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Abstract. The security proofs of leakage-resilient MACs based on sym-
metric building blocks currently rely on idealized assumptions that hardly
translate into interpretable guidelines for the cryptographic engineers
implementing these schemes. In this paper, we first present a leakage-
resilient MAC that is both efficient and secure under standard and easily
interpretable black box and physical assumptions. It only requires a colli-
sion resistant hash function and a single call per message authentication
to a Tweakable Block Cipher (TBC) that is unpredictable with leakage.
This construction leverages two design twists: large tweaks for the TBC
and a verification process that checks the inverse TBC against a constant.
It enjoys beyond birthday security bounds. We then discuss the cost of
getting rid of these design twists. We show that security can be proven
without them as well. Yet, a construction without large tweaks requires
stronger (non idealized) assumptions and may incur performance over-
heads if specialized TBCs with large tweaks can be exploited, and a con-
struction without twisted verification requires even stronger assumptions
(still non idealized) and leads to more involved bounds. The combina-
tion of these results makes a case for our first pragmatic construction
and suggests the design of TBCs with large tweaks and good properties
for side-channel countermeasures as an interesting challenge.

1 Introduction

Ever since its introduction by Dziembowski and Pietrzak [20], leakage-resilient
cryptography has been characterized by a quest towards the best tradeoff be-
tween weak physical assumptions and efficient cryptographic constructions. Find-
ing good abstractions to limit the informativeness of the leakage function, that
can be fulfilled by hardware engineers while also enabling sound security proofs,
is a typical example of this challenge. Current assumptions range from various
types of “bounded leakage”, as comprehensively discussed in [21], to simpler so-
lutions leveraging the scarce use of “strongly protected components”, modeled



as leak-free in [33]. Unsurprisingly, the most efficient (symmetric) constructions
in the literature leverage such strong (idealized) assumptions [6].

While avoiding idealized assumptions is of general interest in cryptography, it
is even more desirable in leakage-resilient cryptography, since perfectly ensuring
a physical assumption may not be possible, or only at prohibitive cost. For
example, instantiating a (128-bit) leak-free component would require masking it
at very high security orders, leading to significant performance overheads [22],
while security against < 280 measurements may be sufficient for a majority of
applications. So despite proofs relying on a leak-free component are a useful guide
towards efficient constructions with good leakage properties, interpreting their
security bounds in terms of concrete requirements for cryptographic engineers
(e.g., in terms of a level of protection to reach in practice) remains difficult.

Given this state-of-the-art, the design of leakage-resilient MACs appears as
a first natural target. As put forward by Micali and Reyzin, ensuring unpre-
dictability in the presence of leakage is significantly easier than ensuring indis-
tinguishability in the presence of leakage [32]. This observation led the authors
of [10] to propose authenticated encryption schemes for which the integrity holds
even if the vast majority of its (ephemeral) secrets are leaked in full to the ad-
versary: a model that we next denote as the “unbounded leakage model”. Yet,
these authenticated encryption schemes (and follow ups next listed as related
works) still rely on the scarce utilization of a leak-free component.

An intermediate step towards getting rid of the leak-free component has
been made by Berti et al. [8]: it shows that it is possible to replace this leak-
free component by a (tweakable) block cipher ensuring “strong unpredictability
with leakage”. The idea of basing MAC security on unpredictable ciphers is not
new. To the best of our knowledge, it dates back to [1] and has been revisited
in [18,36,19]. Its leakage generalization is specially appealing since such a game-
based definition can then be verified/falsified by evaluation laboratories. Yet, the
results in [8] still rely on a random oracle assumption, which seems mostly due
to the difficult interaction between an unpredictable (tweakable) block cipher
and the hash part of their constructions. As for the leak-free component, such
an idealized assumption is in general undesirable, and possibly even more when
leakage comes into play. So the main question we tackle in this work is: can we
design leakage-resilient MACs without idealized assumptions (i.e., no leak-free
component nor random oracles)? We answer it positively by exhibiting efficient
constructions for which the leakage security holds in the unbounded leakage
model, only requiring strong unpredictability with leakage for their tweakable
block cipher and (more or less) standard properties for their hash function.

More precisely, our contributions are threefold:
We first propose a pragmatic construction (next denoted as LR-MAC1) that

takes advantage of simple design twists. The starting observation for this pur-
pose is that the HTBC construction in [8] performs the verification by checking
whether an inverted Tweakable Block Cipher (TBC) matches the output of a
hash function. By changing this verification and checking whether the inverted
TBC equals a constant (e.g., zero) value, we avoid the difficult interaction be-
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tween the hash function and the TBC that has led this previous work to rely on a
random oracle assumption. We then show that if the construction is instantiated
with a TBC having 2n-bit tweaks, it provides tight and beyond-birthday secu-
rity bounds, under standard assumptions (namely, strong unpredictability with
leakage for the TBC and collision-resistance for the hash function). While this
construction positively answers our question, it still relies on two design twists,
namely a TBC with 2n-bit tweaks and the introduction of a constant value in
the verification process. So we complement our first pragmatic constructions by
two other designs aiming to clarify whether these twists are necessary.

Our second design (next denoted as LR-MAC2) is a variant of LR-MAC1 that
only relies on TBCs having n-bit tweaks. We show that it is possible to maintain
leakage security without idealized assumptions with this simpler building block.
However, designs reaching this goal currently need to rely on two calls to the
TBC, which is in general more expensive than a single call to a TBC with 2n-bit
tweaks if a specialized TBC can be used [27]. Besides, the best construction we
reach also requires a less standard (yet non idealized) assumption on its hash
function (namely, collision-resistance for one half of its output). The latter may
therefore require more rounds in the instances of hash functions it uses.

Eventually, we revisit the leakage security of the HTBC design (which does
not use a constant value in its verification), analyzed in [8] under a random oracle
assumption. We show that such a construction can be proven secure without this
idealized assumption, but at the cost of more involved bounds and stronger (still
non idealized) assumptions for the hash function than LR-MAC2.

Overall, the combination of our observations regarding LR-MAC2 and HTBC
strengthen the interest of the pragmatic LR-MAC1 solution, and suggest the
design of TBCs with 2n-bit tweaks and good properties to be protected via
masking as natural design targets for leakage-resilient modes of operation.

Related works. Leakage-resilient MACs have first been proposed by Hazay et
al. [25] and Martin et al. [31], but imply higher performance overheads than
the symmetric constructions we consider in this work. The first leakage-resilient
MACs based on symmetric building blocks were proposed in [34,33]. Several
(TBC-based or permutation-based) leakage-resilient authenticated encryption
schemes have been proposed and embed a leakage-resilient MAC for their in-
tegrity guarantees, e.g., [14,16,9,15,24,23,15,30]: they all rely on idealized as-
sumptions to some extent (see [6] for an overview). The specific issue of compar-
ing values (e.g., tags) in a leakage-resilient manner is discussed in [11,17].

2 Background

Notations. With {0, 1}n (resp., {0, 1}∗), we denote the set of all strings of length
n (resp., all finite-length strings). With |X |, we denote the size of the set X .
In some arguments, we denote by n the security parameter, negl(n) negligible
functions and poly(n)/superpoly(n) polynomial/super-polynomial functions.
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2.1 Primitives: hash functions and TBC

Our schemes use hash functions and TBCs. For hash functions, the minimum
property we require is collision-resistance, which we recall next:

Definition 1. Let H : HK×{0, 1}∗ → X be a hash function. H is (t, ϵ)-collision
resistant (CR) if for every t-bounded adversary A, the probability that A(s) outputs
a pair of distinct inputs (m0,m1) ∈ ({0, 1}∗)2, such that Hs(m

0) = Hs(m
1) and

m0 6= m1, is bounded by ϵ, with s
$← HK picked uniformly at random with:

Pr[s
$← HK,A(s)⇒ (m0,m1) ∈ ({0, 1}∗)2 s.t. m0 6= m1,Hs(m

0) = Hs(m
1)] ≤ ϵ.

We will sometimes require range-oriented preimage resistant hash functions:

Definition 2. Let H : HK × {0, 1}∗ → X be a hash function. H is (t, ϵ)-range-
oriented preimage resistant (rpre) if, for every t-bounded adversary A:

Pr[s
$← HK, y $← X ,A(s, y)⇒ m ∈ {0, 1}∗ s.t. Hs(m) = y] ≤ ϵ.

Properties of rpre hashing. Following [2], a hash function can be characterized
by a table of preimage computing probabilities.

Definition 3. Let A be an adversary against the preimage resistance of a hash
function, then the associated success probability matrix M ∈ [0, 1]|HK|×|X| is:

Ms,y = PrA(s,y)⇒m

[
Hs(m) = y

]
,

defined entry-wise where s ∈ HK and y ∈ X , and where the probability is taken
over the random coins of A.

Consider a hash function H : HK × {0, 1}∗ → X and an arbitrary adversary A.
The intuition is that the preimage for some “weak” points in X may be easily
computable. But if H is range-oriented preimage resistant, then the total number
of such “weak” points should be limited. To formalize this idea, for any s ∈ HK,
we define a set for such “weak” points as:

WP(s,A) =
{
y ∈ X : PrA(s,y)⇒m

[
Hs(m) = y

]
= poly(n)−1

}
. (1)

With the above definition, we are able to establish the following claim.

Lemma 1. If H is range-oriented preimage resistant, then with high probability,
the size of the set WP(s,A) of “weak” images is polynomial with:

Pr
[
s

$← HK : |WP(s,A)| = superpoly(n)
]
= negl(n).
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Proof. To see this, we expand the expression as follows:

Pr[s
$← HK, y $← X ,A(s, y)⇒ m ∈ {0, 1}∗ s.t. Hs(m) = y],

=
∑

s∈HK

1

|HK|
∑
y∈X

1

|X |
Pr[A(s, y)⇒ m ∈ {0, 1}∗ s.t. Hs(m) = y],

≥
∑

s∈HK

1

|HK|
∑

y∈WP(s,A)

1

|X |
· superpoly(n),

≥
∑

s∈HK, |WP(s,A)|=superpoly(n)

1

|HK|
|WP(s,A)|
|X |

· superpoly(n),

≥ Pr
[
s

$← HK : |WP(s,A)| = superpoly(n)
]
· superpoly(n)

|X |
· (2)

By this, if Pr
[
s

$← HK : |WP(s,A)| = superpoly(n)
]

is not negl(n), then Eq. (2)
cannot be negligible, contradicting the range-oriented preimage resistance as-
sumption. The claim thus follows. ut

Thanks to Lemma 1, it may be feasible to decide the set WP(s,A) for any ad-
versary A and any seed s. In Section 5, Theorem 3, this result will allow us to
assume that the set WP(s,A) for the hash function used in our design is com-
putable in Probabilistic Polynomial-Time (PPT).

For TBC, the minimum property we require is strong pseudorandomness:

Definition 4 (stPRP). A tweakable block cipher F : K×T W×{0, 1}n → {0, 1}n
is a (q, t, ϵ)-strong tweakable pseudorandom permutation (stPRP) if ∀(k, tw) ∈
K×T W,Ftw

k : {0, 1}n → {0, 1}n is a permutation and if for every (q, t)-adversary
A, the advantage :

AdvstPRPF (A) :=
∣∣∣Pr [AFk(·,·),F−1

k (·,·) ⇒ 1
]
− Pr

[
Af(·,·),f−1(·,·) ⇒ 1

]∣∣∣,
is upper bounded by ϵ, where k and f are chosen uniformly at random from
their domains, namely K and the space T PERM(T W, {0, 1}n) of tweakable
permutations (i.e., the space of functions f : T W × {0, 1}n → {0, 1}n s.t. ∀tw ∈
T W, f(tw, ·) : {0, 1}n → {0, 1}n is a permutation). The adversary can do at most
q′ queries to the first oracle and q − q′ queries to the second one for any q′ ≤ q.

For simplicity, an (n, n, n)-TBC is a TBC with K = T W = {0, 1}n.

2.2 MAC (Message Authentication Code)

We recall the definition of Message Authentication Code (MAC) as follows:

Definition 5. A MAC is a triple Π = (Gen,Mac,Vrfy) where:

Gen. The key-generation algorithm Gen picks a key in the keyspace K.
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Mac. The tag-generation algorithm Mac takes as input a couple (k,m) ∈ K ×
{0, 1}∗ and outputs a tag τ ← Mack(m) from the tag space T AG.

Vrfy. The verification algorithm Vrfy takes as input a triple (k,m, τ) in K ×
{0, 1}∗ × T AG and outputs either “>” (“accept”) or “⊥” (“reject”).

We require correctness: ∀(k,m) ∈ K × {0, 1}∗, Vrfy(k,m,Mac(k,m)) = >.

Since we will only consider the security for MACs in the presence of leakage, we
omit the security definition in the black-box model (that is, when there is no
leakage). This definition can be found in many works, for example [29].

2.3 Leakage models and security definitions with leakage

Notations. When an adversary has access not only to the outputs of an oracle
but also to its leakage, we denote it with AOL. In this case, queries to the oracle
OL on input x are answered with y = O(x) and the leakage lO := LO(x). If the
oracle is keyed with the key k, we write the leakage function as LO(x; k). Finding
good abstractions to restrict LO is in general a hard problem [21].6

Strong unforgeability with leakage (sUF-L2). We start by introducing
the security for MACs in the presence of leakage. We want that it is hard to
forge valid tags even having access to the leakage of the tag-generation and the
verification algorithms (that is, finding a fresh and valid couple message tag
(m, τ) such that Vrfyk(m, τ) = > should be hard). We use the sUF-L2 definition
of Berti et al. [8] for this purpose, which we recall next:

Definition 6 (sUF-L2). A MAC = (Gen,Mac,Vrfy) with tag-generation leakage
function LM and verification leakage function LV is (qL, qM , qV , t, ϵ)-strongly ex-
istentially unforgeable against chosen message and verification attacks with leak-
age in the tag-generation and the verification (sUF-L2) if for all (qL, qM , qV , t)-
adversaries AL, we have:

Pr
[
FORGEL2suf-vcma-L2

MAC,LM ,LV ,A ⇒ 1
]
≤ ϵ,

where the FORGEL2suf-vcma-L2 experiment is defined in Table 1.

For simplicity, we consider the verification query induced by the final output of
the adversary as the (qv + 1)th verification query.

6 Adversaries are sometimes allowed to “model” the leakage. For this purpose, we grant
them access to the oracle L. This oracle is peculiar since it allows the adversary to
make queries not only on inputs x but also of keys k′ of its choice.
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The FORGEL2suf-vcma-L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle MacLk(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, LM (m; k))
Finalization:

(m, τ)← AL,MacLk(·),VrfyLk(·,·) Oracle VrfyLk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return

Return 0 (Vrfyk(m, τ), LV (m, τ ; k))
Return 1

Table 1: The FORGEL2suf-vcma-L2 experiment.

The unbounded leakage model. We next need to specify the functions we
will use for LM and LV . Based on the aforementioned difficulty to restrict the
leakage in a meaningful manner, we first follow the observation made in [33]
that it is possible to implement leakage-resilient cryptographic functionalities so
that the execution of most underlying building blocks can leak in an unrestricted
manner. The resulting “leveled implementations” only require a few calls to a
strongly protected component (frequently modeled as leak-free) to ensure the
desired security property (here, sUF-L2). So we will next consider the unbounded
leakage model, where the leakage function yields all the internal states produced
during each execution of the scheme under investigation, at the exclusion of the
strongly protected components that are used to manipulate long-term secrets.
More precisely, in the unbounded leakage model:

– Unprotected building blocks leak their inputs, outputs and keys in full;
– Building blocks with strongly protected implementation leak their inputs

and outputs in full and their key only leaks in a restricted manner.

In practice, the only strongly protected component we will use in our construc-
tion is a TBC, and we next specify how its leakage will be restricted by asking
implementers to ensure its strong unpredictability with leakage.

Strong unpredictability with leakage (sUP-L2). Unpredictability is among
the simplest requirements for (tweakable) block ciphers. As mentioned in intro-
duction, its application in leakage-resilient cryptography is appealing since it
corresponds to a game-based definition that can directly be tested by an eval-
uation laboratory. We next give its definition which formalizes that it should
be hard for an adversary to find a triple (tw, x, y) which is fresh and valid (i.e.,
y = Ftw

k (x)) even if the leakage function L = (LEval, LInv) associated to an imple-
mentation of the TBC can be queried, with LEval(tw, x; k) (resp., LInv(tw, z; k))
the leakage resulting from the computation of Fk(tw, x) (resp., F−1k (tw, z)).

Definition 7 (sUP-L2). A tweakable block cipher F : K × T W × {0, 1}n →
{0, 1}n with leakage function pair L = (LEval, LInv) is (qL, qE , qI , t, ϵ)-strongly un-
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predictable with leakage in evaluation and inversion (sUP-L2), or (qL, qE , qI , t, ϵ)-
sUP-L2, if for any (qL, qE , qI , t)-adversary A, we have:

Pr[sUP-L2A,F,L ⇒ 1] ≤ ϵ,

where the sUP-L2 experiment is defined in Table 2, and AL makes at most qL
(offline) queries to L (used to model the leakage, cf. Footnote 6).

When the adversary has access only to the le oracle, the TBC is unpredictable
with leakage (as previously defined by Dodis and Steinberger [18]).7

The sUP-L2A,F,L experiment.
Initialization: Oracle LEval(tw, x):
k

$← K z = Fk(tw, x)
L ← ∅ le = LEval(tw, x; k)

L ← L ∪ {(x, tw, z)}
Finalization: Return (z, le)

(x, tw, z)← AL,LEval(·,·),LInv(·,·)

If (x, tw, z) ∈ L Oracle LInv(tw, z):
Return 0 x = F−1

k (tw, z)
If z = Fk(tw, x) li = LInv(tw, z; k)

Return 1 L ← L ∪ {(x, tw, z)}
Return 0 Return (x, li)

Table 2: Strong unpredictability with leakage in evaluation and inversion.

Concretely, this assumption is significantly closer to practice than idealized
ones. In particular, breaking it requires one to fully compute the value of the
block cipher on a new point with non-trivial probability [18]. Therefore, we
expect that satisfying unpredictability with leakage mainly requires protecting
the long-term key, and that testing block cipher implementations against side-
channel key recovery attacks, which is the current focus of evaluation laborato-
ries [4], should give a good indication of their unpredictability with leakage.

3 Design and analysis of LR-MAC1

In this section, we present LR-MAC1, which is sUF-L2 in the unbounded leakage
model, assuming a collision-resistant hash function and a sUP-L2 TBC.
7 Degabriele et al. give an alternative definition in [14]. The main difference is that

the set of inputs (S in their definition, L in ours) is not increased for inputs X
for which only the leakage is observed, while we always give access to both the
primitive’s output and their leakage. Hence, this definition cannot be satisfied in
the unbounded leakage model as we aim, since the adversary can then get a valid
tag in full. (Their motivation was also different from ours and specially tailored for
analyzing constructions leveraging leakage-resilient PRFs).
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The main design idea used by LR-MAC1 is to avoid that a value obtained
by leakage in verification may be used for a future forgery. This happened in
the HTBC leakage-resilient MAC of [8] because the output of an (inverse) TBC
is compared with a hash value h = H(m). As illustrated in Figure 1, LR-MAC1
prevents this by doing the verification check with a fixed value that does not
depend on the message m. In this figure, strongly protected components are in
gray, unprotected components are in white, inputs and outputs of the scheme
(together with values that can be computed publicly from them) are in green,
intermediate values that leak (in an unbounded manner in our case) are in orange
and long-term secrets manipulated by strongly protected components are in red.

F−1hHm

k

τ

x̃ ?
= 0n

FhHm

k

0n

τ

Fig. 1: LR-MAC1.

Concretely, the hash of the message is used only as a tweak of the TBC, while
the input of the TBC is always a fixed value (i.e., 0n). In decryption, we check if
the inverse of the tag x̃ := F−1k (τ) is 0n. This way, even an unbounded leakage
during an invalid verification cannot lead to efficient forgeries since x̃ cannot be
reused (contrary to what happens for HTBC). Moreover, since the hash of the
message h is used only as a tweak, there is no target to find a preimage (without
producing a collision). As a result, a verification query Vrfyk(m, τ)→ > immedi-
ately results in a forgery

(
Hs(m), 0n, τ

)
, which does not rely on the distribution

of Hs(m). This eliminates the necessity of the random oracle in our proofs. The
detailed specifications of LR-MAC1 can be found in Algorithm 1.

3.1 sUF-L2-security of LR-MAC1

We now prove that LR-MAC1 is sUF-L2 in the unbounded leakage model.

Unbounded leakage specification. Before assessing the sUF-L2 of LR-MAC1, we
have to define the leakage that an adversary can collect:
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Algorithm 1 The LR-MAC1 algorithm.
It uses a strongly protected TBC F : K×T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}n → TW.

– Gen
• k

$← K
• s

$← HK
– Mack(m):
• h = Hs(m)
• τ = Fh

k(0
n)

• Return τ
– Vrfyk(m, τ):
• h = Hs(m)
• x̃ = Fh,−1

k (τ)
• If x̃ == 0n Return ⊤
• Else Return ⊥

– LM (m; k) returns LEval(0n, h; k) with h = Hs(m).8
– LV (m, τ ; k) returns x̃ and LInv(τ, h; k) with h = Hs(m).

Our main result for LR-MAC1 is then formalized by the following theorem:

Theorem 1. Let H be a (t1, ϵCR)-collision resistant hash function. Let F be a
(qL, qM , qV , t2, ϵsUP-L2)-sUP-L2 TBC. Then, LR-MAC1 is (qM , qV , t, ϵ)-sUF-L2-
secure in the unbounded leakage model with:

ϵ ≤ ϵCR + (qV + 1) ϵsUP-L2,

with t1 = t+(qM +qV +1)tH+(qM +qV )(tF+ tL(F)) and t2 = t+(qM +qV +1)tH,
where tH is the time needed to execute once the hash function H, tF is the time
needed to execute once the TBC F and tL(F) is the time needed to collect the
leakage of one execution of the TBC F.

Proof. We use a sequence of games. To make the proof simpler, we give only a
sketch of the adversaries used. The details can be found in Appendix A.

Game 0. Let Game 0 be the sUF-L2 game where the (qM , qV , t)-adversary AL

tries to produce a forgery when she plays against LR-MAC1. Let E0 be the event
that the adversary wins the game (i.e., the output of the game is 1).

Game 1. Game 1 is Game 0 except that we abort if there is a collision in the
hash function. Let E1 be the event that the adversary wins the game.

8 h can be computed by the adversary since the key s of the hash function is public.
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Transition between Game 1 and Game 2. Clearly, Game 0 and Game 1
are identical if the following event HC (Hash Collision) does not happen:

HC := {∃i, j ∈ {1, ..., qM}∪{1, ..., qV +1} with i
%
= j s.t. hi = hj and mi 6= mj}.9

To compute this event, we build a t1-CR-adversary B.

The t1-CR-adversary B is an adversary playing against the hash function,
based on A, which does the hash queries induced by the queries of A and then
correctly computes the answer for A. At the end of the game, B sees if her hash
queries have produced a collision. If it is the case, she outputs it. This adversary
needs time t+ (qM + qV + 1)tH + (qM + qV )(tF + tL(F)).

Bounding |Pr[E0]−Pr[E1]|. Observe that if event HC happens, B wins. Note
that B simulates correctly Game 0 for AL. Since B is a t1-adversary and H is a
(t1, ϵCR)-collision resistant hash function, we can bound:

|Pr[E0]− Pr[E1]| ≤ ϵCR.

Game 2. Game 2 is Game 1 except that we abort if one verification query (or
the final one) made by A is fresh and valid. Let E2 be the event that the adver-
sary wins the game (i.e., the output of the game is 1).

Transition between Game 1 ad Game 2. We build a sequence of qV + 2
games: Game 10,...,Game 1qV +1 as follows.

Game 1j. Game 1j is Game 1 where we abort if one of the first j verification
queries is fresh and valid. Thus, Game 10 is Game 1 while Game 1qV +1 is Game
2. Let Ej

1 be the event that the adversary wins the game.

Transition between Game 1j and Game 1j+1. Clearly, Game 1j and Game
1j+1 are identical if the j+1-th verification query is either invalid or not fresh. If
this query is fresh and valid, we say that event GT j (Good Tag) happens. In order
to bound the probability that event GT j happens we build a (qL, qEval, qInv, t2)-
sUP-L2-adversary Cj against F as follows.

The (qL, qEval, qInv, t2)-sUP-L2-adversary Cj has to find a valid triple (x, tw, y)
for Fk which is fresh and valid. She simulates Game 1j for A until the j + 1th
verification query. Then, when A asks his j + 1-th verification query on in-
put (mqV +1, τ qV +1), Cj computes (1) hj+1 = Hs(m

j+1), and (2) she outputs
(0n, hj+1, τ j+1). This takes time tH. In total, Ci does at most qL query to L, qM
to LEval and j ≤ qv to LInv. She needs time at most t+ (qM + j + 1)tH ≤ t2.

9 i
%
= j means that if i comes from a tag-generation query and j from a verification

query, or vice-versa, then they are considered differently.
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Bounding
∣∣Pr[Ej

1]−Pr[E
j+1
1 ]

∣∣. Note that Ci simulates correctly Game 1j for AL.
Since Cj is a (qL, qM , qV , t2)-adversary and F is (qL, qM , qV , t2, ϵsUP-L2)-sUP-L2,
we can bound:

|Pr[Ej
1]− Pr[Ej+1

1 ]| ≤ Pr[GT j+1] ≤ ϵsUP-L2.

Bounding
∣∣Pr[E1]− Pr[E2]

∣∣. Iterating we can bound:

∣∣Pr[E1]− Pr[E2]
∣∣ ≤ qV∑

j=0

∣∣Pr[Ej
1]− Pr[Ej+1

1 ]
∣∣ ≤ (qV + 1)ϵsUP-L2.

Concluding the proof. Since the probability of E2 is 0, we can conclude the
proof putting everything together:

Pr[E0] =

1∑
i=0

∣∣Pr[Ei]− Pr[Ei+1]
∣∣+ Pr[E2] = ϵCR + (qV + 1)ϵsUP-L2 + 0.

3.2 Instantiation and concrete security

Built upon a “good enough” hash function, the term ϵCR is expected to be in
O(t21/2

|T W|). On the other hand, the term ϵsUP-L2 depends on the concrete side-
channel strength of the TBC implementation. Since we have a birthday bound
only on the size of the tweak space T W and not on the block space B = {0, 1}n,
a natural idea is to use a TBC with the tweak space bigger than the block space.
For example, a good instantiation would be to use SHA256 as hash function and
Deoxys-384 (which has a 128-bit block and 256-bit tweak [28]) as TBC. In this
case, finding a collision requires the computation of around 2128 hash functions,
and therefore, the (qV + 1)ϵsUP-L2 term dominates the bound.10

4 Design and analysis of LR-MAC2

In this section, we question the possibility to design a leakage-resilient MAC
with a (more standard) TBC design having only n-bit tweaks rather than 2n
for LR-MAC1. We show that this is achievable at the cost of a second call per
message authentication to the TBC and by requiring an additional property
of the hash function that we develop after the description of the scheme. Our
security analysis also holds without idealized assumption.

4.1 Description of LR-MAC2

To get high security we start again from Hs(m) = u‖v, where u, v ∈ {0, 1}n, as
illustrated in Figure 2. As in HTBC, we first compute Fv

k(u) with k = k1 to get a
10 In the black box setting (i.e., without leakage), the security of this construction is

beyond birthday since (qV + 1) ϵsUP-L2 ≤ ϵsPRP + qV +1
2128−qM−qV

, which is optimal.
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value dependent on both n-bit strings u and v. To verify the validity of a tag τ for
message m, we know that we should rely on a TBC inversion call to avoid leaking
useful information about the good tag if (m, τ) is actually an invalid message-
tag pair. However, we also have to circumvent the difficulty encountered when
dealing with the verification of HTBC tags, as discussed in the introduction.
That means that we should use our second TBC call in such a way that the
equality check must not directly involve either u or v (so, a half hash value) and
an output of the TBC (thus requiring to rely on a backwards computation). As
a result, we need a serial evaluation of the TBC calls to compute a tag, e.g., as
τ =

(
Fv
k2
◦ Fv

k1

)
(u), with an equality check performed in the middle to compare

Fv
k1
(u) and Fv,−1

k2
(τ ′) in the verification for a candidate tag τ ′.

m H u‖v

v

u F y F τ

k1 k2

m H u‖v

v

u F y ?
= ỹ F−1 τ

k1 k2

Fig. 2: LR-MAC2.

Up to switching the role between u and v, we now explain why Fv
k2
◦ Fv

k1
is

the good choice beyond the fact that using only a secret key primitive for the
equality check allows us to learn what is computed and when, contrarily to the
hash function. Since Fk2

and Fk1
are independent instances of the TBC, using the

same tweak still enable us to use the output of one call against each other. The
advantage of re-using the same tweak is twofold. First, we can easily partition
all the queries with respect to v, the “lower half” of Hs(m) = u‖v. This avoids
considering many intermediate cases in the proof since with another computation
of the form Fu

k2
, with tweak u, we would have to deal with many “crossed” half

hashes like u1‖v1, u1‖v2, u2‖v1… Second, given v, Fv
k2
◦ Fv

k1
is a permutation

between u and τ . We will see that this also simplifies the distribution of the
potential forgeries, which in turn improves the security bound.

The complete specification of LR-MAC2 is given in Algorithm 2.
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Algorithm 2 The LR-MAC2 algorithm.
It uses a strongly protected TBC F : K×T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}∗ → {0, 1}2n.

– Gen
• k = (k1, k2)

$← K2

• s
$← HK

– Mack(m):
• u∥v n← Hs(m)
• y = Fv

k1
(u)

• τ = Fv
k2
(y)

• Return τ
– Vrfyk(m, τ):
• u∥v n← Hs(m)
• y = Fv

k1
(u)

• ỹ = Fv,−1
k2

(τ)
• If y == ỹ Return ⊤
• Else Return ⊥

Single key version. For the sake of simplicity, we described LR-MAC2 with two
uniform and independent keys. However, with some extra work we can rely on
a single secret key k. The careful reader will have noted that we cannot derive
k1 and k2 from Fk as the TBC is only unpredictable with leakage, and not
pseudorandom with leakage which is a controversy assumption in the standard
model. So the keys k1 and k2 will not have the right distribution to assume
that Fk1 and Fk2 are themselves unpredictable with leakage. Nevertheless, the
other known alternatives work. We can either assume that the TBC supports
one more bit-tweak, i.e., tweaks of size n+1, or we can drop one bit of v in order
to force in both cases the use of a domain separation bit in the tweaks between
the two calls of the TBC. For completeness, we depict the construction where we
compute τ = F

v∥1
k ◦ Fv∥0

k (u) in Appendix B, Figure 4 and Algorithm 4 .

4.2 Half multi-collision resistance

It is natural to combine a double output length hash function Hs(m) = h =
u‖v ∈ {0, 1}2n with an (n, n, n)-TBC F to target high MAC unforgeability. But
since the hash value h is too long it cannot be used directly, and we split it into
two n-bit pieces u and v to input Fv

k(u), for instance, where k is the n-bit key.
The values u and v thus have distinct purposes in the design and it is equally
natural to investigate the properties of both halves separately. At high level, this
therefore requires that Hs = H1

s‖H2
s comes with additional guarantees for H1

s and
H2

s, which can be seen as a strengthened security requirement for Hs.
General purpose standard hash functions should be as close as possible to

public random functions. Since our goal is to avoid relying on idealized assump-
tion, we will use the intuition that H1

s and H2
s should be asymptotically as good
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as Hs. That is, even if in practice hash functions are built for a precise output-
length (e.g., 256 bits), it just corresponds to asking that H1

s and H2
s are 128-bit

output-length secure (enough) hash functions.
Obviously, we cannot simply concatenate any two 128-bit output collision

resistant hash functions to build Hs and hope boosting the collision resistance of
the resulting construction, say, up to 296 queries or more. Still, H1

s(m) = u and
H2

s(m) = v have to behave as securely as possible and we can expect them to be
range-oriented/second/…preimage resistant and/or collision resistant up to 264θ

queries, for some θ ∈ (0, 1) as close as possible to 1.
Building some good hash Hs = H1

s‖H2
s enjoying additional “half-security” is

out of the scope of this paper, and this additional requirement will be part of
the discussion confirming the interest of the pragmatic LR-MAC1 construction
at the end of the section. Yet, we see the independent security of H1

s and H2
s

as a valuable asset and a natural target as many constructions might benefit
from using the two halves u and v of h at different places in a cryptographic
scheme, leading to a better overall security. We assume that it could be ensured
by standard constructions, at the cost of slightly increased parameters.

Among the usual security guarantees of hash functions we can ask for the
halves Hi

s, for i = 1, 2, we require the hardness of computing many collisions
on H2

s. Bounding the probability of multi-collisions is reminiscent of deriving
beyond-birthday security from symmetric (T)BC-based constructions of MAC
or AEAD in the ideal-cipher model. In our construction, H2

s(m) = v is used as
a tweak and we want to have a probability that decreases fast in the number
of additional colliding v-values. By controlling the probability of multi-collisions
on H2

s, we will have only few messages mi in the adversarial view such that
Hs(mi) = ui‖v for distinct ui (otherwise we have a collision on the full Hs).
That is, few possible preimages of Fv

k for any chosen v to compute a forgery.

We follow [7] to define a natural notion of multi-collision resistance before
adapting it to the “half output” case as we require for our proofs.

Definition 8. Let H : HK × {0, 1}∗ → {0, 1}n be a hash function, and µ ≥ 2
be an integer. We say that H is µ-multi collision resistant if, for any efficient
adversary A, there is a negligible function negl such that:

Pr
s←HK

m1,...,mµ←A(s)

[
∀i, j ∈ [µ] : i 6= j → mi 6= mj ∧Hs(mi) = Hs(mj)

]
≤ negl(n).

We further say that H is multi collision resistant if there is a value µ ≥ 2 such
that H is µ-multi collision resistant.

If H is modeled as a random oracle, H is clearly µ-multi collision resistant for
any µ ≥ 2. In the standard model, H might only be multi collision resistant from
some lower bound, say µ ≥ 10 or µ ≥ n/4. Still, if H is µ-multi collision resistant
it is also µ′-multi collision resistant, for any µ′ ≥ µ. We elaborate more on the
possible behavior of µ in relation with a decreasing family of negligible functions
to derive more concrete bounds in Section 4.4, after the security analysis.
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We now simply define the half multi-collision resistance of Hs : {0, 1}∗ 7→ {0, 1}2n
as the multi-collision resistance of H1

s or H2
s, where Hs = H1

s‖H2
s.

Definition 9. Let H : HK × {0, 1}∗ → {0, 1}2n be a hash function, and define
Hi : HK × {0, 1}∗ → {0, 1}n, for i = 1, 2, such that for any s ← HK and any
message m ∈ {0, 1}∗, we have Hs(m) = H1

s(m)‖H2
s(m). We say that H is half

multi-collision resistant for i = 1, 2 if Hi is multi-collision resistant. To avoid
indexes, if i = 1, we also say that H is upper-half multi-collision resistant, and,
if i = 2, that H is lower-half multi-collision resistant.

Assuming that H satisfies this notion is a falsifiable assumption.

4.3 Security analysis of LR-MAC2

Unbounded leakage specification. Before assessing the sUF-L2 security of LR-
MAC2, we have to define the leakage that an adversary can collect:

– LM (m; k) returns (y, LEval(v, u; k1), LEval(v, y; k2)), where u‖v n← Hs(m) and
the intermediate value y = Fv

k1
(u) is given.

– LV (m, τ ; k) returns (y, ỹ, LEval(v, u; k1), LInv(v, τ ; k2)), where u‖v n← Hs(m),
and the intermediate values y = Fv

k1
(u) and ỹ = F−1,vk2

(τ) are given.

Our main result for LR-MAC2 is then formalized by the following theorem:

Theorem 2. Let H : HK×{0, 1}∗ → {0, 1}2n be a (t1, ϵCR(2n))-collision resistant
hash function and (t1, ϵµ-CR(n))-µ-lower-half multi-collision resistant, for some
µ ≥ 2. Let F be a (qL, qEval, qInv, t2, ϵsUP-L2)-strongly unpredictable with leakage
TBC, then, LR-MAC2 is (qL, qM , qV , t, ϵ)-sUF-L2 with:

ϵ ≤ ϵCR(2n) + ϵµ-CR(n) + 2µqV ϵsUP-L2,

where qLF ≤ qLF, qEval ≤ qM + qV + 1, qInv ≤ qV , t1 ≤ t + (qM + qV + 1)tH +
2(qM + qV )(tF + tL(F)), and t2 ≤ t+ (qM + j + 1)tH + (qM + qV + 1)(tF + tL(F)).

Below, we give a detailed sketch of the proof. We defer the full proof to Ap-
pendix C and we discuss the security bound in Section 4.4.

Proof (Sketch). To simplify our exposition, we assume the adversary gets the
unbounded leakage without being explicit. Let (m, τ) be the first valid message-
tag pair involved in a verification query which can be used by the adversary as a
forgery. That is, the pair (m, τ) is fresh at the time of that verification query in
the sense that it was never involved in an earlier verification query and (m, τ) is
not the result of any previous tag-generation query for m. Given such a fresh and
valid pair, let u‖v n← Hs(m), y = Fv

k1
(u) and ỹ = F−1,vk2

(τ). Below, we consider
different cases depending on whether the TBC triples (v, u, y) for k1 and (v, ỹ, τ)
for k2 have already been defined before the verification query of (m, τ) or not.
We note that if the computation of τ = Fv

k2
(ỹ) occured before (necessarily in a

tag-generation query) our second triple is already defined.
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F1 The triples (v, u, y) for k1 and (v, ỹ, τ) for k2 have not been defined yet.
F2 The triple (v, u, y) for k1 has already been defined, while (v, ỹ, τ) for k2 has

not been defined yet.
F3 Conversely, the triple (v, u, y) for k1 has not been defined yet, while (v, ỹ, τ)

for k2 has already been defined.
F4 Both triples (v, u, y) for k1 and (v, ỹ, τ) for k2 have already been defined. We

split that case into three sub-cases:
F41 Both triples (v, u, y) for k1 and (v, ỹ, τ) for k2 have been defined in the

same tag-generation or verification query.
F42 The triple (v, u, y) for k1 was defined in some query (of any type) prece-

dent to the one in which (v, ỹ, τ) was defined for k2.
F43 The triple (v, ỹ, τ) for k2 was defined in some query (of any type) prece-

dent to the one in which (v, u, y) was defined for k1.

We now give intuition about how we bound the probability of these events. The
main difficulty arises in F4, where would like to rely on the sUP-L2 security of
the TBC. In F42 (resp., F43), we would like to use the second-call triple (v, ỹ, τ)
(resp., the first-call triple (v, u, y)) as our winning prediction against the TBC.
The trouble comes while we should avoid querying an evaluation/inversion that
settles all the triples associated to (m, τ) as defined, in which case the attack
will not be successful (to win the triple must not be defined). Fortunately, half-
multi-collisions on v allow detecting the potential triples for which we have to be
careful. Since their amounts are bounded by µ, unless H is not lower-half multi-
collision resistant, we only get an additional factor µ in ϵsUP-L2 for each case.

F1 We build a sUP-L2 adversary against the TBC, conceptually against the
“second call” Fk2

. It picks k1
$← K for itself and simulates the computation

of Fk2
by querying its own TBC oracle. In the verification query (m, τ), it

computes y itself and outputs (v, y, τ) as its prediction. Given that (m, τ),
the probability that this event occurs is bounded by ϵsUP-L2.

F2 We build a sUP-L2 adversary against the TBC as in the case of F1.
F3 We build a sUP-L2 adversary against the TBC, conceptually against the

“first call” Fk1
. It picks k2

$← K for itself and simulates the computation
of Fk1 by querying its own TBC oracle. In the verification query (m, τ), it
computes ỹ itself and outputs (v, u, ỹ) as its prediction. Given that (m, τ),
the probability that this event occurs is bounded by ϵsUP-L2.

F4 This case is less straightforward. We deal with its sub-cases independently.
F41 Let (m′, τ ′) be the message-tag pair involved in the earlier query that

defines (v, u, y) and (v, ỹ, τ). Then, τ ′ = τ (regardless of the query type).
F411 If mi = m, it contradicts the freshness of (m, τ). This case is void.
F412 If mi 6= m, since the defined triples implies u‖v n← H(m′), we found

a collision. The probability that this event occurs is bounded by ϵCR.
F42 Let (mi, τ i) be the message-tag pair involved in the earlier query that

defines (v, u, y) for k1 and (mj , τ j) be the message-tag pair involved in
a subsequent query that defines (v, ỹ, τ) for k2, and both (regardless
of their respective type of query) occurring before our (m, τ). By the
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meaning of the triples, we have u‖v n← H(mi) and τ j = τ , and we can
assume that mi = m as we already dealt with collisions. However, we
note that τ i 6= τ and mj 6= m as otherwise it would contradict the
freshness of (m, τ). So (mi, τ i) must be an invalid pair in a verification
query as well as (mj , τ j) (if it is valid it can only be a tag-generation
query by definition of (m, τ), but then uj = Fv,−1

k1
◦ Fv,−1

k2
(τ j) = Fv,−1

k1
◦

Fv,−1
k2

(τ) = u).11 This implies that we already have a lower-half 2-multi-
collision on v. Indeed, we see that H2

s(m
i) = H2

s(m
j) with mi 6= mj .

Then, to avoid defining the second-triple (v, ỹ, τ) we must use it as a
winning prediction against the TBC at the time the query (mj , τ j) is
made. Moreover, the situation will be the same with any subsequent
query (mj , τ j) before (m, τ) where the second-triple is given by (v, ỹ, τ),
i.e., vl = v, τ l = τ and distinct ml (otherwise it is a repeating query).
We can bound the probability of all these events given (mi, τ i). Each time
a new verification query is made for some (ml, τ l) such that mi 6= ml

and vi = vl (we include l = j here), for the at most µ − 1 possible
cases, we make an hybrid on the ordered such l, and a reduction to the
sUP-L2 experiment against the TBC in the “second call” by picking k1
and outputting the prediction (vi, yi, τ l) (while the TBC oracle is called
for all the previous verification queries to emulate the second MAC call).

F43 We are in the same case as case F42 with the difference that the query
(mj , τ j) defining (v, ỹ, τ) for k2 is made before the query (mi, τ i) defining
(v, u, y) for k1. Since our argument showing that these queries in F42 are
of verification type and the input pairs are invalid does not depend on
which query happens before, we are exactly in the dual situation where
we somehow switched the first-call and the second-call.
We can bound the probability of all these events given (mj , τ j). Each
time a new verification query is made for some (ml, τ l) such that ml 6=
mj and vl = vj (we include l = i here), for the at most µ − 1 possible
cases, we make an hybrid on the ordered such l, and a reduction to the
sUP-L2 experiment against the TBC in the “first call” by picking k2 and
outputting the prediction (vj , ul, ỹj) (while the TBC oracle is called for
all the previous verification queries to emulate the second MAC call).

In the full proof, we first deal with the collision resistance of Hs and the µ-multi-
collision resistance of H2

s. For the events F42 and F43 we of course do not know
when we will be in face of the queries (mi, τ i) and (mj , τ j) which could define
the triples of the the first potential forgery (m, τ). However, by considering all
the verification queries as potentially being (mi, τ i) or (mj , τ j) that defines the
first triple of (m, τ), we cover all the cases with a term like 2µqV ϵsUP-L2. That
way, we also cover the case that (m, τ) might be any of the verification queries.
Indeed, once we analyze a potential (mi, τ i) or (mj , τ j), we will consider all the
11 The choice to reuse v as the only tweak of the TBC in our design is crucial. With

distinct tweaks the security bound will be much more loose. Among other advantages,
here, we only have to deal with the verification queries.
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next verification queries sharing vi or vj among which all the possible (m, τ) lie
when F42 or F43 occur. In the remaining case, it is straightforward to deal with
F1, F2 and F3. Overall, we find [2(µ− 1)qV + qV + 1]ϵsUP-L2 for the TBC term.

4.4 Deriving concrete bounds

Deriving concrete bounds from asymptotic security is not an easy task in the
standard model. However, we can argue why it is realistic to assume the existence
of building blocks which will confer high security to LR-MAC2. Since the sUP-L2
of the TBC can be argued in the same lines as in the rest of the paper, we next
focus on the stronger properties that we require for the hash function.

Multi-collision resistant hashing. The security bound shows that it is rea-
sonable to take µ ∈ O(n) without blowing up the term related to the unpre-
dictability of the TBC. Moreover, increasing µ can only decrease the probability
of finding more and more multi-collisions. Indeed, µ-multi collision resistance
implies (µ + 1)-multi collision resistance. And, even it the definition does not
imply that the negligible probability decreases when µ increases, it is reasonable
to assume so for “good” hash functions, as for SHA2 or SHA3.

In the ROM, it is a well-known fact that n-multi collision resistance allows up
to q ≈ 2n/n hash queries. Of course, we will not assume in the standard model
that H remains secure up to that number of evaluations. However, it might be
the case that H is 3n-multi collision resistant up to q ≈ 296, which is much less
demanding and fully compatible with our other terms in our security bound.

As another justification, Berti et al. [9, Lemma 5] proved that the Merkle-
Damgård iteration of the Hirose’s DBL compression function [26] gives rise to a
half-multi-collision resistant hash function in the ideal cipher model.

Multi-collision independence. By more closely mimicking the behavior of
random functions, we derive another relaxed notion that could be realized with-
out idealized assumption on half outputs of H. This is a stronger definition than
the (half-) multi-collision resistance notion, but it offers a way to more accurately
model a decreasing negligible functions’ family depending on the multi-collision
parameter µ. This allows us to soundly analyze how the negligible functions re-
lated to a (half-) µ-multi-collision resistant hash function H might become better
and better as µ grows, as expected from any “good” hash function, and without
relying on any ideal argument. Of course, the decreasing rate in µ can be much
slower than a truly random function but our security bounds of LR-MAC2 shows
how comfortable we are to increase µ even in a leakage setting.

First, we recall a result of [35] showing that for a random function with 2n

possible outputs, the multi-collision event MultiColl(2n, q) ≥ µ that at least µ ≥ 2
inputs give a same output among a total of q function evaluations satisfies:

Pr[MultiColl(2n, q) ≥ µ] ≤ 1

2n(µ−1)

(
q

µ

)
.
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Since the right-hand side is also bounded by qµ/2n(µ−1), we can simplify this
result by saying that any additional collision comes at a marginal probability of
≈ q/2n starting from the standard collision bound q2/2n, where µ = 2.

Definition 10. Let H : HK×{0, 1}∗ → {0, 1}n be a hash function. We say that
H is θ-powerwise collision independent if, for s ← HK, the probability that an
efficient adversary A(s) making at most q hash evaluations computes at least µ
distinct m1, . . . ,mµ ∈ {0, 1}∗ such that Hs(m1) = . . . = Hs(mµ) is bounded by:

2n
(
q1+θ

2n

)µ

,

with µ ≥ 2, 0 ≤ θ ≤ 1. The factor q1+θ/2n is the marginal collision probability
and θ is called the non-idealization power. We say that H is multi-collision
independent if it is θ-powerwise collision independent for some θ ∈ (0, 1).

If the non-idealization power is null, the hash function is a random function
and the marginal collision probability matches the one discussed above.

We stress that finding a µ-multi-collision for any µ ≥ 2 gives the same chance
of finding “one more” collision in the sense of a (µ + 1)-multi-collision. Said
otherwise, the marginal collision probability is independent of the number of
multi-collisions already found, hence the name. For instance, finding more multi-
collisions does not help in finding even more multi-collisions. This might be seen
as a strong collision resistant flavor as the hash function should resist further
collision attacks even if some previous attacks already succeeded. However, stan-
dard hash functions should fulfill such a collision resilient condition. At least,
they have to offer a graceful degradation and, in particular, given a collision
it should not become easy to find some others. Still, we require here that the
degradation factor be constant, given the security parameter n and the non-
idealization power θ. But we might only have a middle non-idealization power
θ = 1/2. In that case, the collision probability (i.e., the 2-multi-collision) is only
upper-bounded by q3/2n ensuring collision security up to q ≈ 242, for n = 128.
Nevertheless, we can reach the 20-multi-collision security up to q ≈ 281. By
letting θ = 1/ρ, we can reach the n-multi-collision security up to q ≈ 2nρ/(1+ρ).
We now simply define half-multi-collision independence of Hs : {0, 1}∗ 7→ {0, 1}2n
as the multi-collision independence of H1

s or H2
s, where Hs = H1

s‖H2
s.

Definition 11. Let H : HK× {0, 1}∗ → {0, 1}2n be a hash function, and define
Hi : HK × {0, 1}∗ → {0, 1}n, for i = 1, 2, such that for any s ← HK and
any message m ∈ {0, 1}∗, we have Hs(m) = H1

s(m)‖H2
s(m). We say that H is

half-multi-collision independent for i = 1, 2 if Hi is multi-collision independent.
To avoid indexes, if i = 1, we also say that H is upper-half-multi-collision
independent, and, if i = 2, that H is lower-half-multi-collision independent.

Armed with this stronger theoretical background, we can re-evaluate the
security of LR-MAC2 in the light of the non-idealization power θ, assuming that
H is lower-half-multi-collision independent (where H2

s outputs tweaks). Let us
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first recall the security bound ϵCR(2n) + ϵµ-CR(n) + 2µqV ϵsUP-L2 of Theorem 2,
and assume that ϵsUP-L2 supports 285 (online) queries, for n = 128 = 27. Setting
qV = 275 then allows us to take µ = 28. That means that if the number of
evaluation of H remains below 290, the non-idealization power could be θ = 2/5
for H2

s since ϵµ ≤ 2128(290·7/5/2128)256 < 2−128, even if H2
s would only be (2-

multi-) collision resistant up to 263/(1+θ) = 245 hash evaluations.

So overall, we conclude this section by observing that LR-MAC2 could provide
strong leakage resilience guarantees. Yet, on the one hand, it requires stronger
assumptions which, despite not idealized, are less standard than the collision
resistance that LR-MAC1 requires. On the other hand, it also requires two calls to
a TBC with n-bit tweaks which, as mentioned in introduction, should in general
be more expensive than one call to a TBC with 2n-bit tweaks if specialized
constructions can be used. We note there are constructions that achieve the
same leakage-resilience guarantees without half collision resistance, but the best
solution we are aware of (given in Appendix B, Figure 5 or completeness) requires
three TBC calls for this purpose. So despite theoretically interesting, we believe
these results also amplify the pragmatic interest of using large tweaks.

5 Analysis of HTBC

In this section, we finally show that the popular Hash-then-PRF MAC con-
struction is provable without idealized assumptions in a leakage setting. For
consistency with the LR-MAC1 and LR-MAC2 constructions, we focus on the
Hash-then-TBC scheme described in Figure 3 and specified in Algorithm 3.

F−1

k

τ ũ ?
= u u‖v

v

H m

F

k

uu‖v

v

Hm τ

Fig. 3: Hash-then-TBC.

5.1 A first analysis in the standard model

The security proof requires the hash H to be collision resistant and range-oriented
preimage resistant. A stronger (and less standard) assumption is weak image
set computable, that is, there exists a PPT algorithm M that outputs the set
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Algorithm 3 The HTBC algorithm.
It uses a strongly protected TBC F : K×{0, 1}n×{0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}n → {0, 1}2n.

– Gen
• k

$← K
• s

$← HK
– Mack(m):
• u∥v = Hs(m)
• τ = Fv

k(u)
• Return τ

– Vrfyk(m, τ):
• u∥v = Hs(m)
• ũ = Fv,−1

k (τ)
• If ũ == u Return ⊤
• Else Return ⊥

WP(s,A) defined in Eq. (1) for any s and A. By Lemma 1, for range-oriented
preimage resistant hash functions it is feasible to output the set WP(s,A) in
PPT. We will serve more intuitions on this assumption at the end of this section.

The assumption of weak image set computability admittedly renders the con-
crete security analysis hard to interpret. As a result, below we eschew the con-
crete security approach (which is followed by Theorems 1 and 2) in favor of
the asymptotic approach. We justify this choice by the fact that the goal of this
section is to show a theoretical possibility, potentially opening a path towards
more advanced and concrete analyzes in the future.

Theorem 3. Let the hash function H be collision resistant, range-oriented preim-
age resistant, and weak image set computable. Let F be a TBC that is sUP-L2.
Then, HTBC is sUF-L2-secure in the unbounded leakage model.

Proof. In the unbounded leakage model, all the intermediate computations leak
(except the long-term key). Wlog, we assume that the forgery adversary A has
been “normalized”. That is, before making every oracle query, A outputs the
list of all images S(s) ⊆ {0, 1}n for which she knows the preimage. Clearly,
this cannot decreases the success probability of A. Moreover, this only induces a
polynomial blow-up in A’s running time: S(s) must be polynomial, as otherwise
A gets a superpolynomial number of input/output relations Hs(m) = y and
would be able to break the collision resistance of H.
To prove the theorem, we follow a sequence of games.
Game 0. Let Game 0 be the sUF-L2 game where the adversary AL tries to
produce a forgery when she plays against HTBC. Let E0 be the event that the
adversary wins the game; that is, the output of the game is 1.
Game 1. Game 1 is Game 0, except that we abort if there is a full collision in the
hash function. Clearly, Game 0 and Game 1 are identical if the following event
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HC (Hash collision) does not happen: HC := {∃i, j ∈ {1, ..., qM} ∪ {1, ..., qV +

1} with i
%

6= j s.t. hi = hj and mi 6= mj} (see Footnote 9). Since H is collision
resistant, we have Pr[Game 0⇒ 1] ≈ Pr[Game 1⇒ 1].

Linking to unpredictability. To complete the argument, we exhibit a predic-
tor B against Fk using an adversary A that forges in Game 1. In detail, B picks
a hash seed s uniformly at random, passes s to A and simulates Game 1 against
A. B also picks an index ℓ

$←− {1, ..., qv + 1} at random. Assume that A outputs
the forgery (m∗, τ∗) at the end of the game, where Hs(m

∗) = u∗‖v∗.
Now, if Game 1 outputs 1, i.e., VrfyLk(m∗, τ∗) returns > at the end, then

the probability that the ℓ-th verification query VrfyLk(m
(ℓ), τ (ℓ)) constitutes the

first time (Fv∗

k )−1(τ∗) is queried is at least 1/qv. It can be seen that either of the
following bad events necessarily occurred during the game:

– Case 1: intuitively, at some time, the oracle (Fv∗

k )−1(τ∗) returns a target u∗

and A later solves its preimage Hs(m
∗) = u∗‖v∗; or,

– Case 2: intuitively, at some time, A has been aware of the relation Hs(m
∗) =

u∗‖v∗, and the oracle (Fv∗

k )−1(τ∗) later returns a target u′ = u∗.

But B cannot predict which case will be encountered. Fortunately, in either case
the number of candidates for (Fv∗

k )−1(τ∗) is polynomial, and thus B can simply
take a union. In more detail:

If the first case is encountered, then the concatenation u∗‖v∗ of the returned
target u∗ = (Fv∗

k )−1(τ∗) and the tweak v∗ necessarily falls in the set WP(s,A)
(otherwise A won’t be able to solve the preimage). Then, since we assumed that
the set WP(s,A) is computable given s and A, the predictor B could make a
guess u′ among WP(s,A) and take (v∗, u′, τ∗) as a forgery for Fk.

If the second case is encountered, then as we assumed that A always outputs
the list S(s) of all images that she knows the preimage, the predictor B could
make a guess u′ among S(s) and takes (v∗, u′, τ∗) as a forgery for Fk.

By the above, the predictor B first runs the algorithm M to obtainWP(s,A),
and then reads the set S(s) from A’s outputs. B then picks u′ $←−WP(s,A)∪S(s)
uniformly and outputs (v∗, y′, τ∗) as a forgery for Fk.
Summing over the two cases, the success probability of B is at least:(Pr[Game 1⇒ 1]

qv + 1

)
·
(

Pr[Case 1]
|WP(s,A)|+ |S(s)|

+
Pr[Case 2]

|WP(s,A)|+ |S(s)|

)
,

≥
(Pr[Game 1⇒ 1]

qv + 1

)
·
(
Pr[Case 1] + Pr[Case 2]

)
· 1

|WP(s,A)|+ |S(s)|
,

=
Pr[Game 1⇒ 1]

(qv + 1)(|WP(s,A)|+ |S(s)|)
· (3)

By the unpredictability assumption on F, the final term Pr[Game 1⇒ 1]/(qv +
1)(|WP(s,A)| + |S(s)|) should be negligible, which means Pr[Game 1 ⇒ 1] =
negl(n). This complete the proof. ut
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Discussion. To facilitate understanding, we provide further intuition on the
proof of Theorem 3. A first impression may suggest the infeasibility to decide and
output the weak setWP(s,A) since the seed space is exponential, which (seems)
to gain support from the formalism of collision resistant hashing. However, this
intuition is incorrect: the seed space being exponential does not necessarily mean
the computation is infeasible. In particular, it may be easy to derive WP(s,A)
from the seed, or even seed-independent (i.e., the algorithm does not necessarily
need to keep a table for all the seeds) as we now detail.

First, assume using a keyed random oracle RO : HK × {0, 1}∗ → {0, 1}2n
as the hash function. In this case, PrA(s,y)⇒m

[
ROs(m) = y

]
is negligible for all

y ∈ {0, 1}2n, meaning that WP(s,A) = ∅. By this, the probability that Case 1
in the proof occurs is negligible (which is indeed the case, as the probability is
in O(q/2n), with q the number of adversarial RO queries). On the other hand,
the “normalized” adversary A simply outputs its RO query/response list before
the ℓ-th verification query, and this could be used to predict (Fv

k)
−1(τ).12.

Let us now assume using a keyed SHA3 variant (denoted sha) producing
256-bit hash digests. According to known cryptanalytic results, for any A with
running time t, PrA(s,y)⇒m

[
shas(m) = y

]
= O(t/2256) for all y ∈ {0, 1}256,

meaning that WP(s,A) remains ∅ in some sense.
On the one hand, it seems that the number of SHA3 input/output pairs

that could be derived in time t is only O(t), and the “normalized” adversary A
simply outputs a list of O(t) input/output pairs. On the other hand, the double-
block-length hash function Tandem-DM has a “weak” image 0 that is easily
invertible [3]. If Tandem-DM is used, then WP(s,A) = {0}, the size of which is
just 1. Further consider the keyed hash KeyedTDMs(M) = Tandem-DM(M)⊕s.
Despite being contrived, for this instructive example the weak set WP(s,A) =
{s} which is seed-dependent but very easy to derive.

Note that we do not need the hash function to be non-malleable. The proof
follows even if the hash admits the weakness that Hs(m⊕ δ1) = Hs(m⊕ δ1)⊕ δ2
for a specific pair of differences (δ1, δ2) and any m: in this case, the number of
“known” input/output pairs remains in O(t). We additionally remark that:

– the weak image set computability assumption doesn’t contradict the range-
oriented preimage resistant assumption, because the latter concerns with
random images that are unlikely to fall in WP(s,A);

– this assumption doesn’t contradict the collision resistant assumption either,
because weak images don’t necessarily have multiple preimages.

Finally, we note that our proof approach easily extends to the construc-
tions of Hash-then-block cipher of [11] and Hash-then-PRF (enhanced with the
leakage-resilient value comparison tricks [?]). It is also intriguing to ask whether
more “common” assumptions on hashing could suffice, e.g., even the UCE hash-
ing [5] or some weak form of correlation intractable hashing [13,12]. We leave
the investigation of these alternative approaches for future investigations.
12 The latter trick was also used in [8].
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5.2 Towards another analysis
As an opening, we eventually discuss whether adaptating the security proofs
of [8] could lead to another analysis. The simplest solution for this purpose is
to find the appropriate assumption on H that could hold in the standard model
to replace the random oracle. This is also what is done in the previous analysis
but we next suggest another (stronger) possibility that is simple to express.

Essentially, what we need from the hash function H is that any targeted
image y that has never been defined yet by computing H(x) for some x is still
unattainable. Of course, by computing H(x) for a fresh input x we always attain
a new image with overwhelming probability, unless we find a collision. Obviously,
all the undefined images cannot be our targets. So, the main difficulty is to define
a natural meaning of targets that can be chosen adaptively by the adversary.
This is where the new definition will anyway be less standard than usual pre-
image resistance. But this is precisely what we need in the security proof of
HTBC to adapt [8]. Indeed, let ũ = Fv,−1

k (τ), and let us consider again the cases
where either ũ‖v was already computed from H(m) for some m or it was not.
In the first case, if we know that H(m) = ũ‖v has already been computed in the
unforgeability game, we can easily build an adversary against TBC and compute
a prediction. In the second case, if we know that ũ‖v was never defined as an
output of H, then we want to define ũ‖v as a target. That means that if we
know which hashing has already been computed, we can adaptively define a set
of targets of polynomial size. Since the number of TBC calls is bounded by the
number of queries against the unforgeability of HTBC, knowing which value is
already a defined image of H is precisely what we need, and what is done in the
random oracle model. Still, we do not need to have uniformly random output.

As a consequence, as long as H is half-multi-collision independent or even
half-multi-collision resistant as defined in Section 4, since the proof in [8] already
needs such kind of assumption even if it comes for free from the random oracle,
the proof can go through if we require H to satisfy the notion of essentially pre-
image resistance which precisely models the hardness of computing a pre-image
of a single target among any polynomial set of targets that can be adaptively
updated by the adversary before trying to find it.

Essentially-pre-image resistance would simply model which hashing is already
defined or not and maintain the list of targets that the adversary announced she
will try to attack. To do so, even if the hash function is a public-key primitive,
we should demand that computing hash values requires “querying” H even if
the hash values are computed faithfully (without any other restriction about the
distribution of the outputs). Hashing becomes interactive in that model but only
for the sake of defining fresh targets and nothing else. The interaction does not
occur in practice: it is just a way to soundly define what are the fresh targets
and to avoid trivial attacks in the standard model.

It is easy to see that for any Turing Machine A without interaction with H,
we can build a Turing Machine A′ that explicitly returns all the inputs it uses for
H, and directly after the output of that computation. Based on this discussion,
we can see that the security of HTBC can be essentially good.
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6 Conclusions

This paper describes and analyzes three leakage-resilient MACs that can be
proven based on minimum physical assumptions (namely the unpredictability of
a TBC with leakage) and more or less standard (anyway non idealized) black
box assumptions for their hash part. We believe these results make an impor-
tant step in building cryptographic primitives enabling strong security against
side-channel attacks at limited cost, by leveraging the leveled implementation
concept. The constructions we analyze range from pragmatic to theoretically
more involved. The difficulty to maintain tight bounds with minimum assump-
tions when getting rid of the design twists used in our pragmatic solution (i.e.,
large tweaks for the TBC and a verification process that checks the inverse TBC
against a constant) confirms that selecting good assumptions is critical for such
constructions, as generally observed in cryptography but possibly even more
with leakage. Avoiding idealized assumptions is important in this respect, since
they make it impossible to translate security proofs and bounds into concrete
requirements for the engineers implementing the corresponding schemes.

These results suggest different tracks for further investigations. In view of the
limited overheads that its design twists imply, further instantiating the LR-MAC1
construction and designing a TBC with large tweaks that is suited to side-channel
countermeasures appears as a practically relevant goal. In parallel, investigating
whether the performances’ and assumptions’ gaps between LR-MAC1 and the
LR-MAC2 or HTBC constructions can be tightened is an interesting question
as well (for example using some of the directions outlined at the end of Sec-
tion 5). Eventually, extending our results to sponge-based constructions (e.g.,
ISAP-MAC [15]) is another challenge that would deserve attention: we expect
that such an analysis will require some adaptation and different assumptions.
For example, secure authentication in this case cannot directly work in the un-
bounded leakage model, as per the recent work of Dobraunig and Menning [17].
The same holds for extending the quest for leakage-resilient constructions with-
out idealized assumptions from MACs to (authenticated) encryption schemes.
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A Proof details for LR-MAC1.

Here, we present the details of the proof of Thm. 1.

The t1-CR-adversary B. B has to find a collision for the hash function Hs. At
the start of the game, she is provided a key s for the hash function, which she
relays to AL. Then, she picks a key k uniformly at random for F. Moreover, she
has a list H which is empty at the start.
When A does a tag-generation query on input mi, B (1) simply computes hi =

Hs(m
i) and she adds {(mi, hi)} to H, then, (2) she computes τ i = Fhi

k (0n) and
collects the leakage lie = LF(h

i, 0n; k) Finally (3), she answers τ i to A and the
leakage Li

M = lie and she adds {(mi, hi)} to H.
This takes time tH + tF + tL(F).
When A asks a verification query on input (mi, τ i), B first, (1) she computes
hi = Hs(m

i), adds {(mi, hi)} to H, then (2), she computes x̃i = Fhi,−1
k (τ i) and

collects the leakage lii = LF−1(hi, τ i; k). Finally (3), if 0n = x̃i, B answers > to
A; otherwise, ⊥. Moreover, B gives the leakage Li

V = (x̃i, lii ) to A.
This takes time tH + tF + tL(F).
When A outputs its forgery (mqV +1, τ qV +1), B computes hqV +1 = Hs(m

qV +1),
adds {(mqV +1, hqV +1)} to H. This takes time tH.
At the end of the game, B looks up the list H to find a collision. If she finds it,
she outputs it; otherwise, 0n and 1n.
Thus, in total, she needs time t+ (qM + qV + 1)tH + (qM + qV )(tF + tL(F)). 13

The (qL, qEval, qInv, t2)-sUP-L2-adversary Cj. Ci has to find a valid triple (x, tw, y)
for Fk which is fresh and valid.
At the start of the game, she picks uniformly at random a key s

$← HK for the
hash function, which she relays to AL. Moreover, she has a list S, which is empty
at the start of the game.
When AL does a query to L on input (tw, x; k′) either to Eval or to Inv, Cj does
13 Since we assume that A has access to L(·), we do not need to consider what B does

with these queries. A does them whenever A wants and she does them in his running
time.
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the same query. She receives the leakage L, which she forwards to A.
When A does a tag-generation query on input mi, Cj (1) simply computes hi =
Hs(m

i), then, (2) she queries his oracle LEval on input (hi, 0n) receiving τ i and
collects the leakage lie, finally (3), she answers A τ i and the leakage Li

M = lie;
moreover, she adds {(mi, τ i)} to S.
This takes time tH.
When A asks one of the first j verification query on input (mi, τ i), Cj for the
first, (1) she computes hi = Hs(m

i), then (2), she queries his oracle LInv on
input (τ i, hi) receiving x̃i and collects the leakage lii . Finally (3), if 0n = h̃i and
{(mi, τ i)} ∈ S (3a), Cj answers > and the leakage Li

V = (x̃i, lii ) to A; if 0n = h̃i

and {(mi, τ i)} /∈ S (3b), Cj aborts; otherwise (3c), ⊥. Moreover, Cj gives the
leakage Li

V = (x̃i, lii ) to A.
This takes time tH.
When A asks his j+1-th verification query on input (mqV +1, τ qV +1), Cj computes
(1) hj+1 = Hs(m

j+1), and (2) she outputs (0n, hj+1, τ j+1).
This takes time tH.
Thus, in total, Ci does at most qL query to L, qM to LEval and j ≤ qv to LInv;
moreover, she needs time at most t+ (qM + j + 1)tH ≤ t2.

B Additional figures and algorithms

m H u‖v

v

u F y F τ
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0 1

m H u‖v

v

u F y ?
= ỹ F−1 τ

k k

0 1

Fig. 4: LR-MAC2 variant with a single key.
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Algorithm 4 LR-MAC2 algorithm with a single key key .
It uses a strongly protected TBC F : K×T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}n → {0, 1}2n.

– Gen
• k

$← K2

• s
$← HK

– Mack(m):
• u∥v n← Hs(m)

• y = F
v∥0
k (u)

• τ = F
v∥1
k (y)

• Return τ
– Vrfyk(m, τ):
• u∥v n← Hs(m)

• y = F
v∥0
k (u)

• ỹ = F
v∥1,−1
k (τ)

• If y == ỹ Return ⊤
• Else Return ⊥

m H u‖v

v

u

v

F y F

F x

τ

k k

1 2

0

Fig. 5: LR-MAC2 variant with 3 TBC calls.

C Proof for LR-MAC2.

Here, we present the details of the proof of Thm. 2.

Proof. To prove the theorem, we follow a sequence of games.
Game 0. Let Game 0 be the sUF-L2 game where the (qL, qM , qV , t)-adversary
AL tries to produce a forgery when she plays against LR-MAC2. Let E0 be the
event that the adversary wins the game; that is, the output of the game is 1.

Game 1. Game 1 is Game 0, except that we abort if there is a full collision in
the hash function. Let E1 be the event that the adversary wins the game; that
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is, the output of the game is 1. In a similar vein to the proofs before, it’s easy
to show

|Pr[E0]− Pr[E1]| ≤ ϵCR(2n).

To do this, we use a t1 adversary BB.
The t1-CR-adversary BB. BB has to find a collision for the hash function Hs.
At the start of the game, she is provided a key s for the hash function, which he
relays to AL. Then, she picks two key k1, k2 uniformly at random for F. Moreover,
she has a list H which is empty at the start.
When A does a tag-generation query on input mi, B (1) simply computes ui‖vi =
hi = Hs(m

i) and she adds {(mi, hi)} to H, then, (2) she computes yi = Fvi

k1
(ui)

and collects the leakage li,0e = LF(v
i, ui; k1), after that, (3) she computes τ i =

Fvi

k2
(yi) and collects the leakage li,1e = LF(v

i, yi; k2) Finally (4), she answers τ i

to A and the leakage Li
M = (yi, li,0e , li,1e ) and she adds {(mi, hi)} to H.

This takes time tH + 2tF + 2tL(F).
When A asks a verification query on input (mi, τ i), B first, (1) she computes
ui‖vi = hi = Hs(m

i), adds {(mi, hi)} to H, then, (2) she computes yi = Fvi

k1
(ui)

and collects the leakage li,0e = LF(v
i, ui; k1), after that (3), she computes ỹi =

Fvi,−1
k2

(τ i) and collects the leakage li,1i = LF−1(vi, τ i; k2). Finally (4), if yi = ỹi, B
answers > to A; otherwise, ⊥. Moreover, B gives the leakage Li

V = (yi, ỹi, li,0e , li,1i )
to A.
This takes time tH + 2tF + 2tL(F).
When A outputs its forgery (mqV +1, τ qV +1), B computes hqV +1 = Hs(m

qV +1),
adds {(mqV +1, hqV +1)} to H. This takes time tH.
At the end of the game, B looks up the list H to find a collision. If she finds it,
she outputs it; otherwise, 0 and 1.
Thus, in total, she needs time t+ (qM + qV + 1)tH + 2(qM + qV )(tF + tL(F)). 14

Game 2. Game 2 is Game 1, except that we abort if there are at least µ half
collisions on the same value v for the hash function. That is, there µ hash colli-
sions for H2

s.
Let E2 be the event that the adversary wins the game; that is, the output of the
game is 1.

Transition between Game 1 and Game 2. Clearly, Game 1 and Game 2 are
identical if the following event µ-HHC (µ- half hash collision) does not happen:

µ-HHC :=

{
∃i1, ..., iµ ∈ {1, ..., qM} ∪ {1, ..., qV + 1}

with ∀j, l ∈ 1, ..., µ ij
%

6= il s.t. vij = vil and mij 6= mil

}
.15

14 Since we assume that A has access to L(·), we do not need to consider what she
does with these queries. A does them whenever she wants and she does them in his
running time.

15 ij
%

̸= il means that if ij comes from a tag-generation query and il from a verification
query, or viceversa, then, they are considered differently.
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To compute this event, we build a t1-µ-CR-adversary B.

The t1-l-CR-adversary B. B has to find l half collisions for the hash function
Hs (on the last half). At the start of the game, she is provided a key s for the
hash function, which he relays to AL. Then, she picks two keys k1, k2 uniformly
at random for F. Moreover, she has a list H which is empty at the start.
When A does a tag-generation query on input mi, B (1) simply computes ui‖vi =
hi = Hs(m

i) and she adds {(mi, hi)} to H, then, (2) she computes yi = Fvi

k1
(ui)

and collects the leakage li,0e = LF(v
i, ui; k1), after that, (3) she computes τ i =

Fvi

k2
(yi) and collects the leakage li,1e = LF(v

i, yi; k2) Finally (4), she answers τ i

to A and the leakage Li
M = (yi, li,0e , li,1e ) and she adds {(mi, hi)} to H.

This takes time tH + 2tF + 2tL(F).
When A asks a verification query on input (mi, τ i), B first, (1) she computes
ui‖vi = hi = Hs(m

i), adds {(mi, hi)} to H, then, (2) she computes yi = Fvi

k1
(ui)

and collects the leakage li,0e = LF(v
i, ui; k1), after that (3), she computes ỹi =

Fvi,−1
k2

(τ i) and collects the leakage li,1i = LF−1(vi, τ i; k2). Finally (4), if yi = ỹi, B
answers > to A; otherwise, ⊥. Moreover, B gives the leakage Li

V = (yi, ỹi, li,0e , li,1i )
to A.
This takes time tH + 2tF + 2tL(F).
When A outputs its forgery (mqV +1, τ qV +1), B computes hqV +1 = Hs(m

qV +1),
adds {(mqV +1, hqV +1)} to H. This takes time tH.
At the end of the game, B looks up the list H to l half collisions on v. If she finds
it, she outputs it; otherwise, {0, 1, ..., (l − 1)2}, where with (N − 1)2 we denote
the binary representation of N − 1.
Thus, in total, she needs time t+(qM + qV +1)tH +2(qM + qV )(tF + tL(F)) ≤ t1.
16

Bounding |Pr[E1] − Pr[E2]|. Observe that if event µ-HHC happens, B wins.
Note that B simulates correctly Game 1 for AL.
Since B is a t1-adversary and H is a (t1, ϵµ-CR(n))-collision resistant hash function,
we can bound:

|Pr[E1]− Pr[E2]| ≤ ϵµ-CR(n).

Game 3 Game 3 is Game 2, except that we abort if there is a query to Fk1

which can be used straightforwardly as a forgery. More formally, we want to
avoid that when we compute for the first time the yi associated to a message
mi, we obtain that yi is equal to a ỹj already defined in the verification query
(mj , τ j) where vj = vi (remind that H(m) = h = u‖v).
We call this event FfD (which stands forgeries from direct query to Fk1

). For-

16 Since we assume that A has access to L(·), we do not need to consider what she
does with these queries. A does them whenever she wants and she does them in his
running time.
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mally,

FfD :=


∃i ∈ {1, ..., qV + 1} s.t. ∃j ∈ {1, ..., i}
s.t. mi 6= mj , vi = vj , yi = ỹj

∧ ∀l ∈ {1, ..., qM} ml 6= mi,
∧ ∀I ∈ {1, ..., i} ⊂ {1, ..., qV+1} mi 6= mI


and we abort if event FfD happens 17. Let E3 be the event that the adversary
wins the game; that is, the output of the game is 1.

Transition between Game 2 ad Game 3. We build a sequence of qV + 2
games: Game 20,...,Game 1qV +1.

Game 2j. Game 2j is Game 2, where we abort if one of the first j verification
queries has triggered event FfD. Thus, Game 20 is Game 2, while Game 2qV +1

is Game 3. We denote with FfDj the fact that after j verification queries event
FfD has been triggered.
Let Ej

2 be the event that the adversary wins the game.

Transition between Game 2j and Game 2j+1. Clearly, Game 2j and Game
2j+1 are identical if the j + 1-th verification query does not trigger event FfD.
Clearly,

∣∣∣Pr[Ej
2]− Pr[Ej+1

2 ]
∣∣∣ ≤ Pr[FfDj+1|¬FfDj ]. To bound the probabil-

ity that event FfDj+1|¬FfDj happens we build a (qLF, qEval, qInv, t2)-sUP-L2-
adversary Cj against F.

The (qLF, qEval, qInv, t2)-sUP-L2-adversary Cj. Ci has to find a valid triple
(tw, x, y) for Fk1

which is fresh and valid.
At the start of the game, she picks uniformly at random a key s

$← HK for the
hash function, which she relays to AL. In addition, she picks uniformly at random
a key k2. Moreover, she has three lists S (to keep tag-generation queries), DC
(to keep the couples (u, v, y) of verification queries) and IT (to keep the triples
(ỹ, v, τ) of verification queries), which are empty at the start of the game.
When AL does a query to L on input (tw, x; k′) either to Eval or to Inv, Dj does
the same query. She receives the leakage L, which she forwards to A. 18

When A does a tag-generation query on input mi, Cj (1) simply computes
ui‖vi = hi = Hs(m

i), then, (2) she calls her oracle on input (vi, ui) obtain-
ing yi and li,0e , after that (3), she computes τ i = Fvi

k2
(yi) and collects the

17 We do not consider the case that event FfD is triggered by a tag-generation queries,
that is the yi defined during the ith tag-generation query on input mi is equal to the
ỹj defined during the jth verification query with vi = vj . This for two reasons. First,
we observe that if mi = mj , we cannot create a forgery from mi, since the forgery
attempt will not be fresh. Second, we observe that to force to obtain yi during a
verification query on input mj with vj = vi, we observe that we must have ui = uj ,
thus, we need a full collision on the hash value h.

18 For simplicity, we suppose that A tries only to model the leakage of F and not the
leakage of the full MAC. In fact, she can compute everything. Anyway the extension
is straightforward.
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leakage li,1e = LEval(v
i, yi; k2), finally (4), she answers A τ i and the leakage

Li
M = (yi, li,0e , li,1e ); moreover, she adds {(mi, τ i)} to S and {(ui, vi‖0, yi)} to
DC.
This takes time tH + tF + tL(F) and she does one query to LEval.
When A asks one of the first j verification query on input (mi, τ i), Dj first
(1), computes ui‖vi = hi = Hs(m

i), 1) simply computes ui‖vi = hi = Hs(m
i),

then, (2) she calls her oracle on input (vi, ui) obtaining yi and li,0e , after that
(3), she computes ỹi = Fvi,−1

k2
(τ i) and collects the leakage li,1i = LInv(v

i, τ i; k2),
Finally (4), if yi = ỹi and {(mi, τ i)} ∈ S (4a), Cj answers > and the leakage
Li
V = (yi, ỹi, li,0e , li,1i ) to A; if yi = ỹi and {(mi, τ i)} /∈ S (4b), Cj aborts; other-

wise (4c), ⊥. Moreover, Cj gives the leakage Li
V = (yi, ỹi, li,0e , li,1i ) to A.

Then, she adds {(vi, ui, yi)} to DC and {(vi, ỹi, τ i)} to IT .
This takes time tH + tF + tL(F). Moreover, Cj does one query to LInv.
When A asks his j + 1-th verification query on input (mqV +1, τ qV +1), Dj com-
putes (1) uj+1‖vj+1 = hj+1 = Hs(m

j+1), then (2), if (2a) there is a query on
input (vj+1, uj+1, y) ∈ DC for any y, she proceeds as for the previous verifica-
tion queries; otherwise (2c), Cj defines the set Tj (target for the adversary Cj)
as follow:

Tj := {(v, ỹ, τ) ∈ IT s.t. v = vj+1}
Then (3c), she picks uniformly at random an element (vj+1, ỹ∗, τ∗) in Tj , and
she outputs (vj+1, uj+1, ỹ∗). This takes time tH.
Thus, in total, Ci does at most qL query to L, qM+qV to LEval and j ≤ qV to LInv;
moreover, she needs time at most t+(qM + j+1)tH +(qM + qV )(tF + tL(F) ≤ t2.
Bounding |Pr[Ej

2] − Pr[Ej+1
2 ]|. Note that Cj simulates correctly Game 2j for

AL.
We observe that if event Ffcj+1|¬Ffcj , the adversary Cj does a correct guess
if she has picked correctly the target ỹ∗. This happens with probability |Tj |−1.
Since Cj is a (qL, qEval, qInv, t2)-adversaries and F is a (qL, qEval, qInv, t2, ϵsUP-L2)-
strongly unpredictable with leakage, we can bound:

|Pr[Ej
2]− Pr[Ej+1

2 ]| ≤ Pr[FfDj+1|¬FfDj ] ≤ ϵsUP-L2|Tj |.

Bounding |Pr[E2]− Pr[E3]|. Iterating, we obtain

|Pr[E2]−Pr[E3]| ≤
qV +1∑
j=0

|Pr[Ej
2]−Pr[E

j+1
2 ]| ≤

qV +1∑
j=0

|Tj |ϵsUP-L2 = ϵsUP-L2

qV +1∑
j=0

|Tj |.

So, now we have to only to bound
qV +1∑
j=0

|Tj |.

Bounding
qV +1∑
j=0

|Tj |. The simplest way to bound it is to say that Tj ≤ j, then

to use the well known result from Gauss
qV∑
j=0

j = (qV +1)(qV +2)
2 .

But, we want to be more precise. We start defining T =
qV +1
∪

j=0
Tj and observing
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that |T | = qV + 1. Moreover Tj ∩ Tj′ = ∅ if vj+1 6= vj
′+1.

Then, let {v1, ..., vI} be the tweaks used in the LInv queries used in decryption
queries (thus, v1, ..., vI are the vs defined during the verification queries). Clearly
I ≤ qV + 1.
Now, we define Tvi :=

qV +1
∪
l=1

Tl

vl=vi

.19 That is, Tvi is the set of all triples (vl, ỹ, τ)

defined during verification queries. Moreover, for every vi used in a verification
query, we define T (vi) := Tvi . Note that ∀l, Tl ⊂ Tvl (in Tvl we have more
targets than in Tl, the ones obtained by subsequent verification queries).
Moreover, clearly T =

I
∪
l=1

Tvl and ∀l, l′ = 1, ..., I Tvl ∩ Tvl′ = ∅ iff. l 6= l′.

Thus, we can bound
qV +1∑
j=0

|Tj | ≤
qV +1∑
j=0

|Tvj |.

Let W (vi) := {m used in verification queries s.t. Hs(m) = u‖vi for any u}.

Thus,
qV +1∑
j=0

|Tvj | =
I∑

j=0

|W (vj)||Tvj |. Note that if the same m is used in two

different verification queries, we put m only once in W (v) with u‖v = Hs(m).
Clearly ∀j = 1, ..., I, |W (vi)| ≤ µ. In fact, we are in Game 3, where event

µ-HHC has not happened. Moreover,
I∑

j=1

|W (vj)| = qV + 1. Thus,

I∑
j=0

|W (vj)| · |Tvj | ≤ µ

I∑
j=0

|Tvj | = µ|T | = µ(qV + 1).

Where the second to last equality comes from the fact T is the union of the Tvj s
which are pairwise disjoint.

Computing |Pr[E2]−Pr[E3]|. Putting the previous 2 paragraphs together, we
obtain that

|Pr[E2]− Pr[E3]| ≤ ϵsUP-L2

qV∑
j=0

|Tj | ≤ µ(qV + 1) · ϵsUP-L2.

Game 4 Game 4 is Game 3, except that we abort if there is a backward query
to Fk2

which provokes a forgery. More formally, we want to avoid that when we
compute for the first time the ỹi associated to a tag τ i and a tweak vi, we obtain
that ỹi is equal to a y already defined in the verification query (mj , τ j) where
vj = vi (remind that H(m) = h = u‖v).
We call this event FfI (which stands forgeries from inverse query to Fk2). For-

19 Note that with vl we denote v obtained in the lth verification query. Instead with
vl we denote the lth element in the previous list, {v1, ..., vI}.
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mally,

FfI :=


∃i ∈ {1, ..., qV } s.t. ∃j ∈ {1, ..., i− 1}
s.t. mi 6= mj , vi = vj , ỹi = yj

∧ ∀l ∈ {1, ..., qM} ml 6= mi,
∧ ∀I ∈ {1, ..., i− 1} ⊂ {1, ..., qV+1} mi 6= mI


and we abort if event FfI happens 20. Let E4 be the event that the adversary
wins the game; that is, the output of the game is 1.

Transition between Game 3 and Game 4. We build a sequence of qV + 1
games: Game 30,...,Game 3qV .

Game 3j. Game 3j is Game 3, where we abort if one of the first j verification
queries has triggered event FfI. Thus, Game 30 is Game 3, while Game 3qV is
Game 4. We denote with FfIj the fact that after j verification queries event
FfI has been triggered.
Let Ej

3 be the event that the adversary wins this game.

Transition between Game 3j and Game 3j+1. Clearly, Game 3j and Game
3j+1 are identical if the j + 1-th tag-generation query does not trigger event
FfD. Clearly,

∣∣∣Pr[Ej
3]− Pr[Ej+1

3 ]
∣∣∣ ≤ Pr[FfIj+1|¬FfIj ]. To bound the proba-

bility that event FfIj+1|¬FfIj happens we build a (qLF, qEval, qInv, t2)-sUP-L2-
adversary Dj against F.

The (qLF, qEval, qInv, t2)-sUP-L2-adversary Dj. Di has to find a valid triple (x, tw, y)
for Fk1

which is fresh and valid.
At the start of the game, she picks uniformly at random a key s

$← HK for the
hash function, which she relays to AL. in addition, she picks a key k2 uniformly at
random. Moreover, she has three lists S (to keep tag-generation queries), DT (to
keep the couples (u, v‖0, y) of verification queries) and IQ (to keep the triples
(ỹ, v‖1, τ) of verification queries), which are empty at the start of the game.
When AL does a query to L on input (tw, x; k′) either to Eval or to Inv, EEj does
the same query. She receives the leakage L, which she forwards to A. 21

When A does a tag-generation query on input mi, EEj (1) simply computes

20 We do not consider the case that event FfI is triggered by the equality of ỹ to a y
defined in a tag-generation query, that is if the ỹi defined during the ith verification
query on input mi is equal to the yj defined during the jth tag-generation query with
vi = vj , because this cannot result in a forgery for mj , since that forgery attempt
will not be fresh. Moreover, we observe that to force to obtain ỹj = yi during a
verification query on input mj with vj = vi, we observe that we must have ui = uj ,
thus, we need a full collision on the hash value h with mj .

21 For simplicity, we suppose that A tries only to model the leakage of F and not the
leakage of the full MAC. In fact, she can compute everything. Anyway the extension
is straightforward.
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ui‖vi = hi = Hs(m
i), then, (2) she computes Fvi

k1
(ui) and computes the leak-

age li,0e = LEval(v
i, ui; k1), after that (3), she queries his oracle on input (vi, yi)

receiving τ i and collects the leakage li,1e , finally (4), she answers A τ i and the
leakage Li

M = (yi, li,0e , li,1e ); moreover, she adds {(mi, τ i)} to S.
This takes time tF + tL(F) and she does one query to LEval.
When A asks one of the first j verification query on input (mi, τ i), EEj first, (1)
computes ui‖vi = hi = Hs(m

i), then, (2) she computes Fvi

k1
(ui) and computes

the leakage li,0e = LEval(v
i, ui; k1), after that (3), she queries his oracle LInv on

input (vi, τ i) receiving ỹi and collects the leakage li,1i . Finally (4), if yi = ỹi and
{(mi, τ i)} ∈ S (4a), Dj answers > and the leakage Li

V = (yi, ỹi, li,0e , li,1i ) to A;
if yi = ỹi and {(mi, τ i)} /∈ S (4b), EEj aborts; otherwise (4c), ⊥. Moreover, Dj

gives the leakage Li
V = (yi, ỹi, li,0e , li,1i ) to A.

Then, she adds {(ui, vi‖0, yi)} to DT and {(ỹi, vi‖1, τ i)} to IQ.
This takes time tH + tF + tL(F). Moreover, Dj does one query to lf Inv.
When A asks his j + 1-th verification query on input (mqV +1, τ qV +1), Dj com-
putes (1) uj+1‖vj+1 = hj+1 = Hs(m

j+1), then (2), if (2a) there is a query on
input (vj+1, ỹ, τ j+1)} ∈ DC for any ỹ, she proceeds as for the previous verifica-
tion queries; otherwise (2b), Dj defines the set ITj (target for the adversary Dj)
as follow:

ITj := {(v, u, y) ∈ IT s.t. v = vj+1}
Then (3c), she picks uniformly at random an element (vj+1, u∗, y∗) in ITj , and
she outputs (vj+1, y∗, τ j+1) as her prediction. This takes time tH.
Thus, in total, Di does at most qL query to L, qM ≤ qM to LEval and j ≤ qV to
LInv; moreover, she needs time at most t+(qM+j+1)tH(tF+tL(F))(qM+qV ) ≤ t2.

Bounding |Pr[Ej
3] − Pr[Ej+1

3 ]|. Note that Di simulates correctly Game 1j for
AL.
We observe that if event FfIj+1|¬FfIj , the adversary Dj does a correct guess
if she has picked correctly the target ỹ∗. This happens with probability |ITj |−1.
Since Dj is a (qL, qEval, qInv, t2)-adversaries and F is a (qL, qEval, qInv, t2, ϵsUP-L2)-
strongly unpredictable with leakage, we can bound:

|Pr[Ej
3]− Pr[Ej+1

3 ]| ≤ Pr[FfIj+1|¬FfIj ] ≤ ϵsUP-L2|ITj |.

Bounding
qV∑
j=0

|ITj |. As we did for
qV +1∑
j=0

Tj , the simplest way to bound it is to

say that ITj ≤ j, then to use the well known result from Gauss
qV∑
j=0

j = qV (qV +1)
2 .

But, as there we want to be more precise. We start observing that |IT | = qV −1

with IT =
qV
∪

j=0
ITj . Moreover ITj ∩ ITj′ = ∅ if vj+1 6= vj

′+1.
Then, let v1‖1, ..., vI‖1 be the tweaks used in the LInv queries used in decryption
queries (thus, v1, ..., vI are the vs computed during the verification queries). 22

22 As there, note that with vl we denote v obtained in the lth verification query. Instead
with vl we denote the lth element in the previous list, {v1∥1, ..., vI∥1.
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Clearly I ≤ qV .
Now, we define ITvi :=

qV
∪
l=1

ITl

vl=v1

. Moreover, for every vl used in a verification

query, we define IT (vl) := ITvl . Note that ∀l, ITl ⊂ ITvl
(in ITvl we have more

targets, the ones obtained by subsequent verification queries).
Moreover, clearly IT =

I
∪
l=1

ITvI and ∀l, l′ = 1, ..., I ITvl ∩ ITvl′ = ∅ iff l 6= l′.

Thus, we can bound
qV∑
j=0

|ITj | ≤
qV∑
j=0

|ITvj
|.

Let IW (vi) := {m used in verification queries s.t. Hs(m) = u‖vi for any u}.

Thus,
qV∑
j=0

|ITvj | =
I∑

j=0

|IW (vj)||ITvj |.

Clearly
qV∑
I=1

|IW (vi)| = N − 1. Moreover, ∀i = 1, ..., I |ITvi | ≤ N . In fact, we are

in Game 3, where event N-HHC has not happened, thus, we may have at most
N different target yi for each vi. Thus,

I∑
j=0

|IW (vj)| · |ITvj | ≤ N

I∑
j=0

|IWvj | = N |T | = NqV .

Computing |Pr[E3]−Pr[E4]|. Putting the previous 2 paragraphs together, we
obtain that

|Pr[E3]− Pr[E4]| ≤ ϵsUP-L2

qV∑
j=0

|ITj | ≤ ϵsUP-L2lqV .

Computing |Pr[E3]−Pr[E4]|. Putting the previous 2 paragraphs together, we
obtain that

|Pr[E3]− Pr[E4]| ≤ ϵsUP-L2

qV∑
j=0

|ITj | ≤ µqV · ϵsUP-L2.

Game 5 Game 5 is Game 5, except that we abort if there is a fresh and valid
verification query.
Since a forgery cannot come from a previous verification query using a y or a
ỹ already defined due to what we did in Game 3 and 4, we have that, the only
possibility is that either ỹj = yj for a verification query when there have never
been a query to LEval(vj , yj) or one to LInv on input (vj , τ∗), for any τ∗, resulting
in yj . More formally, we want to consider the event GT

GT :=
{
∃i ∈ {1, ..., qV+1} s.t. yi = ỹ and (mi, τ i) is fresh

}
and we abort if event GT happens. Let E5 be the event that the adversary wins
the game; that is, the output of the game is 1.
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Transition between Game 4 and Game 5. We build a sequence of qV + 2
games: Game 30,...,Game 3qV +1.

Game 4j. Game 4j is Game 4, where we abort if one of the first j verification
queries has triggered event GT , that is fresh and valid. Thus, Game 40 is Game
4, while Game 4qV +1 is Game 5. We denote with GTj the fact that after j veri-
fication queries event GT has been triggered.
Let Ej

4 be the event that the adversary wins this game.

Transition between Game 4j and Game 4j+1. Clearly, Game 4j and Game
4j+1 are identical if the j + 1-th verification query does not trigger event GT .
Clearly,

∣∣∣Pr[Ej
4]− Pr[Ej+1

4 ]
∣∣∣ ≤ Pr[GTj+1|¬GTj ]. To bound the probability that

event GTj+1|¬GTj happens we build a (qLF, qEval, qInv, t2)-sUP-L2-adversary EEj

against F.

The (qLF, qEval, qInv, t2)-sUP-L2-adversary EEj. EEi has to find a valid triple
(x, tw, y) for Fk2 which is fresh and valid.
At the start of the game, she picks uniformly at random a key s

$← HK for the
hash function, which she relays to AL. In addition, she picks a key k1. Moreover,
she has a list S, which is empty at the start of the game.
When AL does a query to L on input (tw, x; k′) either to Eval or to Inv, FFj does
the same query. She receives the leakage L, which she forwards to A. 23

When A does a tag-generation query on input mi, EEj (1) simply computes
ui‖vi = hi = Hs(m

i), then, (2) she computes yi = Fvi

k1
(ui)and collects the leak-

age li,0e = LEval(v
i, ui; k1), after that (3), she queries his oracle on input (vi, yi)

receiving τ i and collects the leakage li,1e , finally (4), she answers A τ i and the
leakage Li

M = (yi, li,0e , li,1e ); moreover, she adds {(mi, τ i)} to S.
This takes time tH + tF + tL(F) and she does one query to LEval.
When A asks one of the first j verification query on input (mi, τ i), EEj first, (1)
computes ui‖vi = hi = Hs(m

i), then, (2) she computes yi = Fvi

k1
(ui)and collects

the leakage li,0e = LEval(v
i, ui; k1), after that (3), she queries his oracle LInv on

input (vi, τ i) receiving ỹi and collects the leakage li,1i . Finally (4), if yi = ỹi and
{(mi, τ i)} ∈ S (4a), EEj answers > and the leakage Li

V = (yi, ỹi, li,0e , li,1i ) to A;
if yi = ỹi and {(mi, τ i)} /∈ S (4b), EEj aborts; otherwise (4c), ⊥. Moreover, EEj

gives the leakage Li
V = (yi, ỹi, li,0e , li,1i ) to A.

This takes time tH + tF + tL(F). Moreover, FFj does one query to LInv.
When A asks his j + 1-th verification query on input (mqV +1, τ qV +1), EEj com-
putes (1) uj+1‖vj+1 = hj+1 = Hs(m

j+1), then (2), then, (2) she computes
yj+1 = Fvj+1

k1
(uj+1) and collects the leakage li,0e = LEval(v

j+1, uj+1; k1),. Finally,
(3) she outputs (yj+1, vj+1‖1, τ j+1) as her prediction. This takes time tH.

23 For simplicity, we suppose that A tries only to model the leakage of F and not the
leakage of the full MAC. In fact, she can compute everything. Anyway the extension
is straightforward.
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Thus, in total, EEi does at most qL query to L, qM ≤ qM to LEval and j ≤ qV to
LInv; moreover, she needs time at most t+(qM+j+1)tH+(qV +qM+1)(tF+tL(F) ≤
t2.

Bounding |Pr[Ej
4]−Pr[Ej+1

4 ]|. Note that EEi simulates correctly Game 4j for
AL.
We observe that if event GTj+1| 6= GTj happens, the adversary EEj does a
correct prediction for the TBC F. F is a (qL, qEval, qInv, t2, ϵsUP-L2)-strongly unpre-
dictable with leakage, we can bound:

|Pr[Ej
4]− Pr[Ej+1

4 ]| ≤ Pr[GT j+1| 6= GTj ] ≤ ϵsUP-L2.

Bounding |Pr[E4]− Pr[E5]|. Iterating, we obtain

|Pr[E4]− Pr[E5]| ≤
qV +1∑
j=0

|Pr[Ej
4]− Pr[Ej+1

5 ]| ≤
qV +1∑
j=0

ϵsUP-L2 = (qV + 1)ϵsUP-L2.

Concluding the proof. Putting everything together, since Pr[E5] = 0 (we
abort if the adversary is winning Game 5), we conclude the proof since

Pr[E0] =

4∑
i=0

|Pr[Ei]− Pr[Ei+1]|+ |Pr[E5]| =

ϵCR(n) + ϵµ-CR(n) + ϵsUP-L2(µ+ 1)qV + ϵsUP-L2µqV + (qV + 1)ϵsUP-L2 + 0 =

ϵCR(2n) + ϵµ-CR(n) + [(2µ+ 1)qV + µ+ 1]ϵsUP-L2.
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