A Simpler Model for Recovering Superpoly on
Trivium

Stéphanie Delaune!, Patrick Derbez!, Arthur Gontier', and Charles
Prud’homme?

! Univ Rennes, CNRS, IRISA, Rennes, France
{stephanie.delaune,patrick.derbez,arthur.gontier}@irisa.fr
2 TASC, IMT-Atlantique, LS2N-CNRS, F-44307 Nantes

charles.prudhomme@imt-atlantique.fr

Abstract. The cube attack is a powerful cryptanalysis technique against
symmetric primitives, especially for stream ciphers. One of the key step
in a cube attack is recovering the superpoly. The division property has
been introduced to cube attacks with the aim first to identify vari-
ables/monomials that are not involved in the superpoly. Recently, some
improved versions of this technique allowing the recovery of the ex-
act superpoly have been developed and applied on various stream ci-
phers [I3IT5].

In this paper, we propose a new model to recover the exact superpoly
of a stream cipher given a cube. We model the polynomials involved
in the stream cipher as a directed graph. It happens that this structure
handles some of the monomial cancellations more easily than those based
on division property, and this leads to better timing results. We propose
two implementations of our model, one in MILP and one in CP, which
are up to 10 times faster than the original division property-based model
from Hao et al. [I3], and consistently 30 to 60 times faster than the
monomial prediction-based model from Hu et al. [15].

Keywords: Stream cipher - Cube Attack - Division Property - Trivium
- MILP - CP

1 Introduction

Generic solvers as Gurobi [12] or Choco [I7] are nowadays very common tools
for cryptographers. They allow cryptographers to describe the problems they
want to solve with high-level codes, making implementation faster and results
much easier to verify. This approach has been very successful so far as generic
solvers were used to find a large variety of attacks and distinguishers. On the
one hand, Gurobi was used to search for integral distinguishers based on divi-
sion property [23], differential characteristics [I], advanced meet-in-the-middle
attacks [19] and cube attacks [13] by solving Mixed-Integer Linear Programming
(MILP) models. On the other hand, Constraint Programming (CP) solvers as
Choco were mainly used for highly non-linear problems as instantiating trun-
cated differential characteristics [115]. Furthermore, some works combine both

approaches as in [6] where a MILP model is first used to search for best trun-
cated boomerang characteristics followed by a call to Choco to find the best
instantiations and clusters.

Given a cryptographic problem, there are most often many ways to model it
in MILP or CP and determining the best one is a hard task. It is commonly as-
sumed that smaller the model is, faster it can be solved and many works were ded-
icated to decrease the number of constraints required to describe cryptographic
problems. For instance, Abdelkhalek et al. used both the Quine-McCluskey and
Espresso algorithms to reduce the number of inequalities required to model the
Difference Distribution Table (DDT) of 8-bit Sboxes [I]. Similarly, Boura et al.
proposed new techniques to represent any subset of {0, 1}" with a small number
of inequalities [3]. However this approach has its limits and sometimes adding
redundant constraints may improve the running times. For instance, Delaune et
al. found that adding the constraints related to minimal number of active Sboxes
into their model dedicated to boomerang characteristics greatly improves it [6].

Another approach used to decrease the overall running time consists in di-
viding the problem into two (or more) subproblems much easier to solve. In [25],
Zhou et al. showed that to search for best truncated differential characteristics
against Substitution-Permutation Network (SPN) it was much faster to split the
whole model according to the number of active Sboxes on some of the internal
states. The intuition is that best truncated differential characteristics will have
several internal states with very few active Sboxes. Similarly, in [13], Hao et al.
proposed MILP models to recover the superpolies of several stream ciphers using
division property. To speed-up the resolution and reach reasonable running times
they had to compute all the possible monomials at the half of the initialisation
process (from the output bit) and then solve the problem for each of them.

Our contributions. In this paper, we propose a new model to recover the su-
perpoly of a stream cipher given a cube. We illustrate it on TRIVIUM but the
approach is generic and could be applied to other stream ciphers. Our idea is to
model the polynomials involved in the initialisation process as a directed graph
for which nodes are the state variables and edges the monomials. The main
advantage of our model regarding the one of Hao et al. [13] based on division
property is that it is much easier to handle some of the monomial cancellations
and thus much faster to solve large instances. We then propose two implemen-
tations of this model, one in MILP and one in CP, which are up to 10 times
faster than the original division property-based model from Hao et al. [I3]. We
also compare our approach to the monomial prediction technique introduced by
Hu et al. in [I5] and found our models are consistently 30 to 60 times faster to
solve. Finally, regarding the MILP model, we show how to improve the strategy
deployed by Gurobi without relying on a divide-and-conquer strategy.

2 Some background

2.1 Cube attacks

Cube attacks, introduced by Dinur and Shamir at EUROCRYPT in 2009 [7],
has become a general tool for evaluating the security of cryptographic primitives,
and has been successfully applied against various stream ciphers, e.g. [2[79].
Roughly, the output bit of a cipher is seen as an unknown Boolean polynomial
f(k,v) where k is a vector of secret input variables, and v is a vector of public
input variables. Given a monomial ¢; which is the product of public variables in
I=/{iy,...,iq}, 1.e. ty = v - ... v;,, the function f can be represented as:

f(ka/v) =1 “Pr +Q(k7v)

where the polynomial g(k,v) only contains terms which are not supersets of I.
The polynomial p; is called the superpoly of I in f. The set I = {i1,... 44}
determines a specific structure called cube, denoted as C;, containing 2¢ values
where variables in {v;,,...,v;,} take all possible combinations of values.

Then, the main idea behind a cube attack (and its variants) is the fact that
the sum of the polynomials f(k,v) considering all the possible values for the
cube, and assuming that the other ones are fixed, is exactly the superpoly p;y.

@f(kvv) = @ (tl -p[(k,'v) + q(k7v)) :p](k,’l))
Cr

Cr

Thus, being able to determine the superpoly allows either to distinguish the
cipher from a random function (if p; = 0) or to retrieve some information on
the key. The goal of the adversary is then to find the best trade-off between the
size of the cube, the number of key bits involved in the superpoly and how far
is the superpoly from a balanced function.

The mainly used methods to retrieve the superpoly are currently all based
on the division property without unknown subsets.

2.2 Division property

The division property is a generic technique to search for integral distinguishers.
It was originally proposed by Todo et al. at Eurocrypt 2015 [20] and has been
widely applied to many ciphers, e.g. [22]. In [2]], division property was used to
search for cube attacks against stream ciphers but authors made two assumptions
on superpolies which turned out to be wrong [24]. Thus, at Eurocrypt 2020, Hao
et al. introduced the ezxact division property and showed the technique allows
one to fully recover the superpoly of several round-reduced stream ciphers [13].
Basically, this technique allows one to track a monomial through the successive
applications of a round function relying on the notion of trails. We illustrate this
on a simple example.

Ezxample 1. Consider the functions f and g defined as follows:

(yl’yQ) = f(.Il,IQ,l'g) = (xl + €T3, T1T2 + 171)
(21,22) = g(y1,92) = (y1y2, Y1 +y2)

Assume that our cipher is given by g o f. We can compute the ANF (Algebraic
Normal Form) of the entire cipher to determine the monomials that compose
this function but performing this computation is not possible on real ciphers.
Here, we have that:

(21,22) = (g o f)(z1, 22, 23) = (1 + 2122 + T123 + T 12223, T3+ T122)

Instead of computing the ANF, we may represent the propagation of the dif-
ferent monomials through a table. The tables below represent respectively the
behaviours of the functions f and g.

1 T2 T3 | Y1 Y2

0O 0 00 O

1 0 0|1 O Y1 Y2 | 21 22
0 0 1]1 0 0 0]0 O
1 0 00 1 0 1]0 1
1 1 00 1 1 00 1
1 1 0|1 1 1 1|1 0
1 0 0|1 1 0 01 1
1 1 1|1 1

1 0 1)1 1

For instance, the 4 last lines of the first table represent the fact x1x2, x1, 12223,
and x,x3 are monomials occurring in y;y2. Consulting this first table, we can
also see that the monomial z; is present in y; (2" line), in yo (4*" line) and also
in y1yo (7" line) .

Now, if we want to study whether the monomial x; occurs for instance in
the first component of the ANF of the function g o f, we have to look for the
existence of some trails starting from (1,0, 0) which represents x; to (z1,22) =
(1,0). Reading the tables, we have that: (1,0,0) — (1,0), (1,0,0) — (0,1) and
(1,0,0) — (1, 1) in the table representing f. Each of these trails can be completed
with a line from the table representing g, leading to the following trails:

(1,0,0) = (1,0) = (0,1)
(1,0,0) = (0,1) = (0,1)
(1,0,0) — (1,1) — (1,0)

The last line represents the fact that the monomial x; occurs in y;y2, and thus
in z1. Regarding, the two first lines, we can see that we have two trails starting
from (1,0, 0) and ending with (0, 1). The first one indicates that the monomial z,
occurs in y, and thus in 25 (since y; occurs in z;). The second one indicates
that the monomial x; occurs in ys, and thus in zy (since y2 occurs also in z3).
These two occurrences cancel each other, and thus at the end, z1 does not occur

in zo. Therefore to accurately decide whether a given monomial occurs in the
ANF, it is important to count the number of trails: an even number means that
the monomial does not occur, whereas an odd number means that it is indeed
present.

Relying on this technique, we are therefore looking for trails starting with a
given vector representing a particular monomial and leading to a specific vector
indicating the presence of the monomial in the ANF after a number of iterations
of the round function. The difficulty of the search procedure depends on many
parameters as the round function, the state size, the number of rounds. However,
for real ciphers computing the whole propagation table of the round function may
be infeasible or requires too many inequalities to be described. Hence, in most
of the cases, propagation rules are added for each basic operator of the cipher
(xor, and, copy).

Several algorithms have been developed to evaluate the propagation of the
division property on ciphers. Some are based on the so-called breadth-first search
algorithm [20022] whereas some others implement this search using the mixed
integer linear programming (MILP) method [I3]. The downside of all these ap-
proaches is that we can hardly add new properties to strengthen the model as a
global view on the problem we are trying to solve is missing.

3 A graph-based model for superpoly recovery

In this section, we present a novel and simple graph-based model dedicated to
recovering the superpoly of a stream cipher for a given cube. It is fully equivalent
to the last version of division property since it can recover the exact superpoly,
but has the main advantage of being much easier to understand and manipu-
late. We represent all the intermediate variables and monomials using a directed
graph G. A node of G represents a variable and an edge from z to y indicates
that y appears in the ANF of x. The possible transitions from a node to its child
nodes are described by the monomials of the round function. This results in an
automaton which defines the set of outgoing edge of each node of G.

FEzample 2. Let get back to Example [I} We have the equations:

Y1 =1 D T3 zZ1 = Y1Y2
Yo = T1X2 D T z2 = Y1 D Y2

This system of equations can be expressed as a graph G = (V, E) where :

— V ={x1,29,23,Y1,Y2, 21, 22} is the set of nodes,

- F = {(yl,xl);(y17933)7(y2,$1),(y279€2)7(Zl,yl)a(zhyz)’(Zz,yl),(z2,y2)} is
the set of edges.

We call trail any collection of edges T representing a monomial together
with the process to obtain it by developing the polynomial expressions of the

root nodes. For the above system it means that 7 has to satisfy the following
extra constraints:

- (y,7) €T = (y1,23) ¢ T = (z1,01) €T <= (21,92) €T
- (y1,23) €T = (y1,21) ¢ T — (22,51) €T = (22,42) ¢ T
— (y2,22) €T = (y2,21) €T — (22,y2) €T = (22,y1) ¢ T

It is interesting to compare our model to the model based on division property
with basic propagation rules. In that case the system would be rewritten as:

(w11, 12, 213) = copy(z1)
Y1 = XOI‘(Z‘H7 $3)
a = and(x12, x2)
y2 = xor(a, z13)
(Y11, Y12) = copy(y1)
(Y21, Y22) = copy(y2)
z1 = and(y11, y21)
22 = XOF(Z/12, zm)

It now contains 15 variables, 4 copy-constraints, 3 xor-constraints and 2 and-
constraints, which seems much more complex than our model with 8 variables
(the edges) and 6 constraints. However we have to add extra constraints to our
model to ensure that if an edge (-,a) belongs to 7 then either a is a leaf or
an edge (a,-) also belongs to 7. For complex polynomials this can be tricky
and force us to use the same intermediate variables than above to simplify the
constraints.

Interestingly, and most importantly, both models have exactly the same so-
lutions. This means that there is a one-to-one mapping between the possible
trails 7 and the possible solutions of the division property-based model. Hence,
the main advantage of our model relies on the ease of adding extra constraints
to remove false (even) trails and deploying branch-and-cut strategies.

Example on Trivium

TRIvVIUM [4] is an NFSR-based stream cipher. Its internal state is represented by
a 288-bit state (s1, s2,. .., s2gg) distributed on three registers A, B, and C. The
80-bit secret key K is loaded to register A, and the 80-bit initialisation vector
IV is loaded to register B. The other state bits are set to 0 except the last three
bits in register C. Namely, the initial state bits are represented as:

S1y-..,580,581y-.-,893 < K[].],,K[80],O,,O
894, .-, 8174, S175, S176, S177 — 1V'[1],...,1V[80],0,0,0,0
81785 - - -, 5285, 5286, S287, 5288 < 0,...,0,1,1,1

At each round, we first compute t1,to, and t3 as:

t1 < Se6 + S91592 + So3 + S171
to < 8162 + S1755176 + S177 + S264
t3 < S243 + S286S287 + S288 + Se9

Then, the three registers are updated as follows:
A t3,51,...,502 B« t1,804,...,5176 C <« t2,8178,..., 8287

The state is updated 1152 times and then, at each new round, an output bit is
produced: z < Sgg + So3 + S162 + S177 + S243 + Sogs. Figure [1] depicts graphically
transitions of the TRIVIUM stream cipher.

v
—> @[5 566] | | 569 | I | @‘ D
o

* Sl
»@‘>|594 5162 }—‘—ﬁ S171 | “*?T@‘f\h@*%

; |
»@—>|8178 S243I | I 5264} I “ ?‘ CD_/}\;

Fig. 1. The Trivium cipher.

Fig. [2| depicts the Deterministic Finite Automaton (DFA) deduced from the
description of TRIvIUM. Note that the DFA develops TRIVIUM backwards: from
the output bit to first round. There are four possible transitions to go from
one register (A, B or C) to its successors: three of them are simple, and one is
doubling (=). In the following, the three simple transitions will be named the
looping (.....,), the short (--+), and the long (—) one.

One may have noticed that the DFA relies only on the first bit of each register.
Indeed, for the other bits, the application of the round function simply consists
of shifting them to the left. The value of the shifted bits only changes when they
turn back to the first position of a register. Moreover, none of these shifted bits
are a result of a round function, so they have no use in the DFA. In summary,
the DFA already simplifies all the shifted bits at each round on each register
to focus on the one produced in the corresponding round function (¢;,ts, and
t3). The node A (resp. B, C) represents the first bit of register A (resp. B, C).
Whenever a transition is taken, the generated bit will have to be shifted &k times
to be on the first position again. For example, if the bit at the first position of
register A is set to 1 at round R, then it can be propagated to register C or A.
If A is selected, then the first bit of A will be activated at round R — 69, that
is k = 69. Otherwise, if C is selected, there are two scenarios. Either a simple
transition is taken (short or long), which corresponds to the activation of the
the first bit of C at either round R — 66 or R — 111. Or the doubling transition
is picked and the first bit of the register C will be activated at round R — 110
and R — 109.

66,93, {92,91}

69 78

87

Fig. 2. A DFA that encodes possible transitions for the Trivium cipher.

Now we will present the way to build a graph modelling a division trail
based on the DFA (Fig. , using a breadth-first search algorithm. The node
corresponding to the output bit z at round R is created first and pushed into a
queue. This triggers a loop that ends when the queue is empty. A node is popped
from the queue and marked as visited. If the node has a positive R value, its child
nodes described by the DFA are lazily created, added to the queue and used edges
are created. Creating a node requires to know its round R: anytime a transition
is visited, the number of shifts that label it is subtracted from the R value of its
parent node. If a popped node has a negative R value, which corresponds to the
first state of the cipher, no action is performed. When the loop stops, the graph
of all possibilities is declared.

Such a graph is not very deep but it is very wide since any node has po-
tentially five child nodes. However, each node in a solution has only one or two
outgoing edges. Fig. [3|shows a graph solution for TRIVIUM 672 with the starter
node so43, i.e. the 66 bit of register C. Therefore, the source node is labelled
by C' with R = 672 — 66 = 606 since the bit at position 66 in register C has to
be shifted 66 times to be on the first position. The blue nodes are the cube bits
and the red ones are the key bits. Double-line edges (=) stand for doubling
transitions, plain-line edges (—) for long transitions, dashed-line edges (--+)
for short transition, and dotted-line edges (....,) for looping transitions. This
solution represents one trail for the superpoly monomial z¢.

Once we have formalised our problem as a graph problem, we can rely on
a MILP solver (e.g. Gurobi) or a CP solver (e.g. Choco) to enumerate all the
solutions. In the following we chose Gurobi [12] as the solver for the MILP model
because it already showcased its efficiency on division property and Choco [17]
as a constraint programming (CP) solver for comparison but also because it
natively supports constraints over graph variables [8].

‘suorjisuel) 3urdoo] 10J so3pe oUI[-Peljop pue
UOI)ISURI) 1IOUS I0J S9SPa SUI[-Paysep ‘Suorjisuri) SUO[I0J sagpe aur[-ure[d ‘suorjisueI) SUI[NOP I0J 8I1e S8Pa SUI[-o[qNO(] ‘31 A8y oY} SI
OUO Pal oY} $31q OQND Y} SIB SOPOU SN[E] "OPOU IolIe)s se (D I93SIS0I JO 41q ,99) £Ves SULIDPISUOD 719 WNIAIY], 10§ uonn[os y *g ‘Siq

TS dmeh @
0‘

hmmm S

4 Strengthening the graph-based model

The graph-based model is equivalent to the more classical model based on trails,
but its global structure eases new constraints like the following ones.

4.1 Constrain the doubling paths

To retrieve the superpoly we need to enumerate all the trails and count how
many trails there are for one given monomial. Indeed, a monomial with an even
number of trails will cancel itself in the superpoly.

In the graph-based representation, a doubling path is a pair of distinct sub-
graphs connecting a given set of nodes to another given set of nodes (the leaves).
If a trail uses one sub-graph of a doubling path, then the trail using the other sub-
graph will produce the same monomial. Therefore, preventing doubling paths to
exist in the graph will reduce the number of trails that cancel each other out.
We identified several doubling paths for TRIVIUM.

Pattern 1 (long-double) Between each register there is the long transition
with a given number of shifts p, and the doubling transition with p—1 and p —2
shifts. Therefore, if the doubling edge is followed by two long edges, we will get
the same leaves than taking the long edge first and the doubling edge after, as
depicted on Fig. [d

@ @ —— doubling edges
/ \ — > long edges

@ ————— -+ short edges
/ \ » looping edges

Fig. 4. long-double pattern

Bis

To discard this pattern, we have to take care that the intermediate nodes,
here B4, B17, and Big, are not used in any other part of the trail.

Pattern 2 (3 consecutive bits) An other doubling pattern is when three bits
are at consecutive rounds on the same register as depicted on Fig.[5| For example

10

on the nodes Cy7, Cog, and Cgg. If the doubling edges are taken on Cg7 and Cyg,
the long and the doubling edges of the middle bit can then be removed because
these two choices lead to the same output nodes (B14,B15,B16,B17).

RE&R RARR
SRR RNCRS R

Fig. 5. 3 consecutive bits pattern

Pattern 3 (looping) When a looping transition is taken i.e., the bit stays on
the same register, and if all the outgoing edges of the looping register return to
the same register at least once in the trail, then a similar result can be obtained
by not taking the first looping transition but taking it on each outgoing edges
as shown on Figlf]

Fig. 6. looping pattern

Pattern 4 (simple cycle) A cycle pattern is completed whenever the path
returns to the first register without doubling, then taking any different edge of
the cycle after is a doubling pattern. Indeed, any edge after the cycle could be
taken before the cycle as shown on Fig. [7]

By considering all these patterns, it seems possible to reduce the number of
even solutions and save some useless trail explorations without changing the

11

CRORCROR
O R

Fig. 7. simple cycle pattern

parity of each solution. However we faced many problems. First adding the
constraints for all these patterns slows down the solvers and finding the right
trade-off between solution space reduction and time consumption is not easy.
Second, we have to ensure a doubling pattern does not interfere with another
one. More precisely, let (p1,p2) be a doubling pattern. We may have an issue
if it is possible to reach a trail containing p; while it is impossible to reach ps
because of another doubling pattern. There are several ways of taking this into
account. One option is to apply a constraint if and only if all the nodes involved
in a doubling pattern are not reached by other edges than the ones from the
pattern. But in practice doing so highly limits the number of times doubling
patterns are applied. As a result of our experimentation, we decided to take into
account pattern 2 only.

Thus selecting the right patterns to add to the model is still an open and
interesting question.

4.2 Use an arity approximation

The idea of approximating the number of cube bits reachable for each bit of the
cipher was explored in [16] and we propose to use it to reduce the search space
in our graph-based model.

The reasoning on arity is as follows. Starting from the bits of the initialisation
vector and going back to the active bit, each intermediate node aggregates an
over-approximation of the number of bits of the cube that it would allow to reach
if we took it. This value is called arity and is built by consulting all or part of
its descendants. Under certain conditions between the arity of a node and that
of its predecessors or successors it is possible to deduce whether it may belong
to a trail or not.

As shown in [16], an approximation regarding the arity can be computed by
recursively taking two consecutive transitions into account, and by propagating
the arity from the cube to the output bit.

Ezxample 3. Consider the case where one wants to compute the arity of register C
at round 100 and the doubling transitions is selected.

a/l“(cloo) = aT(Blg) + ar(Bl7) (1)

12

These terms are developed as follows:

ar(B1g) = max(ar(B_gp), ar(A_sg),ar(A_zs),ar(A_74) + ar(A_z3)) (2)
ar(Bi7) = max(ar(B_¢1),ar(A_49),ar(A_z6),ar(A_75) + ar(A_74)) (3)

Suppose now that arity of registers with negative round are all equal to the same
value, say the value 1. Then and can be simplified to:

aT(Blg) = aT(A774) + ar(A,73) (4)
ar(Bi7) = ar(A_75) + ar(A_74) (5)

By mapping the and in , we remark that the arity of A_74 is counted
twice. In the graph representation, the node labelled A_74 will be reachable
multiple time from Cig9. Such an over-approximation would be accumulated
along way to the output bit.

For a given node, the approximation of its arity has to take into account all
the child cases of the doubling edges and take the maximum of their arity to
better approximate the arity of the source. Note that a similar reasoning can
also be applied to compute the minimum arity of a node.

This approximation of the arity can then be used as a strategy for a MILP
solver or as a constraint for a CP solver. Since the goal is to find the superpoly,
it is expected that a significant part of the graph will be cut from the search
because of a too low arity.

5 Implementations

In this section we present two implementations of our graph model and discuss
our results on TRIVIUM. The first implementation is in Mixed Integer Linear
Programming with a relaxed flow problem and the second implementation is in
Constraint Programming with a graph variable.

The results presented in this section and in particular the MILP and CP
models are publicly availabkﬂ

5.1 MILP

Mixed Integer Linear Programming aims at solving problems described with
linear constraints. The MILP graph model is written as a relaxed flow problem.
A flow problem is usually defined with the conservation of flows constraint.
This constraint states that anything that enter a node must leave it. In our
case, this is relaxed because multiple incoming transitions are possible. Having
multiple incoming transitions means that a variable is in the monomial multiple
times. Regardless of the incoming number of edges, if it is reached, then the out
transition is either simple or doubling.

3 lhttps://gitlab.inria.fr/agontier /trivium-superpoly

13

https://gitlab.inria.fr/agontier/trivium-superpoly

In the following, Pred(i) gives all the predecessors of the node i and Succ(7)
gives all the linear successors and one of the doubling successor. The functions
brothery (i) and brothery(i) gives the two doubling sons of i.

First all the edges are declared as Boolean variables:

1 if the edge (i,7) is in the trail

0 otherwise

To implement the graph model of TRIVIUM, we add the following constraints:

Yo Xz Y Xy VieV (6)

Xij =

j € Pred(i) jJ€E€Suce(i)
Yoo X <|Pred)] Y Xy VieV 7)
JE€Pred(i) J€Suce(i)
Xi,bmtherl(i) = Xi,brotherg(i) VieV (8)
>oXi;<1 VieV 9)
j€E€Suce(i)

The constraints @ and (|7]) are the conservation of flows constraints while (8)) and
() are related to the edges outputting a node (and thus dedicated to TRIVIUM).
The cube and the output bit are constrained in the solution by the following;:

> x>t Vi € cube (10)
j€ Pred(t)
Vieleaves,
Z Xj,i =0 ié cube, i¢key, (]_]_)

€ Pred(i) i¢ non-zero-constants
The key bits are free as well as the non-zero constants because they can also
appear in the superpoly.

Constraints for doubling patterns. The MILP model can be strengthened
with constraints to discard the doubling patterns. Let P a set of doubling pat-
terns (p1, p2) with p1, pa sub-graphs with the same sources and the same leaves.
We used only Pattern 2 for which both the sub-graphs p; and py are composed
of respectively 5 and 6 edges of the form:

= p1 = {(z1,91), (¥1,92), (T2, ya), (23,Y3), (73, 94) }
— p2 = {(z1,11), (T1,92), (v2,y2), (T2, ¥3), (T3, ¥3), (T3,Y4) }

Thanks to the equalities of doubling edges we can simplify both p; and ps such
that:

= p1 = {(z1,92), (¥2,ya), (z3,94)}
— p2 = {(71,92), (¥2,y2), (z3,94) }

14

Because (z2,y4) and (z2,y2) cannot be active both at the same time, we can
add the inequality X (., y,) + X (2y,y0) T X(2a,94) T X(2s,50) < 2 to remove both py
and po. However a problem occurs if the node x4 consecutive to x3 is active and
reaches y4. Indeed, the configuration for which the 4 consecutive nodes follow
the doubling edges would be removed twice. Thus we modified the inequalitie
into:

2X($1»y2) + 2X(f'321y2) + X(f'32-,y4) + 2X(f63,y4) - X(f'34,y4) <4

We verified that adding this inequality to all consecutive nodes leads to the
right ANF. In more details, this inequality forbids 3 consecutive nodes to all
take the doubling edge and forbids x5 to take the long edge if x4 does not take
the doubling edge.

Strategy. In both [13] and [I5], authors used a divide-and-conquer strategy
together with their MILP models. Basically they developed the polynomial of
the root node for several hundreds of rounds (between 200 and 400) and then
applied their models on each monomial of the polynomial. Without this strategy
the solving times are much higher, making unfeasible to retrieve the superpoly
in reasonable time. This shows that Gurobi fails to identify the right variables
to branch on. While Gurobi does not allow the user to fully control the branch-
and-cut strategy, it offers several options to modify it and we mainly used two
of them:

— BranchPriority: With this option it is possible to give to each variable
of the model a priority during the selection of the next variable to branch
on. We tried several strategies and it seems that the best choice is to sort
the variable according to their arity. More precisely, given an edge (z,y), we
chose to:

1. set a negative priority if ar(y) < 0, i.e. if the variable y cannot lead to
any cube variable;

2. set the priority to zero for all simple edges, based on the idea that we
have to focus on doubling edges;

3. set the priority to ar(z) for all doubling edges, to focus on the edges
which can reach the most cube variables.

— VarHintVal: With this option we can tell Gurobi that we think the value
of a variable will be in a solution. We chose to set to 0 all simple edges, again
to focus on doubling edges.

Using both those options it became unnecessary to use the divide-and-conquer
strategy as we reach approximately the same running times with and without it.
However we believe there is still room for improvements. First the BranchPri-
ority is static while a dynamic approach would be much better. Second, both
the options above apply to variables only while we may want to use them on lin-
ear combinations of variables. The problem is that if we create a new variable x
and add a constraint * = y + z, x will be removed from the model during the
presolve and it seems Gurobi does not keep its branch priority.

15

52 CP

Constraint programming [I8] is a technique for solving combinatorial problems,
like MILP. Unlike the latter, it is not necessary to express the rules solely in
terms of linear constraints. In addition, CP solves a problem in a way similar
to branch-and-bound except that it eliminates, by filtering, impossible states or
combinations. CP techniques have already been successfully applied to cryptan-
alytic problems [TTITOJ5].

The CP graph uses a directed graph variable G. A graph variable G has a
domain defined by a graph interval [G, @]. G is the lower bound of G and defines
nodes and edges that must appear in any solution. In our case, it is declared with
the mandatory nodes of the cube. G is the upper bound of G' and defines nodes
and edges that can appear in any solution. In our case, it is the total graph
developed from the automaton defined is Section [3| A solution is found when
G = G. The solving processes by adding nodes or edges from G or by removing
nodes or edges from G. Such modifications are triggered by constraints defining
properties on GG that need to be satisfied in any solution.

In the following, D is a view of G which only contains doubling edges and the
endpoint nodes; L is another view of G wich only contains the long edges and the
endpoint nodes; K stores leaf nodes of G. The functions predx (n) and succx (n)
give the predecessors and the successors of a node n in the (sub-)graph X.

The graph model is declared as (12)) A . \% . A . A . where:

|predg(n)| >0 Vn € G, n # source (12)

|[sucea(n)] = 1A (n,s) §Z D VYn € G, n¢ K,Vs € succg(n) (13)
[succg(n)] =2 A (n,s) € Vn € G, n¢ K,Vs € succg(n) (14)
(n,s1) € G <= (n,s2) € Vn € G, (n,s1) € D,(n,s2) € D (15)
(n,s1) ¢ G <= (n,52) ¢ G Vn € G, (n,s1) € D,(n,s2) € D (16)

The constraint ensures that each node selected in a solution, but the
source node, has at least one predecessor. Constraints and maintain the
number of successors of each node but the leaf ones. If a given node takes a simple
transition then it has exactly one successor; if it takes a doubling transition then
it has exactly two successors. The two conditions cannot hold simultaneously.
Finally, constraints and (16]) ensures that either a single edge or a pair of
doubling edges is selected.

The doubling constraints of Section[f.1]are added to the CP model in the form
of clauses expressed on the disjoint membership of edges in G and are propagated
using a SAT-like constraint. The algorithm for estimating the degree of TRIVIUM-
like ciphers [I6] can directly be integrated in the graph model as an additional
constraint as presented in Section [f.2] Without going into too much details, it
imposes to declare RIV (for Reachable Initialisation Vector) additional integer
variables. An integer variable v has a domain [v, 7] where v (resp. T) denotes
the smallest (resp. the largest) value it can be assigned to. The RIV variables
stores, for each node in G, an approximation of the number of nodes of the cube

16

it can reach. The algorithm [I6] is directly applied dynamically to refine bounds
of each RIV; variable associated to node %, based on RIVj, Vj € succg(3). It is
important to note that RIV variables are bounded as long as the involved nodes
and edges are in G. When a RIV domain is emptied or is inconsistent with those
of its neighbours then the corresponding node is removed from G.

Strategy Unlike Gurobi, we can fully control the strategy deployed by Choco.
However, this solver is inherently sequential and thus we decided to apply the
divide-and-conquer strategy to run several instances in parallel. The main issue
we faced is that only few instances are hard to solve and thus we regularly need
to redivide models in order to maximize the use of available cores.

5.3 Results

We ran our new models together with the ones from both [13] and [15] on our
server, limiting the number of available cores to 32. Results are given on Tables
and [2] while the cubes used to perform our experiments are detailed on Table

’ Model H Monomial Prediction [15] ‘ Division Property [13] ‘ MILP Graph ‘ CP Graph ‘

R =675 3m 1m 3s 15s
R =735 4m 2m 10s 31lm
R =840/1 472m 269m 10m > 24h
R =840/2 316m 91m 10m
R =840/3 351m 108m 6m
R =841 956m 282m 19m
R =842 > 24h 990m 182m

Table 1. Results on Trivium

We see that the graph model of TRIviUM performs better with the MILP
implementation and the Gurobi solver. One explanation might be that TRIVIUM
is not highly combinatorial. Indeed, the round function of TRIVIUM has only
one nonlinear case and it is a simple product. Our graph model implemented
in MILP is consistently much faster than the models from Hu et al. based on
monomial prediction and from Hao et al. based on division property.

Regarding the number of trails outputted by our model, it is reduced by
a factor between 2 and 4 which shows how useful are the doubling patterns
described in Section [4 But as we explained, we were not able to use all of them.
Checking a posteriori the trails for Trivium-842 shows that taking into account
all the doubling patterns could remove much more trails. We believe this is an
interesting research direction for a future work.

17

Graph solver R =2840/1|R=2841| R = 842

without doubling constraints|| 12 909 30 177 |3 188 835

with Pattern 2 5 953 18 929 | 720 779

Table 2. Number of solutions

Rounds Cube indices
675 3, 14, 21, 25, 38, 43, 44, 47, 54, 56, 58, 68
735 2, 5,9, 12, 13, 14, 19, 28, 36, 38, 40, 47,
49, 51, 52, 53, 55, 57, 63, 64, 66, 73, 79
840 /1 TV \ {34,47}
840 /2 IV \{71,73,75,77,79}
840 /3 IV \{73,75,77,79}
841 v\ {9,79}
842 IV \ {19,35}

Table 3. Cubes used in our experiments for TRIVIUM

6 Conclusion

In this paper, we proposed a graph-based model to recover the exact superpoly
of a stream cipher given a cube. Unlike the division property, our graph model is
a convenient mathematical object that allows one the use of cipher specific con-
straints like doubling paths and arity approximation. We show that this graph
model can be implemented in MILP and CP. By taking into account some dou-
bling patterns in our model and refining the branch-and-cut strategy, our MILP
implementation is faster than existing MILP implementations based on division
property [I3], or monomial prediction [I5] for TRIVIUM and we expect similar
results on other stream ciphers.

We opened new research directions and working further on Gurobi strategy
may lead to significant improvements of all MILP models used in cryptography as
searching for differential characteristics or integral distinguishers. We also believe
that our new graph-oriented model can improve the recent work of Hebborn et
al. [T4] regarding lower bounds on the degree of block ciphers.

18

Acknowledgements The work presented in this article was funded by the
French National Research Agency as part of the DeCrypt project (ANR- 18-
CE39-0007). The authors would like to express their very great appreciation
to Dr Marie Euler from DGA-MI for her valuable and constructive suggestions
during the development of this research work.

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP Modeling
for (Large) S-boxes to Optimize Probability of Differential Characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99-129 (2017)

2. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: 16th International Workshop on
Fast Software Encryption (FSE’09). Lecture Notes in Computer Science, vol. 5665,
pp. 1-22. Springer (2009)

3. Boura, C., Coggia, D.: Efficient MILP modelings for Sboxes and Linear Layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327-361 (2020)

4. Canniere, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs - The eSTREAM Finalists, Lecture Notes in Computer
Science, vol. 4986, pp. 244-266. Springer (2008)

5. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme,
C.: Efficient Methods to Search for Best Differential Characteristics on SKINNY.
In: Sako, K., Tippenhauer, N.O. (eds.) 19th International Conference on Applied
Cryptography and Network Security, (ACNS’21). Lecture Notes in Computer Sci-
ence, vol. 12727, pp. 184-207. Springer (2021)

6. Delaune, S., Derbez, P., Vavrille, M.: Catching the Fastest Boomerangs - Applica-
tion to SKINNY. IACR Trans. Symmetric Cryptol. 2020(4), 104129 (2020)

7. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: 28th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’09). Lecture Notes in Computer Science, vol. 5479, pp.
278-299. Springer (2009)

8. Fages, J.: On the use of graphs within constraint-programming. Constraints An
Int. J. 20(4), 498-499 (2015)

9. Fouque, P., Vannet, T.: Improving Key Recovery to 784 and 799 Rounds of Trivium
Using Optimized Cube Attacks. In: 20th International Workshop on Fast Software
Encryption (FSE’13). Lecture Notes in Computer Science, vol. 8424, pp. 502-517.
Springer (2013)

10. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278 (2020)

11. Gérault, D., Minier, M., Solnon, C.: Using Constraint Programming to solve a
Cryptanalytic Problem. In: Sierra, C. (ed.) 26th International Joint Conference on
Artificial Intelligence (IJCAT’17). pp. 4844-4848. ijcai.org (2017)

12. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021), https:
//www.gurobi.com

13. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for Three-Subset
Division Property Without Unknown Subset - Improved Cube Attacks Against
Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’20). Lecture Notes in Computer Science, vol. 12105, pp. 466-495.
Springer (2020)

19

https://www.gurobi.com
https://www.gurobi.com

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the de-
gree of block ciphers. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology
- ASTACRYPT 2020 - 26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon, South Korea, Decem-
ber 7-11, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12491, pp. 537-566. Springer (2020). https://doi.org/10.1007/978-3-030-64837-
4 18| https://doi.org/10.1007/978-3-030-64837-4_18

Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: Advances in Cryptology - ASTACRYPT 2020 - 26th International Conference
on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12491, pp. 446-476. Springer (2020)

Liu, M.: Degree Evaluation of NFSR-Based Cryptosystems. In: 37th Annual Inter-
national Cryptology Conference (CRYPTO’17). Lecture Notes in Computer Sci-
ence, vol. 10403, pp. 227-249. Springer (2017)

Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation (2017)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)

Sun, S., Gérault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Anal-
ysis of AES, SKINNY, and Others with Constraint Programming. IACR Trans.
Symmetric Cryptol. 2017(1), 281-306 (2017)

Todo, Y.: Structural Evaluation by Generalized Integral Property. In: 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’15). Lecture Notes in Computer Science, vol. 9056, pp.
287-314. Springer (2015)

Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube Attacks on Non-Blackbox Polyno-
mials Based on Division Property. In: 37th Annual International Cryptology Con-
ference on Advances in Cryptology (CRYPTO’17). Lecture Notes in Computer
Science, vol. 10403. Springer (2017)

Todo, Y., Morii, M.: Bit-Based Division Property and Application to Simon Family.
In: Peyrin, T. (ed.) 23rd International Conference on Fast Software Encryption
(FSE’16). Lecture Notes in Computer Science, vol. 9783, pp. 357-377. Springer
(2016)

Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Searching Inte-
gral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. In:
Cheon, J.H., Takagi, T. (eds.) 22nd International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT’16). Lecture
Notes in Computer Science, vol. 10031, pp. 648-678 (2016)

Ye, C., Tian, T.: Revisit division property based cube attacks: Key-recovery or
distinguishing attacks? IACR Trans. Symmetric Cryptol. 2019(3), 81-102 (2019)
Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based Security
Evaluation Algorithm against Differential/Linear Cryptanalysis Using A Divide-
and-Conquer Approach. IACR Trans. Symmetric Cryptol. 2019(4), 438-469 (2019)

20

https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18

	A Simpler Model for Recovering Superpoly on Trivium

