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Abstract

In known constructions of classical zero-knowledge protocols for NP, either of zero-knowledge or soundness holds
only against computationally bounded adversaries. Indeed, achieving both statistical zero-knowledge and statistical
soundness at the same time with classical verifier is impossible for NP unless the polynomial-time hierarchy collapses,
and it is also believed to be impossible even with a quantum verifier. In this work, we introduce a novel compromise,
which we call the certified everlasting zero-knowledge proof for QMA. It is a computational zero-knowledge proof for
QMA, but the verifier issues a classical certificate that shows that the verifier has deleted its quantum information.
If the certificate is valid, even unbounded malicious verifier can no longer learn anything beyond the validity of the
statement.

We construct a certified everlasting zero-knowledge proof for QMA. For the construction, we introduce a new
quantum cryptographic primitive, which we call commitment with statistical binding and certified everlasting hiding,
where the hiding property becomes statistical once the receiver has issued a valid certificate that shows that the receiver
has deleted the committed information. We construct commitment with statistical binding and certified everlasting
hiding from quantum encryption with certified deletion by Broadbent and Islam [TCC 2020] (in a black box way),
and then combine it with the quantum sigma-protocol for QMA by Broadbent and Grilo [FOCS 2020] to construct
the certified everlasting zero-knowledge proof for QMA. Our constructions are secure in the quantum random oracle
model. Commitment with statistical binding and certified everlasting hiding itself is of independent interest, and there
will be many other useful applications beyond zero-knowledge.
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1 Introduction
1.1 Background
Zero-knowledge [GMR89], which roughly states that the verifier cannot learn anything beyond the validity of the
statement, is one of the most important concepts in cryptography and computer science. The study of zero-knowledge
has a long history in classical cryptography, and recently there have been many results in quantum cryptography. In
known constructions of classical zero-knowledge protocols for NP, either of zero-knowledge or soundness holds only
against computationally bounded adversaries. Indeed, achieving both statistical zero-knowledge and statistical soundness
at the same time with classical verifier is impossible for NP unless the polynomial-time hierarchy collapses [For87]. It
is also believed to be impossible even with a quantum verifier [MW18].

Broadbent and Islam [BI20] recently suggested an idea of the novel compromise: realizing “everlasting zero-
knowledge” by using quantum encryption with certified deletion. The everlasting security defined by Unruh [Unr13]
states that the protocol remains secure as long as the adversary runs in polynomial-time during the execution of the
protocol. Quantum encryption with certified deletion introduced by Broadbent and Islam [BI20] is a new quantum
cryptographic primitive where a classical message is encrypted into a quantum ciphertext, and the receiver in possession
of a quantum ciphertext can generate a classical certificate that shows that the receiver has deleted the quantum ciphertext.
If the certificate is valid, the receiver can no longer decrypt the message even if it receives the secret key. Broadbent and
Islam’s idea is to use quantum commitment with a similar certified deletion security to encrypt the first message from
the prover to the verifier in the standard Σ-protocol. Once the verifier issues the deletion certificate for all commitments
that are not opened by the verifier’s challenge, even an unbounded verifier can no longer access the committed values of
the unopened commitments. They left the formal definition and the construction as future works.

There are many obstacles to realizing their idea. First, their quantum encryption with certified deletion cannot be
directly used in a Σ-protocol because it does not have any binding property. Their ciphertext consists of a classical and
quantum part. The classical part ism⊕ u⊕H(r), wherem is the plaintext, u and r are random bit strings, andH is a
hash function. The quantum part is a random BB84 states whose computational basis states encode r. The decryption
key is u and the place of computational basis states that encode r, and therefore it is not binding: by changing u, a
different message can be obtained. We therefore need to extend quantum encryption with certified deletion in such a
way that the statistical binding property is included.

Second, defining a meaningful notion of “everlasting zero-knowledge proof” itself is non-trivial. In fact, everlasting
zero-knowledge proofs for QMA or even for NP in the sense of Unruh’s definition [Unr13] are unlikely to exist.1 To see
this, recall that the definition of quantum statistical zero-knowledge [Wat09, MW18] requires a simulator to simulate the
view of a quantum polynomial-time malicious verifier in a statistically indistinguishable manner. Therefore, everlasting
zero-knowledge in the sense of Unruh’s definition [Unr13] is actually equivalent to quantum statistical zero-knowledge.
On the other hand, as already mentioned, it is believed that quantum statistical zero-knowledge proofs for NP do not
exist [MW18]. In particular, Menda and Watrous [MW18] constructed an oracle relative to which quantum statistical
zero-knowledge proofs for (even a subclass of) NP do not exist.

However, we notice that this argument does not go through for certified everlasting zero-knowledge, where the
verifier can issue a classical certificate that shows that the verifier has deleted its information. Once a valid certificate
has been issued, even unbounded malicious verifier can no longer learn anything beyond the validity of the statement.
The reason is that certified everlasting zero-knowledge does not imply statistical zero-knowledge since it does not ensure
any security against a malicious verifier that refuses to provide a valid certificate of deletion. Therefore, we have the
following question.

Is it possible to define and construct a certified everlasting zero-knowledge proof for QMA?
1We mention that everlasting zero-knowledge arguments, which only satisfy computational soundness, can exist. Indeed, any statistical

zero-knowledge argument is everlasting zero-knowledge argument. One may think that the computational soundness is fine since that ensures
everlasting soundness in the sense of Unruh’s definition [Unr13]. For practical purposes, this may be true. On the other hand, we believe that it is
theoretically interesting to pursue (a kind of) everlasting zero-knowledge without compromising the soundness as is done in this paper.
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1.2 Our Results
In this work, we define and construct the certified everlasting zero-knowledge proof for QMA. This goal is achieved in
the following four steps.

1. We define a new quantum cryptographic primitive, which we call commitment with statistical binding and certified
everlasting hiding. In this new commitment scheme, binding is statistical but hiding is computational. However,
the hiding property becomes statistical once the receiver has issued a valid certificate that shows that the receiver
has deleted the committed information.

2. We construct commitment with statistical binding and certified everlasting hiding. We use secret-key quantum
encryption with certified deletion as the building block in a black box way . This construction is secure in the
quantum random oracle model [BDF+11].

3. We define a new notion of zero-knowledge proof, which we call the certified everlasting zero-knowledge proof for
QMA. It is a computational zero-knowledge proof for QMA with the following additional property. A verifier
can issue a classical certificate that shows that the verifier has deleted its information. If the certificate is valid,
even unbounded malicious verifier can no longer learn anything beyond the validity of the statement.

4. We apply commitment with statistical binding and certified everlasting hiding to the quantum Σ-protocol for
QMA by Broadbent and Grilo [BG20] to construct the certified everlasting zero-knowledge proof for QMA.

We have three remarks on our results. First, although our main results are the definition and the construction of the
certified everlasting zero-knowledge proof for QMA, our commitment with statistical binding and certified everlasting
hiding itself is also of independent interest. There will be many other useful applications beyond zero-knowledge. In fact,
it is known that binding and hiding cannot be made statistical at the same time even in the quantum world [LC97, May97],
and therefore our new commitment scheme provides a nice compromise.

Second, our new commitment scheme and the new zero-knowledge proof are the first cryptographic applications of
symmetric-key quantum encryption with certified deletion. Although certified deletion is conceptually very interesting,
there was no concrete construction of cryptographic applications when it was first introduced [BI20]. One reason why
the applications are limited is that in cryptography it is not natural to consider the case when the receiver receives the
private key later. Hiroka et al. [HMNY21] recently extended the symmetric-key scheme by Broadbent and Islam [BI20]
to a public-key encryption scheme, an attribute-based encryption scheme, and a publicly verifiable scheme, which
have opened many applications. However, one disadvantage is that their security is the computational one unlike
the symmetric-key scheme [BI20]. Therefore it was open whether there is any cryptographic application of the
information-theoretically secure certified deletion scheme. Our results provide the first cryptographic applications of
it. Interestingly, the setup of the symmetric-key scheme [BI20], where the receiver does not have the private key in
advance, nicely fits into the framework of the Σ-protocol, because the verifier (receiver) in the Σ-protocol does not have
the decryption key of the first encrypted message from the prover (sender).

Finally, note that certified everlasting zero-knowledge and certified everlasting hiding seem to be impossible
in the classical world, because a malicious adversary can copy its information. In particular, certified everlasting
zero-knowledge against classical verifiers clearly implies honest-verifier statistical zero-knowledge since an honest
verifier runs in polynomial-time.2 Moreover, it is known that HVSZK = SZK where HVSZK and SZK are
languages that have honest-verifier statistical zero-knowledge proofs and (general) statistical zero-knowledge proofs,
respectively [GSV98]. Therefore, if certified everlasting zero-knowledge proofs for NP with classical verification
exist, we obtain NP ⊆ HVSZK = SZK, which means the collapse of the polynomial-time hierarchy [For87]. Though
the above argument only works for protocols in the standard model, no construction of honest-verifier statistical
zero-knowledge proofs for NP is known in the random oracle model either. Our results therefore add novel items to the
list of quantum cryptographic primitives that can be achieved only in the quantum world.

2A similar argument does not work for quantum verifiers since the honest-verifier quantum statistical zero-knowledge [Wat02] requires a simulator
to simulate honest verifier’s internal state at any point of the protocol execution. This is not implied by certified everlasting zero-knowledge, which
only requires security after generating a valid deletion certificate.
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1.3 Technical Overview
Certified everlasting zero-knowledge. As explained in Section 1.1, everlasting zero-knowledge proofs for NP (and
for QMA) seem impossible even with quantum verifiers. Therefore, we introduce a relaxed notion of zero-knowledge
which we call certified everlasting zero-knowledge inspired by quantum encryption with certified deletion introduced by
Broadbent and Islam [BI20]. Certified everlasting zero-knowledge ensures security against malicious verifiers that run
in polynomial-time during the protocol and provide a valid certificate that sensitive information is “deleted”. (For the
formal definition, see Section 4.1.) The difference from everlasting zero-knowledge is that it does not ensure security
against malicious verifiers that do not provide a valid certificate. We believe that this is still a meaningful security notion
since if the verifier refuses to provide a valid certificate, the prover may penalize the verifier for cheating.

Quantum commitment with certified everlasting hiding. Our construction of certified everlasting zero-knowledge
proofs is based on the idea sketched by Broadbent and Islam [BI20]. (For the details of the construction, see Section 4.2.)
The idea is to implement a Σ-protocol using a commitment scheme with certified deletion. However, they did not give a
construction or definition of commitment with certified deletion. First, we remark that the encryption with certified
deletion in [BI20] cannot be directly used as a commitment. A natural way to use their scheme as a commitment scheme
is to consider a ciphertext as a commitment. However, since different secret keys decrypt the same ciphertext into
different messages, this does not satisfy the binding property as commitment.

A natural (failed) attempt to fix this problem is to add a classical commitment to the secret key of the encryption
scheme with certified deletion making use of the fact that the secret key of the encryption with certified deletion in
[BI20] is classical. That is, a commitment to a messagem consists of

(CT = Enc(sk,m), com = Commit(sk))

where Enc is the encryption algorithm of the scheme in [BI20], sk is its secret key, and Commit is a statistically binding
and computationally hiding classical commitment scheme. This resolves the issue of binding since the secret key is now
committed by the classical commitment scheme. On the other hand, we cannot prove a hiding property that is sufficiently
strong for achieving certified everlasting zero-knowledge. It is not difficult to see that what we need here is certified
everlasting hiding, which ensures that once a receiver generates a valid certificate that it deleted the commitment in a
polynomial-time, the hiding property is ensured even if the receiver runs in unbounded-time afterwards. Unfortunately,
we observe that the above generic construction seems insufficient for achieving certified everlasting hiding.3 The reason
is as follows: We want to reduce the certified everlasting hiding to the certified deletion security of Enc. However, the
security of Enc can be invoked only if sk is information theoretically hidden before the deletion. On the other hand, sk
is committed by a statistically binding commitment in the above construction, and thus sk is information theoretically
determined from the commitment. Therefore, we have to somehow delete the information of sk from the commitment in
some hybrid game in a security proof. A similar issue was dealt with by Hiroka et al. [HMNY21] by using receiver
non-committing encryption in the context of public key encryption with certified deletion. However, their technique
inherently relies on the assumption that an adversary runs in polynomial-time even after the deletion. Therefore, their
technique is not applicable in the context of certified everlasting hiding.

To overcome the above issue, we rely on random oracles. We modify the above construction as follows:

(CT = Enc(sk,m), com = Commit(R), H(R)⊕ sk)

where R is a sufficiently long random string and H is a hash function modeled as a random oracle whose output length
is the same as that of sk. We give an intuition on why the above issue is resolved with this modification. As explained in
the previous paragraph, we want to delete the information of sk from the commitment in some hybrid game. By the
computational hiding of commitment, a polynomial-time receiver cannot find R from Commit(R). Therefore, it cannot
get any information on H(R) since otherwise we can “extract” R from one of receiver’s queries. This argument can be
made rigorous by using the one-way to hiding lemma [Unr15, AHU19]. Importantly, we only have to assume that the
receiver runs in polynomial-time before the deletion and do not need to assume anything about the running time after

3One may think that we can just use statistically hiding commitment. However, such a commitment can only satisfy computational binding, which
is not sufficient for achieving certified everlasting zero-knowledge proofs rather than arguments.
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the deletion because we extract R from one of the queries before the deletion. Since sk is masked byH(R), the receiver
cannot get any information on sk either. Thus, we can simulate the whole commitment (CT, com, H(R)⊕ sk) without
using sk, which resolves the issue and enables us to reduce certified everlasting hiding to certified deletion security of
Enc.

We remark that quantum commitments in general cannot satisfy the binding property in the classical sense. Indeed, if
a malicious sender generates a superposition of valid commitments on different messagesm0 andm1, it can later open to
m0 orm1 with probability 1/2 for each. Defining a binding property for quantum commitments is non-trivial, and there
have been proposed various flavors of definitions in the literature, e.g., [CDMS04, DFS04, DFR+07, Yan20, BB21]. It
might be possible to adopt some of those definitions. However, we choose to introduce a new definition, which we
call classical-extractor-based binding, tailored to our construction because this is more convenient for our purpose.
Classical-extractor-based binding captures the property of our construction that the randomness R is information-
theoretically determined by the classical part com = Commit(R) of a commitment, and the decommitment can be done
by using the rest part of the commitment and R.4 In particular, this roughly means that one can extract the committed
message with an unbounded-time extractor before the sender decommits.This enables us to prove soundness for our
certified everlasting zero-knowledge proofs in essentially the same manner as in the classical case.

The details of the construction and security proofs are explained in Section 3.2.

Certified everlasting zero-knowledge proof for QMA. Once we obtain a commitment scheme with certified
everlasting hiding, the construction of certified everlasting zero-knowledge proofs is straightforward based on the idea
sketched in [BI20]. Though they only considered a construction for NP, we observe that the idea can be naturally
extended to a construction forQMA since a “quantum version” of Σ-protocol forQMA called Ξ-protocol is constructed
by Broadbent and Grilo [BG20]. Below, we sketch the construction for clarity. Let A = (Ayes, Ano) be a promise
problem in QMA. [BG20] showed that for any x ∈ Ayes and any corresponding witness w, it is possible to generate (in
a quantum polynomial-time) so-called the local simulatable history state ρhist from w, which satisfies the following two
special properties (for details, see Definition 2.4):

(LS1) The verification can be done by measuring randomly chosen five qubits of ρhist.

(LS2) The classical description of any five-qubit reduced density matrix of ρhist can be obtained in classical polynomial-
time.

With these properties, the quantum Σ-protocol of [BG20] is constructed as follows:

1. Commitment phase: The prover randomly chooses x, z ∈ {0, 1}n, and sends (XxZzρhistZ
zXx)⊗ com(x, z) to

the verifier, where XxZz :=
∏n
i=1X

xi
i Z

zi
i , n is the number of qubits of ρhist, and com(x, z) is a classical

commitment of (x, z).

2. Challenge phase: The verifier randomly chooses a subset S ⊂ [n] of size |S| = 5, and sends it to the prover.

3. Response phase: The prover opens the commitment for {xi, zi}i∈S .

4. Verification phase: The verifier applies
∏
i∈S X

xi
i Z

zi
i on the state and measures qubits in S.

The correctness and the soundness come from the property (LS1), and the zero-knowledge comes from the property (LS2).
If the classical commitment scheme used in the above construction is the one with statistical binding and computational
hiding, the quantum Σ-protocol is a computational zero-knowledge proof for QMA, because the unbounded malicious
verifier can open the commitment of {xi, zi}i∈[n]\S , and therefore can obtain the entire ρhist. If more than five qubits of
ρhist are available to the malicious verifier, the zero-knowledge property no longer holds.

We construct the certified everlasting zero-knowledge proof for QMA based on the quantum Σ-protocol. Our
idea is to use commitment with certified everlasting hiding and statistical binding for the commitment of (x, z) in the
above construction of the quantum Σ-protocol. If the verifier issues a valid deletion certificate for the commitment
of {xi, zi}i∈[n]\S , even unbounded malicious verifier can no longer learn {xi, zi}i∈[n]\S , and therefore what it can

4For this definition to make sense, we need to require that com = Commit(R) is classical. This can be ensured if the honest receiver measures it
as soon as receiving it even if only quantum communication channel is available.
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access is only the five qubits of ρhist. This gives a proof for certified everlasting zero-knowledge. Using classical-
extractor-based binding, the proof of statistical soundness can be done almost in the same way as in [BG20]. Recall
that classical-extractor-based binding enables us to extract the committed message with an unbounded-time extractor
before the sender decommits. Therefore, we can extract the committed (x, z) from com(x, z). Since the extraction
is done before the challenge phase, the extracted values do not depend on the challenge S. Then, it is easy to reduce
the soundness of the scheme to that of the the original QMA promise problem A. The details of the construction is
explained in Section 4.2.

1.4 Related Works
Zero-knowledge for QMA. Zero-knowledge for QMA was first constructed by Broadbent, Ji, Song, and Watrous
[BJSW16]. Broadbent and Grilo [BG20] gave an elegant and simpler construction what they call the Ξ-protocol
(which is considered as a quantum version of the standard Σ-protocol) by using the local simulatability [GSY19]. Our
construction is based on the Ξ-protocol. Bitansky and Shmueli [BS20] gave the first constant round zero-knowledge
argument for QMA with negligible soundness error. Brakerski and Yuen [BY20] gave a construction of 3-round
delayed-input zero-knowledge proof for QMA where the prover needs to know the statement and witness only for
generating its last message. Chardouvelis and Malavolta [CM21] constructed 4-round statistical zero-knowledge
arguments for QMA and 2-round zero-knowledge for QMA in the timing model.

Regarding non-interactive zero-knowledge proofs or arguments (NIZK), Kobayashi [Kob03] first studied (statistically
sound and zero-knowledge) NIZKs in a model where the prover and verifier share Bell pairs, and gave a complete
problem in this setting. It is unlikely that the complete problem contains (even a subclass of) NP [MW18], and thus
even a NIZK for all NP languages is unlikely to exist in this model. Chailloux et al. [CCKV08] showed that there exists
a (statistically sound and zero-knowledge) NIZK for all languages in QSZK in the help model where a trusted party
generates a pure state depending on the statement to be proven and gives copies of the state to both prover and verifier.
Recently, there are many constructions of NIZK proofs or arguments for QMA in various kind of setup models and
assumptions [ACGH20, CVZ20, BG20, Shm21, BCKM21, MY21, BM21].

Quantum commitment. It is well-known that statistically binding and hiding commitments are impossible even
with quantum communication [LC97, May97]. On the other hand, there are a large body of literature on constructing
quantum commitments assuming some computational assumptions, e.g., see the references in the introduction of
[Yan20]. Among them, several works showed the possibility of using quantum commitments in constructions of
zero-knowledge proofs and arguments [YWLQ15, FUW+20, Yan20, BB21]. However, they only consider replacing
classical commitments with quantum commitments in classical constructions while keeping the same functionality and
security level as the classical construction. In particular, none of them considers protocols for QMA or properties that
are classically impossible to achieve like our notion of the certified everlasting zero-knowledge.

2 Preliminaries
2.1 Notations
Here we introduce basic notations we will use. In this paper, x← X denotes selecting an element from a finite set X
uniformly at random, and y ← A(x) denotes assigning to y the output of a probabilistic or deterministic algorithm A
on an input x. When we explicitly show that A uses randomness r, we write y ← A(x; r). When D is a distribution,
x← D denotes sampling an element from D. Let [n] be the set {1, . . . , n}. Let λ be a security parameter, and y := z
denotes that y is set, defined, or substituted by z. For a bit string s ∈ {0, 1}n, si denotes the i-th bit of s. QPT stands
for quantum polynomial time. PPT stands for (classical) probabilistic polynomial time. For a subset S ⊆W of a set
W , S is the complement of S, i.e., S := W \ S. A function f : N→ R is a negligible function if for any constant c,
there exists λ0 ∈ N such that for any λ > λ0, f(λ) < λ−c. We write f(λ) ≤ negl(λ) to denote f(λ) being a negligible
function.
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2.2 Quantum Computation
We assume the familiarity with basics of quantum computation, and use standard notations. Let us denote Q be the
state space of a single qubit. I is the two-dimensional identity operator. For simplicity, we often write I⊗n as I for
any n when the dimension of the identity operator is clear from the context. For any single-qubit operator O, Oi
means an operator that applies O on the i-th qubit and applies I on all other qubits. X and Z are the Pauli X and Z
operators, respectively. For any n-bit strings x := (x1, x2, · · · , xn) ∈ {0, 1}n and z := (z1, z2, · · · , zn) ∈ {0, 1}n,
Xx :=

∏
i∈[n]X

xi
i and Zz :=

∏
i∈[n] Z

zi
i . For any subset S, TrS means the trace over all qubits in S. For any quantum

state ρ and a bit string s ∈ {0, 1}n, ρ ⊗ s means ρ ⊗ |s〉〈s|. The trace distance between two states ρ and σ is given
by 1

2‖ρ− σ‖tr, where ‖A‖tr := Tr
√

A†A is the trace norm. If 1
2‖ρ− σ‖tr ≤ ε, we say that ρ and σ are ε-close. If

ε = negl(λ), then we say that ρ and σ are statistically indistinguishable.
Let C0 and C1 be quantum channels from p qubits to q qubits, where p and q are polynomials. We say that they

are computationally indistinguishable, and denote it by C0 ≈c C1 if there exists a negligible function negl such that
|Pr[D((C0 ⊗ I)(σ)) = 1]−Pr[D((C1 ⊗ I)(σ)) = 1]| ≤ negl(λ) for any polynomial k, any (p+ k)-qubit state σ, and
any polynomial-size quantum circuitD acting on q+ k qubits. We say that C0 and C1 are statistically indistinguishable,
and denote it by C0 ≈s C1, if D is an unbounded algorithm.

Lemma 2.1 (Quantum Rewinding Lemma [Wat09]). LetQ be a quantum circuit that acts on an n-qubit state |ψ〉 and
anm-qubit auxiliary state |0m〉. Let p(ψ) := ||(〈0|⊗I)Q(|ψ〉⊗|0m〉)||2 and |φ(ψ)〉 := 1√

p(ψ)
(〈0|⊗I)Q(|ψ〉⊗|0m〉).

Let p0, q ∈ (0, 1) and ε ∈ (0, 1
2 ) such that |p(ψ) − q| < ε, p0(1 − p0) < q(1 − q), and p0 < p(ψ). Then there is a

quantum circuit R of size at most O
(

log( 1
ε )size(Q)

p0(1−p0)

)
such that on input |ψ〉, R computes a quantum state ρ(ψ) that

satisfies 〈φ(ψ)|ρ(ψ)|φ(ψ)〉 ≥ 1− 16ε log2( 1
ε )

p2
0(1−p0)2 .

Lemma 2.2 (One-Way to Hiding Lemma [AHU19]). Let S ⊆ X be a random subset of X . Let G,H : X → Y be
random functions satisfying ∀x /∈ S [G(x) = H(x)]. Let z be a random classical bit string. (S,G,H, z may have an
arbitrary joint distribution.) Let A be an oracle-aided quantum algorithm that makes at most q quantum queries. Let B
be an algorithm that on input z chooses i← [q], runs AH(z), measures A’s i-th query, and outputs the measurement
outcome. Then we have

∣∣Pr
[
AG(z) = 1

]
− Pr

[
AH(z) = 1

]∣∣ ≤ 2q
√

Pr[BH(z) ∈ S].

2.3 QMA and k-SimQMA
Definition 2.3 (QMA). We say that a promise problem A = (Ayes, Ano) is in QMA if there exist a polynomial p, a QPT
algorithm V , and 0 ≤ β < α ≤ 1 with α− β ≥ 1

poly(|x|) such that

Completeness: For any x ∈ Ayes, there exists a quantum state w of p(|x|)-qubit (called a witness) such that

Pr[V (x,w) = >] ≥ α.

Soundness: For any x ∈ Ano and any quantum state w of p(|x|)-qubit,

Pr[V (x,w) = >] ≤ β.

For any x ∈ Ayes, RA(x) is the (possibly infinite) set of all quantum states w such that Pr[V (x,w) = >] ≥ 2
3 .

A complexity class of k-SimQMA is introduced, and proven to be equal to QMA in [BG20].

Definition 2.4 (k-SimQMA [BG20]). A promise problem A = (Ayes, Ano) is in k-SimQMA with soundness β(|x|) ≤
1− 1

poly(|x|) , if there exist polynomialsm and n such that given x ∈ Ayes, there is an efficient deterministic algorithm
that computesm(|x|) k-qubit POVMs {Π1, I −Π1}, . . . , {Πm(|x|), I −Πm(|x|)} such that:

Simulatable completeness: If x ∈ Ayes, there exists an n(|x|)-qubit state ρhist, which we call a simulatable witness,
such that for all c ∈ [m], Tr(Πcρhist) ≥ 1 − negl(|x|), and there exists a set of k-qubit density matrices
{ρx,S

sim}S⊆[n(|x|)],|S|=k that can be computed in polynomial time from x and ρhist such that ||TrS(ρhist)−ρx,S
sim ||tr ≤

negl(|x|).
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Soundness: If x ∈ Ano, for any n(|x|)-qubit state ρ, 1
m

∑
c∈[m] Tr(Πcρ) ≤ β(|x|).

2.4 Cryptographic Tools
In this section, we review cryptographic tools used in this paper.

Non-interactive commitment.

Definition 2.5 (Non-Interactive Commitment (Syntax)). Let λ be the security parameter and let p, q and r be some
polynomials. A (classical) non-interactive commitment scheme consists of a single PPT algorithm Commit with plaintext
spaceM := {0, 1}p(λ), randomness space {0, 1}q(λ) and commitment space C := {0, 1}r(λ) satisfying two properties:

Perfect binding: For every (r0, r1) ∈ {0, 1}q(λ) × {0, 1}q(λ) and (m,m′) ∈ M2 such that m 6= m′, we have that
Commit(m; r0) 6= Commit(m′; r1), where (Commit(m; r0),Commit(m′; r1)) ∈ C2.

Unpredictability: Let Σ := Commit. For any QPT adversary A, we define the following security experiment
Expunpre

Σ,A (λ).

1. The challenger chooses R←M and R′ ← {0, 1}q(λ), computes com← Commit(R;R′), and sends com
to A.

2. A outputs R∗. The output of the experiment is 1 if R∗ = R. Otherwise, the output of the experiment is 0.

We say that the commitment is unpredictable if for any QPT adversary A, it holds that

Advunpre
Σ,A (λ) :=

∣∣∣Pr
[
Expunpre

Σ,A (λ) = 1
]∣∣∣ ≤ negl(λ).

Remark 2.6. The unpredictability is a weaker version of computational hiding. We define unpredictability instead of
computational hiding since this suffices for our purpose.

A non-interactive commitment scheme that satisfies the above definition exists assuming the existence of injective
one-way functions or perfectly correct public key encryption [LS19]. Alternatively, we can also instantiate it based on
random oracles.

Quantum encryption with certified deletion. Broadbent and Islam [BI20] introduced the notion of quantum
encryption with certified deletion.

Definition 2.7 (One-Time SKE with Certified Deletion (Syntax)). Let λ be the security parameter and let p, q
and r be some polynomials. A one-time secret key encryption scheme with certified deletion consists of a tuple of
algorithms (KeyGen,Enc,Dec,Del,Verify) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), key
space K := {0, 1}q(λ) and deletion certificate space D := {0, 1}r(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes as input the security parameter 1λ, and outputs a secret key
sk ∈ K.

Enc(sk,m)→ CT: The encryption algorithm takes as input sk and a plaintext m ∈ M, and outputs a ciphertext
CT ∈ C.

Dec(sk,CT)→ m′ or ⊥: The decryption algorithm takes as input sk and CT, and outputs a plaintextm′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input CT, and outputs a certification cert ∈ D.

Verify(sk, cert)→ > or ⊥: The verification algorithm takes sk and cert, and outputs > or ⊥.

Definition 2.8 (Correctness for One-Time SKE with Certified Deletion). There are two types of correctness. One is
decryption correctness and the other is verification correctness.
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Decryption correctness: There exists a negligible function negl such that for any λ ∈ N andm ∈M,

Pr
[
Dec(sk,CT) = m

∣∣∣∣ sk← KeyGen(1λ)
CT← Enc(sk,m)

]
≥ 1− negl(λ).

Verification correctness: There exists a negligible function negl such that for any λ ∈ N andm ∈M,

Pr

Verify(sk, cert) = >

∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(sk,m)
cert← Del(CT)

 ≥ 1− negl(λ).

Definition 2.9 (Certified Deletion Security for One-Time SKE). Let Σ = (KeyGen,Enc,Dec,Del,Verify) be a secret
key encryption with certified deletion. We consider the following security experiment Expotsk-cert-del

Σ,A (λ, b).

1. The challenger computes sk← KeyGen(1λ).

2. A sends (m0,m1) ∈M2 to the challenger.

3. The challenger computes CTb ← Enc(sk,mb) and sends CTb to A.

4. A sends cert to the challenger.

5. The challenger computes Verify(sk, cert). If the output is ⊥, the challenger sends ⊥ to A. If the output is >, the
challenger sends sk to A.

6. A outputs b′ ∈ {0, 1}.

We say that the Σ is OT-CD secure if for any unbounded A, it holds that

Advotsk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expotsk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expotsk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Broadbent and Islam [BI20] showed that one-time SKE scheme with certified deletion that satisfies the above
correctness and security exists unconditionally.

3 Commitment with Certified Everlasting Hiding and Classical-Extractor-
Based Binding

In this section, we define and construct commitment with certified everlasting hiding and statistical binding. We adopt
a non-standard syntax for the verification algorithm and a slightly involved definition for the binding, which we call
the classical-extractor-based binding, that are tailored to our construction. This is because they are convenient for our
construction of certified everlasting zero-knowledge proof for QMA given in Section 4. We can also construct one
with a more standard syntax of verification and binding property, namely, the sum-binding, by essentially the same
construction. The detail is given in Appendix C.

3.1 Definition
Definition 3.1 (Commitment with Certified Everlasting Hiding andClassical-Extractor-Based Binding (Syntax)).
Let λ be the security parameter and let p, q, r, s and t be some polynomials. Commitment with certified everlasting
hiding and classical-extractor-based binding consists of a tuple of algorithms (Commit,Verify,Del,Cert) with message
spaceM := {0, 1}n, commitment space C := Q⊗p(λ) × {0, 1}q(λ), decommitment space D := {0, 1}r(λ), key space
K := {0, 1}s(λ) and deletion certificate space E := {0, 1}t(λ).
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Commit(1λ,m)→ (com, d, ck): The commitment algorithm takes as input a security parameter 1λ and a message
m ∈M, and outputs a commitment com ∈ C, a decommitment d := (d1, d2) ∈ D and a key ck ∈ K. Note that
com consists of a quantum state ψ ∈ Q⊗p(λ) and a classical bit string f ∈ {0, 1}q(λ).

Verify(com, d)→ m′ or ⊥: The verification algorithm consists of two algorithms, Verify1 and Verify2. It parses
d = (d1, d2). Verify1 takes com and (d1, d2) as input, and outputs > or ⊥. Verify2 takes com and d1 as input,
and outputsm′. If the output of Verify1 is ⊥, then the output of Verify is ⊥. Otherwise the output of Verify ism′.

Del(com)→ cert: The deletion algorithm takes com as input, and outputs a certificate cert ∈ E .

Cert(cert, ck)→ > or ⊥: The certification algorithm takes cert and ck as input, and outputs > or ⊥.

Definition 3.2 (Correctness). There are two types of correctness, namely, decommitment correctness and deletion
correctness.

Decommitment correctness: There exists a negligible function negl such that for any λ ∈ N andm ∈M,

Pr
[
m← Verify(com, d) | (com, d, ck)← Commit(1λ,m)

]
≥ 1− negl(λ).

Deletion correctness: There exists a negligible function negl such that for any λ ∈ N andm ∈M,

Pr
[
> ← Cert(cert, ck) | (com, d, ck)← Commit(1λ,m), cert← Del(com)

]
≥ 1− negl(λ).

Definition 3.3 (Classical-Extractor-Based Binding). There exists an unbounded-time deterministic algorithm Ext
that takes f ∈ {0, 1}q(λ) of com as input, and outputs d∗1 ← Ext(f) such that for any com, any d1 6= d∗1, and any d2,
Pr[Verify(com, d = (d1, d2)) = ⊥] = 1.

Definition 3.4 (Computational Hiding). Let Σ := (Commit,Verify,Del,Cert). Let us consider the following security
experiment Expc-hide

Σ,A (λ, b) against any QPT adversary A.

1. A generates (m0,m1) ∈M2 and sends them to the challenger.

2. The challenger computes (com, d, ck)← Commit(1λ,mb), and sends com to A.

3. A outputs b′ ∈ {0, 1}.

4. The output of the experiment is b′.

Computational hiding means that the following is satisfied for any QPT A.

Advc-hide
Σ,A (λ) :=

∣∣∣Pr
[
Expc-hide

Σ,A (λ, 0) = 1
]
− Pr

[
Expc-hide

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 3.5 (Certified Everlasting Hiding). Let Σ := (Commit,Verify,Del,Cert). Let us consider the following
security experiment Expever-hide

Σ,A (λ, b) against A = (A1,A2) consisting of any QPT adversary A1 and any unbounded
adversary A2.

1. A1 generates (m0,m1) ∈M2 and sends it to the challenger.

2. The challenger computes (com, d, ck)← Commit(1λ,mb), and sends com to A1.

3. At some point, A1 sends cert to the challenger, and sends its internal state to A2.

4. The challenger computes Cert(cert, ck). If the output is >, then the challenger outputs >, and sends (d, ck) to
A2. Else, the challenger outputs ⊥, and sends ⊥ to A2.

5. A2 outputs b′ ∈ {0, 1}.

6. If the challenger outputs >, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.
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We say that it is certified everlasting hiding if the following is satisfied for any A = (A1,A2).

Advever-hide
Σ,A (λ) :=

∣∣∣Pr
[
Expever-hide

Σ,A (λ, 0) = 1
]
− Pr

[
Expever-hide

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Remark 3.6. We remark that certified everlasting hiding does not imply computational hiding since it does not require
anything if the adversary does not send a valid certificate.

The following lemma will be used in the construction of the certified everlasting zero-knowledge proof for QMA in
Section 4. It is shown with the standard hybrid argument (see Appendix D). It is also easy to see that a similar lemma
holds for computational hiding.

Lemma 3.7. Let Σ := (Commit,Verify,Del,Cert) andM = {0, 1}. Let us consider the following security experiment
Expbit-ever-hide

Σ,A (λ, b) against A = (A1,A2) consisting of any QPT adversary A1 and any unbounded adversary A2.

1. A1 generates (m0,m1) ∈ {0, 1}n × {0, 1}n and sends it to the challenger.

2. The challenger computes

(comi(mb
i ), di(mb

i ), cki(mb
i ))← Commit(1λ,mb

i )

for each i ∈ [n], and sends {comi(mb
i )}i∈[n] to A1. Here,mb

i is the i-th bit ofmb.

3. At some point, A1 sends {certi}i∈[n] to the challenger, and sends its internal state to A2.

4. The challenger computes Cert(certi, cki(mb
i )) for each i ∈ [n]. If the output is > for all i ∈ [n], then the

challenger outputs >, and sends {di(mb
i ), cki(mb

i )}i∈[n] to A2. Else, the challenger outputs ⊥, and sends ⊥ to
A2.

5. A2 outputs b′ ∈ {0, 1}.

6. If the challenger outputs >, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

If Σ is certified everlasting hiding,

Advbit-ever-hide
Σ,A (λ) :=

∣∣∣Pr
[
Expbit-ever-hide

Σ,A (λ, 0) = 1
]
− Pr

[
Expbit-ever-hide

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ)

for any A = (A1,A2).

3.2 Construction
Let λ be the security parameter, and let p, q, r, s, t and u be some polynomials. We construct commitment
with certified everlasting hiding and classical-extractor-based binding, Σccd = (Commit,Verify,Del,Cert), with
message space M = {0, 1}n, commitment space C = Q⊗p(λ) × {0, 1}q(λ) × {0, 1}r(λ), decommitment space
D = {0, 1}s(λ)×{0, 1}t(λ), key spaceK = {0, 1}r(λ) and deletion certificate space E = {0, 1}u(λ) from the following
primitives:

• Secret-key encryption with certified deletion, Σskcd = SKE.(KeyGen,Enc,Dec,Del,Verify), with plaintext
spaceM = {0, 1}n, ciphertext space C = Q⊗p(λ), key space K = {0, 1}r(λ), and deletion certificate space
E = {0, 1}u(λ).

• Classical non-interactive commitment, Σcom = Classical.Commit, with plaintext space {0, 1}s(λ), randomness
space {0, 1}t(λ), and commitment space {0, 1}q(λ).

• A hash function H from {0, 1}s(λ) to {0, 1}r(λ) modeled as a quantumly-accessible random oracle.

The construction is as follows.
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Commit(1λ,m):

• Generate ske.sk ← SKE.KeyGen(1λ), R ← {0, 1}s(λ), R′ ← {0, 1}t(λ), and a hash function H from
{0, 1}s(λ) to {0, 1}r(λ).

• Compute ske.CT← SKE.Enc(ske.sk,m), f ← Classical.Commit(R;R′), and h := H(R)⊕ ske.sk.
• Output com := (ske.CT, f, h), d1 := R, d2 := R′, and ck := ske.sk.

Verify1(com, d1, d2):

• Parse com = (ske.CT, f, h), d1 = R, and d2 = R′.
• Output > if f = Classical.Commit(R;R′), and output ⊥ otherwise.

Verify2(com, d1):

• Parse com = (ske.CT, f, h) and d1 = R.
• Compute ske.sk′ := H(R)⊕ h.
• Outputm′ ← SKE.Dec(ske.sk′, ske.CT).

Del(com):

• Parse com = (ske.CT, f, h).
• Compute ske.cert← SKE.Del(ske.CT).
• Output cert := ske.cert.

Cert(cert, ck):

• Parse cert = ske.cert and ck = ske.sk.
• Output >/⊥ ← SKE.Verify(ske.sk, ske.cert).

Correctness. The decommitment and deletion correctness easily follow from the correctness of Σskcd.

Security. We prove the following three theorems.

Theorem 3.8. If Σcom is perfect binding, then Σccd is classical-extractor-based binding.

Theorem 3.9. If Σcom is unpredictable and Σskcd is OT-CD secure, then Σccd is certified everlasting hiding.

Theorem 3.10. If Σcom is unpredictable and Σskcd is OT-CD secure, then Σccd is computationally hiding.

Proof of Theorem 3.8. Due to the perfect binding of Σcom = Classical.Commit, there exists a unique d∗1 such that
f = Classical.Commit(d∗1; d2) for a given f . Let Ext be the algorithm that finds such d∗1 and outputs it. (If there is no
such d∗1, then Ext outputs ⊥.) Then, for any com = (ske.CT, f, h), any d1 6= d∗1, and any d2,

Pr[Verify(com, d = (d1, d2)) = ⊥] ≥ Pr[f 6= Classical.Commit(d1, d2)] = 1,

which completes the proof.

Proof of Theorem 3.9. For clarity, we describe how the experiment works against an adversaryA := (A1,A2) consisting
of any QPT adversary A1 and any quantum unbounded time adversary A2.

Expever-hide
Σccd,A (λ, b): This is the original experiment.

1. A uniformly random function H from {0, 1}s(λ) to {0, 1}r(λ) is chosen. A1 and A2 can make arbitrarily
many quantum queries to H at any time in the experiment.
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2. A1 chooses (m0,m1)←M2, and sends (m0,m1) to the challenger.
3. The challenger generates ske.sk← SKE.KeyGen(1λ),R← {0, 1}s(λ) andR′ ← {0, 1}t(λ). The challenger

computes ske.CT← SKE.Enc(ske.sk,mb), f := Classical.Commit(R;R′) and h := H(R)⊕ ske.sk, and
sends (ske.CT, f, h) to A1.

4. A1 sends ske.cert to the challenger and sends its internal state to A2.
5. If > ← SKE.Verify(ske.sk, ske.cert), the challenger outputs > and sends (R,R′, ske.sk) to A2. Otherwise,

the challenger outputs ⊥ and sends ⊥ to A2.
6. A2 outputs b′.
7. If the challenger outputs >, then the output of the experiment is b′. Otherwise, the output of the experiment

is ⊥.

What we have to prove is that

Advever-hide
Σccd,A (λ) :=

∣∣∣Pr
[
Expever-hide

Σccd,A (λ, 0) = 1
]
− Pr

[
Expever-hide

Σccd,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We define the following sequence of hybrids.

Hyb1(b): This is identical to Expever-hide
Σccd,A (λ, b) except that the oracle given to A1 is replaced with HR→H′ which is

H reprogrammed according toH ′ on an input R where H ′ is another independent uniformly random function.
More formally, HR→H′ is defined by

HR→H′(R∗) :=
{
H(R∗) (R∗ 6= R)
H ′(R∗) (R∗ = R).

We note that the challenger still uses H to generate h, and the oracle which A2 uses is still H similarly to the
original experiment.

Hyb2(b): This is identical to Hyb1(b) except for the following three points. First, the challenger generates h uniformly
at random. Second, the oracle given to A1 is replaced with H ′ which is an independent uniformly random
function. Third, the oracle given to A2 is replaced with H ′R→h⊕ske.sk which isH ′ reprogrammed to h⊕ ske.sk
on an input R. More formally, H ′R→h⊕ske.sk is defined by

H ′R→h⊕ske.sk(R∗) :=
{
H ′(R∗) (R∗ 6= R)
h⊕ ske.sk (R∗ = R).

Proposition 3.11. If Σcom is unpredictable, then∣∣∣Pr
[
Expever-hide

Σccd,A (λ, b) = 1
]
− Pr[Hyb1(b) = 1]

∣∣∣ ≤ negl(λ).

Proof. The proof is similar to [HMNY21, Propositoin 5.8], but note that this timewe have to consider an unbounded adver-
sary after the certificate is issued unlike the case of [HMNY21]. We assume that

∣∣∣Pr
[
Expever-hide

Σccd,A (λ, b) = 1
]
− Pr[Hyb1(b) = 1]

∣∣∣
is non-negligible, and construct an adversary B that breaks the unpredictability of Σcom. For notational simplicity, we
denote Expever-hide

Σccd,A (λ, b) by Hyb0(b). We consider an algorithm Ã that works as follows. Ã is given an oracle O, which
is either H or HR→H′ , and an input z that consists of R and the whole truth table of H , where R← {0, 1}s(λ), and H
andH ′ are uniformly random functions. Ã runs Hyb0(b) except that it uses its own oracle O to simulate A1’s random
oracle queries. On the other hand, Ã usesH to simulate h and A2’s random oracle queries regardless of O, which is
possible because the truth table of H is included in the input z. By definition, we have

Pr[Hyb0(b) = 1] = Pr
[
ÃH(R,H) = 1

]
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and

Pr[Hyb1(b) = 1] = Pr
[
ÃHR→H′ (R,H) = 1

]
where H in the input means the truth table of H . We apply the one-way to hiding lemma (Lemma 2.2) to the above Ã.
Note that Ã is inefficient, but the one-way to hiding lemma is applicable to inefficient algorithms. Then if we let B̃ be
the algorithm that measures uniformly chosen query of Ã, we have∣∣∣Pr

[
ÃH(R,H) = 1

]
− Pr

[
ÃHR→H′ (R,H) = 1

]∣∣∣ ≤ 2q
√

Pr
[
B̃HR→H′ (R,H) = R

]
.

By the assumption, the LHS is non-negligible, and thus Pr
[
B̃HR→H′ (R,H) = R

]
is non-negligible.

Let B̃′ be the algorithm that is the same as B̃ except that it does not take the truth table of H as input, and sets h to
be uniformly random string instead of setting h := H(R)⊕ ske.sk. Then we have

Pr
[
B̃HR→H′ (R,H) = R

]
= Pr

[
B̃′HR→H′ (R) = R

]
.

The reason is as follows: First, B̃ uses the truth table of H only for generating h := H(R)⊕ ske.sk, because it halts
before B̃ simulatesA2. Second, the oracleHR→H′ reveals no information aboutH(R), and thus h can be independently
and uniformly random.

Moreover, for any fixed R, when H and H ′ are uniformly random, HR→H′ is also a uniformly random function,
and therefore we have

Pr
[
B̃′HR→H′ (R) = R

]
= Pr

[
B̃′H(R) = R

]
.

Since Pr
[
B̃HR→H′ (R,H) = R

]
is non-negligible, Pr

[
B̃′H(R) = R

]
is also non-negligible. Recall that B̃′H is an

algorithm that simulates Hyb0(b) with the modification that h is set to be uniformly random and measures randomly
chosen A1’s query. Then it is straightforward to construct an adversary B that breaks the unpredictability of Σcom by
using B̃′. For clarity, let us give the description of B as follows.
B is given Classical.Commit(R;R′) from the challenger of Expunpre

Σcom,B(λ). B chooses i ← [q] and runs Hyb1(b)
until A1 makes i-th random oracle query or A1 sends the internal state to A2, where B embeds the problem instance
Classical.Commit(R;R′) into those sent toA1 instead of generating it by itself. Bmeasures the i-th random oracle query
by A1, and outputs the measurement outcome. Note that B can efficiently simulate the random oracleH by Zhandry’s
compressed oracle technique [Zha19]. It is clear that the probability that B outputs R is exactly Pr

[
B̃′H(R) = R

]
,

which is non-negligible. This contradicts the unpredictability of Σcom. Therefore |Pr[Hyb0(b) = 1]− Pr[Hyb1(b) = 1]|
is negligible.

Proposition 3.12. Pr[Hyb1(b) = 1] = Pr[Hyb2(b) = 1].

Proof. First, let us remind the difference between Hyb1(b) and Hyb2(b). In Hyb1(b), A1 receives h = ske.sk⊕H(R).
Moreover, A1 can access to the random oracle HR→H′ , and A2 can access to the random oracle H . On the other hand,
in Hyb2(b), A1 receives uniformly random h. Moreover, A1 can access to the random oracle H ′ instead of HR→H′ ,
and A2 can access to the random oracle H ′R→h⊕ske.sk instead of H .

Let Pr[(h,HR→H′ , H) = (r,G,G′) | Hyb1(b)] be the probability that the adversary A1 in Hyb1(b) receives a
classical bit string r as h, random oracle which A1 can access to is G, and random oracle which A2 can access to is G′.
Similarly, let us define Pr

[
(h,H ′, H ′R→h⊕ske.sk) = (r,G,G′) | Hyb2(b)

]
for Hyb2(b). What we have to show is that

the following equation holds for any (r,G,G′)

Pr[(h,HR→H′ , H) = (r,G,G′) | Hyb1(b)] = Pr
[
(h,H ′, H ′R→h⊕ske.sk) = (r,G,G′) | Hyb2(b)

]
.

Since h = ske.sk⊕H(R) in Hyb1(b), H is a uniformly random function, and h in Hyb2(b) is uniformly generated,

Pr[h = r | Hyb1(b)] = Pr[h = r | Hyb2(b)]
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holds for any r.
For any classical bit string r and any random oracle G, we have

Pr[HR→H′ = G | h = r,Hyb1(b)] = Pr[H ′ = G | h = r,Hyb2(b)].

This is shown as follows. First, in Hyb1(b), from the construction of HR→H′ , HR→H′(R) is independent from h
for any R ∈ {0, 1}s(λ). Furthermore, since H and H ′ is random oracle, HR→H′(R) is uniformly random for any
R ∈ {0, 1}s(λ). Second, in Hyb2(b), from the construction ofH ′,H ′(R) is independent from h for any R ∈ {0, 1}s(λ).
Furthermore, since H ′ is random oracle,H ′(R) is uniformly random for any R ∈ {0, 1}s(λ). Therefore, we have the
above equation.

For any classical bit string r and any random oracles G and G′, we have

Pr[H = G′ | (h,HR→H′) = (r,G),Hyb1(b)] = Pr
[
H ′R→h⊕ske.sk = G′ | (h,H ′) = (r,G),Hyb2(b)

]
.

This can be shown as follows. First, in Hyb1(b), we obtainH(R) = r⊕ ske.sk, because h := ske.sk⊕H(R) and h = r.
Furthermore, from the definition ofHR→H′ , we obtain H(R∗) = G(R∗) for R∗ 6= R. Second, in Hyb2(b), from the
definition of H ′R→h⊕ske.sk, we have H ′R→h⊕ske.sk(R) = r ⊕ ske.sk and H ′R→h⊕ske.sk(R∗) = G(R∗) for R∗ 6= R.

From all above discussions, we have

Pr[(h,HR→H′ , H) = (r,G,G′) | Hyb1(b)] = Pr
[
(h,H ′, H ′R→h⊕ske.sk) = (r,G,G′) | Hyb2(b)

]
.

Proposition 3.13. If Σskcd is OT-CD secure, then

|Pr[Hyb2(1) = 1]− Pr[Hyb2(0) = 1]| ≤ negl(λ).

Proof. To show this, we assume that |Pr[Hyb2(1) = 1]− Pr[Hyb2(0) = 1]| is non-negligible, and construct an
adversary B that breaks the OT-CD security of Σskcd.
B plays the experiment Expotsk-cert-del

Σskcd,B (λ, b′) for some b′ ∈ {0, 1}. First, B sends (m0,m1) ∈M2 to the challenger
of Expotsk-cert-del

Σskcd,B (λ, b′). B receives ske.CT from the challenger of Expotsk-cert-del
Σskcd,B (λ, b′). B generates R← {0, 1}s(λ),

R′ ← {0, 1}t(λ) and h← {0, 1}r(λ), and computes f := Classical.Commit(R;R′). B sends (ske.CT, f, h) to A1. B
simulates the random oracle H ′ given to A1 by itself. At some point, A1 sends ske.cert to B, and sends the internal
state to A2. B passes ske.cert to the challenger of Expotsk-cert-del

Σskcd,B (λ, b′).
The challenger of Expotsk-cert-del

Σskcd,B (λ, b′) runs SKE.Verify(ske.sk, ske.cert)→ >/⊥. If it is >, the challenger sends
ske.sk to B. In that case, B outputs >, and sends (R,R′, ske.sk) to A2. We denote this event by Revealsk(b′). B
simulatesA2, and outputs the output ofA2. On the other hand, if SKE.Verify(ske.sk, ske.cert)→ ⊥, then the challenger
sends ⊥ to B. In that case, B outputs ⊥ and aborts. Note that B can simulate the random oracle H ′R→h⊕ske.sk given to
A2 when B does not abort, because B receives ske.sk from the challenger of Expotsk-cert-del

Σskcd,B (λ, b′) when B does not
abort.

Now we have

Advotsk-cert-del
Σskcd,B (λ)

:=
∣∣∣Pr
[
Expotsk-cert-del

Σskcd,B (λ, b′) = 1 | b′ = 0
]
− Pr

[
Expotsk-cert-del

Σskcd,B (λ, b′) = 1 | b′ = 1
]∣∣∣

= |Pr[B = 1 ∧ Revealsk(b′) | b′ = 0]− Pr[B = 1 ∧ Revealsk(b′) | b′ = 1]|
= |Pr[A2 = 1 ∧ Revealsk(b′) | b′ = 0]− Pr[A2 = 1 ∧ Revealsk(b′) | b′ = 1]|
= |Pr[Hyb2(b′) = 1 ∧ Revealsk(b′) | b′ = 0]− Pr[Hyb2(b′) = 1 ∧ Revealsk(b′) | b′ = 1]|
= |Pr[Hyb2(b′) = 1 | b′ = 0]− Pr[Hyb2(b′) = 1 | b′ = 1]|
= |Pr[Hyb2(0) = 1]− Pr[Hyb2(1) = 1]|.

In the second equation, we have used the fact that Expotsk-cert-del
Σskcd,B (λ, b) = 1 if and only if B = 1 and the challenger of

Expotsk-cert-del
Σskcd,B (λ, b′) outputs >. In the third equation, we have used the fact that the output of B is equal to the output of
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A2 conditioned that Revealsk(b′) occurs. In the fourth equation, we have used the fact that B simulates the challenger of
Hyb2(b) when Revealsk(b) occurs. In the fifth equation, we have used the fact that Hyb2(b) = 1 only when Revealsk(b)
occurs. Since |Pr[Hyb2(0) = 1] − Pr[Hyb2(1) = 1]| is non-negligible, Advotsk-cert-del

Σskcd,B (λ) is non-negligible. This
contradicts the OT-CD security of Σskcd.

By Propositions 3.11 to 3.13, we immediately obtain Theorem 3.9.

Proof of Theorem 3.10. For clarity, we describe how the experiment works against a QPT adversary A.

Expc-hide
Σccd,A(λ, b): This is the original experiment.

1. A uniformly random functionH from {0, 1}s(λ) to {0, 1}r(λ) is chosen, andA can make arbitrarily quantum
queries to H at any time in the experiment.

2. A chooses (m0,m1)←M2, and sends (m0,m1) to the challenger.
3. The challenger generates ske.sk← SKE.KeyGen(1λ),R← {0, 1}s(λ) andR′ ← {0, 1}t(λ). The challenger

computes ske.CT← SKE.Enc(ske.sk,mb), f := Classical.Commit(R;R′) and h := H(R)⊕ ske.sk, and
sends (ske.CT, f, h) to A.

4. A outputs b′. The output of the experiment is b′.

Note that what we have to prove is

Advc-hide
Σccd,A :=

∣∣∣Pr
[
Expc-hide

Σccd,A(λ, 0) = 1
]
− Pr

[
Expc-hide

Σccd,A(λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We define the following sequence of hybrids.

Hyb1(b): This is identical to Expc-hide
Σccd,A(λ, b) except that the oracle given to A is replaced with HR→H′ which is H

reprogrammed according to H ′ on an input R where H ′ is another independent random function. More formally,
HR→H′ is defined by

HR→H′(R∗) :=
{
H(R∗) (R∗ 6= R)
H ′(R∗) (R∗ = R).

We note that the challenger still uses H to generate h.

Hyb2(b): This is identical to Hyb1(b) except that the challenger generates h uniformly random.

Proposition 3.14. If Σcom is unpredictable, then∣∣∣Pr
[
Expc-hide

Σccd,A(λ, b) = 1
]
− Pr[Hyb1(b) = 1]

∣∣∣ ≤ negl(λ).

Proof. It is the same as that of Proposition 3.11.

Proposition 3.15. Pr[Hyb1(b) = 1] = Pr[Hyb2(b) = 1].

Proof. This is similar to the proof of Proposition 3.12. For clarity, we describe the proof. The difference between
Hyb1(b) and Hyb2(b) is as follows. In Hyb1(b), A receives h := H(R)⊕ ske.sk. In Hyb2(b), A receives a uniformly
random h. In Hyb1(b), h is uniformly random since H(R) is uniformly distributed. Therefore, the probability
distribution that A in Hyb1(b) receives h is equal to the probability distribution that A in Hyb2(b) receives h. This
completes the proof.

Proposition 3.16. If Σskcd is OT-CD secure, then

|Pr[Hyb2(0) = 1]− Pr[Hyb2(1) = 1]| ≤ negl(λ).
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Proof. To show this, we assume that |Pr[Hyb2(1) = 1] − Pr[Hyb2(0) = 1]| is non-negligible, and construct an
adversary B that breaks the OT-CD security of Σskcd.

First, B sends (m0,m1) ∈ M2 to the challenger of Expotsk-cert-del
Σskcd,B (λ, b′). B receives ske.CT from the challenger

of Expotsk-cert-del
Σskcd,B (λ, b′) and generates R ← {0, 1}s(λ), R′ ← {0, 1}t(λ), f := Classical.Commit(R;R′) and h ←

{0, 1}r(λ). B sends (ske.CT, f, h) to A. B simulates the random oracle given to A.

• If b′ = 0, B simulates the challenger of Hyb2(0).

• If b′ = 1, B simulates the challenger of Hyb2(1).

Thus, if A distinguishes the two experiments, B breaks the OT-CD security of Σskcd by generating ske.cert and sends it
to the challenger of Expotsk-cert-del

Σskcd,B (λ, b′). This completes the proof.

By Propositions 3.14 to 3.16, we immediately obtain Theorem 3.10.

4 Certified Everlasting Zero-Knowledge Proof for QMA
In this section, we define and construct the certified everlasting zero-knowledge proof for QMA. In Section 4.1,
we define the certified everlasting zero-knowledge proof for QMA. We then construct a three round protocol with
completeness-soundness gap 1

poly(λ) in Section 4.2, and finally amplify the gap to 1 − negl(λ) with the sequential
repetition in Section 4.3.

4.1 Definition
We first define a quantum interactive protocol. Usually, in zero-knowledge proofs or arguments, we do not consider
prover’s output. However, in this paper, we also consider prover’s output, because we are interested in the certified
everlasting zero-knowledge. Furthermore, in this paper, we consider only an interactive proof, which means that a
malicious prover is unbounded.

Definition 4.1 (Quantum Interactive Protocol). A quantum interactive protocol is modeled as an interaction between
QPT machines P referred as a prover and V referred as a verifier. We denote by 〈P(xP ),V(xV )〉(x) an execution
of the protocol where x is a common input, xP is P’s private input, and xV is V’s private input. We denote
by OUTV〈P(xP ),V(xV )〉(x) the final output of V in the execution. An honest verifier’s output is > indicating
acceptance or ⊥ indicating rejection, and a malicious verifier’s output is an arbitrary quantum state. We denote by
OUTP〈P(xP ),V(xV )〉(x) the final output of P in the execution. An honest prover’s output is > indicating acceptance
or ⊥ indicating rejection. We also define OUT′P,V〈P(xP ),V(xV )〉(x) by

OUT′P,V〈P(xP ),V(xV )〉(x) :=
{

(>,OUTV〈P(xP ),V(xV )〉(x)) (OUTP〈P(xP ),V(xV )〉(x) = >)
(⊥,⊥) (OUTP〈P(xP ),V(xV )〉(x) 6= >).

We next define a computational zero-knowledge proof for QMA, which is the standard definition.

Definition 4.2 (Computational Zero-Knowledge Proof for QMA). A c-complete s-sound computational zero-
knowledge proof for a QMA promise problem A = (Ayes, Ano) is a quantum interactive protocol between a QPT prover
P and a QPT verifier V that satisfies the followings:

c-completeness: For any x ∈ Ayes and any w ∈ RA(x),

Pr
[
OutV〈P(w⊗k(|x|)),V〉(x) = >

]
≥ c

for some polynomial k.
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s-soundness: For any x ∈ Ano and any unbounded-time prover P∗,

Pr[OutV〈P∗,V〉(x) = >] ≤ s.

Computational zero-knowledge: There exists a QPT algorithm S such that

OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x) ≈c S(x,V∗, · )

for any QPT malicious verifier V∗, any x ∈ Ayes ∩ {0, 1}λ, any w ∈ RA(x), and some polynomial k. Note that
OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x) and S(x,V∗, · ) are quantum channels that map any quantum state ξ to quantum
states OUTV∗〈P(w⊗k(|x|)),V∗(ξ)〉(x) and S(x,V∗, ξ), respectively.

We just call it a computational zero-knowledge proof if it satisfies (1− negl(|x|))-completeness, negl(|x|)-soundness,
and computational zero-knowledge.

We finally define a certified everlasting zero-knowledge proof for QMA, which is the main target of this paper.

Definition 4.3 (Certified Everlasting Zero-Knowledge Proof for QMA). A certified everlasting zero-knowledge proof
for a QMA promise problem A = (Ayes, Ano) is a computational zero-knowledge proof for A (Definition 4.2) that
additionally satisfies the followings:

Prover’s completeness: Pr
[
OUTP〈P(w⊗k(|x|)),V〉(x) = >

]
≥ 1 − negl(λ) for any x ∈ Ayes ∩ {0, 1}λ and any

w ∈ RA(x).

Certified everlasting zero-knowledge: There exists a QPT algorithm S such that

OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x) ≈s S(x,V∗, · )

for any QPT malicious verifier V∗, any x ∈ Ayes ∩ {0, 1}λ, any w ∈ RA(x), and some polynomial k. Note
that OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x) and S(x,V∗, · ) are quantum channels that map any quantum state ξ to
quantum states OUT′P,V∗〈P(w⊗k(|x|)),V∗(ξ)〉(x) and S(x,V∗, ξ), respectively.

Remark 4.4. We remark that certified everlasting zero-knowledge does not imply computational zero-knowledge since it
does not require anything if the prover does not output >.

4.2 Construction of Three Round Protocol
In this section, we construct a three round protocol with completeness-soundness gap 1

poly(λ) . In the next section, we
will amplify its completeness-soundness gap by the sequential repetition.

In the following, n,m, Πc, ρhist, and ρx,S
Sim are given in Definition 2.4. Let Sc ⊆ [n] be the set of qubits on which Πc

acts non-trivially. The three round protocol ΣΞcd is constructed from commitment with certified everlasting hiding and
classical-extractor-based binding, Σccd = (Commit,Verify,Del,Cert).

The first action by the prover (commitment phase):

• Generate x, z ← {0, 1}n.
• Compute

(comi(xi), di(xi), cki(xi))← Commit(1λ, xi)
(comi(zi), di(zi), cki(zi))← Commit(1λ, zi)

for all i ∈ [n].
• Generate a simulatable witness ρhist for the instance x and generate XxZzρhistZ

zXx.
• Send the first message (commitment), msg1 := (XxZzρhistZ

zXx) ⊗ com(x) ⊗ com(z), to the verifier,
where com(x) :=

⊗n
i=1 comi(xi) and com(z) :=

⊗n
i=1 comi(zi).
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The second action by the verifier (challenge phase):

• Generate c← [m].
• Compute certi(xi)← Del(comi(xi)) and certi(zi)← Del(comi(zi)) for all i ∈ Sc.
• Send the second message (challenge), msg2 := (c, {certi(xi), certi(zi)}i∈Sc), to the prover.

The third action by the prover (reply phase):

• Send the third message (reply), msg3 := {di(xi), di(zi)}i∈Sc , to the verifier.
• Output > if > ← Cert(certi(xi), cki(xi)) and > ← Cert(certi(zi), cki(zi)) for all i ∈ Sc, and output ⊥
otherwise.

The fourth action by the verifier (verification phase):

• Compute x′i ← Verify(comi(xi), di(xi)) and z′i ← Verify(comi(zi), di(zi)) for all i ∈ Sc. If x′i = ⊥ or
z′i = ⊥ for at least one i ∈ Sc, output ⊥ and abort.

• Apply Xx′i
i Z

z′i
i on the i-th qubit of XxZzρhistZ

zXx for each i ∈ Sc, and perform the POVM measurement
{Πc, I −Πc} on the state.

• Output > if the result Πc is obtained, and output ⊥ otherwise.

Theorem 4.5. ΣΞcd is a certified everlasting zero-knowledge proof for QMA with (1 − negl(λ))-completeness and(
1− 1

poly(λ)

)
-soundness.

This is shown from the following Lemmata 4.6 to 4.9.

Lemma 4.6. ΣΞcd satisfies the (1− negl(λ))-completeness and prover’s completeness.

Lemma 4.7. If Σccd is classical-extractor-based binding, then ΣΞcd satisfies
(

1− 1
poly(λ)

)
-soundness.

Lemma 4.8. If Σccd is certified everlasting hiding and computational hiding, then ΣΞcd satisfies certified everlasting
zero-knowledge.

Lemma 4.9. If Σccd is computational hiding, then ΣΞcd satisfies computational zero-knowledge.

Proof of Lemma 4.6. It is clear from the definition of k-SimQMA (Definition 2.4) and the correctness of Σccd.

Proof of Lemma 4.7. Let us show the soundness by analyzing the case for x ∈ Ano. The prover sends the first message
to the verifier. The first message consists of three registers, RS, RCX , and RCZ. The register RCX further consists
of n registers {RCXi}i∈[n]. The register RCZ also consists of n registers {RCZi}i∈[n]. If the prover is honest, RS
contains XxZzρhistZ

zXx, RCXi contains comi(xi), and RCZi contains comi(zi). Let com′i,x and com′i,z be the
(reduced) states of the registersRCXi andRCZi, respectively. Let f ′i,x and f ′i,z be classical parts of com′i,x and com′i,z ,
respectively.

The verifier generates c← [m], and issues the deletion certificate. The verifier sends c and the deletion certificate to
the prover. The verifier then receives {dx,i1 , dx,i2 , dz,i1 , dz,i2 }i∈Sc from the prover. For each i ∈ [n], let us define d∗,x,i1
and d∗,z,i1 by d∗,x,i1 ← Ext(f ′i,x) and d∗,z,i1 ← Ext(f ′i,z), respectively. Note that each d∗,x,i1 and d∗,z,i1 is independent of
c, because com′i,x and com′i,z are sent to the verifier before the verifier chooses c.

We have only to consider the case when dx,i1 = d∗,x,i1 and dz,i1 = d∗,z,i1 for all i ∈ Sc, because of the following
reason: Due to the classical-extractor-based binding of Σccd, Verify(com′i,x, (d

x,i
1 , dx,i2 )) = ⊥ for any dx,i1 6= d∗,x,i1 and

any dx,i2 . Similarly, Verify(com′i,z, (d
z,i
1 , dz,i2 )) = ⊥ for any dz,i1 6= d∗,z,i1 and any dz,i2 . Therefore, the prover who wants

to make the verifier accept has to send dx,i1 = d∗,x,i1 and dz,i1 = d∗,z,i1 for all i ∈ Sc.
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Let us define

p(x, z) := Pr

 ∧
i∈[n]

(
Verify2(com′i,x, d

∗,x,i
1 )→ xi ∧ Verify2(com′i,z, d

∗,z,i
1 )→ zi

) .
Note that p(x, z) is independent of c, because {com′i,x, com′i,z}i∈[n] and {d∗,x,i1 , d∗,z,i1 }i∈[n] are independent of c. Let
ψ be the (reduced) state of the register RS. The verifier’s acceptance probability is

1
m

∑
c∈[m]

∑
x,z∈{0,1}n

p(x, z) Tr
[

Πc

(∏
i∈Sc

Zzii X
xi
i

)
ψ

(∏
i∈Sc

Xxi
i Z

zi
i

)]

= 1
m

∑
c∈[m]

∑
x,z∈{0,1}n

p(x, z) Tr

Πc

∏
i∈[n]

Zzii X
xi
i

ψ

∏
i∈[n]

Xxi
i Z

zi
i


= 1
m

∑
c∈[m]

Tr

Πc

∑
x,z∈{0,1}n

p(x, z)

∏
i∈[n]

Zzii X
xi
i

ψ

∏
i∈[n]

Xxi
i Z

zi
i


≤ 1− 1

poly(λ) ,

where the last inequality comes from Definition 2.4. This completes the proof.

Proof of Lemma 4.8. Let us show certified everlasting zero-knowledge. For a subset Sc ⊆ [n] and x, z ∈ {0, 1}n, let
us define xSc := (xSc1 , xSc2 , · · · , xScn ) and zSc := (zSc1 , zSc2 , · · · , zScn ), where xSci = xi and zSci = zi for i ∈ Sc, and
xSci = zSci = 0 for i /∈ Sc.

For clarity, we describe how the interactive algorithm 〈P(w⊗k(|x|)),V∗(ξ)〉(x) runs against a QPT verifier V∗ with
an input ξ, where w is the witness and x is the instance.

〈P(w⊗k(|x|)),V∗(ξ)〉(x):

1. P generates x, z ← {0, 1}n, and computes

(comi(xi), di(xi), cki(xi))← Commit(1λ, xi)
(comi(zi), di(zi), cki(zi))← Commit(1λ, zi)

for all i ∈ [n]. P sends msg1 := (XxZzρhistZ
zXx)⊗ com(x)⊗ com(z) to V∗.

2. V∗ appends ξ to the received state, and runs a QPT circuit V ∗1 on it to obtain (c, {cert′i,x, cert′i,z}i∈Sc). V
∗

sends msg2 := (c, {cert′i,x, cert′i,z}i∈Sc) to P .
3. P sends msg3 := {di(xi), di(zi)}i∈Sc to V∗.
4. V∗ appends msg3 to its state, and runs a QPT circuit V ∗2 on it. V∗ outputs its state ξ′.
5. P computes Cert(cert′i,x, cki(xi)) and Cert(cert′i,z, cki(zi)) for all i ∈ Sc. If all outputs are >, then P

outputs >. Otherwise, P outputs ⊥.

Next let us define a simulator S(1) as follows.

The simulator S(1)(x,V∗, ξ):

1. Pick c← [m] and x, z ← {0, 1}n. Compute

(comi(xSci ), di(xSci ), cki(xSci ))← Commit(1λ, xSci )
(comi(zSci ), di(zSci ), cki(zSci ))← Commit(1λ, zSci )

for all i ∈ [n].
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2. Generate (XxZzσ(c)ZzXx)⊗ com(xSc)⊗ com(zSc)⊗ ξ, where σ(c) := ρx,Sc
sim ⊗

(∏
i∈Sc |0〉〈0|i

)
. Run

V ∗1 on the state to obtain (c′, {cert′i,x, cert′i,z}i∈Sc′ ).

3. If c′ 6= c, abort and output a fixed state η and the flag state fail.
4. Append {di(xSci ), di(zSci )}i∈Sc to its quantum state, and run V ∗2 on the state to obtain ξ′.

5. Compute Cert(cert′i,x, cki(xSci )) and Cert(cert′i,z, cki(zSci )) for all i ∈ Sc. If all outputs are>, then output
the state (>, ξ′). Otherwise, output (⊥,⊥). Also output the flag state success.

Let us also define other two simulators, S(2) and S(3), as follows.

The simulator S(2)(x,w⊗k(|x|),V∗, ξ): It is the same as S(1) except that σ(c) is replaced with ρhist.

The simulator S(3)(x,w⊗k(|x|),V∗, ξ): S(3)(x,w⊗k(|x|),V∗, · ) is the channel that postselects the output of
S(2)(x,w⊗k(|x|),V∗, · ) on the non-aborting state. More precisely, if we write S(2)(x,w⊗k(|x|),V∗, ρin) =
pρout ⊗ success + (1− p)η ⊗ fail, where p is the non-aborting probability, S(3)(x,w⊗k(|x|),V∗, ρin) = ρout.

Lemma 4.8 is shown from the following Propositions 4.10 to 4.12 (whose proofs will be given later) and quantum
rewinding lemma (Lemma 2.1), which is used to reduce the probability that S(1) aborts to negl(λ). In fact, from
Proposition 4.10 and Lemma 2.1, there exists a quantum circuit S(0) of size at most O(m poly(n)size(S(1))) such
that the probability that S(0) aborts is negl(λ), and the output quantum states of S(0) and S(1) are negl(λ)-close when
they do not abort. From Propositions 4.11 and 4.12, S(0) is negl(λ)-close to the real protocol, which completes the
proof.

Proposition 4.10. If Σccd is computationally hiding, then the probability that S(1) does not abort is 1
m ± negl(λ).

Proposition 4.11. S(1)(x,V∗, · ) ≈s S(2)(x,w⊗k(|x|),V∗, · ) for any x ∈ Ayes ∩ {0, 1}λ and any w ∈ RA(x).

Proposition 4.12. If Σccd is certified everlasting hiding, S(3)(x,w⊗k(|x|),V∗, · ) ≈s OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x).

Proof of Proposition 4.10. This can be shown similarly to [BG20, Lemma 5.6]. For the convenience of readers, we
provide a proof in Appendix A.

Proof of Proposition 4.11. It is clear from the local simulatability (Definition 2.4) and the definition of xSc and zSc (all
xSci and zSci are 0 except for those in i ∈ Sc).

Proof of Proposition 4.12. We prove the proposition by contradiction. We construct an adversary B that breaks the
security of the certified everlasting hiding of Σccd by assuming the existence of a distinguisher D that distinguishes two
states δ0 and δ1,

δ0 := (OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x)⊗ I)σ
δ1 := (S(3)(x,w⊗k(|x|),V∗, · )⊗ I)σ,

with a certain state σ. Let us describe how B works.

1. B generates c← [m] and x, z ← {0, 1}n.

2. B sendsm0 := {xi, zi}i∈Sc andm1 := 02n−10 to the challenger of Expbit-ever-hide
Σccd,B (λ, b). B receives commitments

from the challenger which is either {comi(xi), comi(zi)}i∈Sc or {comi(0), comi(0)}i∈Sc .

3. B computes

(comi(xi), di(xi), cki(xi))← Commit(1λ, xi)
(comi(zi), di(zi), cki(zi))← Commit(1λ, zi)

for i ∈ Sc by itself.
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4. B generatesXxZzρhistZ
zXx. B appends commitments and σ to the quantum state. If the commitments for i ∈ Sc

are {comi(xi), comi(zi)}i∈Sc , B obtains (XxZzρhistZ
zXx)⊗ com(x)⊗ com(z)⊗ σ. If the commitments for

i ∈ Sc are {comi(0), comi(0)}i∈Sc , B obtains (XxZzρhistZ
zXx)⊗ com(xSc)⊗ com(zSc)⊗ σ.

5. B runs V ∗1 on it to obtain (c′, {cert′i,x, cert′i,z}i∈Sc′ ). B aborts when c 6= c′.

6. B appends {di(xi), di(zi)}i∈Sc to the post-measurement state and runs V ∗2 on it to obtain σ′.

7. B sends {cert′i,x, cert′i,z}i∈Sc to the challenger of Expbit-ever-hide
Σccd,B (λ, b), and receives ⊥ or {di(xi), di(zi)}i∈Sc

and {cki(xi), cki(zi)}i∈Sc from the challenger.

8. B passes (⊥,⊥) to D if B receives ⊥ from the challenger, and passes (>, σ′) to D otherwise.

9. When D outputs b, B outputs b.

When B receives {comi(xi), comi(zi)}i∈Sc from the challenger and it does not abort, it simulates
OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x). Because (XxZzρhistZ

zXx) ⊗ com(x) ⊗ com(z) ⊗ σ is independent of c, the
probability that B does not abort is 1

m . Therefore, B can simulate OUT′P,V∗〈P(w⊗k(|x|)),V∗(·)〉(x) with probability 1
m .

WhenB receives {comi(0), comi(0)}i∈Sc from the challenger and it does not abort, it simulatesS(3)(x,w⊗k(|x|),V∗, · ).
The probability that B does not abort is 1

m ± negl(λ) from Propositions 4.10 and 4.11. Therefore, B can simulate
S(3)(x,w⊗k(|x|),V∗, · ) with probability 1

m ± negl(λ).
Therefore, if there exists a distinguisherD that distinguishes δ0 and δ1, B can distinguish {comi(xi), comi(zi)}i∈Sc

from {comi(0), comi(0)}i∈Sc . From Lemma 3.7, this contradicts the certified everlasting hiding of Σccd.

Proof of Lemma 4.9. Computational zero-knowledge can be proven similarly to [BG20, Lemma 5.3] because our
protocol is identical to theirs if we ignore the deletion certificates, which are irrelevant to the computational zero-
knowledge property. For the convenience of readers, we provide a proof in Appendix B.

4.3 Sequential Repetition for Certified Everlasting Zero-Knowledge Proof for QMA
In this section, we amplify the completeness-soundness gap of the three-round protocol constructed in the previous
section by sequential repetition.

Theorem 4.13. Let ΣΞcd be a certified everlasting zero-knowledge proof for a QMA promise problem A with
(1− negl(λ))-completeness and

(
1− 1

poly(λ)

)
-soundness. For any polynomial N = poly(λ), let ΣNΞcd be the N -

sequential repetition of ΣΞcd. That is, P and V in ΣNΞcd run ΣΞcd sequentially N times. Let Pj and Vj be the prover
and the verifier in the j-th run of ΣΞcd, respectively. P in ΣNΞcd outputs> if Pj outputs> for all j ∈ [N ], and outputs⊥
otherwise. V in ΣNΞcd outputs> if Vj outputs> for all j ∈ [N ], and outputs⊥ otherwise. ΣNΞcd is a certified everlasting
zero-knowledge proof for A with (1− negl(λ))-completeness and negl(λ)-soundness.

Proof of Theorem 4.13. It is easy to show that ΣNΞcd satisfies (1 − negl(λ))-completeness and negl(λ)-soundness.
Moreover, as proven in [GO94], the sequential repetition of a computational zero-knowledge proof preserves the
computational zero-knowledge property. Let us show that ΣNΞcd satisfies certified everlasting zero-knowledge. For
clarity, we describe how 〈P(w⊗Nk(|x|)),V∗(ξ1)〉(x) runs against any QPT verifier V∗ with an input ξ1, where w is a
witness and x is the instance.

〈P(w⊗Nk(|x|)),V∗(ξ1)〉(x):

1. For 1 ≤ j ≤ N , V∗ and P run 〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) sequentially to get the outputs

ξj+1 := OUTV∗j 〈Pj(w
⊗k(|x|)),V∗j (ξj)〉(x)
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and

OUTPj〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) = >/⊥,

respectively.
2. V∗ outputs ξN+1.
3. P outputs > if OUTPj 〈Pj(w⊗k(|x|)),V∗j (ξj)〉 = > for all j ∈ [N ], and outputs ⊥ otherwise.

Since ΣΞcd satisfies the certified everlasting zero-knowledge property, for each j ∈ [N ] and any V∗j there exists a
QPT algorithm (a simulator) Sj(x,V∗j , · ) such that the following holds for any x and w.

OUT′Pj ,V∗j 〈Pj(w
⊗k(|x|)),V∗j (·)〉(x) ≈s Sj(x,V∗j , · ).

We show that for any V∗ there exists a QPT algorithm (a simulator) S(x,V∗, · ) such that the following holds for any
x and w.

OUT′P,V∗〈P(w⊗Nk(|x|)),V∗(·)〉(x) ≈s S(x,V∗, · ).

Let us define the simulator S as follows.

The simulator S(x,V∗, ξ1):

1. For 1 ≤ j ≤ N , S runs Sj(x,V∗j , · ) on ξj to get Sj(x,V∗j , ξj) = (⊥,⊥)/(>, ξj+1) sequentially. If
Sj(x,V∗j , ξj) = (⊥,⊥), then ξj+1 := ⊥ for each j ∈ [N ].

2. S outputs (⊥,⊥) if Sj(x,V∗j , ξj) = (⊥,⊥) for some j ∈ [N ], and outputs (>, ξN+1) otherwise.

We define the sequence of hybrids Hybi(ξ1) as follows.

Hybi(ξ1):

1. For 1 ≤ j ≤ i, V∗ and P run 〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) sequentially to get the outputs

ξj+1 := OUTV∗j 〈Pj(w
⊗k(|x|)),V∗j (ξj)〉(x)

and

OUTPj 〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) = >/⊥,

respectively.
2. For i + 1 ≤ j ≤ N , S runs Sj(x,V∗j , · ) on ξj to get Sj(x,V∗j , ξj) = (⊥,⊥)/(>, ξi+1) sequentially. If
Sj(x,V∗j , ξj) = (⊥,⊥), then ξj+1 := ⊥ for each j ∈ [N ].

3. The output ofHybi(ξ1) is (⊥,⊥) ifOUTPj 〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) = ⊥ for some j ∈ [i] orSj(x,V∗j , ξj) =
(⊥,⊥) for some j ∈ {i+ 1, · · ·N}. Otherwise, the output of Hybi(ξ1) is (>, ξN+1).

Hyb0(·) and HybN (·) correspond to S(x,V∗, · ) and OUT′P,V∗〈P(w⊗Nk(|x|)),V∗(·)〉(x), respectively. Therefore,
it suffices to prove that no distinguisher can distinguish Hybi(·) from Hybi+1(·) for any i ∈ [N − 1]. We assume that
there exists a distinguisher D′ that distinguishes (Hybi(·)⊗ I)σ from

(
Hybi+1(·)⊗ I

)
σ for a certain state σ, and

construct a distinguisher D that breaks the certified everlasting zero-knowledge property of ΣΞcd. D can access to the
channel O(·), which is either Si+1(x,V∗i+1, · ) or OUT′Pi+1,V∗i+1

〈Pi+1(w⊗k(|x|)),V∗i+1(·)〉(x), and guesses whether
O(·) is Si+1(x,V∗i+1, · ) or OUT′Pi+1,V∗i+1

〈Pi+1(w⊗k(|x|)),V∗i+1(·)〉(x). Let us define D as follows.

The distinguisher D(ξ1):

1. For1 ≤ j ≤ i,D runs 〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) sequentially to get ξj+1 := OUTV∗j 〈Pj(w
⊗k(|x|)),V∗j (ξj)〉(x)

and OUTPj〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) = >/⊥.
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2. D runs O(ξi+1) to get O(ξi+1) = (⊥,⊥)/(>, ξi+2). If O(ξi+1) = (⊥,⊥), D sets ξi+2 := ⊥.
3. For i + 2 ≤ j ≤ N , D runs Sj(x,V∗j , · ) on ξj to get Sj(x,V∗j , ξj) = (⊥,⊥)/(>, ξj+1) sequentially. If
Sj(x,V∗j , ξj) = (⊥,⊥), D sets ξj+1 := ⊥.

4. D outputs (⊥,⊥) if OUTPj〈Pj(w⊗k(|x|)),V∗j (ξj)〉(x) = ⊥ for some j ∈ [i], O(ξi+1) = (⊥,⊥) or
Sj(x,V∗j , ξj) = (⊥,⊥) for some j ∈ {i+ 2, · · · , N}, and outputs (>, ξN+1) otherwise.

5. D sends the output of D to D′.
6. If D′ outputs b, D outputs b.

We can see that D generates (Hybi(·)⊗ I)σ when O(·) is Si+1(x,V∗i+1, · ) and D takes σ as input. Similarly, we
can see thatD generates

(
Hybi+1(·)⊗ I

)
σ when O(·) is OUT′Pi+1,V∗i+1

〈Pi+1(w⊗k(|x|)),V∗i+1(·)〉(x) andD takes σ as
input. Therefore, if D′ distinguishes (Hybi(·)⊗ I)σ from

(
Hybi+1(·)⊗ I

)
σ, then D can distinguish Si+1(x,V∗i+1, · )

from OUT′Pi+1,V∗i+1
〈Pi+1(w⊗k(|x|)),V∗i+1(·)〉(x). This contradicts the certified everlasting zero-knowledge property

of ΣΞcd, which completes the proof.
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A Proof of Proposition 4.10
Proof of Proposition 4.10. We prove the proposition by contradiction. Let p be the probability that S(1) does not abort.
Assume that the probability p satisfies |p− 1

m | ≥
1

q(λ) for a polynomial q. Then, we can construct an adversary B that
breaks the computational hiding of Σccd. Let us describe how B works below.
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1. B generates c← [m] and x, z ← {0, 1}n.

2. B sendsm0 := {xi, zi}i∈Sc andm1 := 010 to the challenger. B receives commitments from the challenger which
is either {comi(xi), comi(zi)}i∈Sc or {comi(0), comi(0)}i∈Sc .

3. B generates {comi(0), comi(0)}i∈Sc .

4. B generates XxZzσ(c)ZzXx. B appends commitments and ξ to the quantum state in the ascending order. If the
commitments for i ∈ Sc are {comi(xi), comi(zi)}i∈Sc , B obtainsXxZzσ(c)ZzXx⊗com(xSc)⊗com(zSc)⊗ξ.
If the commitments for i ∈ Sc are {comi(0), comi(0)}i∈Sc ,B obtainsXxZzσ(c)ZzXx⊗com(0n)⊗com(0n)⊗ξ.

5. B runs V ∗1 on it to obtain (c′, {cert′i,x, cert′i,z}i∈Sc′ ). B outputs 0 when c 6= c′. B outputs 1 when c = c′.

When B receives {comi(xi), comi(zi)}i∈Sc from the challenger, it outputs 1 with probability p since it simulates
S(1). When B receives {comi(0), comi(0)}i∈Sc from the challenger, on the other hand, it outputs 1 with probability 1

m ,
because (XxZzσ(c)ZzXx) ⊗ com(0n) ⊗ com(0n) ⊗ ξ is independent of c. (Note that σ(c) is one-time padded by
x, z.) Therefore if there exists some polynomial q such that |p− 1

m | ≥
1

q(λ) , B can break the computational hiding of
Σccd from (the computational hiding version of) Lemma 3.7.

B Proof of Lemma 4.9
Proof of Lemma 4.9. This proof is similar to the proof of Lemma 4.8. For a subset Sc ⊆ [n] and x, z ∈ {0, 1}n, let
us define xSc := (xSc1 , xSc2 , · · · , xScn ) and zSc := (zSc1 , zSc2 , · · · , zScn ), where xSci = xi and zSci = zi for i ∈ Sc, and
xSci = zSci = 0 for i /∈ Sc.

For clarity, we describe how the interactive algorithm 〈P(w⊗k(|x|)),V∗(ξ)〉(x) runs against a QPT verifier V∗ with
an input ξ, where w is the witness and x is the instance.

〈P(w⊗k(|x|)),V∗(ξ)〉(x):

1. P generates x, z ← {0, 1}n, and computes

(comi(xi), di(xi), cki(xi))← Commit(1λ, xi)
(comi(zi), di(zi), cki(zi))← Commit(1λ, zi)

for all i ∈ [n]. P sends msg1 := (XxZzρhistZ
zXx)⊗ com(x)⊗ com(z) to V∗.

2. V∗ appends ξ to the received state, and runs a QPT circuit V ∗1 on it to obtain (c, {cert′i,x, cert′i,z}i∈Sc). V
∗

sends msg2 := (c, {cert′i,x, cert′i,z}i∈Sc) to P .
3. P sends msg3 := {di(xi), di(zi)}i∈Sc to V∗.
4. V∗ appends msg3 to its state, and runs a QPT circuit V ∗2 on it. V∗ outputs its state ξ′.

Next let us define a simulator S(1) as follows.

The simulator S(1)(x,V∗, ξ):

1. Pick c← [m] and x, z ← {0, 1}n. Compute

(comi(xSci ), di(xSci ), cki(xSci ))← Commit(1λ, xSci )
(comi(zSci ), di(zSci ), cki(zSci ))← Commit(1λ, zSci )

for all i ∈ [n].

2. Generate (XxZzσ(c)ZzXx)⊗ com(xSc)⊗ com(zSc)⊗ ξ, where σ(c) := ρx,Sc
sim ⊗

(∏
i∈Sc |0〉〈0|i

)
. Run

V ∗1 on the state to obtain (c′, {cert′i,x, cert′i,z}i∈Sc′ ).
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3. If c′ 6= c, abort and output a fixed state η and the flag state fail.
4. Append {di(xSci ), di(zSci )}i∈Sc to its quantum state, and run V ∗2 on the state. S outputs the output state

and the flag state success.

Let us also define other two simulators S(2) and S(3) as follows.

The modified simulator S(2)(x,w⊗k(|x|),V∗, ξ): It is the same as S(1) except that σ(c) is replaced with ρhist.

The simulator S(3)(x,w⊗k(|x|),V∗, ξ): S(3)(x,w⊗k(|x|),V∗, · ) is the channel that postselects the output of
S(2)(x,w⊗k(|x|),V∗, · ) on the non-aborting state. More precisely, if we write S(2)(x,w⊗k(|x|),V∗, ρin) =
pρout ⊗ success + (1− p)η ⊗ fail, where p is the non-aborting probability, S(3)(x,w⊗k(|x|),V∗, ρin) = ρout.

Lemma 4.9 is shown from the following Propositions B.1 to B.3 (whose proofs will be given later) and quantum
rewinding lemma(Lemma 2.1), which is used to reduce the probability that S(1) aborts to negl(λ). In fact, from
Proposition B.1 and Lemma 2.1, there exists a quantum circuit S(0) of size at most O(m poly(n)size(S(1))) such that
the probability S(0) aborts is negl(λ), and the output quantum states of S(0) and S(1) are negl(λ)-close when they do
not abort. From Propositions B.2 and B.3, S(0) is negl(λ)-close to the run of the real protocol, which completes the
proof.

Proposition B.1. If Σccd is computational hiding, then the probability that S(1) does not abort is 1
m ± negl(λ).

Proposition B.2. S(1)(x,V∗, · ) ≈s S(2)(x,w⊗k(|x|),V∗, · ) for any x ∈ Ayes ∩ {0, 1}λ and any w ∈ RA(x).

Proposition B.3. If Σccd is computational hiding, S(3)(x,w⊗k(|x|),V∗, · ) ≈c OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x).

Proof of Proposition B.1. This proof is the same as the proof of Proposition 4.10.

Proof of Proposition B.2. This proof is the same as the proof of Proposition 4.11.

Proof of Proposition B.3. We prove the proposition by contradiction. We construct an adversary B that breaks the
security of the computationally hiding of Σccd by assuming the existence of a distinguisher D that distinguishes two
states δ0 and δ1,

δ0 := (OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x)⊗ I)σ
δ1 := (S(3)(x,w⊗k(|x|),V∗, · )⊗ I)σ,

with a certain state σ. Let us describe how B works.

1. B generates c← [m] and x, z ← {0, 1}n.

2. B sendsm0 := {xi, zi}i∈Sc andm1 := 02n−10 to the challenger. B receives commitments from the challenger
which is either {comi(xi), comi(zi)}i∈Sc or {comi(0), comi(0)}i∈Sc .

3. B computes

(comi(xi), di(xi), cki(xi))← Commit(1λ, xi)
(comi(zi), di(zi), cki(zi))← Commit(1λ, zi)

for i ∈ Sc by itself.

4. B generates XxZzρhistZ
zXx. B appends commitments and σ to the quantum state. If the commitments for

i ∈ Sc are {comi(xi), comi(zi)}i∈Sc , B obtainsXxZzρhistZ
zXx⊗ com(x)⊗ com(z)⊗σ. If the commitments

for i ∈ Sc are {comi(0), comi(0)}i∈Sc , B obtains XxZzρhistZ
zXx ⊗ com(xSc)⊗ com(zSc)⊗ σ.

5. B runs V ∗1 on it to obtain (c′, {cert′i,x, cert′i,z}i∈Sc′ ). B aborts when c 6= c′.
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6. B appends {di(xi), di(zi)}i∈Sc to the post-measurement state and runs V ∗2 on it.

7. B passes the output state to D.

8. When D outputs b, B outputs b.

When B receives {comi(xi), comi(zi)}i∈Sc from the challenger and it does not abort, it simulates
OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x). Because (XxZzρhistZ

zXx)⊗com(x)⊗com(z)⊗σ is independent of c, the probability
that B does not abort is 1

m . Therefore, B can simulate OUTV∗〈P(w⊗k(|x|)),V∗(·)〉(x) with probability 1
m .

WhenB receives {comi(0), comi(0)}i∈Sc from the challenger and it does not abort, it simulatesS(3)(x,w⊗k(|x|),V∗, · ).
The probability that B does not abort is 1

m ± negl(λ) from Propositions B.1 and B.2. Therefore, B can simulate
S(3)(x,w⊗k(|x|),V∗, · ) with probability 1

m ± negl(λ).
Therefore, if there exists the distinguisherD that distinguishes δ0 and δ1,B can distinguish {comi(xi), comi(zi)}i∈Sc

from {comi(0), comi(0)}i∈Sc . From (the computational hiding version of) Lemma 3.7, this contradicts the computa-
tional hiding of Σccd.

C Commitment with Certified Everlasting Hiding and Sum-Binding
In this appendix, we define and construct commitment with certified everlasting hiding and statistical sum-binding.

C.1 Definition
Definition C.1 (Commitment with Certified Everlasting Hiding and Sum-Binding (Syntax)). Let λ be the security
parameter, and let p, q, r and s be some polynomials. Commitment with certified everlasting hiding and sum-binding
consists of a tuple of algorithms (Commit,Verify,Del,Cert) with message spaceM := {0, 1}, commitment space
C := Q⊗p(λ), decommitment space D := {0, 1}q(λ), key space K := {0, 1}r(λ) and deletion certificate space
E := {0, 1}s(λ).

Commit(1λ, b)→ (com, d, ck): The commitment algorithm takes as input a security parameter 1λ and a message
b ∈ {0, 1}, and outputs a commitment com ∈ C, a decommitment d ∈ D, and a key ck ∈ K.

Verify(com, d, b)→ > or ⊥: The verification algorithm takes as input com, d and b, and outputs > or ⊥.

Del(com)→ cert: The deletion algorithm takes com as input, and outputs a certificate cert ∈ E .

Cert(cert, ck)→ > or ⊥: The certification algorithm takes cert and ck as input, and outputs > or ⊥.

Definition C.2 (Correctness). There are two types of correctness, namely, decommitment correctness and deletion
correctness.

Decommitment correctness: There exists a negligible function negl such that for any λ ∈ N and b ∈ {0, 1},

Pr
[
Verify(com, d, b) = > | (com, d, ck)← Commit(1λ, b)

]
≥ 1− negl(λ).

Deletion correctness: There exists a negligible function negl such that for any λ ∈ N and b ∈ {0, 1},

Pr
[
Cert(cert, ck) = > | (com, d, ck)← Commit(1λ, b), cert← Del(com)

]
≥ 1− negl(λ).

Definition C.3 (ε-Sum-Binding). For any com, d, and d′, it holds that

Pr[Verify(com, d, 0) = >] + Pr[Verify(com, d′, 1) = >] ≤ 1 + ε.

We call ε-sum-binding just sum-binding if ε is negligible.
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Definition C.4 (Computational Hiding). Let Σ := (Commit,Verify,Del,Cert). Let us consider the following security
experiment Expc-hide

Σ,A (λ, b) against any QPT adversary A.

1. The challenger computes (com, d, ck)← Commit(1λ, b), and sends com to A.

2. A outputs b′ ∈ {0, 1}.

3. The output of the experiment is b′.

Computational hiding means that the following is satisfied for any QPT A.

Advc-hide
Σ,A (λ) :=

∣∣∣Pr
[
Expc-hide

Σ,A (λ, 0) = 1
]
− Pr

[
Expc-hide

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition C.5 (Certified Everlasting Hiding). Let Σ := (Commit,Verify,Del,Cert). Let us consider the following
security experiment Expever-hide

Σ,A (λ, b) against A = (A1,A2) consisting of any QPT adversary A1 and any unbounded
adversary A2.

1. The challenger computes (com, d, ck)← Commit(1λ, b), and sends com to A1.

2. At some point, A1 sends cert to the challenger, and sends its internal state to A2.

3. The challenger computes Cert(cert, ck). If the output is >, then the challenger outputs >, and sends (d, ck) to
A2. Else, the challenger outputs ⊥, and sends ⊥ to A2.

4. A2 outputs b′ ∈ {0, 1}.

5. If the challenger outputs >, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that it is certified everlasting hiding if the following is satisfied for any A = (A1,A2).

Advever-hide
Σ,A (λ) :=

∣∣∣Pr
[
Expever-hide

Σ,A (λ, 0) = 1
]
− Pr

[
Expever-hide

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

C.2 Construction
Though the construction is essentially the same as that in Section 3.2, we give the full description for clarity. Let
λ be the security parameter, and let p, q, r, s, t and u be some polynomials. We construct a bit commitment with
certified everlasting hiding and sum-binding, Σccd = (Commit,Verify,Del,Cert), with message spaceM = {0, 1},
commitment space C = Q⊗p(λ)×{0, 1}q(λ)×{0, 1}r(λ), decommitment spaceD = {0, 1}s(λ)×{0, 1}t(λ), key space
K = {0, 1}r(λ) and deletion certificate space E = {0, 1}u(λ) from the following primitives:

• Secret-key encryption with certified deletion Σskcd = SKE.(KeyGen,Enc,Dec,Del,Verify), with plaintext
spaceM = {0, 1}, ciphertext space C = Q⊗p(λ), key space K = {0, 1}r(λ), and deletion certificate space
E = {0, 1}u(λ).

• Classical non-interactive commitment, Σcom = Classical.Commit, with plaintext space {0, 1}s(λ), randomness
space {0, 1}t(λ), and commitment space {0, 1}q(λ).

• A hash function H from {0, 1}s(λ) to {0, 1}r(λ) modeled as a quantumly-accessible random oracle.

The construction is as follows.

Commit(1λ, b):

• Generate ske.sk ← SKE.KeyGen(1λ), R ← {0, 1}s(λ), R′ ← {0, 1}t(λ), and a hash function H from
{0, 1}s(λ) to {0, 1}r(λ).

• Compute ske.CT← SKE.Enc(ske.sk, b), f ← Classical.Commit(R;R′), and h := H(R)⊕ ske.sk.
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• Output com := (ske.CT, f, h), d := (R,R′), and ck := ske.sk.

Verify(com, d, b):

• Parse com = (ske.CT, f, h) and d = (R,R′).
• Compute ske.sk′ := H(R)⊕ h.
• Compute b′ ← SKE.Dec(ske.sk′, ske.CT).
• Output > if f = Classical.Commit(R;R′) and b′ = b, and output ⊥ otherwise.

Del(com):

• Parse com = (ske.CT, f, h).
• Compute ske.cert← SKE.Del(ske.CT).
• Output cert := ske.cert.

Cert(cert, ck):

• Parse cert = ske.cert and ck = ske.sk.
• Output >/⊥ ← SKE.Verify(ske.sk, ske.cert).

Correctness. The decommitment and deletion correctness easily follow from the correctness of Σskcd.

Security. We prove the following three theorems.

Theorem C.6. If Σcom is perfect binding, then Σccd is sum-binding.

Theorem C.7. If Σcom is unpredictable and Σskcd is OT-CD secure, then Σccd is certified everlasting hiding.

Theorem C.8. If Σcom is unpredictable and Σskcd is OT-CD secure, then Σccd is computationally hiding.

Proof of Theorem C.6. What we have to prove is that for any com, d, and d′, it holds that

Pr[Verify(com, d, 0) = >] + Pr[Verify(com, d′, 1) = >] ≤ 1 + negl(λ).

Let d = (R0, R
′
0), d′ = (R1, R

′
1), and com = (ske.CT, f, h). Then,

Pr[Verify(com, d, 0) = >] + Pr[Verify(com, d′, 1) = >]
= Pr[0← SKE.Dec(h⊕H(R0), ske.CT) ∧ f = Classical.Commit(R0;R′0)]
+ Pr[1← SKE.Dec(h⊕H(R1), ske.CT) ∧ f = Classical.Commit(R1;R′1)]
≤ Pr

[
0← SKE.Dec(h⊕H(R̃), ske.CT) ∧ f = Classical.Commit(R̃;R′0)

]
+ Pr

[
1← SKE.Dec(h⊕H(R̃), ske.CT) ∧ f = Classical.Commit(R̃;R′1)

]
≤ Pr

[
0← SKE.Dec(h⊕H(R̃), ske.CT)

]
+ Pr

[
1← SKE.Dec(h⊕H(R̃), ske.CT)

]
= Pr

[
0← SKE.Dec(h⊕H(R̃), ske.CT) ∨ 1← SKE.Dec(h⊕H(R̃), ske.CT)

]
≤ 1,

where we have used perfect binding of Σcom in the second inequality.

Proof of Theorem C.7. It is the same as that of Theorem 3.9.

Proof of Theorem C.8. It is the same as that of Theorem 3.10.

30



D Proof of Lemma 3.7
Let us consider the following hybrids for j ∈ {0, 1, ..., n}.
Hybj:

1. A1 generates (m0,m1) ∈ {0, 1}n × {0, 1}n and sends it to the challenger.
2. The challenger computes

(comi(m1
i ), di(m1

i ), cki(m1
i ))← Commit(1λ,m1

i )

for i ∈ [j] and

(comi(m0
i ), di(m0

i ), cki(m0
i ))← Commit(1λ,m0

i )

for each i ∈ {j + 1, ..., n}, and sends {comi(m1
i )}i∈[j] and {comi(m0

i )}i∈{j+1,...,n} to A1. Here, mb
i is

the i-th bit ofmb.
3. At some point, A1 sends {certi}i∈[n] to the challenger, and sends its internal state to A2.
4. The challenger computes Cert(certi, cki(m1

i )) for each i ∈ [j] and Cert(certi, cki(m0
i )) for each i ∈ {j +

1, ..., n}. If the outputs are> for all i ∈ [n], then the challenger outputs>, and sends {di(m1
i ), cki(m1

i )}i∈[j]
and {di(m0

i ), cki(m0
i )}i∈{j+1,...,n} to A2. Else, the challenger outputs ⊥, and sends ⊥ to A2.

5. A2 outputs b′ ∈ {0, 1}.
6. If the challenger outputs >, then the output of the experiment is b′. Otherwise, the output of the experiment

is ⊥.

It is clear that Hyb0 = Expbit-ever-hide
Σ,A (λ, 0) and Hybn = Expbit-ever-hide

Σ,A (λ, 1). Furthermore, we can show∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣ ≤ negl(λ)

for each j ∈ {0, 1, ..., n− 1}. (Its proof is given below.) From these facts, we obtain Lemma 3.7.
Let us show the remaining one. To show it, let us assume that

∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣ is non-negligible.
Then, we can construct an adversary B that can break the certified everlasting hiding of Σccd as follows.

1. B receives (m0,m1) from A1, and computes

(comi(m1
i ), di(m1

i ), cki(m1
i ))← Commit(1λ,m1

i )

for i ∈ [j] and

(comi(m0
i ), di(m0

i ), cki(m0
i ))← Commit(1λ,m0

i )

for i ∈ {j + 2, ..., n}.

2. B sends (m0
j+1,m

1
j+1) to the challenger of Expever-hide

Σccd,B (λ, b′), and receives comj+1(mb′

j+1) from the challenger.

3. B sends {comi(m1
i )}i∈[j], comj+1(mb′

j+1), and {comi(m0
i )}i∈{j+2,...,n}, to A1.

4. A1 sends {certi}i∈[n] to B, and sends its internal state to A2.

5. B sends certj+1 to the challenger of Expever-hide
Σccd,B (λ, b′), and receives (dj+1(mb′

j+1), ckj+1(mb′

j+1)) or ⊥ from the
challenger. If B receives ⊥ from the challenger, it outputs ⊥ and aborts.

6. B sends all di and cki to A2.

7. A2 outputs b′′.

8. B computes Cert for all certi, and outputs b′′ if all results are >. Otherwise, B outputs ⊥.
It is clear that Pr[B → 1 | b′ = 0] = Pr

[
Hybj = 1

]
and Pr[B → 1 | b′ = 1] = Pr

[
Hybj+1 = 1

]
. By assumption,

|Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]
| is non-negligible, and therefore |Pr[B → 1 | b′ = 0] − Pr[B → 1 | b′ = 1]| is

non-negligible, which contradict the certified everlasting hiding of Σccd.
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