
Noname manuscript No.
(will be inserted by the editor)

Efficient Number Theoretic Transform
Implementation on GPU for Homomorphic
Encryption

Özgün Özerk · Can Elgezen · Ahmet
Can Mert · Erdinç Öztürk · Erkay Savaş

Abstract Lattice-based cryptography forms the mathematical basis for ho-
momorphic encryption, which allows computation directly on encrypted data.
Homomorphic encryption enables privacy-preserving applications such as se-
cure cloud computing; yet, its practical applications suffer from the high com-
putational complexity of homomorphic operations. Fast implementations of
the homomorphic encryption schemes heavily depend on efficient polynomial
arithmetic; multiplication of very large degree polynomials over polynomial
rings, in particular. Number theoretic transform (NTT) accelerates polyno-
mial multiplication significantly and therefore, it is the core arithmetic op-
eration in the majority of homomorphic encryption scheme implementations.
Therefore, practical homomorphic applications require efficient and fast imple-
mentations of NTT in different computing platforms. In this work, we present
an efficient and fast implementation of NTT, inverse NTT (INTT) and NTT-
based polynomial multiplication operations for GPU platforms. To demon-
strate that our GPU implementation can be utilized as an actual accelerator,
we experimented with the key generation, the encryption and the decryption
operations of the Brakerski/Fan-Vercauteren (BFV) homomorphic encryption
scheme implemented in Microsoft’s SEAL homomorphic encryption library on
GPU, all of which heavily depend on the NTT-based polynomial multiplica-
tion. Our GPU implementations improve the performance of these three BFV
operations by up to 141.95×, 105.17× and 90.13×, respectively, on Tesla v100

GPU compared to the highly-optimized SEAL library running on an Intel
i9-7900X CPU.

Keywords Lattice-based Cryptography · Homomorphic Encryption · SEAL ·
Number Theoretic Transform · Polynomial Multiplication · GPU · CUDA

This work is supported by TÜBİTAK under Grant Number 118E725.

Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, E. Savaş
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
E-mail: {ozgunozerk, celgezen, ahmetcanmert, erdinco, erkays}@sabanciuniv.edu

2 Özgün Özerk et al.

1 Introduction

Lattice-based cryptography is conjectured to be secure against attacks from
quantum computers and thus supports post-quantum cryptography (PQC).
Also, it provides the mathematical basis for fully homomorphic encryption
(FHE) schemes, as demonstrated by Gentry in 2009 [20]. FHE allows com-
putation on the encrypted data requiring neither decryption nor secret key,
and therefore, enables secure processing of sensitive data. FHE offers a va-
riety of applications ranging from private text classification to secure cloud
computing [2].

Since Gentry’s breakthrough, homomorphic encryption has gained tremen-
dous amount of attention and different homomorphic encryption schemes are
proposed in the literature such as Brakerski-Gentry-Vaikuntanathan (BGV) [12],
Brakerski/Fan-Vercauteren (BFV) [18] and Cheon-Kim-Kim-Song (CKKS) [14].
There are also various efforts for developing their practical implementations.
As such, there are different open-source and highly optimized software libraries
such as SEAL [39], HElib [24] and PALISADE [34] for homomorphic encryp-
tion and computation. The SEAL library is developed by Microsoft Research
and it supports the BFV and the CKKS schemes. HElib supports the BGV
and the CKKS schemes while PALISADE supports the BGV, the BFV and
the CKKS schemes.

Although the potential applications of FHE are of groundbreaking nature,
its high algorithmic complexity is a standing impediment for efficient and
practical implementations thereof. Among different core arithmetic operations
in various FHE schemes, multiplication over polynomial rings is probably the
most time-consuming. Therefore, there are different methods in the literature
proposed for the efficient implementation of multiplication of two very large
degree polynomials over polynomial ring Rq,n, where n and q represent the
degree of polynomials in the ring and coefficient modulus, respectively. The
Toom-Cook [42] or Karatsuba [25] multiplications have been methods in use
for a long time and generally utilized in schemes with polynomial rings, for
which NTT is not suitable [31]. NTT-based polynomial multiplication is, on the
other hand, highly utilized in lattice-based cryptosystems and it reduces the
O(n2) computational complexity of the schoolbook polynomial multiplication
to O(n · log n) [15].

Although utilizing NTT improves the performance of polynomial multipli-
cation operation, it is still inefficient for real life applications. Therefore, there
are different NTT-based polynomial multiplication implementations proposed
in the literature for efficient and practical lattice-based cryptosystems on dif-
ferent platforms: hardware architectures [37,32,41,36], software implementa-
tions [40,24,1,39], and implementations on GPUs [16,3,6,4,28,22,27,23,44,
5]. There are also hybrid approaches combining NTT-based and Karatsuba
multiplication methods for the polynomial multiplication operation [7]. The
NTT-based polynomial multiplication operation can be performed for a range
of parameters n and q in different applications. For example, FHE applica-
tions require usually large n and q parameters while PQC utilizes smaller

Title Suppressed Due to Excessive Length 3

parameters. Therefore, an efficient implementation of NTT-based polynomial
multiplication requires flexibility of supporting both FHE and PQC in addition
to offering high-performance.

With a similar motivation of the works in the literature, we propose efficient
NTT, INTT and NTT-based polynomial multiplication implementations on
GPU in this work. The proposed implementations on GPU support a wide
range of polynomial rings. The proposed implementations can perform a single
NTT and INTT operations in 39µs and 23µs, respectively, for the largest ring
with n = 32768 and log2(q) = 61 in Tesla V100 GPU including overhead of
kernel calls.

In order to show that the proposed GPU implementations can be useful as
actual accelerators in the homomorphic encryption schemes, for proof of con-
cept, the proposed implementations are utilized to implement and accelerate
the key generation, the encryption and the decryption operations of the BFV
homomorphic encryption scheme on GPU.

For a quick recap, our contributions are listed as follows:

1. We present high-performance and efficient GPU implementations for NTT,
INTT and NTT-based polynomial multiplication operations. The proposed
GPU implementations support polynomials of degrees ranging from 2048
to 32768 with 30-bit and 61-bit coefficients1. We run the implementations
on three different GPU platforms, Nvidia GTX 980, Nvidia GTX 1080,
Nvidia Tesla V100; and a single NTT operation for polynomials of degree
32768 with 61-bit coefficients is performed in 73µs, 36µs, 39µs on Nvidia
GTX 980, Nvidia GTX 1080 and Nvidia Tesla V100, respectively.

2. In order to parallelize the NTT and INTT operations on GPU, we modi-
fied their algorithmic structures significantly, which consist of three nested
for loops and removed the dependencies in between as much as possible.
A GPU block can process a block of 2048 array elements in NTT oper-
ation and our implementations benefit from the fast shared memory for
polynomials of moderate degrees (i.e., n = 8192 for 30-bit modulus and
n = 4096 for 61-bit modulus). For larger polynomial degrees, global mem-
ory is used. To support large polynomial degrees in our implementations,
we propose a hybrid approach, whereby we make a separate kernel call for
each NTT iteration when the NTT block is large; but as soon as the NTT
block becomes sufficiently small we switch to a different working mode, in
which the rest of the NTT iterations are completed in a single kernel call.
The hybrid approach achieves up to 9× speed up for different polynomial
degrees compared to baseline design, which performs log2(n) kernel calls
for one NTT operation.

3. The key generation, encryption and decryption operations of the BFV
scheme are fully implemented on GPU and, compared to the BFV im-
plementation on Microsoft’s SEAL library running on an Intel i9-7900X
CPU; and we observed up to 60.31×, 43.84×, 33.89× speed-up values on
Nvidia GTX 980; 56.07×, 40.85×, 25.05× speed-up values on Nvidia GTX

1 A sample code is available at https://github.com/SU-CISEC/gpu-ntt

4 Özgün Özerk et al.

1080; and 141.95×, 105.17×, 90.13× speed-up values on Nvidia Tesla V100,
for key generation, encryption and decryption operations, respectively.

4. Since key generation and encryption operations of the BFV scheme require
random polynomials from uniform, ternary and discrete Gaussian distribu-
tions, we also introduced an implementation of random polynomial sampler
for these distributions on GPU. We utilized Salsa20 implementation [21]
for pseudo-random number generation for uniform distribution and inverse
cumulative standard distribution function normcdfinvf in CUDA Math
API.

The rest of the paper is organized as follows. Section 2 presents the nota-
tion, the background on NTT and polynomial multiplication operations and
summarizes prior works in the literature. Section 3 introduces SEAL library.
Section 4 presents the proposed GPU implementations. Section 5 presents the
results and Section 6 concludes the paper.

2 Background

In this section, we present the notation used in the rest of the paper, brief
descriptions of NTT, INTT, polynomial multiplication operations, structure
of GPUs and prior works in the literature.

2.1 Notation

The ring Zq consists of the set of integers {0, 1, . . . , q − 1}. Let the polyno-
mial ring Rq = Zq[x]/φ(x) represent all the polynomials reduced with the
irreducible polynomial φ(x) with coefficients in Zq. When φ(x) is in the form
(xn + 1), the polynomial ring Zq[x]/(xn + 1) is represented with Rq,n, which
consists of polynomials of degree at most (n − 1) with coefficients in Zq. For
example, R17,32 = Z17[x]/(x32 + 1) represents the polynomials of degree at
most 31 with coefficients in Z17.

A polynomial a(x) =
∑n−1
i=0 ai · xi in Rq,n can also be represented as a

vector over Zq, a = [a0, a1, . . . , an−1], where i represents the position of the
coefficient such that 0 ≤ i < n. Similarly, we use a[i] to represent the coefficient
of polynomial a at position i. Throughout the paper, we represent an integer
and a polynomial with regular lowercase (e.g. a) and boldface lowercase (e.g.
a), respectively. Vectors in NTT domain are represented with a bar over their
symbols. For example, a represents the NTT domain representation of vector
a. Let ·, × and � represent integer, polynomial and coefficient-wise vector
multiplication, respectively. Let (a · b) and (a + b) represent that coefficients
of polynomial a are multiplied and added with integer b, respectively, if one

of the operands is a single integer. Let a ← Rq,n and a
$←− S represent that

the polynomial a is sampled uniformly from Rq,n and from the set S, respec-
tively. Let b.e, d.e, b.c and [.]q represent round to nearest integer, rounding up,
rounding down and the reduction by modulo q operations, respectively. For

Title Suppressed Due to Excessive Length 5

the rest of the paper, q and n represent the coefficient modulus and the degree
of the polynomial ring, respectively.

2.2 Number Theoretic Transform

NTT is defined as discrete Fourier transform (DFT) over the ring Zq and any
efficient DFT algorithm can be adopted as an NTT algorithm. An n-point (pt)
NTT operation transforms an n element vector a to another n element vector
a as defined in Eqn. 1.

āi =

n−1∑
j=0

aj · ωij (mod q) for i = 0, 1, . . . , n− 1. (1)

The NTT calculations involve the constant called twiddle factor, ω ∈ Zq,
which is also defined as the n-th root of unity. The twiddle factor satisfies the
conditions ωn ≡ 1 (mod q) and ωi 6= 1 (mod q) ∀i < n, where q ≡ 1 (mod n).

Similarly, the INTT operation uses almost the same formula as NTT op-
eration as shown in Eqn. 2 except that ω−1 (mod q), which is the modular
inverse of ω in Zq, is used instead of ω and the resulting coefficients need to
be multiplied with n−1 (mod q) in Zq.

ai =
1

n

n−1∑
j=0

āj · ω−ij (mod q) for i = 0, 1, . . . , n− 1. (2)

Applying NTT and INTT operations as in Eqn. 1 and Eqn. 2 leads to
high computational complexity. Therefore, there are many efficient and fast
implementations of NTT operation in the literature [33,16,29,19], constructed
around two very well-known approaches: decimation in time (DIT) and deci-
mation in frequency (DIF) FFTs. The former and latter FFT operations utilize
Cooley-Tukey (CT) and Gentleman-Sande (GS) butterfly structures, respec-
tively [15].

2.3 Number theoretic transform based polynomial multiplication

The multiplication of polynomials a(x) and b(x) can be computed using
schoolbook polynomial multiplication as shown in Eqn. 3. When the polyno-
mial multiplication is performed in Rq, the resulting polynomial c(x) should
be reduced by φ(x).

c(x) = a(x)× b(x) =

n−1∑
i=0

n−1∑
j=i

ai · bj · xi+j (3)

NTT and INTT operations enable efficient implementation of polynomial
multiplication operation by converting the schoolbook polynomial multipli-
cation operation into coefficient-wise multiplication operations as shown in

6 Özgün Özerk et al.

Algorithm 1 Merged In-place NTT Algorithm
Input: a(x) ∈ Rnq in natural-order

Input: ψrev (powers of ψ stored in bit-reversed order where ψrev [k] = ψbr(k) (mod q))
Output: a(x) ∈ Rnq in bit-reversed order
1: t = n
2: for (m = 1; m < n; m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i+ +) do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: for (j = j1; j ≤ j2; j + +) do
8: U = aj
9: V = aj+t · ψrev [m+ i] (mod q)

10: aj = U + V (mod q)
11: aj+t = U − V (mod q)
12: end for
13: end for
14: end for
15: return a

Eqn. 4 where NTT2n and INTT2n represent 2n-pt NTT and 2n-pt INTT oper-
ations, respectively. However, this requires doubling the sizes of input poly-
nomials with zero-padding and there still should be a separate polynomial
reduction operation by φ(x).

c(x) = INTT2n(NTT2n(a(x))� NTT2n(b(x))) mod φ(x) (4)

When the polynomial ring is Rq,n where q ≡ (mod 2n), a technique called
negative wrapped convolution is utilized, which eliminates the need for doubling
the input sizes and the polynomial reduction operation as shown in Eqns. 5-8.

â(x) = [a0, a1, . . . , an−1]� [ψ0, ψ1, . . . , ψ(n−1)] (5)

b̂(x) = [b0, b1, . . . , bn−1]� [ψ0, ψ1, . . . , ψ(n−1)] (6)

ĉ(x) = INTTn(NTTn(â(x))� NTTn(b̂(x))) (7)

c(x) = [ĉ0, ĉ1, . . . , ĉn−1]� [ψ0, ψ−1, . . . , ψ−(n−1)] (8)

However, this requires the coefficients of input and output polynomials to be
multiplied with [ψ0, ψ1, . . . , ψ(n−1)] and [ψ0, ψ−1, . . . , ψ−(n−1)], which are usu-
ally referred as pre-processing and post-processing, respectively. The constant
ψ is called 2n-th root of unity satisfying the conditions ψ2n ≡ 1 (mod q) and
ψi 6= 1 (mod q) ∀i < 2n, where q ≡ 1 (mod 2n).

Roy et al. [38] merged pre-processing and NTT operations by employing
DIT NTT operation utilizing CT butterfly structure, which takes the input in
standard order and produces the output in bit-reversed order. The algorithm
for merged pre-processing and NTT operations are shown in Algorithm 1,
where br(k) function performs bit-reversal on log2(n)-bit input k. We refer
this operation as NTT for the rest of the paper.

Title Suppressed Due to Excessive Length 7

Algorithm 2 Merged In-place INTT Algorithm
Input: a(x)Rnq in bit-reversed order

Input: ψ−1
rev (powers of ψ−1 stored in bit-reversed order where ψ−1

rev [k] = ψ−br(k) (mod q))
Output: a(x) ∈ Rn

q in natural-order
1: t = 1
2: for (m = n; m > 1; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i+ +) do
6: j2 = j1 + t− 1
7: for (j = j1; j ≤ j2; j + +) do
8: U = aj
9: V = aj+t

10: aj = U + V (mod q)

11: aj+t = (U − V) · ψ−1
rev [h+ i] (mod q)

12: end for
13: end for
14: end for
15: return a

In [35], Pöppelmann et al. merged INTT and post-processing operations by
employing DIF NTT operation utilizing the GS butterfly, which takes the input
in bit-reversed order and produces the output in standard order. The algorithm
for merged INTT and post-processing operations are shown in Algorithm 2,
and we refer this operation as INTT for the rest of the paper. Using both
techniques, pre-processing and post-processing operations can be eliminated
at the expense of using two different butterfly structures as shown in Eqn. 9,
which formulates the NTT-based polynomial multiplication.

c = INTTn(NTTn(a(x))� NTTn(b(x))) (9)

For the rest of the paper, we use NTTn and INTTn for representing n-pt merged
NTT and INTT operations, respectively.

2.4 Graphical Processing Unit (GPU)

Inner structures of NTT and INTT algorithms offer opportunities for par-
allelization. An in-depth insight of GPU organization and its fundamental
working principals is of significant importance for understanding the tech-
niques and algorithms suitable for GPU implementation introduced in the
subsequent sections, which take advantage of inherently parallelizable nature
of NTT and INTT algorithms.

While GPUs consist of many more cores than CPUs, GPU cores are sig-
nificantly slower (less powerful) than CPU cores. Thus, GPUs provide us with
a plausible alternative, when it comes to performing overly many, relatively
simple operations. On the other hand, when the operation at hand is complex
and not possible to be partitioned into smaller, concurrently executable parts,
CPU stands always a much better alternative.

8 Özgün Özerk et al.

Fig. 1: Structure of a GPU

Kernel in the context of CUDA is a function that is called by the host
(CPU) to execute on the device (GPU). Kernels run on streams, each of
which can be considered as a single operation sequence. When run on dif-
ferent streams, kernels execute in parallel.

There are three important abstractions in kernels: grid, block, and thread,
which are illustrated in Fig. 1. Hierarchically organized, grids consist of blocks,
which in turn consist of threads. Each grid can contain a certain maximum
number of blocks (actual number varies depending on the GPU model), and
these blocks can be organized inside the grid into 1- or 2-dimensional arrays.
Every block has an ID determined by the number of dimensions. As shown in
Fig. 1, a grid consisting of 12 blocks is organized as an array of 3 rows and 4
columns. The shaded block with ID (2,1) in Fig. 1 indicates that, it is in the
first row and the second column of the grid (in other words, it’s the 6th block).
Similar to grids, blocks can contain a certain maximum number of threads
(again varies depending on the GPU model); and they can be organized into
1-, 2- or 3-dimensions arrays inside the block. Threads in a block also have
indices, which are used to access a specific thread (e.g., the shaded thread in
Fig. 1 has the ID derived from its indices (2, 1, 0)) within the block.

Each block is scheduled on a computational unit, referred as streaming mul-
tiprocessor (SM). After the scheduling, the blocks are then sliced into warps,
each of which consists of 32 threads. A SM then runs the warps in an arbitrary
order determined by the warp-scheduler in the SM.

Global memory is the largest memory partition in GPU, accessible by all
threads. Among other memory alternatives on GPU, communication with the
global memory is the most time-consuming; therefore, access to it should be
substituted with other memory alternatives, if possible. The data stored in the
constant memory is cached, and cannot be changed during the execution of op-
erations. The constant memory is significantly faster than the global memory.
The assignment of each block to SM allows another alternative in the memory
hierarchy, the shared memory. Unlike constant memory, shared memory can
be modified during execution. It is again faster than the global memory, but
only accessible by the threads within the same block. In other words, a thread

Title Suppressed Due to Excessive Length 9

Table 1: Memory hierarchy inside GPU

Memory Type
A thread can
Read Write

Global Memory X X
Texture Memory X -
Constant Memory X -
Shared Memory (of its block) X X
Shared Memory (of another block) - -
Registers of other threads (in another warp) - -
Registers of other threads (in the same warp) X -
Registers of itself X X

cannot access other blocks’ shared memories. Registers are the fastest, yet
smallest storage units, which are private to the threads. A thread can neither
read or write other thread’s registers. The only exception is that threads can
read each others’ registers only if they are in the same warp. All these details
pertaining to memory access rights are summarized in Table 1.

2.5 Prior Works

Efficient implementations of NTT and NTT-based polynomial multiplication
operations for various platforms (GPU, FPGA, CPU) and applications (PQC,
FHE) have been studied in the literature. GPUs offer a wide variety of op-
timizations for efficient implementations and they are profitably utilized for
accelerating intrinsically parallelizable operations. Moreover, some works in
the literature employ more than one GPU by adapting their designs to take
advantage of larger degree of parallelism offered by multiple GPUs. For in-
stance, Badawi et al. [5] provided the performance evaluation results of their
implementation for a variant of the BFV scheme on such multi-GPU design.
Another strategy is to take advantage of the memory hierarchy in GPUs.
Overall speed of execution can be significantly improved by utilizing faster
memory types that are located on the higher part of memory hierarchy (i.e.,
shared) and reducing the communication with global memory [16,44]. Goey et
al. [22] proposed a GPU accelerator for NTT operations utilized in FHE ap-
plications. Besides very-well known strategies for optimizing memory access in
GPUs, they also utilized warp shuffle, which allows threads in the same warp
to read from each others registers. This enables faster data access than both
global and shared memories [22]. Lee et al. [27] proposed a method to improve
the performance of NTT by eliminating the recursive part of the Nussbaumer
algorithm with nega-cyclic convolution, along with the optimizations on the
non-coalesced memory access pattern. Lee et al. focused on mitigating the
warp divergence problem of the NTT operation and they utilized NTT op-
eration in qTESLA, which is a lattice-based post-quantum digital signature
scheme [28]. In [23], Gupta et al. proposed a GPU accelerator for PQC schemes
NewHope and Kyber with an efficient implementation of NTT. In [26], Kim

10 Özgün Özerk et al.

et al. analyzed and improved the performance of NTT operation by intro-
ducing on-the-fly twiddle factor generation for FHE schemes. Dai et al. [16]
proposed cuHE, which is a complete homomorphic encryption library written
with CUDA for GPU platforms, creating a solid reference point for future
works. Our proposed GPU implementations are compared with these works in
Section 5.

3 Microsoft’s SEAL Homomorphic Encryption Library [39]

The SEAL homomorphic encryption library is recently developed by Cryptog-
raphy Research Group at Microsoft Research, which enables fast and efficient
homomorphic applications for a variety of applications ranging from private
information retrieval to secure neural network inference [8,13]. SEAL supports
two homomorphic encryption schemes, BFV and the CKKS, for implementing
homomorphic operations, where the former works with integers while the lat-
ter enables homomorphic arithmetic using real numbers. Since, in this work,
we utilize the proposed GPU implementation for accelerating the operations
of the BFV scheme, details of the CKKS scheme will not be presented in this
section.

3.1 BFV Homomorphic Scheme

BFV [18] is a homomorphic encryption scheme proposed by Fan et al., which
extends Brakerski’s construction [11]. It is based on ring learning with errors
(RLWE) problem [30] and it involves intensive polynomial arithmetic. Let the
plaintext and ciphertext spaces be Rt,n and Rq,n, respectively, for some in-
teger t > 1, where neither q nor t has to be prime. Suppose ∆ = bq/tc and
let χ represent discrete Gaussian distribution. Also, while the symbol ← rep-

resents random sampling from uniform distribution,
$←− χ stands for sampling

from the distribution χ. Key generation, encryption and decryption operations
described in the textbook-BFV scheme are shown below.

– Key Generation: s ← R2,n, a ← Rq,n and e
$←− χ,

sk = s, pk = (p0, p1) = ([−(a× s+ e)]q, a).

– Encryption: m ∈ Rt,n, p0,p1 ∈ Rq,n, u ← R2,n and e1, e2
$←− χ,

ct = (c0, c1) = ([m ·∆+ p0 × u+ e1]q, [p1 × u+ e2]q).

– Decryption: c0, c1 ∈ Rq,n and sk ∈ R2,n,

m = [b tq [c0 + c1 × s]qe]t.

Title Suppressed Due to Excessive Length 11

3.2 Residue Number System (RNS)

For homomorphic computation, an operation is first expressed as a logic or
arithmetic circuit. Homomorphic encryption applications are practical only
if the multiplicative depth of the circuit, which is to be homomorphically
evaluated, is not very high. For example, private information retrieval from a
table of 65536 entries [37], which requires a multiplicative depth of at least
4, is reasonably fast when implemented using homomorphic encryption. More
complicated homomorphic operations result in larger values of n and q due to
the increased depth of the circuit.

Efficient arithmetic with large values of the modulus q is very challenging.
Therefore, Residue Number System (RNS) enabling parallelism at algorithmic
level for modular integer arithmetic is frequently utilized in the implementa-
tions of homomorphic encryption schemes. In RNS, a set of coprime moduli
qi is used such that

q =

r−1∏
i=0

qi,

where r is the number of moduli used. Using RNS, arithmetic operations
modulo q (and thus on Rq) can be mapped into operations on smaller qi
values (or Rqi), which can be performed in parallel. For example, a large 109-
bit modulus can be constructed using 3 smaller moduli of sizes 36-bit, 36-bit
and 37-bit. The RNS arithmetic requires conversion of a larger integer a in q to
smaller integers, ai = a mod qi, in moduli qi. Reconstruction of a from integers
ai in moduli qis via Chinese Remainder Theorem (CRT) can be performed as

a =

r−1∑
i=0

ai ·Mi ·mi (mod q),

where Mi = (q/qi) and mi = M−1
i (mod qi) for i = 0, . . . , r − 1 .

The SEAL library utilizes RNS and implements its arithmetic operations
slightly different than the textbook-BFV, where polynomial arithmetic can be
performed in parallel for each modulo qi [9]. We also use the same approach
in our GPU implementation since RNS enables leveraging the parallelism sup-
ported in GPU architecture. For the rest of the paper, a polynomial a in
Rq,n with q =

∏r−1
i=0 qi will be represented as the array of ai in Rqi,n for

i = 0, 1, . . . , r − 1.

3.3 Implementation of Homomorphic Operations in SEAL Library

The full RNS implementations of key generation, encryption and decryption
operations in SEAL are based on Algorithms 3, 4 and 5, respectively. Key gen-
eration and encryption operations of SEAL require random polynomials. To
this end, SEAL utilizes three different distributions, (i) ternary distribution in
R2,n, (ii) uniform distribution in Rq,n, (iii) discrete Gaussian distribution χ

12 Özgün Özerk et al.

Algorithm 3 Implementation of Key Generation Operation in SEAL

Output: si ∈ Rq,n, pi0,p
i
1 ∈ Rqi,n for 0 ≤ i < r

1: s← R2,n . Secret key generation
2: for (i = 0; i < r; i = i+ 1) do
3: si = NTTn(s) . Operations in Rqi,n
4: end for

5: e
$←− χ . Public key generation

6: for (i = 0; i < r; i = i+ 1) do
7: ai ← Rqi,n . Already in NTT domain
8: pi0 = [−(ai � si + NTTn(e))]qi . Operations in Rqi,n
9: pi1 = ai

10: end for
11: return s,p0,p1

Algorithm 4 Implementation of Encryption Operation in SEAL

Input: m ∈ Rt,n, pi0,p
i
1 ∈ Rnqi for 0 ≤ i < r

Output: ci0, c
i
1 ∈ Rqi,n for 0 ≤ i < (r − 1)

1: e1, e2
$←− χ

2: u← Rq,n
3: for (i = 0; i < r; i = i+ 1) do
4: ui = NTTn(u) . Operations in Rnqi
5: ci0 = INTTn([pi0 � ui + e1]qi) . Operations in Rnqi
6: ci1 = INTTn([pi1 � ui + e2]qi) . Operations in Rnqi
7: end for
8: for (i = 0; i < (r − 1); i = i+ 1) do
9: t0 = [cr−1

0 · b qr−1

2
c]qi

10: t1 = [cr−1
1 · b qr−1

2
c]qi

11: ci0 = [(ci0 − t0 + b qr−1

2
c) · q−1

r−1]qi
12: ci1 = [(ci1 − t1 + b qr−1

2
c) · q−1

r−1]qi
13: end for
14: for (j = 0; j < n; j = j + 1) do . Add m to c0

15: f =
m[j]·(q (mod t))+b t+1

2
c

t
16: for (i = 0; i < r − 1; i = i+ 1) do
17: ci0[j] = [ci0[j] + (m[j] · qi

t
+ f)]qi . Operations in Rnqi

18: end for
19: end for
20: return c0, c1

with 0 mean and relatively small standard deviation σ. Besides, all three op-
erations utilize polynomial arithmetic. The key generation operation requires
2r NTT and r coefficient-wise multiplications of two vectors. The encryption
operation requires r NTT, 2r INTT and (6r − 3) coefficient-wise multiplica-
tions of two vectors. The decryption operation requires (r − 1) NTT, (r − 1)
INTT and (3r − 1) coefficient-wise multiplications of two vectors.

In order to find out the most time-consuming operations in key generation,
encryption and decryption operations of the SEAL implementation, their tim-
ing breakdowns for different parameter sets are obtained on an Intel i9-7900X
CPU running at 3.30 GHz × 20 with 32 GB RAM using GCC version 7.5.0

in Ubuntu 16.04.6 LTS, using SEAL version 3.5 and shown in Table 2.

Title Suppressed Due to Excessive Length 13

Algorithm 5 Implementation of Decryption Operation in SEAL

Input: si ∈ Rqi,n, ci0, c
i
1 ∈ Rqi,n for 0 ≤ i < (r − 1), γ where γ > q and gcd(γ, q) = 1

Output: m ∈ Rt,n
1: for (i = 0; i < (r − 1); i = +1) do
2: mti = INTTn(NTTn(ci1)� si) . Operations in Rqi,n
3: mti = [mti + ci0]qi . Operations in Rqi,n
4: end for
5: for (i = 0; i < (r − 1); i = i+ 1) do . Convert from base q to base (t, γ)
6: mti = [mti · (t · γ)]qi · q−1

7: end for
8: for (j = 0; j < 2; j = i+ 1) do . mod[t, γ]0 = t and mod[t, γ]1 = γ
9: for (k = 0; k < n; k = k + 1) do

10: acc = 0
11: for (i = 0; i < (r − 1); i = i+ 1) do
12: acc = (acc+mti[k] · q) mod [t, γ]j
13: end for
14: mtγj [k] = acc mod [t, γ]j
15: end for
16: end for
17: mtγ0 = [mtγ0 · (−q)−1]t . Divide polynomial by (−q) in Zt
18: mtγ1 = [mtγ1 · (−q)−1]γ . Divide polynomial by (−q) in Zγ
19: for (i = 0; i < n; i = i+ 1) do
20: if mtγ1[i] > γ

2
then

21: m[i] = [mtγ1[i] + γ −mtγ0[i]]t
22: else
23: m[i] = [mtγ1[i]−mtγ0[i]]t
24: end if
25: end for
26: m = [m · γ−1]t
27: return m

Table 2: Timing breakdown of arithmetic operations in key generation, en-
cryption and decryption operations in terms of percentage (%)

Operation
(2048,54,1) (8192,218,5) (32768,881,16)
Key Enc Dec Key Enc Dec Key Enc Dec

PA 10.5 13.8 49.8 25.7 43.2 73.6 32.2 59.1 74.2
← R2,n 19.1 12.5 – 6.2 6.4 – 3.9 4.7 –
$←− χ 35.8 67.0 – 16.4 37.8 – 7.5 18.8 –
← Rq,n 23.9 – – 49.2 – – 53.9 – –
Other 10.7 6.7 50.2 2.5 12.6 26,4 2.5 17.4 25.8

PA: Polynomial Arithmetic; Key: Key Generation; Enc: Encryption; Dec: Decryption.

The results are obtained for three parameter sets targeting 128-bit security
(n, log2(q), r) ∈ {(2048, 54, 1) , (8192, 218, 5) , (32768, 881, 16)} with t = 1024.
As shown in Table 2, the percentage of polynomial arithmetic in overall exe-
cution times increases as polynomial degree n and ciphertext modulus q are
increased. For n = 32768 and log2(q) = 881, polynomial arithmetic constitutes
32.2%, 59.1% and 74.2% of the execution time for key generation, encryption
and decryption operations, respectively.

14 Özgün Özerk et al.

4 Proposed Implementation

In this section, we will discuss the design of the proposed GPU implemen-
tations and the optimizations thereof, in a bottom-up fashion. We will start
from efficient modular reduction operation implementation, then describe the
NTT implementation and the optimizations. Finally, we will present GPU im-
plementations of key generation, encryption and decryption operations of the
BFV scheme.

Our proposed GPU implementations comes in two versions. The first ver-
sion supports modular arithmetic with modulus up to 30-bit while the second
does up to 61-bit modulus. For the rest of the paper, the implementations
with 30-bit and 61-bit coefficient modulus q are referred as 30-bit and 61-bit
designs, respectively. The proposed GPU implementations support polynomi-
als of degrees ranging from 2048 to 32768 where polynomial degree is power
of two.

4.1 Barrett Reduction Algorithm and 128-bit Unsigned Integer Library

Algorithm 6 Barrett Reduction Algorithm for Modular Multiplication

Input: a, b < q, w = K = dlog2(q)e, µ = b 2
2K

q
c

Output: c = a · b mod q
1: t← a · b
2: s← b t·µ

22w
c . s← (t · µ)� 2w (i.e. right shift by 2w bits)

3: r ← s · q
4: c← t− r
5: if c ≥ q then
6: return c− q
7: else
8: return c
9: end if

In NTT, INTT and polynomial multiplication operations, there is a sub-
stantial number of multiplications in modulo q, which take a considerable
amount of time. Therefore, a lightweight and efficient modular reduction algo-
rithm is essential to have high performance implementation. As our modular
reduction algorithm, we chose Barrett reduction [10].

The Barrett reduction algorithm replaces the division in reduction op-
eration with multiplication, shift and subtraction operations, which are all
significantly faster than the division operation, as shown in Algorithm 6. Bar-
rett reduction calculates c = a · b modulo q by approximation. For a modulus
of bit-length K, when the number to be reduced has bit-length of L, where
0 ≤ L ≤ 2K, this approximation becomes exact. Keeping that property in
mind, it can be observed that the coefficients of the polynomials in Rq,n are
all smaller than the coefficient modulus, q. When two coefficients are mul-
tiplied, the result is guaranteed to have a bit-length that is smaller than or

Title Suppressed Due to Excessive Length 15

equal to 2K. Thus, the Barrett reduction algorithm always returns the correct
results in our case. For a modulus q, the algorithm requires a precomputed
value, µ defined as

µ = b2
2w

q
c, (10)

where w is takes as bit-length of modulus, K.
For the Barrett algorithm to fit better into GPU design, here, we tweak

the original Barrett reduction in Algorithm 6. The original Barrett reduction
algorithm multiplies the result of a · b by µ (see Step 2 of Algorithm 6), which
can lead to integer variables as long as 3K-bits in bit length during the com-
putation. In our 30-bit and 61-bit designs, this generates an integer as large as
90-bits and 183-bits, respectively. Storing and performing operations on these
integers are demanding, especially on GPU resources. Therefore, to reduce
the size of the integers obtained after these operations down to a maximum of
2K-bit, we divide the right shift operation by 2w as shown in Step 2 of Algo-
rithm 6 into two separate (w− 1) and (w+ 1) right shift operations as shown
in Steps 2 and 4 of Algorithm 7, respectively. The first right shift operation is
performed after the multiplication a · b, where the result gets right shifted by
(w− 1). The second right shift operation is performed after the multiplication
with µ, where the result gets right shifted by (w + 1). Using a modulus q of
at most 61-bits, by this tweak it is guaranteed that the intermediate values
will be below or equal to 2K = 122 bits, which saves memory and improves
the performance. In Algorithm 7, we present the modified Barrett reduction
algorithm optimized for GPU implementation.

Algorithm 7 Barrett Modular Multiplication Optimized for in GPU

Input: a, b < q, w = K = dlog2(q)e, µ = b 2
2K

q
c

Output: c = a · b mod p
1: t← a · b
2: x1 ← t� (w − 2)
3: x2 ← x1 · µ
4: s← x2 � (w + 2)
5: r ← s · q
6: c← t− r
7: if c ≥ q then
8: return c− q
9: else

10: return c
11: end if

Next, for our 61-bit design, we need a way to store unsigned integers up
to 128-bits. To that end, we develop a 128-bit unsigned integer library and
overload all the arithmetic, logic and binary operators, with a focus on speed.
A 128-bit unsigned integer is represented by two 64-bit unsigned integers,
which are naturally supported by CUDA and C/C++. One integer represents
the least significant 64 bits while the other integer represents most significant

16 Özgün Özerk et al.

64 bits. During the computations, a multiplication of two 64-bit unsigned in-
tegers and subtraction of two 128-bit unsigned integers from each other are
performed. These operations are coded using the PTX inline assembly feature
of CUDA for the maximum possible speed. PTX enables inserting pseudo as-
sembly code in a higher level language such as C/C++ provides features that
are unavailable otherwise such as setting and using the carry bits. Therefore,
multiplication and subtraction operations written in PTX compile into fewer
number of instructions than those written in C/C++. Indeed, integer multi-
plication operation written using PTX shows slightly better performance than
Nvidia’s intrinsic funtion for multiplication umul and its derivatives.

4.2 NTT Implementation on GPU

As shown in Algorithm 1, the NTT operation is performed with 3 nested for
loops. If for loops are unrolled, it can be seen that an n-pt NTT operation
actually consists of log2(n) iterations and there are (n/2) butterfly operations
in each iteration. Iterations of the NTT operation for a toy example (i.e.,
n = 8) are depicted in Fig. 2, where the box with the letter B illustrates the
butterfly operation and the box with powers of ψ shows the particular power of
the 2n-th root of unity used in the corresponding iteration. During execution,
results are read from and written back to the same input array a, which is called
in-place computation. Since n = 8 in Fig. 2, there are log2(8) = 3 iterations
and 4 butterfly operations in each iteration. Note that the NTT blocks are
halved after each iteration. Our INTT algorithm can be visualized to work in
a similar way; but the order of the butterfly operations are somewhat reversed.

Fig. 2: Visualization of NTT operation for n=8

The challenge in implementing the NTT/INTT algorithms in GPU is to
assign the threads efficiently to achieve high utilization. For the best perfor-
mance, all the threads should be busy, and the workload of each thread should
be equivalent. From Fig. 2, for every butterfly operation, B, in each iteration,

Title Suppressed Due to Excessive Length 17

Algorithm 8 Scheduling of Array Elements to Threads in GPU for NTT
Algorithm
1: for (length = 1; length < n; length = 2 · length) do
2: tid = Global index of thread in GPU
3: step = (n/length)/2
4: psi step = tid/step
5: target idx = (psi step · step · 2) + (tid mod step)
6: step group = length + psi step

7: psi = psis[step group]
8: U = a[target idx]
9: V = a[target idx + step]

10: . Thread assignment is completed at this point
11: . Every thread has its corresponding U, V and psi values
12: end for

two elements of the array a are used together (see also Steps 10 and 11 of
Algorithm 1). Thereby, we elect to use only one GPU thread for two elements
of array a. Algorithm 8 shows how one thread is scheduled for each butterfly
operation with two array elements. From Steps 2-8 of Algorithm 8, we can
observe that each thread obtains the necessary values for performing one but-
terfly operation; namely two elements of the array a and the corresponding
power of ψ.

Fig. 3 illustrates how the array elements are assigned to threads in Algo-
rithm 8 for the example when n = 8. Also, it shows the role of each variable
defined in Algorithm 8. In Fig. 3, the array psis, which holds the powers of
ψ, and its indices psi step defined in Algorithm 8 are shown with boxes with
solid edges. The boxes with dashed edges indicate the array elements using the
same power of ψ. The array elements in the same dashed box form the step
group, whose index is kept in the variable step group. After each iteration,
the number of step groups doubles, and the variable length keeps track of
the number of such boxes. In the step groups, the numbers on the left and on
the right stand for the indices of the array elements in Step 8 and Step 9 of
Algorithm 8, respectively. The variable step is used to determine the second
element of the array a that is assigned to the same thread. In summary, using
the variables step and length, a thread can easily find out the array elements
to process in every iteration independently. For example, in the second iter-
ation, where both length and step are 2, the first two array elements are
assigned to the first two threads; and we use the variable step to find the two
consecutive elements of the array a (here a[2] and a[3]) that will be assigned
to the first two threads. The elements in the dashed box below are processed
in an identical way.

Also, each thread uses the step group variable to keep track of its step
group in each iteration and use it to access the correct element of the array
psis. For example, in the second iteration in Fig. 3, the first and second step
groups consists of array elements with indices 0,1,2,3 and those with indices
4,5,6,7, respectively.

18 Özgün Özerk et al.

Fig. 3: GPU thread assignment for n = 8

The target idx variable is used by a thread to compute the index of the
first array element to be processed by that thread in each iteration (see Step 5
of Algorithm 8 for its computation). The thread first computes the number of
array elements in the previous step groups for that iteration (psi step ·step ·
2), which yields the first array element in its step group. Then, the thread uses
its own id to find out the array element that it will process in that iteration.

Note that Algorithm 8 illustrates thread scheduling when the dimension of
the input array is at most 2048 as we use one GPU thread per two elements of
the array a and majority of the current GPU technologies do not support hav-
ing more than 1024 threads per block to the best of our knowledge. Therefore,
all threads in a GPU block performs the same steps in Algorithm 8. Never-
theless, handling an array with more than 2048 elements can be challenging
and different approaches are possible. Here, we partition the array into groups
of 2048 elements and use multiple GPU blocks to process them in different
iterations of NTT computation.

4.2.1 Optimizations of Memory Usage and Kernel Calls

Efficient use of GPU memory hierarchy plays a significant role in the overall
performance of our implementations. Coefficients of the input polynomial (ar-
ray a) and different elements of the array psis are being constantly reached,
rendering the memory access patterns a crucial part of the optimization pro-
cess. The most basic and direct solution would be utilizing the global memory;
however, this also would possibly lead to the worst performance.
Utilizing Shared Memory: Since we process the elements of the array a in
GPU blocks, shared memory offers the best alternative for the threads that are
located in the same block. The critical part here is that every element of the
array psis is being accessed only once per block. Thereby, copying its elements
into shared memory would carry no benefit. On the other hand, the elements
of a are accessed more than once during the computation of NTT/INTT; in

Title Suppressed Due to Excessive Length 19

(a) with single iteration (b) with multiple iterations

Fig. 4: Single-kernel synchronization for n=212

fact, log2(n) times, to be precise. Instead of making log2(n) requests to global
memory for a single element, we can make only one request to global memory
for copying an element of a to shared memory, and then access shared memory
log2(n) times for it.

4.2.2 Hybrid Approach for Kernel Calls

We also investigate alternative methods for kernel calls. Essentially, we con-
sider two alternatives: i) in single-kernel approach we call a kernel once
for the computation of NTT/INTT of the whole array (resulting in a total of
log2(n) iterations in a single-kernel call); and ii) in multi-kernel approach
we call a kernel for every iteration for the computation of NTT/INTT op-
eration (resulting in a total of log2(n) kernel calls). Both approaches have
their advantages and disadvantages. For smaller sized arrays, single-kernel ap-
proach provides better results. However, for larger array sizes (from n = 214 to
n = 216, which is determined experimentally on the GPUs used in this study),
a multi-kernel approach is advantageous.

In Fig 4, the principle of the our single-kernel approach is explained. The
boxes with circular arrow symbols represent the operation, in which a GPU
block of 1024 threads processes 2048 elements of the array a. We have two
alternatives for scheduling of array elements to GPU blocks. In the first alter-
native, every GPU block processes 2048 elements of a concurrently as shown
in Fig 4a. However, due to the dependencies shown with arrows connecting
the boxes in Fig. 4a, a synchronization mechanism is needed for GPU blocks
to wait for each other before progressing into the next iteration. Otherwise,
race-conditions may occur and lead to wrong results. But, if we assign a group
of consecutive step × 2 elements of a to the same GPU block as shown in
Fig. 4b, then no GPU block needs to wait for other GPU blocks processing
the other parts of the array a. This solution however, exploits limited paral-
lelism offered by the GPU block itself. Multi-kernel approach, on the other
hand, can benefit from parallelism beyond the limitation of the single kernel
approach.

In the multi-kernel approach, we schedule n/2048 GPU blocks for every
kernel call, all of which operate concurrently. Consequently, the multi-kernel

20 Özgün Özerk et al.

approach can perform better when the array size is sufficiently large. But, every
call to kernel incurs certain overhead that results in worse performance than
the single-kernel approach for smaller sized arrays. Fully utilizing the potential
of parallelism due to multiple kernel calls while reducing the call overhead in
an optimal way, we develop the so-called hybrid approach, in which, we start
with the multi-kernel approach, but switch to the single-kernel approach when
the step groups have fewer number of array elements.

We illustrate the hybrid approach for an array of size n = 215 in Fig. 5
for 61-bit design. In the leftmost column, we make a kernel call, whereby
each of 16 block operates on separate 2048 elements of array a, in parallel.
We make two more kernel calls in the same manner for the second and third
iterations of the NTT computation. Until this point, we adopt the multi-kernel
approach. However, when the number of elements in a step group is 212, we
switch to single kernel approach. Here, a total of eight GPU blocks process
the rest of the iterations on their part of the array in a single kernel call. Note
that when the step group size is 212, the lower and the upper 2048 elements
of the array are processed sequentially. At first, this may seem to be rather
inefficient. Nevertheless, the alternative would be making an additional kernel
call, which brings in the kernel overhead. Then, we can immediately see there
is a trade-off between the overhead and the time incurred due to sequential
processing of two 2048 elements. We experimentally find out that the kernel
call overhead is higher in terms of execution time when the step group size is
212. In other words, the step group size of 212 is the optimal point to switch
from the multi-kernel approach to the single-kernel approach. Note that the
switching point can be different for the INTT operation and for the 30-bit
design.

In the multi-kernel phase of the hybrid approach, the input array is accessed
from the slow global memory, instead of copying it to the faster shared memory.
This is due to the fact that the shared memory does not survive across the
kernel calls. However, in the single-kernel phase, array elements are copied to
the shared memory once, and they are accessed from there for the rest of the
iterations as they are in the same block within the same kernel. Table 3 lists
the number of NTT iterations that can be performed using shared memory.

The INTT algorithm is slightly different from NTT as it starts from small
step groups and merges them after each iteration. Consequently the pattern of
kernel calls is the exact opposite of that of the NTT operation; we switch from
single to multi-kernel approach. We find the optimal switching point when the
step size is 2048 for 61-bit design in INTT computation.

Finally, when they are needed, all CPU-GPU memory transfer operations
(DeviceToHost, HostToDevice) are performed asynchronously to achieve fur-
ther optimization.

4.2.3 Other Optimizations

Zhang et al. proposes a technique to eliminate the final multiplication of co-
efficients with 1

n in Zq after INTT operation as shown in Eqn. 2 [43]. Instead,

Title Suppressed Due to Excessive Length 21

Fig. 5: Hybrid approach internals for n = 215 and 61-bit moduli

outputs of the GS butterfly operation utilized in INTT can be multiplied with
1
2 in Zq, which generates U+V

2 (mod q) and (U−V)ψ
2 (mod q). For an odd co-

efficient modulus q, division by 2, namely a
2 , can be performed in Zq as shown

in Eqn. 11.

a

2
(mod q) = a ·

(
q + 1

2

)
(11)

If a is an even integer, expression in Eqn. 11 becomes (a� 1), and if a is an
odd integer, the expression becomes (a� 1) + q+1

2 where � represents right
shift operation. This optimization replaces modular multiplication operations
after INTT with right shift and addition operations, both of which are faster.

4.3 Implementation of the BFV Scheme on GPU

To demonstrate the performance of the proposed NTT and INTT implementa-
tions in a practical setting, we implemented the key generation, the encryption

22 Özgün Özerk et al.

Table 3: Shared memory utilization with hybrid approach

n TI
30-bit 61-bit
NTT INTT NTT INTT
I(S-) I(S+) I(S-) I(S+) I(S-) I(S+) I(S-) I(S+)

2048 11 0 11 0 11 0 11 0 11
4096 12 0 12 0 12 0 12 1 11
8192 13 0 13 1 12 1 12 2 11
16384 14 1 13 2 12 2 12 3 11
32768 15 2 13 3 12 3 12 4 11

TI: Total number of iterations
I(S-): Number of iterations performed without shared memory
I(S+): Number of iterations performed with shared memory

and the decryption operations of the BFV scheme on GPU. For these opera-
tions, all necessary parameters and powers of ψ are generated on CPU of the
host computer, then sent to GPU prior to any computation. GPU uses the
same parameters for the key generation, the encryption and the decryption
operations until a new parameter set is sent to GPU. We adopt an approach,
referred as kernel merge strategy, whereby we find the optimal number of kernel
calls that yields the best performance.

4.3.1 Key Generation

Key generation of the BFV scheme is implemented as shown in Algorithm 3.
The key generation algorithm takes n, qi and χ as inputs and generates r
secret key polynomials and 2r public key polynomials in Rqi,n for 0 ≤ i < r.
The key generation operation requires randomly generated polynomials from
uniform, ternary and discrete Gaussian distributions, which require a random
polynomial sampler. Also, it performs NTT and coefficient-wise multiplication
operations.

For the generation of random polynomials, we first generate a sequence of
cryptographically secure random bytes and, then converted them into random
integers from desired distributions (uniform, ternary, discrete Gaussian). We
use the Salsa20 stream cipher [17] for generating random bytes by utilizing an
existing implementation [21].

For discrete Gaussian distribution, consecutive 4 byte outputs from Salsa20
are interpreted as an unsigned 32-bit integer and converted to a number be-
tween 0 and 1. If the converted value is either 0 or 1, we add or subtract
the smallest floating point number, defined in CUDA to get a value strictly
between 0 and 1. Then, we applied inverse cumulative standard distribution
function normcdfinvf in CUDA Math API to a value, which results in a ran-
dom number from discrete Gaussian distribution with mean 0 and standard
deviation 1. Since the SEAL library uses a discrete Gaussian distribution with
standard deviation 3.2, we multiply the number with 3.2.

Title Suppressed Due to Excessive Length 23

For uniform distribution in Zqi , consecutive 8 byte outputs from Salsa20
are interpreted as an unsigned 64-bit integer, converted to a value between
0 and 1, and then multiplied by (qi − 1). For ternary distribution, each byte
output from Salsa20 is interpreted as an unsigned 8-bit integer, mapped to
a value between 0 and 2, decremented by 1 and finally its fractional part is
discarded to obtain either −1, 0 or 1.

As shown in Algorithm 3, random polynomial generation from uniform
distribution, NTT and coefficient-wise multiplication operations are performed
for different qi values in every iteration of the for loops. By following the kernel
merge strategy, instead of invoking a separate kernel call for every iteration
of the for loops, we invoke a single kernel call to handle all the iterations,
avoiding the overhead of calling multiple kernels.

4.3.2 Encryption

The encryption of the BFV scheme is implemented as shown in Algorithm 4.
The encryption algorithm takes n, qi, χ, one plaintext polynomial in Rt,n

and 2r public key polynomials in Rqi,n as inputs and generates 2r cipher-
text polynomials in Rqi,n for 0 ≤ i < r. The encryption operation requires
randomly generated polynomials from ternary and discrete Gaussian distribu-
tions. Also, it performs polynomial arithmetic including mainly NTT, INTT
and coefficient-wise multiplication operations. As in the key generation imple-
mentation, we use the kernel merge strategy. Here, we invoke a single kernel
call for generating random polynomials from discrete Gaussian and uniform
distributions. Also, we use a single kernel call for each for loop.

4.3.3 Decryption

The decryption of the BFV scheme is implemented as shown in Algorithm 5.
The decryption algorithm takes n, qi, γ parameters and r secret key polyno-
mials in Rqi,n and 2r ciphertext polynomials in Rqi,n as inputs and generates
one plaintext polynomials inRt,n for 0 ≤ i < r. The decryption operation does
not utilize randomly generated polynomials. It performs polynomial arithmetic
including mainly NTT, INTT and coefficient-wise multiplication operations.

In addition to kernel merging strategy, different streams are also utilized
here. When not specified explicitly, a kernel is scheduled on the default stream;
and thus all operations are being executed sequentially. For concurrent oper-
ations, we use multiple streams, which allows to run them in parallel.

5 Implementation Results

Performance results of the proposed NTT and INTT implementations are
obtained on three different GPUs: Nvidia GTX 980, Nvidia GTX 1080 and
Nvidia Tesla V100 with test environments shown in Table 4. Performance
results of the SEAL are obtained on an Intel i9-7900X CPU running at 3.30

24 Özgün Özerk et al.

Table 4: Test environments

Specifications
GPUs
GTX 980 GTX 1080 Tesla V100

of cores 2048 2560 5120
Memory 4GB 8GB 32GB
Frequency (MHz) 1127 1607 1230
Bandwidth 224.4 GB/s 320.3 GB/s 897 GB/s

FP64 Performance
155.6 GFLOPS 277.3 GFLOPS 7.066 TFLOPS
(1:32) (1:32) (1:2)

Compute Capability 5.2 6.1 7.0
CPU Intel E5-2620 v4 Intel i9 7900X Intel Gold 5122
RAM 20GB 32GB 62GB

GHz × 20 with 32 GB RAM using GCC version 7.5.0 in Ubuntu 16.04.6

LTS, using SEAL version 3.5. Performance results of the key generation, the
encryption and the decryption implementations of BFV scheme on GPU are
obtained only for Nvidia Tesla V100 with test environment shown in Table 4.
For obtaining the performance results of GPU implementations, we used nvvp

profiler utilizing nvprof. Note that the time required for initialization steps
such as sending necessary parameters and powers of ψ to GPU from CPU are
not included in performance results of NTT/INTT operations.

5.1 Performance Results and Comparison with SEAL

In order to evaluate the effects of individual optimizations, we experimented
with five different designs for 30-bit implementation with different n values and
obtained performance results on Nvidia GTX 980 GPU: (i) the design D1 uses
single kernel for one NTT/INTT operation, (ii) the design D2 uses multiple
kernels for one NTT/INTT operation, (iii) the design D3 uses single kernel
for one NTT/INTT operation and utilizes shared memory, (iv) the design D4
uses single kernel for one NTT/INTT operation and utilizes warp shuffle (as
utilized in [22]), (v) the design D5 utilizes the proposed hybrid approach for
one NTT/INTT operation presented in Section 4. The performance results of
all designs are shown in Table 5.

As shown in Table 5, utilizing shared memory (D3) improves the perfor-
mance of the NTT/INTT implementation with single kernel up to 10%, 25%
and 17% for n values 2048, 4096 and 8192, respectively, compared to D1. Due
to limited capacity of shared memory on GPU, this optimization can only
be applied to the polynomials of degree 8192 or less (n ≤ 8192) for 30-bit
implementation. Applying warp shuffle to the implementation with single ker-
nel (D4) also shows some improvements, but not as significant as the shared
memory utilization. As shown in Table 5, the warp shuffle optimization im-
proves the performance of NTT/INTT up to 10% for different n values . This
is expected since the warp shuffle mechanism can only be used for the first five
iterations of NTT/INTT operation.

Title Suppressed Due to Excessive Length 25

Table 5: Performance results with optimizations on GTX 980 in µs

Operation Design
log2(n)
11 12 13 14 15 16

NTT

D1 12 21 38 73 149 309
D2∗ 95 98 103 109 117 127
D3 10 16 32 – – –
D4 11 21 37 72 145 303
D5∗ 10 16 32 42 49 61

INTT

D1 14 24 40 75 151 315
D2∗ 88 102 108 111 114 118
D3 13 17 33 – – –
D4 13 24 41 75 148 305
D5∗ 13 17 21 30 36 46

∗: Including kernel overhead for multiple kernels.

Table 6: Performance results of NTT and INTT implementations in µs

Operation Platform log2(q)
log2(n)
11 12 13 14 15 16

NTT

GTX 980
30 10 16 32 42 49 61
55 20 36 43 51 73 –

GTX 1080
30 7 15 16 23 24 28
55 11 21 27 33 36 –

Tesla V100
30 7 11.5 22.5 25.5 27.7 39
55 12.5 22.5 27 29 39 –

INTT

GTX 980
30 13 17 21 30 36 46
55 25 31 35 41 52 –

GTX 1080
30 7 9 12 14 16 22
55 12 15 18 20 24 –

Tesla V100
30 7.5 13 14.5 16.3 18.3 20.7
55 12.5 15.5 18 21 23 –

As shown in Table 5, the design with single kernel utilizing shared memory
(D3) shows 9.4×, 6.1× and 3.2× better performance than the design with
multiple kernels (D2) for n values 2048, 4096 and 8192, respectively. On the
other hand, utilizing multiple kernels per NTT/INTT operation shows better
performance in case of n > 8192. The design with multiple kernels (D2)
shows 1.5×, 1.5× and 2.4× better performance than the design with single
kernel without shared memory utilization (D1) for n values 16384, 32768 and
65536, respectively. Therefore, as explained in Section 4, we combined both
approaches and utilized the hybrid approach with shared memory (D5). The
design with hybrid approach shows 1.2-5× better performance for different n
values compared to the design D1. Similar comparison results are applicable
to the INTT operation as well. Since the design with hybrid approach (D5)
provides the best result, we obtained the performance results of 30-bit and
61-bit implementations for NTT and INTT with hybrid approach for three
different GPU platforms as shown in Table 6.

26 Özgün Özerk et al.

Table 7: Performance results of the key generation, the encryption and the
decryption operations of the BFV scheme in µs

(n,log2(q),r) Operation SEAL TW Speedup

(4096,109,3)
Key Generation 2020.00 123.86 16.31×
Encryption 1744.20 85.82 20.32×
Decryption 363.37 79.46 4.57×

(8192,152,4)
Key Generation 4480.00 135.81 32.99×
Encryption 4009.76 99.93 40.13×
Decryption 1012.74 87.46 11.58×

(16384,237,5)
Key Generation 10541.00 176.64 59.68×
Encryption 9286.84 119.26 77.87×
Decryption 2688.53 104.13 25.82×

(32768,496,9)
Key Generation 35125.00 273.73 128.32×
Encryption 29038.60 276.10 105.17×
Decryption 11365.70 160.05 71.01×

(32768,880,16)
Key Generation 60729.00 427.81 141.95×
Encryption 48586.70 514.73 94.39×
Decryption 22215.50 246.48 90.13×

TW: This work.

The key generation, the encryption and the decryption operations of the
BFV scheme are implemented on GPU as explained in Section 4. The op-
erations are implemented for five different parameter sets (n,log2(q), r) ∈
{(4096,109,3), (8192,152,4), (16384,237,5), (32768,496,9), (32768,880,16)} with
t = 1024 being used in the SEAL library and targeting various security levels.
GPU implementations of the key generation, the encryption and the decryp-
tion utilize the proposed efficient NTT and INTT implementations. The per-
formance results of the SEAL library and the proposed GPU implementations
for the given set of parameters are presented in Table 7.

As shown in Table 7, the speedup values by GPU implementation compared
to the SEAL library become larger as the the ring parameters are increased.
For (n, log2(q), r) = (32768,880,16), the GPU implementations of the key
generation, the encryption and the decryption operations are improved by
141.95×, 94.39× and 90.13×, respectively, compared to those of the SEAL
library running on CPU. There are mainly two reasons for this improvement:
(i) the percentage of polynomial arithmetic increases as the ring parameters
are increased as shown in Table 2, (ii) as r is increased, GPU platform leverages
parallelism better compared to the CPU platform. For the sake of simplicity,
we only present best improvement results for GPU platforms Nvidia GTX 980

and Nvidia GTX 1080. We observe up to 60.31×, 43.85×, 33.89× speed up
on Nvidia GTX 980; and 53.08×, 40.85×, 25.06× speed up on Nvidia GTX
1080, for the key generation, the encryption and the decryption operations,
respectively.

Title Suppressed Due to Excessive Length 27

5.2 Comparison with Prior Works

There are plenty of works in the literature targeting acceleration of FHE and
PQC schemes on GPU. In [4], Badawi et al. accelerates polynomial multiplica-
tion operation implemented on NFLlib [1] using GPU with a variant of Stock-
ham NTT algorithm. They present performance results only up to n = 8192
with q around 400-bit for polynomial multiplication operation. However, their
implementation does not utilize RNS; therefore, it is not easy to compare our
work with [4]. In [6,5], Badawi et al. implements and accelerates some arith-
metic operations of the BFV scheme on GPU. However, their work use Discrete
Galois Transform (DGT) instead of NTT. In [6], their GPU implementation
for the key generation, the encryption and the decryption operations of the
BFV scheme achieves 5×, 7× and 22× speedup on average, respectively, on
Tesla P100 for different parameter sets compared to the SEAL library (ver-
sion 2.3). Our work, on the other hand, improves the performance of the key
generation, the encryption and the decryption operations of the BFV scheme
by 75.8×, 67.6× and 40.6× on average, respectively, on Tesla V100 compared
to the SEAL library (version 3.5).

Some of the works [28,27,23] focus on PQC schemes utilizing small n
(namely 1024 or less) values and fixed q. Therefore, they are not applicable to
FHE schemes and they are not included in the comparison.

The works in [16,44,3,22,26] focus on accelerating FHE schemes and they
also present separate performance results for NTT/INTT operations. We com-
pare our results with these works in Table 8. Compared to the works in [16,44,
22,26], our implementations on GTX 1080 and Tesla V100 show better timing
performance. The work in [3] outperforms our implementations; however, it
uses a fixed special prime as moduli.

The works in [16,3,22,44] utilize a special prime, q = 264 − 232 + 1, called
Solinas prime, which is used as a carrier modulus for NTT/INTT operations
in Rqi,n. This special prime enables following two very useful properties: (i)
efficient modular reduction operation using only addition and subtraction, (ii)
64th root of unity of q is 8, which enables converting multiplication operation
with twiddle factor into simple shift operation. Although using this prime
as carrier modulus reduces the computational complexity and improves the
performance, it comes with the following limitations: (i) size of the input
polynomials needs to be doubled (from n to 2n) and upper n coefficients
should be zero-padded for NTT-based polynomial multiplication (i.e. 32768-pt
NTT operation should be used for a ring with n = 16384), (ii) although NTT
operation is performed in Rq,n where q is the special prime, qi of encryption
scheme is constrained by q2i · n < q (i.e. qi can be a 24-bit modulus at most
for q = 264 − 232 + 1 and n = 65536), (iii) the resulting polynomial after
INTT operation requires polynomial reduction with (xn + 1) for bringing its
2n size back to n, (iv) multiplying more than two polynomials requires going
back-and-forth between NTT and polynomial domains.

In our work, we do not employ a carrier modulus and, thus we are not
restricted by the aforementioned limitations. We do not have to double the

28 Özgün Özerk et al.

Table 8: Comparison table

Work Platform n log2(q)
NTT INTT
(µs) (µs)

[16]∗ GTX 690
16384 64† 56 65.3
32768 64† 71.2 83.6

[16]∗,a Tesla K80
16384 64† 12.9 12.5
32768 64† 19 21.6

[16]∗,b GTX 1070 16384 64† 66.8 –

[3]∗ Tesla K80
16384 64† 9.6 9.7
32768 64† 15.3 16.2

[22]∗ GTX 1070 16384 64† 57.8 –

[44]∗ RTX 2080 Ti 32768 64† 83.3 96

[26] Titan V
16384 60 44.1 –
32768 60 84.2 –

This Work

GTX 980
16384 55 51 41
32768 55 73 52

GTX 1080
16384 55 33 20
32768 55 36 24

Tesla V100
16384 55 29 21
32768 55 39 23

∗: Uses constant q=0xFFFFFFFF00000001; a: Results are from [3]; b: Results are from [22];
†: Actual qi is restricted by q2i n < 264 − 232 + 1.

size of input polynomials, apply polynomial reduction operation or go back-
and-forth between NTT and polynomial domains for multiplying more than
two polynomials.

6 Conclusion and Future Work

In this work, we proposed efficient GPU implementations of NTT and INTT
operations to be used in NTT-based polynomial multiplication. The proposed
implementations can perform a single NTT and INTT operations in 39µs
and 23µs, respectively, including kernel overhead for the largest ring with
n = 32768 and log2(q) = 61 on Tesla V100 GPU. The proposed GPU imple-
mentations are utilized for accelerating the key generation, the encryption and
the decryption operations of the BFV homomorphic encryption scheme, which
use NTT and INTT operations frequently. The proposed GPU implementa-
tions improve the performance of the key generation, the encryption and the
decryption operations by up to 141.95×, 105.17× and 90.13×, respectively, on
Tesla V100 compared to the implementations on SEAL library running on an
Intel i9-7900X CPU. The proposed GPU implementations prove to be useful
as accelerators for computation-demanding FHE schemes and we also showed
that utilizing GPUs as accelerators for FHE libraries such as SEAL is very
promising.

Title Suppressed Due to Excessive Length 29

As future work, we target accelerating homomorphic multiplication and
generating a complete GPU accelerator library for BFV and CKKS schemes,
which are required for practical FHE applications. Finally, with minor modi-
fications the proposed NTT and INTT implementations can be used to accel-
erate PQC schemes with smaller polynomial rings or NTT-unfriendly lattice-
based cryptosystems.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint, T.:
Nfllib: Ntt-based fast lattice library. In: Topics in Cryptology - CT-RSA 2016, pp.
341–356. San Francisco, CA, USA

2. Al Badawi, A., Hoang, L., Mun, C.F., Laine, K., Aung, K.M.M.: Privft: Private and
fast text classification with homomorphic encryption. IEEE Access 8, 226544–226556
(2020)

3. Al Badawi, A., Veeravalli, B., Aung, K.M.M.: Faster number theoretic transform on
graphics processors for ring learning with errors based cryptography. In: 2018 IEEE
International Conference on Service Operations and Logistics, and Informatics (SOLI),
pp. 26–31. IEEE (2018)

4. Al Badawi, A., Veeravalli, B., Aung, K.M.M., Hamadicharef, B.: Accelerating subset
sum and lattice based public-key cryptosystems with multi-core cpus and gpus. Journal
of Parallel and Distributed Computing 119, 179–190 (2018)

5. Al Badawi, A., Veeravalli, B., Lin, J., Xiao, N., Kazuaki, M., Khin Mi Mi, A.: Multi-gpu
design and performance evaluation of homomorphic encryption on gpu clusters. IEEE
Transactions on Parallel and Distributed Systems 32(2), 379–391 (2021)

6. Al Badawi, A., Veeravalli, B., Mun, C.F., Aung, K.M.M.: High-performance fv some-
what homomorphic encryption on gpus: An implementation using cuda. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems pp. 70–95 (2018)

7. Alkım, E., Bilgin, Y.A., Cenk, M.: Compact and simple rlwe based key encapsulation
mechanism. In: International Conference on Cryptology and Information Security in
Latin America, pp. 237–256. Springer (2019)

8. Angel, S., Chen, H., Laine, K., Setty, S.: Pir with compressed queries and amortized
query processing. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 962–979.
IEEE (2018)

9. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like somewhat
homomorphic encryption schemes. In: Selected Areas in Cryptography – SAC 2016, pp.
423–442. NL, Canada

10. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption Al-
gorithm on a Standard Digital Signal Processor. Advances in Cryptology — CRYPTO’
86 263, 311–323 (1986)

11. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical
gapsvp. In: Annual Cryptology Conference, pp. 868–886. Springer (2012)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT) 6(3), 1–36
(2014)

13. Brutzkus, A., Elisha, O., Gilad-Bachrach, R.: Low latency privacy preserving inference.
In: International Conference on Machine Learning (2019)

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: International Conference on the Theory and Application of
Cryptology and Information Security, pp. 409–437. Springer (2017)

15. Chu, E., George, A.: Inside the FFT black box: serial and parallel fast Fourier transform
algorithms. CRC press (1999)

16. Dai, W., Sunar, B.: cuhe: A homomorphic encryption accelerator library. In: Inter-
national Conference on Cryptography and Information Security in the Balkans, pp.
169–186. Springer (2015)

30 Özgün Özerk et al.

17. D.J., B.: The salsa20 family of stream ciphers, lecture notes in computer science 4986,
84–97 (2008). DOI 10.1007/978-3-540-68351-3 8

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144 (2012)

19. Feng, X., Li, S., Xu, S.: RLWE-Oriented High-Speed Polynomial Multiplier Utilizing
Multi-lane Stockham NTT Algorithm. IEEE Transactions on Circuits and Systems II:
Express Briefs pp. 1–1 (2019). DOI 10.1109/TCSII.2019.2917621

20. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
university Stanford (2009)

21. Ghosh, M.: Salsa20 cuda. https://github.com/moinakg/salsa20_core_cuda

22. Goey, J.Z., Lee, W.K., Goi, B.M., Yap, W.S.: Accelerating number theoretic transform
in gpu platform for fully homomorphic encryption. The Journal of Supercomputing pp.
1–20 (2020)

23. Gupta, N., Jati, A., Chauhan, A.K., Chattopadhyay, A.: Pqc acceleration using gpus:
Frodokem, newhope and kyber. IEEE Transactions on Parallel and Distributed Systems
pp. 1–1 (2020)

24. Halevi, S., Shoup, V.: Algorithms in helib. In: Advances in Cryptology – CRYPTO
2014, pp. 554–571. Santa Barbara, CA, USA (Aug. 2014)

25. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by automatic
computers. In: Doklady Akademii Nauk, vol. 145, pp. 293–294. Russian Academy of
Sciences (1962)

26. Kim, S., Jung, W., Park, J., Ahn, J.H.: Accelerating number theoretic transformations
for bootstrappable homomorphic encryption on gpus. 2020 IEEE International Sym-
posium on Workload Characterization (IISWC) (2020). DOI 10.1109/iiswc50251.2020.
00033. URL http://dx.doi.org/10.1109/IISWC50251.2020.00033

27. Lee, W.K., Akleylek, S., Wong, D.C.K., Yap, W.S., Goi, B.M., Hwang, S.O.: Parallel
implementation of nussbaumer algorithm and number theoretic transform on a gpu
platform: application to qtesla. The Journal of Supercomputing pp. 1–26 (2020)

28. Lee, W.K., Akleylek, S., Yap, W.S., Goi, B.M.: Accelerating number theoretic transform
in gpu platform for qtesla scheme. In: International Conference on Information Security
Practice and Experience, pp. 41–55. Springer (2019)

29. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. In: Cryptology and Network Security, pp. 124–139. Milan,
Italy (Nov. 2016)

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over
rings. In: Advances in Cryptology – EUROCRYPT 2010, pp. 1–23. French Riviera,

31. Mera, J.M.B., Karmakar, A., Verbauwhede, I.: Time-memory trade-off in toom-cook
multiplication: an application to module-lattice based cryptography. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 222–244 (2020)

32. Mert, A.C., Öztürk, E., Savaş, E.: Design and implementation of encryption/decryption
architectures for bfv homomorphic encryption scheme. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 28(2), 353–362 (2019)

33. Pollard, J.M.: The fast Fourier transform in a finite field. Mathematics of computation
25(114), 365–374 (1971)

34. Polyakov, Y., Rohloff, K., Ryan, G.W.: Palisade lattice cryptography library user man-
ual. Cybersecurity Research Center, New Jersey Institute ofTechnology (NJIT), Tech.
Rep (2017)

35. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptog-
raphy on 8-bit atxmega microcontrollers. In: International Conference on Cryptology
and Information Security in Latin America, pp. 346–365. Springer (2015)

36. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: Heax: An architecture for computing on
encrypted data. In: Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’20,
p. 1295–1309. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3373376.3378523. URL https://doi.org/10.1145/3373376.3378523

37. Roy, S.S., Turan, F., Jarvinen, K., Vercauteren, F., Verbauwhede, I.: Fpga-based high-
performance parallel architecture for homomorphic computing on encrypted data. Cryp-
tology ePrint Archive, Report 2019/160 (2019)

Title Suppressed Due to Excessive Length 31

38. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact ring-
lwe cryptoprocessor. In: L. Batina, M. Robshaw (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2014, pp. 371–391. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

39. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (2020). Microsoft
Research, Redmond, WA.

40. Seiler, G.: Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptography.
IACR Cryptology ePrint Archive 2018, 39 (2018)

41. Sinha Roy, S., Järvinen, K., Vliegen, J., Vercauteren, F., Verbauwhede, I.: Hepcloud: An
fpga-based multicore processor for fv somewhat homomorphic function evaluation. IEEE
Transactions on Computers 67(11), 1637–1650 (2018). DOI 10.1109/TC.2018.2816640

42. Toom, A.L.: The complexity of a scheme of functional elements realizing the multipli-
cation of integers. In: Soviet Mathematics Doklady, vol. 3, pp. 714–716 (1963)

43. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly Efficient Architecture of
NewHope-NIST on FPGA using Low-Complexity NTT/INTT. IACR Trans. on CHES
2020(2), 49–72 (2020). DOI 10.13154/tches.v2020.i2.49-72

44. Zheng, Z.: Encrypted cloud using gpus (2020)

