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Abstract. Secure comparison has been a fundamental challenge in privacy-
preserving computation, since its inception as Yao’s millionaires’ problem
(FOCS 1982). In this work, we present a novel construction for general n-
party private comparison, secure against an active adversary, in the dishonest
majority setting. For the case of comparisons over fields, our protocol is more
efficient than the best prior work (edaBits: Crypto 2020), with „1.5ˆ better
throughput in most adversarial settings, over 2.3ˆ better throughput in
particular in the passive, honest majority setting, and lower communication.
Our comparisons crucially eliminate the need for bounded inputs as well
as the need for statistical security that prior works require. An important
consequence of removing this “slack” (a gap between the bit-length of the
input and the MPC representation) is that multi-party computation (MPC)
protocols can be run in a field of smaller size, reducing the overhead incurred
by privacy-preserving computations. We achieve this novel construction using
the commutative nature of addition over rings and fields. This makes the
protocol both simple to implement and highly efficient and we provide an
implementation in MP-SPDZ (CCS 2020).

Keywords: Secure Comparison·Multi-party Computation·Unconditional Se-
curity·Dishonest Majority.

1 Introduction

After years of active research, both in theoretical results and system building, multi-
party computation (MPC) is becoming practical as a paradigm. Recent research
results and practical implementations [13,1], deployment of MPC in real-life ap-
plications [3], as well as organizations beyond academia offering commercial MPC
solutions [30,27,26], confirm that MPC is reaching maturity. However, MPC, just like
any other cryptographic primitive deployed to enhance privacy, comes at a significant
efficiency penalty, in terms of computation and communication. While some research
focuses on tailoring MPC solutions to a particular problem, to compensate for this
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efficiency penalty, other works focus on improving the efficiency of fundamental MPC
building blocks, which are applicable to a wide variety of problems.

Secure comparison is an important problem in multi-party computation – it
involves the comparison of two or more secret values in a privacy-preserving manner.
Comparison is a fundamental building block, necessary for the realization of various
larger tasks: from online auctions to big data analytics and machine learning. Given
the privacy considerations that today’s digital infrastructure entails, protocols for
secure comparison are a fundamental MPC tool in privacy-preserving applications.

Since the introduction of the secure comparison problem by Andrew Yao in
1982 [34] as the millionaires’ problem, research efforts have pushed the frontiers of
performance of this primitive. MPC has traditionally been efficient either on linear
operations, when it is based on arithmetic circuits, or on non-linear operations, when
it is based on Boolean circuits. Recent applications require a combination of linear and
non-linear operations, and they are most of the time addressed with solutions based
on arithmetic circuits, because these are significantly more efficient than Boolean
circuits for the linear part, which presents itself as the bulk of the computation. Given
the non-linear nature of the comparison operation, protocols for secure comparison
still remain a bottleneck for privacy-preserving computation. Thus, any improvement
in this line of work has a compounding impact on improving the overall efficiency
of privacy-preserving computations.

In this work, we present a novel comparison protocol that is secure against an
active adversary in the dishonest majority setting and holds for general n-party
computation. Our work improves upon the state-of-the-art protocol for comparison in
dishonest majority in both the total time and communication by a factor of two for
the OT-based preprocessing. In addition, our protocol is easy to implement requiring
no heavy cryptography. Notably, our protocol is highly conducive to amortization
and preprocessing, which makes it attractive for deployment in real-life applications,
as these are important considerations in building practical secure systems.

1.1 Our Contribution

We present Rabbit1, a novel secure comparison protocol, which leverages the commu-
tative nature of addition over rings and fields. Our protocol exploits recent advances
in the generation and deployment of doubly authenticated shared bits (daBits [25]),
which are bits living both in Fp and in F2k , as well as extended doubly authenticated
bits (edaBits [14]), which correspond to shared integers in the arithmetic domain,
whose bit decomposition is shared in the binary domain. The proposed comparison
is more efficient than previously proposed secure comparison protocols, while at the
same time removing the dependence on bounds and statistical parameters. This
allows the MPC engines used for our secure comparison to be smaller than the ones
required by previous protocols, which has a positive impact on the concrete efficiency
of the MPC protocols. Concretely we make the following contributions:

(i) Novel comparison protocol: We propose Rabbit, a novel secure comparison
protocol based on the commutative nature of addition over rings and fields.

1 The name is an extension of the daBit [25], maBit [24] and edaBit [14] line of work.
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Rabbit is a general n-party protocol and crucially eliminates the need for any
“slack” – a statistically larger dataspace to ensure security of computations, and
thus enables computations over smaller datatypes. For instance, to compute over
64-bits, prior works require the use of 128-bit datatypes, while we can support
these computations in standard 64-bit datatypes.

(ii) Security: Since we eliminate the slack and keep an exact tab of overflows, our
protocols are unconditionally secure even against active adversaries in the dishon-
est majority setting. In the case of comparison over fields, we do have to account
for a statistical security parameter, because of the existing implementation of
edaBits [14]. In general, when implemented in a larger body of MPC computation,
our comparison inherits the security properties of the platform, such as statistical
security when using MP-SPDZ [13].

(iii) Simplicity and Efficiency: Our protocol is straightforward to implement. As
shown in Fig. 1b, it is merely a few lines of code in MP-SPDZ. This also makes
our protocol highly amenable to secure implementation. As for efficiency, the
benefits of our work over the state-of-the-art are most pronounced in the case of
comparison over fields. In this case, we improve end-to-end computations such as
secure evaluation of ResNet-50 up to 2x faster, albeit at a higher communication.

1.2 Technical Overview

Our central focus in this work is to propose novel and efficient protocols for secure com-
parison. Comparison protocols usually rely on statistical security or bit-decomposition
combined with prefix computation to achieve the results. We observe that:

(i) When considering arithmetic secret shares, the bit encoding modulus overflow
of secrets enables exact integer relations between the secret, the secret shares,
and the modulus.

(ii) Using the commutativity of addition over standard structures, such as rings
and fields, we can express a sum in two different ways and thus equate the
corresponding constraint equations.

These two observations together enable more efficient protocols for comparisons. More
specifically, the core idea behind our comparison protocols lies in our ability to detect
when a sum over a particular modulus overflows (i.e., wraps around), and when
this happens we can correct it. Observe that given two integers x,yPZM , their sum
x`y mod M is less than either of the two summands, iff the sum wrapped around
the modulus. That is, given a comparison function:

LTp¨,¨q :ZˆZÑt0,1u Ď Z :

#

LTpx,yq“1 if pxăyq;

LTpx,yq“0 otherwise,

we can compute the modular sum x`y mod M, by performing computations over
the integers as:

x`y mod M“x`y´M ¨LTpx`y mod M,xq“x`y´M ¨LTpx`y mod M,yq

This is due to the observation that LTpx`y mod M,xq (or LTpx`y mod M,yq) is
true, iff the sum wrapped around. Given that the LTp¨,¨q function detects (i.e., outputs
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rxsM a“rx`rsM

c“rx`BsM b“rx`r`BsM

`r

`B `B

`r

(a) Intuition behind Rabbit comparison protocol (b) Rabbit code snippet

Fig. 1: Our protocol relies on the commutative properties of addition over rings/fields as
shown in Fig. 1a. This diagram indicates the two different ways we can obtain the value b.
The r¨sM notation indicates that the corresponding values or sums are taken modulo M.
The horizontal arrows indicate addition of a uniformly random value rPt0,...,M´1u, used to
mask the secret input of the comparison x (so that we can later open it without information
leakage, to perform a comparison). The vertical arrows indicate addition of a known constant
B Pt0,...,M´1u related to the public quantity to be compared against. These two ways
of computing the sum b, are necessary for the comparison protocol between a secret value
x and a public constant M´B. The code on the right (Fig. 1b) shows the simplicity of
implementing our protocol, implemented in this case in the MP-SPDZ codebase [13].

true) when a wrap around happens, we can indeed realize the modular sum, while
performing computations over the integers, by conditionally subtracting the quantity
of the wrap around (i.e., M), when LTp¨,¨q returns true.

Notation. We use rxsN to denote the sharing of a secret x in the ring ZN . We
primarily consider two values of the modulus: N“M and N“2, where M is a fixed
constant, set to either a prime p, or a power of two 2k. The types of sharings are:

(i) rxsM , where the secret is xPZM or rbs2, where the secret is a bit bPF2;

(ii) rxsM and rx0s2,...rxm´1s2 such that x“
řm´1
i“0 xj ¨2

j pmod Mq and Mă2m (this
is also known as an edaBit [14])

Similarly, given a (public) constant value RPZM , we denote by R0,...,Rm´1 the bit
decomposition of R, and by Ri its individual bits (at the corresponding position i).

2 Comparison Protocols

In this section we present our comparison protocols and their workings on a step-
by-step basis. Then, for each presented protocol, we also show correctness. We do
not provide any formal proofs of security of our protocols, as these follow trivially
from the arithmetic black box functionality paradigm [11]. We present the protocols
in the following order:

(i) First, we present the protocol ΠLTBits (Fig. 3), which realizes a comparison be-
tween a secret bit-decomposed value, and a public value, and outputs a secret
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Fig. 2: Proposed comparison protocols, their inputs, and their interdependencies.

bit indicating the result of the comparison. This is a building block that uses
prefix computation for comparison.

(ii) Second, we introduce the protocol ΠLTC (Fig. 4), which invokes ΠLTBits and per-
forms a comparison between a secret value (without bit-decomposition), and a pub-
lic value, where the output is a secret bit indicating the result of the comparison.

(iii) Third, we present a specialized comparison protocol, ΠReLU (Fig. 5), that can be
applied when the modulus is a power of 2 and the public constant against which we
compare is half the modulus. Note that this is an important case, as it corresponds
to computation of the ReLU function, which is widely used in machine learning.

(iv) Finally, in ΠLTS (Fig. 6), we show how to generalize ΠLTC to compare two secret
shared values, where once again the output is a secret bit.

Note that given our novel approach of comparison, there is a difference between
secret-public constant comparison (ΠLTC) and secret-secret comparison (ΠLTS), which
often comes for free when using standard techniques that require a slack. For more
details on this, we refer the reader to Section 4. Finally, for all proposed protocols,
the output can either be an element of ZM or F2 (depending on the needs of the
follow-up computations) indicating the result of the comparison. An overview of all
our comparison protocols, their inputs, and their interdependencies is given in Fig. 2.

2.1 Comparison with Bitwise Shared Input – LTBits Protocol

The protocol ΠLTBits, listed in Fig. 3, follows a standard bit decomposition idea to
privately compute a secret bit, indicating the result of a comparison. It is essentially
an adaptation of the BIT-LT protocol by Damg̊ard et. al. [9], which instead of two
secret bit-decomposed inputs (that BIT-LT receives), it receives one bitwise secret
shared input and a public arithmetic value to compare upon, while its output is a
secret Boolean value indicating the result of the comparison. Notably, each component
of our bit-decomposed secret lives in F2, unlike Damg̊ard et. al.’s [9] construction,
where each secret bit lives in Fp. The protocol LTBits computes the following:

1. The XOR of each bit of the secret input rxis2 value with the corresponding bit
of the public value Ri. This results in a bit-string ry0s2,...rym´1s2 with ones on
all positions where the bits of the values to be compared differ.
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2. A prefix OR (circuit computes for each position i of a bit vector, the OR between
all previous bits in the vector up to position i. - more details in Catrina and de
Hoogh [6]) of the previously computed bits ryis2, which results in a vector rzis2
of 0’s followed by 1’s with the transition from 0 to 1 occurring at the first bit
where the secret and the public value differ.

3. In this step, the previous vector is converted into a vector rwis2, i“0,...,m´1
of all 0’s and a single 1 at the index of the first differing bit.

4. In the last step, we take the inner product between the vector w (which is a vector
of 0’s in all positions, except for the position of the first differing bit of the values
to be compared) and the bits of the public value R. This inner product results in 0,
if at the position of the differing bit R was 0, which further implies that x is larger
than R, and it results in 1 otherwise. We have computed the value rpxăRqs2,
but we are actually after rpRăxqs2, thus 1´rpxăRqs2 concludes the protocol.

Less Than Bits ΠLTBitspR,rx0s2,...rxm´1s2q

Inputs: Secret value x shared bitwise, such that parties hold rx0s2,...rxm´1s2, where
x“

řm´1
i“0 xj ¨2

j, and public value R.
Outputs: Compute the Boolean value rcs2“rpRďxqs2.
Protocol: Complete steps 1-3 for all iPt0,1,...,m´1u

1. Parties compute ryis2“rxis2‘Ri.
2. Parties compute rzis2“_

m´1
j“i ryjs2 using PrefixOR circuit.

3. Parties compute rwis2“rzis2´rzi`1s2, where zm“0.
4. Output rcs2“1´rpxăRqs2, where rpxăRqs2“

řm´1
i“0 Ri ¨rwis2.

Fig. 3: Protocol for comparison between an input shared bitwise and a public value.

Correctness of ΠLTBits: To see the correctness of ΠLTBits, note the following series
of observations:

1. To compare two numbers, we start from the most significant bit (MSB) and look
for the first bit where the two numbers differ. This is precisely what is computed
in Step 1 of ΠLTBits. Thus, ym´1,...,y0 contains a series of 0’s, followed by a 1,
which in turn is followed by bits that are irrelevant to the comparison.

2. As a consequence, zm´1,...,z0 contains a series of 0’s followed by 1’s starting at
the first location where xi and Ri differ. Let kPt0,...,m´1u be the largest index
where xi‰Ri. Thus, wi“1 iff i“k and wi“0 otherwise.

3. Finally, multiplying wi by Ri ensures the following:

output“

#

1 if Rk“1, xk“0 (implying Rąxq

0 otherwise (implying Rďx)

�
2.2 Comparison with a Constant – LTC Protocol

The protocol ΠLTC, listed in Fig. 4, is a comparison protocol between a shared secret
value, and a public constant. Unlike ΠLTBits, it does not require the secret input
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value to be bitwise secret shared, but it invokes the protocol ΠLTBits twice. These
two invocations can be parallelized, decreasing the total number of rounds of the
comparison protocol. ΠLTC requires an edaBit as an input. An edaBit is a shared value
in the arithmetic domain, accompanied by its own bit decomposition in the binary
domain [14]. The core idea behind this comparison protocol is that addition in a ring
or field is commutatitve as explained in Fig. 1a.

Less Than Constant ΠLTCprxsM ,Rq

Inputs: Value x secret shared, such that parties hold rxsM , a shared
edaBit

`

rrsM ,rr0s2,...,rrm´1s2

˘

and public value R.
Outputs: Compute the Boolean value rpxăRqs2.
Protocol:

1. Parties compute the value rasM“rx`rsM (and rbsM“rx`r`M´RsM).
2. Parties open the value a (b”a`M´R can be opened locally).
3. Parties compute the following quantities:

‚ rw1s2“ΠLTBitspa,rr0s2,...,rrm´1s2q.
‚ rw2s2“ΠLTBitspb,rr0s2,...,rrm´1s2q.
‚ w3“pbăM´Rq.

4. Output rws2“1´prw1s2´rw2s2`w3q or use one classical daBit to output rwsM .

Fig. 4: Protocol for comparison between an input shared in ZM and a public value R for
any modulus M (in particular, M can be 2k or a prime p).

The ΠLTC protocol proceeds as follows:

1. Using the arithmetic value rrsM of the random edaBit from the input, the parties
mask the input value x, computing ras.

2. ras is opened, without revealing any information about x.

3. The parties then do the following:

(a) Invoke ΠLTBits to compare the masked value ras against the random edaBit (in
bitwise sharing), resulting in rw1s2.

(b) Invoke ΠLTBits to compare b“ra`M´RsM against the random edaBit (in
bitwise sharing), resulting in rw2s2.

(c) Compare in the clear b against the public value B“M´R, resulting in w3.

4. Finally, they conclude the comparison test by computing rws2 “ 1´prw1s2´

rw2s2`w3q. This equation follows from the way we exploited the commutative
property of addition, and its correctness is explained in the next paragraph. The
output at this step is the binary value indicating the result of the comparison,
shared in F2. Depending on the follow-up computations in the larger MPC
protocol that uses the comparison, if the next input needs to be arithmetic, a
classical daBit [25] can be used to transform the representation of this bit in ZM .

Correctness of ΠLTC: Let us denote by rxs the value of xPZM , i.e., the modular
reduction in t0,1,...,M´1u. We are interested in securely computing the Boolean
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value pxăRq, for R a public constant. Furthermore, let LTpx,yq be defined as follows:

LTpx,yq“

#

1 if xăy

0 otherwise
(1)

Recall from Section 1.2 that the LTpx,yq function enables writing exact integer
relations for the sum of two numbers as follows:

rx`ys“rxs`rys´M ¨LTprx`ys,rxsq

“rxs`rys´M ¨LTprx`ys,rysq
(2)

To be consistent with the notation followed in Fig. 1a, we define B“M´R, and
c“rx`Bs. We then use the commutative nature of addition to represent the sum
b“rx`r`Bs in two different ways, as shown in Fig. 1a. Using Eq. 2 for the two
additions in the top path and noting that a,b,BPZM :

b“ra`Bs“a`B´M ¨LTpb,Bq

“x`r´M ¨LTpa,rq`B´M ¨LTpb,Bq
(3)

Similarly, using Eq. 2 for the two additions on the bottom path , we get:

b“rc`rs“c`r´M ¨LTpb,rq

“x`B´M ¨LTpc,Bq`r´M ¨LTpb,rq
(4)

Equating the RHS of Eq. 3, and Eq. 4, we get:

LTpa,rq`LTpb,Bq“LTpc,Bq`LTpb,rq (5)

Recall that the result we are after is LTpx,Rq, which is equivalent to p1´LTpc,Bqq,
since B“M´R, and c“rx`Bs. Thus, from Eq. 5 we have LTpc,Bq“1´pLTpa,rq`
LTpb,Bq´LTpb,rqq, which is exactly what we compute in Step 4 of ΠLTC. Finally, to
complete the proof, we reiterate that LTpc,Bq“0 iff pxăRq and that LTp¨,¨q correctly
computes the function defined by Eq. 1. �

2.3 ΠReLU – Special Case of ΠLTC for R“2k´1, M“2k

ΠLTC is a general comparison protocol for comparing against any public value. However,
a special case of interest is when the modulus is a power of 2 and the public constant
to be compared against is half the modulus. When considering privacy-preserving
alternatives to machine learning, the use of fixed-point arithmetic converts the widely
used ReLUpxq“maxpx,0q function to the above comparison, when considering such a
special modulus (power of 2). In this case, where R“2k´1 and M“2k, the protocol
can be optimized further to improve performance. We present this optimized protocol
in Fig. 5. This comparison setting is useful in a number of privacy-preserving machine
learning frameworks [22,32], where fixed point encoding transforms the ReLU function
into a comparison with R“ 2k´1 and M “ 2k. In this case, we can simplify our
protocol to open the masked value a“rx`rs (Step 1 of the protocol), subtract the
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mask r from it using a binary circuit in the secret shared domain (Steps 2, 3, 4 of the
protocol), and extract the MSB of this result (Step 6). This way we are essentially
extracting the MSB of x. This replaces the overhead of two invocations of ΠLTBits

with a single invocation of a binary addition protocol (ΠBitAdder). The computation
in Step 4 can also be used to perform comparisons when R“2` is another power of
two, however that would require additional computation over the bits sk´1,...,s`.

ReLU ΠReLUprxs2k ,2
k´1
q

Inputs: Value x secret shared, such that parties hold rxs2k , a shared edaBit
`

rrs2k ,rr0s2,...,rrk´1s2

˘

and the public value 2k´1.

Outputs: Compute shares rys2k where y“x if pxď2k´1
q and 0 otherwise.

Protocol:

1. Parties compute the value ras2k“rx`rs2k and open a.
2. Parties locally compute rt0s2,...rtk´1s2“r1´r0s2,...,r1´rk´1s2
3. Parties set a0,...ak´1 to be the bits of pa`1q.
4. rs0s2,...,rsk´1s2,rsks2“ΠBitAdderpa0,...,ak´1,rt0s2,...,rtk´1s2q

a.
5. Output rsk´1s2 or use one classical daBit to output rsk´1s2k if only the derivative

of ReLU is required in the computation.
6. Use one multiplication triple and output y“rxs2k ¨rsk´1s2k .

a ΠBitAdder is a circuit performing addition over bitwise shared values.

Fig. 5: Protocol for comparison between an input shared in Z2k and 2k´1.

Correctness of ΠReLU: Observe that in this special case comparison with the con-
stant 2k´1 where the modulus is 2k, the MSB of the secret input defines the result
of the comparison. Our protocol essentially performs a bit decomposition of the
input rxs2k by masking it (using the arithmetic version of the edaBit) and then again
subtracting this mask in a binary circuit (using the binary version of the edaBit).
This results in the bit decomposition of x, and by extracting its MSB we conclude
the comparison, and hence the computation of this ReLU function.

Remark – Optimizing ΠReLU: Note that Step 4 in Figure 5 can be optimized as we
only require a single bit rsk´1s2. In particular, this requires log2k rounds and klog2k
invocations of bit-triples. This can be reduced to log2k rounds and 2k´2 bit-triples
by simply modifying the MSB values and using a prefix computation protocol ΠPreOpL

(cf [6]). We modify the most significant bit of the input tuple to be p1,0q before
passing to the ΠPreOpL. Consequently, the second element of the output tuple of the
ΠPreOpL protocol is the carry bit rsk´2s2 and thus rsk´1s2 can be computed locally
as the XOR of the MSB’s of the two bits and the bit rsk´2s2.

2.4 Comparison with Secret – LTS Protocol

While the protocol described in Sec. 2.2 provides an efficient way to compare with a
public constant, the protocol described in this section, ΠLTS, listed in Fig. 6, enables
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the comparison of two secret values x and y. In most prior works, due to the use of a
slack or bounds on inputs, the corresponding protocols for these two settings are nearly
identical. In our case, the elimination of slack requires slightly different protocols. We
provide a brief discussion on applications of either of these protocols in Sec. 4.2.

Less Than Secret ΠLTSprxsM ,rysMq

Inputs: Values x and y secret shared, such that parties hold rxsM and rysM , two
shared edaBits

`

rrsM ,rr0s2,...,rrm´1s2

˘

and
`“

r1
‰

M
,
“

r10
‰

2
,...,

“

r1m´1

‰

2

˘

.
Outputs: Compute the Boolean value rpxăyqs2.
Protocol:

1. Parties compute the values rbsM“ry`rsM , rasM“
“

r1´x
‰

M
2. Parties open the values a and b, and compute T”a`b pmod Mq locally.
3. Parties compute the following quantities:

‚ rw1s2“ΠLTBitspb,rr0s2,...,rrm´1s2q.
‚ rw2s2“ΠLTBitspa,

“

r10
‰

2
,...,

“

r1m´1

‰

2
q.

‚ w3“pTăbq.
‚ rs0s2,...,rsm´1s2,rsms2“ΠBitAdderprr0s2,...,rrm´1s2,

“

r10
‰

2
,...,

“

r1m´1

‰

2
q.

‚ rw4s2“rsms2
‚ rw5s2“ΠLTBitspT,rs0s2,...,rsm´1s2q.

4. Output rws2“rw1s2`rw2s2`w3´rw4s2´rw5s2, or use one classical daBit and
output rwsM .

Fig. 6: Protocol for comparison between two arithmetic inputs shared in ZM , for any modulus
M (in particular, M can be 2k or a prime p).

Each step of the protocol ΠLTS computes the following:

1. Parties mask the input values rys and rxs using the arithmetic shares of two
random edaBits rrs and rr1s, resulting in shared values rbs and ras PZM .

2. These masked values are opened (without revealing any information about x or
y) and the value T”a`b pmod Mq is computed locally.

3. The parties then perform the following computations:

(a) Using ΠLTBits, a secret comparison between the open value b and the bitwise
sharing of the edaBit r, and store the result rw1s2.

(b) A similar comparison between a and the bitwise sharing of r1, and store the
output in rw2s2.

(c) Check in the clear whether pTăbq, and store this value in w3.
(d) Compute a circuit for bitwise addition of two binary (secret) vectors, where

the result is a bitwise secret shared vector of the bits of pr`r1q.
(e) Extract the last carry bit from the binary adder (Step 3d) as rw4s2.
(f) Finally, using ΠLTBits, compare the value T against the bitwise secret sharing

of r`r1 (computed in Step 3d), and store the output in rw5s2.

4. In the end, the parties conclude the comparison protocol by computing the output
rws2“ rw1s2`rw2s2`w3´rw4s2´rw5s2. This final step, similarly to the LTC
protocol follows from the way we exploit the commutative nature of addition,
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rxs,rys b“ry`rs and a“
“

r1´x
‰

ry´xs T“
“

y´x`r`r1
‰

`r1, `r

`B

`pr`r1q

Fig. 7: Intuition behind the comparison protocol for two secret values, once again based on
the commutative nature of addition over rings and fields.

and we show correctness subsequently. The final output is the binary sharing of
the comparison result, which can be transformed to a shared bit in ZM if needed.

Correctness of ΠLTS: Following the same notation set-up as in Sec. 2.2 for ΠLTC,
we denote by rxs the value of xPZM , and the function LTpx,yq as defined in Eq. 1.
We are interested in securely computing the Boolean value pxăyq, for x and y two
secret shared values in ZM . The intuition for our protocol is presented in Fig. 7 and
follows the same idea as in ΠLTC, viz., computing a sum in two different ways and
using Eq. 2 to find a constraint between the various wrappings around the modulus.

First note that rxsărys iff LTpry´xs,rysq“1. We then mask the inputs y and
´x using the two edaBits: rbs“ry`rs, ras“rr1´xs. Finally, we look at computing
the value rT s “ry´x`r`r1s in two different ways, as the sum of a and b, and as
the sum of y´x and r`r1. Looking at the addition using the first way, we first open
the values a and b, and write the exact integer relation (using Eq. 2):

T“b`a´M ¨LTpT,bq (6)

We can also write similar expressions for b and a,

b“rys`rrs´M ¨LTpb,rrsq

a“r´xs`
“

r1
‰

´M ¨LTpa,
“

r1
‰

q
(7)

Thus the first expression for the sum T is given by (combining Eqs. 6, 7):

T“rys`rrs´M ¨LTpb,rrsq`r´xs`
“

r1
‰

´M ¨LTpa,
“

r1
‰

q´M ¨LTpT,bq (8)

Grouping the terms differently and computing the sum using the latter expression:

T“ry´xs`
“

r`r1
‰

´M ¨LTpT,
“

r`r1
‰

q (9)

Once again, ry´xs and rr`r1s can be expanded using Eq. 2 as:

ry´xs“rys`r´xs´M ¨LTpry´xs,rysq
“

r`r1
‰

“rrs`
“

r1
‰

´M ¨LTp
“

r`r1
‰

,rrsq.
(10)

Plugging Eq. 10 into Eq. 9, and equating that with the expression in Eq. 8, we get
the following expression for LTpry´xs,rysq, the quantity of interest:

LTpry´xs,rysq“LTpb,rrsq`LTpa,
“

r1
‰

q`LTpT,bq´LTp
“

r`r1
‰

,rrsq´LTpT,
“

r`r1
‰

q
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This completes the correctness proof. To generate an efficient protocol for this
expression, the final observation is that LTprr`r1s,rrsq is generated as a by-product
of the computation required to generate the bit decomposition of r`r1 from the bit
decompositions of r,r1 (to enable a call to ΠLTBits). �

3 Evaluation

We implement our protocol in the MP-SPDZ Framework [13]. The entire protocol is a
handful of lines of python code, as shown in Fig. 1b, and reads directly from the pseu-
docode; this makes it highly amenable to implementation. We evaluate our protocol
over various MPC settings and a brief summary of our experiments is provided below:

(i) Throughput of Comparisons: In this experiment, we measure the throughput
of comparison operations and compare this with prior art. These results are
presented in Sec. 3.1.

(ii) Private Evaluation of ResNet-50: We provide benchmarks for evaluating
ResNet-50 [17] using dishonest majority privacy-preserving computation. We use
the state-of-the-art matrix triple generation algorithm [7] and combine that with
our comparison protocol and compare that against the prior art [7,14]. These
results are presented in Sec. 3.2.

Set-up Details: We use an MPC set-up similar to prior works [14,25,24]. Each
party is run on an Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz with 128GB of RAM
over a 10Gb/s network switch with an average round-trip ping time of 1ms. For
the WAN setting we use two or three machines depending on the protocol wich are
equipped with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz and 54GB of RAM
while the network capability was slowed down using the Linux tc command limiting
the bandwidth to 100Mb/s and 100ms round-trip ping time.

3.1 Throughput of Rabbit comparisons

We conduct experiments in all combinations of the possible adversarial models (active,
passive), adversarial settings (honest majority, dishonest majority), and domains
(OT-based in Z2k , OT-based in Fp, HE-based in Fp), and in both the LAN and WAN
network settings. Table 1 provides a summary of the primitives used as preprocessing
(i.e., offline cost) for a Rabbit comparison, vs. an edaBit comparison [14], their online
round complexity, security, and the need for slack, in Z2k and in Fp. As in Escudero et.
al. [14], we benchmark the time required for a million comparisons between two (DM)
or three (HM) servers described in the setup above. Table 2, 3 show the number
of comparisons per second (throughput) and communication per party (kbits) for
a single operation in the LAN and WAN settings respectively. Our protocol improves
prior art in runtime and communication by upto 2ˆ, and in all cases, achieves these
without any slack.

Communication for ΠLTC over Fp. Note that our protocol incurs higher commu-
nication cost, when performing comparisons over fields. This is due to the use of
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Sub-protocols
Rabbit edaBits Comp. [14]

Z2k Fp Z2k Fp

edaBits 1:tku 1:tku 1:tlu 2:tl´m`s,mu
daBits 1 1 1 1
ANDs 3pk´1q klog2k* 3pl´1q 2pk´1q

# Rounds 2`log2k log2k 2log2l 2log2k

Security, slack Perfect, No Statistical, No Statistical, Yes Statistical, Yes

Table 1: Theoretical complexity comparison of exact comparison functionality over Z2k and
Fp where k is the bit-size of the datatypes, l is the log2 bound on the inputs/data, and m
refers to the number of bits to be truncated.

a more expensive Prefix OR computation. Prior works encode the data in a larger
dataspace and simply extract the MSB for the comparison. In a manner similar to the
optimization from ΠLTC to ΠReLU, we can extract the MSB to compute a comparison.
This operation requires using a prefix computation protocol ΠPreOpL (cf [6]), which has
a linear overhead of 2pk´1q bit-triples in log2k rounds – matching that of edaBits [14].
If a different encoding is used, where positive and negative numbers are determined
by comparison with tp{2u, the same protocol can be used with statistical correctness,
determined by the specific choice of prime (with a small gap between p and 2k). A
suitable choice of prime p would also further lower the prepossessing time, when
performed using HE.

3.2 Neural Network Evaluation

In this section, we provide benchmarks for using our approach for comparison on evalu-
ating the ResNet-50 architecture [17]. In our experiments, we consider neural network
inference over 64-bit datatypes and compare the offline and online performance of our
protocol with the state-of-the-art protocols with active security in the dishonest ma-
jority setting. For prior art, we use the recent protocol for matrix triple generation [7]
in conjunction with our ΠLTC comparison protocol. The results are summarized below.

The work of Chen et. al. [7] requires the plaintext modulus to be 128-bits, due
to the slack required in the comparison. In this work, we eliminate that slack and
hence only require generation of matrix triples using homomorphic encryption (HE)
with a plaintext space of 64-bits. While Chen et. al. [7] require a 128-bit modulus
and N“215 (degree of the cyclotomic polynomial), we can generate 64-bit triples.
This enables us to run the algorithm with lower HE parameters (and consequently
better performance). We use N“214, a plaintext modulus of 64-bits and a ciphertext
modulus of 480. With a conservative analysis this leaves enough room for 40-bits
of statistical security. We set the block size to 64 instead of 128 and thus pack 4
matrices in a single ciphertext (compared to 2 in Chen et. al. [7]). We list the sizes
of matrices required for the computations in ResNet-50 and then measure the time
required (and communication overhead) for matrix triple generations using these
different set-ups. We run the protocols on a similar set-up as Chen et. al. [7], using
a 5Gb/s LAN bandwidth and about 300 Mbps WAN bandwidth. Hence, just for
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Domain
Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest
Majority

Active
2k (OT) 2936 1252.4 3038 1252.2
p (OT) 1537 2847.0 1056 4458.6
p (HE) 1495 1678 1495 1635.99

Passive
2k (OT) 165368 39.5 172211 38.3
p (OT) 73947 87.8 51478 132.2
p (HE) 65750 67.63 41175 41.71

Honest
Majority

Active
2k 117607 5.62 116616 5.54
p 88780 9.43 41028 19.62

Passive
2k 5706569 0.5 5600265 0.5
p 1421412 0.96 472316 1.58

Table 2: Throughput and communication for running secure comparisons using Rabbit in
contrast to prior art over LAN for 16 threads, with 2 million comparisons in total.

Domain
Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest
Majority

Active
2k (OT) 33 1237 33 1237
p (OT) 1.37 29646 0.37 112594
p (HE) 2 19089 N/A N/A

Passive
2k (OT) 596 39.26 604 38.18
p (OT) 366 87.59 245 131
p (HE) 427 67.01 431 41.71

Honest
Majority

Active
2k 5444 5.54 5488 5.52
p 1639 16.96 1463 19.53

Passive
2k 15096 0.49 15182 0.49
p 11492 0.96 7640 1.53

Table 3: Throughput and communication for running secure comparisons using Rabbit in
contrast to prior art over WAN. All numbers were produced using 2 million comparisons
with 8 threads, except in the active security, dishonest majority field cases where we used
only 32,000 comparisons due to time constraints. Note that for the active security, dishonest
majority field case with HE preprocessing, the 54GB RAM machines ran out of memory due
to the large ciphertexts kept in memory by MP-SPDZ - for Rabbit there were no memory
issues as the memory footprint is reduced to half due to ciphertexts that only need to
accommodate 64-bits plaintexts.

the triple generation, our communication complexity reduces by about 60% and the
total time by about 40% of [7] for the same set of triple generations (LAN and WAN
settings are fairly similar as the protocols are compute dominated). Furthermore, our
computational burden for the matrix triple computations reduces from about 72GB
to 9.3GB – a critical improvement for systems based on HE.

We also run the offline and online computations for the comparisons in ResNet-50
and compare the total time. Our protocol takes about 11 hours and 2883.3 GB
of communication. When compared to prior art of Chen et. al. [7], they evaluate
the same network in about 24hrs with 2036 GB (using improved comparisons using
edaBits). Thus, our work is 2ˆ faster albeit uses slightly more communication due to
the communication gap for Rabbit and edaBit for dishonest majority within a char-
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acteristic p field. Thus, our comparison protocol, combined with the improvement in
the triple generation phase due to slack elimination, provides a significant throughput
improvement over state-of-the-art MPC protocols for neural network evaluation.

4 Discussion

In this section, we provide a deeper discussion on the following aspects of this work.
We (1) elaborate on our central contribution of removing the slack and how it enables
computation over smaller data types; (2) we discuss applications of these protocols;
and (3) provide an analysis of the statistical security provided by our protocol along
with the choice of modulus for the case of fields.

4.1 Elimination of “Slack” in Comparisons

One important contribution of this work is the elimination of a “slack” between the
inputs (in other words the computable part of the data) and the actual size of the
datatypes used in the MPC engines. Note that prior work in the dishonest majority
setting requires a slack to accommodate for the statistical parameter. Commonly, this
statistical parameter, which is necessary to ensure security, is at least 40-bits. This
implies that the actual datatypes used in the MPC are at least 40-bits longer than
the values we need to compute upon. As a consequence, prior work requires 128-bit
datatypes for the MPC, necessary to support 64-bit computations. On the contrary,
our comparison protocol achieves exact comparison without the need for any slack
and thus operates on smaller, 64-bit datatypes. As shown in Section 3.2, when the
slack removal is combined with recent advances such as the contributions of the work
of Chen et. al. [7], the smaller MPC datatypes enable faster triple generation, reduce
the communication and computational overhead and increase the overall efficiency
of the MPC computations, beyond secure comparisons.

4.2 Applications to Machine Learning and Beyond

Privacy-preserving machine learning, which is of increasing interest in the field of
MPC, often relies on efficient protocols for computing ReLU, a non-linear function
that is given by ReLUpxq“maxpx,0q. Using fixed-point encoding, computation of the
ReLU function reduces to a comparison with an encoding of 0 (i.e., a constant). Given
that this non-linear function is the bottleneck of many state-of-the-art secure machine
learning protocols [21,18], our proposed protocol improves this entire line of work.

The thresholding operation is yet another application where we require a compar-
ison with a public constant. In image processing and computer vision, threasholding
is used for segmenting images (e.g., turn a grayscale image into a binary one). In
particular, it replaces a pixel with a black (resp. white) pixel, if the image intensity
is less (resp. greater) than a fixed constant. In yet another application, Cryptography
for #metoo [19], the system heavily relies on the use of public value thresholding.
In adversarial machine learning, algorithms for robustness that work over privacy-
preserving computation also require thresholdings with small public values. In all
these applications, the functionality can be efficiently achieved using our comparison
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with constant protocol. Thus, our efficient comparison with constant protocol, ΠLTC

(Sec. 2.2), is deployable on several application scenarios.

On the other hand, there are applications, where secure comparisons with a
constant do not suffice, but a comparison between two values that are both secret is
required. In such cases, our comparison with secret protocol, ΠLTS (Sec. 2.4) can be
deployed. Applications in this line of work go as far in the past as the first instance of
the problem: Yao’s millionaires’ problem [34], and include amongst others also secure
auctions [4], and secure linear programming [28].

4.3 Statistical Security

We remark that the protocols ΠLTBits, ΠLTC, ΠReLU and ΠLTS are all inherently informa-
tion theoretically secure. However, when combined with a larger MPC platform, the
overall security is set by the weaker between the MPC platform and the protocol, and
hence when using protocols such as SPDZ [12], BDOZa [2], SPDZ2k [10], our security
reduces to statistical. The current implementation has a small statistical security due
to the use of edaBits [14]. The protocol for edaBit generation produces shares:

rrsM and trris2u
m´1
i“0 such that r”

m´1
ÿ

i“0

ri¨2
i pmod Mq (11)

In particular, for the correctness of ΠLTC in Sec. 2.2, we require that r“
ř

ri¨2
i, and

this condition is different from Eq. 11 in a subtle yet important way. In the case
where M“2m, this does not raise an issue. However, in all other cases, in particular
including the field case, we have 2m´1ăMă2m, and so we can have r“p

ř

ri¨2
iq´M .

In this case, the correctness of ΠLTC does not hold, as the set of sharings trris2u
m´1
i“0

does not correspond to the bit decomposition of r. To address this issue, we note that
this failure probability depends on the size of the gap between the modulus and the
bounding power of 2 in relation to the modulus. The failure probability is given by:

Failure probability “
2m´M

2m
(12)

which is simply the probability that r is between M and 2m. Thus, if δ“2m´M , the
failure probability can be made small for suitable choice of δ{2m. Thus, in practice, we
choose the largest 64-bit prime p“264´59 for our implementation. This gives our pro-
tocol a failure probability of less than 2´59. However, from a security point of view, for

statistical hiding, we use the fact that r
R
ÐÝt0,1,¨¨¨,2m´1u when reduced modulo M is

still close to uniform in ZM (to ensure the masked value is hidden). If the former distri-
bution isD1 and the latter isD2, then this statistical distance can be computed exactly
as given in Eq. 13. Thus, the statistical closeness can also be made negligible by a
suitable choice of δ{2m. A union bound over the two expressions (Eq. 12 and 13) allows
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us to achieve both correctness and privacy with a statistical parameter close to 58-bits.

Statistical closeness “DistancepD1,D2q

“
1

2

«˜

δ´1
ÿ

i“0

2

2m
´

1

M

¸

`

˜

2m´1
ÿ

i“δ

1

M
´

1

2m

¸ff

“
δ¨pM´δq

M ¨2m
ď

δ

2m

(13)

Furthermore, we note that one can use rejection sampling as follows: run ΠLTBits over
the bit decomposition of r and the modulus M to check if rěM . If this is the case
then reject the sample. This way we can eliminate such edaBits and note that the
rejections happen with probability similar to the expression in Eq. 12 and is thus
ideal once again when the prime p is close to a power of 2.

As an aside, the closer the prime is to the power of two, the lower is the failure
probability. However, when combining with other protocols, such as those mentioned
in Sec. 3.2, there are other considerations in choosing the prime. For instance, for
efficiency reasons BFV [15,5] requires special prime modulus, where p´1 has a large
factor (around 214 - 216). One such prime is p“ 264´83, where 33196 � p´1 and
φp33196q“16128 (with φ the Euler’s Totient function), which would be secure given
the 16k degree and appropriately chosen modulus q.

5 Comparison with Related Work

After the seminal work of Yao [34], which operates in the two-party setting, and is
based on garbled circuits, many works studied the problem of secure comparisons, both
in the two-party [8,29,35], as well as in the multi-party setting [9,23,6,20]. In this work,
we focus on the general n-party setting. Damg̊ard et. al. [9] were the first to tackle the
challenge of secure, constant-round bit decomposition of secret shared inputs, which is
a necessary building block for most comparison protocols. In the same work [9], they
extend and apply their bit-decomposition protocol to develop a secure comparison
protocol (amongst other applications). Their comparison protocol works in the general
n-party setting, with any underlying linear secret sharing scheme (LSSS), and provides
unconditional security against active adversaries (assuming that the multiplication
protocol of the LSSS is also actively secure), in the honest majority setting.

Improving upon the complexity of Damg̊ard et. al.’s [9] bit decomposition, com-
parison, equality, and interval test protocols, Nishide and Ohta [23] provide new,
simplified protocols. In addition, Nishide and Ohta [23] construct new secure compar-
ison, equality, and interval test protocols, which do not rely on bit decomposition. For
their deterministic equality test protocol that is independent of bit decomposition,
Nishide and Ohta [23] apply a masking technique similar to the one we use in our
comparison protocol: they use a random shared value that the parties possess both
in its Fp and in its bit decomposed form to mask and afterwards open the secret
shared input of the equality test.

In an attempt to design comparison protocols with concrete efficiency instead
of asymptotic, Catrina and de Hoogh [6] propose several versions of secure equality
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Protocol
Communication Computation

Rounds Security Adversary Setting
Offline Online Offline Online

[9] - Op`log`q - Op`log`q Op1q perfect active HM
[23] - Op`q - Op`q Op1q perfect passive HM
[6] - Oplog`q - Oplog`q Oplog`q statistical passive HM
[20] Op`q Oplog`q Oplog`q Oplog`q Oplog`q statistical active HM

Rabbit Op`q Op`log`q Op`q Op`q Oplog`q perfect* active DM

Table 4: Comparison of the related work in the n-party setting in terms of offline, and online
communication and computation complexity; in terms of rounds; in terms of security; and in
terms of adversarial model and adversarial settings supported. In the context of adversarial
setting HM stands for honest majority, while DM stands for dishonest majority. *perfect
security holds only when the underlying secret sharing scheme operates over Z2k .

and comparison tests. Their protocols run in logarithmic number of rounds, in the
bit-length of the values to be compared, but also with logarithmic communication
cost (instead of the usually linear communication cost). The efficiency of these pro-
tocols comes also at the cost of statistical, instead of unconditional security and have
been adopted and implemented in a number of MPC platforms (e.g., [13,1]). Our
comparison protocol, in combination with the recent advances in the generation of
daBits [25], and edaBits [14] performs concretely better than the one of Catrina and
de Hoogh [6], while offering unconditional (instead of statistical) security in Z2k .

Lipmaa and Toft [20] propose three different comparison protocols. Only one
of these comparison protocols works for the general n-party setting with active
security, and while it offers sublinear online communication complexity, it is not
constant-round and it has linear offline communication cost. Like other protocols
in the literature [29,8], the core of [20] lies in the idea of splitting the two strings
to be compared into smaller, equal length blocks, and perform the comparison on
the first block where they differ. This way the problem of comparison only needs to
be addressed on smaller strings (the blocks), and equality testing can be applied to
the larger strings (to allow for the necessary reduction of the size of the blocks on
which comparison is to be performed). Other recent concretely-efficient comparison
protocols such as [16,32,33,31] also eliminate the need for a slack but operate in fixed
adversarial models and are tied to a 3-party MPC setting.

In Table 4 we detail the asymptotic costs and security features of the related work
in secure comparisons for the general n-party setting. It is important to remark that
most prior secure comparison protocols require the values to be compared to be smaller
than the space where the comparison takes place. Although this may result in efficient
protocols for the particular comparison operations, it also requires a larger MPC
engine to perform all (other) computations. Essentially, this means that all adjacent
computations should be performed in a larger space, and all values to be communicated
throughout the protocol need to be larger by a factor proportional to the necessary
slack for the secure comparison. Our protocol crucially overcomes this limitation.
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6 Conclusion

In this work, we propose novel comparison protocols for general n-party computa-
tion. Our protocols enjoy perfect security, when we operate over Z2k , and crucially
eliminate the need for “slack” – a larger dataspace to compute secure comparisons,
enabling computations over smaller datatypes. In terms of concrete efficiency, our
protocols improve prior art by twice for most adversary structures, while keeping a
smaller communication complexity. Given that comparisons are a fundamental secure
computation primitive, many MPC applications can benefit from our protocols.
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