
Digital Signatures with Memory-Tight Security
in the Multi-Challenge Setting

Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu

University of Wuppertal, Wuppertal, Germany
{denis.diemert, kai.gellert, tibor.jager, lin.lyu}@uni-wuppertal.de

Abstract. The standard security notion for digital signatures is “single-
challenge” (SC) EUF-CMA security, where the adversary outputs a sin-
gle message-signature pair and “wins” if it is a forgery. Auerbach et al.
(CRYPTO 2017) introduced memory-tightness of reductions and ar-
gued that the right security goal in this setting is actually a stronger
“multi-challenge” (MC) definition, where an adversary may output many
message-signature pairs and “wins” if at least one is a forgery. Currently,
no construction from simple standard assumptions is known to achieve
full tightness with respect to time, success probability, and memory si-
multaneously. Previous works showed that memory-tight signatures can-
not be achieved via certain natural classes of reductions (Auerbach et al.,
CRYPTO 2017; Wang et al., EUROCRYPT 2018). These impossibility
results may give the impression that the construction of memory-tight
signatures is difficult or even impossible.
We show that this impression is false, by giving the first constructions
of signature schemes with full tightness in all dimensions in the MC set-
ting. To circumvent the known impossibility results, we first introduce
the notion of canonical reductions in the SC setting. We prove a general
theorem establishing that every signature scheme with a canonical reduc-
tion is already memory-tightly secure in the MC setting, provided that
it is strongly unforgeable, the adversary receives only one signature per
message, and assuming the existence of a tightly-secure pseudorandom
function. We then achieve memory-tight many-signatures-per-message
security in the MC setting by a simple additional generic transformation.
This yields the first memory-tightly, strongly EUF-CMA-secure signa-
ture schemes in the MC setting. Finally, we show that standard security
proofs often already can be viewed as canonical reductions. Concretely,
we show this for signatures from lossy identification schemes (Abdalla
et al., EUROCRYPT 2012), two variants of RSA Full-Domain Hash (Bel-
lare and Rogaway, EUROCRYPT 1996), and two variants of BLS signa-
tures (Boneh et al., ASIACRYPT 2001).

1 Introduction

Work-factor-tightness. The security of many cryptosystems depends on com-
putational hardness assumptions, where security is proven by a reduction from
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breaking the cryptosystem with respect to some security definition to breaking
the hardness assumption. When such cryptosystems are concretely instantiated,
cryptographic parameters such as the size of algebraic groups and moduli must
be determined. If this is done in theoretically-sound way, that is, supported by
the security guarantees provided by a reduction from breaking the cryptosystem
to breaking the underlying assumption, then the security loss of the reduction
has to be taken into account.

Let A be an adversary on a given cryptosystem with respect to a given
security model, and let R be a reduction in a security proof that turns A into an
algorithm solving some assumed-to-be-hard computational problem. Let (tA, εA)
and (tR, εR) be the running time and advantage of A and R, respectively. Then,
the security loss is defined as L such that

L · εR
tR

=
εA
tA

where εA/tA and εR/tR are the work factors of A and R, respectively.1 This is
the standard approach to measure concrete security, which was established by
Bellare and Ristenpart [9, 10].

In the classical asymptotic setting a reduction is considered efficient if L
is bounded by some polynomial, which may be large. However, if L is large,
then a theoretically-sound concrete instantiation must compensate the security
loss with larger parameters, at the cost of efficiency of the deployed cryptosys-
tem. Often L depends on deployment parameters (such as the number of users
and the number of issued signatures, for instance), which are determined by
the application context. These might not be exactly known at the time of ini-
tial deployment, or they might unexpectedly encounter significant increase over
time. Hence, these parameters must be chosen conservatively, based on a strict
upper bounds, which may lead to overly large parameters that come with very
significant performance overhead. Therefore it is desirable to have tight secu-
rity proofs, where L is a constant, and thus independent of such deployment
parameters. Such schemes can be efficiently instantiated with optimal crypto-
graphic parameters in arbitrary application contexts, independent of the number
of users, the number of issued signatures, and other application parameters. If
L is a constant, then we usually call R a tight reduction. In this paper, we will
refer to this notion as work-factor-tightness, in order to distinguish it from the
notion of memory-tightness discussed below.

Memory-tightness. Auerbach et al. [5] explained that in addition to the work
factor also the memory consumed by a reduction is relevant. This is particularly
relevant when security is reduced to so-called memory-sensitive computational
problems, where the efficiency of known algorithms depends on the amount of

1 In the asymptotic setting, εA, tA, εR, and tR are functions in a security parameter.
In this case L is a function in the security parameter, too. In the concrete secu-
rity setting the running times, success probabilities, and the security loss are real
numbers.
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memory that is available. This includes, for instance, known algorithms for the
classical discrete logarithm problem modulo a prime number, the integer fac-
torization problem, Learning With Errors (LWE), or Short Integer Solutions
(SIS), and many more. Other problems are (currently) not considered memory-
sensitive, such as the discrete logarithm problem in elliptic curve groups. How-
ever, whether a given computational problem is memory-sensitive or not may
change with the discovery of new algorithms and the impact of memory on their
performance. See [5] for an in-depth discussion of memory-sensitivity.

In order to address this gap, Auerbach et al. [5] introduced the notion of
memory-tightness, which additionally takes the memory consumed by a reduc-
tion into account. In addition to discussing the memory-sensitivity of compu-
tational problems, they also consider the memory-tightness of finding multi-
collisions for hash functions and of reductions between different security notions
of digital signature schemes.

Since its introduction in 2017, the concept of memory tightness has drawn
much attention and led to many follow-up works. This includes works on mem-
ory lower bounds of reductions by Wang et al. [53] (EUROCRYPT 2018), mem-
ory tightness of authenticated encryption by Ghoshal, Jaeger, and Tessaro [32]
(CRYPTO 2020), memory tightness of hashed ElGamal by Ghoshal and Tes-
saro [33] (EUROCRYPT 2020), and memory tightness for key encapsulation
mechanisms by Bhattacharyya [13] (PKC 2020). Hence, memory tightness is
already a well-established concept in cryptography that receives broad interest.

Memory-tightly secure signatures. In the standard existential unforgeability un-
der chosen-message attacks (EUF-CMA) security model, the adversary receives
a public key pk and then has access to a signing oracle that, on input of any mes-
sage m from the message space of the signature scheme, computes a signature
σ $←− Sign(sk ,m), stores m in a list Q, and returns σ. The adversary successfully
breaks the security of the signature scheme if it outputs a forgery (m∗, σ∗) such
that σ∗ is a valid signature for m∗ with respect to pk , and m∗ 6∈ Q. Auerbach
et al. call this the single-challenge setting, since the adversary has only one at-
tempt to forge a signature. They also introduce a stronger multi-challenge secu-
rity definition, where the adversary may output multiple valid message-signature
pairs and it “wins” if at least one of them is a new forgery in the sense that no
signature was requested for the corresponding message throughout the security
experiment.

Obviously, when considering the random-access memory (RAM) model, both
security notions are tightly equivalent when memory consumption is not consid-
ered. In one direction, given a multi-challenge adversary, one can simply store
all message-signature pairs that the adversary has obtained from its experiment
in a list. Whenever the adversary outputs a message-signature pair, it is checked
whether it is contained in the list. If not, then it is a valid forgery in the single-
challenge setting. The opposite direction is even more trivial. However, note that
this reduction is not memory-tight, as it requires memory linear in the number
of signing queries. Auerbach et al. even showed that it is very difficult to prove
that both notions are memory-tightly equivalent, by giving an impossibility re-
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sult that covers a large class of natural reductions. This result was subsequently
revisited and extended by Wang et al. [53].

The only known construction of a signature scheme with memory-tight se-
curity proof is due to Auerbach et al. [5]. They show that the RSA full-domain
hash signature scheme can be proven memory-tightly secure under the RSA as-
sumption. This is already a significant result, since it introduces clever tricks to
deal with a programmable random oracle in a memory-tight way. However, it
is still limited, since the reduction is only memory-tight, but not work-factor-
tight. This is because the tightness lower bounds from [7, 21, 44, 45] still apply,
such that a linear security loss in the number of signature queries is unavoid-
able.2 Furthermore, Auerbach et al. only achieve memory-tightness in the weaker
single-challenge setting, but not yet in the stronger multi-challenge setting. To
the best of our knowledge, there exists currently no signature scheme, which has
a security proof that is fully tight, that is, simultaneously memory-tight and
work-factor-tight.

One main difficulty of achieving memory-tightly-secure signatures in the
multi-challenge setting is to build a reduction which does not have to store
the sequence of random oracle queries made by the adversary. While it seems
easy to replace a random oracle with a pseudorandom function, this must be
done very carefully, in particular in security proofs that “program” a random
oracle, in order to achieve consistency. Here we can partially build upon tech-
niques developed by Auerbach et al. [5]. Furthermore, another major difficulty
in achieving security in the multi-challenge setting is to build a reduction which
does not have to store the history of message-signature pairs obtained by the
adversary through signing queries.

Our contributions. We summarize our contributions as follows.

– We present a sequence of transforms that give rise to the first digital signa-
ture schemes that simultaneously achieve tightness in all three dimensions:
running time, success probability, and memory. The construction is efficient
and yields practical signature schemes.

– On a technical level, we show how to circumvent known impossibility result
by introducing the notion of “canonical reductions”, which can be seen as a
new “non-black-box” perspective that applies to many well-known standard
reductions in security proofs for signature schemes.

– We show the applicability of this approach by considering the construction
of signatures from lossy identification schemes (LID) by Abdalla et al. [2,3],
which can be viewed as a generalization of the security proof for Katz–Wang
signatures [46]. We further demonstrate the versatility of our technique by
applying it to well-known signature schemes like RSA-FDH [12] (with the
proof following [21] with a loss linear in the number of signing queries). Then,
we additionally show that by using the technique by Katz and Wang [46] of

2 There is also a work-factor-tight security proof for RSA full domain hash based on
the Phi Hiding assumption [44, 45], but this proof seems not compatible with the
memory-tight implementation of the random oracle from [5].
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signing the message together with an extra random bit, we can eliminate the
linear security loss and achieve both memory and working factor tightness.
We also show similar results for Boneh–Lynn–Shacham (BLS) signatures
[15]. All of our results directly achieve strong unforgeability. For a comparison
of our result with previous analyses of these scheme, consider Table 1.

Table 1. Comparison of our result to previous analyses of the considered schemes. All
analyses are in the random oracle model. Let λ be the security parameter, let qH be the
number of random oracle queries, let qS the number of signing queries, let e be the basis
of the natural logarithm, let |G| be the size of the representation of a group element
of a cyclic group G of prime order q, let |ZN | denote the size of the representation
of an element of ZN , let N be a RSA modulus, let e be a RSA public exponent, and
let |G1| (resp. |G2|) be the size of the representation of a group element of group G1

(resp. G2) of some bilinear group (G1,G2,GT ). Note that for comparability, we chose
to instantiate the LID-based schemes with DDH. Due to collision resistance, the nonce
length chosen for our transform from Section 4 is 2λ.

Constr. Proof Asm. Sec. Sec. Loss Mem. Loss |pk | |σ|

LID-based
[2, 3] DDH EUF-CMA O(1) O(qH + qS) 4 |G| 3 |Zq|
Ours DDH msEUF-CMA O(1) O(1) 4 |G| 3 |Zq|+ 2λ

RSA-FDH

[20] RSA EUF-CMA e · qS O(qH + qS) |N |+ |e| |ZN |
[5] RSA EUF-CMA e · qS O(1) |N |+ |e| |ZN |

Ours RSA msEUF-CMA e · qS O(1) |N |+ |e| |ZN |

RSA-FDH+
[46] RSA EUF-CMA O(1) O(qH + qS) |N |+ |e| |ZN |

Ours RSA msEUF-CMA O(1) O(1) |N |+ |e| |ZN |+ 2λ

BLS
[15] (co-)CDH EUF-CMA e · (qS + 1) O(qH + qS) |G2| |G1|

Ours (co-)CDH msEUF-CMA e · (qS + 1) O(1) |G2| |G1|

BLS+
[46] (co-)CDH EUF-CMA O(1) O(qH + qS) |G2| |G1|

Ours (co-)CDH msEUF-CMA O(1) O(1) |G2| |G1|+ 2λ

Our approach. Our approach can be divided into two steps.

1. At first we show how to generically transform an entire class of signature
schemes from the single-challenge setting to the multi-challenge setting. Dur-
ing this step, it is actually useful to consider a weaker “one-signature-per-
message” security notion, where an adversary may only request one (instead
of many) signature per message via its signing oracle.3

3 Of course, one-signature-per-message security is equivalent to standard security for
signature schemes with deterministic signing algorithm, however, we are not aware
of any such signature scheme which achieves tight security, not even in the clas-
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We require that the security reduction of the underlying scheme follows a
canonical pattern that is compatible with our approach to prove memory
tightness. Essentially, we require that the reduction can be split into stateless
“canonical procedures” for simulating signatures, extracting solutions from
forgeries, and computing hash values (e.g., if a random oracle is needed).
The main idea is now to “de-randomize” all canonical procedures, meaning
that we give all procedures access to the same random function but require
that they otherwise behave deterministically. Note that the “one-signature-
per-message” restriction helps us here, as the procedures can rely on the
random function to derive randomness for one signature per message from
the message by calling the random function. Giving all procedures access
to the same random function, ensures consistency across procedures (e.g., a
signature may need to be consistent with the simulation of a random oracle).
We also show that many standard security proofs for signatures indeed can
be seen as canonical reductions, so that our generic result applies.
Finally, to generically achieve memory-tightness in the multi-challenge set-
ting, we can replace the “global random function” with a pseudorandom
function. This yields a generic transform (with tightness in all dimensions)
producing a signature scheme secure in the “one-signature-per-message” and
multi-challenge setting.

2. In the second step we apply a simple generic transform (again, with tightness
in all dimensions) that lifts any signature scheme from the “one-signature-
per-message” to the standard “many-signatures-per-message” setting. To
this end, any message is signed alongside a random nonce, which intuitively
“expands” the set of valid signatures per message.

Applying both steps sequentially does not influence the tightness of a signature
scheme in any dimension.

Related work. In the literature, “tightness” usually refers to what we call work-
factor tightness in this paper. That is, running times and success probabilities are
considered, but memory is not. There is a large number of research results in this
area, with tightly-secure constructions of many different types of cryptosystems,
including digital signatures [23, 39, 40, 46, 51], public-key encryption [8, 30, 39],
(hierarchical) identity-based encryption [14, 18], authenticated key exchange [6,
19, 34, 48], and symmetric encryption [36, 38, 43], for instance. Tight security is
also increasingly considered for real-world cryptosystems, such as [22,24,36,41].
There are also various impossibility results for different types and classes of
cryptosystems, such as [21,27–29,43–45,50,52], for instance.

As already mentioned, the notion of memory-tightness was only relatively
recently introduced in [5]. They also introduced the single- and multi-challenge
security model, and gave the first (and currently only) memory-tight security
proof for a digital scheme in the weaker single-challenge setting, which however

sical sense that does not consider memory tightness. There are several impossibil-
ity results, showing that tightness is often difficult to achieve for such signature
schemes [7, 21,45].
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is not yet work-factor-tight. They also gave a first impossibility result, show-
ing that a certain class of reductions cannot be used to reduce multi-challenge
security to single-challenge security. Wang et al. [53] revisited this impossibil-
ity result and showed that multi-challenge security is impossible to achieve for a
large class of reductions, unless a work-factor tightness is sacrificed. They showed
a lower bound on the memory of a large class of black-box reductions from
the multi-challenge unforgeability of unique signatures to any computational
hardness assumption, another lower bound for restricted reductions from multi-
challenge security to single-challenge security for cryptographic primitives with
unique keys, and a lower bound for multi-collisions of hash functions with large
domain, which extends a similar result from [5]. Bhattacharyya [13] and Ghoshal
and Tessaro [33] independently considered the memory-tightness of hashed El-
Gamal public-key encryption. Ghoshal, Jaeger, and Tessaro [32] considered the
memory-tightness of authenticated encryption.

In independent and concurrent work, Ghoshal, Ghosal, Jaeger and Tessaro [31]
study how to construct signature schemes with memory-tight security in the
multi-challenge setting. More precisely, they show a memory-tight way to up-
grade a signature scheme DS with EUF-CMA security into another signature
scheme RDS with mEUF-CMA security assuming the existence of pseudorandom
tweakable permutations. Their construction resembles ours in Section 4, which
we use to upgrade from the one-signature-per-message setting to the many-
signature-per-message setting. Their result complements ours, since they rely
on general reductions but not canonical reductions, but achieves only standard
(non-strong) mEUF-CMA security.

Outline. The remainder of this paper is organized as follows. In Section 2, we de-
fine the computational model and the used complexity measures, alongside with
standard definitions of cryptographic primitives. In Section 3, we present how to
achieve multi-challenge security from any signature scheme secure in the single-
challenge setting that follows a canonical reduction. In Section 4, we present our
generic transform to lift any signature scheme from “one-signature-per-message”
to the standard “many-signatures-per-message” setting. Finally, we show how
our transforms can be applied to existing signature schemes, achieving the first
fully tight signature schemes in the multi-challenge setting.

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by a ‖ b. We
denote the operation of assigning a value y to a variable x by x := y. If S is a
finite set, we denote by x $←− S the operation of sampling a value uniformly at
random from set S and assigning it to variable x. For any probabilistic algorithm
A, we denote y ← A(x; r) the process of running A on input x with random
coins r and assign the output to y, and we denote y $←− A(x) as y ← A(x; r) for
uniformly random r.
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2.1 Computational Model and Complexity Measures

In this paper, we adapt the computation model used in [5] and recall the most
important aspects in this section.

Algorithms. We assume all algorithms in this paper to be random access ma-
chines (RAMs). A RAM has access to memory using words of a fixed size λ and
a constant number of registers each holding a single word. If an algorithm A is
probabilistic, then the corresponding RAM is equipped with a special instruc-
tion that fills a distinguished register with (independent) random bits. How-
ever, we do not allow the RAM to rewind random bits to access previously
used random bits. That is, A needs to store the random bits in this case. To
run algorithm A, the RAM is executed, where the input of the algorithm is
written in the RAM’s memory. To denote this, we overload notation and write
x $←− A(y1, y2, . . . ) to denote that random variable x takes on the value of algo-
rithm A ran on inputs y1, y2, . . . with fresh random coins. Sometimes we also
denote this random variable simply by A(y1, y2, . . . ). In case A is deterministic,
we write x := A(y1, y2, . . . ), to denote that A on inputs y1, y2, . . . outputs x.

Oracles. In addition, algorithm A sometimes has access to (stateful) oracles
(O1,O2, . . . ). Each of these oracles also is defined by a RAM. To interact with
an oracle Oi, the RAM of algorithm A has three fixed regions in the memory
only used for the oracle state stO, the input to the oracle and the output of the
oracle. By default, these regions are empty. To query the oracle Oi, A writes the
query in the region of its memory reserved for the oracle input and executes a
special instruction to run the RAM of Oi on this input together with the oracle
state stO. The RAM implementing Oi uses its own memory and both the output
and the updated oracle state stO in the designated regions in A’s memory. For
notation, we denote that an algorithm A has oracle access to an algorithm oracle
by AO.

Security experiment. The security definition and proofs presented in this paper
are mostly game-based. A security experiment (or game) can simply be viewed
as an algorithm that runs another algorithm as subroutine, e.g., an adversary A,
and the subroutine may also be provided with a series of (stateful) oracles. As
a security experiment is simply an algorithm it is also implemented by a RAM.

Complexity measures for runtime and memory consumption. We define the com-
plexity measures for runtime and memory according to Auerbach et al. [5].

Runtime. Let A be an algorithm and Exp be a security game. We define
Time(A) to be the runtime of A as the worst-case number of computa-
tion steps over all inputs of length λ and all possible random choices. In
addition, we define LocalTime(A) to be the number of computation steps
of A playing Exp without the additional steps induced by the oracle access
to Exp. This quantifier allows us to precisely measure how much additional
computation steps are necessary per oracle.
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Memory consumption. Let A be an algorithm and Exp be a security game.
We define Mem(A) to be the memory (in λ-width words) of the code of
A plus the worst-case number of registers used at any point during compu-
tation, over all inputs of length λ and all possible random choices. Similar
to before, we define LocalMem(A) to be the memory required to execute
Exp with algorithm A without the additional memory induced by the ora-
cle access to Exp. This quantifier allows us to precisely measure how much
additional memory is necessary per oracle.

2.2 Pseudorandom Functions

We recall the standard indistinguishability definition for pseudorandom func-
tions. This is one of the main tools used to make reductions memory-tight.

Definition 1. Let λ ∈ N. Let F : {0, 1}λ × {0, 1}∗ → R be a keyed function,
where R is a finite set. We define the advantage of an adversary A in breaking
the pseudorandomness of F as

AdvPRF-secF (A) :=
∣∣∣Pr
[
AF(k,·) = 1

]
− Pr

[
Af(·) = 1

]∣∣∣
where k $←− {0, 1}λ and f : {0, 1}∗ → R is a random function.

2.3 Digital Signatures

We recall the standard definition of a digital signature scheme by Goldwasser,
Micali, and Rivest [35] and its standard security notion.

Definition 2. A digital signature scheme for message space M is a triple of
algorithms Sig = (Gen,Sign,Vrfy) such that

1. Gen is the randomized key generation algorithm generating a public (verifi-
cation) key pk and a secret (signing) key sk and takes no input.

2. Sign(sk ,m) is the randomized signing algorithm outputting a signature σ on
input message m ∈M and signing key sk.

3. Vrfy(pk ,m, σ) is the deterministic verification algorithm outputting either 0
or 1.

We say that a digital signature scheme Sig is correct if for any m ∈M , and
(pk , sk) $←− Gen, it holds that Vrfy (pk ,m,Sign(sk ,m)) = 1.

One-signature-per-message unforgeability of digital signature. We adapt the one-
signature-per-message unforgeability defined by Fersch et al. [25]. First, we con-
sider the “strong” variant of the definition given in [25], i.e., a pair (m,σ) output
by the adversary is only considered a valid forgery if σ was not returned to the
adversary as answer to an signing query m. In the “standard” variant, the pair
is considered valid if for message m never a signature has been queried by the
adversary. Second, we implement the fact that the adversary only receives one
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signature per message different to the original definition. Instead of aborting the
whole experiment in case the adversary queries a signature for a message that
it already received a signature for, we simply return the same signature to the
adversary. Therefore, the adversary still gets only one signature per message,
but is allowed to query a message multiple times.

We note that, for deterministic signature schemes, the one-signature-per-
message security is equivalent to the many-signatures-per-message security.

Definition 3. Let Sig = (Gen,Sign,Vrfy) be a digital signature scheme. Con-
sider the following experiment ExpsEUF-CMA1

Sig (A) played between a challenger and
an adversary A:

1. The challenger initializes the set of chosen-message queries Q := ∅, generates
a fresh key pair (pk , sk) $←− Gen and forwards pk to the adversary as input.

2. The adversary may issue queries to the following oracle adaptively:
– Sign(m): If (m,σ) ∈ Q, the challenger returns σ. Otherwise, it returns
σ $←− Sign(sk ,m) and adds (m,σ) to Q.

3. Finally, the adversary outputs a candidate forgery (m,σ) and the challenger
outputs 1 if Vrfy(pk ,m, σ) = 1 and (m,σ) 6∈ Q, and 0 otherwise.

We denote the advantage of an adversary A in forging signatures for Sig in the
sEUF-CMA1 security experiment by

AdvsEUF-CMA1
Sig (A) := Pr

[
ExpsEUF-CMA1

Sig (A) = 1
]

where ExpsEUF-CMA1
Sig (A) is as defined above.

Next, we generalize Definition 3 to the multi-challenge setting. Unforgeability
in the multi-challenge setting was proposed by Auerbach et al. [5] and is a
generalized version of the standard existential unforgeability against chosen-
message attackers notion, in which the adversary has additional access to a
“forging oracle” allowing multiple forgery attempts. The adversary wins in this
setting if at least one of the forgery attempts is “valid” in the same sense as in
the single challenge setting.

Definition 4. Let Sig = (Gen,Sign,Vrfy) be a digital signature scheme. Con-
sider the following experiment ExpmsEUF-CMA1

Sig (A) played between a challenger
and an adversary A:

1. The challenger initializes the set of chosen-message queries Q := ∅ and the
winning flag win := 0. Then, it generates a fresh key pair (pk , sk) $←− Gen
and forwards pk to the adversary as input.

2. The adversary may issue queries to the following oracles adaptively:
– Sign(m): If (m,σ) ∈ Q for some σ, the challenger returns σ. Otherwise,

it returns σ $←− Sign(sk ,m) and adds (m,σ) to Q.
– Forge(m,σ): If Vrfy(pk ,m, σ) = 1 and (m,σ) 6∈ Q, then set win := 1.

3. Finally, the adversary halts and the experiment outputs win.
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We denote the advantage of an adversary A in forging signatures for Sig in the
msEUF-CMA1 security experiment by

AdvmsEUF-CMA1
Sig (A) := Pr

[
ExpmsEUF-CMA1

Sig (A) = 1
]

where ExpmsEUF-CMA1
Sig (A) is as defined above.

Many-signatures-per-message unforgeability. The security notions sEUF-CMA1
and msEUF-CMA1 defined above can be generalized to the “many-signatures-
per-message” setting by dropping the condition that the respective security ex-
periments return σ if the Sign-oracle is queried with a message m such that
(m,σ) ∈ Q, i.e., a message m that was already queried before. Without this
condition we obtain the standard strong existential unforgeability under chosen-
message attacks (sEUF-CMA) and its multi-challenge variant (as defined in [5])
msEUF-CMA.

Adversary behavior. In this work we consider adversaries that are not necessar-
ily well-behaved. That is, an adversary A may, for instance, submit a forgery
(m∗, σ∗) such that σ∗ was obtained by a signing query m∗. In principle, any such
adversary can be converted to a well-behaved adversary by performing “sanity
checks” whenever the adversary submits a forgery. This conversion, however, is
not memory-tight as it leads to an increase in memory needed to store the set
of chosen-message queries Q.

Considering that there might exist adversaries that are not well-behaved but
break the security of a signature scheme (e.g., by producing a forgery without
knowing whether it is a fresh one), we prefer a stronger security notion and
consider any adversary rather than restricting our proofs to a class of well-
behaved adversaries. For a more detailed discussion on this topic, we refer the
reader to [5, Section 2.3].

3 From the Single-Challenge Setting to the
Multi-Challenge Setting

In this section, we will describe a generic construction of a reduction in the multi-
challenge setting, based on any “canonical” reduction in the single-challenge
setting.

3.1 Non-Interactive Computational Assumptions

The following definition of a non-interactive computational assumptions is based
on the corresponding definition by Bader et al. [7], which is originally due to
Abe et al. [4]. It captures both “search problems”, such as CDH, and “decisional
problems”, such as DDH. We focus on non-interactive computational hardness
assumptions, for the following reasons. First, these may be considered the most
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“interesting” hardness assumption when (memory) tightness is considered. Sec-
ond, it makes the definitions and proofs significantly cleaner, and therefore makes
it easier to understand and verify the core technical ideas and approach.

Definition 5. A non-interactive computational assumption is defined as the
tuple Λ = (InstGen,V,U), where

1. (φ, ω) $←− InstGen(1λ): InstGen is the probabilistic instance generation algo-
rithm that takes as input a security parameter 1λ, and outputs a problem
instance φ and a witness ω.

2. 0/1 := V(φ, ω, ρ): V is the deterministic verification algorithm that takes as
input a problem instance φ, a witness ω and a candidate solution ρ, and
outputs 0 or 1. We say that ρ is a correct solution for φ if V(φ, ω, ρ) = 1.

3. ρ $←− U(φ): U is a probabilistic algorithm that on input φ outputs a candidate
solution ρ.

We define the advantage of an adversary R breaking Λ as

AdvNICAΛ,λ (R) :=
∣∣∣Pr
[
ExpNICAΛ,λ (R) = 1

]
− cΛ

∣∣∣
where the experiment ExpNICAΛ,λ (A) generates (φ, ω) $←− InstGen(1λ), runs ρ $←−
A(φ) then returns V(φ, ω, ρ) and the constant cΛ := Pr

[
ExpNICAΛ,λ (U) = 1

]
is

called the trivial advantage of Λ. We further require that for any (φ0, ω0) output

by InstGen(1λ), Pr
[
ExpNICAΛ,λ (U) = 1

∣∣∣ (φ, ω) = (φ0, ω0)
]

= cΛ, which means the

trivial advantage does not change for different problem instances.

Intuitively, U can be seen as the “trivial” solution strategy. For example, if
Λ is a decisional problem, such as DDH, U usually would output a uniformly
random bit such that cΛ = 1

2 . Then, AdvNICAΛ,λ (R) basically defines the “bit-
guessing advantage” against Λ. For a search problem, such as CDH, U would
output a special symbol “⊥” such that cΛ = 0. Then, AdvNICAΛ,λ (R) corresponds
to the probability of R finding a solution ρ for the given problem instance φ.

3.2 Canonical Reductions

We introduce the notion of a canonical reduction, which essentially defines an
abstract pattern of a reduction which is “compatible” with our approach to
prove memory-tight security. Many security proofs of signature schemes can be
explained as canonical reductions, we will show some concrete examples below.
We focus on reductions from sEUF-CMA1-security to a non-interactive compu-
tational assumption Λ (as defined in Section 3.1) in both standard model and
random oracle model. For an illustration of a canonical reduction, see Figure 1.

Definition 6. Let Sig be a signature scheme and let Λ be a non-interactive com-
putational assumption. Let (RGen,RF,RSign,RExtract,RHash) be the following
algorithms that are implemented by a canonical reduction:
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(m∗, σ∗)
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0

ρ

Fig. 1. Canonical reduction R from sEUF-CMA1-security of a signature scheme Sig to
a computational assumption Λ with black-box access to an adversary A. Check is a
shorthand defined as Check(m∗, σ∗) = 1 ⇐⇒ Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ 6=
RSignRF(·)(simsk ,m∗) determining the algorithm to compute the final solution. For a
complete formal definition, see Definition 6.

1. (simpk , simsk) $←− RGen(φ): RGen is the probabilistic reduction key genera-
tion algorithm that takes as input an instance φ of Λ, and outputs a simulated
public key simpk and a simulation secret key simsk.

2. (rRSign, rRExtract, rRHash)
$←− RF(x): RF is a stateful probabilistic algorithm sim-

ulating a truly random function with domain {0, 1}∗ and range CoinsRSign ×
CoinsRExtract×CoinsRHash using a lazily sampled random table, where CoinsRSign,
CoinsRExtract, and CoinsRHash are sets for random coins of RSign, RExtract and
RHash, respectively.4

Remark 7. Intuitively, RF has the following purpose. We will below define
algorithms RSign, RExtract, and RHash, which are used by the reduction to
simulate signatures, extract from a forgery, and possibly to simulate a ran-
dom oracle (if in the random oracle model), respectively. We require these
algorithms to be stateless and deterministic, since this will be necessary for
our construction of a memory-tight reduction. At the same time, we do not
want the algorithms RSign, RExtract and, RHash to be completely indepen-
dent of each other. For example, the simulation of a signature by RSign may
have to be consistent with the random oracle implemented by RHash. We

4 We note that algorithm RF is part of the canonical reduction. Another option would
be providing the canonical reduction with an external random function oracle. We
choose the former characterization because it naturally includes the memory con-
sumption of the random table when considering the overall memory consumption of
the canonical reduction.
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ensure this consistency by giving all oracles access to the same truly random
function simulation algorithm RF. The algorithms of the canonical reduction
are required to achieve consistency by only having access to RF. We will show
below that this indeed holds for many standard security proofs for signature
schemes.

3. σ := RSignRF(·)(simsk ,m): RSign is the deterministic signature simulation
algorithm with access to the algorithm RF that takes as input the simulation
secret key simsk and a message m, and outputs a simulated signature σ.5

4. ρ := RExtractRF(·)(simsk , (m∗, σ∗)): RExtract is the deterministic problem
solution extraction algorithm with access to the algorithm RF that takes as
input a forgery (m∗, σ∗), and outputs an extracted solution ρ.

5. y := RHashRF(·)(simsk , x): RHash is the deterministic hash simulation algo-
rithm with access to the algorithm RF that takes as input an argument x,
and outputs a simulated hash image y.

We call an algorithm R with black-box access to any adversary A, write RA,
a (`, δ)-canonical reduction from sEUF-CMA1 to Λ if R satisfies the following
properties.

1. The reduction R proceeds as follows:
(a) When receiving a problem instance φ, the reduction R uses RGen(φ) to

simulate a public key simpk of Sig and generate the simulation secret key
simsk, and starts A on input simpk.

(b) Whenever the adversary A issues a signing query Sign(m), the reduction

simulates the signature σ with σ := RSignRF(·)(simsk ,m) and returns σ
to A. Note that RSign is deterministic, so even if Sign(m) is queried
multiple times, the adversary always gets the same signature in return.

(c) In case the random oracle model (ROM) is considered, the reduction also
needs to be able to simulate the random oracle. To this end, the reduction
R answers a random oracle query x by running y := RHashRF(·)(simsk , x)
and returns y.

(d) When the adversary A outputs a candidate forgery (m∗, σ∗), the reduc-
tion R first tests whether it is a valid forgery by checking

Check(m∗, σ∗) := Sig.Vrfy(simpk ,m∗, σ∗) = 1∧σ∗ 6= RSignRF(·)(simsk ,m∗).

Intuitively, the second check is the main leverage to “recognize” new
signatures. If the checks pass, then we know that (m∗, σ∗) is valid and
not the signature that R would have simulated. Then R uses RExtract to
extract a solution ρ to the underlying problem Λ with

ρ := RExtractRF(·)(simsk , (m∗, σ∗)).

If the checks fail, R runs ρ $←− U(φ). Finally, R outputs ρ as the solution
to the problem instance φ.

5 Note that the output signature σ is not necessarily a valid signature of Sig with
respect to simpk .
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2. We require that R is a “valid” reduction from sEUF-CMA1-security to a non-
interactive computational assumption Λ. That is, for any adversary A, we
have

AdvNICAΛ,λ

(
RA
)
≥ 1

`
AdvsEUF-CMA1

Sig (A)− δ.

Remark 8. If R is canonical, qS is the upper bound of the number of Sign queries
made by the adversary, qH is the upper bound of the number of random oracle
queries and qRF is an upper bound of the number of evaluations of RF, then we
obtain that

LocalTime
(
RA
)
≈ LocalTime(A) + Time(RGen) + qS ·Time(RSign)

+ qH ·Time(RHash) + Time(Sig.Vrfy)

+ max{Time(RExtract),Time(U)}+ qRF ·Time(RF),

(1)

and that

LocalMem
(
RA
)

= LocalMem(A) + Mem(RGen) + Mem(RSign)

+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)

+ Mem(U) + Mem(RF).

(2)

Note that by design of the canonical reduction the only common state of
the algorithms RGen, RSign, RHash and RExtract is the random table (whose
size grows linearly with the number of different queries) in the random function
simulation algorithm RF. Otherwise, these algorithms are stateless. This will be
the main leverage to achieve memory-tightness, since the random function can
be implemented memory-efficiently with a pseudorandom function.

We define an additional property for the canonical reduction when it deals
with a non-interactive computational assumption Λ with trivial advantage cΛ >
0.

Definition 9. Let Sig be a signature scheme and R is a (`, δ)-canonical re-
duction from the sEUF-CMA1-security of Sig to non-interactive computational
assumption Λ with trivial advantage cΛ > 0. We say R has predictability prob-
ability εp if for every adversary A when interacting with R, the probability of A
submitting a Forge(m∗, σ∗) query with

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q ∧ σ∗ = RSignRF(·)(simsk ,m∗)

is upper bounded by εp and Q is the set of message-signature-pairs which are
submitted and returned to A by oracle Sign(·).

3.3 Multi-Challenge Security for Canonical Reductions

Next, we show how to transform any canonical reduction in the single-challenge
setting to another reduction in the multi -challenge setting. Formally, consider
the following theorem.
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Theorem 10. Let Sig be a digital signature scheme and let Λ be a non-interactive
computational assumption with trivial advantage cΛ. Suppose R is a (`, δ)-canonical
reduction from the sEUF-CMA1-security of Sig to Λ (that has predictability prob-
ability εp if cΛ > 0) and PRF : {0, 1}λ × {0, 1}∗ → CoinsRSign × CoinsRExtract ×
CoinsRHash is a pseudorandom function. Using R and PRF, we can build an-
other reduction R′ from the msEUF-CMA1-security of Sig to Λ such that for any
msEUF-CMA1-security adversary A′, there exists an adversary B so that

AdvNICAΛ,λ

(
R′A

′
)
≥


1

`
· AdvmsEUF-CMA1

Sig (A′)− AdvPRF-secPRF

(
BA′

)
− δ if cΛ = 0

1

`
· AdvmsEUF-CMA1

Sig (A′)− AdvPRF-secPRF

(
BA′

)
− δ − qF · εp if cΛ > 0

(3)
Furthermore,

LocalTime(R′A
′
) ≈ LocalTime (A′) + Time(RGen) + (qS + qF) ·Time(RSign)

+ qH ·Time(RHash) + qF ·Time(Sig.Vrfy)

+ max{Time(RExtract),Time(U)}+ qRF ·Time(PRF),

LocalMem(R′A
′
) = LocalMem (A′) + Mem(RGen) + Mem(RSign)

+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)

+ Mem(U) + Mem(PRF) + 1, (4)

and

LocalTime(BA
′
) ≈ LocalTime (A′) + Time(RGen) + (qS + qF) ·Time(RSign)

+ qH ·Time(RHash) + qF ·Time(Sig.Vrfy)

+ max{Time(RExtract),Time(U)}+ Time(InstGen)

+ Time(V),

LocalMem(BA
′
) = LocalMem (A′) + Mem(RGen) + Mem(RSign)

+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)

+ Mem(U) + Mem(InstGen) + Mem(V).

where qF is the number of Forge queries made by A′, qS is the number of Sign
queries made by A′, qH is the numbers of queries made to the random oracle6,
and qRF is an upper bound of the number of evaluations of RF.

Remark 11. For any sEUF-CMA1 adversary A and any msEUF-CMA1 adversary
A′, if we define the memory overhead of R′ (R) as

∆(R′) := LocalMem(R′A
′
)− LocalMem(A′)

∆(R) := LocalMem(RA)− LocalMem(A).

6 If the reduction is not in the ROM, then qH = 0 holds.
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Then, from Equations (2) and (4), we have that,

∆(R′)−∆(R) = Mem(PRF) + 1−Mem(RF).

More intuitively speaking, this means that reduction R′ does not use memory to
keep a random function RF whose random table grows linearly with the number
of different queries, but instead it uses some small amount of memory to store
a PRF key and run the PRF. Furthermore, the algorithms in R′ (RGen, RSign,
RHash, RExtract, Sig.Vrfy, PRF and U) are stateless and their memory usage is
independent of the number of queries made by adversary. Thus, the memory
overhead of R′, i.e., ∆(R′) will also be independent of the adversary, especially
independent of qS.

Remark 12. Equation (3) is equivalent to

AdvmsEUF-CMA1
Sig (A′) ≤


` ·
(
AdvNICAΛ,λ

(
R′A′

)
+ AdvPRF-secPRF

(
BA′

)
+ δ
)

if cΛ = 0

` ·
(
AdvNICAΛ,λ

(
R′A′

)
+ AdvPRF-secPRF

(
BA′

)
+ δ + qF · εp

)
if cΛ > 0

It shows that the msEUF-CMA1 security of Sig builds upon both the security
of NICA and the pseudorandomness of PRF. If ` is a constant, δ is a negligible
value which is independent of the number of queries made by the adversary, εp
is statistically small (when cΛ > 0)and PRF is memory-tightly secure, then the
msEUF-CMA1 security of Sig is tight in both working factor and memory. (See
Section 5 for more discussions about concrete applications.)

Proof (of Theorem 10). Since R is a canonical reduction, we know that there
are algorithms (RGen,RSign,RExtract,RHash). Using these algorithms and a
pseudorandom function, we construct another reduction R′ which transfers any
msEUF-CMA1 adversary A′ to a hard problem solver of Λ.

Construction of R′. The reduction R′ receives as input an instance φ of Λ
and simulates the experiment ExpmsEUF-CMA1

Sig (A′) for A′. To this end, it first
runs (simpk , simsk) $←− RGen(φ) to obtain a simulated public key simpk for the
signature scheme Sig. Note that this is exactly the same as what R would do.

In contrast to R, R′ does not simulate a random function with algorithm
RF. Instead, it chooses a uniform key k $←− {0, 1}λ for a pseudorandom function
PRF : {0, 1}λ × {0, 1}∗ → CoinsRSign × CoinsRExtract × CoinsRHash and uses PRF as
a replacement.
A′ then receives as input the simulated public key simpk and gets access

to the signing oracle Sign, the random oracle (if ROM is considered) and the
“forgery attempt” oracle Forge. To simulate these oracles for A′, the reduction
R′ does the following:

Sign-oracle. Upon receiving a signature query Sign(m) for some message m ∈
M , the reduction R′ runs R’s signature simulation algorithm with oracle
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access to PRF, i.e., σ := RSignPRF(k,·)(simsk ,m). Then it returns σ to A′.
Note that the same signature will be returned if the same message is queried
multiple times since RSign is deterministic.

Random oracle. R′ answers a random oracle query x by running RHash with
oracle access to PRF, i.e., y := RHashPRF(k,·)(simsk , x) and returns y.

Forge-oracle. Upon receiving a forgery attempt (m∗, σ∗), the reduction R′ at
first checks whether

Sig.Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ 6= RSignPRF(k,·)(simsk ,m∗)

In case both checks pass, the reduction R′ attempts to extract a solution
ρ for the problem instance φ from the forgery at hand by running ρ :=
RExtractPRF(k,·)(simsk , (m∗, σ∗)). Then R′ returns ρ and halts.
In case any of the previous two checks failed, R′ continues to simulate A′. If
the adversary A′ fails to output any forgery attempt (m∗, σ∗) that can pass
the checks throughout the whole simulation process, R′ runs ρ $←− U(φ) and
outputs ρ.

Note that R′ proceeds exactly as R but it uses a pseudorandom function instead
of a truly random function and it needs to handle at most qF forgery attempts as
opposed to just one. Therefore, the running time of R′ is the running time of R
as given in Remark 8, replacing Time(RF) by Time(PRF) plus the time required
to simulate the additional qF − 1 Forge-queries, namely (qF − 1) · (Time(Vrfy) +
Time(RSign)). This yields the time given in Theorem 10.

Similarly, the memory consumption of R′ is the memory consumed by R as
given in Remark 8, but instead of storing the random table in RF, R′ needs
to store the function description of PRF and its corresponding key, which again
yields the values given in Theorem 10. In particular, note that the memory
consumed by R′A′ is independent of the number of queries made by A′, as the
stateful random table is replaced with the stateless keyed PRF PRF.

We complete the proof of Theorem 10 by analyzing the advantage of R′ as
follows.

The advantage of R′A′ . In order to analyse the advantage ofR′A′ , we first modify
the reduction R′ to get a new reduction R1. More precisely, R1 is exactly R′
except that it uses a random function RF instead of a pseudorandom function
PRF.

We can easily build an adversary B and show that

AdvNICAΛ,λ

(
R′A

′
)
≥ AdvNICAΛ,λ

(
RA

′

1

)
− AdvPRF-secPRF

(
BA
′
)
. (5)

The construction of B is straightforward. It generates the problem instance
together with its witness using (φ, ω) $←− InstGen(1λ). Then it simulates the above
reductions and interacting with A′ by forwarding all the input to RF/PRF to its
own challenger. If the reduction outputs a solution ρ, B runs the algorithm V and
outputs V(φ, ω, ρ). Thus, Equation (5) holds and the running time and memory
consumption of B follows the equations in Theorem 10.
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Next we modify R1 again to get R2. R2 is identical to R1 except that it logs
all the chosen message queries with their respective signatures in the set Q and
it replaces the check in Forge-oracle from

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ 6= RSignRF(·)(simsk ,m∗)

to the check

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ 6= RSignRF(·)(simsk ,m∗) ∧ (m∗, σ∗) /∈ Q.

Note that the added check (m∗, σ∗) /∈ Q is redundant because every (m,σ) pair

in Q has the property that σ = RSignPRF(·)(simsk ,m). Thus, we have that

AdvNICAΛ,λ

(
RA

′

1

)
= AdvNICAΛ,λ

(
RA

′

2

)
. (6)

Next, we construct a single-challenge sEUF-CMA1 adversary Ã based on
the multi-challenge adversary A′. More precisely, after getting the public key
pk , Ã simulates A′ and keep log of the set Q itself. Whenever A′ submits a
Forge(m∗, σ∗) query, Ã checks whether Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q.

If the check fails, Ã continues the simulation of A′. And Ã outputs the first
forgery that can pass this check as its own forgery attempt. Note that Ã can
perform these checks efficiently because it knows the public key pk and can log
the set Q itself. Finally, Ã terminates whenever A′ terminates. Hence, Ã is a
well-defined single-challenge sEUF-CMA1 adversary.

We can obtain an important observation on Ã: the game that is played be-
tween R2 and the multi-challenge adversary A′ distributes almost identically
with the game that is played between the canonical reduction R and the single-
challenge adversary Ã. To see this, we only need to analyse how Forge queries are

processed because the rest of the game stays the same for RA′2 and RÃ. Suppose
A′ submits a Forge(m∗, σ∗) query. We do a case distinction over the properties
of the forgery.

– Sig.Vrfy(pk ,m∗, σ∗) = 0∨ (m∗, σ∗) ∈ Q: In this case, the pair (m∗, σ∗) is not
a forgery. Therefore, both Ã and R2 continue to simulate A′.

– Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q ∧ σ∗ 6= RSignRF(·)(simsk ,m∗): Here,
A′ has output a valid forgery, and the signature is not the signature the
reductions R or R2 would output in response to a query Sign(m∗). This
means that this actually is a “useful” forgery for us. To that end, Ã and R2,
respectively, do the following:
• Ã submits its final Forge(m∗, σ∗) query to R and R will use algorithm

RExtractRF(·)(simsk , (m∗, σ∗)) to extract a solution ρ because (m∗, σ∗)
will pass the check made by R, i.e., Sig.Vrfy(pk ,m∗, σ∗) = 1 and σ∗ is

not equal to RSignRF(·)(simsk ,m∗).
• The above condition is exactly the condition checked by reductionR2 be-

fore it extracts. Thus,R2 will use algorithm RExtractRF(·)(simsk , (m∗, σ∗))
to extract a solution ρ.
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– Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q ∧ σ∗ = RSignRF(·)(simsk ,m∗): Now,
A′ has output a valid forgery, but the signature σ∗ would be the signature
reduction R or R2 would output in response to query Sign(m∗). Here, game

RA′2 differs from RÃ. Namely:
• Ã submits its final Forge(m∗, σ∗) query to R and R will use algorithm
U to generate a trivial solution ρ. As there is only one forgery attempt,
both R and Ã will terminate after that.

• R2 continues the simulation of A′ as A′ still can query the Forge oracle
with a “useful” message-signature pair.

Based on this observation, we establish relations between AdvNICAΛ,λ (RA′2 ) and

AdvNICAΛ,λ (RÃ) through the following case distinction.

– If cΛ = 0: the algorithm U will never output any valid solution ρ. In this
case, we have

AdvNICAΛ,λ (RA
′

2 ) ≥ AdvNICAΛ,λ (RÃ). (7)

The reason is that reduction Ã will output the first Forge(m∗, σ∗) query of
A′ to R such that Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q. In this case, R
only gains non-zero advantage if σ∗ does not equal to RSignRF(·)(simsk ,m∗)
and will gain no advantage if it does (because U will be run). However, R2

can do this check itself and can continue the simulation of A′ until it finds
a useful forgery which does not have to be the first valid forgery.

– If cΛ > 0: we bound the difference between AdvNICAΛ,λ (RA′2 ) and AdvNICAΛ,λ (RÃ)

by proving the following Lemma. The proof idea is thatRA′2 only differs from

RÃ when the adversary A′ is able to submit (m∗, σ∗) such that σ∗ equals

RSignRF(·)(simsk ,m∗) and σ∗ has never been returned byR. We could bound
this difference using the predictability probability of the canonical reduction
R.

Lemma 13. If cΛ > 0 and R has predictability probability εp, then we have

AdvNICAΛ,λ (RA
′

2 ) ≥ AdvNICAΛ,λ (RÃ)− qF · εp. (8)

We put the proof of Lemma 13 in Appendix A.
We note that the above case distinction benefit us because we only need the

additional predictability probability property for R when cΛ > 0. This makes
our canonical reduction definition more general and leaves room for concrete
instantiations.

Furthermore, we know that Ã wins the (single-challenge) sEUF-CMA1 game
if and only if A′ wins the (multi-challenge) msEUF-CMA1 game because of the
check Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q. So, we have that

AdvsEUF-CMA1
Sig (Ã) = AdvmsEUF-CMA1

Sig (A′).

Since R is canonical, we have that

AdvNICAΛ,λ (RÃ) ≥ 1

`
AdvsEUF-CMA1

Sig (Ã)− δ =
1

`
AdvmsEUF-CMA1

Sig (A′)− δ. (9)
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Combining Equations (5) to (9), we have that

AdvNICAΛ,λ

(
R′A

′
)
≥


1

`
· AdvmsEUF-CMA1

Sig (A′)− AdvPRF-secPRF

(
BA′

)
− δ if cΛ = 0

1

`
· AdvmsEUF-CMA1

Sig (A′)− AdvPRF-secPRF

(
BA′

)
− δ − qF · εp if cΛ > 0

and the theorem follows. ut

4 From msEUF-CMA1 Security to msEUF-CMA Security

So far we have shown how any signature scheme that can be proven sEUF-CMA1-
secure (i.e., single-challenge and one-signature-per-message) via a canonical re-
duction to some computational problem, can be proven msEUF-CMA1-secure
(i.e., multi-challenge and one-signature-per-message) in a memory-tight way. In
this section, we extend our approach and present a generic transform, which
“memory-tightly lifts” any signature scheme from msEUF-CMA1 security (i.e.,
multi-challenge and one-signature-per-message) to the desired msEUF-CMA se-
curity (i.e., multi-challenge and many-signatures-per-message).

Intuition. The core idea of this transform is to sign a message together with
some randomly-chosen nonce n. Intuitively, this nonce “expands” the set of valid
signatures for a given message. While this transform is straightforward, we see
value to make it explicit.

Transform. Let λ ∈ N and let Sig′ = (Gen′,Sign′,Vrfy′) be a signature scheme.
We construct a new signature scheme Sig = (Gen,Sign,Vrfy) as follows:

Key generation. Gen behaves exactly like Gen′.

Signing. Sign takes as input the secret key sk and a message m. It samples a
nonce n $←− {0, 1}λ, computes σ′ $←− Sign′(sk ,m ‖ n), and returns σ = (σ′, n).

Verification. Vrfy takes as input a public key pk , a message m, and a signature
σ = (σ′, n). It computes and returns Sig′.Vrfy(pk ,m ‖ n, σ′).

Theorem 14. From each adversary A breaking the msEUF-CMA-security of the
above signature scheme Sig (with qs signing queries), we can construct an ad-

versary B such that AdvmsEUF-CMA
Sig (A) ≤ AdvmsEUF-CMA1

Sig′ (B) +
q2s
2λ

and

LocalTime(B) ≈ LocalTime(A) and LocalMem(B) = LocalMem(A).

The proof of Theorem 14 is straightforward and we provide it in Appendix B
.
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5 Applications

In this section, we present how the results of Sections 3 and 4 can be used to yield
memory-tight strongly unforgeable signatures in the multi-challenge and many-
signatures-per-message setting. In Section 5.1, we present a construction based
on lossy identification schemes (similar to the construction by Abdalla et al. [2])
and prove its memory-tight security using our results. Then, in Section 5.2, we
show how existing signature schemes such as RSA-FDH [11] benefit from our
result and evade the existing impossibility results of [5, 53]. In Appendix G, we
show similar results for the Boneh, Lynn, and Shacham signature scheme [15,16].

We note that, a pseudorandom function is required when applying our results
of Sections 3 and 4. In the standard model, we are aware of several pseudoran-
dom functions that achieve almost tight security based on standard assump-
tions [42, 47, 49]. In the random oracle model, such a pseudorandom function
exists unconditionally.

5.1 Memory-Tight Signatures from Lossy Identification Schemes

In this section, we present how to construct memory-tight strongly unforgeable
signatures in the multi-challenge and many-signatures-per-message setting based
on lossy identification schemes. To this end, we first present a formal definition
of lossy identification schemes.

Lossy Identification Schemes. We adapt the definition of a lossy identifica-
tion scheme [2, 3].

Definition 15. A lossy identification scheme LID is a tuple of algorithms

LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)

with the following properties.

– (pk , sk) $←− LID.Gen(1λ) is the normal key generation algorithm. It takes as
input the security parameter and outputs a public verification key pk and a
secret key sk.

– pk $←− LID.LossyGen(1λ) is a lossy key generation algorithm that takes the
security parameter and outputs a lossy verification key pk.

– LID.Prove is the prover algorithm that is split into two algorithms:
• (cmt, st) $←− LID.Prove1(sk) is a probabilistic algorithm that takes as input

the secret key and returns a commitment cmt and a state st.
• resp $←− LID.Prove2(sk , cmt, ch, st) is a deterministic algorithm7 that takes

as input the secret key, a commitment cmt, a challenge ch, a state st,
and returns a response resp.

7 As far as we know, all the instantiations of lossy identification schemes have a deter-
ministic LID.Prove2 algorithm. However, if a new instantiation requires randomness,
then it can be “forwarded” from LID.Prove1 in the state variable st. Therefore the
requirement that LID.Prove2 is deterministic is without loss of generality, and only
made to simplify our security analysis.
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– LID.Vrfy(pk , cmt, ch, resp) ∈ {0, 1} is a deterministic verification algorithm
that takes a public key, and a conversation transcript (i.e., a commitment, a
challenge, and a response) as input and outputs a bit, where 1 indicates that
the proof is “accepted” and 0 “rejected”.

We assume that a public key pk implicitly defines two sets, the challenge set
CSet and the response set RSet.

Definition 16. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)
defined as above. We call LID lossy when the following properties hold:

– Completeness of normal keys. Let (pk , sk) $←− LID.Gen(1λ) be a key pair and
let (cmt, ch, resp) be an honest transcript (i.e., (cmt, st) $←− LID.Prove1(sk),
ch $←− CSet, and resp $←− LID.Prove2(sk , cmt, ch, st)). We call LID ρ-complete,
if

Pr[LID.Vrfy(pk , cmt, ch, resp) = 1] ≥ ρ(λ),

where ρ is a non-negligible function in λ. We call LID perfectly-complete, if
it is 1-complete.

– Simulatability of transcripts. Let (pk , sk) $←− LID.Gen(1λ) be a key pair.
We call LID εs-simulatable if LID.Sim taking public key pk, a challenge
ch ∈ CSet and a response resp ∈ RSet as input, deterministically gener-
ates a commitment cmt such that (cmt, ch, resp) is a valid transcript (i.e.,
LID.Vrfy(pk , cmt, ch, resp) = 1). Furthermore, if (ch, resp) is chosen uni-
formly random from CSet×RSet, the distribution of the transcript (cmt, ch, resp)
is statistically indistinguishable (up to an upper bound εs) from honestly gen-
erated transcripts. If εs = 0, we call LID perfectly simulatable.

– Indistinguishability of keys. We define the advantage of an adversary A to
break the key-indistinguishability of LID as

AdvIND-KEY
LID (A) :=

∣∣Pr [A(pk) = 1]− Pr
[
A(pk ′) = 1

]∣∣ ,
where (pk , sk) $←− LID.Gen(1λ) and pk ′ $←− LID.LossyGen(1λ), is negligible
in λ.

– Lossiness. Consider the following security experiment ExpIMPERSONATE
LID (A) de-

scribed below, played between a challenger and an adversary A:

1. The challenger generates a lossy verification key pk $←− LID.LossyGen(1λ)
and sends it to the adversary A.

2. The adversary A may now compute a commitment cmt and send it to the
challenger. The challenger responds with a random challenge ch $←− CSet.

3. Eventually, the adversary A outputs a response resp. The challenger out-
puts LID.Vrfy(pk , cmt, ch, resp).

We call LID ε`-lossy if no computationally unrestricted adversary A wins the
above security game with probability

Pr[ExpIMPERSONATE
LID (A) = 1] ≥ ε`.
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Definition 17. A lossy identification scheme

LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)

is commitment-recoverable if LID.Vrfy(pk , cmt, ch, resp) first recomputes cmt′ =
LID.Sim(pk , ch, resp) and then outputs 1 if and only if cmt′ = cmt.

This new property captures the predictability probability of algorithm LID.Sim.

Definition 18. Let LID be a lossy ID scheme, pk be any normal public key
generated by LID.Gen(1λ) or any lossy public key generated by LID.LossyGen(1λ).
The min-entropy with respect to LID.Sim is defined as

α := − log2

(
max
pk ,cmt

Pr[LID.Sim(pk , ch, resp) = cmt]

)
where the probability is taken over ch $←− CSet and resp $←− RSet.

In Appendix C, we explore the connections between this new definition and the
definition of the min-entropy for lossy identification scheme in [2, 3].

Remark 19. We are aware of five different lossy identification scheme instantia-
tions and they are based on DDH [46], DSDL, Ring-LWE, Subset Sum [2,3] and
RSA [37]. As far as we know, all of them are commitment-recoverable. And the
schemes based on DDH, DSDL and RSA assumption are perfectly complete and
perfectly simulatable.

Memory-Tight Signatures from Lossy Identification Schemes. In the
following, we present the construction of the signature scheme based on lossy
identification scheme. This construction is slightly different from the construc-
tion by Abdalla et al. in [2, 3] and can be seen as a variant of the Fiat-Shamir
transform [26]. We show that this construction can be proven strongly unforge-
able in the single challenge and one-message-per-signature setting (in the sense
of sEUF-CMA1, see Definition 3) in Theorem 20. This result is not yet memory-
tight, but work-factor-tight, as the reduction still needs to do book-keeping for
a random function, but does not need to store the set of queried messages and
there respective signatures in the set Q anymore. Based this result, we show how
to apply Theorems 10 and 14 to yield strong unforgeability in the multi-challenge
and many-signatures-per-message setting (in the sense of msEUF-CMA), which
then will be fully tight, i.e., both work-factor- and memory-tight.

Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy) be a lossy identifica-
tion scheme and let H : {0, 1}∗ → CSet. Consider the following digital signature
scheme (Gen,Sign,Vrfy).

Key generation. Algorithm Gen samples a key pair (pk , sk) $←− LID.Gen(1λ).
Signing. The signing algorithm Sign takes as input sk and a message m ∈
{0, 1}∗. Then, it computes (cmt, st) $←− LID.Prove1(sk), ch := H(m, cmt) and
resp := LID.Prove2(sk , ch, cmt, st), and outputs the signature σ := (ch, resp).
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Verification. The verification algorithm Vrfy takes as input a public key pk,
message m ∈ {0, 1}∗, and a signature σ = (ch, resp). It runs the check
LID.Vrfy(pk , cmt, ch, resp). More precisely, it first recovers

cmt := LID.Sim(pk , ch, resp)

and then computes ch′ := H(m, cmt) Finally, the reduction outputs 1 if and
only if ch equals ch′.

Compared to the signature scheme by Abdalla et al. [2, 3], signature of the
above scheme is a pair (ch, resp) whereas signature in [2, 3] is a pair (cmt, resp)
for a transcript (cmt, ch, resp) of the lossy identification scheme. For a concrete
instantiation based on DDH assumption, this yields a shorter signature.

Theorem 20. Let H : {0, 1}∗ → CSet be modeled as a random oracle and let
LID be a lossy identification scheme that is commitment-recoverable, perfectly
complete, εs-simulatable, ε`-lossy.

Then, from each adversary A breaking the sEUF-CMA1 security of the above
signature scheme, we can construct an adversary B such that

AdvsEUF-CMA1
Sig (A) ≤ AdvIND-KEY

LID (B) +
1

|CSet|
+

1

|RSet|
+ qS · εs + qH · ε`

and

LocalTime(B) ≤ LocalTime(A) + Time(LID.LossyGen)

+ (qs + qH + 1) ·Time(RF) + Time(Sig.Vrfy),

LocalMem(B) = LocalMem(A) + Mem(LID.LossyGen) + Mem(RF)

+ Mem(Sig.Vrfy),

where qS is the number of Sign-queries issued by A, qF is the number of Forge-
queries issued by A and qH is the number of hash queries throughout the game.

The proof of Theorem 20 is similar to the proof by Abdalla et al. in [2, 3].
One technical difference it that, in our proof, we need to memory-tightly switch
the winning condition in the sEUF-CMA1 game into the checks that a canonical
reduction would do. For completeness, we provide the full proof in Appendix D
.

Applying Theorem 10. Here, we show how to apply Theorem 10 to lift the
security of the LID-based signature scheme to work-factor-tight and memory-
tight security in the multi -challenge and one-per-message setting. To apply the
theorem, we show that the adversary B in Theorem 20 can be “translated” into
a canonical reduction RLID which satisfies Definition 6.

To this end, we define the canonical reductionRLID from sEUF-CMA1-security
to the indistinguishability of keys IND-KEY to be the tuple (RGen,RF,RSign,
RExtract,RHash) as follows.
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RGen: On input φ = pk , RGen return (pk , ∅) where ∅ denotes the empty word
in this context.

RF: On input any string x ∈ {0, 1}∗, RF simulates a random function using a
lazily sampled random table. In the following, we will omit this table and
view RF as a random function. Further, for (rRSign, rRHash) := RF(x), we
define the short-hands rRSign =: RF("sim"‖x) and rRHash =: RF("hash"‖x).

RSignRF(·): On input simsk = ∅ and m, RSign outputs σ = (ch, resp) with
(ch, resp) := RF("sim" ‖m).

RExtractRF(·): On input simsk = ∅ and (m∗, σ∗), RExtract outputs solution ρ =
1. Note that by definitionRLID runs RExtract only if Vrfy(pk ,m∗, σ∗) = 1 and
σ∗ = (ch∗, resp∗) 6= RSign(simsk ,m∗) = RF("sim" ‖ m∗), which is exactly
the condition introduced in Game 3 of the proof(c.f., Appendix D). Hence,
if RExtract is run the queried forgery is valid.

RHashRF(·): On input simsk = ∅ and x, RHash works as follows:

– If x cannot be parsed as x = m ‖ cmt, then it returns RF("hash" ‖ x).

– Otherwise, it parses m ‖ cmt := x and runs (ch, resp) := RF("sim" ‖m)
and then cmt′ := LID.Sim(pk , ch, resp).

• If cmt = cmt′, then it returns ch.
• Otherwise, it returns RF("hash" ‖ x).

According to the results of Theorem 20, we have

AdvIND-KEY
LID (RALID) ≥ AdvsEUF-CMA1

Sig (A)− 1

|CSet|
− 1

|RSet|
− qS · εs − qH · ε`

where all quantities are defined as in Theorem 20 and AdvIND-KEY
LID (RALID) =

AdvIND-KEY
LID (B). Thus, RLID fulfills Definition 6, Property 2 with ` = 1 and

δ =
1

|CSet|
+

1

|RSet|
+ qS · εs + qH · ε`.

Note that the indistinguishability of keys assumption IND-KEY has trivial
advantage cIND-KEY = 1

2 > 0. We need to consider the predictability probability
of RLID and we do it by proving the following theorem.

Theorem 21. Let H : {0, 1}∗ → CSet be modeled as a random oracle and let LID
be a lossy identification scheme that is εs-simulatable and has min-entropy α with
respect to algorithm LID.Sim. Then reduction RLID has predictability probability

εp ≤
1

|CSet| × |RSet|
+ qH ·

(
1

2α
+ εs

)
where qH is the number of H(·) queries.

The proof idea of the above theorem is that the signatures RLID simulated are
statistically close to real (challenge, response) pairs of LID and the min-entropy
of LID makes it difficult to guess. We put the full proof of Theorem 21 in Ap-
pendix E.
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Applying Theorem 14. It remains to lift the security of the LID-based signa-
ture scheme from the one-signature-per-message setting to the many-signatures-
per-message-setting. This can easily be done, by applying the transform pre-
sented in Section 4. As the reduction presented in Theorem 14 preserves the
memory-tightness of the one-per-message scheme Sig′, we have that the trans-
formed LID-based signature scheme is memory-tightly strongly unforgeable in
the multi-challenge and many-signatures-per-message setting.

5.2 On the Memory-Tightness of RSA-FDH

Auerbach et al. [5] show that RSA-FDH can be proven memory-tightly unforge-
able in the single-challenge and many-signatures-per-message setting under the
RSA assumption. However, due to the existing tightness lower bounds, they did
not achieve work-factor-tightness. In this subsection, we first show that RSA-
FDH can be proven memory-tightly unforgeable in the multi-challenge setting
because the reduction by Auerbach et al. satisfies our definition of a canonical
reduction. Furthermore, we additionally show that with one extra random bit in
the signature, we are able to achieve both memory and working factor tightness
together with strong security.

We briefly recall the RSA assumption in the form of a non-interactive com-
putational assumption.

Definition 22. Let GenRSA be an algorithm that takes as input the security
parameter 1λ and returns (N = pq, e, d), where p and q are distinct primes of
bit length λ/2 and e, d are integers such that ed = 1 mod φ(N). The RSA as-
sumption with respect to GenRSA is a non-interactive computational assumption
ΛRSA = (InstGenRSA,VRSA,URSA) where

1. InstGenRSA(1λ) runs (N, e, d) $←− GenRSA(1λ), selects x $←− ZN , computes
y = xe mod N and outputs a problem instance φ = (N, e, y) and a witness
ω = x.

2. VRSA(φ, ω, ρ) returns 1 if and only if ρ = ω.
3. URSA(φ) returns a failure symbol ⊥.

Recall the RSA-FDH signature scheme [11] Sig = (Gen,Sign,Vrfy) as follows.

– Gen runs (N, e, d) $←− GenRSA(1λ) and returns pk = (N, e), sk = (N, d).
– Sign(sk ,m) returns σ = H(m)d mod N where H : {0, 1}∗ → Zn is a hash

function.
– Vrfy(pk ,m, σ) returns 1 if and only if σe = H(m) mod N .

The scheme provides existential unforgeability under chosen message attacks,
which can be reduced to the RSA assumption in the random oracle model as
shown by [12,20]. However, these proofs are neither work-factor-tight (an inher-
ent loss linear in the number of signature queries) nor memory-tight (implement-
ing the random oracle). Auerbach et al. [5] were able to improve those results
by proving RSA-FDH memory-tight in the single-challenge setting, based on the
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RSA assumption in the random oracle model. We show how to further improve
this result with our techniques.

We proceed as in Section 5.1. That is, we first argue that RSA-FDH is
strongly unforgeable under an chosen message attack in the single-challenge
and one-signature-per-message setting (sEUF-CMA1-secure) under the RSA as-
sumption in the random oracle model. From this result, we then construct the
canonical reduction to show multi-challenge security. The transform presented
in Section 4 then finally gives us many-signatures-per-message security again.

We will omit a full proof of sEUF-CMA1 security of RSA-FDH but only pro-
vide a brief sketch. The proof is very similar to the proof of EUF-CMA security
presented by Auerbach et al. [5]. Note that RSA-FDH scheme is a unique signa-
ture scheme. That is, for every message m there is exactly one valid signature,
namely σ = H(m)d mod N . Thus, whenever Sign(m) is queried it will always
return the same signature σ and the adversary will always see exactly one signa-
ture per message. Moreover, given a valid message-signature pair (m∗, σ∗), there
exists no second valid signature σ 6= σ∗. Hence,

AdvsEUF-CMA1
RSA-FDH (A) ≤ AdvEUF-CMA

RSA-FDH(A). (10)

As we need a memory-tight reduction for RSA-FDH up to a truly random func-
tion RF, we adapt the result [5, Thm. 5] by Auerbach et al. slightly. Namely, we
do not implement the random sampling with a PRF as they are doing, but by
a truly random function RF that is maintained with an explicit look-up table.
By standard arguments, it is easy to verify that with this adaptation it follows
from [5, Thm. 5] and Equation (10) that

AdvsEUF-CMA1
RSA-FDH (A) ≤ exp(1) · qS · AdvNICAΛRSA,λ

(B) (11)

where qS denotes the number of signature queried by A and where B is identical
to B2 in the proof of [5, Thm. 5] except that B uses a random function RF with
a explicitly stored look-up table instead of a PRF. We have

LocalTime(B) ≈ LocalTime(A) + (qH + qS) ·Time(RF),

LocalMem(B) = LocalMem(A) + Mem(RF) + 3

where qH is the number of random oracle queries and qS the number of signature
queries made by A.

We define the canonical reduction RRSA from sEUF-CMA1-security to the
RSA assumption as tuple (RGen,RSign,RExtract,RHash) as follows. In essence,
RRSA works exactly as B. Let RF : {0, 1}∗ → {0, 1} × ZN with CoinsRSign =
CoinsRExtract = ∅ and {0, 1} × ZN = CoinsRHash. Further, for (b, r) := RF(x),
we define the short-hands b =: RF1(x) and r =: RF2(x). We view RF1 as an
(1/qS)-biased random function similar to the biased coin used by Coron [20],
i.e., Pr[RF1(x) = 1] = 1/qS, where qS is the number of signature queries issued
by the adversary.

RGen: Given an RSA instance φ = (N, e, y), RGen returns (simpk , simsk) =
((N, e), (N, e, y)).
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RHashRF(·): Given simsk = (N, e, y) and x, RHash returns RF2(x)e ·y if RF1(x) =
1. Otherwise, it returns RF2(x)e.

RSignRF(·): Given simsk = (N, e, y) and m, RSign outputs a signature σ =
RF2(m) if RF1(m) = 0. Otherwise, the reduction aborts and terminates by
outputting the failure symbol ⊥.

RExtractRF(·): Given simsk = (N, e, y) and (m∗, σ∗), RExtract outputs a so-
lution ρ = σ∗/RF2(m). Note that by definition RRSA runs RExtract only
if Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ 6= RSign(simsk ,m∗). The validity of
the signature implies that (σ∗)e = RHash(simsk ,m∗) and since we have
σ∗ 6= RSign(simsk ,m∗), we also know that RF1(m∗) = 1.

Reduction RRSA works basically as B, we have due to Equation (11)

AdvNICAΛRSA,λ
(RARSA) ≥ 1

exp(1) · qS
· AdvsEUF-CMA1

RSA-FDH (A).

That is, RRSA is a (`, 0)-canonical reduction for RSA-FDH with value ` =
1/(exp(1) · qS). It runs in time

LocalTime(RARSA) ≈ LocalTime(A) + Time(Sig.Vrfy)

+ (qH + qS + 1) ·Time(RF),

and requires memory

LocalMem(RARSA) = LocalMem(A) + Mem(RF) + Mem(Sig.Vrfy) + 3.

Note that the RSA assumption has trivial advantage cRSA = 0, so there is no
need to consider the predictability probability of RRSA.

Now, we can use Theorem 10 to lift the security of RSA-FDH to the multi-
challenge in a memory-tight way. To this end, we can construct a reduction R′RSA
from msEUF-CMA1-security of RSA-FDH to the RSA assumption as presented
in the proof Theorem 10. This implies that we can construct an adversary B′
such that

AdvNICAΛRSA,λ
((R′RSA)A

′
) ≥ AdvmsEUF-CMA1

RSA-FDH (A′)
exp(1) · qS

− AdvPRF-secPRF (B′)

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × ZN is a keyed function. Moreover, it
holds that

LocalTime((R′RSA)A
′
) ≈ LocalTime(A′) + Time(RGen)

+ (qS + qF + qH) ·Time(PRF) + qF ·Time(Sig.Vrfy)

LocalMem((R′RSA)A
′
) = LocalMem(A′) + 4 + Mem(Sig.Vrfy)

+ Mem(PRF).

Thus, the reduction R′RSA is a memory-tight, but not work-factor-tight, re-
duction from msEUF-CMA1-security to the RSA assumption.
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Note that since RSA-FDH is a unique signature scheme, the one-signature-
per-message security automatically implies the many-signatures-per-message se-
curity. Thus, we do not need to apply our theorem form Section 4. At first glance,
this result seems to contradict the memory lower bound for unique signatures
established by Wang et al. [53, Theorem 3]. However, this is not the case as our
reduction does not meet the criteria for their impossibility result to hold.8 So
we evade their lower bound and achieve memory tightness for RSA-FDH.

On the Overall Tightness of RSA-FDH. In the previous section, we have
shown how RSA-FDH can be proven memory-tight in the multi-challenge and
many-signatures-per-message setting. As already explained above, due to exist-
ing tightness lower bounds, plain RSA-FDH cannot be proven work-fact-tight.
However, when considering a slight variant of RSA-FDH, which was proposed
by Katz and Wang [46], we can apply our techniques to prove this variant fully
tight. In essence, we still consider RSA-FDH, but choose a uniformly random
bit b and sign b ‖m instead of only m. We call this scheme RSA-FDH+ and we
can prove the following theorem.

Theorem 23. For any adversary A′, there exists a reduction R′RSA+ and ad-
versary B′ such that

AdvmsEUF-CMA1
RSA-FDH+ (A′) ≤ 2AdvNICAΛRSA,λ

((R′RSA+)A
′
) + 2AdvPRF-secPRF (B′).

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × ZN × ZN is a keyed PRF. Moreover, it
holds that

LocalTime((R′RSA+)A
′
) ≈ LocalTime(A′) + Time(RGen)

+ (qS + qF + qH) ·Time(PRF) + qF ·Time(Sig.Vrfy)

LocalMem((R′RSA+)A
′
) = LocalMem(A′) + Mem(Sig.Vrfy) + Mem(PRF) + 4.

Hence, R′RSA+ is a fully tight reduction (i.e., work-factor-tight and memory-
tight), from msEUF-CMA1-security of RSA-FDH+ to the RSA assumption. Ap-
plying the transform of Section 4 and adding an additional nonce that is signed
along with the message, we can further lift this result to achieve msEUF-CMA-
security under the RSA assumption.

The proof of Theorem 23 follows the Katz-Wang approach. We provide the
formal description of scheme RSA-FDH+ and the proof of Theorem 23 in Ap-
pendix F .
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8 More precisely, Wang et al. [53] define two parameters cr and cg, where cr captures
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hold. However, we have cg = 0 for the RSA assumption and cr = 1/(exp(1) · qS) for
our reduction, implying cr +cg < 1/2, which does not fall into the realm of Theorem
3 in [53].
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A Proof of Lemma 13

Proof. In this proof, we focus on the multi-challenge adversary A′ and we call
a Forge(m∗, σ∗) query made by A′ a valid query if Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧
(m∗, σ∗) /∈ Q. Furthermore, we call a valid Forge(m∗, σ∗) query an equal query

if σ∗ = RSignRF(·)(simsk ,m∗) and we call it a unequal query otherwise. Then,
we denote Ei as the event that the first i− 1 valid queries made by A′ are equal
queries and the i-th valid query made by A′ is a unequal query. We further
denote F as the event that all the valid queries made by A′ are equal queries.

Then, let’s first analyse RÃ. The adversary Ã simulates A′ and will forward
the first valid Forge(m∗1, σ

∗
1) query made by A′ to R.

– If E1 happens, RExtractRF(·)(simsk , (m∗1, σ
∗
1)) is run to extract a solution ρ.

– If E1 does not happen, U is run to extract a solution.

So we have that AdvNICAΛ,λ (RÃ)

=
∣∣∣Pr[V(φ, ω, ρ) = 1 for ρ $←− RÃ(φ)]− cΛ

∣∣∣
=

∣∣∣∣∣∣∣
Pr[E1] Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗1, σ

∗
1)) | E1]

+ Pr[¬E1] Pr[V(φ, ω, ρ) = 1 for ρ $←− U(φ) | ¬E1]︸ ︷︷ ︸
=cΛ

−cΛ

∣∣∣∣∣∣∣
=
∣∣∣Pr[E1]

(
Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗, σ∗)) | E1]− cΛ

)∣∣∣
Then we analyse RA′2 . R2 continues the simulation of A′ until it submits a

valid unequal forge query.

– If Ei happens for some i, RExtractRF(·)(simsk , (m∗i , σ
∗
i )) is run to extract a

solution ρ.
– If Ei does not happen for any i, then F happens and U is run to extract a

solution.

Then, we have that AdvNICAΛ,λ (RA′2 )

=
∣∣∣Pr[V(φ, ω, ρ) = 1 for ρ $←− RA

′

2 (φ)]− cΛ
∣∣∣
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=

∣∣∣∣∣∣∣∣
qF∑
i=1

Pr[Ei] Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗i , σ
∗
i )) | Ei]

+ Pr[F] Pr[V(φ, ω, ρ) = 1 for ρ $←− U(φ) | F]︸ ︷︷ ︸
=cΛ

−cΛ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
qF∑
i=1

Pr[Ei]
(

Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗i , σ
∗
i )) | Ei]− cΛ

)∣∣∣∣∣
≥
∣∣∣Pr[E1]

(
Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗1, σ

∗
1)) | E1]− cΛ

)∣∣∣︸ ︷︷ ︸
=AdvNICAΛ,λ (RÃ)

−

∣∣∣∣∣
qF∑
i=2

Pr[Ei]
(

Pr[V(φ, ω, ρ) = 1 for ρ $←− RExtractRF(·)(simsk , (m∗i , σ
∗
i )) | Ei]− cΛ

)∣∣∣∣∣
≥ AdvNICAΛ,λ (RÃ)−

qF∑
i=2

Pr[Ei]

We have that Pr[Ei] ≤ εp for any i. The reason is that event Ei implies that

σ∗i = RSignRF(·)(simsk ,m∗i ) (because Forge(m∗i , σ
∗
i ) is an equal query) and m∗i

has never been queried to Sign(·) oracle (because (m∗i , σ
∗
i ) /∈ Q). Thus, we have

AdvNICAΛ,λ (RA
′

2 ) ≥ AdvNICAΛ,λ (RÃ)− qF · εp

and Lemma 13 follows. �

B Proof of Theorem 14

Proof. We start this proof with the observation that the only difference between
msEUF-CMA1 security and msEUF-CMA security is how their signing oracles
work. To be more precise, the msEUF-CMA1 signing oracle only provides one
signature per message (which will be returned repeatedly if the same message is
queried multiple times), whereas the msEUF-CMA signing oracle always returns
fresh signatures, even if the oracle is queried multiple times for the same message.

Construction of B. Upon initialization of the experiment, B receives a public
key pk of Sig′ from its msEUF-CMA1 challenger. Additionally, it gets access to
a signing oracle Sign′ and a forging oracle Forge′. Note that the public key pk is
also a public key of Sig, since both signature schemes use the same key generation
algorithm. Hence, B immediately forwards the public key pk to A.

Whenever A issues a signing query Sign(m), the adversary B chooses a fresh
nonce n $←− {0, 1}λ and queries Sign′(m ‖ n) to obtain a signature σ′, which is
forwarded to A as σ = (σ′, n). Note that B does not store the nonce n.

Whenever A queries a Forge(m,σ), the adversary B directly relays this query
to its forging oracle Forge′. If A halts, B will also halt.
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Success probability of B. We now analyze the success probability of B. Let us
(for now) assume that for any signing query Sign(m) by A for a some message m,
the nonces n chosen by B never repeat. In this case, adversary B never uses the
same signing query Sign′(m ‖ n) twice, directly implying that all signatures σ =
(σ′, n) for m will look correctly distributed to A. Since the winning conditions
of msEUF-CMA and msEUF-CMA1 are equal, any winning forgery by A will also
be a winning forgery against the msEUF-CMA1 challenger.

It remains to analyze what happens if the same nonce is chosen twice for
some signing query Sign(m) by A. In this case, B issues the same signing query
Sign′(m ‖ n) twice, and receives (due to the one-signature-per-message nature
of the challenger) the same signature σ′ twice. The adversary A would then
receive (σ′, n) as reply to its signing query. Note that this results in a incorrect
distribution of signatures for A as (σ′, n) never differs in the first position.

Formally, let coll be the event that A receives signatures σ1 = (σ, n) and
σ2 = (σ′, n) in response to some (not necessarily distinct) signature queries m
and m′. Furthermore, let “win is set for A” and “win is set for B” denote the
events that win is set in the ExpmsEUF-CMA

Sig (A) and ExpmsEUF-CMA1
Sig′ (B) security

experiments (i.e., an adversary submits a “winning” forgery with respect to its
challenger). We have

Pr[win is set for A] = Pr[win is set for A ∧ coll] + Pr[win is set for A ∧ ¬coll]
≤ Pr[coll] + Pr[win is set for A | ¬coll]

≤ q2S
2λ

+ Pr[win is set for B].

Equivalently,

AdvmsEUF-CMA
Sig (A) ≤ AdvmsEUF-CMA1

Sig′ (B) +
q2S
2λ
.

Running time and memory of B. Note that B only relays the queries of A, except
for choosing the nonce during signing queries by A, which adds a mere constant
overhead per query in terms of running time. Since B neither stores the public
key nor any of the chosen nonces, it does not consume any additional memory
apart from A. Hence, we have

LocalTime(B) ≈ LocalTime(A) and LocalMem(B) = LocalMem(A).

C Min-entropy of LID.Sim

In this section, we explore the connections between Definition 18 and the defi-
nition of the min-entropy for lossy identification scheme in [2, 3].

First, we observe that, Definition 18 covers the cases of both normal public
key and lossy public key. If we do a case distinction between them, we can prove
the following lemma.
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Lemma 24. Let LID be a lossy identification scheme which has simulator LID.Sim
with min-entropy α. Let pkn be any normal public key generated by LID.Gen(1λ)
and let pk l be any lossy public key generated by LID.LossyGen(1λ). If we define

αn := − log2

(
max

pkn,cmt
Pr[LID.Sim(pkn, ch, resp) = cmt]

)
αl := − log2

(
max

pk l,cmt
Pr[LID.Sim(pk l, ch, resp) = cmt]

)
where the probability is taken over ch $←− CSet, resp $←− RSet. Then, we have

α = min{αl, αn}.

Lemma 24 follows from Definition 18.
Then, we first connect αn with the min-entropy of lossy identification scheme

defined in [2, 3].

Definition 25 ( [2,3]). Let LID be a lossy ID scheme, sk be any secret key gen-
erated by LID.Gen(1λ) and C(sk) be the set of all possible commitments outputted
by LID.Prove1(sk). The min-entropy with respect to LID is defined as

γ := − log2

(
max

sk ,cmt∈C(sk)
Pr[LID.Prove1(sk) = cmt]

)
where the probability is taken over only the random choices made by algorithm
LID.Prove1.

We can prove the following lemma.

Lemma 26. Let LID be a lossy ID scheme with γ-bits min-entropy (c.f. Defini-
tion 25) and is εs-simulatable (c.f. Definition 16). Suppose LID.Sim has αn-bits
min-entropy with respect to normal keys (as defined in Lemma 24), then we have
that

|2−αn − 2−γ | ≤ εs. (12)

Proof. The “real” commitment outputted by LID.Prove1(sk) distributes differ-
ently from the simulated commitment outputted by LID.Sim(pkn, ch, resp) for
uniform ch and resp. However, since LID is εs-simulatable, the statistical distance
between the two distribution is no larger than εs. Thus, we have Equation (12)
holds. �

Lemma 26 shows that if γ is large and εs is statistically small, then αn will be
large. This holds for all the lossy identification schemes we consider in Remark 19
where γ = Ω(λ) and εs = O(2−λ) (or εs = 0).

Next we consider the case of lossy public keys and show αl is large for
many lossy identification schemes we are aware of. More precisely, we show con-
crete DDH-based LID scheme in Appendix C.1, RSA-based LID scheme in Ap-
pendix C.2, φ-hiding-based LID scheme in Appendix C.3, and Ring-LWE-based
LID scheme in Appendix C.4.
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C.1 Lossy Identification Scheme Based on DDH

In this subsection, we recall the DDH-based LID scheme as shown in [17,23] and
show that αl is large for this scheme.

Let (G, g, q) be a cyclic group with a λ-bit prime order q and generator g and
let h ∈ G. Consider the lossy identification scheme LID = (LID.Gen, LID.LossyGen,
LID.Prove, LID.Vrfy, LID.Sim) as follows:

Key generation. The algorithm LID.Gen chooses a value x $←− Zq uniformly at
random. It sets pk := (g, h, u, v) = (g, h, gx, hx) and sk := x, and outputs
(pk , sk).

Lossy key generation. The algorithm LID.LossyGen chooses two group ele-
ments u, v $←− G uniformly and independently at random. It outputs pk :=
(g, h, u, v).

Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = x, chooses

a random value r $←− Zq, and computes a commitment cmt := (e, f) =
(gr, hr), where g, h are the value of the pk corresponding to sk . It outputs
(cmt, st) with st := r.

2. The algorithm LID.Prove2 takes as input a secret key sk = x, a commit-
ment cmt = (e, f), a challenge ch ∈ Zq, a state st = r, and outputs a
response resp := r − ch · x.

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (g, h, u, v), a commitment cmt = (e, f), a challenge ch ∈ Zq, and a
response resp ∈ Zq. It outputs 1 if and only if e = gresp ·uch and f = hresp ·vch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(g, h, u, v), a challenge ch ∈ Zq, and a response resp ∈ Zq. It outputs a
commitment cmt = (e, f) = (gresp · uch, hresp · vch).

We can prove the following lemma.

Lemma 27. The DDH-based LID scheme LID has αn ≥ log2 q and αl ≥ log2 q.

Proof. LID.Sim outputs (e, f) = (gresp ·uch, hresp ·vch). As long as g is a generator
and resp is chosen uniformly at random, e will be a uniform element in group
G. Thus, regardless of the input pk is lossy or not, LID.Sim has min-entropy at
least log2 q = Θ(λ). �

C.2 Lossy Identification Scheme Based on RSA

In this subsection, we recall the RSA-based LID scheme as shown in [37] and
show that αl is large for this scheme.

Consider the LID scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy,
LID.Sim) as follows:

Key generation. The LID.Gen algorithm generates a RSA modulus N = PQ
where P = 2pp′+ 1 and Q = 2qq′+ 1 for different primes p, p′, q, q′ of length
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λ. There is a unique factorization of the quadratic residue group modulo
N for QRN = G1 × G2 where |G1| = p′q′ and |G2| = pq. Select random
generator g in G1 and a $←− Zφ(N). Compute y = ga mod N and output
pk := (N, g, y), sk := (p, p′, q, q′, g, a)

Lossy key generation. The lossy public key is generated exactly the same as
the normal public key, except that LID.LossyGen selects a random generator
g in G1 and a random generator f in G2. Then select a $←− Zφ(N), b

$←− Zpq
and let y := gaf b mod N .

Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk , chooses a ran-

dom value r $←− Zφ(N), and computes a commitment cmt = A := gr.
Then it outputs cmt together with the state st := r.

2. The algorithm LID.Prove2 takes as input a secret key sk , a commitment
cmt = A, a challenge ch = w ∈ ZN , a state st = r, and outputs a
response resp = s := aw + r mod φ(N).

Verification. LID.Vrfy outputs 1 iff Ayw = gs mod N holds.
Simulation. LID.Sim gets the public key pk , a challenge ch = w ∈ ZN and a

response resp = s ∈ ZN , outputs a commitment cmt = A := gsy−w mod N .

We can prove the following lemma.

Lemma 28. The φ-hiding-based LID scheme LID has αl ≥ 2λ and αn ≥ 2λ.

Proof. Let us first fix the challenge w and consider the distribution of A for
uniform s. In this case, since g is a generator of G1, A distributes uniformly
over the set G1/y

w. Since |G1| = p′q′ and p′, q′ are primes of length λ, we
have |G1| ≥ 22λ. Then, regardless of the public key is lossy or not, LID.Sim has
min-entropy at least log2(22λ) = 2λ. �

C.3 Lossy Identification Scheme Based on φ-hiding

In this subsection, we recall the φ-hiding-based LID scheme as shown in [23] and
show that αl is large for this scheme.

Consider the LID scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy,
LID.Sim) as follows:

Key generation. The algorithm LID.Gen samples (N, e) where N = p · q is the
product of two distinct primes p, q of length λ/2 and e is random prime of
length `e ≤ λ/4 such that e divides p − 1. Then it samples S $←− Z∗N and
computes U = Se. It sets pk = (N, e, U) and sk = (N, e, S), where (N, e)
are from the common parameters.

Lossy key generation. The lossy key generation algorithm LID.LossyGen sam-
ples U uniformly at random from the e-th non-residues modulo N .9

9 This is indeed efficiently possible as U $←− Z∗N is a not an e-th residue with probability
1− 1/e and we can efficiently check whether a given U is an e-th residue when the
factorization of N is known [1].
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Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = (N, e, S),

chooses a random value r $←− Z∗N , and computes a commitment cmt :=
re mod N . It outputs (cmt, st) with st := r.

2. The algorithm LID.Prove2 takes as input a secret key sk = (N, e, S), a
commitment cmt, a challenge ch ∈ {0, . . . , 2`e − 1}, a state st = r, and
outputs a response resp := r · Sch mod N .

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (N, e, U), a commitment cmt, a challenge ch, and a response resp. It
outputs 1 if and only if resp 6= 0 mod N and respe = cmt · U ch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(N, e, U), a challenge ch, and a response resp. It outputs a commitment
cmt = respe/U ch.

We can prove the following lemma.

Lemma 29. The φ-hiding-based LID scheme LID has αl ≥ 3
4λ and αn ≥ 3

4λ.

Proof. LID.Sim outputs cmt = respe/U ch for uniform resp ∈ Z∗N and uniform
ch ∈ {0, . . . , 2`e−1}. Let us first fix the challenge ch and define the e-th residues
set as

S := {xe mod N | x ∈ Z∗N}.

Then respe distributes uniformly over S and cmt distributes uniformly over the
set T = S/U ch. Since S has size at least φ(N)/e, then |T | ≥ φ(N)/e. Since e

is a prime of length `e ≤ λ/4, we have that log2 |T | ≥ log2(2
3
4λ) = 3

4λ. Thus,
regardless of the input pk is lossy or not, LID.Sim has min-entropy at least
log2 |T | ≥ 3

4λ. �

C.4 Lossy Identification Scheme Based on Ring-LWE

In this subsection, we recall the Ring-LWE-based LID scheme as shown in [2,3]
and show that αl is large for this scheme.

Consider the LID scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy,
LID.Sim) as follows:

Parameters. Let n be an integer that is a power of 2. Let σ be any positive real.
The distribution DZn,σ assigns the probability proportional to e−π||y||

2/σ2

to
every y ∈ Zn and 0 everywhere else. For any odd prime p which equals 1 mod
2n, the ring R = Zp[x]/(xn + 1) is represented by polynomials of degree at
most n− 1 with coefficients in range [−p−12 , p−12 ]. As R is isomorphic to Znp ,
we use the notation y $←− DR,σ to mean that a vector y is chosen from the
distribution DZn,σ and then mapped to a polynomial R in the natural way.
Let R× be the group of all the multiplicative invertible elements in R.

Key generation. The algorithm LID.Gen samples s1, s2
$←− DR,σ and a $←− R×.

Then it computes t = as1 + s2 It sets pk = (a, t) and sk = (s1, s2).
Lossy key generation. The lossy key generation algorithm LID.LossyGen sam-

ples t $←− R.
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Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 selects y1,y2

$←−M whereM = {g ∈ R : ||g||∞ ≤
n3/2σ log3 n} and computes u = ay1 + y2. Then it sets commitment
cmt := u. It outputs (cmt, st) with st := (y1,y2).

2. The algorithm LID.Prove2 takes as input a secret key sk = (s1, s2), a
commitment cmt = u, a challenge ch ∈ C = {g ∈ R : ||g||∞ ≤ log n},
a state st = (y1,y2), it computes zi = sic + yi for i ∈ {1, 2} and
outputs a response resp := (z1, z2) if for every i ∈ {1, 2}, zi ∈ G = {g ∈
R : ||g||∞ ≤ (n− 1)

√
nσ log3 n}. Otherwise output resp := ⊥.

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (a, t), a commitment cmt = u, a challenge ch = c, and a response
resp = (z1, z2). It outputs 1 if and only if for every i ∈ {1, 2}, zi ∈ G and
u = az1 + z2 − tc.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(a, t), a challenge ch = c, and a response resp = (z1, z2). It outputs a
commitment cmt := u = az1 + z2 − tc.

Lemma 30. The Ring-LWE-based LID scheme LID has αl ≥ n and αn ≥ n.

Proof. Regardless of whether the public key is lossy or not, when the ch = c and
the response resp = (z1, z2) are uniformly chosen, the commitment outputs by
the simulation algorithm u = az1+z2−tc has entropy at least log2(|G|) because
z2 is chosen uniformly from G. The above lemma follows since log2(|G|) ≥ n. �

D Proof of Theorem 20

We bound AdvsEUF-CMA1
Sig (A) through a sequence of games. Let Xi denote the

event that the experiment outputs 1 in Game i.

Game 0. This is the original security experiment. In this experiment, adversary
A is provided with a sign oracle Sign and a hash oracle H. In the sequel, it will be
useful to have an exact specification of the experiment when instantiated with
our signature scheme, including all variables and lists used by the experiment
to determine whether the adversary has output a valid forgery. Therefore, we
specify the experiment as follows.

– The random oracle is a truly random function H : {0, 1}∗ → CSet.
– The game initializes Q := ∅. Then, it generates the key pair by running

(pk , sk) $←− LID.Gen(1λ). Finally, it starts adversary A on input pk.
– Sign(m). When the adversary queries the signing oracle with message m, the

game first checks whether there is a pair (m,σ) in set Q, and if this is true,
it outputs σ to make sure that A only receives one signature per message.
Otherwise, the game computes (cmt, st) $←− LID.Prove1(sk), and sets ch :=
H(m, cmt) by making a hash query. Then, the game computes

resp := LID.Prove2(sk , ch, cmt, st),

outputs the signature σ := (ch, resp) to A, and stores the pair (m,σ) in set
Q.



42 Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu

– When the adversary A outputs a candidate forgery (m∗, σ∗), the game
checks whether Vrfy(pk,m∗, σ∗) = 1 and (m∗, σ∗) /∈ Q. More precisely, for
σ∗ = (ch∗, resp∗), the game first recovers cmt∗ := LID.Sim(pk , ch∗, resp∗) and
then queries the random oracle to get ch′ := H(m∗, cmt∗). Finally, the game
outputs 1 if and only if ch∗ = ch′ and (m∗, σ∗) /∈ Q.

It is clear that
Pr[X0] = AdvsEUF-CMA1

Sig (A).

Note that the experiment requires memory which is linear in the number of
hash queries and signing queries of A. We will now gradually modify the game,
to prepare a memory-tight reduction to the security of the LID scheme.

Game 1. We modify the way the random oracle H is implemented. In Game 0,
H : {0, 1}∗ → CSet is a random function. In Game 1, we replace this as follows.

Let RF be a random function whose output space depends on a prefix of its
input. That is, RF is a random function such that

RF("hash" ‖ ·) : {0, 1}∗ → CSet,

and
RF("sim" ‖ ·) : {0, 1}∗ → CSet× RSet.

Remark 31. We stress that the introduction of such a function RF whose output
space depends on the input is mainly for notational purpose. We could alterna-
tively assume a random function mapping universally to {0, 1}` for some suitably
large `, and then map to appropriate spaces from there, but this would make
the notation unnecessarily complex and make the proof more difficult to verify.

The random oracle H is now implemented by using RF as follows.

– If the input x cannot be parsed as x = m‖ cmt, then the experiment returns
RF("hash" ‖ x).

– Otherwise, it parses m ‖ cmt := x and runs (ch, resp) := RF("sim" ‖m) and
then cmt′ := LID.Sim(pk , ch, resp).
• If cmt = cmt′, then it returns ch.
• Otherwise, it returns RF("hash" ‖ x).

Claim. Pr[X0] = Pr[X1].

Proof. If x can be parsed as x = m‖cmt, then recall that LID.Sim is deterministic
and therefore for any m there exists a unique cmt′ such that

cmt′ = LID.Sim(pk , ch, resp) = LID.Sim(pk ,RF("sim" ‖m))

Hence, there exists only one unique value cmt such that cmt = cmt′, in which
case the output of H is obtained from pk and RF("sim" ‖m), which is a random
function that depends on m. So, the output in this case also implicitly depends
on cmt. Furthermore, if cmt 6= cmt′ or if x cannot be parsed as x = m ‖ cmt,
then the output of H is the output of a random function. Hence, the distribution
of H is Game 1 is identical to Game 0, which proves the claim. ut
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Game 2. We now change the way how signatures are computed. We implement
a different signing algorithm, which exploits the definition of H from Game 1 in
order to be able to compute valid signatures without using the secret key sk .

Whenever the adversary queries Sign(m) on input of some message m, the
signing oracle computes and returns

σ := (ch, resp) with (ch, resp) := RF("sim" ‖m), (13)

and adds (m,σ) to Q.
Note that this implementation of the signing algorithm does not require to

check whether a signing query Sign(m) has already been made before to answer
consistently and to ensure that the adversary A gets only one signature per
message. This implementation always outputs the same signature for a queried
message m.

Claim. Pr[X1] ≤ Pr[X2] + qS · εs.

Proof. First of all, note that, by the definition of the random oracle introduced
in Game 1, the signatures simulated in Game 2 are valid, that is, we have
Vrfy(pk ,m, σ) = 1 for all messages m queried by the adversary and all sig-
natures σ returned by the experiment. To see this, recall that the verification
algorithm first runs

cmt := LID.Sim(pk , ch, resp)

to recover the commitment, which is uniquely determined by (pk , ch, resp). Then,
it checks whether ch = H(m, cmt) is satisfied, and H is defined such that this
indeed holds.

The difference between the games is that in Game 1 signatures are generated
by first computing (cmt, st) $←− LID.Prove1(sk), then ch := H(m, cmt), where H is
a random function, and then resp := LID.Prove2(sk , ch, cmt, st). In contrast, in
Game 2, we derive (ch, resp) = RF("sim" ‖m) using a (truly) random function.

The εs-simulatability of the lossy identification scheme guarantees that the
two distributions(cmt, ch, resp) :

(cmt, st) $←− LID.Prove1(sk)

ch $←− CSet

resp← LID.Prove2(sk , ch, cmt, st)


and (cmt, ch, resp) :

ch $←− CSet

resp $←− RSet

cmt← LID.Sim(pk , ch, resp)


are statistically εs-indistinguishable. Since the signing oracle is queried qS times,
the statistical distance between Game 1 and Game 2 is at most qS · εs by the
union bound. Thus, the claim follows. ut
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Game 3. Now, we change the way how the experiment checks the validity of a
candidate forgery. Instead of storing the set Q, it proceeds as follows. When the
adversary outputs the candidate forgery (m,σ), where σ = (ch, resp), it checks
whether Vrfy(pk ,m, σ) = 1 and (ch, resp) 6= RF("sim" ‖m), and only outputs 1
if both holds.

Hence, from Game 3 on, the adversary can only win if it outputs a pair
(m,σ) such that (ch, resp) is not the random challenge-response pair that the
experiment would have computed by running (ch, resp) := RF("sim" ‖ m) on
input m. The purpose of this modification is to filter out signatures that are not
“new” forgeries, which enables us to recognize “valid” forgeries without the need
of storing all messages-signature pairs that the adversary has obtained from the
experiment in the set Q.

Claim. Pr[X2] ≤ Pr[X3] + 1
|RSet| .

Proof. An adversary may distinguish Game 3 from Game 2 in two ways. Either
it outputs a pair (m,σ) such that 1 is output in Game 2 but not in Game 3, or
the other way around.

First of all, note that every message-signature pair (m,σ = (ch, resp)) gener-
ated by the experiment in response to a signing query (and stored in set Q in
Game 2) also satisfies (ch, resp) = RF("sim" ‖m), due to the modified signing
algorithm introduced in Game 2, Equation (13). Hence, Game 3 never outputs
1 for any signature that would not have triggered Game 2 to output 1. Thus,
Game 3 is strictly more restrictive than Game 2.

In the opposite direction, note that Game 3 might be too restrictive, by not
outputting 1 even for a signature that was not a response to a Sign-query, and
thus would not have been stored in set Q in Game 2. Note that this happens only
if the adversary outputs (m,σ = (ch, resp)) such that (ch, resp) = RF("sim"‖m),
but the adversary has never received this particular signature in response to a
Sign-query. In this case, we say that event bad occurs.

To bound the probability of bad, recall that the uniqueness of the LID scheme
guarantees that for any (pk , cmt, ch), where pk is honestly generated, there exists
at most one resp such that LID.Vrfy(pk , cmt, ch, resp) = 1, which is exactly the
value (ch, resp) = RF("sim" ‖m) output by the random function on input m.

Hence, bad occurs only if the adversary is able to “predict” the output resp
of RF on input "sim" ‖m. There are only two ways for the adversary to learn
information about output of the random function RF("sim" ‖m). Namely, the
adversary receives information about (ch, resp) = RF("sim" ‖m). . .

1. . . . by asking a signature query for m. However, if such a query is asked,
then the adversary already receives back the unique signature (ch, resp) that
satisfies Equation (14), and hence this cannot be a new forgery.

2. . . . by asking random oracle queries to H. However, note that it is perfectly
indistinguishable for the adversary whether the response to a H-query was
computed via

(ch, resp) := RF("sim" ‖m) (14)
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or via
ch := RF("hash" ‖m ‖ cmt).

Hence, it receives no information from H about the value of resp that satisfies
Equation (14). This yields that the probability of predicting it is at most
1/|RSet|.

This proves the claim. ut

Game 4. In this game, we modify the key generation algorithm of the signa-
ture scheme. Instead of running (pk , sk) $←− LID.Gen(1λ), we now run pk $←−
LID.LossyGen(1λ). Otherwise, the experiment proceeds identical to Game 3. Note
that Game 3 is able to simulate valid signatures without requiring the secret key,
which gives rise to the following claim.

Claim. There exists a reduction B such that

Pr[X3] ≤ Pr[X4] + AdvIND-KEY
LID (B)

LocalTime(B) ≤ LocalTime(A) + Time(LID.LossyGen)

+ (qS + qH + 1) ·Time(RF) + Time(Sig.Vrfy),

LocalMem(B) = LocalMem(A) + Mem(LID.LossyGen) + Mem(RF)

+ Mem(Sig.Vrfy).

Proof. The reduction is again straightforward. Adversary B receives as input
pk , which is either generated by algorithm LID.Gen or by LID.LossyGen. Then it
simulates Game 4 for the adversary A such that we have

AdvIND-KEY
LID (B) ≥ |Pr[X3]− Pr[X4]|

Note that the reduction is not memory-tight, B does not have to store any
random oracle queries or any signatures provided to A, due to the changes in-
troduced in previous games, but it has to store the look-up table for the random
function RF. This highly depends on the number of queries issued by the adver-
sary. ut

Next, we argue that it is statistically unlikely that A is able to produce a
valid forgery in Game 4. The standard argument for lossy identification schemes
from [2, 3, 46] is that, due to the lossyness of the key, for any cmt there exists
only one ch such that the signature is valid. When A queries H(m, cmt), then
it has “committed” to one value of cmt, and the probability that H returns the
only “matching” value ch is negligible, since H is a random function.

Claim. Pr[X4] ≤ 1
|CSet| + qH · ε`, where qH is the number of hash queries in

Game 4.

Proof. We focus on analyzing the probability that adversary A submits a pair
(m∗, σ∗) such that Vrfy(pk,m∗, σ∗) = 1 in Game 7. More precisely, for σ∗ =
(ch∗, resp∗), the game first recovers cmt∗ = LID.Sim(pk , ch∗, resp∗) and then
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queries the random oracle to get ch′ = H(m∗, cmt∗). Finally, the game com-
pares whether ch∗ = ch′. Then, if the hash query H(m∗, cmt∗) has never been
made by A or the game, the probability that ch∗ = ch′ is bounded by 1

|CSet| . If

this hash query has been made before, we bound this probability by the ε`-lossy
property of LID.

To this end, we build a computationally unbounded adversary B against
the lossy property of LID using A. On input a public key pk generated by
the LID.LossyGen(1λ) algorithm, B forwards pk to A and select an index j $←−
{1, · · · , qH} where qH is the number of hash queries in Game 4. B could perfectly
simulate Game 4 for A and when the j-th hash query H(m, cmt) is made, B
forwards cmt to its own challenger and the challenger responds with a random
challenge ch $←− CSet. B then returns ch as the response to the hash query. When
A submits a valid forgery, B outputs resp∗ to its own challenger. It is obvious
that B could win if the j-th query is the first time that H(m∗, cmt∗) is made.
This happens with probability 1

qH
. Thus, we have that Pr[X4] ≤ 1

|CSet| + qH · ε`.
Note that this lossy property is actually a statistical property and our anal-

ysis here is actually a statistical argument. We do not reduce to any computa-
tional problem so the adversary B could use arbitrary time and memory without
breaking the memory tightness security of our signature.

Remark 32. Observe that the above scheme can be rewritten to be memory-
tight proof by simply replacing the random function RF before Game 4 by a
pseudorandom function to implement this memory-efficiently in the reduction
to IND-KEY-security. This needs to be reverted after Game 4 to make the final
statistical argument go through. These changes imply that we need to add two
reductions to the PRF security to the sequence of games as described before and
thus that the bound on A’s advantage in Theorem 20 would be extended by the
advantage terms of the PRF security of the two respective reductions.

E Proof of Theorem 21

Proof. We bound the predictability probability εp ofRLID. Consider an adversary
A interacting withRLID and the event thatA submits a Forge(m∗, σ∗) query with

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q ∧ σ∗ = RSignRF(·)(simsk ,m∗).

This would imply that A never queries m∗ to Sign(·) oracle, otherwise A gets

σ∗ = RSignRF(·)(simsk ,m∗) as return and (m∗, σ∗) ∈ Q. According to the con-
struction of RLID,

RSignRF(·)(simsk ,m∗) = (ch, resp) = RF("sim" ‖m∗)

and RF("sim" ‖m∗) is not returned to A through the Sign(·) oracle because A
never queries m∗ to Sign(·). The only possible reveal of RF("sim" ‖ m∗) is in
the H(·) oracle when adversary A submits a H(m∗ ‖ cmt′) query such that cmt′

equals LID.Sim(pk , ch, resp) and A gets back ch as return.
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– IfA has never submitted a H(m∗‖cmt′) query such that cmt′ = LID.Sim(pk , ch, resp),
then RF("sim" ‖m∗) is completely hidden to A and the probability of cor-
rectly guessing it is 1

|CSet|×|RSet| .

– If A has ever submitted a H(m∗ ‖ cmt′) query such that cmt′ = cmt where
cmt = LID.Sim(pk , ch, resp), we show that this subcase happens with small
probability. This is because the commitment output by LID.Sim(pk , ch, resp)
has α-bit min-entropy. Thus, the probability of this subcase is bounded by
qH
2α where qH is the number of H(·) queries made by A. Note that since the
min-entropy of LID.Sim is defined with respect to both normal public key
and lossy public key, so we can apply this bound even for the pk that RLID

receives (which is normal with probability one half and lossy with probability
one half).

So we have

εp ≤
1

|CSet| × |RSet|
+ qH ·

(
1

2α
+ εs

)
and Theorem 21 follows. �

F On the Overall Tightness of RSA-FDH+

The scheme RSA-FDH+ is formally define it as follows:

– Gen runs (N, e, d) $←− GenRSA(1λ) and returns pk = (N, e), sk = (N, d).
– Sign(sk ,m) chooses a bit b $←− {0, 1} and returns σ = H(b‖m)d mod N where
H is a hash function with image space ZN .

– Vrfy(pk ,m, σ) returns 1 if and only if either σe = H(1 ‖m) mod N or σe =
H(0 ‖m) mod N .

For detailed proof of work-factor-tightness, we refer to [46, Thm. 2]. Katz
and Wang show that RSA-FDH+ is sEUF-CMA-secure provided that the RSA
assumption holds. In particular, their definition is a statefull variant of the above
scheme. That is, Sign will only output a signature for all messages m for either
b = 0 or b = 1, determined by the first call of Sign on message m.

The reduction is work-factor-tight with a loss of 1/2 and in the random oracle
model. We remark, that the reduction by Katz and Wang is almost memory-
tight apart from the fact that it requires to maintain the random oracle table.
Since Katz and Wang have a stateful variant that only gives out one signa-
ture per message by definition of Sign, we trivially get AdvsEUF-CMA1

RSA-FDH+(A) ≤
AdvsEUF-CMA

stRSA-FDH+(A), where stRSA-FDH+ refers to the stateful variant consid-
ered by Katz and Wang. It is fairly straightforward to transfer the proof of
[46, Thm. 2] into the following canonical reduction RRSA+. As before, we de-
fine the canonical reduction RRSA+ from sEUF-CMA1-security of RSA-FDH+
to the RSA assumption as the tuple (RGen,RSign,RExtract,RHash) as follows.
Let RF : {0, 1}∗ → {0, 1} × ZN × ZN with CoinsRSign = CoinsRExtract = ∅ and
{0, 1} × ZN × ZN = CoinsRHash.
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RGen: Given an RSA instance φ = (N, e, y), RGen returns (simpk , simsk) =
((N, e), (N, e, y)).

RHashRF(·): Given simsk = (N, e, y) and x = b′ ‖ m, RHash computes (b, rb,
r1−b) := RF(m) and if b′ = b, it returns reb . Otherwise, it returns re1−b · y.

RSignRF(·): Given simsk = (N, e, y) and m, RSign computes (b, rb, r1−b) :=
RF(m) and outputs rb.

RExtractRF(·): Given simsk = (N, e, y) and (m∗, σ∗), RExtract computes (b, rb,
r1−b) := RF(m∗) and outputs solution ρ = σ∗/r1−b. Note that by definition
RRSA runs RExtract only if Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ 6= RSign(simsk ,m∗).
This implies that (σ∗)e = RHash(1 − b ‖m∗) for (b, ·) := RF(m∗) and thus
ρ = yd = x.

As shown by Katz-Wang, we get

AdvNICAΛRSA,λ
(RRSA+) ≥ 1

2
AdvEUF-CMA

stRSA-FDH+(A) ≥ 1

2
AdvsEUF-CMA1

RSA-FDH+(A)

and

LocalTime(RRSA+) ≤ LocalTime(A) + (qS + qH + 1) ·Time(RF)

+ Time(Sig.Vrfy),

LocalMem(RRSA+) = LocalMem(A) + Mem(RF) + Mem(Sig.Vrfy) + 3.

With the canonical reduction RRSA+, we now can apply Theorem 10 to lift
the security of RSA-FDH+ to the multi-challenge setting in a memory-tight
way. To this end, we construct a reduction R′RSA+ from msEUF-CMA1 security
of RSA-FDH+ to the RSA assumption as presented in the proof of Theorem 10.
This implies that we can construct an adversary B′ such that

AdvNICAΛRSA,λ
((R′RSA+)A

′
) ≥ 1

2
· AdvmsEUF-CMA1

RSA-FDH+ (A′)− AdvPRF-secPRF (B′)

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × ZN × ZN is a keyed PRF. Moreover, it
holds that

LocalTime((R′RSA+)A
′
) ≈ LocalTime(A′) + Time(RGen)

+ (qS + qF + qH) ·Time(PRF) + qF ·Time(Sig.Vrfy)

LocalMem((R′RSA+)A
′
) = LocalMem(A′) + Mem(Sig.Vrfy) + Mem(PRF) + 4.

Hence, R′RSA+ is a fully tight reduction (i.e., work-factor-tight and memory-
tight), from msEUF-CMA1-security of RSA-FDH+ to the RSA assumption. Ap-
plying the transform of Section 4 and adding an additional nonce that is signed
along with the message, we can further lift this result to achieve msEUF-CMA-
security under the RSA assumption.
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G On the Memory-Tightness of BLS

Similarly to RSA-FDH discussed in Section 5.2, we can argue memory-tightness
for the pairing-based signature scheme proposed by Boneh, Lynn, and Shacham (BLS)
[15,16]. In this section, we briefly recall the construction and how our result can
be applied to it.

We briefly recall the computational Diffie-Hellman (CDH) problem in the
symmetric pairing setting as a non-interactive assumption.

Definition 33. Let GGen be an algorithm that takes as input the security param-
eter 1λ and returns (G,GT , p, g, e), where G and GT are groups of prime order
p ≥ 2λ, g is a generator of G, and e : G×G→ GT is a bilinear (type-1) pairing.
The CDH assumption with respect to GGen is a non-interactive computational
ΛCDH = (InstGenCDH,VCDH,UCDH) where

1. InstGenCDH(1λ) runs (G,GT , p, g, e) $←− GGen(1λ), chooses x, y $←− Zp, and
outputs a problem instance φ = (G,GT , p, e, g,X, Y ) = (G,GT , p, e, g, gx, gy)
and a witness ω = (x, y).

2. VCDH(φ, ω, ρ) returns 1 if and only if dlogg(ρ) = xy mod p with (x, y) = ω.
3. UCDH(φ) returns a failure symbol ⊥.

Next, recall the BLS signature scheme. For simplicity, we only present the
variant using a symmetric (type 1) pairing. Note that the construction can easily
be adapted to asymmetric (type 2 or 3) pairings. Let G and GT be two groups
of prime order p and let g be a generator of G. Let e : G×G→ GT be a type-1
pairing and let H : {0, 1}∗ → G.

– Gen chooses x $←− Zp, computes gx and returns pk := (g, gx) and sk := x.
– Sign(sk ,m) returns σ := H(m)x ∈ G.
– Vrfy(pk ,m, σ) returns 1 if and if e(H(m), gx) = e(σ, g).

The scheme as presented above provides EUF-CMA security based on CDH in
the random oracle model as shown in [15]. When instantiated with an asymmetric
pairing the EUF-CMA security is based on the co-CDH in the random oracle
model. However, the proof by BLS [15] is similar to RSA-FDH discussed in
Section 5.2 neither work-factor tight (linear loss in the number of signature
queries) nor memory-tight (implementing the random oracle).

To prove memory-tightness for BLS, we can essentially follow the same argu-
ments given for RSA-FDH. To this end, we need to argue that BLS is memory-
tightly sEUF-CMA1-secure in the random oracle model. Similar to RSA-FDH,
BLS is a unique signature scheme, i.e., for every m there is exactly one valid
signature, namely σ = H(m)x. Hence, we have

AdvsEUF-CMA1
BLS (A) ≤ AdvEUF-CMA

BLS (A).

as in Equation (10) for RSA-FDH. It remains to argue that the reduction for
sEUF-CMA1 security is memory-tight up to the usage of a random function RF
with an explicitly stored look-up table. Since the reduction B given in the proof
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of [16, Thm. 3.2] only stores the three group elements for the CDH challenge,
one integer for randomizing the public key and the random oracle table, we
can implement the internal randomness of B using a random function RF and
compute the random oracle values on the fly. Given the result of [16, Thm. 3.2]
it is easy to verify that

AdvsEUF-CMA1
BLS (A) ≤ exp(1) · (qS + 1) · AdvNICAΛCDH,λ

(B′).

where qS is the number of signatures queried by A and B′ is as exactly as B
from the proof of [16, Thm. 3.2], but using a random function RF to derive the
randomness of for answering the RO queries. We have

LocalTime(B) ≈ LocalTime(A) + (qH + qS) ·Time(RF),

LocalMem(B) = LocalMem(A) + Mem(RF) + 3.

Next, we can define the canonical reduction RCDH from the sEUF-CMA1
security to the CDH assumption as the tuple (RGen,RSign,RExtract,RHash). To
that end, let RF : {0, 1}∗ → {0, 1} × Zp with CoinsRSign = CoinsRExtract = ∅ and
{0, 1} × Zp = CoinsRHash. Further, for (c, b) := RF(x), we define the short-hands
c =: RF1(x) and b =: RF2(x). We view RF1 as an (1/qS + 1)-biased random
function similar to the biased coin used by Coron [20], i.e., Pr[RF1(x) = 0] =
1/(qS + 1), where qS is the number of signature queries issued by the adversary.
This is similar to RSA-FDH discussed above.

RGen: Given an CDH instance (G,GT , p, e, g,X, Y ), RGen returns (simpk , simsk) =
((g, u), (g,X, Y, u, r)) with u = X · gr and r $←− Zp.

RHashRF(·): Given simsk = (g,X, Y, u, r) and x, RHash computes c = RF1(x)
and b := RF2(x), and returns Y 1−c · gb.

RSignRF(·): Given simsk = (g,X, Y, u, r) and m, RSign outputs a signature σ =
ub ·grb with b = RF2(m) if RF1(m) = 0. Otherwise, the reduction aborts and
terminates by outputting the failure symbol ⊥.

RExtractRF(·): Given simsk = (g,X, Y, u, r) and (m∗, σ∗), RExtract outputs a
solution ρ = σ∗

Y r·ub·grb . Note that by definition RCDH runs RExtract only if

Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ 6= RSign(simsk ,m∗). The validity of the
signature implies that (σ∗)e = RHash(simsk ,m∗) and since we have σ∗ 6=
RSign(simsk ,m∗), we also know that RF1(m∗) = 0.

Note that the construction can be easily adapted to an asymmetric pairing
e : G1×G2 → GT , by applying the isomorphism ψ : G2 → G1 to ensure that the
values are in the right groups.

Reduction RCDH is a (`, 0)-canonical reduction for BLS with loss ` = exp(1) ·
(qS + 1), it runs in time

LocalTime(RACDH) ≈ LocalTime(A) + Time(Sig.Vrfy)

+ (2 · qH + qS + 1) ·Time(RF),
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and requires memory

LocalMem(RACDH) = LocalMem(A) + Mem(RF) + Mem(Sig.Vrfy) + 4.

Now, we can use Theorem 10 to lift the security of BLS to the multi-challenge
in a memory-tight way. To this end, we can construct a reduction R′CDH from
msEUF-CMA1 security of BLS to the CDH assumption as presented in the proof
Theorem 10. This supplies that we can construct an adversary D such that

AdvNICAΛCDH,λ
((R′CDH)A

′
) ≥ AdvmsEUF-CMA1

BLS (A′)
exp(1) · (qS + 1)

− AdvPRF-secPRF (D)

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × Zp is a keyed function. Moreover, it
holds that

LocalTime((R′CDH)A
′
) ≈ LocalTime(A′) + Time(RGen)

+ (qS + qF + 2qH) ·Time(PRF) + qF ·Time(Sig.Vrfy)

LocalMem((R′CDH)A
′
) = LocalMem(A′) + 5 + Mem(Sig.Vrfy) + Mem(PRF).

Thus, the reduction R′CDH is a memory-tight, but not work-factor-tight,
reduction from msEUF-CMA1-security to the CDH assumption. As BLS is a
unique signature scheme as RSA-FDH, one-signature-per-message security im-
plies many-signatures-per-message security.

Similarly to RSA-FDH, we can define a variant BLS+ by applying the tech-
nique by Katz and Wang [46] and sign the message with a uniformly chosen bit
to achieve work-factor tightness. This extension works exactly as for RSA-FDH.
We refer to the discussion of RSA-FDH+ above.
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