
Complete Practical Side-Channel-Assisted
Reverse Engineering of AES-Like Ciphers

Andrea Caforio1, Fatih Balli1,2, and Subhadeep Banik1

1 LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{andrea.caforio,subhadeep.banik}@epfl.ch

2 CSEM, Switzerland
fatih.balli@csem.ch

Abstract. Public knowledge about the structure of a cryptographic sys-
tem is a standard assumption in the literature and algorithms are ex-
pected to guarantee security in a setting where only the encryption key
is kept secret. Nevertheless, undisclosed proprietary cryptographic al-
gorithms still find widespread use in applications both in the civil and
military domains. Even though side-channel-based reverse engineering
attacks that recover the hidden components of custom cryptosystems
have been demonstrated for a wide range of constructions, the complete
and practical reverse engineering of AES-128-like ciphers remains unat-
tempted.
In this work, we close this gap and propose the first practical reverse
engineering of AES-128-like custom ciphers, i.e., algorithms that deploy
undisclosed SubBytes, ShiftRows and MixColumns functions. By per-
forming a side-channel-assisted differential power analysis, we show that
the amount of traces required to fully recover the undisclosed compo-
nents are relatively small, hence the possibility of a side-channel attack
remains as a practical threat. The results apply to both 8-bit and 32-bit
architectures and were validated on two common microcontroller plat-
forms.

1 Introduction

Over the past few years, the field of side-channel-assisted cryptanalysis has
evolved into an intricate spectrum. In this spectrum, the trace, which is the
signal collected by the adversary during the execution of a cryptographic op-
eration, can stem from various sources, such as the electromagnetic emission,
the power consumption, or even the sound noise generated by the victim de-
vice [4,13,19]. Furthermore, there are many available techniques to analyze the
collected traces with the goal of recovering the secret key [7,13,15].

Kerckhoffs’s principle states that any cryptosystem should be secure even if
everything about the system, except the key, is public knowledge. This concept is
widely embraced by cryptographers, however security through obscurity remains
as a tempting path to follow in industry. Undisclosed proprietary cryptographic
algorithms are still used in civil applications, e.g., GSM or Pay-TV systems, and

2 Andrea Caforio, Fatih Balli, and Subhadeep Banik

in diplomatic or military domains. Even though security through obscurity is far
from ideal and generally discouraged by cryptographers, from the implementa-
tion layer perspective, it is considered as an extra layer of protection against all
types of attacks, including that of side-channels. In particular, one idea that we
consider in this paper is to implement a custom version of a popular scheme,
e.g., AES, by replacing the inner layer of operations without publicly disclos-
ing these modifications. Obviously, the idea is that extrapolating conclusions
from side-channel observations becomes significantly harder when the construc-
tion in question is not fully disclosed. Therefore, the adversary would need to
collect larger amount of traces. This is exactly the approach taken by the Dan-
ish enterprise Dencrypt whose communication devices ship with a customized
AES implementation with secret S-boxes based on the Dynamic Encryption pro-
posal [12].

The first known use of side channels to reverse-engineer (SCARE) hidden
structures was the case of the A3/8 algorithm used in GSM [17]. This attack
reveals the contents of one of the two substitution tables, which are intended
to be kept secret, used for authentication and key agreement in GSM. This
was later improved by Clavier in an attack that fully recovers both tables [8].
In a related work, Clavier et al. [9] presented a theoretical reverse engineering
of AES-like secret ciphers, which shared the same core structure of AES-128,
but used secret SubBytes, ShiftRows and MixColumns functions instead. Devel-
oped independently around the same time, Rivain and Roche [21] proposed a
generic reverse engineering attack which applies to a general class of undisclosed
substitution-permutation ciphers, showing that this line of attack works beyond
the AES constructions.

Note that none of the previous works demonstrate the mentioned attacks in
practice, but instead their results are only based on theoretical simulations. More
specifically, they all rely on the assumption that some side-channel observations
can be made that allows the attacker to distinguish whether intermediate values
of an algorithm are equal at different points during the computation. However,
these works neither back up the assumption through an experimental setup,
nor present a practical full-recovery attack. It is thus important to determine
the efficacy of side-channel reverse engineering on real-world platforms. The
first practical attack was presented by Jap and Bhasin [11]. The authors tried
to recover the 256 entries of a secret 8-bit S-box implemented on an Atmel
AT-mega328P microprocessor mounted on Arduino UNO board and succeeded
in recovering 159 out of 256 entries. However, a practical side-channel-assisted
reverse engineering attack that recovers the full description of an AES-128-like
cipher remains an open problem.

Contributions. In this paper, we demonstrate the first practical side-channel-
assisted reverse engineering procedure for the full description of unprotected
AES-128-like ciphers that deploy undisclosed SubBytes, ShiftRows and Mix-
Columns functions. A precise definition of such a cipher will be given shortly.
Our attacks follow the side-channel-assisted differential plaintext methodology
(SCADPA) pioneered by Breier et al. [6] and subsequently extended by Bhasin et

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 3

al. [5], whose work enhances differential power analysis [13] with tools from con-
ventional differential cryptanalysis. Specifically, the complete recovery routine
proceeds in four consecutive steps as detailed in Table 1. This work thus closes
the open question of whether such an attack is feasible, and more so on the
cost of performing such attack. We validate our recovery routines on both 8-bit
and 32-bit systems, namely the 8-bit ATXMEGA128D4 and 32-bit STM32F303
architectures that find wide use in the industry.

Table 1. Complexity (the number of traces) of our proposed AES-128-like side-channel-
assisted reverse engineering algorithms. The parameter α denotes the required number
of repetitions in order to get a stable average in the extracted power traces. On our
testing equipment, α ≈ 10 was sufficient for effectively de-noising the traces.

Recovery Platforms Complexity Reference

Encryption Key 8-bit, 32-bit α× 29 Section 2.3

Partial ShiftRows 8-bit, 32-bit α× 32 Section 3.1

255 MixColumns Candidates 8-bit, 32-bit α× 220 Section 3.2

Full SubBytes, ShiftRows, MixColumns 8-bit, 32-bit α× 218 Section 3.3

Outline. We review some preliminary material concerning side-channel-assisted
reverse engineering attacks in Section 2. Section 3 details our procedures that
recover the complete description of hidden components within AES-128-like ci-
phers. Ultimately, the paper is concluded in Section 4.

2 Preliminaries

We commence the preliminaries with a precise definition of an AES-128-like
cipher and then proceed with a review of the power consumption model in mi-
crocontrollers.

Definition 1 (AES-like cipher). Denote by AES∗ an AES-128-like SPN ci-
pher over the Rijndael finite field of the form

AES∗ : F4×4
256 × F4×4

256 7→ F4×4
256

(p, k) 7→ y,

for some plaintext p and key k. The round function consists of a round key
addition layer AK, a byte-wise substitution layer SB defined by a lookup table
T : F256 7→ F256, a byte permutation layer PB over F4×4

256 that shuffles the state
bytes according to some permutation Π ∈ S16 (where Sn is the permutation
group over n elements) and a linear diffusion layer MC that multiplies the state

4 Andrea Caforio, Fatih Balli, and Subhadeep Banik

by a circulant matrix M ∈ F4×4
256 such that

M =




a b c d

d a b c

c d a b

b c d a


 , (1)

where a, b, c, d ∈ F256\{0}. Without loss of generality, the round key generation is
assumed to be achieved via the regular AES-128 key scheduling function KS using
T as the substitution table instead of the Rijndael S-box. Finally, the sequence
of operations is the same as the original AES-128 algorithm, i.e.,

AES∗(p, k) :
1: AK(p, k)
2: for i← 1; i < 10; i← i+ 1 do
3: KS(k), SB(p), PB(p), MC(p), AK(p, k)

4: KS(k), SB(p), PB(p), AK(p, k)

In the following, we adopt the standard column-major notation to denote the
individual bytes of the state as per Definition 2.

Definition 2 (Notation). Let bi,F (j) ∈ F256 be the value of the i-th state byte
after the computational layer F ∈ {AK,SB,PB,MC} in the j-th round function
for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 10. Analogously, let ci,F (j) ∈ F4

256 be the value of the
i-th state column for 0 ≤ i ≤ 3. A graphical depiction of this notation is given
in Figure 1.

For the experiments we conducted in the paper, on both 8-bit and 32-bit mi-
crocontrollers, the AES∗ algorithm is implemented in a straightforward constant-
time and byte-wise manner in which each state byte is computed individually
in all layers of the round function. SB and PB are realized via standard lookup
tables. The field multiplication steps that are part of MC are computed with a
generic Galois field multiplication routine. This type of AES-128 implementation
is common for 8-bit central processing units with limited memory. In 32-bit en-
vironments, a more compact T-table implementation is sometimes also deployed
that combines the substitution and diffusion layers through lookup tables. We
remark that for the remainder we are mostly interested in the computation of
round key additions and the byte substitutions, hence our attacks are irrespec-
tive of the actual choice of implementation for the PB and MC operations. See
Figure 2 for a generic set of byte-wise instructions that implement the AK and
SB layers. Note that certain implementations also merge the AK and SB layers,
however in many publicly available implementations, like OpenSSL, AVR-crypto-
lib and the masked secAES proposal, these layers are separated [1,2,3].

2.1 Setup

The reverse engineering procedures proposed in this work have been validated on
existing platforms. In particular, we utilized the following two microcontrollers:

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 5

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15







c0 c1 c2 c3

b0,AK(0) b4,AK(0) b8,AK(0) b12,AK(0)

b1,AK(0) b5,AK(0) b9,AK(0) b13,AK(0)

b2,AK(0) b6,AK(0) b10,AK(0) b14,AK(0)

b3,AK(0) b7,AK(0) b11,AK(0) b15,AK(0)







c0,AK(0) c1,AK(0) c2,AK(0) c3,AK(0)

b0,SB(1) b4,SB(1) b8,SB(1) b12,SB(1)

b1,SB(1) b5,SB(1) b9,SB(1) b13,SB(1)

b2,SB(1) b6,SB(1) b10,SB(1) b14,SB(1)

b3,SB(1) b7,SB(1) b11,SB(1) b15,SB(1)







c0,SB(1) c1,SB(1) c2,SB(1) c3,SB(1)

b0,PB(1) b4,PB(1) b8,PB(1) b12,PB(1)

b1,PB(1) b5,PB(1) b9,PB(1) b13,PB(1)

b2,PB(1) b6,PB(1) b10,PB(1) b14,PB(1)

b3,PB(1) b7,PB(1) b11,PB(1) b15,PB(1)







c0,PB(1) c1,PB(1) c2,PB(1) c3,PB(1)

b0,MC(1) b4,MC(1) b8,MC(1) b12,MC(1)

b1,MC(1) b5,MC(1) b9,MC(1) b13,MC(1)

b2,MC(1) b6,MC(1) b10,MC(1) b14,MC(1)

b3,MC(1) b7,MC(1) b11,MC(1) b15,MC(1)







c0,MC(1) c1,MC(1) c2,MC(1) c3,MC(1)

b0,AK(1) b4,AK(1) b8,AK(1) b12,AK(1)

b1,AK(1) b5,AK(1) b9,AK(1) b13,AK(1)

b2,AK(1) b6,AK(1) b10,AK(1) b14,AK(1)

b3,AK(1) b7,AK(1) b11,AK(1) b15,AK(1)







c0,AK(1) c1,AK(1) c2,AK(1) c3,AK(1)

AK

Round 0

SB

Round 1

PB

Round 1

MC

Round 1

AK

Round 1

SB

Round 2

Fig. 1. Byte and column notations for the first two rounds. The notation scheme pro-
gresses similarly for later rounds.

– ATXMEGA128D4. An 8-bit microcontroller featuring a 2-stage-pipelined
AVR processing unit. It offers 128 KB of flash memory and can be clocked
at a maximum frequency of 32 MHz.

– STM32F303. A 32-bit microcontroller featuring a 3-stage-pipelined ARM
Cortex-M4 processing unit. It offers 256 KB of flash memory and can be
clocked at a maximum frequency of 72 MHz.

The two target microcontrollers are mounted on a ChipWhisperer CW308
board [18] that clocks them at a frequency of 7.37 MHz. Power traces are cap-
tured via the ChipWhisperer CW1173 board through a 10-bit 105 MS/s ADC.
A key aspect of this setup, is that power traces are captured synchronously
with the target clock, in other words, four samples per clock cycles are obtained
at a frequency of roughly 30 MHz. Synchronous sampling, in contrast to asyn-
chronous sampling performed by ordinary oscilloscopes, reduces the number of
samples that are required for precise measurements and thus accelerates attacks
that necessitate the processing of a large number of traces. This is reflected in
the fact that taking an average over α ≈ 10 repetitions of an experiment was
sufficient to effectively de-noise the power traces and attain a stable average.

6 Andrea Caforio, Fatih Balli, and Subhadeep Banik

; Round key addition
LD R1, [ADDR PT]
LD R2, [ADDR KEY]
XOR R1, R2
ST R1, [ADDR PT]

; Byte substitution
LD R1, [ADDR STATE]
ADD R2, R1, [ADDR SBOX]
LD R3, R2
ST R3, [ADDR STATE]

Fig. 2. Generic assembly of the AK (left) and SB (right) layers in AES∗ operating on
a single byte. Note that statements within square brackets are akin to a function call,
e.g., [ADDR PT] computes the plaintext address. It should be straightforward to convert
the given snippets to valid assembly for any 8-bit or 32-bit architecture.

2.2 Power Leakage Model

Power leakage simulators for micro-controllers have been developed in the past
for numerous systems. In the context of leakage models, SILK (simple leakage
simulator) is one of the first power simulators that generates power traces given
a C file as input [22]. The simulator, however, is not specific to any particular
architecture. Reparaz also described a simulator generating power traces from a
high-level C description of a cryptographic algorithm [20]. ELMO (Emulator for
Power Leakage for Cortex M0) was introduced by McCann et al. for the Cortex-
M0 and M4 processor families [16] whose program takes as input a compiled
binary object file. Le Corre et al. proposed the first leakage simulator MAPS
(Micro-Architectural Power Simulator) for the ARM Cortex-M3 Processors [10].
This work accounts for the the inter-instruction dependency of the power con-
sumption by utilizing a more refined micro-architectural model of the target
processor. Specifically, it models all pipeline registers and validates these models
through simulations with an HDL description of the target micro-architecture.

There are two common cases of dynamic power consumption that we exploit,
as they correlate with the intermediate values computed in the processor’s core:

1. Register-type instructions typically read two values from the register file,
compute an arithmetic or logical operation on them, and eventually store
the result back in a register. This naturally causes the value stored in the
destination register to be updated. Let us use R1← R2⊕ R3 as an example
register-type instruction XOR, and denote the value of R1 before and after
the execution of the XOR by a and b respectively. Then, some portion of
the dynamic power consumption depends on the amount of bits that needs
to be flipped when R1 goes through the transition a → b. Therefore, in the
collected power trace, if we focus on the special point in time that corre-
sponds to this instruction’s execution, we can find the correlation between
the Hamming weight of a⊕ b, i.e., H(a⊕ b), and the consumed power. This
was referred to as Hamming-distance model by Mangard et al. [14].

2. Memory-type instructions either bring a value from the memory into a regis-
ter, or store a register value in a specified memory location. These operations
cause the memory bus to be driven with the data to be stored (the bus is

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 7

usually pre-charged to a value that is either all zero or all one logic values).
Let us use [ADDR PT] ← R1 as an example of memory-type instruction,
where [ADDR PT] denotes the address of the plaintext byte in the memory.
Then, the execution of the store instruction causes a dynamic power con-
sumption that correlates with the amount of logic one values in R1, if the
bus is initially pre-charged to all zeroes. In other words, H(R1) correlates
with the measured power value at particular point in time that corresponds
to the store instruction. This was referred to as Hamming-weight model by
Mangard et al. [14].

As our main motivation in this paper is not to investigate the relationship be-
tween the power consumption and the intermediate values, but rather use the
established model as an abstract tool, this intuition will suffice for the remainder.

Definition 3 (Power Trace). Let Exp(bi,F (j)) be an experiment that obtains
a power trace from the computation of the value bi,F (j), i.e., the i-th state byte
of the j-th round during the computational layer F for i ∈ [0, 15], j ∈ [1, 10]
and F ∈ {AK,SB,PB,MC}. Since computing any particular layer F is typically
carried out by multiple instructions, let us denote by E(bi,F (j)) the power signal
recorded during the computation of byte bi,F (j), e.g., at the moment it is placed

on an initially reset bus. Similarly, we define E(bi,F (j)) as the averaged power
signal over multiple runs. 3

An experimental observation is that E(bi,AK(j)) > E(b′i,AK(j)) if and only

if H(bi,AK(j)) > H(b′i,AK(j)) for a large enough number of repetitions where

H(bi,F (j)) is the Hamming weight of the i-th state byte of the j-th round after the
layer F . This follows from the Hamming weight model of power consumption.
Analogously, E(bi,SB(j)) > E(b′i,SB(j)) if and only if H(bi,SB(j)) > H(b′i,SB(j)).

This observation is validated in Figure 3 for AK(0) and SB(1) on our custom
AES∗ implementation but can also be observed on most byte-based implemen-
tations on both 8-bit and 32-bit architectures.

2.3 Key Recovery

Naturally, the first step of reverse-engineering an undisclosed AES∗ structure
involves recovering the encryption key. This is a straightforward procedure as it
is directly possible to target the whitening key addition before the first round
function, meaning that we measure the power trace E(bi,AK(0)) for each state

byte. We have bi,AK(0) = pi + ki, consequently if E(bi,AK(0)) < E(b′i,AK(0)) for

all b′i,AK(0) ∈ F256 \ {bi,AK(0)}, then bi,AK(0) = 0, or in other words, pi = ki. The

key recovery algorithm thus tests whether a plaintext pi yields H(bi,AK(0)) = 0.
The entire key recovery routine for one byte is given in Algorithm 1. We remark
that Algorithm 1 can be modified into a procedure that recovers the Hamming

3 For the remainder of this text, we assume that a signal E(bi,F (j)) corresponds to a
plaintext p, while E(b′i,F (j)) refers to p′.

8 Andrea Caforio, Fatih Balli, and Subhadeep Banik

H(bi,AK(0))	=	H(b'i,AK(0))	
H(bi,AK(0))	>	H(b'i,AK(0))	
H(bi,AK(0))	<	H(b'i,AK(0))	

Si
gn

al
	A

m
pl
itu

de

−0.075

−0.05

0

0.025

0.05

0.075

0.1

Time	Samples

0 10 20 30 40 50 60 70

H(bi,SB(0))	=	H(b'i,SB(0))	
H(bi,SB(0))	>	H(b'i,SB(0))	
H(bi,SB(0))	<	H(b'i,SB(0))	

Si
gn
al
	A
m
pl
itu

de

−0.04

−0.02

0

0.02

0.04

Time	Samples

0 50 100 150 200 250

(a) ATXMEGA128D4

H(bi,AK(0))	=	H(b'i,AK(0))	
H(bi,AK(0))	>	H(b'i,AK(0))	
H(bi,AK(0))	<	H(b'i,AK(0))	

Si
gn
al
	A
m
pl
itu

de

−0.04

−0.02

0

0.02

0.04

Time	Samples

0 20 40 60 80

H(bi,SB(0))	=	H(b'i,SB(0))	
H(bi,SB(0))	>	H(b'i,SB(0))	
H(bi,SB(0))	<	H(b'i,SB(0))	

Si
gn
al
	A
m
pl
itu

de

−0.04

−0.02

0

0.02

0.04

Time	Samples

0 50 100 150 200

(b) STM32F303

Fig. 3. Differential power traces E(bi,AK(0)) − E(b′i,AK(0)) and E(bi,SB(1)) − E(b′i,SB(1))
corresponding to different Hamming weight distances on 8-bit ATXMEGA128D4 and
32-bit STM32F303 architectures.

weight of bi,AK(0) and bi,SB(1) with identical complexity by simply counting how
many traces exhibit a higher, lower and equal power consumption as shown in
Algorithm 2. This property will be useful in Section 3.2 and Section 3.3.

The lookup table L in Algorithm 2 is related to the distribution of the Ham-
ming weight of a random variable over F256, which was mentioned in [14, Ta-
ble 4.1], where L−1(i) =

∑
b∈F256

1H(b)>H(i) −
∑

b∈F256
1H(b)<H(i). For any byte

b ∈ F256, it essentially counts the difference of the number of b′ ∈ F256 \ {b} for
which E(b) > E(b′) and E(b) < E(b′). Since E is correlated with the Hamming
weight, the method faithfully recovers H(b) using L if the power traces are ad-
equately de-noised. A slightly modified version of Algorithm 1 can be used to
uniquely identify bi,AK(0), bi,SB(1) such that their Hamming weight is either zero
or eight. As tmin already represents the byte whose Hamming weight is zero.
Similarly, tmax = arg max J is equal to the byte with Hamming weight eight.

Parallelization. Due to the fact that it takes around α× 28 traces to recover a
single key byte using Algorithm 1, it should take α×212 for the complete 16-byte
key. However, it is possible to parallelize the key recovery procedure for multiple
key bytes at once. The idea is to have an index set I ⊂ [0, 15], and query the
28 plaintexts pi,j = i, ∀j ∈ I and pi,j = 0, ∀j 6∈ I, instead of a singleton j

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 9

Algorithm 1 Recover i-th Key Byte

. Choose a plaintext p and initialize an empty array J of size 256.
1: p ∈ F4×4

256 , J ← {·}
2: for t ∈ F256 do
. Replace i-th byte of p with t, encrypt p and obtain a stable power trace.

3: pi ← t, e← E(bi,AK(0)), J(t)← e

4: tmin = arg min J
5: return tmin

(here pi,j implies the j-th byte of the i-th plaintext for i ∈ [0, 255]). The key
recovery algorithm again tests whether a plaintext pi,j yields H(bi,AK(j)) = 0
for some j ∈ I. We have observed that if I does not contain consecutive indices
then the power peaks corresponding to the round key addition are reasonably
spaced apart in the time axis, allowing for efficient identification of the j-th
peak only by visual inspection. As a consequence, if we repeat the process for
I = {0, 2, 4, . . . , 14} and then {1, 3, 5, . . . , 15} we can recover the entire key in
two runs.

Complexity. Since by parallelization we recover eight key bytes using α × 28

traces, we need α× 29 traces for the complete key.

The reader will note that it is possible to further accelerate the proposed key
recovery procedure by utilizing bit-wise differentials. Let p = 0 be the all-zero
plaintext with corresponding power trace for the first byte after the key addition
E(b0,AK(0)). Similarly, let p′ = p+(1� j) for j ∈ [0, 7] be the plaintext where all
bits are set to zero except the j-th bit of the first plaintext byte with respective
power trace E(b′0,AK(0)). Clearly, if E(b0,AK(0)) < E(b′0,AK(0)), then the j-th bit of

k0 is zero. On the other hand, an inequality E(b0,AK(0)) > E(b′0,AK(0)) indicates
that that the j-th bit of k0 is equal to one. Repeating this for all j yields the

Algorithm 2 Recover Hamming Weight H(b) for b ∈ {bi,AK(0), bi,SB(1)}
. Initialize a lookup table L and choose a plaintext p for which we want to calculate
either H(bi,AK(0)) or H(bi,SB(1)).

1: L← { 255 : 0, 246 : 1, 210 : 2, 126 : 3, 0 : 4, −126 : 5
−210 : 6, −246 : 7, −255 : 8 }

2: p ∈ F4×4
256 , e← E(b), h← 0

3: for t ∈ F256 do
. Replace the i-th byte of p with t and extract the averaged power trace. Count
how many t have a larger/smaller Hamming weight.

4: pi ← t, e′ ← E(b)
5: if e′ < e then h← h− 1.
6: else if e′ > e then h← h+ 1.

7: Find h0 in the set {255, 246, 210, 126, 0,−126,−210,−246,−255} such that |h−h0|
is minimized.

8: return L(h0)

10 Andrea Caforio, Fatih Balli, and Subhadeep Banik

full key byte k0 in α × 23 encryptions, which again can be parallelized in an
analogous fashion as done before with Algorithm 1 in order to recover multiple
key bytes in a single iteration.

3 Reverse-Engineering AES-Like Ciphers

Having established the preliminaries, we proceed with our recovery algorithms for
the byte permutation PB, the matrix M of the diffusion layer MC and ultimately
the lookup table T of the nonlinear substitution layer.

3.1 Partial Π Recovery

The key recovery algorithm exploited the correlation between the Hamming
distance of two values and their respective power consumption. This connection
implies that any differential introduced in the plaintext that is diffusing through
the rounds of the cipher incurs either a power spike or drop at specific points.
The utilization of this phenomenon in attacks is a relatively recent addition to
the large assortment of side-channel assisted cryptanalytic attacks and was first
introduced by Breier et al. with an attack on PRESENT[6]. The detection of
differentially active bytes and columns lays the groundwork for our algorithms
that recover Π in the byte permutation layer PB, M as part of the linear diffusion
layer MC and the S-box T in the substitution layer.

Definition 4 (Differential Activity). Denote by δi,F (j) ∈ {�,�} an indica-
tor that signals whether a state byte is differentially active (with � representing
an active byte). Analogously, let ∆i,F (j) ∈ {�,�} be an indicator for differen-
tially active columns.

A direct approach that uniquely recovers Π consists in injecting a differ-
ence in a single plaintext byte pi + p′i = d such that δj,PB(1) = � is observable

in the differential power trace E(bj,PB(1)) − E(b′j,PB(1)) at some byte position

j ∈ {0, . . . , 15}. However, this method might not be reliable in certain imple-
mentations for the following reasons:

1. Depending on the implementation, the PB and MC operations may be com-
bined together so that a distinct region in the trace segregating the PB layer
may not be deducible.

2. Even if the PB region is clearly separated, any particular implementation
may swap bytes in a specific order depending on the algebraic description of
Π.

3. The active position i may be a fixed point of Π, due to which no operation
the i-th byte in the PB operation is necessary.

Instead, we will observe the peaks in the differential traces during round
key addition E(bi,AK(1))−E(b′i,AK(1)) of the first round or the substitution layer

of the second round E(bi,SB(2)) − E(b′i,SB(2)). If the permutation function Π is

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 11

such that i-th byte is mapped to the j-th column (for any 0 ≤ j ≤ 3), i.e.,
Π(i) ∈ {4j, 4j+ 1, 4j+ 2, 4j+ 3} then after the first round MC, the j-th column
becomes active, which shows up as a sequence of four spikes after the second
round substitution layer in the differential trace. The relative order in the time
axis of these peaks tells us the value of j such that 4j ≤ Π(i) ≤ 4j + 3, for each
i. In other words, we are able to deduce which column each byte is mapped to
after the PB operation. The diffusion of a single active plaintext byte into an
active column ∆j,AK(1) = � is shown in Figure 4. Furthermore, the experimental
detection of an active column on actual hardware is given in the plots of Figure 5.

At this point, we do not yet have the precise description of Π but only the
the column to which each byte is mapped. The full permutation is recovered
alongside the diffusion matrix M and the S-box T in the following sections.

� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







AK
SB

Round 0/1

PB

Round 1

MC

Round 1

AK

Round 1

SB

Round 2

PB

Round 2

Fig. 4. Diffusion of a single active byte during the initial computational layers with
Π(0) = 10. δl,AK(1) = � and δl,SB(2) = � for 8 ≤ l ≤ 11 are observable as four spikes in
the differential power trace (see Figure 5), i.e., E(bl,AK(1)) - E(b′l,AK(1)) and E(bl,SB(2))

- E(b′l,SB(2)).

Complexity. Recovering Π up to column permutations exhibits a worst-case
complexity of α×32 traces, i.e., two averaged power traces are required for each
state byte.

3.2 Finding 255 Candidates for M

Given the unknown matrix from (1), we proceed in multiple steps with differ-
entials on the certain specific locations after the substitution layer of the first
round. More specifically, we are interested in plaintext differentials that diffuse
to two active bytes after the PB operation of the first round, e.g., δ0,PB(1) = �,
δ1,PB(1) = �, δ2,PB(1) = �, δ3,PB(1) = �. With some probability, such a difference
leads to three active bytes in the first state column after the MC layer of the
first round, e.g., δ0,MC(1) = �, δ1,MC(1) = �, δ2,MC(1) = �, δ3,MC(1) = �. In the
following, let d0, d1, d2, d3 denote the four differentials in the first column after

12 Andrea Caforio, Fatih Balli, and Subhadeep Banik

Si
gn
al
	A
m
pl
itu
de

−0.02

−0.01

0

0.01

0.02

Time	Samples

0 200 400 600 800

(a) ∆0,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

Time	Samples

0 200 400 600 800

(b) ∆1,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.015

−0.01

0

0.01

0.015

Time	Samples

0 200 400 600 800

(c) ∆2,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.015

Time	Samples

0 200 400 600 800

(d) ∆3,SB(2) = �

Fig. 5. Differential power traces E(bi,SB(2)) - E(b′i,SB(2)) for 0 ≤ i ≤ 15 on the 32-bit
STM32F303 platform for different active state columns. The color coding indicates the
time frame during which a state column is computed (blue for the first and yellow for
the fourth column). The plots for the ATXMEGA128D4 architecture are given in the
appendix.

the PB layer of the first round, i.e.,

d0 = b0,PB(1) + b′0,PB(1), d1 = b1,PB(1) + b′1,PB(1),

d2 = b2,PB(1) + b′2,PB(1), d3 = b3,PB(1) + b′3,PB(1).

In order to detect whether two active bytes in the first column activate three
bytes after the multiplication by M , we can check the differential power traces
E(bi,AK(1))−E(b′i,AK(1)) or E(bi,SB(2))−E(b′i,SB(2)) for 0 ≤ i ≤ 3 for the occurrence
of spikes and drops. It is important to remark that since we only know to which
column a byte is shifted during PB it is not possible to infer which two bytes
are actually active in the first column. Further note that we do not yet have
the exact description of Π. Let ui be such that Π(ui) = i, ∀i ∈ [0, 15], i.e.,
u4i, u4i+1, u4i+2, u4i+3 are the bytes in the state that get mapped to the i-th
column after the first round PB. We have already determined the values of
u0, u1, u2, u3 up to a permutation of the 4 elements. As such, this means we
have narrowed down the exact values of ui for i = 0 → 3 to a set of 4! = 24
candidates.

Now assume that we lock one of the 24 possible choices of the four-tuple of
indices u0, u1, u2, u3 and proceed in the following way:

1. Fix plaintext bytes pu2
= p′u2

, pu3
= p′u3

to some values in F256.

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 13

2. Use Algorithm 2 to find plaintext bytes pu0
, pu1

for which H(bu0,SB(1)) = 0
and H(bu1,SB(1)) = 0.

3. Similarly, find p′u0
that yields H(b′u0,SB(1)

) = 8, which gives us a differential
d0 = 255.

4. Subsequently, iterate over all p′u1
∈ F256\{pu1

} and check whether δ0,MC(1) =
�. This can be done by checking for the absence of any peaks in the differ-
ential power traces E(bi,AK(1))− E(b′i,AK(1)) or E(bi,SB(2))− E(b′i,SB(2)).

5. Such an occurrence only happens for a single p′u1
for which we then calculate

the Hamming weight H(b′u1,SB(1)
) = H(d1) = H(x1) = w1.

Consequently, we have d0 = 255, d1 = x1, d2 = 0, d3 = 0, which corresponds
to the relation

255a+ x1b = 0 → 255a = x1b.

By appropriately choosing different differentials d0, d1, d2, d3, it is possible to
infer more relations for the same choice of indices u0, u1, u2, u3 as shown in
Table 2.

Table 2. Ten choices of differentials d0, d1, d2, d3 to obtain relations between the xi
and the unknown M coefficients. Note that only the Hamming weight of the xi, i.e.,
H(xi) = wi are known but not their actual values. A graphical schematic of the first
four steps is given in Figure 6.

Step d0 d1 d2 d3 δi,MC(1) = � Relation

1 255 x1 0 0 i = 0 255a = x1b (2)

2 x2 255 0 0 i = 0 255b = x2a (3)

3 255 x3 0 0 i = 1 255d = x3a (4)

4 x4 255 0 0 i = 1 255a = x4d (5)

5 255 x5 0 0 i = 2 255c = x5d (6)

6 x6 255 0 0 i = 2 255d = x6c (7)

7 255 x7 0 0 i = 3 255b = x7c (8)

8 x8 255 0 0 i = 3 255c = x8b (9)

9 255 0 x9 0 i = 0 255c = x9a (10)

10 x10 0 255 0 i = 0 255a = x10c (11)

The ten inferred relations from the side-channel observations can be combined
with each other to yield a set of filter equations as listed in Table 3.

It is possible to computationally verify that, given the filters from Table 3
alongside the set of recovered Hamming weights H(xi) = wi, there will always
be a unique solution for all xi whenever the indices u0, u1, u2, u3 are correctly
guessed. In particular, filtering out wrong xi proceeds in the following loop:

1. Select a set of ten bytes b1, . . . , b10 with bi ∈ F256 such that H(bi) = wi.
2. If the selected set satisfies the filter equations in Table 3, then retain them

as the solution for the xi and return. Otherwise, repeat from the first step.

14 Andrea Caforio, Fatih Balli, and Subhadeep Banik

� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

Step 1

Step 2

Step 3

Step 4

Fig. 6. First four steps of the linear diffusion layer recovery. Red squares indicate
differentials of value 255.

From here we can get 28− 1 solutions for M as follows: we freely choose a to be
any non-zero byte. Then b, c, d are obtained from above as b = 255−1 · x2 · a,
c = 255−1 · x9 · a and d = 255−1 · x3 · a. For the 23 incorrect initial guesses the
situation is slightly more complicated. For exactly 20 other incorrect guesses the
above algorithm returns no solution which implies that our guess was incorrect.
However, for the remaining three guesses in which the starting u0, u1, u2, u3
are rotations of the correct guess, the algorithm also yields a unique solution.
The remaining solutions in the latter cases are row rotated versions of M in
the opposite direction. To understand why this happens, let Πt be the 4 × 4
permutation matrix that rotates a column vector by t locations for 0 ≤ t ≤ 3
in some direction. Let ci,PB(1) be the i-th column after PB of the first round.

Note that if M is a circulant matrix, then M · Π−1t is also a circulant matrix,
in which the rows of M are rotated t locations in the opposite direction. Since
M · ci,PB(1) =

(
M ·Π−1t

)
·
(
Πt · ci,PB(1)

)
, this explains that any starting guess of

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 15

Si
gn
al
	A
m
pl
itu
de

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
0.03

Time	Samples

0 50 100 150 200 250 300

(a) δ0,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.03

−0.02

−0.01

0

0.01

0.02

Time	Samples

0 50 100 150 200 250 300

(b) δ1,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.04

−0.02

0

0.02

Time	Samples

0 50 100 150 200 250 300

(c) δ2,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.015

−0.01

0

0.01

0.015

Time	Samples

0 50 100 150 200 250 300

(d) δ3,AK(1) = �

Fig. 7. Differential power traces E(bi,AK(1)) - E(b′i,AK(1)) for 0 ≤ i ≤ 3 on the 8-bit
ATXMEGA128D4 platform with a single inactive byte in the first column. The color
coding indicates the four key additions of the first column (blue for the first and yellow
for the fourth). The plots for the STM32F303 architecture are given in the appendix.

u0, u1, u2, u3 that is a rotation of the correct guess also yields a set of solutions
for the matrix M that is a row-rotated version of the correct matrix.

The next question is then how to recover t and Πt? The answer is, it is
not necessary, because it is straightforward to see that for any value of t, it
yields an algebraically equivalent block cipher. We repeat the above algorithm
to for the three other columns of the state, i.e., all possible guesses of Ui =
[u4i, u4i+1, u4i+2, u4i+3] ∈ [4i, 4i+ 3] for 1 ≤ i ≤ 3. For each column we get four
rotationally equivalent initial guesses that yield solutions for M . We first select
the guesses for the four sets of initial guesses Ui that yield the same set of 28−1
solutions for M up to multiplication by the free variable a.

Complexity. Identifying plaintext bytes pu0 , pu1 and pu2 that facilitate the
zero images H(bu0,SB(1)) = 0, H(bu1,SB(1)) = 0 and H(bu2,SB(1)) = 0 using Al-
gorithm 1 requires 3 × α × 28 traces as it only needs to be done in the first
and ninth step. Similarly, it requires 3×α× 28 to find plaintext bytes that yield
di = 255. In the worst case, it takes 10×α×28 traces to find the occurrence of an
inactive byte in the first column in each step and ultimately another 10×α× 28

encryptions to find the xi. Hence, the ten steps have a cumulative worst-case
complexity of 26×α× 28 traces. Finally, the whole procedure is repeated 4× 24
times for each state column and each choice of u0, u1, u2, u3, yielding a total
worst-case complexity of 4× 24× 26× α× 28 ≈ α× 220 traces.

16 Andrea Caforio, Fatih Balli, and Subhadeep Banik

Table 3. Nine filter equations derived from the obtained relations in Table 2.

Combination Filter Combination Filter

(2), (3) x1x2 = 2552 (4), (5) x3x4 = 2552

(6), (7) x5x6 = 2552 (8), (9) x7x8 = 2552

(10), (11) x9x10 = 2552 (2), (8), (10) x1x7x9 = 2553

(3), (9), (11) x2x8x10 = 2553 (3), (5), (7), (9) x1x3x5x7 = 2554

(4), (6), (8), (10) x2x4x6x8 = 2554 - -

3.3 Substitution Layer Recovery

Ultimately, to recover the hidden substitution table, we fix one of the 255 can-
didates of M recovered in the previous section and limit ourselves once again to
plaintext differentials that diffuse onto a single column after the PB operation
and then converge into a single active byte after MC as shown in Figure 8.

This convergence property was a cornerstone of the See-in-the-Middle attack
on partially masked AES-128 implementations in [5] where the authors experi-
mentally verified that it occurs with probability 2−22 and thus necessitates on
average 211.5 encryptions. Mathematically, a convergence onto the first byte of
the column only happens when the differential output of the substitution layer
is of the following form:

b0,SB(1) + b′0,SB(1) = T (p0 + k0) + T (p0 + k0 + d0) = eλ,

b1,SB(1) + b′1,SB(1) = T (p1 + k1) + T (p1 + k1 + d1) = fλ,

b2,SB(1) + b′2,SB(1) = T (p2 + k2) + T (p2 + k2 + d2) = gλ,

b3,SB(1) + b′3,SB(1) = T (p3 + k3) + T (p3 + k3 + d3) = hλ,

(12)

for all non-zero λ ∈ F256 and a four-tuple of differentials d0, d1, d2, d3 ∈ F256

where the parameters e, f, g, h ∈ F256 stem from the inverse of M , i.e.,

M−1 =




e f g h

h e f g

g h e f

f g h e


 .

The first step of our recovery procedure involves simplifying (12) by finding
a four-tuple of plaintext bytes p0, p1, p2, p3 such that T (pi+ki) = 0, which yields

T (p0 + k0 + d0) = eλ, T (p1 + k1 + d1) = fλ,

T (p2 + k2 + d2) = gλ, T (p3 + k3 + d3) = hλ.
(13)

Subsequently, we look for the occurrence of a convergence by varying the
differentials d0, d1, d2, d3 and observing the differential power traces E(bi,AK(2))−
E(b′i,AK(2)) or E(bi,SB(2))− E(b′i,SB(2)). Once found, the Hamming weight of the

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 17

� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







� � � �
� � � �
� � � �
� � � �







AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

AK
SB
PB

Round 0/1

MC

Round 1

AK
SB

Round 1/2

Fig. 8. Convergence of a differentially active column into a single active byte in the
same column. On average, roughly 211.5 encryptions are required for the convergence
to occur.

substitution box outputs is recovered, i.e.,

H(T (p0 + k0 + d0)) = w0, H(T (p1 + k1 + d1)) = w1,

H(T (p2 + k2 + d2)) = w2, H(T (p3 + k3 + d3)) = w3.

Since at this point pi, ki, di are known, the task boils down to filling up the
256 entries of T by some method to convert the weights wi recovered above
into actual values. However, the actual values are related by (13) which can be
leveraged as follows: we pre-compute a lookup table L whose λ-th entry is the
tuple L[λ] = [H(eλ), H(hλ), H(gλ), H(fλ)] for all 0 < λ < 256 and infer the
value of λ if L[λ] = [w0, w1, w2, w3] for some table entry. For random values
of e, f, g, h, through computer simulations we have found that more than 200
entries of L are unique. If the fingerprint [w0, w1, w2, w3] is a unique entry in the
table, we recover four substitution table elements. Otherwise, we can repeat the
procedure for a different differential. We were able to recover all entries within
a few repetitions of the above procedure. Note that there are 255 candidates for
M and for each one a lookup table is created yielding a potential solution for

18 Andrea Caforio, Fatih Balli, and Subhadeep Banik

M and T whose correctness we can verify with a plaintext-ciphertext pair from
the target device.

Complexity. Recovering the zero-image in the first step requires 4 × 28 = 210

encryptions. Afterwards, for each four elements of the S-box, the convergence
phenomenon requires an additional α × β × 211.5 encryptions where β is the
reciprocal of the probability that a unique Hamming weight fingerprint is found
in the pre-computed table. Note that on average 211.5 plaintexts are required to
observe a convergence onto a single active byte. If the coefficients e, f, g, h are
chosen uniformly at random, then β ≈ 1.3. This step needs to be repeated 256

4 =
64 times to recover all the entries of T . Hence the number of total encryptions
to recover the full substitution table for a given MC matrix M is α× 210 + α×
β × 217.5. Note that the power traces only need to be extracted once.

4 Future Work & Conclusion

In this work, we demonstrated the first complete and practical side-channel
assisted reverse engineering attack on AES-like ciphers thus settling an open
problem of whether such a recovery is feasible. The presented techniques are
based on the recently introduced SCADPA methodology that combines differ-
ential power analysis with tools from conventional differential cryptanalysis. All
recovery procedures were validated on two common 8-bit and 32-bit microcon-
trollers. Beyond the material presented in this paper, we identify the following
set of open problems:

– Non-Circulant MixColumns. The recovery of the 255 MixColumns ma-
trix candidates in Section 3.2 relies on the fact that M is circulant. One
could also imagine an attack that is applicable to invertible non-circulant
matrices in F4×4

256 as was the assumption in [9].
– Protected Implementations. Our recovery procedures apply to unpro-

tected byte-wise implementations, however masking and shuffling are com-
mon side-channel countermeasures that attempt to prevent deductions from
power measurements and thus also complicate any reverse engineering ef-
forts.

– T-Table Implementations. The S-box recovery routine of Section 3.3 re-
lies on the assumption that the Hamming weight of substituted bytes after
the SB layer is recoverable via Algorithm 2. This may not be the case any-
more in T-table implementations that merge the S-box with the MixColumns
layer in a set of lookup tables.

Acknowledgements. We wish to thank Thomas Roche for helping us improve
this paper. Fatih Balli and Subhadeep Banik are supported by the Swiss National
Science Foundation (SNSF) through the Ambizione Grant PZ00P2 179921.

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 19

References

1. AVR-Crypto-Lib. https://wiki.das-labor.org/w/AVR-Crypto-Lib/en, accessed:
2021-07-03

2. OpenSSL. https://github.com/openssl/openssl, accessed: 2021-07-03
3. secAES. https://github.com/ANSSI-FR/secAES-ATmega8515, accessed: 2021-07-03
4. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-

channel attacks on printers. In: 19th USENIX Security Symposium, Washington,
DC, USA, August 11-13, 2010, Proceedings. pp. 307–322. USENIX Association
(2010), http://www.usenix.org/events/sec10/tech/full papers/Backes.pdf

5. Bhasin, S., Breier, J., Hou, X., Jap, D., Poussier, R., Sim, S.M.: SITM: see-in-
the-middle side-channel assisted middle round differential cryptanalysis on SPN
block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. pp. 95–122 (2020).
https://doi.org/10.13154/tches.v2020.i1.95-122

6. Breier, J., Jap, D., Bhasin, S.: SCADPA: side-channel assisted differential-plaintext
attack on bit permutation based ciphers. In: Madsen, J., Coskun, A.K. (eds.)
2018 Design, Automation & Test in Europe Conference & Exhibition, DATE
2018, Dresden, Germany, March 19-23, 2018. pp. 1129–1134. IEEE (2018).
https://doi.org/10.23919/DATE.2018.8342180

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3156, pp. 16–
29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-5 2

8. Clavier, C.: An improved SCARE cryptanalysis against a secret A3/A8 GSM al-
gorithm. In: McDaniel, P.D., Gupta, S.K. (eds.) Information Systems Security,
Third International Conference, ICISS 2007, Delhi, India, December 16-20, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4812, pp. 143–155. Springer
(2007). https://doi.org/10.1007/978-3-540-77086-2 11

9. Clavier, C., Isorez, Q., Wurcker, A.: Complete SCARE of aes-like block ci-
phers by chosen plaintext collision power analysis. In: Paul, G., Vaudenay, S.
(eds.) Progress in Cryptology - INDOCRYPT 2013 - 14th International Con-
ference on Cryptology in India, Mumbai, India, December 7-10, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 8250, pp. 116–135. Springer (2013).
https://doi.org/10.1007/978-3-319-03515-4 8

10. Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural power simulator for leak-
age assessment of cryptographic software on ARM cortex-m3 processors. In: Fan,
J., Gierlichs, B. (eds.) Constructive Side-Channel Analysis and Secure Design - 9th
International Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 10815, pp. 82–98. Springer (2018).
https://doi.org/10.1007/978-3-319-89641-0 5

11. Jap, D., Bhasin, S.: Practical reverse engineering of secret sboxes by side-
channel analysis. In: IEEE International Symposium on Circuits and Sys-
tems, ISCAS 2020, Sevilla, Spain, October 10-21, 2020. pp. 1–5. IEEE (2020).
https://doi.org/10.1109/ISCAS45731.2020.9180848

12. Knudsen, L.R.: Dynamic encryption. J. Cyber Secur. Mobil. pp. 357–370 (2014).
https://doi.org/10.13052/jcsm2245-1439.341

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-

https://wiki.das-labor.org/w/AVR-Crypto-Lib/en
https://github.com/openssl/openssl
https://github.com/ANSSI-FR/secAES-ATmega8515
http://www.usenix.org/events/sec10/tech/full_papers/Backes.pdf
https://doi.org/10.13154/tches.v2020.i1.95-122
https://doi.org/10.23919/DATE.2018.8342180
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-77086-2_11
https://doi.org/10.1007/978-3-319-03515-4_8
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1109/ISCAS45731.2020.9180848
https://doi.org/10.13052/jcsm2245-1439.341

20 Andrea Caforio, Fatih Balli, and Subhadeep Banik

ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

15. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings. Lecture Notes in Computer Science,
vol. 1965, pp. 78–92. Springer (2000). https://doi.org/10.1007/3-540-44499-8 6

16. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ’grey box’ modelling for instruction leak-
ages. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
pp. 199–216. USENIX Association (2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/mccann

17. Novak, R.: Side-channel attack on substitution blocks. In: Zhou, J., Yung, M.,
Han, Y. (eds.) Applied Cryptography and Network Security, First International
Conference, ACNS 2003. Kunming, China, October 16-19, 2003, Proceedings.
Lecture Notes in Computer Science, vol. 2846, pp. 307–318. Springer (2003).
https://doi.org/10.1007/978-3-540-45203-4 24

18. O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) Constructive Side-Channel Analy-
sis and Secure Design - 5th International Workshop, COSADE 2014, Paris, France,
April 13-15, 2014. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8622, pp. 243–260. Springer (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

19. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart
Card Programming and Security, International Conference on Research in Smart
Cards, E-smart 2001, Cannes, France, September 19-21, 2001, Proceedings.
Lecture Notes in Computer Science, vol. 2140, pp. 200–210. Springer (2001).
https://doi.org/10.1007/3-540-45418-7 17

20. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests.
In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 9783, pp. 204–222. Springer (2016).
https://doi.org/10.1007/978-3-662-52993-5 11

21. Rivain, M., Roche, T.: SCARE of secret ciphers with SPN structures. In: Sako,
K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013 - 19th In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 8269, pp. 526–544. Springer (2013).
https://doi.org/10.1007/978-3-642-42033-7 27

22. Veshchikov, N.: SILK: high level of abstraction leakage simulator for side
channel analysis. In: Preda, M.D., McDonald, J.T. (eds.) Proceedings of the
4th Program Protection and Reverse Engineering Workshop, PPREW@ACSAC
2014, New Orleans, LA, USA, December 9, 2014. pp. 3:1–3:11. ACM (2014).
https://doi.org/10.1145/2689702.2689706

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44499-8_6
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://doi.org/10.1007/978-3-540-45203-4_24
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-642-42033-7_27
https://doi.org/10.1145/2689702.2689706

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 21

A Supplementary Plots
Si
gn
al
	A
m
pl
itu
de

−0.06

−0.04

−0.02

0

0.02

0.04

Time	Samples

0 250 500 750 1000 1250

(a) ∆0,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.02

0

0.02

0.04

0.06

Time	Samples

0 250 500 750 1000 1250

(b) ∆1,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.04

−0.02

0

0.02

0.04

Time	Samples

0 250 500 750 1000 1250

(c) ∆2,SB(2) = �

Si
gn
al
	A
m
pl
itu
de

−0.02

0

0.02

0.04

Time	Samples

0 250 500 750 1000 1250

(d) ∆3,SB(2) = �

Fig. 9. Differential power traces E(bl,SB(0)) - E(b′l,SB(0)) on the 8-bit ATXMEGA128D4
platform for different active state columns.

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.02

0.03

0.04

Time	Samples

0 50 100 150 200

(a) δ0,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time	Samples

0 50 100 150 200

(b) δ1,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time	Samples

0 50 100 150 200

(c) δ2,AK(1) = �

Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time	Samples

0 50 100 150 200

(d) δ3,AK(1) = �

Fig. 10. Differential power traces E(bi,AK(1)) - E(b′i,AK(1)) for 0 ≤ i ≤ 3 on the 32-bit
STM32F303 platform with a single inactive byte in the first column.

	Complete Practical Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers

