday NFT

(BUNKER)
yes randomness

0x75E9Abc7E69fc46177d2F3538C0B92d89054eC91 130 Token/NFT
EnterDAO

Sharded Minds
yes randomness

0x563bDabAa8846ec445b25Bfbed88d160890a02Ed 115 MEV Bot? ? no context sensitivity?

0xa10FcA31A2Cb432C9Ac976779DC947CfDb003EF0 111 MEV Bot? ? no context sensitivity?

Table 2. Contracts with the highest number of transaction interactions with EVM
opcodes that are also characteristic of OpAl . (?) denotes uncertain categorizations.

Currency Date Start blockheight Length Duration (hours)

BTC 2010-08-15 74638 51 8.5

BTC 2013-03-11 225430 24 4

BTC 2015-07-04 363731 6 1

ETH 2016-11-24 2686351 ≈ 165 1.25

ETH 2020-11-11 11234873 > 30 ?

ETH 2.0 2022-05-25 3887075 7 0.02
Table 3. Long range forks in Bitcoin and Ethereum due to technical failures.



28 N. Stifter et al.

Fig. 2. Depth-1 OpAl attacks

Fig. 3. OpAl attack based on transaction invalidation


	 Opportunistic Algorithmic Double-Spending: How I learned to stop worrying and hedge the Fork

