
Integer Functions Suitable for Homomorphic Encryption over
Finite Fields

Ilia Iliashenko1, Christophe Nègre2,3, and Vincent Zucca2,3

1 imec-COSIC, KU Leuven, Belgium
2 DALI, Univ Perpignan Via Domitia, France

3 LIRMM, Univ Montpellier, France
ilia@esat.kuleuven.be,

christophe.negre@{upvd.fr, lirmm.fr},
vincent.zucca@{upvd.fr, lirmm.fr}

Abstract. Fully Homomorphic Encryption (FHE) gives the ability to evaluate any function over
encrypted data. However, despite numerous improvements during the last decade, the computational
overhead caused by homomorphic computations is still very important. As a consequence, optimizing
the way of performing the computations homomorphically remains fundamental. Several popular FHE
schemes such as BGV and BFV encode their data, and thus perform their computations, in finite fields.
In this work, we study and exploit algebraic relations occurring in prime characteristic allowing to
speed-up the homomorphic evaluation of several functions over prime fields.
More specifically we give several examples of unary functions: “modulo”, “is power of b”, “Hamming
weight” and “Mod2” whose homomorphic evaluation complexity over Fp can be reduced from the generic
bound

√
2p+O(log(p)) homomorphic multiplications, to

√
p+O(log(p)), O(log(p)), O(

√
p/ log(p)) and

O(
√

p/ log(p)) respectively. Additionally we provide a proof of a recent claim regarding the structure of
the polynomial interpolation of the “less-than” bivariate function which confirms that this function can
be evaluated in 2p− 6 homomorphic multiplications instead of 3p− 5 over Fp for p ≥ 5.

1 Introduction

FHE allows to perform any kind of computations directly over encrypted data offering therefore
natural solutions for privacy-preserving techniques. The first theoretical construction of FHE provided
by Gentry in 2009 [10] has drawn an important attention from the cryptographic community which
has resulted in numerous improvements in the following years. Although, the computational overhead
of the first schemes was too important to consider using them in practice, the technology is now
mature enough to be used in several practical scenarios such as genome analysis and is currently
going through a standardization process. Nonetheless, the efficiency of the current schemes is not
satisfactory yet and, as so, improving their efficiency is still an active research area.

Every FHE scheme follows Gentry’s blueprint: a Somewhat Homomorphic Encryption (SHE)
scheme allowing to perform a limited number of operations endowed with a bootstrapping procedure
permitting to refresh the homomorphic capacity of a ciphertext. Current FHE schemes can be
classified into three main categories depending on the kind of data they perform computations on.
Schemes of the first category encode their data bit-wise and can evaluate boolean circuits efficiently
[8,?]. The second category of schemes encodes their data word-wise as element of a finite field and
can be used for efficient integer computations [1,?]. The third and last category of schemes supports
computations directly over complex, and thus real, numbers but in an approximated manner [5].

Each category has its pros and cons and the choice of the scheme mainly depends on the targeted
application. Schemes of the first category have a very efficient bootstrapping procedure but only
operates at the bit level. On the other hand, schemes belonging to the second/third categories can
operate directly on integers/complex numbers but are usually used as SHE schemes because their
bootstrapping procedure is very slow. An interesting feature of the schemes of the second category

is that since their data are encoded as finite-field elements, computations on these data occur in
prime characteristic which might simplify some computations.

1.1 Contributions

This work focuses on the study of specific functions which have a particular structure when
interpolated over Fp for an odd prime p. This structure allows to speed-up their homomorphic
evaluation by schemes of the second category making them more interesting for possible future
applications.

Our first contribution is the study of several unary functions: “modulo”, “is power of b”, “Ham-
ming weight” and “Mod2”. The particular structure of these functions permits to reduce the
complexity of their evaluation from the generic bound

√
2p+O(log(p)) homomorphic multiplica-

tions with the Paterson-Stockmeyer algorithm [17] to
√
p+O(log p), O(log(p)), O(

√
p/ log p) and

O(
√
p/ log p) respectively.

Our second contribution is the study of the interpolation polynomial of the bivariate less-than
function: x < y over Fp. We prove the recent claim of Iliashenko and Zucca [14] that this polynomial
has a structure which can be exploited to evaluate it using only 2p− 6 homomorphic multiplications
instead of 3p− 5 by evaluating each monomial separately [19] when p ≥ 5.

Note however that since our improvements do not affect the multiplicative depth required to
evaluate the different functions, the parameters required to evaluate these functions homomorphically
remain unchanged. As a consequence the size of the ciphertexts is not affected by our work.
Nonetheless similarly to the work of [14], since homomorphic multiplication is by far the bottleneck
of FHE/SHE schemes, we expect our improvements to result in speed-up proportional to the number
of homomorphic multiplications saved. Eventually since our improvements only affect the number of
homomorphic multiplications, the gain in practice will be agnostic to the chosen scheme.

1.2 Related art

The running time complexity of computing certain functions using homomorphic encryption is a
versatile topic due to the variety of plaintext spaces used by homomorphic schemes.

In approximate homomorphic encryption [5], the plaintext space consists of complex numbers.
Hence, non-arithmetic functions are approximated by complex- or real-valued polynomials. At the
moment, there have been published numerous papers on evaluation of periodic functions such as
modulo and sine functions (e.g. [4,2,13]). Recently, researchers focused on comparison operations
including maximum/minimum and less-than functions [7,6].

For FHE/SHE schemes with a plaintext space Zpe where p is prime, the current studies are
limited to digit removal polynomials [12,3], i.e. functions that remove the least significant digits of
an input number in base p. In particular, Chen and Han showed that a digit removal polynomial
has a surprisingly low degree at most (e− 1)(p− 1) + 1.

For FHE/SHE scheme with a plaintext space Fp, Kaji et al. [15] showed how to compute max
and argmax functions. However, their result is not optimal as it requires quadratic number of
ciphertext-ciphertext multiplications in p. Iliashenko and Zucca [14] improved this complexity by
proving that the less-than and the maximum functions have a total degree p and can be computed
in O(p) ciphertext-ciphertext multiplications. Furthermore, they demonstrated that this function
can be computed in O(

√
p) multiplications at the cost of less efficient plaintext encoding.

2 Preliminaries

2.1 Basic notation

Vectors are written column-wise and denoted by boldface lower-case letters. For some non-negative
` and k, we denote the set of integers {`, . . . , k} by [`, k].

We denote the set of integer residue classes modulo an integer m by Zm. By default, we assume
that the class representatives of Zm are taken from the interval [0,m− 1]. The modulo operation is
denoted by |·|m, i.e. a mod m = |a|m.

For a non-negative integer a, we denote its binary representation by a2. The Hamming weight of
a2 is denoted by Hwt(a).

2.2 Finite fields

Let Fp be a prime finite field where p is an odd prime. In this work, we will use the following
standard facts about Fp.

Lemma 1. For any prime number p > 2 and e ∈ [0, p− 2], it holds∑
a∈Fp

ae = 0 mod p.

Proof. If e = 0, the lemma trivially holds. Let g be a primitive element of Fp, i.e. F×p = 〈g〉. Thus,
we can write ∑

a∈Fp

ae =
∑
a∈F×p

ae =

p−1∑
i=1

gei.

Since p > 2 and e ∈ [1, p− 2], we have ge 6= 1. Thus,

p−1∑
i=1

gei =
(ge)p − ge

ge − 1
= 0.

Lemma 2. Any pair (a, b) ∈ F2
p satisfies

(a− b)p−1 =

p−1∑
i=0

aibp−1−i mod p.

Proof. The binomial theorem yields

(a− b)p−1 =

p−1∑
i=0

(
p− 1

i

)
ai(−b)p−1−i.

Note that the binomial coefficient in this expression satisfies the following equality(
p− 1

i

)
=

(p− 1)!

i!(p− 1− i)!

=
(p− 1)(p− 2) . . . (i+ 1)

1 · 2 . . . (p− (1 + i))

= (−1)p−1−i mod p .

Hence, (a− b)p−1 =
∑p−1

i=0 a
ibp−1−i mod p.

2.3 Somewhat homomorphic encryption and its model of computation

An SHE scheme is an encryption scheme that can compute arithmetic circuits of bounded mul-
tiplicative depth on encrypted messages without knowing the secret key. The most efficient SHE
schemes [9,1,11] are based on the LWE [18] and RLWE [16] problems that inject noise components
into ciphertexts. This noise grows after homomorphic operations but must remain small enough to
guarantee the correctness of decryption. Hence, the encryption parameters of an SHE scheme are
defined not only by the targeted security level, but also by the family of circuits to be computed on
ciphertexts.

The presence of noise implies that the complexity of homomorphic operations should be assessed
with relation to their running time and the amount of noise they introduce. The noise growth
depends on the parameters of LWE and RLWE, namely a ciphertext modulus q, a dimension n and
a plaintext modulus p. This leads to a special model of computation similar to arithmetic circuits
over the plaintext space of an SHE scheme. In this work, we focus on the cases where this plaintext
space is a prime field Fp.

The basic operations of our homomorphic model of computation over Fp are the field binary
operations - addition and multiplication. Unlike in classic arithmetic circuits, these operations have
different costs depending on whether their inputs are solely ciphertexts or plaintexts and ciphertexts.

Plaintext-ciphertext and ciphertext-ciphertext homomorphic addition are the simplest operations
that take O(n) additions in Zq. The noise of an addition output is the sum of input noises plus a
small O(p) factor.

Plaintext-ciphertext (or scalar) multiplication requires O(n) multiplications in Zq and increases
the noise of an input ciphertext by a factor of O(p).

The costliest homomorphic operation is ciphertext-ciphertext (or non-scalar) multiplication that
takes O(n log n+ n log q) multiplications in Zq. The output noise O(n · p ·max(E1, E2)) where Ei is
the noise of the ith input ciphertext.

Given the above complexities, the arithmetic circuits presented in this work are analyzed with
relation to their non-scalar complexity, i.e. the number of non-scalar multiplications and their depth.

The main tool we exploit to estimate the non-scalar complexity of a given circuit is the following
theorem due to Paterson and Stockmeyer [17].

Theorem 1 ([17]). Any polynomial of degree d over a ring can be evaluated using O(
√
d) non-

scalar multiplications and dlog2 de+ 1 multiplicative levels.

Remark 1. If the ring in the above theorem is a finite field, the hidden constant in the above theorem
is
√

2. Thus, approximately
√

2d non-scalar multiplications are needed to compute a polynomial of
degree d.

2.4 Interpolation over finite fields

Using Fermat little theorem, the equality function can be evaluated very simply over F2
p as

EQ(x, y) = 1− (x− y)p−1 =

{
1 if x = y
0 otherwise.

.

This evaluation only requires O(log(p)) non-scalar multiplications using the square-and-multiply
exponentiation algorithm.

A direct consequence of the above result is that any function defined over Fn
p can be interpolated

by a polynomial according to the following well-known lemma.

Lemma 3. Every function f : Fn
p → Fp is a polynomial function represented by a unique polynomial

Pf (X1, . . . , Xn) of degree at most p− 1 in each variable. In particular,

Pf (X1, . . . , Xn) =
∑
a∈Fn

p

f(a)

n∏
i=1

(
1− (Xi − ai)p−1

)
.

where ai is the ith coordinate of vector a.

3 Unary functions

Let f : Fp → Fp be a function. Using Lemma 2, one can check that the interpolation polynomial
from Lemma 3 turns into

Pf (X) =

p−1∑
a=0

f(a)(1− (X − a)p−1) (1)

=

p−1∑
a=0

f(a)

(
1−

p−1∑
i=0

Xiap−1−i

)

=

p−1∑
a=0

f(a)−
p−1∑
a=0

p−1∑
i=0

f(a)Xiap−1−i

=

p−1∑
a=0

f(a)−
p−1∑
a=0

f(a)ap−1 −
p−1∑
i=1

p−1∑
a=0

f(a)Xiap−1−i

= f(0)−
p−1∑
i=1

Xi
p−1∑
a=0

f(a)ap−1−i. (2)

From these two representations, we obtain that the non-scalar complexity of evaluating Pf (X) is equal
either to O(| supp(f)| · log(p− 1)) (Eq. 1) or at most O(

√
p− 1) (Eq. 2) if the Paterson-Stockmeyer

algorithm is used (Theorem 1).
For example, consider the function f(x) that returns 1 only if x = 2. Hence, it has the following

interpolation polynomial with two representations Pf (X) = 1 − (X − 2)p−1 = −
∑p−1

i=1 X
i2p−1−i.

Since supp(f) contains only one element, the former representation is so simple and results in a
O(log(p− 1)) non-scalar complexity. The latter representation can be computed with the Paterson-
Stockmeyer algorithm that results in a worse non-scalar complexity in O(

√
p− 1).

We are interested in functions f with a support of size ω(1) that have a non-scalar complexity
better than O(| supp(f)|·log(p−1)) and less than

√
2(p− 1) non-scalar multiplications. In particular,

we focus on functions f that have many zero coefficients in Pf (X). Thus, we need to study under

what circumstances
∑p−1

a=0 f(a)ap−1−i is zero.

General observations. From Lemma 1, we know that
∑p−1

a=0 a
p−1−i = 0 for i 6= 0. It implies the

trivial assertion that if f is constant, all the coefficients of Pf (X) will be zero except for the constant
term. More peculiar is the following property.

Lemma 4. Let Fp be a prime finite field. Let γ be a primitve kth root of unity with k > 0 dividing
p− 1. Let S0,S1, . . . ,Sk−1 be k disjoint subsets of F×p satisfying

Sj = γjS0 for 0 ≤ j < k ,
F×p = S0 ∪ S1 ∪ · · · ∪ Sk−1.

Then the following statements are true for any i ∈ [1, p− 2] such that k|i.

1. ∑
a∈S0

ap−1−i = 0

2. If f is a function constant on each Sj, namely

f(a) = cj for all a ∈ Sj ,

then the coefficients of Pf (X) of degree i are all zeros.

Proof. 1. Since k|p− 1 and k|i, then for each j ∈ [0, k − 1] we have (γj)p−1−i = 1.
Thus, we can write

k ·
∑

a∈S0 a
p−1−i =

∑
a∈S0 a

p−1−i +
∑

a∈S0 a
p−1−i + · · ·

· · ·+
∑

a∈S0 a
p−1−i

=
∑

a∈S0 a
p−1−i +

∑
a∈S0 γ

p−1−iap−1−i + · · ·
+
∑

a∈S0(γk−1)p−1−iap−1−i

=
∑

a∈S0 a
p−1−i +

∑
a∈S1 a

p−1−i + · · ·
+
∑

a∈Sk−1
ap−1−i

=
∑p−1

a=1 a
p−1−i = 0

The last equality holds due to Lemma 1 and since p−1−i ∈ [1, p−2]. This leads to
∑

a∈S0 a
p−1−i =

0 as k 6= 0 mod p.
2. From Equation (2), the ith coefficient of Pf (X) satisfies the following∑p−1

a=0 f(a)ap−1−i =
∑k−1

j=0 cj
∑

a∈Sj
ap−1−i

=
∑k−1

j=0 cj
∑

a∈S0
(γja)p−1−i

= (c0 + c1 + · · ·+ ck−1)
∑

a∈S0
ap−1−i

= 0 mod p.

Hence, the ith coefficient is zero.

Example 1. Consider, S0 = [1, (p− 1)/2] or S0 = {a is even, a ∈ [2, p− 1]} and k = 2. The above
lemma holds for the following functions

– the parity function |x|2 that returns 1 on odd numbers from [0, p− 1] and 0 on even numbers
(note that if a is odd, then p− a is even for any odd prime p);

– x < 0 returns 1 if x ∈ [−(p− 1)/2,−1] and 0 otherwise.

Lemma 4 states that Pf (X) of any of the above functions has only odd coefficients plus the constant
and the leading terms. Hence, it can be presented in the form Pf (X) = f0 + fp−1X

p−1 +Xg(X2)
where g(X) is a polynomial of degree (p− 3)/2. Hence, Pf (X) can be computed in approximately√
p− 3 non-scalar multiplications using the Paterson-Stockmeyer algorithm.

3.1 Modulo functions

Let us consider a function fm(x) = |x|m. This function has m outputs {0, 1, . . . ,m − 1}, which
implies that Fp splits into m subsets S0,S1, . . . ,Sm−1 such that f(a) = k for every a ∈ Sk. Then,
the ith coefficient of the interpolation polynomial of f is equal to∑

a∈S1

ap−1−i + 2
∑
a∈S2

ap−1−i + · · ·+ (m− 1)
∑

a∈Sm−1

ap−1−i. (3)

If p ≡ m− 1 mod m and |a|m = k, then |p− a|m = m− 1− k. This is equivalent to the fact that if
a ∈ Sk, then p− a ∈ Sm−1−k. Thus, it follows for any even i 6∈ {0, p− 1}∑

a∈Sk

ap−1−i =
∑

a∈Sm−1−k

ap−1−i.

As a result, we obtain

k
∑
a∈Sk

ap−1−i + (m− 1− k)
∑

a∈Sm−1−k

ap−1−i

= (m− 1)
∑
a∈Sk

ap−1−i

= (m− 1)
∑

a∈Sm−1−k

ap−1−i (4)

=

⌊
m− 1

2

⌋ ∑
a∈Sk

ap−1−i +

⌈
m− 1

2

⌉ ∑
a∈Sm−1−k

ap−1−i (5)

If m is odd, then using (5) we can rewrite Eq. 3 as follows

m− 1

2

∑
a∈S0

ap−1−i +
∑
a∈S1

ap−1−i + · · ·+
∑

a∈Sm−1

ap−1−i


=
m− 1

2

∑
a∈Fp

ap−1−i = 0.

If m is even, then for every odd k we have even m − 1 − k. Using (4), we obtain from Eq. 3 the
following expression∑

a∈S1

ap−1−i + 2
∑
a∈S2

ap−1−i + · · ·+ (m− 1)
∑

a∈Sm−1

ap−1−i =

∑
a∈Sm−2

ap−1−i + 2
∑
a∈S2

ap−1−i · · ·+ (m− 3)
∑
a∈S2

ap−1−i

+(m− 2)
∑

a∈Sm−2

ap−1−i + (m− 1)
∑
a∈S0

ap−1−i =

(m− 1)

∑
a∈S0

ap−1−i +
∑
a∈S2

ap−1−i + · · ·+
∑

a∈Sm−2

ap−1−i

 .

Note that if a ∈ [0, p− 1] and m are even, then |a|m is also even. It implies that ∪m/2−1
i=0 S2i = S =

{a is even, a ∈ [2, p− 1]} and the above expression is equal to

(m− 1)
∑
a∈S

ap−1−i,

which is zero as shown in Example 1.

If i = p− 1, then

p−1∑
a=0

|a|m a
p−1−i =

p−1∑
a=0

|a|m =

p∑
a=0

|a|m − |p|m

=
p+ 1

m
· m(m− 1)

2
− (m− 1)

=
(p+ 1)(m− 1)

2
− (m− 1)

=
(p− 1)(m− 1)

2

Therefore we have proved the following

Proposition 1. Let m > 1 be an integer and p an odd prime such that p ≡ m − 1 mod m. The
interpolation polynomial of the modulo m function fm over Fp is equal to

Pfm(X) =
(p+ 1)(m− 1)

2
Xp−1 −

p−1
2∑

i=1

X2i−1
p−1∑
a=1

[a]m a
p−2i.

Remark 2. Similarly to Example 1, this polynomial has only the leading term and odd coefficients
which are non-zero. Thus, it can be computed with approximately

√
p− 3 non-scalar multiplications

due to Remark 1.

Example 2. For p = 11 and m = 6 we have Pfm(X) = 8X10 + 9X9 + 3X7 + 4X5 + 4X3 + 6X.

3.2 ”Is power of b” functions and all-one polynomials

Let b be an integer bigger than 1. We define a function fb(x) on the set [0, p− 1] that outputs 1 if
its input is a power of b and 0 otherwise. Let ` = blogb pc. Using the interpolation formula (1), we
obtain that this function is defined over Fp by the following polynomial

Pfb(X) =
∑̀
a=0

(1− (X − ba)p−1),

which can be computed in O(` log(p− 1)) = O((log p)2) non-scalar multiplications using the square-
and-multiply method. However, a logarithmic evaluation complexity can be achieved if p = (br−1)/k
for some integers k < b and an integer r ≥ 1.

Let p be such that b`+1 = 1 mod p. Notice that since bi < p for every 0 ≤ i ≤ `, ` + 1 is the
order of b modulo p. Therefore, since `+ 1 | p− 1, p− 1− i ≡ 0 [`+ 1] is equivalent to i ≡ 0 [`+ 1].

Now, from (2), we obtain

Pfb(X) = −
p−1∑
i=1

Xi
∑̀
a=0

(ba)p−1−i.

– if i ≡ 0 [` + 1], then p − 1 − i ≡ 0 [` + 1] and therefore the ith coefficient of Pfb is equal to
−(`+ 1) = p− (`+ 1) mod p.

– if i 6≡ 0 [`+ 1] then p− 1− i 6≡ 0 [`+ 1] and therefore the ith coefficient of Pfb is equal to

−
∑̀
a=0

(ba)p−1−i = −b
(p−1−i)(`+1) − 1

bp−1−i − 1
= 0 mod p.

Eventually, notice that since b` < p, then b`+1 = 1 + kp < pb and therefore p(k − b) < −1,
which implies that k < b. Reciprocally if p = (br − 1)/k for some integers r ≥ 1 and k < b, then
br−1 < 1/b+ p and thus br−1 < p < br therefore r = dlogb(p)e is the order of b modulo p. Overall,
we have obtained the following result

Proposition 2. If p = (br − 1)/k for some integer k < b and r ≥ 1 with k < b, then

Pfb(X) = (p− r)
(p−1)/(`+1)∑

i=1

Xi(`+1).

Example 3. p = 31 and b = 2 we have p = (b5 − 1)/1 and

Pfb(X) = 26
(
X30 +X25 +X20 +X15 +X10 +X5

)
To simplify the non-scalar complexity analysis, we denote Y = Xr and e = (p − 1)/r. Now,

to find the non-scalar complexity of evaluating Pfb(X), we should count the number of non-
scalar multiplications to evaluate the all-one polynomial

∑e
i=1 Y

i. Using the ideas of the Paterson-
Stockmeyer method [17], we design the following evaluation scheme. Given an input y ∈ Fp, we

precompute the powers y2, . . . , y2
k

where k = blog2 ec. This step requires k non-scalar multiplications.
The last power is computed with multiplicative depth k. Then, we compute the following k products

S1 = (y + y2)(1 + y2),

S2 = (y + y2)(1 + y2)(1 + y4),

. . .

Sk−1 = (y + y2)

k−1∏
i=1

(1 + y2
i
)

that can be done with k − 1 non-scalar multiplications. The multiplicative depth of computing Si
from y is equal to i+ 1. Notice that Si =

∑2i+1

j=1 y
j for any i ∈ [1, k − 1]. To compute

∑e
i=1 y

i with
e ≥ 4, we split it into two parts as follows

e∑
i=1

yi = y + y2 + · · ·+ y2
k

+ y2
k
(y + y2 + . . . ye−2

k
)

= Sk−1 + y2
k

e−2k∑
i=1

yi

 (6)

If e− 2k = 0, then we assume
∑e−2k

i=1 yi = 0. Since Sk−1 and y2
k

are precomputed, the non-scalar
complexity of computing an all-one polynomial of degree e is equal to the non-scalar complexity of
computing an all-one polynomial of degree e− 2blog2 ec (i.e. e without its top bit) plus one non-scalar
multiplication. If e < 4, then computing

∑e
i=1 y

i requires at most one non-scalar product to compute
y3. As a result, at most Hwt(e)−1 non-scalar multiplications are necessary to compute (6) recursively.
Together with the cost of precomputation done using the square-and-multiply method, we obtain
that Pfb(X) can be computed in

blog2 rc+ Hwt(r)− 1 + 2k + Hwt(e)− 2 ∈ O(log r + log e)

non-scalar multiplications. Since e = (p− 1)/r, this complexity turns into O(log p− 1) non-scalar
multiplications. The non-scalar multiplicative depth is dlog2 ee+ dlog2 re.

Remark 3. Similar non-scalar complexity of evaluating Pfb(X) can be obtained by a circuit of
multiplicative depth dlog2 `+ 1e+ dlog2(p− 1)e, see Appendix A.1.

We can also generalize fb for any b that generates a subgroup in F×p . See Appendix A.1 for more
details.

3.3 Hamming weight functions

Recall that the Hamming weight Hwt(a) of an integer a is the Hamming weight of its binary
decomposition. Obviously, the function Hwt is defined on a set [0, p−1] with p prime. Its interpolation
polynomial over Fp is equal to

PHwt(X) = −
p−1∑
i=1

Xi
p−1∑
a=0

Hwt(a)ap−1−i.

As above, let us focus on the ith coefficient of this expression

p−1∑
a=0

Hwt(a) · ap−1−i =

p−1∑
a=1

Hwt(a) · ap−1−i

= 1p−1−i + 2p−1−i + · · ·+ Hwt(p− 1) · (p− 1)p−1−i. (7)

Assume that p is a Mersenne prime, i.e. p = 2q − 1 for some prime integer q. This means that 2
has order q, which implies that q divides p − 1. Let G be a subgroup of F×p generated by 2 and
H = F×p /G.

Note that any integer a can be represented as a = 2r ·s with non-negative r and odd s. Moreover,
Hwt(a) = Hwt(s) and Hwt(a) = Hwt(a · 2k mod p) for any positive k. This implies that for any
g ∈ G, it holds Hwt(gh) = Hwt(h) for any h ∈ H. Then Eq. (7) can be rewritten as follows

∑
h∈H

∑
g∈G

Hwt(hg) · (hg)p−1−i =
∑
h∈H

Hwt(h) · hp−1−i
q−1∑
j=0

2j(p−1−i)

If 2p−1−i 6= 1 mod p, i.e q does not divide p− 1− i, we can write
∑q−1

j=0 2j(p−1−i) = 2q(p−1−i)−1
2p−1−i−1 ≡ 0

mod p. Thus, the ith coefficient (7) is zero.
To find other zero coefficients, we use the fact that Hwt(a) = q−Hwt(p−a) since p is a Mersenne

prime. If i is even and i 6= 0 mod (p− 1), then the ith coefficient is equal to

p−1∑
a=0

Hwt(a) · ap−1−i = q

p−1
2∑

a=1

ap−1−i = 0.

If i = p− 1, then

p−1∑
a=0

Hwt(a) · ap−1−i =

p−1∑
a=1

Hwt(a) =

p−1
2∑

a=1

q =
q(p− 1)

2
.

To summarize, we have the following result

Proposition 3. The interpolation polynomial of Hwt(x) modulo a Mersenne prime p = 2q − 1 is
equal to

PHwt(X) =
q(p+ 1)

2
Xp−1 −

p−1
2q∑
i=1

X(2i−1)q
p−1∑
a=1

Hwt(a) · ap−1−q(2i−1).

To evaluate this polynomial at x, we can precompute xq in O(log q) non-scalar multiplications. By

replacing Xq by Y , we obtain that PHwt(Y) = q(p+1)
2 Y

p−1
q + Y g(Y 2) where g has degree p−1

2q − 1.
Hence, the evaluation of PHwt(X) takes

O
(

log q +

√
p− 1

q
− 2

)
= O

(√
p− 1

log(p− 1)
− 2

)
non-scalar multiplications using both the square-and-multiply exponentiation method and the
Paterson-Stockmeyer algorithm.

Example 4. For p = 31, we have PHwt(X) = 18X30 + 22X25 + 15X15 + 8X5. If p = 127, then
PHwt(X) = 67X126 + 63X119 + 65X105 + 37X91 + 113X77 + 35X63 + 58X49 + 64X35 + 90X21 + 44X7.

3.4 Mod2 function

We assume that p is a Mersenne prime p = 2q − 1 with q prime. We consider the Mod2 function
which, given x ∈ [0, p− 1] with binary expression x = (xq−1, . . . , x0)2, outputs

Mod2(x) =

(
q−1⊕
i=0

xi

)
⊕ 1.

From (2) the interpolation polynomial PMod2(X) of the Mod2 function is as follows

PMod2(X) = 1−
∑p−1

i=1 X
i
∑p−1

a=0 Mod2(a)ap−1−i

= 1−Xp−1
(∑p−1

a=0 Mod2(a)
)
−
∑p−2

i=1 X
i
∑p−1

a=0 Mod2(a)ap−1−i

= 1− p+1
2 Xp−1 −

∑p−2
i=1 X

i
∑p−1

a=0 Mod2(a)ap−1−i.

(8)

Then using the property Mod2(2kx) = Mod2(x) for any x and any k, we can arrange the right most
sum on a in (8). We split the sum using the expression of x = h× 2i for some i and h ∈ H = F×p /G.
We obtain the followings which shows that the coefficients of degree i for i 6≡ (p−1) mod q = (2q−2)
mod q = 0 mod q are equal to zero:∑p−1

a=0 Mod2(a)ap−1 =
∑

h∈H
∑q−1

k=0 Mod2(2kh)(2kh)p−1−i

=
∑

h∈H
∑q−1

k=0 Mod2(h)(2k(p−1−i))(h)p−1−i

=
∑

h∈H Mod2(h)(h)p−1−i
(∑q−1

k=0 2k(p−1−i)
)

=
∑

h∈H Mod2(h)(h)p−1−i (2
q)(p−1−i)−1
2p−1−i−1

= 0.

(9)

The last equality comes from 2q ≡ 1 mod p.

Now we consider the sets S0 = {x ∈ F×p s.t. Mod2(x) = 0} and S1 = {x ∈ F∗p s.t. Mod2(x) = 1}
which are disjoints and satisfy S0 ∪ S1 = F∗p. If we denote γ = −1, the Mod2 function satisfies:

Mod2(γx) = Mod2(p− x) = Mod2(2q − 1− x) = 1−Mod2(x).

This implies that γS0 = S1 and we can then apply Lemma 4 which tells us that the coefficients of
PMod2(X) are zero for degree i ≡ (p− 1) mod 2 = 0 mod 2.

Then the coefficients pi with i 6∈ {0, p − 1} of PMod2 are non-zero if i ≡ 0 mod q and i ≡ 1
mod 2, which yields i ≡ q mod 2q. Therefore we have the following result

Proposition 4. Let p = 2q − 1 be a Mersenne prime, the interpolation polynomial of the Mod2
function modulo p is given by

PMod2(X) = 1− p+ 1

2
Xp−1 +

(p−1)/2q∑
j=0

pjX
q(2j+1).

Evaluating PMod2 at x requires O(log(p)) + O(
√

(p− 1)/q) = O(
√

(p− 1)/q) = O(
√
p/ log p)

non-scalar multiplications.

Example 5. For p = 2127 − 1 we have the following polynomial for Mod2:

PMod2(X) = 63X126 + 107X119 + 14X105 + 75X91 + 72X77 + 35X63

+72X49 + 75X35 + 14X21 + 107X7 + 1.

4 Less than Function

Let S be a subset of [0, p− 1) ↪→ Fp, the less than function LTS is defined over S2 as

LTS(x, y) =

{
1 if x < y
0 otherwise

While the equality function can be computed very efficiently over finite fields, the less than function
is more intricate. Considering S = [0, p− 1), the interpolation polynomial of LTS over S2 is equal to

PLTS (X,Y) =

p−2∑
a=0

(
1− (X − a)p−1

) p−1∑
b=a+1

(
1− (Y − b)p−1

)
.

It was shown in [14] that the total degree of PLTS (X,Y) is only p. The coefficients of the
polynomial can be described more precisely by the following theorem.

Theorem 2 ([14]). Let p > 2 be a prime number and S = [0, p − 1], then the interpolation
polynomial of LTS over Fp has the following form

PLTS (X,Y) = Y p−1 − p− 1

2
(XY)

p−1
2 +

∑
i,j>0,
i 6=j,

i+j≤p

aijX
iY j

where aij =
∑p−2

a=0

∑p−1
b=a+1 a

p−1−ibp−1−j ∈ Fp. The total degree of PLTS (X,Y) is p.

The following results were used in [14] but their proof were omitted due to space restriction. In
this section we provide a proof of these results. The polynomial LTS is composed of several factors
given by the following lemma.

Lemma 5. There exists a polynomial f ∈ Fp[X,Y] of total degree p− 3 such that:

PLTS (X,Y) = Y (X − Y)(X + 1)f(X,Y). (10)

Proof. From the definition of LTS it is straightforward to notice that PLTS (X, 0) = PLTS (p− 1, Y) =
0 mod p and thus Y and X + 1 both divide PLTS (X,Y).

Now let us consider PLTS (X,X). For any x ∈ Fp we have PLTS (x, x) = 0, which means PLTS (X,X)
has p distinct roots. However, it follows from Theorem 2 that PLTS (X,X) could be of degree p. Let
us show that it is actually of degree p− 1, Theorem 2 states that

PLTS (X,X) = Xp−1 − p− 1

2
Xp−1 +

∑
i,j>0,
i 6=j,

i+j≤p

ai,jX
i+j

So the coefficient of degree p is given by∑
i,j>0,
i 6=j,

i+j=p

p−2∑
a=0

ap−1−i
p−1∑

b=a+1

bp−1−j =

p−1∑
i=1

p−2∑
a=0

ap−1−i
p−1∑

b=a+1

bi−1

=

p−2∑
a=0

p−1∑
b=a+1

p−1∑
i=1

ap−1−ibi−1 =

p−2∑
a=0

p−1∑
b=a+1

bp−2
p−1∑
i=1

ap−1−ibi+1−p

=

p−2∑
a=0

p−1∑
b=a+1

bp−2
p−1∑
i=1

(ab−1)p−1−i =

p−2∑
a=0

p−1∑
b=a+1

bp−2
p−2∑
i=0

(ab−1)i

=

p−1∑
b=1

bp−2 +

p−2∑
a=1

p−1∑
b=a+1

bp−2
p−2∑
i=0

(ab−1)i

=0 +

p−2∑
a=1

p−1∑
b=a+1

bp−2
(ab−1)p−1 − 1

ab−1 − 1
= 0 mod p.

Therefore PLTS (X,X) is a polynomial of degree p− 1 which has p distinct roots, thus it must be
equal to 0 and so X − Y divides PLTS (X,Y). Since Fp[X,Y] is a unique factorization domain and Y ,
X + 1 and X − Y are distinct irreducible elements, there exists f(X,Y) ∈ Fp[X,Y] of total degree
p− 3 such that

PLTS (X,Y) = Y (X − Y)(X + 1)f(X,Y).

The following theorem describes the structure of f(X,Y).

Theorem 3. Let p be an odd prime and S = [0, p−1]. Let PLTS (X,Y) be the interpolation polynomial
of LTS over Fp and f(X,Y) such that PLTS (X,Y) = Y (X − Y)(X + 1)f(X,Y). We have

f(X,X) = f(X, 0) = f(p− 1, X). (11)

As a consequence, there exists (p− 1)/2 polynomials fn(X) over Fp, 0 ≤ n ≤ (p− 3)/2, such that:

f(X,Y) =

(p−3)/2∑
n=0

fn(X)Zn, (12)

with Z = Y (X − Y) and deg(fn(X)) = p− 3− 2n, or equivalently (p− 1)/2 polynomials f ′n(Y) over
Fp, 0 ≤ i ≤ (p− 3)/2, such that:

f(X,Y) =

(p−3)/2∑
n=0

f ′n(Y)Z ′n, (13)

with Z ′ = (X + 1)(X − Y) and deg(f ′n(Y)) = p− 3− 2n.

Proof. The idea of the proof is to show that we have f(X, 0) = f(X,X). Then since Y divides
g(X,Y) = f(X,Y) − f(X, 0) and X − Y divides g′(X,Y) = f(X,Y) − f(X,X) we obtain that
Y (X − Y) divides g(X,Y) = g′(X,Y). Then we re-apply the same procedure for g(X,Y).

Since f(X,Y) has total degree p− 3, f(X, 0) and f(X,X) also have degree smaller than p− 3
therefore it is enough to show that f(x, 0) = f(x, x) on p− 2 distinct values of x. Let i ∈ [1, p− 2],
from the definition of PLTS we have

PLTS (i, Y) =

p−1∑
j=i+1

1− (Y − j)p−1

= p− 1− i−
p−1∑
k=0

 p−1∑
j=i+1

jp−1−k

Y k

= −
p−1∑
k=1

 p−1∑
j=i+1

jp−1−k

Y k (14)

but also

PLTS (i, Y) = p− 1− i−
p−1∑

j=i+1

(Y − j)p−1

= p− 1− i−
p−1−i∑
j=1

(Y − i− j)p−1

= p− 1− i−
p−1∑
k=0

p−1−i∑
j=1

jp−1−k

 (Y − i)k

= −
p−1∑
k=1

(−1)k
p−1−i∑
j=1

jp−1−k

 (i− Y)k (15)

So by dividing (14) and (15) by Y (i− Y)(i+ 1) (for i 6= p− 1) we have:

f(i, Y) = −
p−1∑
k=1


∑p−1

j=i+1 j
p−1−k

(i+ 1)(i− Y)︸ ︷︷ ︸
ai,k(Y)

Y k−1

= −
p−1∑
k=1

(−1)k
∑p−1−i

j=1 jp−1−k

(i+ 1)Y︸ ︷︷ ︸
bi,k(Y)

 (i− Y)k−1

Now notice that for i ∈ [1, p− 1) and k ∈ [1, p− 1) we have

ai,k(0) =

∑p−1
j=i+1 j

p−1−k

(i+ 1)i
=

∑p−1−i
j=1 (−j)p−1−k

(i+ 1)i

=
(−1)p−1−k

∑p−1−i
j=1 jp−1−k

(i+ 1)i

=
(−1)k

∑p−1−i
j=1 jp−1−k

(i+ 1)i
= bi,k(i) mod p

Proving that f(i, 0) = f(i, i) is exactly proving that ai,1(0) = bi,1(i) in which case f(X, 0) =
f(X,X) and g(X,Y) = (f(X,Y)− f(X, 0))/(Y (X − Y)) will be defined as a polynomial. However,
in order to prove Equation (12) we will need to prove that this decomposition works at higher order
i.e. that g(X, 0) = g(X,X) so that Y (X − Y) divides h(X,Y) = g(X,Y)− g(X, 0) and so on until
we obtain a polynomial of degree 0.

The coefficient of degree 0 of g(i, Y) = (f(i, Y)− ai,0(0))/(Y (i− Y)) in base Y is ai,2(0)/(i− 0)
and bi,2(i)/i in base i− Y . By induction, proving Equation (12) is exactly showing that the coef-
ficients ai,k(0)/ik−1 and bi,k(i)/ik−1 in the above decompositions are equals or equivalently that
ai,k(0) = bi,k(i) for p− 2 distinct values of i and every k ∈ [1, p− 1).

Hence, by defining f0(X,Y) = f(X,Y) and fn+1(X,Y) = (fn(X,Y)− f(X, 0))/(Y (X − Y)) we
have shown that fn(x, 0) = fn(x, x) for any x ∈ [1, p− 2] and 0 ≤ n ≤ (p− 3)/2 and therefore that
the fn(X,Y) are well defined as polynomials.

Since fn(X,Y) has total degree smaller than p − 3 − 2n and that fn(X, 0) and fn(X,X) are
equals on p− 2 distinct values, they must be equal as polynomials.

The second decomposition can be obtained in the same way by considering PLTS (X, j) for any
j ∈ [1, p− 1).

According to Theorem 3, in order to evaluate PLTS one needs:

– 2 multiplications to compute Z(X + 1) with Z = Y (X − Y);

and for (p− 3)/2 > 0, i.e. p ≥ 5

– p− 4 multiplications to compute the Xis for 1 ≤ i ≤ p− 3;

– (p− 5)/2 multiplications to compute the Zjs for 1 ≤ j ≤ (p− 3)/2;

– (p− 5)/2 multiplications to compute the fn(X) ·Zn for 1 ≤ n ≤ (p− 3)/2 since f(p−3)/2(X) has
degree 0 and is thus a constant;

– 1 multiplication to compute Z(X + 1) · f(X,Y).

Therefore, as explained in [14], for p ≥ 5 at most 2p − 6 homomorphic multiplications are
required to evaluate PLTS in total.

5 Acknowledgments

The first author is supported by CyberSecurity Research Flanders with reference number VR20192203
and by a Junior Postdoctoral Fellowship from the Research Foundation – Flanders (FWO).

6 Conclusion

In this work, we proved that several integer functions have non-trivial polynomial interpolations
over finite fields that facilitate faster evaluation of these functions using somewhat homomorphic
encryption.

In particular, we described a family of function that have almost all evenly indexed coefficients
equal to zero in any prime finite field Fp. These functions include the parity function and the ”is
negative” function and generalize the result of Iliashenko and Zucca [14]. The same phenomenon
occurs for the modulo function |x|m if p ≡ −1 mod m. This implies that the above functions can
be computed in approximately

√
p− 3 non-scalar (ciphertext-ciphertext) multiplications.

We showed that unary functions with scaled all-one polynomial interpolations in Fp can be
computed in O(log p) non-scalar multiplications. These include ‘is power of b’ functions if p =
(br − 1)/k for some k < b and a positive integer r.

We also proved that if p = 2q − 1 is a Mersenne prime, then the Hamming weight and the
Mod2 functions have only coefficients with odd indexes equal to multiples of q plus the leading

and the constant terms. This allows to evaluate these functions with O
(√

p/log p
)

non-scalar

multiplications.

Finally, we proved the claim of Iliashenko and Zucca [14] that the polynomial interpolation of
the less-than function is equal to

PLTS (X,Y) = (X + 1)Z

(p−3)/2∑
i=0

fi(X)Zi

= Y Z ′
(p−3)/2∑

i=0

fi(Y)Z ′i

where Z = Y (X − Y) and Z ′ = (X + 1)(X − Y). This result substantiates that the non-scalar
complexiy of evaluating this function is 2p− 6 as shown in [14] if p ≥ 5.

Future work. This work demonstrates only a few families of integer functions with non-trivial
non-scalar complexity. We strongly believe that other examples of such functions are yet to be found.
In addition, we limited our search to the context of prime finite fields. The next logical step is to
enlarge this context to extensions of finite fields. To the best of our knowledge, there are no works
for interpolations over such fields in the context of SHE computation.

Another interesting research direction is to study interpolations over rings Zpe . The current
results [12,3] are limited to the function f(x) = x − |x|p. However, such rings are exploited in
practice to implement byte-wise arithmetic and logic. The non-scalar complexity of such operations
is yet to be studied.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic Encryption without Bootstrapping.
In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. p. 309–325. ITCS ’12,
Association for Computing Machinery, New York, NY, USA (2012), https://doi.org/10.1145/2090236.2090262

2. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic encryption. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 34–54. Springer, Heidelberg (May 2019)

3. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 315–337. Springer, Heidelberg (Apr / May 2018)

https://doi.org/10.1145/2090236.2090262

4. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 360–384. Springer, Heidelberg
(Apr / May 2018)

5. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp. 409–437. Springer International
Publishing, Cham (2017)

6. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods with optimal complexity. In:
ASIACRYPT 2020, Part II. pp. 221–256. LNCS, Springer, Heidelberg (Dec 2020)

7. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for comparison on homomorphically
encrypted numbers. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp.
415–445. Springer, Heidelberg (Dec 2019)

8. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (Apr 2015)

9. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report
2012/144 (2012), https://eprint.iacr.org/2012/144

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC. pp.
169–178. ACM Press (May / Jun 2009)

11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In: CRYPTO (1). pp. 75–92 (2013)

12. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (Apr 2015)

13. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: CT-RSA 2020. pp. 364–390.
LNCS, Springer, Heidelberg (2020)

14. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and BFV. PoPETs 2021(3), 246–264
(2021)

15. Kaji, S., Maeno, T., Nuida, K., Numata, Y.: Polynomial expressions of p-ary auction functions. Journal of
Mathematical Cryptology 13(2), 69–80 (2019)

16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. Journal of the
ACM (JACM) 60(6), 43 (2013)

17. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials.
SIAM Journal on Computing 2(1), 60–66 (1973)

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp. 84–93 (2005),
http://doi.acm.org/10.1145/1060590.1060603

19. Tan, B.H.M., Lee, H.T., Wang, H., Ren, S.Q., Khin, A.M.M.: Efficient private comparison queries over encrypted
databases using fully homomorphic encryption with finite fields. IEEE Transactions on Dependable and Secure
Computing pp. 1–1 (2020)

A Remarks

A.1 Extensions of “is power of b” function

Alternative computation We have b ∈ Fp and ` = blogb(p)c. The following polynomial

P ′f (X) = 1−

(∏̀
i=0

(X − bi)

)p−1

satisfies

P ′f (x) =

{
1 if x = bi for some i ∈ {0, . . . , `}
0 otherwise

P ′f (x) can then be computed with ` multiplications for (
∏

i=0(X−bi)) and ≤ 2 log2(p) multiplications
for the exponentiation to the power p− 1, which leads to `+ 2 log2(p) = O(log(p)) multiplications.
Note that the multiplicative depth of this circuit is dlog `e+ dlog(p− 1)e.

https://eprint.iacr.org/2012/144
http://doi.acm.org/10.1145/1060590.1060603

Extension to b generator of a subgroup We consider the function fG(x) which, given a
subgroup G =< b > of F×p , equals 1 on G and 0 elsewhere:

fG(x) =

{
1 if x ∈ G
0 otherwise

(16)

We assume now that b has order m and p− 1 = nm with gcd(n,m) = 1 (in this case m might
be different than logb(p)). In this case there exists h ∈ F×p of order n such that:

F×p = {hibj for i = 0, . . . n− 1 and j = 0, . . . ,m− 1}.

The following polynomial satisfies Equation (16)

Pf (X) =
∑m−1

j=0 (1− (X − bj)p−1)
= m−

∑p−1
a=1X

i
∑m−1

j=0 (bj)p−1−i

When p− 1− i 6≡ 0 mod m we have bp−1−i 6= 1 and then the coefficient of Pf of degree i becomes∑m−1
j=0 (bj)p−1−i = (bp−1−i)m−1

bp−1−i−1 = 0

when p− 1− i ≡ 0 mod m we have ∑m−1
j=0 (bj)p−1−i = m

In other words:

Pf (X) = m−m
∑(p−1)/m

i=0 Xim

This function can be evaluated as in Section 3.2.
Alternative polynomial representation. An alternative polynomial expression of the function fG

is the following :
P ′fG(X) = 1− (1−Xm)p−1

One can check that this polynomial satisfies (16) since for x ∈ G we have xm = 1 and the
1− (1− xm)p−1 = 0. For x not in G, xm 6= 1, and then (1− xm)p−1 = 1 as required.

P ′fG(X) can be evaluated at x in 2 log(m)) + 2 log(p) multiplications, but with depth dlogme+
dlog(p− 1)e.

	Integer Functions Suitable for Homomorphic Encryption over Finite Fields

