
TOTA: Fully Homomorphic Encryption with Smaller
Parameters and Stronger Security

Zhaomin Yang12, Xiang Xie12, Huajie Shen3⋆, Shiying Chen3⋆, and Jun Zhou3

1 Shanghai Key Laboratory of Privacy-Preserving Computation
2 MatrixElements Technologies
3 East China Normal University

Abstract. We present fully homomorphic encryption schemes for fixed-point arithmetic with fixed
precision. Our scheme achieves IND-CPAD security and uses RLWE ring with dimension 213 or less.
Our techniques could also be extended to construct fully homomorphic encryption schemes for
approximate numbers with IND-CPA security. The bootstrapping process of our IND-CPA scheme
preserves about 39-bit precision with ring dimension 213, which is the first construction that pre-
serves high precision while keeping the parameters small.
The core technique in this paper is a new and efficient functional bootstrapping algorithm that
avoids the negacyclicity constraint of the evaluated functions, which enables us to extract bits
blocks homomorphically. This new functional bootstrapping algorithm could be applied to BFV
and TFHE schemes as well, and is of independent interest.
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1 Introduction
Fully homomorphic encryption (FHE) [38] allows to perform arbitrary computation on encrypted data
without decrypting the ciphertexts. Since the breakthrough work by Gentry [23], this field has been made
a lot of progress both in theory and in practice. The core of Gentry’s blueprint is a bootstrapping technique
allows to refresh a ciphertext into a new one that encrypts the same message while containing smaller
errors. Bootstrapping is the only known technique to construct FHE, and all existing constructions, e.g.,
[8,7,6,25,2,20,22,16], are based on this framework.

Different types of FHE schemes are proposed in the literature. BFV [6,21] and BGV [7] focus on
homomorphic operations on finite field, FHEW [20] and TFHE [14,15,16] provide fast bootstrapping for
binary operations, and CKKS [13] is dedicated for approximate numbers. In this paper, we focus on the
fast bootstrapping procedure in FHEW, which is further improved in the TFHE scheme.

Functional bootstrapping, which is implicitly used in the TFHE scheme and formally introduced in [4],
is a generalization of bootstrapping. It allows to refresh the error while performing some pre-determined
function f on the encrypted message simultaneously. Functional bootstrapping turns out to be very
useful, especially for oblivious inference in privacy-preserving machine learning. It is an effective method
to deal with non-linear layers in machine learning models. Actually, [5,28] compute the sign function in
the functional bootstrapping procedure to handle neural networks. However, the functions evaluated are
subject to some constraints, it is an interesting problem to perform functions without the constraints in
functional bootstrapping.

Let us first recall the main idea in FHEW. Based on the learning with errors problem [37], a ciphertext
on m is of the form (a, b = 〈a, s〉+m′ + e mod q), where a← ZN

q , s← {0, 1}N are uniformly random, e is
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small and m′ = encode(m) for some encoding algorithm. One could compute decode(b−〈a, s〉) to recover m,
where decode is the corresponding decoding algorithm. For simplicity, we assume encode and decode both
be the identity function. The FHEW bootstrapping leverages the ring structure of RQ = ZQ[X]/(XN+1)
for a larger modulus Q. A key observation is that the elements {1, X,X2, ..., XN−1, XN , ..., X2N−1}4

in RQ forms a multiplicative group of order 2N . This allows to encrypt the elements in a and b in
the exponent when q = 2N . Given a bootstrapping key that encrypts each element of s, we could
homomorphically compute an encryption of v(X) ·Xb−⟨a,s⟩ mod 2N = v(X) ·Xm′+e, where v(X) ∈ RQ is
some test vector. For a function f : Z2N 7→ ZQ, we set the test vector as v(X) = f(0) − f(N − 1)X −
· · · − f(1)XN−1. Extract the constant term of v(X) ·Xm′+e will result an LWE ciphertext that encrypts
f(m′ + e). However, note that we could only embed N values in the coefficients and XN = −1, the
function f should satisfy that f(x+N) = −f(x) mod Q for 0 ≤ x < N to get the correct ciphertext. This
property is called negacyclicity. This constraint heavily limits the usability of functional bootstrapping,
and we will show later that functional bootstrapping for arbitrary functions will benefit us to solve some
interesting problems and even improve the original bootstrapping.

In this paper, we focus on the CKKS-like scheme [13]. It provides an approximate encryption for
fixed-point numbers. More specifically, the encoding function is set to encode(x) = b∆xe for some large
∆ and x ∈ R. The decoding decode(x) = x/∆ removes the scale and returns a real number. Although
the decoding function is not exactly correct, the resulting message is very close to the input of the
encoding function. The error occurs in the encryption and homomorphic operation is viewed as part of
the approximation error of the fixed-point number. This is acceptable in applications where fixed-point
or floating-point numbers are applied. Due to the high efficiency of the CKKS scheme, it is widely used
in applications related to privacy-preserving machine learning.

For practicality reasons, we often consider the IND-CPA security of homomorphic encryption, which
means the public key and ciphertext do not leak any information of the plaintext. A recent work by Li
and Micciancio [35] pointed out that the IND-CPA security may not adequately capture security against
passive adversaries when applied to approximate encryption. In fact, they present concrete attacks to the
CKKS scheme assuming the existence of passive decryption oracle. The main reason behind these attacks
is that the approximation error leaks information of the secret key.

Li and Micciancio [35] formally define a stronger notion called IND-CPAD security. In addition to the
original IND-CPA model, the adversary could passively access a decryption oracle. As demonstrated in [35],
IND-CPAD security is equivalent to IND-CPA security for homomorphic encryption schemes with exact
decryption, while IND-CPAD security is strictly stronger than IND-CPA for approximate homomorphic
encryption schemes. A natural method to achieve IND-CPAD security for CKKS is to use noise flooding.
It adds a sufficiently large error to mask the original error (may leak information of secret key) in the
decryption procedure. Although this method fills the security gap, it involves in using multi-precision
modulus and large ring dimensions, especially when turning CKKS into an FHE scheme. To construct a
CKKS-like scheme under IND-CPAD security without noise flooding is left as an open problem in [35]. It
is also open to construct CKKS-like FHE schemes under IND-CPAD security without noise flooding.

Research on bootstrapping of the CKKS scheme is very active recently. The first bootstrapping for
CKKS is presented in [12], all the follow-up works [10,27,33,34,32,3] apply the same framework to design
improved bootstrapping for CKKS. In a nutshell, it requires to approximate the modular reduction
function with large-depth homomorphic operations. The errors amplified by these operations will distort
the plaintext significantly. The bootstrapping procedures can only achieve 20-bit precision until using
the very recent techniques in [32]. [32] devises better approximate approaches to achieve about 40-bit
precision with ring dimension 216. It is still unknown how to design bootstrapping for CKKS-like scheme
with small parameters, say with dimension 213 or less.

4 Note that XN = −1 in RQ.
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1.1 Our Contributions
In this paper, we propose an efficient functional bootstrapping algorithm, which we call fully functional
bootstrapping, that allows to perform arbitrary functions with in domain ZN on the plaintext. We note
that in our setting the ciphertext modulus is N , it is different from the case that restricting the plaintext
in the interval [0, N) with ciphertext modulus 2N . Although the plaintext size is 1-bit smaller, our fully
functional bootstrapping algorithm is simple and efficient, and is of independent interest.

Based on our fully functional bootstrapping algorithm, we construct a fully homomorphic encryption
scheme TOTA with IND-CPAD security for fixed-point arithmetic with fixed precision. By fixed precision,
we mean that the precision always preserves after different operations, e.g., multiplication on fixed-
point numbers. More specifically, given two fixed-point numbers x, y with precision p, the fixed-precision
multiplication drops the last p bits of xy to ensure it still preserves p bits. In fact, we construct an
efficient homomorphic truncation algorithm based on our fully functional bootstrapping algorithm with
ring dimension 213. From another perspective, instead of encrypting approximate numbers, we perform
operations on approximate circuits. Given a fixed-point or floating-point circuit, we first approximate it
with a fixed-precision circuit and perform our FHE scheme with exact decryption on the new circuit.

Our techniques could be applied to approximate encryption schemes as well, which results in a totally
different bootstrapping procedure for CKKS-like schemes. Our new bootstrapping technique does not
need to approximate the modular reduction function and only introduces very small errors in the new
ciphertext, which enables us to preserve high precision with small parameters. In fact, our FHE for
approximate numbers preserves about 39-bit precision with ring dimension 213.

We implement TOTA from scratch with C++ and conduct a series of numerical experiments under
different parameter sets which provide at least 127-bit security. For IND-CPAD security, the truncation
algorithm of TOTA runs in about 77s (50s) for 14-bit (12-bit) fixed precision. For IND-CPA security, the
algorithm runs in about 68s (8s) for about 39-bit (11-bit) precision.
1.2 Overview of Our Techniques
Let us briefly describe our fully functional bootstrapping algorithm. Let (a, b) = (a,−〈a, s〉+m+e mod N)
be a ciphertext with module N , where N is the ring dimension of the bootstrapping key. As discussed
before, the FHEW bootstrapping technique encrypts a, b in the exponent and performs the decryption
circuit homomorphically. However, we can not directly apply this method in this case, since the multi-
plicative group is of order 2N , while the decryption circuit is performed in ZN .

To overcome this problem, we view (a, b) as elements in Z2N . A key observation is that we can write
b+〈a, s〉 = m+e+kN mod 2N for some k ∈ {0, 1}. In fact, k is the most significant bit of m+e+kN . Apply
the original (functional) bootstrapping method in FHEW, we get a ciphertext of −kN with modulus 2N .
Thus, we obtain a ciphertext of m + e with modulus 2N by adding the two ciphertexts. Given any
function f defined in ZN , we extend it to F (x) defined in Z2N by setting F (x) = f(x) for 0 ≤ x < N
and F (x) = −f(x − N) for N ≤ x < 2N . Note that m + e ∈ [0, N), we could perform the functional
bootstrapping algorithm again on F and get the desired result. Our fully functional bootstrapping only
involves two original functional bootstrapping procedures and one homomorphic addition. It could be
applied to BFV-like and TFHE-like ciphertexts as well.

In order to construct FHE schemes with IND-CPAD security, we first define fixed-precision arithmetic.
Denote FPp as a set of fixed-point numbers with p precision. Multiplication on FPp is defined as Truncp(xy)
for x, y ∈ FPp by dropping the last p bits of xy. Note that the decryption will recover the exact FPp value
as long as the scale factor is sufficiently large and the errors do not distort the plaintext. In applications
related to fixed-point or floating-point arithmetic, we first approximate the circuit with a fixed-precision
circuit and then perform operations on FPp with exact decryption.

It remains to design an efficient homomorphic truncation procedure. Actually, we design an extraction
algorithm to extract bits blocks using our fully functional bootstrapping algorithm. Given a ciphertext of
m under modulus q, assume q is a power of 2 and N |q. For an integer δ, one could drop the last δ bits of
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m and then leftshift it by ℓe bits by switching the modulus from q to (2ℓeq)/2δ. The ℓe bits (all 0’s) are
reserved to eliminate the errors. Let d = logN − ℓe, we get d bits of m starting from position δ by taking
the ciphertext modulo N . Then, invoking the fully functional bootstrapping with f = 2δ

′ ·
⌊
x/2ℓe

⌉
on the

new ciphertext refreshes the errors and puts the d bits into position δ′. With careful noise analysis, we
could set d ≈ ℓe ≈ (logN)/2.

With the bits extraction algorithm, we could truncate the message as follows. Given two ciphertexts
of ∆x and ∆y, where ∆ is a scale factor such that log∆ > 2p, the multiplication of the two ciphertexts
results in a new ciphertext of ∆2xy, where xy ∈ FP2p. Note that ∆ is sufficiently large such that the error
in the multiplication will not distort xy. We first extract the last p bits of xy by using the bits extraction
algorithm starting from position 2 log∆−2p, then subtract it to get a ciphertext of Truncp(xy) with scale
∆2 and large errors. Finally, we set the scale to ∆ and refresh the errors by invoking the bits extraction
algorithm again. The basic workflow of our truncation algorithm is given in Fig 1.

p

log Δ

2 log Δ

2p

×

p

log Δ

Multiplication

Extract the last  bitsp

Subtract the last  bitsp

Extract and refresh the first  bitsp

Fig. 1. Overview of Homomorphic Truncation

However, this technique incurs another problem. As depicted in the last step of Fig 1, it moves the
bits blocks to the lower position. If the encrypted number is negative, which is represented in the two’s
complement form, this method will not preserve all the higher bits (e.g., all 1’s) in the original plaintext
which results in a wrong message in the final ciphertext. Note that there is no such problem when the
plaintext is positive, because the higher bits are all 0’s. To overcome this problem, we apply our fully
functional bootstrapping algorithm to the last d-bit block with a carefully designed function. If the most
significant bit of the last d-bit block is 0, the function outputs the d-bit block. Otherwise, it brings the
higher bits to the output. Since the higher bits are publicly known (i.e., all 1’s), the function could be
defined in advance.

The bits extraction algorithm could be easily extended to bootstrap approximate encryption. In this
case, p ≈ log∆ since approximation errors are allowed. We do not need to drop the last p bits, and
could apply the bits extraction algorithm at a position close to log∆ directly. The main difference is
when invoking the bits extraction algorithm in the first d-bit block, there is not enough bits reserved to
eliminate the errors. The extracted block may be different from the original one. Fortunately, we show that
the whole plaintext extracted in this case is also very close to the original plaintext. The approximation
errors in this case are dominated by the errors in our fully functional bootstrapping algorithm, which is
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very small. Thus, the approximate FHE is able to preserve high precision while keeping the ring dimension
small.

1.3 Related and Concurrent Works

Li and Micciancio [35] introduce the notion of IND-CPAD, which captures the passive security of approx-
imate homomorphic encryption. Functional bootstrapping is formally introduced in [4], applications and
further improvements are proposed in [5,28,9,29,26,17]. The method of bootstrapping on CKKS scheme is
developed by a series of works [12,10,27,33,34,32,3], which approximates the modular reduction function
with polynomial evaluations.

Concurrent Works. Very recently, Chillotti et al. [18] and Kluczniak and Schild [31] present functional
bootstrapping algorithms without the negacyclicity restriction independently. We note that our fully
functional bootstrapping algorithm is different from theirs, and is simpler and more efficient.

Chillotti et al. [18] propose two methods to perform functional bootstrapping avoiding negacyclicity,
which allow to evaluate any function on domain [0, 2N). Both methods have to invoke at least two
bootstrapping procedures and one multiplication by extending the BFV-like multiplication to TFHE.
The BFV-like multiplication causes fast noisy growth in their scheme, it is also the main reason that they
could not use small parameters as in TFHE and do not report concrete performance.

Kluczniak and Schild [31] present full domain functional bootstrapping to perform any function on
[0, 2N) without the restriction of negacyclicity. They split a function F (x) defined on [0, 2N) into two
negacyclic functions F0 and F1, and then invoke multiple functional bootstrapping procedures to compute
a GSW ciphertext of a bit b indicating which interval the message lies in. Finally, they apply another
functional bootstrapping to compute GSW(1−b)·LWE(F0(x))+GSW(b)·LWE(F1(x)), which is a ciphertext
of F (m) = Fb(m). However, in order to get a GSW ciphertext of b, they have to run about logQ functional
bootstrapping procedures, which is the main bottleneck of their scheme.

Recall that our fully functional bootstrapping focuses on functions on [0, N). It only involves two
bootstrapping procedures and one addition. Our fully functional bootstrapping could be easily applied
to [18] and [31] to reduce parameters and improve efficiency.

A concurrent work by Kim et al. [30] proposes a new bootstrapping for CKKS without approximat-
ing the modular reduction function. They also apply the FHEW bootstrapping but with very different
techniques from ours. Although they claim it is possible to set the ring dimension to 214 or less, they do
not report implementations of the algorithms at the time of this writing.

2 Preliminaries

2.1 Notations

All logarithms are base 2. We denote by 〈·, ·〉 the inner product of two vectors. For a real number r,
bre,dre,brc denote the nearest round, upper round and floor round of r to integers, respectively. We use
randomized rounding in our analysis and deterministic rounding in implementation as in [20]. We use
x← D to denote the sampling of x according to distribution D. It denotes the sampling from the uniform
distribution from D when D is a finite set.

For q ∈ Z, we identify Zq with the set [−q/2, q/2)∩Z by default. We will point it out when Zq lies in
[0, q). For x ∈ Z, let [x]q ∈ Zq be such that [x]q ≡ x (mod q). Define the rings R = Z[X]/(XN + 1) and
Rq = Zq[X]/(XN + 1), where N is a power of 2. We use bold a ∈ ZN

q for vectors, and lower case a ∈ R
or a ∈ Rq for ring elements. Given a ring element a ∈ R or a ∈ Rq, define the corresponding coefficient
vector as a = (a0, ..., aN−1), where ai ∈ Z or ai ∈ Zq for 0 ≤ i ≤ N−1 and a = a0+a1X+· · ·+aN−1X

N−1.
Denote a = ToCoef(a) and a = ToRing(a).
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2.2 Fixed-Precision Numbers
In this paper, we use fixed-precision numbers to approximate fixed-point and floating-point numbers. In
a nutshell, fixed-precision numbers always preserve some fixed precision even after different operations,
say multiplication. Formally, we define the fixed-precision real numbers as follows.

Definition 1 (Fixed-Precision Numbers). A set of fixed-precision numbers with p bits of precision
is defined as

FPp =
{
x | x = ±

(
z +

p∑
i=1

bi · 2−i
)
; z ∈ Z≥0, bi ∈ {0, 1}

}
,

We also define operations on FPp. It is easy to verify that x + y ∈ FPp for x, y ∈ FPp. It remains to
define the multiplication operation. Before that, we first define the truncation function as Truncp(x) =
b2pxc /2p for x ∈ R. It preserves p-bit precision of the fractional part of x and drops the others. We define
multiplication over FPp as follows.

Definition 2. For any x, y ∈ FPp, define the multiplication operation as x� y = Truncp(xy) ∈ FPp.

Note that xy ∈ FP2p, the truncation function drops the last p bits of the fractional part and moves the
result back to FPp.

In our fully homomorphic encryption scheme, when dealing with fixed-point or floating-point arith-
metic, we approximate it with fixed-precision arithmetic. Our FHE scheme supports homomorphic oper-
ations over FPp, the exact decryption procedure ensures the IND-CPAD security.
2.3 Gaussian Distributions and (R)LWE Encryption
Let σ > 0, define the Gaussian function ρσ(x) = exp(−πx2/σ2) for x ∈ R. Denoted by χσ the discrete
Gaussian distribution on Z with variance σ2 by sampling from continuous Gaussian probability distri-
bution with density ρσ(x)/σ and then rounding it to the nearest integer. Denoted by χN

σ the discrete
Gaussian distribution on ZN by sampling each element from χσ independently. We follow the heuristic
approaches of error analysis in [19,24]. Hence, we will use 6σ as a high-probability bound on the size of
elements sampled from χσ.

The Learning with Errors (LWE) problem is introduced by Regev [37]. It is extended to the ring
version, which is called RLWE, by Lyubashevsky, Peikert and Regev [36]. Let q > 0 be an integer, a← ZN

q

and s ← DN . For simplicity, we focus on DN = {0, 1}N . For a message m ∈ Z, the (symmetric) LWE
encryption of m under s is of the form (a, [−〈a, s〉+m′+e]q) ∈ ZN+1

q , where e← χσ and m′ = encode(m).
There always exists a decode(·) function to recover m from encode(m)+ e. We assume the encode/decode
function be the identity function for simplicity. Let LWEN

s,q(m) be the set of LWE ciphertexts of m. We
say ct = (a, b) ∈ LWEN

s,q(m) has error variance σ2, if [b+ 〈a, s〉]q −m has variance σ2. Sometimes, we mix
the use of LWEN

s,q(m) and LWEN
s,q(m+ e) where e is the error term. If ct ∈ LWEN

s,q(m) with error term e,
then ct ∈ LWEN

s,q(m+ e) with error term 0.
Let a ← Rq, s ← DN and s = ToRing(s). For a message m ∈ R, the RLWE encryption of m under

s is of the form (a,−as +m′ + e) ∈ Rq × Rq, where e = ToRing(e) and e ← χN
σ and m′ = encode(m).

Similarly, we assume encode be the identity function. Let RLWEN
s,q(m) be the set of RLWE ciphertexts

of m. We say ct = (a, b) ∈ RLWEN
s,q(m) has error variance σ2, if each coefficient of (b + a · s) −m ∈ Rq

has variance σ2. In this paper, we only consider the “unpacking” version of RLWE encryption, which
means m = m0 +0 ·X + · · ·+0 ·XN−1 for some m0 ∈ Z. Sometimes, we mix the use of RLWEN

s,q(m) and
RLWEN

s,q(m+e) where e is the error term. If ct ∈ RLWEN
s,q(m) with error term e, then ct ∈ RLWEN

s,q(m+e)
with error term 0.

Additionally, RGSW [25] ciphertexts are needed in our constructions. Let G ∈ R2ℓ×2
q be a gadget

matrix for some integer ℓ, the concrete definition is presented in Definition 3 in Appendix A. For a
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message m ∈ R, sampling ct0, ..., ct2ℓ−1 ∈ RLWEN
s,q(0), the RGSW ciphertext of m is of the form: ct0

...
ct2ℓ−1

+m ·G.

Similar to LWE and RLWE encryptions, we let RGSWN
s,q(m) be the set of RGSW ciphertexts. An RGSW

ciphertext has error variance σ2 if {cti}2ℓ−1
i=0 have error variance σ2.

2.4 Useful Algorithms
In this subsection, we list some useful algorithms which will be used in our constructions.
Extracting LWE from RLWE. Given a RLWE ciphertext, it is well-known to extract LWE ciphertexts.
Since our RLWE ciphertexts only encrypt constant messages, the extract procedure is much simpler as
described in Algorithm 1. We remark that the extract algorithm does not change the error variance of
the ciphertext.

Algorithm 1 Extract (ct)
Input: ct = (a, b) = RLWEN

s,q(m).
Output: ct = LWEN

s,q(m0), where s = ToCoef(s).
1: Denote a = a0 + a1X + · · · aN−1X

N−1, b = b0 + b1X + · · · bN−1X
N−1

2: return (a0,−aN−1,−aN−2, . . . ,−a1, b0) ∈ ZN+1
q

External Product. It allows to perform multiplication on a RGSW ciphertext and a RLWE ciphertext.
The resulting ciphertext is a RLWE ciphertext encrypts the product of the messages. Specifically, adapted
from [16] and [20], the external product between a RGSW ciphertext C ∈ RGSWN

s,q(m1) and a RLWE
ciphertext ct ∈ RLWEN

s,q(m2) produces a RLWE ciphertext ct′ ∈ RLWEN
s,q(m1 ·m2).

C ⊡ ct→ ct′ ∈ RLWEN
s,q(m1 ·m2)

The details and error analysis of external product are given in Lemma 1 in Appendix A.
Modulus Switching and Modular Reduction. Two approaches are given to change modulus of
ciphertexts. Modulus switching is used to reduce the magnitude of ciphertext modulus and that of the
noise. Modular reduction allows to compute the residue of the plaintext.

Algorithm 2 ModSq→q′(ct): Switching modulus between LWE ciphertexts
Input: ct = (a, b) ∈ LWEN

s,q(m);
q′ satisfies q′ < q.

Output: ct′ = (a′, b′) ∈ LWEN
s,q′(m

′), where m′ = b(q′/q)me.
1: Let a′ = b(q′/q) · ae, b′ = b(q′/q) · be.
2: return ct′ = (a′, b′).

The correctness and error analysis are given in Lemma 2 in Appendix B. We note that the modulus
switching procedure is crucial in our constructions to manage the errors. It is natural to extend to the
ring case by performing the rounding operation on each coefficient of the ring elements. The error analysis
is similar.

Modular reduction simply computes the residue of the ciphertext under a new and smaller modulus.
The new ciphertext carries the residue of the original message.
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Algorithm 3 ModRq→q′(ct): Modular reduction between LWE ciphertexts
Input: ct = (a, b) = LWEN

s,q(m);
q′ satisfies that q′|q.

Output: ct′ = (a′, b′) = LWEN
s,q′(m

′), where m′ = m mod q′.
1: Let a′ = a mod q′, b′ = b mod q′.
2: return ct′ = (a′, b′).

The correctness of modular reduction is easy to verify since q′|q. This procedure will not change the
error variance as long as |m+ e| < q′/2, where e is the error term in ct.
Key Switching and Dimension Switching. These two algorithms switch secret keys between two
ciphertexts. To clarify the differences in this paper, key switching only focuses on the RLWE case and the
dimension of the secret keys remains the same. Dimension switching is widely used in our fully functional
bootstrapping procedure, it focuses on the LWE case and will change the dimension of the secret keys. Key
switching is given in Algorithm 4, the correctness and error analysis are given in Lemma 3 in Appendix
B.

Algorithm 4 KeySs→s′(ct, KSK): Switching keys between RLWE ciphertexts
Input: ct = (a, b) ∈ RLWEN

s,q(m);
A key-switching key KSK ∈ RGSWN

s′,q(s).
Output: ct′ = (a′, b′) = RLWEN

s′,q(m).
1: Let (a′, b′) = (0, b) + KSK ⊡ (0, a) ∈ Rq ×Rq

2: return ct′ = (a′, b′)

For efficiency reasons, we apply the method proposed in [11] to switch dimensions for LWE ciphertexts
while keeping the message unchanged. Given n|N and (a, b) ∈ LWEN

s,q(m), define polynomials with degree
n as

ãi = ain − ain+n−1X − ain+n−2X
2 − · · · − ain+1X

n−1, and
s̃i = sin + sin+1X + · · ·+ sin+n−2X

n−2 + sin+n−1X
n−1,

where 0 ≤ i ≤ N/n− 1. View ãi and s̃i as elements in Zq[X]/(Xn + 1). Note that the constant term of∑N/n−1
i=0 ãi · s̃i is exactly 〈a, s〉 ∈ Zq. The algorithm is given in Algorithm 5. The correctness and error

analysis are given in Lemma 4 in Appendix B.

Algorithm 5 DimSN→n(ct,KSKq
s→s′): Switching dimensions between LWE ciphertexts

Input: ct = (a, b) = LWEN
s,q(m);

A key-switching key KSKq
s→s′ = {KSKq

i ∈ RGSWn
s′,q(s̃i)}

N/n−1
i=0 ;

Output: ct′ = LWEn
ToCoef(s′),q(m) under key s′ ∈ Zq[X]/(Xn + 1)

1: Construct polynomials ãi from a as above, for i ∈ {0, . . . , N/n− 1}
2: Let c̃t = (0, b) +

∑
i KSKq

i ⊡ (0, ãi),
3: return Extract(c̃t)

Evaluating Trace. Given f(X) ∈ Rq, let φi(x) : f(X) 7→ f(Xi) for i = 1, 3, 5, ..., 2N − 1 be the
Galois automorphisms. It is well-known that automorphisms could be homomorphically evaluated via
key switching, which is listed as in Algorithm 6. The error analysis is exactly the same as the key
switching procedure.

8



Algorithm 6 HomAuto(ct, i,K): Evaluating an automorphism
Input: ct = (a, b) ∈ RLWEN

s,q(m);
An integer i ∈ {1, 3, . . . , 2N − 1};
An automorphism key K ∈ RGSWN

s,q(φi(s)).
Output: ct′ ∈ RLWEN

s,q(φi(m)).
1: Compute φi(a) and φi(b);
2: return ct′ ← KeySφi(s)→s((φi(a), φi(b)),K).

We will apply the method in [11] to transfer an LWE ciphertext into a RLWE ciphertext via evalu-
ating the trace function homomorphically. For a ∈ Rq, define the trace of a as the sum of all Galois
transformations on it, i.e., Trace(a) =

∑
i φi(a), where i ∈ {1, 3, · · · , 2N − 1}. A key observation is that

Trace(1) = N and Trace(Xi) = 0 for i 6= 0. An efficient recursive homomorphic trace evaluation in [11] is
described in Algorithm 7. We refer the details and correctness of this algorithm to [11].

Algorithm 7 HomTrace(ct,AK): Evaluating the trace function
Input: ct ∈ RLWEN

s,q(m);
Keys AK = {Ki ∈ RGSWN

s,q(φi(s))}, i ∈ {2k + 1|k = 1, . . . , logN}.
Output: ct′ ∈ RLWEN

s,q(Trace(m)).
1: ct′ ← ct
2: for i = N + 1, N

2
+ 1, N

4
+ 1, . . . , 3 do

3: ct′ ← ct′ + HomAuto(ct′, i,Ki)
4: end for
5: return ct′ ∈ Rq ×Rq;

With the homomorphic trace algorithm, we could transfer an LWE into a RLWE with the following
algorithm. The resulting RLWE ciphertext encrypts the message as the constant term.

Algorithm 8 LWE-to-RLWE(ct,AK)
Input: (a, b) ∈ LWEN

s,q(m);
Keys AK = {Ki ∈ RGSWN

s,q(φi(s))}, i ∈ {2k + 1|k = 1, . . . , logN}.
Output: ct′ ∈ RLWEN

s,q(m).
1: Let N̂ = N−1 mod q
2: Let a = (a0,−aN−1, ...,−a1), and let ct∗ = N̂ · (a, b) ∈ Rq ×Rq

3: return ct′ = HomTrace(ct∗,AK).

The correctness is shown in [11], and we refer the readers to that paper. The error analysis of this
algorithm is given in Lemma 5 in Appendix B.

3 Functional Bootstrapping
Functional bootstrapping is a generalized version of the original bootstrapping procedure, which enables
to refresh the ciphertext while performing some pre-determined function on the plaintext, simultaneously.
We follow the FHEW-like bootstrapping [20] and generalize it to handle multiple bits in a direct way.
We note that the generalized functional bootstrapping procedure is still subject to the constraint that
f(x) = −f(x+N).

Consider an LWE ciphertext ct ∈ LWEñ
s̃,2N (m). View it as a noiseless encryption of m̃ = m+ e, where

e is the error term of the original ciphertext. The functional bootstrapping procedure refreshes it into a
ciphertext of f(m+e) with error term independent of ct. It seems not like the “bootstrapping” procedure
in the literature, because the original error term is still in the output. We will explain that it is sufficient
for our purpose to handle fixed-precision numbers.
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Moreover, it is straightforward to remove the error term e. Consider the ciphertext is of the form
ct ∈ LWEñ

s̃,2N (encode(m)+e), define an extended function F = f ◦decode, where ◦ means the composition
of the two functions. The functional bootstrapping on F will remove e, and the error term in the resulting
ciphertext is independent of ct.

Let Z2N lie in [0, 2N), we describe the functional bootstrapping procedure in Algorithm 9.

Algorithm 9 FBS(ñ,2N)→(N,q)(ct, f,BK)
Input: An LWE ciphertext ct = (a, b) ∈ LWEñ

s̃,2N (m) under key s̃ = (s̃0, . . . , s̃ñ−1),
where [〈a, s̃〉+ b]2N = m+ e =: m̃;
A bootstrapping key BK = {BKi ∈ RGSWN

s,Q(s̃i)}, 0 ≤ i ≤ ñ− 1;
f : Z2N → Zq satisfying f(x+N) = −f(x).

Output: ct′ ∈ LWEN
s,q(f(m̃)), where s = ToCoef(s).

1: Let v(X) = bQf(0)/qe − bQf(N − 1)/qeX − · · · − bQf(1)/qeXN−1 ∈ RQ

2: Let acc← (0, Xb · v(X)) ∈ RQ ×RQ

3: for i = 0 to ñ− 1 do
4: acc = acc + BKi ⊡ ((Xai − 1) · acc).
5: end for
6: ct′ = Extract(acc) ▷ LWEN

s,Q(bQf(m̃)/qe).
7: return ct′ = ModSQ→q(ct′)

Denote SimpleFBS(ñ,2N)→(N,q)(ct, f,BK) as a simplified version, which is exactly the same as the above
FBS(ñ,2N)→(N,q)(ct, f,BK) except running the modulus switching procedure in step 7, whose output ct′
is still on modulus Q.

Remark 1. The functional bootstrapping procedure does not switch the secret key back to s̃. This is
because in our main construction, the secret key is s, and s̃ is only viewed as an intermediate key for
efficiency reasons.

Remark 2. For CKKS-like encryption schemes, they usually encounter the case when f is “somewhat
continuous”. For example, activate functions in machine learning models. The extra error e will not
change the result too much, i.e., f(m̃) ≈ f(m), which is acceptable in real applications.

Remark 3. For BFV-like encryption schemes, the input ciphertext is of the form in LWEñ
s̃,2N ( 2Nt ·m+ e),

where t is the plaintext module, and we assume t|2N for simplicity. Algorithm 9 could handle BFV
ciphertexts by extending f(x) into f(

⌊
t

2N (x)
⌉
), and the the constraint of f is changed into f(x) =

−f(x+ t/2).

Theorem 1. Let ct ∈ LWEñ
s̃,2N (m) with error term e, f : Z2N → Zq be any function satisfying f(x+N) =

−f(x) and Q ≥ q. Then ct′ output in Algorithm 9 is a ciphertext in LWEN
s,q(f(m̃)) with error variance

σ2, where m̃ = m+ e ∈ Z2N .
Furthermore, Let the error variance in BK be σ2

bk, then

σ2 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6,

where g is defined as follows: If base power gadget is used in BK, g is the decomposition base. If RNS
gadget is used then g = max{g0, ..., gℓ−1}.

Proof. In step 2, acc is a ciphertext in RLWEN
s,Q(X

b ·v(X)). In each iteration of step 4, the updated acc is
a ciphertext in RLWEN

s,Q(X
b+

∑i
j=0 aj ·sj ·v(X)). Therefore, acc is a ciphertext in RLWEN

s,Q(X
b+⟨a,̃s⟩ ·v(X))

after step 5. Since [b+ 〈a, s̃〉]2N = m̃, then we have Xb+⟨a,̃s⟩ ·v(X) = Xm̃ ·v(X). By the definition of v(X)
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and f(x + N) = −f(x), the constant term of Xm̃ · v(X) is bQf(m̃)/qe. Due to the modulus switching
procedure, ct′ is a ciphertext in LWEN

s,q(f(m̃)).
Let σ2

i for 0 ≤ i ≤ ñ−1 be the error variances of acc in each iteration, according to Lemma 1 we have

σ2
i+1 ≤ 2ℓNg2σ2

bk + s̃i · σ2
i ≤ 2ℓNg2σ2

bk + σ2
i .

Since σ0 = 0, then the error variance in ct′ is bounded by 2ℓñNg2σ2
bk. According to Lemma 2, we have

σ2 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6. ut

3.1 Fully Functional Bootstrapping
Since function f in Algorithm 9 has to satisfy the negacyclicity condition, it is not sufficient for our
construction. This is because the functional bootstrapping procedure could not handle all the log(2N)
bits and the most significant bit is out of control in this setting.

We propose the fully functional bootstrapping algorithm, which could deal with any function f , whose
domain is ZN (instead of Z2N ), on a ciphertext in LWEñ

s̃,N (m) by reducing the modulus from 2N into N .
We note that the homomorphic decryption process is still performed on the group with order 2N .

In a nutshell, given a ciphertext in (a, b) ∈ LWEñ
s̃,N (m), the fully functional bootstrapping procedure

refresh it into a ciphertext in LWEN
s,q(f(m̃)), for any f : ZN 7→ Zq. The intuition of this algorithm is as

follows. Viewing (a, b) as a ciphertext with modulus 2N , then [〈a, s̃〉+ b]2N = m+e+k ·N , for k ∈ {0, 1}.
We first apply the functional bootstrapping procedure in (a, b) to get a ciphertext of −kN , and add it to
get a ciphertext of m+ e under modulus 2N . Since m+ e is less than N , we could invoke the functional
bootstrapping again on a function extended from f to obtain the required ciphertext. Details are given
in Algorithm 10.

Algorithm 10 FullyFBS(ñ,N)→(N,q)(ct, f,BK, B̃K,KSKQ̃
s→s̃)

Input: ct = (a, b) ∈ LWEñ
s̃,N (m) under key s̃ = (s̃0, . . . , s̃ñ−1);

A bootstrapping key BK = {BKi ∈ RGSWN
s,Q(s̃i)}ñ−1

i=0 ;
A bootstrapping key B̃K = {B̃Ki ∈ RGSWN

s,Q̃
(s̃i)}ñ−1

i=0 ;
A key-switching key KSKQ̃

s→s̃;
Any function f : ZN 7→ Zq.

Output: ct′ ∈ LWEN
s,q(f(m̃+ ẽ)) for some ẽ, where s = ToCoef(s) and m̃ = [b+ 〈a, s̃〉]N .

1: Lift (a, b) into Z2N to get [〈a, s̃〉+ b]2N = m+ e+ kN with k ∈ {0, 1}. Viewing ct ∈ LWEñ
s̃,2N (m+ e+ kN).

2: Perform fix = SimpleFBS(ñ,2N)→(N,2N)(ct, fc, B̃K) with function fc(x) = N/2 for x ∈ [0, N), fc(x) = −N/2

for x ∈ [N, 2N).Obtaining fix ∈ LWEN
s,Q̃((−1)

k · Q̃/4).
3: fix = ModSQ̃→2N (DimSN→ñ(fix,KSKQ̃

s→s̃))
4: let fix = fix + (0,−N/2). ▷ fix ∈ LWEñ

s̃,2N (−kN).
5: Let ct′′ = [ct + fix]2N ∈ LWEñ

s̃,2N (m̃+ ẽ) ▷ ẽ is the error term in fix.
6: Let F (x) = f(x) for 0 ≤ x < N , and F (x) = −f(x−N) otherwise.
7: Perform ct′ = FBS(ñ,2N)→(N,q)(ct′′, F,BK) ▷ ct′ ∈ LWEN

s,q(f(m̃+ ẽ)).

Remark 4. We note that in step 2, the functional bootstrapping procedure does not switch the modulus
from Q̃ into 2N , which will be done in step 3. But we still use

⌊
Q̃fc(i)/(2N)

⌉
in the lookup table in step

2. The reason of doing this is to control the errors, since modulus switching will reduce the magnitude of
the errors.

Remark 5. We use a smaller modulus Q̃ in B̃K for efficiency reasons. Q̃ could be much smaller than Q.
We note that if RNS gadget matrix is used, B̃K will not increase the key size, because it is only part of
BK.
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Remark 6. Algorithm 10 could be extended for BFV-like ciphertext similarly as in Remark 3. The
plaintext modulus is reduced into t/2. Namely, the ciphertext is in LWEñ

s̃,N ( N
t/2 · m + e) and function

f : Zt/2 7→ Zq could be any functions. Step 2 remains unchanged, and f(x) in step 6 is replaced by
f(
⌊

t
2N · x

⌉
). In this case, the error terms e, ẽ in Algorithm 10 are removed.

Theorem 2. Let ct ∈ LWEñ
s̃,N (m) with error term e, f : ZN → Zq be any function and Q ≥ Q̃ ≥ q > 2N .

Then ct′ output in Algorithm 10 is a ciphertext in LWEN
s,q(f([m̃ + ẽ]N )) with error variance σ′2, where

m̃+ ẽ = m+ e+ ẽ ∈ Z and ẽ is some error term with variance σ̃2.
Furthermore, Suppose BK contains 2ℓ RLWE ciphertexts with error variance σ2

bk, B̃K contains 2ℓ̃ RLWE
ciphertexts with error variance σ̃2

bk, KSKQ̃
s→s′ contains ℓksk RLWE ciphertexts with error variance σ2

ksk.
Then

σ̃2 ≤ (2N/Q̃)2(Nℓkskg
2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) + ñ/24 + 1/6,

σ′2 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6,

where g is defined as follows: If base power gadget is used in BK, g is the decomposition base. If RNS
gadget is used then g = max{g0, ..., gℓ−1}. g̃, gksk are similarly defined in B̃K and KSKQ̃

s→s′ .

Proof. Since m + e ∈ ZN , then m + e + N ∈ [N, 2N). Then k identifies m + e + kN belongs to [0, N)

or [N, 2N).Since fc is negacyclic, due to Theorem 1 and SimpleFBS, fix ∈ LWEN
s,Q̃((−1)

k · Q̃/4) in step 2,
where s = ToCoef(s). After dimension switching and modulus switching, fix is transferred into a ciphertext
in LWEñ

s̃,2N ((−1)k ·N/2). Note that (−1)k−1 = −2k for k ∈ {0, 1}, ct′′ is a ciphertext in LWEñ
s̃,2N (m+e).

Due to Algorithm 9 and m + e + ẽ ∈ Z, ct′ is a ciphertext in LWEN
s,q(f([m̃ + ẽ]N )), where ẽ is the error

term in ct′′.
According to the analysis of Theorem 1, the error variance of fix in step 2 is σ2

fix ≤ 2ℓ̃ñNg̃2σ̃2
bk because

we avoid modulus switching in the functional bootstrapping procedure. After the dimension switching
procedure, the error variance is less than Nℓkskg2kskσ

2
ksk +2ℓ̃ñNg̃2σ̃2

bk according to Lemma 4. The modulus
switching procedure updates the error variance of fix into

σ2
fix ≤ (2N/Q̃)2(Nℓkskg

2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) + ñ/24 + 1/6

which is also the error variance of ct′′, i.e., the variance of ẽ.
According to Theorem 1, we have

σ′2 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6.

This completes the proof. ut

Remark 7. Thanks to the modulus switching procedure, we will keep the error variance σ̃2 and σ′2 very
close to ñ and N , respectively.

4 Homomorphic Truncation for Fixed-Precision Numbers
In this section, we describe our algorithms to homomorphically evaluate multiplication of fixed-precision
numbers. Namely, we show how to homomorphically evaluate the truncation procedure. The key ingre-
dient is a bits extraction algorithm that heavily relies on the fully functional bootstrapping procedure.

The bits extraction procedure enables to homomorphically extract the bits blocks of the plaintext from
LWE ciphertexts and reduces the errors simultaneously. Given positive integers d, δ, δ′, the bits extraction
procedure homomorphically extracts d bits at the position δ (counting from the least significant bit) of
the message, and puts it into the position δ′. With this algorithm, one could easily drop the undesired bits
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and refresh the effective bits. Let Z2d lie in [0, 2d), assume q is a power of 2. The algorithm is described
in Algorithm 11.

Algorithm 11 BitsExtractd(s,N)(ct, δ, δ′,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃)
Parameters: d = logN − ℓe, where ℓe is to be determined;

Q̃: an intermediate modulus with Q > Q̃ > q;
s̃: an intermediate secret key derived from s;
ñ: an intermediate dimension.

Input: ct ∈ LWEN
s,q(m), where 2δ|m, and error term |e| < 2δ−1;

δ: the position being extracted;
δ′: the target position;
A bootstrapping key BK = {BKi ∈ RGSWN

s,Q(s̃i)}ñ−1
i=0 ;

A bootstrapping key B̃K = {B̃Ki ∈ RGSWN
s,Q̃

(s̃i)}ñ−1
i=0 ;

Two key-switching keys KSKQ̃
s→s̃, KSKq

s→s̃.
Output: ct′ ∈ LWEN

s,q(m
′) , where m′ = 2δ

′
[m∗]2d , and m∗ = m/2δ;

1: Let r = log q − δ + ℓe.
2: Let ct∗ = DimSN→ñ(ct,KSKq

s→s̃)

3: Let c̃t = ModR2r→N (ModSq→2r (ct∗)) ▷ c̃t = LWEñ
s̃,N (2ℓe [m∗]2d)

4: Perform FullyFBS(ñ,N)→(N,q)(c̃t, f,BK, B̃K,KSKQ̃
s→s̃) with f being

f : ZN → Z
x 7→ 2δ

′
·
[ ⌊

x/2ℓe
⌉]

2d
,

obtaining ct′ = LWEN
s,q(m

′);
5: return ct′.

Remark 8. As shown in our implementation, we could extract about (logN)/2 bits once. ℓe ≈ (log ñ)/2
bits are reserved to handle the errors to make sure the effective bits in the plaintext are not destroyed.
Algorithm 11 could be extended for BFV-like ciphertexts, the analysis is similar to Remark 3 and 6.

Remark 9. Note that the constraint on m such that 2δ|m is dedicated for our exact truncation algorithm,
which is required for IND-CPAD security. This constraint could be removed if only approximate truncation
is needed, as in the IND-CPA case.

Remark 10. In our setting, we also need to preserve the higher bits when move the bits blocks into lower
positions. This is crucial in our truncation algorithm, when handling negative numbers. Thus, define an
algorithm SignBitsExtractd(s,N) be the same as in Algorithm 11 except that f is defined as

f(x) =

2δ
′ ·

[ ⌊
x/2ℓe

⌉ ]
2d

, x ∈ [0, N
2 − 2ℓe−1) ∪ [N − 2ℓe−1, N)

q − 2δ
′+d + 2δ

′ ·
[ ⌊

x/2ℓe
⌉ ]

2d
, x ∈ [N2 − 2ℓe−1, N − 2ℓe−1).

If the most significant bit of the extracted d bits is 1 (i.e., negative), then the extraction algorithm will
preserve the two’s complement representation of this d-bits number.

Theorem 3. Suppose BK contains 2ℓ RLWE ciphertexts with error variance σ2
bk, B̃K contains 2ℓ̃ RLWE

ciphertexts with error variance σ̃2
bk, KSKQ̃

s→s′ contains 2ℓksk RLWE ciphertexts with error variance σ2
ksk,

KSKq
s→s′ contains 2ℓ′ksk RLWE ciphertexts with error variance σ′2

ksk. If base power gadget is used in BK,
g is the decomposition base. If RNS gadget is used then g = max{g0, ..., gℓ−1}. g̃, gksk, g′ksk are similarly
defined in B̃K, KSKQ̃

s→s′ and KSKq
s→s′ .
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Let ct ∈ LWEñ
s̃,q(m) with 2δ|m and error variance σ2, q is a power of 2. Let

τ = 22(ℓe−δ)(Nℓ′kskg
′2
kskσ

′2
ksk + σ2) +

(2N
Q̃

)2

(Nℓkskg
2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) +
ñ

12
+

1

3
.

If 6
√
τ + 1

2 < 2ℓe−1. Then ct′ output in Algorithm 11 is a ciphertext in LWEN
s,q(m

′) with error variance
σ′2 and satisfies

σ′2 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6.

Proof. According to Lemma 4, the error variance (σ∗)2 of ct∗ is bounded by Nℓ′kskg
′2
kskσ

′2
ksk + σ2. After

running the modulus switching procedure in step 3, ct∗ is transferred into a ciphertext encrypting
⌊
2r

q m
⌉

and the error variance is bounded by (2r/q)2 · (σ∗)2 + ñ/24 + 1/6. We have

b(2r/q)me = 2r

q
·m+ e′

=
2log q+ℓe−δ

q
·m+ e′ = 2ℓe ·m∗ + e′

where e′ is the rounding error. Let e′′ be the error term after modulus switching, and this error term stays
the same after modular reduction as long as |e′′| ≤ N , which is guaranteed by the chosen parameters.
Denote e∗ = e′ + e′′. Since d = logN − ℓe, then (2ℓe ·m∗) mod N = 2ℓe · [m∗]2d . Thus c̃t is a ciphertext
in LWEñ

s̃,N (2ℓe [m∗]2d + e∗) with error term 0.
Due to Algorithm 10 and Theorem 2, we know that ct′ is a ciphertext in LWEN

s,q(f(
[
2ℓe [m∗]2d + e∗ +

ẽ
]
N
)) with error variance σ′2 ≤ 2(q/Q)2ℓñNg2σ2

bk +N/24 + 1/6. Where ẽ has variance

σ̃2 ≤ (2N/Q̃)2(Nℓkskg
2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) + ñ/24 + 1/6.

Therefore, we have |e′′ + ẽ| ≤ 6
√
τ , which implies |e∗ + ẽ| ≤ |e′′ + ẽ|+ 1/2 < 2ℓe−1. By the definition of

f , we have for some k ∈ Z such that

f
([

2ℓe [m∗]2d + e∗ + ẽ
]
N

)
= f

(
2ℓe [m∗]2d + e∗ + ẽ+ kN

)
= 2δ

′
·
[ ⌊

(2ℓe [m∗]2d + e∗ + ẽ+ kN)/2ℓe
⌉ ]

2d

= 2δ
′
·
[
[m∗]2d + k · 2d +

⌊
(e∗ + ẽ)/2ℓe

⌉ ]
2d

= 2δ
′
·
[
[m∗]2d + k · 2d

]
2d

= 2δ
′
· [m∗]2d .

This completes the proof. ut

Corollary 1. Assuming the conditions hold in Theorem 3. Then the extraction algorithm defined in
Remark 10 SignBitsExtractd(s,N)(ct, δ, δ′,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃) outputs a ciphertext ct′ encrypts m′

such that m′ = 2δ
′
[m∗]2d , if 0 ≤ 2ℓe [m∗]2d < N/2, and m′ = q−2δ′+d+2δ

′
[m∗]2d , if N/2 ≤ 2ℓe [m∗]2d < N .

Proof. Similar to the analysis of Theorem 3, we have the ciphertext c̃t encrypts plaintext 2ℓe [m∗]2d with
error term e∗ + ẽ, where |e∗ + ẽ| < 2ℓe−1. The fully functional bootstrapping returns a ciphertext of
f([2ℓe [m∗]2d + e∗ + ẽ]N ) with f defined in Remark 10.

If 0 ≤ 2ℓe [m∗]2d < N/2, then 0 ≤ 2ℓe [m∗]2d ≤ 2ℓe(2d−1 − 1) = N/2− 2ℓe . Since |e∗ + ẽ| < 2ℓe−1, then[
2ℓe [m∗]2d + e∗ + ẽ

]
N
∈ [0,

N

2
− 2ℓe−1) ∪ [N − 2ℓe−1, N),
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f([2ℓe [m∗]2d + e∗ + ẽ]N ) = 2δ
′
[m∗]2d in this case.

If N/2 ≤ 2ℓe [m∗]2d < N , then N/2 ≤ 2ℓe [m∗]2d ≤ 2ℓe(2d − 1) = N − 2ℓe . Since |e∗ + ẽ| < 2ℓe−1, then

[
2ℓe [m∗]2d + e∗ + ẽ

]
N
∈ [

N

2
− 2ℓe−1, N − 2ℓe−1),

f([2ℓe [m∗]2d + e∗ + ẽ]N ) = q − 2δ
′+d + 2δ

′
[m∗]2d in this case. This completes the proof. ut

Corollary 2. Assuming the conditions hold in Theorem 3, except that the input message m ∤ 2δ in
Algorithm 11. Let m = m̄ · 2δ + m̂, where m̄ and m̂ are integers and m̂ = [m]2δ . Then, ct′ is a ciphertext
of 2δ′ · [m̄+ ē]2d with error variance σ′2 for some integer ē ∈ {0, 1}. Further, we have

σ′2 = 2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6.

In other words, if m̄ ∈ Z2d , then the only possible case that [m̄+ ē]2d 6= m̄+ ē is m̄ = 2d − 1.

Proof. Similar to Theorem 3, the message m∗ is now defined as m∗ = m̄+m̂/2δ. Then the fully functional
bootstrapping procedure in Algorithm 11 results in a ciphertext that encrypts

2δ
′
[ ⌊

m̄+ m̂/2δ + (e∗ + ẽ)/2ℓe
⌉ ]

2d
= 2δ

′
[
m̄+

⌊
m̂/2δ + (e∗ + ẽ)/2ℓe

⌉ ]
2d

Let ē =
⌊
m̂/2δ + (e∗ + ẽ)/2ℓe

⌉
. Note that 0 < m̂/2δ < 1 and |e∗ + ẽ|/2ℓe < 1/2, then −1/2 < m̂/2δ +

(e∗ + ẽ/2ℓe) < 3/2. We have ē ∈ {0, 1}. The analysis of σ′ is the same as in Theorem 3. ut

4.1 Homomorphic Truncation

With algorithm 11, we could perform the truncation by repeatedly extracting the last d bits of the current
message m and subtract it from m. Recall that the truncation algorithm takes as input an integer ∆2 ·m,
where m ∈ FP2p and log∆ > 2p, and outputs ∆ · Truncp(m). It drops the last p bits of m, and rescale
the factor from ∆2 into ∆.

In the algorithm, we assume d | p and d | (log q − 2 log∆ + p) for simplicity, the general case is
essentially the same. The input of this algorithm takes as input a RLWE ciphertext that only encrypts
the scaled fixed-precision number as the constant term. It is easy to extend the packing version of RLWE
ciphertexts. Details are given in Algorithm 12.
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Algorithm 12 HomTruncp(ct,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃,AK)
Parameters: d = logN − ℓe;

p: The amount of bits being dropped, assuming d|p.
Input: ct ∈ RLWEN

s,q(∆
2m), where m ∈ FP2p, and the error satisfies |e| < ∆2

22p+1 ;
A bootstrapping key BK = {BKi ∈ RGSWN

s,Q(s̃i)}ñ−1
i=0 ;

A bootstrapping key B̃K = {B̃Ki ∈ RGSWN
s,Q̃

(s̃i)}ñ−1
i=0 ;

Two key-switching keys KSKQ̃
s→s̃, KSKq

s→s̃;
An automorphism key AK.

Output: ct′ ∈ RLWEN
s,q(∆m′), where m′ = Truncp(m) ∈ FPp

1: Let acc = Extract(ct) ▷ acc ∈ LWEN
s,q(∆

2m)
2: Denote η = 2 log∆− 2p
3: for i = 0, 1, . . . , p

d
− 1 do

4: Let cbits = BitsExtractd(s,N)(acc, η + i · d, η + i · d,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃)
5: acc← acc− cbits
6: end for ▷ Drop the last p bits.
7: Let ct∗ = (0, 0) ∈ LWEN

s,Q(0), κ = η + p and γ = log q − d.
8: for i = 0, 1, ..., (log q − κ)/d− 2 do
9: Let cbits = BitsExtractd(s,N)(acc, κ+ i · d, κ− log∆+ i · d,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃)

▷ Here in BitsExtract, SimpleFBS is applied, i.e. cbits ∈ LWEN
s,Q.

10: acc← acc−ModSQ→q(∆ · cbits)
11: ct∗ ← ct∗ + cbits
12: end for ▷ Reconstruct the higher bits.
13: cbits = SignBitsExtractd(s,N)(acc, γ, γ − log∆,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃).

▷ Preserve the two’s complement representation.
14: ct∗ ← ct∗ + cbits.
15: return ct′ = ModSQ→q(LWE-to-RLWE(ct∗,AK))

Remark 11. In step 9, only the SimpleFBS procedure is applied, and the modulus switching procedure is
applied in step 10. This slight modification is to manage the errors and keep them small.

Remark 12. It is easy to modify Algorithm 12 into a simplified version HomTrunc′p. Its input ciphertext
is ct ∈ RLWEN

s,q(∆m) with m ∈ FPp and the plaintext in the output ciphertext is exactly the same.
In other words, it only refreshes the errors. In this algorithm, it only performs step 7-14, the position
κ− log∆+ i ·d is replaced with κ+ i ·d and the SignBitsExtractd(s,N) algorithm is replaced with the original
BitsExtractd(s,N) algorithm. This is because we do not need to drop bits blocks, and the position of the
effective bits are not changed.

Remark 13. Algorithm 12 could be extended to the coefficient packing version of RLWE ciphertexts. The
message is a ring element whose coefficients are in the form of ∆2mi for 0 ≤ i ≤ N − 1 and mi ∈ FP2p.
It is straightforward to extract the coefficient from the RLWE ciphertext and get N LWE ciphertexts
each encrypt ∆2mi. For each LWE ciphertext, perform step 2 to step 14 in parallel and then apply the
repacking techniques in [11] to pack the N LWE ciphertexts into one RLWE ciphertext. In this case, the
complexity will increase N times.

Theorem 4. Suppose BK contains 2ℓ RLWE ciphertexts with error variance σ2
bk, B̃K contains 2ℓ̃ RLWE

ciphertexts with error variance σ̃2
bk, KSKQ̃

s→s′ contains 2ℓksk RLWE ciphertexts with error variance σ2
ksk,

KSKq
s→s′ contains 2ℓ′ksk RLWE ciphertexts with error variance σ′2

ksk. AK contains 2ℓak RLWE ciphertexts
with error variance σ2

ak. If base power gadget is used in BK, g is the decomposition base. If RNS gadget is
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used then g = max{g0, ..., gℓ−1}. g̃, gksk, g′ksk and gak are similarly defined in B̃K, KSKQ̃
s→s′ , KSKq

s→s′ and
AK.

If ct ∈ RLWEN
s,q(∆

2m) with error variance σ2, where m ∈ FP2p. Let

τ1,k = 22(ℓe−2 log ∆+2p−i·d)
(
Nℓ′kskg

′2
kskσ

′2
ksk + k ·

(
2(

q

Q
)2ℓñNg2σ2

bk +
N

24
+

1

6

)
+ σ2

)
+(2N

Q̃

)2

(Nℓkskg
2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) +
ñ

12
+

1

3
,

where 0 ≤ k ≤ p/d− 1. Let

τ2,t = 22(ℓe−log ∆−t·d)
(
Nℓ′kskg

′2
kskσ

′2
ksk +

p

d

(
2(

q

Q
)2ℓñNg2σ2

bk +
N

24
+

1

6

)
+

t ·
(
2(

q∆

Q
)2ℓñNg2σ2

bk +
N

24
+

1

6

)
+ σ2

)
+(2N

Q̃

)2

(Nℓkskg
2
kskσ

2
ksk + 2ℓ̃ñNg̃2σ̃2

bk) +
ñ

12
+

1

3
,

where 0 ≤ t ≤ log q−κ
d − 1.

Suppose 6
√

max{{τ1,k}k, {τ2,t}t} + 1/2 < 2ℓe−1, q is a power of 2, d|p, d|(log q − k) and log∆ > p.
Then ct′ output in Algorithm 12 is a ciphertext in RLWEN

s,q(∆m′) with error variance σ′2, where m′ =
Truncp(m). Moreover,

σ′2 ≤
( q

Q

)2

·
(
ℓakN

2g2akσ
2
ak +

log q − κ

d
· 2ℓñNg2σ2

bk

)
+

N

24
+

1

6
.

Proof. Since m ∈ FP2p and log∆ > p, we know that 2η|∆2m. We consider two cases: ∆2m ≥ 0 and
∆2m < 0. For the first case, split ∆2m ∈ Z≥0 into bits blocks with each block d bits,

∆2m = 2ηm0 + 2η+dm1 + · · ·+ 2η+p−dm p
d−1︸ ︷︷ ︸

p bits being dropped

+2η+pm p
d
+ · · ·+ 2η+p+

(
log q−η−p

d −1
)
·d ·m log q−η

d −1︸ ︷︷ ︸
∆2m′ being reserved

,

where 0 ≤ mi < 2d. Consider the loop from step 3 to step 6. For 0 ≤ i ≤ p/d − 1, let cbitsi be
the output of the i-th iteration of step 4 and σ2

i be the error variance. Let acci be the output of the
i-th iteration of step 5 and σ̃2

i be the error variance. We claim cbitsi is a ciphertext of 2η+i·d ·mi and
σ2
i ≤ 2(q/Q)2ℓñNg2σ2

bk+N/24+1/6，acci is a ciphertext of ∆2m−
∑i

j=0 2
η+j·d·mj and σ̃2

i ≤ σ2+(i+1)·σ2
0 .

According to the chosen parameters and Theorem 3, cbits0 is a ciphertext of 2η · m0 and σ2
0 ≤

2(q/Q)2ℓñNg2σ2
bk +N/24 + 1/6, acc0 is a ciphertext of ∆2m− 2η ·m0 and σ̃2

0 ≤ σ2 + σ2
0 .

Suppose cbitsi and acci satisfies the above properties, we have σ̃2
i ≤ σ2+(i+1) ·σ2

0 for 0 < i < p/d−1.
Then due to the chosen parameters and the constraint of {τ1,k}k, it is easy to verify that the constraint
of τ in Theorem 3 is satisfied. Invoke Algorithm 11 on acci will obtain cbitsi+1, which is a ciphertext of

2η+(i+1)·d ·
[∆2 ·m−

∑i
j=0 2

η+j·d ·mj

2η+(i+1)·d

]
2d

= 2η+(i+1)·d ·mi+1,

and the error variance σ2
i+1 = σ2

0 ≤ 2(q/Q)2ℓñNg2σ2
bk +N/24+1/6 due to Theorem 3. Therefore, acci+1

is a ciphertext of ∆2m−
∑i+1

j=0 2
η+j·d ·mj and the error variance σ̃2

i+1 ≤ σ2 + (i+ 2)σ2
0 .

After step 6, acc is a ciphertext of ∆2m′ with error variance less than σ2 + (p/d) · σ2
0 . The following

steps will refresh acc into a ciphertext ct∗ of b(Q/q)∆m′e with error variance independent of σ. The
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analysis from step 8 to step 14 is similar as above, because the SignBitsExtract algorithm outputs the
same as BitsExtract. For 0 ≤ i ≤ (log q − κ)/d − 1, the i-th iteration of step 9 outputs a ciphertext
cbitsi which encrypts

⌊
(Q/q)2log ∆−p+i·d ·m p

d+i

⌉
, this is because the modulus switching procedure is not

performed in the functional bootstrapping procedure. The i-th iteration of step 10 outputs a ciphertext of
∆2m′−

∑i
j=0 2

η+p+j·dm p
d+j = ∆2m′−∆(

∑i
j=0 2

log ∆−p+j·dm p
d+j). Therefore, the final ct∗ is a ciphertext

of b(Q/q)∆m′e. The LWE-to-RLWE algorithm and modulus switching procedure convert ct∗ into an RLWE
ciphertext that encrypts ∆m′.

For the case that ∆2m < 0, the message is in the form q +∆2m > 0. Since 2η|q, then 2η|(q +∆2m).
In this case, the most significant bit of the highest d-bits in step 13 is 1. Due to Corollary 1, the message
contains an additional term q − 2γ−log ∆+d. Combining with the analysis of the first case, the resulting
message is of the form

q − 2γ−log ∆+d +∆
(

Truncp
(q +∆2m

∆2

))
= q − q

∆
+∆ ·

⌊
2p(

q +∆2m

∆2
)

⌋
/2p

= q +∆ b2p ·mc /2p = q +∆ · Truncp(m),

which is desired.
Considering the error variance, due to Theorem 3 without using modulus switching, we know that

the error variance of the final ct∗ satisfies (σ∗)2 ≤ (log q − κ)/d · 2ℓñNg2σ2
bk which is independent of σ.

By Lemma 5 and 2, the LWE-to-RLWE and modulus switching procedures ensure that ct′ is a ciphertext
of ∆m′ with error variance

σ′2 ≤
( q

Q

)2

·
(
ℓakN

2g2akσ
2
ak +

log q − κ

d
· 2ℓñNg2σ2

bk

)
+

N

24
+

1

6
.

It remains to prove that the parameters are satisfied the constraints in Theorem 3 when invoking the
bits extraction procedure in step 9. After step 6, acc is a ciphertext of ∆2m′ with error variance less than
σ2 + (p/d) · σ2

0 . In the i-th iteration, the error variance of acc is less than

σ2 + (p/d)σ2
0 + i ·

(
2
(
q∆/Q

)2
ℓñNg2σ2

bk +N/24 + 1/6
)
.

By the choice of {τ2,t}t for 0 ≤ t ≤ (log q − κ)/d − 1, the constraint in Theorem 3 is satisfied. This
completes the proof. ut

Approximate Homomorphic Truncation. The homomorphic truncation algorithm is dedicated for
fixed-precision numbers to achieve IND-CPAD security. When approximate encryption for fixed-point or
floating-point numbers is considered, we could modify the homomorphic truncation algorithm into an
approximate version. The resulting fully homomorphic encryption scheme is only IND-CPA secure.

In the exact homomorphic truncation algorithm, p is much smaller than log∆. This is because we
have to reserve enough space for the errors that will not destroy the effective bits. In the worst case,
the bit length of the error produced in the homomorphic operations could not exceed 2 log∆ − 2p. In
the approximate homomorphic truncation algorithm, p could be very close to log∆. The bits extraction
algorithm begins at the position 2 log∆− p instead of 2 log∆− 2p, this is where the approximate value
occurs. Details are given in Algorithm 13.
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Algorithm 13 ApproxTruncp(ct,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃,AK)
Parameters: d = logN − ℓe;

p: A parameter related to precision, assuming d|p.
Input: ct ∈ RLWEN

s,q(
⌊
∆2m

⌉
), where m ∈ R;

A bootstrapping key BK = {BKi ∈ RGSWN
s,Q(s̃i)}ñ−1

i=0 ;
A bootstrapping key B̃K = {B̃Ki ∈ RGSWN

s,Q̃
(s̃i)}ñ−1

i=0 ;
Two key-switching keys KSKQ̃

s→s̃, KSKq
s→s̃;

An automorphism key AK.
Output: ct′ ∈ RLWEN

s,q(∆m′), where ∆m′ ∈ Z and m′ ≈ m.
1: Let acc = Extract(ct) ▷ acc ∈ LWEN

s,q(
⌊
∆2m

⌉
)

2: Denote η = 2 log∆− 2p and κ = η + p, γ = log q − d.
3: Let ct∗ = (0, 0) ∈ LWEN

s,Q(0).
4: for i = 0, 1, ..., (log q − κ)/d− 2 do
5: Let cbits = BitsExtractd(s,N)(acc, κ+ i · d, κ− log∆+ i · d,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃)

▷ Here in BitsExtract, SimpleFBS is applied, i.e. cbits ∈ LWEN
s,Q.

6: acc← acc−ModSQ→q(∆ · cbits)
7: ct∗ ← ct∗ + cbits
8: end for ▷ Reconstruct the higher bits.
9: cbits = SignBitsExtractd(s,N)(acc, γ, γ − log∆,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃).

▷ Preserve the two’s complement representation.
10: ct∗ ← ct∗ + cbits.
11: return ct′ = ModSQ→q(LWE-to-RLWE(ct∗,AK))

Remark 14. Algorithm 13 could be extended to a simplified version ApproxTrunc′p. Its input ciphertext is
ct ∈ RLWEN

s,q(b∆me) with m ∈ R and the output ciphertext is of the form ct′ ∈ RLWEN
s,q(∆m′). In this

algorithm, the position κ − log∆+ i · d is replaced with κ + i · d and the SignBitsExtractd(s,N) algorithm
is replaced with the original BitsExtractd(s,N) algorithm.

Theorem 5. Let all the conditions holds as in Theorem 4, then ct′ is a ciphertext of ∆m′ with error
variance σ′2. Moreover, we have |∆m′ −∆m| ≤ ∆

2p + 1
∆ , and

σ′2 ≤
( q

Q

)2

·
(
ℓakN

2g2akσ
2
ak +

log q − κ

d
· 2ℓñNg2σ2

bk

)
+

N

24
+

1

6
.

Proof. Similar to the proof of Theorem 4, we could write
⌊
∆2m

⌉
in the form⌊

∆2m
⌉
= m∗ + 2η+pm p

d
+ · · ·+ 2η+p+

(
log q−η−p

d −1
)
·d ·m log q−η

d −1︸ ︷︷ ︸
∆2m′ being reserved

,

where 0 ≤ m∗ < 2η+p, 0 ≤ m p
d+i·d < 2d for 0 ≤ i < (log q − η − p)/d.

Denote M as the event that

∃ i ∈
[
0,

log q − η − p

d

)
, s.t. ∀ 0 ≤ j ≤ i, m p

d+j·d = 2d − 1.

If M does not happen, i.e., there is no consecutive m p
d+i·d’s that equal to 2d − 1 starting from the first

block, then according to Corollary 2 and Theorem 4, we have the output ciphertext encrypts ∆m′. Thus
|
⌊
∆2m

⌉
−∆2m′| = m∗ < 2η+p, which implies |∆2m −∆2m′| < 2η+p + |ϵ| < 2η+p + 1/2, where ϵ is the

rounding error. We get that |∆m−∆m′| < ∆
2p + 1

2∆ .
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If M happens for some i∗, we have m p
d+j·d = 2d − 1 for all 0 ≤ j ≤ i∗. Due to Corollary 2, we

know that the BitsExtract algorithm will obtain ciphertexts of 0 when extracting m p
d+j·d for 0 ≤ j ≤ i∗.

The extracted ciphertext of the block m p
d+(i∗+1)·d is of the form (m p

d+(i∗+1)·d + 1). Since the (i∗ + 1)-th
block does not overflow, then all the remaining message blocks will be extracted exactly. This is because
subtracting (m p

d+(i∗+1)·d + 1) will reserve enough 0’s (in fact d− 1 0’s) for the next extraction. Thus we
have ∣∣∣ ⌊∆2m

⌉
−∆2m′

∣∣∣ = ∣∣∣m∗ +

i∗∑
j=0

(2η+p+j·d)(2d − 1)− 2η+p+(i∗+1)·d
∣∣∣

=
∣∣∣m∗ + 2η+p(2d − 1)

i∗∑
j=0

2j·d − 2η+p+(i∗+1)·d
∣∣∣

=
∣∣∣m∗ + 2η+p · 2(i

∗+1)·d − 2η+p − 2η+p+(i∗+1)·d
∣∣∣

=
∣∣∣m∗ − 2η+p

∣∣∣
Since 0 ≤ m∗ < 2η+p, thus we have |∆m−∆m′| < ∆

2p + 1
2∆ . The analysis of σ′ is exactly the same as in

Theorem 4. This completes the proof. ut

Remark 15. Note that p ≈ log∆ in this case, and the resulting message m′ is very close to m. Therefore,
the bootstrapping error dominates the approximation error in this procedure. This is the main reason
our IND-CPA scheme preserves high precision while keeping the dimension small.

Remark 16. Note that in the approximate truncation algorithm, the modulus q is not required to be a
power of 2 since approximate errors are allowed. One could choose q be a product of distinct prime factors
and close to a power of 2.

5 The TOTA Algorithms
We are ready to describe our FHE scheme for fixed-precision numbers and for fixed-point numbers. Since
our approximate version is very similar, we describe them in one algorithm and point out the differences.

The fully homomorphic encryption TOTA consists of the following five algorithms: (TOTA.KeyGen,
TOTA.Enc,TOTA.Dec,TOTA.Add,TOTA.Mult). The plaintext space is defined in FPp or R.

– TOTA.KeyGen(1λ)
• It takes as input the security parameter λ, chooses integers N, q,Q, Q̃, ñ,∆, where N ,ñ, q and

∆ are powers of 2. Let χσ be the error distribution for encryption and σ > 0 be the standard
variance .

• It samples a secret key s ← {0, 1}N , a ← Rq and e ← χσ. Let s = ToRing(s), set the secret key
SK = s and the public key as

PK = (a,−as+ e) ∈ R2
q.

It generates a key switching key RLK ∈ RGSWN
s,q(s

2), which will be used to relinearize the
ciphertext. It also generates an automorphism key AK = {Ki ∈ RGSWN

s,Q(φi(s))}, i ∈ {2k+1|k =
1, . . . , logN}.

• It samples an intermediate key s̃ = {s̃0, . . . , s̃ñ−1} ← {0, 1}ñ and let s̃ = ToRing(̃s), generates
bootstrapping keys BK = {BKi ∈ RGSWN

s,Q(s̃i)}ñ−1
i=0 , B̃K = {B̃Ki ∈ RGSWN

s,Q̃
(s̃i)}ñ−1

i=0 , and two

switching keys KSKQ̃
s→s̃ and KSKq

s→s̃ as defined in Algorithm 5.
Let EK = (BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃,AK,RLK), it outputs (SK,PK,EK).
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– TOTA.Enc(PK,m). Given m ∈ FPp (or m ∈ R), set m′ = ∆ ·m (or m′ = b∆me). Sample two R ele-
ments e0, e1 ← χσ and u← {0, 1}N , set u = ToRing(u). Output the ciphertext as PK ·u+(e0, e1+m′).

– TOTA.Dec(SK, ct). Given a ciphertext ct = (a, b), if the plaintext is defined in FPp, it outputs

m =
1

2p

⌊
2p

∆
(b+ a · s)0

⌉
∈ FPp.

If the plaintext is defined in R, it outputs m = b(b+ as)0/∆e ∈ R. Where (·)0 denotes the constant
term of the ring element.

– TOTA.Add(EK, ct1, ct2). Given two ciphertexts ct1 = (a1, b1),ct2 = (a2, b2). It outputs ct′ = (a1 +
a2, b1+b2). If the plaintext is defined in FPp, it outputs the refreshed ciphertext ct = HomTrunc′p(ct′,BK,
B̃K,KSKQ̃

s→s̃,KSKq
s→s̃,AK). If the plaintext is defined in R, it outputs the refreshed ciphertext ct =

ApproxTrunc′p(ct′,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃,AK).

– TOTA.Mult(EK, ct1, ct2). Given two ciphertexts ct1 = (a1, b1),ct2 = (a2, b2). It computes (f, g, h) =
(a1a2, a1b2 + a2b1, b1b2). Relinearize the ciphertext by setting ct′ = KeySs2→s((0, f),RLK) + (g, h).If
the plaintext is defined in FPp, it outputs ct = HomTruncp(ct′,BK, B̃K,KSKQ̃

s→s̃,KSKq
s→s̃,AK). If the

plaintext is in R, it outputs ct = ApproxTruncp(ct′,BK, B̃K,KSKQ̃
s→s̃,KSKq

s→s̃,AK).

Theorem 6. Suppose BK contains 2ℓ RLWE ciphertexts with error variance σ2
bk, B̃K contains 2ℓ̃ RLWE

ciphertexts with error variance σ̃2
bk, KSKQ̃

s→s′ contains 2ℓksk RLWE ciphertexts with error variance σ2
ksk,

KSKq
s→s′ contains 2ℓ′ksk RLWE ciphertexts with error variance σ′2

ksk, RLK contains ℓrlk RLWE ciphertexts
with error variance σ2

rlk, AK contains 2ℓak RLWE ciphertexts with error variance σ2
ak. If base power gadget

is used in BK, g is the decomposition base. If RNS gadget is used then g = max{g0, ..., gℓ−1}. g̃, gksk, g′ksk,
gak and grlk are similarly defined in B̃K, KSKQ̃

s→s′ , KSKq
s→s′ , AK and RLK.

Let σ2
0 be the error variance of ciphertexts in TOTA. τ1,k and τ2,t are defined as in Theorem 4 except

that σ2 is replaced by 3∆2β2σ2
0 + ℓrlkNg2rlkσ

2
rlk. Suppose

σ2
0 < max

{
∆2

144 · 22p
,

∆2

108β224p+2
− ℓrlkNg2rlkσ

2
rlk

3∆2β2

}
, (N + 1) · σ2 ≤ σ2

0 ,

( q

Q

)2

·
(
ℓakN

2g2akσ
2
ak +

log q − κ

d
· 2ℓñNg2σ2

bk

)
+

N

24
+

1

6
≤ σ2

0 .

Then TOTA defined in FPp decrypts the ciphertext correctly and is fully homomorphic.

Proof. Let ct = (a, b) ∈ RLWEN
s,q(∆m) be a fresh ciphertext. It is easy to verify that b+ as = e0s+ eu+

e1+∆m. Denote e∗ = e0s+eu+e1, we have the variance of e∗ is less than (N+1)σ2 ≤ σ2
0 . When invoking

the decryption algorithm on ct, we have TOTA.Dec(SK, ct) =
⌊
2p

∆ (b+ a · s)0
⌉
/2p =

⌊
2pm+ 2p

∆ e∗
⌉
/2p =

2pm+
⌊
2p

∆ e∗
⌉
. Since σ2

0 ≤ ∆2/(144 ·22p), then |e∗| ≤ 6σ0 and
∣∣ 2p
∆ e

∣∣ < 1/2. TOTA.Dec(SK, ct) = m ∈ FPp.
Because addition is similar and simple, we only consider multiplication here. Let ct1 ∈ RLWEN

s,q(∆m1),
ct2 ∈ RLWEN

s,q(∆m2) be fresh ciphertexts with error term e1, e2, respectively. Denote the multiplication
ciphertext ctmult = TOTA.Mult(EK, ct1, ct2). Before relinearizing the ciphertext, the error term of the
multiplication is of the form ∆m1e2 + ∆m2e1 + e1e2, and the last term is much smaller. Heuristically,
the variance is less than 3∆2β2σ2

0 . Due to Lemma 3, the error variance σ2
relin of the relinearized product

ciphertext ct′ satisfies σ2
relin ≤ 3∆2β2σ2

0 + ℓrlkNg2rlkσ
2
rlk. In order to invoke HomTruncp and decrypt the
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exact message, the error term in ct′ will not distort the first 2p bits of the fraction part. By the setting
of σ0, it ensures that 6σrelin ≤ ∆2/22p+1.

By the setting of τ1,k, τ2,t and Theorem 4, we have ctmult is a ciphertext of Truncp(m1m2) with error
variance σ′2. It satisfies

σ′2 ≤
( q

Q

)2

·
(
ℓakN

2g2akσ
2
ak +

log q − κ

d
· 2ℓñNg2σ2

bk

)
+

N

24
+

1

6
≤ σ0.

This completes the proof. ut

Remark 17. The analysis for the approximate encryption is similar, we omit the detailed description.
Corollary 3. Suppose all the conditions hold as in Theorem 6, EK and PK in TOTA are indistinguishable
from uniformly random, then TOTA performed on FPp and R achieves IND-CPAD and IND-CPA security,
respectively .
Proof. It is straightforward from [35]. ut

6 Parameters and Implementation
We choose concrete parameters for TOTA and implement it with C++ from scratch. All the parameters
are chosen to provide at least 127-bit security according to [1]. For simplicity, we set the magnitude of all
the messages to be less than 1. The parameters are given in Table 1. Set I and II are chosen for IND-CPAD

security and Set III,IV and V are chosen for IND-CPA security5.
Note that we could choose the dimension N to 213 and 212 for p = 14 and p = 12 in the IND-CPAD

case, respectively. In the IND-CPA case, we could use N = 213 and preserve about 39-bit precision. This
is the first construction of this kind.

Param. N q σ ñ ∆ BK B̃K KSKQ̃
s→s̃ KSKq

s→s̃ AK p/precision d ℓe

Set I 213 2109 3.2 211 251
Q : {54, 55, 50, 50} Q̃ : {54, 55}

14 7 6g : rns g̃ : rns gksk : 27 g′ksk : 27 gak : rns
σbk : 3.2 σ̃bk : 3.2 σksk : 3.2 σ′

ksk : 3.2 σak : 3.2

Set II 212 254 3.2 211 224
Q : {54, 54} Q̃ : {54, 54}

12 6 6g : 220 g̃ : 220 gksk :2 g′ksk : 2 gak : 220

σbk : 3.2 σ̃bk : 3.2 σksk : 3.2 σ′
ksk : 3.2 σak : 3.2

Set III 211 {33} 3.2 210 216
Q : {54} Q̃ : {54}

≈ 11 6 5gbk : 24 g̃bk : 24 gksk : 2 g′ksk : 2 gak : 2
σbk : 3.2 σ̃bk : 3.2 σksk : 3.2× 26 σ′

ksk : 3.2× 26 σak : 3.2

Set IV 212 {54} 3.2 211 226
Q : {54, 54} Q̃ : {54, 54}

≈ 21 6 6gbk : 220 g̃bk : 220 gksk : 214 g′ksk : 214 gak : 220

σbk : 3.2 σ̃bk : 3.2 σksk : 3.2 σ′
ksk : 3.2 σak : 3.2

Set V 213 {54, 54} 3.2 211 253
Q : {54, 54, 50, 50} Q̃ : {54, 54}

≈ 39 7 6gbk : rns g̃bk : rns gksk : 214 g′ksk : 214 gak : rns
σbk : 3.2 σ̃bk : 3.2 σksk : 3.2 σ′

ksk : 3.2 σak : 3.2

Table 1. Parameters for TOTA with different security. The numbers of the modulus mean the bit length of each
prime factor. rns means that we choose the largest generator in the RNS representation. Set I and II set p = 14
and p = 12, respectively. Set III, IV and V achieves precision about 11, 21 and 39, respectively. Note that in the
IND-CPA case, p in the algorithm is not the final precision.

We also test all the parameter sets and the concrete performance is given in Table 2. The experiments
are run on a machine with Intel(R) Core(TM) i7-10510U 2304 MHz CPU and 16GB RAM.

As shown in Table 2, we could truncate the plaintext homomorphically in about 77s/50s for Set I/II
and in about 8s/23s/68s for Set III/IV/V. The key size of our construction is relatively large. One could
use the methods in [30] to compact the key size and perform the functional bootstrapping procedure on
the fly. We leave it to the future work.
5 Note that the theoretical analysis of the parameters is relatively loose, the concrete parameters chosen are

tighter. We also note that q is not required to be a power of 2 in the IND-CPA case.
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Security Parameter Set Truncation time (s) Public Key Size (GB)

IND-CPAD Set I 77.6 ≈ 8.006

Set II 50.3 ≈ 3.007

IND-CPA
Set III 8.52 ≈ 0.878

Set IV 23.5 ≈ 3.001

Set V 68.3 ≈ 8.004

Table 2. Concrete Performance of Different Parameter Sets

7 Conclusions
We propose TOTA, a fully homomorphic encryption for fixed-precision arithmetic with IND-CPAD security.
Along with that, we also extend it into an FHE scheme for approximate encryption with IND-CPA security.
The resulting approximate FHE preserves high precision with only small ring dimension. The underlying
core technique is a new fully functional bootstrapping methods that enables to perform arbitrary function
with in domain [0, N). We believe our fully functional bootstrapping is of independent interest.
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Appendix

A Details on RGSW Ciphertext and External Product
The gadget matrix consists of multiple gadget vectors. Let g = {g0, ..., gℓ} be a gadget vector. Two types
of gadget vectors are considered. If base power is used, i.e., g = {1, g, g2, ...gℓ−1}, we call it a base power
gadget, denoted as gpower. For some Q = q0× q1×· · ·× qℓ−1 with distinct primes, we call g a RNS gadget,
which is denoted as grns, if gi = [(Q/qi)

−1]qi for 0 ≤ i ≤ ℓ− 1.

Definition 3 (Gadget Matrix). Let g = {g0, g1, . . . , gl−1} ⊂ Z be the gadget vector, then the gadget
matrix G corresponding to it is the following matrix in R2l×2:

g0 0
...

...
gl−1 0
0 g0
...

...
0 gl−1


Also we define the decomposition procedure corresponding to the gadget basis.

Definition 4. Let g be a gadget vector, f ∈ R, then define

Decompg(f) = (f0, . . . , fl−1) ∈ Rl,

such that
∑

gifi = f . More specifically, if g = gpower, then (f0, ..., fℓ−1) is the power decomposition on
base g, i.e.,

∑ℓ−1
i=0 fi ·gi = f . If g = grns，then (f0, ..., fℓ−1) is the RNS decomposition, i.e., fi = f mod qi.

For (a, b) ∈ R×R, define

Decompg((a, b)) = (Decompg(a), Decompg(b)) ∈ R
2ℓ

It is easy to verify that
Decompg((a, b)) ·G = (a, b)

Definition 5 (External Product). Let C ∈ RGSWN
s,q(m1), and b ∈ RLWEN

s,q(m2), then the external
product on them is

C ⊡ b = Decompg(b) · C

Lemma 1. Let C ∈ RGSWN
s,q(m1) with error variance σ2

1, b ∈ RLWEN
s,q(m2) with error variance σ2

2. Let
ct = C ⊡ b, then ct ∈ RLWEN

s,q(m1 · m2) with error variance σ2
ext ≤ 2ℓNg2σ2

1 + ‖m1‖22σ2
2. Where g is

defined as follows: If base power gadget is used, g is the decomposition base. If RNS gadget is used then
g = max{g0, ..., gℓ−1}.

Proof. Let b = (a, b), and e be the error term of b. Let {ei}2ℓ−1
i=0 be the error terms of RLWE samples in C.

Let (a0, ...aℓ−1, b0, ..., bℓ−1) = Decompg((a, b)). We have C ⊡ b = ct′ +m1 · (a, b), where ct′ ∈ RLWEN
s,q(0).

Since m2 is the message of (a, b), then C ⊡ b ∈ RLWEN
s,q(m1 ·m2).

The error term of C⊡ b is of the form
∑ℓ−1

i=0(ai · ei + bi · ei+ℓ)+m1 · e. Simple analysis shows that the
variance σ2

ext of the error term is bounded by 2ℓNg2σ2
1 + ‖m1‖22σ2

2 . ut
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B Noise Analysis
Lemma 2. Let ct ∈ LWEN

s,q(m) with error variance σ2, and ct′ = ModSq→q′(ct), then ct′ ∈ LWEN
s,q′(b(q′/q) ·me)

with error variance σ2
ms = (q′/q)2σ2 +N/24 + 1/6.

Proof. Let (a, b) = LWEN
s,q(m) under key s, where 〈a, s〉+b = m+e ∈ Zq. Let (a′, b′) = ct′ = ModSq→q′(ct),

then

〈b(q′/q) · ae , s〉+ b(q′/q) · be = 〈(q′/q) · a, s〉+ (q′/q) · b+ 〈r, s〉+ ϵ1 ∈ Z
= (q′/q) · (m+ e) + 〈r, s〉+ ϵ1

= (b(q′/q) ·me) + (q′/q) · e+ 〈r, s〉+ ϵ1 + ϵ2

:= (b(q′/q) ·me) + e′

where r := (q′/q)a− b(q′/q) · ae and ‖r‖∞ < 1/2, |ϵ1| < 1/2, |ϵ2| < 1/2.
Similar to [20], the variance of 〈r, s〉 is ‖s‖21/12 according to the central limit heuristic and the ran-

domness of a. Then by the distribution of s we have the variance of e′ being (q′/q)2σ2 + (N/2)/12 +
1/12 + 1/12 = (q′/q)2σ2 +N/24 + 1/6, where σ2 is the variance of e. ut

Lemma 3. Let ct ∈ RLWEN
s,q(m) with error variance σ2, KSK be a RGSW ciphertext with error variance

σ2
ksk. Then ct′ = KeySs→s′(ct,KSK) is a ciphertext in RLWEN

s′,q(m) with error variance σ′2, and

σ′2 ≤ ℓNg2σ2
ksk + σ2,

where g is defined as follows: If base power gadget is used in BK, g is the decomposition base. If RNS
gadget is used then g = max{g0, ..., gℓ−1}.

Proof. The key switching procedure is essentially an external product except only ℓ RLWE ciphertexts
are needed. For correctness, (a′, b′) in Algorithm 4 is of the form c̃t+(a, b), where c̃t ∈ RLWEN

s′,q(0). Thus
ct ∈ RLWEN

s′,q(m). The error term of ct′ is
∑ℓ

i=0 ai · ei, where (a0, ..., aℓ−1) is the decomposition of a, and
(e0, ..., eℓ−1) are error term of the first RLWE ciphertext in KSK. Similar to Lemma 1, the error variance
of ct satisfies σ′2 ≤ ℓNg2σ2

ksk + σ2. This completes the proof. ut

Lemma 4. Let ct ∈ LWEN
s,q(m) with error variance σ2, KSKs→s′ be a set of RGSW ciphertexts with error

variance σ2
ksk. Then ct′ = DimSN→n′(ct,KSKs→s′) is a ciphertext in LWEn′

s′,q(m) with error variance σ′2,
and

σ′2 ≤ ℓNg2σ2
ksk + σ2,

where g is defined as follows: If base power gadget is used in BK, g is the decomposition base. If RNS
gadget is used then g = max{g0, ..., gℓ−1}.

Proof. The correctness directly follows from the fact that the constant term of
∑N/n−1

i=0 ãi · s̃i is the same
as 〈a, s〉 ∈ Zq. The analysis of the error variance is similar to Lemma 3. It involves in N/n key switching
procedures in the ring Zq[X]/(Xn + 1), and the extract procedure will not change the error variance.
Therefore σ′2 ≤ (N/n)(ℓng2σ2

ksk) + σ2 = ℓNg2σ2
ksk + σ2. ut

Lemma 5. Let ct ∈ LWEN
s,q(m) with error variance σ2, AK be a set of RGSW ciphertexts with error

variance σ2
ak. Then ct′ = LWE-to-RLWE(ct,AK) is a ciphertext of RLWEN

s,q(m) with error variance σ′2,
and

σ′2 ≤ ℓN2g2σ2
ak + σ2,

where g is defined as follows: If base power gadget is used in AK, g is the decomposition base. If RNS
gadget is used then g = max{g0, ..., gℓ−1}.
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Proof. In Algorithm 8, denote [〈a, s〉 + b]q = m + e =: m̃, then ct∗ can be seen as a noiseless ciphertext
on m∗ ∈ Rq whose constant term is N̂m̃. The process of evaluating trace invokes logN times HomAuto
procedures, and each involves a key switching procedure. This brings a new noise of variance σ2

ext ≤
ℓNg2σ2

ak. Let the error variance of the output ciphertext in step 3 is σ2
j in the j-th iteration, for 1 ≤ j ≤

logN . We have σ2
j+1 = σ2

j + (σ2
j + σ2

ext) and σ2
1 = 0. Thus σ2

log N =
∑log N−1

i=0 2i · σ2
ext ≤ Nσ2

ext.
The resulting message of trace is [N · N̂m̃]q = m̃ = m + e. If we view m as the plaintext, then the

noise of Algorithm 8 is of variance σ′2 ≤ ℓN2g2σ2
ak + σ2. ut
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