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Abstract. There are two main aims to this paper. Firstly, we survey
the relevant existing attack strategies known to apply to the most com-
monly used lattice-based cryptographic problems as well as to a number
of their variants. In particular, we consider attacks against problems
in the style of LWE, SIS and NTRU defined over rings of the form
Z[X]/(f(X), g(X)), where classically g(X) = q is an integer modulus.
We also include attacks on variants which use only large integer arith-
metic, corresponding to the degree one case g(X) = X − c. Secondly, for
each of these approaches we investigate whether they can be generalised
to the case of a polynomial modulus g(X) having degree larger than one,
thus addressing the security of the generalised cryptographic problems
from linear algebra introduced by Bootland et al. We find that some
attacks readily generalise to a wide range of parameters while others re-
quire very specific conditions to be met in order to work.

Keywords: lattice-based cryptography, noisy linear algebra, learning
with errors, short integer solutions, NTRU

1 Introduction

The area of lattice-based cryptography has rapidly grown to be one of the lead-
ing candidates offering post-quantum security for a wide variety of cryptographic
primitives. In this work we will consider the three most widely used crypto-
graphic problems within lattice-based cryptography and their generalisations;
namely, the LWE, SIS and NTRU problems. Concretely, we will explain how the
most relevant attack strategies can be applied to attempt to solve these hard
problems using a classical computer. We do not consider any possible quantum
attacks against our problems besides generic speed-ups to classical attacks due
to Grover’s algorithm. As we will see, many of the same ideas are used in attack-
ing each of these different problems and indeed a number of approaches involve
reducing one of the three problems to one of the others.

The first of our three problems to appear was the short integer solutions
(SIS) problem of Ajtai [3]. Informally, the problem is, given a set of vectors,
to find a linear dependence between them in which the scalars used are all
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small. Originally, the vectors were uniformly random elements of Znq for suitable
integers q and n and the scalars being integers. This was first generalised to
the ring version [60, 61] in which the vectors have only one component that is
from some polynomial quotient ring Rq = Zq[X]/(f(X)) for a suitable monic
polynomial f ∈ Z[X] of degree n and with the scalars from the ‘parent’ ring
R = Z[X]/(f(X)), and later to the module version [53] in which the vectors can
have more than one components but still have entries from the ring Rq; scalars
remain elements of R.

The second problem is called the learning with errors (LWE) problem and
was introduced by Regev in [65]. The problem can be described as that of solving
a system of noisy linear equations, that is the constant terms of a system of linear
equations have been modified by adding some small error terms and the task
is to solve the system and hence also determine these errors. Again, originally
the system of noisy linear equations was defined over the ring Zq but this was
later modified and generalised to rings of the form Rq as defined above [71,
25] with the new problems eventually being known as the polynomial (module)
learning with errors problem. A more mathematically involved modification to
the problem was proposed by Lyubashevsky, Peikert and Regev in [57] where
they argue this gives the ‘right’ definition of the modified problem using the ring
of integers of a number field and its dual ideal; this problem is known as the ring
learning with errors problem and also has a generalisation to modules [53].

Lastly, the third problem we discuss is the NTRU problem. Here, one must
write a given ring element as a quotient of two small elements in a finite ring.
Unlike the previous two problems, this problem was already initially instantiated
using a ring of the form Rq as described above.

Recently, the NTRU problem was generalised in a new direction by Aggarwal
et al. in an early version of [1] and the same generalisation was quickly applied
to the (polynomial) learning with errors problem in the final version of their
paper [2]. The connection between these new problems and the NTRU and LWE
problems was made explicit in [24] but can be most simply explained by replacing
the integer modulus q used to define the ring Rq by the linear modulus X −
2 which leads to a completely different structure, namely the new ring RX−2
which in this case is equivalent to large integer arithmetic in ZM for some large
Mersenne number M .

In [24] the authors further propose to generalise all three problems to use the
ring Rg = Z[X]/(f(X), g(X)) for a general polynomial g on the assumption that
this ring is finite and elements enjoy having a ‘nice’ canonical representative.
We will present the exact formulation of the problems we are considering in
Section 2.4.

As well as presenting attacks against the problems with integer moduli we
also describe the newer attacks against instances with linear moduli. To the best
of our knowledge this is the first time both cases have appeared together which
allows us to highlight their similarities and differences. Furthermore, we assess
how to generalise these attacks to deal with moduli of degree larger than one,
an area which has not been studied in any great detail before.
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We find that some attacks such as the straightforward lattice attack against
the SIS problem can be applied more or less unchanged to the more general case.
Other attacks such as the Blum–Kalai–Wasserman algorithm [21] and the dual
attack on LWE [62] can be employed on a wide range of parameters though some
restrictions are still required. Finally, attacks such as the subfield attack on the
NTRU problem [5, 29] and the Arora-Ge attack [13] on LWE, which are only
applicable in rather special circumstances, can be modified to apply to more
general instances. However, they remain confined to working only in a restricted
set of circumstances.

Outline

In Section 2 we introduce some notation and the definition of the problems
considered in this work, with examples, this summarises [24, Section 2 and 3]
to which we direct the reader if necessary. Furthermore, we give a number of
preliminary results which help to illustrate how the generalised problems behave
like the standard problems in some ways but not in others. In Section 3 we look
at attacks against the SIS family of problems, followed by attacks on the NTRU
family of problems in Section 4, while in Section 5 we describe attacks which
work against the LWE family of problems. In each case, we examine how the
attack can be generalised to work for a larger range of parameters within the
framework of the problems given in [24].

2 The problems and basic results

2.1 Notation

As previously mentioned, we will be working with a general quotient polynomial
ring, which we call the parent ring, R := Z[X]/(f(X)), for which f is monic of
degree n, as well as a quotient of this ring Rg = Z[X]/(f(X), g(X)) for some
polynomial g coprime to f . We will refer to g as the ciphertext modulus even
though we do not actually consider any concrete encryption schemes in this
work. Further, in this paper, as in [24], we will only consider the ring Rg for g
such that Rg = Z[X]/(a, r(X)) for an integer a and monic polynomial r(X). We
note that if one chooses f and g randomly and they satisfy our conditions then
it is likely that r will be a linear polynomial and hence Rg is just the ring of
integers modulo a, of course, one will not choose f and g at random but it is still
true that r will have degree smaller than n unless g is an integer in which case
r = f . An explanation of how to determine if g satisfies this constraint and how
to compute such an a and r(X) can be found in [24]. We merely mention here
that this condition is not so restrictive and covers all currently known choices
for g in the literature. The notation a and r will be used consistently throughout
this paper.

We will also denote by Rep(Rg) the following set of representatives for Rg in
Z[X]:

Rep(Rg) :=
{
α0 + α1X + · · ·+ αdeg(r)−1X

deg(r)−1
∣∣∣ αi ∈ {0, . . . , a− 1}

}
.
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We have the natural bijection repg : Rg → Rep(Rg) given by sending an element
x ∈ Rg to the unique element repg(x) ∈ Rep(Rg) such that x = repg(x) +
(f(X), g(X)). We abuse notation slightly by allowing arguments from R, so for
x ∈ R we define repg(x) = repg(x mod gR). Further, we allow arguments to be
vectors or matrices with entries in either Rg or R by applying the map in a
coordinate-wise manner

We also define the map ι : R → Zn which takes an element, whose coset
representative is of lowest degree, c0+c1X+· · ·+cn−1Xn−1+(f(X)), to the (row)
vector of its coefficients, (c0, c1, . . . , cn−1). We naturally extend this to ι : Rm →
Zmn, for a natural number m, by concatenating the vectors given by applying ι
component-wise, as well as to matrices ι : R`×m → Z`mn by concatenating the
vectors given by applying ι to each row vector in Rm.

By an abuse of notation we define a ‘norm’ on the ring R by ‖ · ‖ : R→ R≥0.
This ‘norm’ will in general not satisfy ‖u · v‖ ≤ ‖u‖ · ‖v‖ so will not be a ring
norm. However, we will require that the product of elements of ‘small’ norm will
also be somewhat ‘small’. It is intuitive to think of the norm as being derived
from one on Rn by noting that R ∼= Zn as abelian groups (for example ι is
one such isomorphism) and embedding Zn into Rn. Throughout, we will use
the isomorphism ι between R and Zn along with the standard embedding of
Zn into Rn, however any embedding into Rn can be used instead depending on
the ‘norm’ used. In particular, if R is a ring of integers of a number field then
one can use the canonical embedding (see Section 2.3 below) to define ι and the
corresponding norm instead.

Elements of free modules are taken to be row vectors, for example R` is the
free module of `-tuples having entries in R which we write as a row vector. We
extend ‖ · ‖ to vectors and matrices by taking the maximum of the norm applied
to all the entries; other choices are possible.

2.2 Distributions of small elements

As well as a notion of smallness we will also need to use distributions of small
elements over R when defining the problems. One can do this by considering an
elliptical Gaussian distribution on Rn and pulling it back via the inverse of the
map ι. This will however give an element of R ⊗Q R so we typically discretise
the distribution, either before or after pulling it back.

Formally, the normalised Gaussian function with parameter α, ϕα : Rn → R+

is defined as ϕα(x) = exp(−π ‖x‖2 /α2)/αn. One may replace ‖x‖2 by xDxT

for a diagonal matrix D to consider an elliptical Gaussian. We denote the n-
dimensional (spherical) discrete Gaussian distribution with width parameter α
as DZn,α and define it to take the value x ∈ Zn with probability ϕα(x)/ϕα(Zn)
where ϕα(Zn) =

∑
x∈Zn ϕα(x).

2.3 The canonical embedding and canonical norm
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When the polynomial f defining the parent ring R is irreducible then the
quotient field of R is a number field, namely it is of the form K = Q[X]/(f(X)).
Such a field can be mapped into the field C in a one-to-one manner and in fact
there are n such mappings, each defined by sending X to one of the complex
roots of f , and these are all distinct. Let us denote these field embeddings by σi
for i = 1, . . . , n, ordered so that the first s1 are defined by any real roots of f and
the latter 2s2 come in pairs defined by a complex root of f and its conjugate. The
canonical embedding is defined to be the map σ = (σ1, . . . , σn) : K → Rs1×C2s2 .
We can define a corresponding norm with respect to the canonical embedding
called the canonical norm as

‖x‖can =

√√√√ n∑
i=1

|σi(x)|2.

2.4 The problems and main examples

Here we introduce the three general problems as given in [24] and then explain
which parameter choices give the main examples of the specific problems con-
sidered previously. The first problem is that based on the short integer solution
problem.

Problem (Ideal short integer solution problem (Ideal-SISf,g,m,`,ρ)). For
integers ` > m > 0 and a positive real ρ, sample ` elements from Rmg uniformly at
random and denote them by a1, . . . ,a`. The ideal short integer solution problem,
Ideal-SISf,g,m,`,ρ, is to find a non-zero vector z = (z1, . . . , z`) ∈ R` such that

‖z‖ ≤ ρ and
∑`
i=1 ai · zi = 0.

Writing A ∈ Rm×`g for the matrix having the vectors aT1 , . . . ,a
T
` as its

columns, we can rewrite the final condition as AzT = 0T . One can consider
an inhomogeneous version of this problem in which we replace this condition
by AzT = tT for some given target vector t ∈ Rmg . Secondly, for the learning
with errors type problems there are two distinct variants, a search and a decision
version.

Problem (Ideal learning with errors search problem (Ideal-LWEf,g,m,k,`,χ)).
Let χ be a distribution of small elements over R and let k, ` and m be positive
integers. Sample a uniformly random secret matrix s ∈ Rm×kg . The ideal learning
with errors search problem, Ideal-LWEf,g,m,k,`,χ, is to find s given the tuple of
matrices (a,b) ∈ R`×mg ×R`×kg where a ∈ R`×mg is sampled uniformly at random

and b = as + e ∈ R`×kg with e sampled from χ`×k.

Problem (Ideal learning with errors decision problem (Ideal-DLWEf,g,m,k,`,χ)).
Let χ, k, `, m and s be as in the previous problem. Given (a,b) ∈ R`×mg ×R`×kg

where a is uniformly random and b is either uniformly random or of the form
b = as + e for some e sampled from χ`×k, the Ideal-DLWEf,g,m,k,`,χ problem is
to determine which is the case.

5



While we have described the Ideal-LWE problem using a fixed ` it is common
to allow the attacker to choose the value of ` so long as it remains polynomially
bounded in n. In this case one usually considers the distribution As,χ which
returns a single sample, i.e. ` = 1, for a fixed secret s and allow the attacker
access to an oracle which returns in constant time elements from As,χ. Further,
a short or sparse secret variant of the problem is sometimes considered in which
the secret s has entries sampled from another distribution of small elements such
as those polynomials having at most a fixed number of non-zero coefficients.

Lastly, we have the generalisation of the NTRU problem.

Problem (Ideal NTRU problem (Ideal-NTRUf,g,m,χ,ρ)). Let χ be a distri-
bution of small elements over R, ρ be a positive real which bounds χ and m
be a positive integer. Sample two matrices u,v ← χm×m such that u is invert-
ible when considered modulo g. Compute, as an element of Rm×mg the quotient
h = vu−1. The Ideal NTRU problem Ideal-NTRUf,g,m,χ,ρ is, given h and ρ, to
find two matrices u′,v′ ∈ Rm×m with u′ invertible modulo g, h = v′u′−1 mod g,
‖u′‖ < ρ and ‖v′‖ < ρ.

One may wish to sample the entries of u and v from slightly different distri-
butions, for example to ensure that u is invertible with a reasonable probability,
however for simplicity we will not distinguish the two distributions.

Main Examples If we fix g to be an integer q then Ideal-SISX,q,m,`,ρ is the orig-
inal SIS problem [3] (any monic linear f can be used to remove the polynomial
structure), Ideal-SISf,q,1,`,ρ is the Ring-SIS problem [60, 61] and Ideal-SISf,q,m,`,ρ
is Module-SIS which bridges the two [53]. Furthermore, Ideal-LWEX,q,m,1,`,χ is
the original LWE problem when χ is a (discrete) Gaussian distribution [65],
Ideal-LWEf,q,1,1,`,χ is the polynomial LWE problem [71]3, and its extension to
modules is Ideal-LWEf,q,m,1,`,χ [25]. Finally, Ideal-NTRUf,q,1,χ,ρ gives the typi-
cal NTRU problems depending on the choice of f and χ [46, 31, 19].

On the other hand, examples of g not being a constant polynomial are
Ideal-NTRUXn−1,X−2,1,χ,ρ, with χ returning binary polynomials of Hamming
weight h, which gives the Mersenne low Hamming ratio search problem, MLHRn,h,
and short secret Ideal-LWEXn−1,X−2,1,1,1,χ with the same χ gives the Mersenne
low Hamming combination search problem, MLHCn,h [1]. Also, for an integer q
and χ a discrete Gaussian distribution, Ideal-LWEXn+1,X−q,1,1,`,χ, is the integer
ring learning with errors problem of Gu [41]. Lastly, Hamburg [43] considered a
module version of the decision problem, namely the Ideal-DLWEXn−Xn/2−1,X−q,m,1,`,χ
problem for certain choices of n and q and with χ returning ternary polynomials.

2.5 Recognizing small elements in Rg

In this section we focus on the case that small elements in R have small coeffi-
cients; however the same discussion is relevant when ι is some other embedding
though it may play out differently in that case.

3 Stehlé et al. originally called their problem Ideal-LWE however this is not the same
as our problem which is much more general.
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When the ciphertext modulus is an integer it is easy to recognize small ele-
ments in Rg as we can simply reduce every coefficient into the range (−g/2, g/2]
and smallness (which will be relative to g) is readily apparent. Alternatively,
when g = X − b then Rg ∼= Z/f(b)Z so we can take an element of Rg, lift it
modulo f(b) and then expand it using a (balanced) b-ary expansion before look-
ing at the coefficients of this expansion to determine whether the element is a
reduction of a small element in R or not.

For a ciphertext modulus of degree two or larger things get more complicated
in general. One obvious approach which works for any f and g is to consider the
lattice

{x ∈ Zn | x = ι(y) for some y ∈ R such that y ≡ 0 mod gR}

and note that (any lift of) a small element of Rg is close to this lattice. Given an
element z ∈ Rg, one can attempt to solve the closest vector problem in this lattice
with target vector any lift of z using, for example, the embedding technique. In
doing so, one recovers an element w ∈ R such that w ≡ z mod gR and which
has small coefficients if and only if z is the reduction of a small element in R,
namely of w itself.

In some cases, this will be overkill though. For example, if f and g can be
written as polynomials in some power of X, say Xp with f(X) = F (Xp) and
g(X) = G(Xp), then we can split the problem into p cases since for a small
element w ∈ R each coefficient of repg(w) depends only on n/p coefficients of w
and each such coefficient only affects one coefficient of repg(w). In this case one
reduces the problem to determining smallness in the ring Z[Y ]/(F (Y ), G(Y )).
For more general ι than the coefficient embedding, one may also have a simi-
lar decomposition and in this case the splitting needs to respect the notion of
smallness as well.

In summary, some choices of f and g have efficient methods to determine
whether an element of Rg is the reduction of a small element in R while for
others this is not true. It is unclear whether instances of Rg not having such an
efficient test for smallness can be effectively used in cryptographic applications.

2.6 What happens when a is not prime?

In many cases, such as when g itself is an integer modulus and we consider
the Ideal-LWE problem, there are no fine-grained restraints put on the possible
values for a which can be used securely. On the other hand, in the MLHR and
MLHC problems [2], the authors restrict to the case when a is a prime. Also, the
divisibility of a should be considered in the Ideal-NTRU setting from a practical
point of view as, if it is highly composite with many small primes as factors, it
will be difficult to find invertible matrices u to use in the problem. All of this
begs the question of what happens when a is not a prime.

The obvious fact in this case is that the ring Rg can be written as a product
of smaller rings using the Chinese remainder theorem. If a is written as a product
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of coprime integers (e.g. powers of distinct primes) as a = q1 · · · qt then we have

Rg ∼=
Zq1 [X]

(r(X))
× · · · × Zqt [X]

(r(X))
,

together with the t natural homomorphisms θi : Rg → Zqi [X]/(r(X)). This
leaves the potential for the problem to be split into t smaller problems which
can be solved independently and whose solutions can be combined to solve the
original problem.

For lattice attacks, the reduction in the size of the integer modulus has little
effect on the algorithms as the important parameter is the dimension of the
lattice. However, for combinatorial attacks it is possible that reducing a can
have a positive effect in reducing the complexity of the algorithms. We discuss
this further when explaining these attacks.

The problem with the homomorphisms θi is that they do not reduce the
dimension n of the ring R as a Z-module. There are however circumstances
where lowering the dimension is possible; to see this we again use the MLHR
problem. Here, the main reason a is taken to be prime is actually not because
a itself is prime but rather that such an a forces the dimension n to be prime.
If n were composite, say n0 | n, then Xn0 − 1 divides Xn − 1 and we have
(Xn − 1, X − 2) ⊆ (Xn0 − 1, X − 2) which is the same as the statement that
(2n0 − 1) | (2n − 1). In this way the problem can be considered in a smaller
dimension which in the case of the MLHR problem and for suitable n0 is likely
to still be an instance of the same problem. The issue arises here because f is
not irreducible rather than a not being prime.

2.7 What happens when f is not irreducible?

If there exists f ′|f then there is a map R→ R′ = Z[X]/(f ′(X)) which maps the
distribution χ to a distribution χ′ and if χ′ can effectively be seen as a distri-
bution of small elements it may be possible to mount an attack on this smaller
dimensional problem to recover partial information about the solution of the
original problem. Actually, one need only have f ′ dividing f modulo a as exem-
plified by the ‘evaluation at one’ attack in [36]. The main restriction however is
that the distribution of small elements is very likely to become indistinguishable
from random in most cases hence f being reducible doesn’t immediately imply
the existence of an attack.

2.8 A Generic Transformation to Normal Form for Ideal-LWE

In [12, Section 3.1], Applebaum et al. give a generic transformation from the
LWE problem with modulus a prime power to one in which the secret vector
is sampled from the error distribution at the cost of reducing the number of
samples. In our setting we can apply the same technique.

Suppose we are given an instance (a,b) ∈ R`×mg × R`×kg for some ` > m.
Suppose further that there is a submatrix A of a, consisting of m rows of a, such
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that A is invertible over Rg. Write B for the corresponding submatrix of b, that
is taking the same rows we did to give A. Write (ā, b̄) for the remaining rows
not in (A,B). Define a′ := −āA−1 and b′ = b̄ + a′B.

If (a,b) consists of samples from the Ideal-LWE distribution, then (a′,b′) ∈
R

(`−m)×m
g ×R(`−m)×k

g are samples from the Ideal-LWE distribution whose secret
is sampled from the error distribution. First, to see that a′ is uniformly random
we note that the map Rmg → Rmg , α 7→ −αA−1 which we are applying to the
uniformly random rows of ā (i.e. the first component of the remaining samples)
is an isomorphism. To see that b′ is of the required form write E = B − As for
the error in the samples used to construct (A,B), here s is the secret associated
with the original samples. Then we have that the secret for the samples (a′,b′)
is E as we have

b′ − a′E = b̄ + a′B − a′(B −As) = b̄− ās = ē.

We also see that the error in the remaining samples does not change. Alterna-
tively, if b were uniformly random then so too is b̄ and hence also b′.

We therefore see that the transformation works only when such an invertible
matrix A can be found and the probability of this depends on ` but also on
the value of a. If a is divisible by many small primes then the proportion of
invertible elements in Rg decreases and the less likely one will be able to invoke
the transformation.

2.9 Modulus switching for the short secret Ideal-LWE problem

In the case of an integer ciphertext modulus, one can use the technique of modu-
lus switching. This is a technique which allows one to transform elements in the
ring Rq1 , with integer ciphertext modulus q1 to elements in a new ring Rq2 , with
q2 another integer while preserving the relative size of the elements. One can
apply this transformation to the learning with errors family of problems as was
done in the BGV levelled fully homomorphic encryption scheme [25] to reduce
noise growth.

When replacing the integer modulus with a general polynomial ciphertext
modulus one can do the same. Suppose we have an element y ∈ Rg1 and we
want to convert it to an element y′ ∈ Rg2 , we can do so using Algorithm 1.

One might wonder if the output depends on the choice of lift in line 2 however
since g1(X)β(X)g2(X) ≡ g2(X) mod f(X) this is not the case.

In the short secret variant of the Ideal-LWE problem we can use modulus
switching to transform an instance of the problem over Rg1 to one over Rg2
as follows. Suppose we are given samples (a,b) ∈ R`×mg1 × R`×kg1 where b ≡
as + e mod g1R for some small secret s ∈ Rm×k and error e ∈ R`×k. We can
apply Algorithm 1 component-wise to both a and b to give a′ ∈ R`×mg2 and

b′ ∈ R`×kg2 respectively. Then we have b′ ≡ a′s + e∗ mod g2R for some element

e∗ ∈ R`×k, the size of which depends on f , g1, g2, s, in particular on ‖s‖2, and
the original size of e. If we write e′ for the result of applying ModulusSwitch to
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Algorithm 1: ModulusSwitch

Input : An element y ∈ Rg1 with R = Z[X]/(f(X)) and n = deg f
Output: An element y′ ∈ Rg2

1 1, β(X), γ(X)← XGCDQ[X](g1(X), f(X));
2 y(X)← repg1(y);

3 p(X)← y(X)β(X)g2(X) mod f(X);
4 Write p(X) = pn−1X

n−1 + pn−2X
n−2 + · · ·+ p1X + p0;

5 y′(X)← bpn−1eXn−1 + bpn−2eXn−2 + · · ·+ bp1eX + bp0e;
6 y′ ← y′(X) mod g2(X);

e mod g1R and lifting it to an element of R`×k then we can write e∗ = e′+es+e+

where

es[i, j] :=

m∑
t=1

(bai,tst,jβg2 mod fe − bai,tβg2 mod fest,j)

e+[i, j] := bbi,jβg2 mod fe −
m∑
t=1

bai,tst,jβg2 mod fe − bei,jβg2 mod fe

and ai,j , bi,j are lifts of ai,j and bi,j to R. We note that ‖ι(e+)‖∞ ≤ m+2
2 while

the size of es depends on the size of s.

As a concrete example, for f = Xn + 1, g1 = Xn1 − q1 or g1 = q1 for
some integer q1 and similarly g2 = Xn2 − q2 or g2 = q2 for some integer q2
(any combination is possible), we found experimentally that if σ2

1 is the variance
of the original error distribution, the variance of the new error distribution is
σ2
2 ≈ σ2

1(q2/q1)2 + 0.085‖s‖22. This implies we can only apply modulus switching
if the secret has very small 2-norm such as having a sparse binary vector of
coefficients. In particular, this is typically not true when applying the generic
transformation from the previous section as the new secret is sampled from
the error distribution which usually cannot be too small due to Arora-Ge style
attacks (see Section 5.7). In general, the relationship between all the parameters
which determine how large e∗ is appears difficult to write down.

In particular, this gives us some confidence in the hardness of the Ideal-LWE prob-
lem with general polynomial modulus g. Suppose we could solve this problem
for a given modulus g2, this would give us an algorithm to solve the short secret
problem for a suitable integer modulus g1 and narrow enough error distribution.
Namely, we could use modulus switching to transform such samples modulo g1
to samples modulo g2 at the cost of increasing the size of the errors. After this,
one could apply the attack which works modulo g2, allowing one to find the solu-
tion to the problem modulo g1. Of course, if the error distribution is too narrow,
we already have attacks on the integer modulus Ideal-LWE problem such as the
Arora-Ge attack and in that case the reduction may be meaningless.
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3 Attacks on the SIS family of problems

3.1 Simple lattice attack

One can view the original SIS problem, Ideal-SISX,q,m,`,ρ, as an approximate
shortest vector problem on the `-dimensional q-ary lattice

Λ⊥q (A) :=
{

z ∈ Z`
∣∣ AzT ≡ 0T mod q

}
.

where A ∈ Zm×`q is the uniformly random matrix defining the problem. We note
that with high probability the matrix A is full rank and further that the lattice
Λ⊥q (A) always has rank m and with high probability has a basis of the form

(
I`−m C

0 qIm

)
,

for some (`−m)×m integer matrix C, and thus volume qm. Since we are looking
for a non-zero vector of length at most ρ the problem is equivalent to the Hermite
shortest vector problem HSVPγ with approximation factor γ = ρq−m/`.

If we perform lattice reduction on the lattice Λ⊥q (A) in an attempt to find a
short enough non-zero vector then we need to use an algorithm that can achieve
a root Hermite factor of at most δ0 = ρ1/`q−m/`

2

.

Typically, the dimension ` of the lattice will be large so that running such a
lattice reduction algorithm will be very costly. One can try to get around this by
removing columns from the matrix A which lowers the dimension of the lattice
however this may reduce the number of possible solutions to zero.

When considering the ring and module variant Ideal-SISf,q,m,`,ρ of the prob-
lem the approach remains the same after rewriting the product AzT as the
product between a matrix Ã ∈ Zmn×`nq , depending on A and f , and ι(z) ∈ Z`n.

Now one can construct the lattice Λ⊥q (Ã) and again apply a lattice reduction

algorithm to it. More detail on exactly how to construct Ã is given below when
we generalise to using a polynomial g in place of q.

Generalisation

For the more general problem Ideal-SISf,g,m,`,ρ, the SIS lattice becomes

Λ(a1, . . . ,a`) =

{
(ι(z1), . . . , ι(z`)) ∈ Z`n

∣∣∣∣∣ zi ∈ R,
∑̀
i=1

aizi ≡ 0 mod gR

}
.
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To compute a basis of this lattice we can use standard methods for computing
the left kernel of the (mn+ `deg r)× ` deg r matrix

Ma1,1
Ma2,1

· · · Ma`,1

Ma1,2
Ma2,2

· · · Ma`,2
...

...
. . .

...
Ma1,m

Ma2,m
· · · Ma`,m

aIdeg r
aIdeg r

. . .

aIdeg r


,

where Mai,j ∈ Zn×deg r is the matrix of multiplication by ai,j (the jth component
of ai) taking an element from R, represented by its coefficient (row) vector,
to an element of Rep(Rg) represented by its coefficient vector up to multiples
of a. Finding a basis for this kernel can be done by, for example, using the
LLL algorithm. It is then a matter of running a strong enough lattice reduction
algorithm on Λ(a1, . . . ,a`) in order to find a small enough non-zero vector in
this lattice.

When g is a polynomial with small coefficients we may have many vectors
in this lattice which are small but give rise to the trivial solution modulo gR.
However, these are valid solutions to the Ideal-SIS problem and in this case the
problem becomes trivial if the norm of the vector of coefficients of g is smaller
than ρ.

If we allow only solutions which are non-zero modulo gR, as will be needed
in Section 5.5 when solving Ideal-LWE via Ideal-SIS, then the existence of these
trivial short vectors does not prevent us from finding small non-trivial vectors.
We found that running the BKZ algorithm still enables one to recover non-trivial
vectors of length roughly δ`n0 Vol(Λ(a1, . . . ,a`))

1/`n in the lattice and hence solve
Ideal-SIS for values of ρ larger than this.

Requirements. There are essentially no requirements for performing this type
of attack besides the existence of a solution to the problem and the use of a
strong enough lattice reduction algorithm. In particular, if the lattice reduction
algorithm achieves a root-Hermite factor δ0, then the attack is likely to succeed
if δ`n0 Vol(Λ(a1, . . . ,a`))

1/`n < ρ.

3.2 A meet-in-the-middle attack

The most näıve attack one can consider on the Ideal-SISX,q,m,`,ρ problem is to
perform a brute force attack by enumerating over all possible non-zero vectors
z ∈ Z` such that ‖z‖ ≤ ρ and testing if AzT ≡ 0T mod q. Clearly, the running
time of such an approach is exponential in `.

One can improve the running time at the expense of using a larger amount
of memory by using a meet-in-the-middle approach. Namely, as aTi is the ith
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column of the matrix A, we can rewrite the congruence as

k∑
i=1

aTi · zi ≡ −
∑̀
i=k+1

aTi · zi mod q,

for some 1 ≤ k ≤ `; typically k = `/2. After computing and storing the result
of the left-hand side of the congruence for all possible choices of z1, . . . , zk that
could lead to a solution, one can then enumerate over the possible remaining
choices for zk+1, . . . , z`, compute the right-hand side of the congruence, and
search for a collision with the stored values. If a collision is found for which the
corresponding z satisfies the norm bound then one has found a solution. It is
straightforward to generalise this to the inhomogeneous version of the problem.

The straightforward implementation of the meet-in-the-middle attack de-
scribed above gives a time-memory trade-off which follows the curve TS =
Õ
(
#{z ∈ Z` | ‖z‖ ≤ ρ}

)
, where T is the time and S is the space used. Schroep-

pel and Shamir [68] improve on this basic approach in the context of the (mod-
ular) subset-sum/knapsack problem (m = 1 and z a binary vector), significantly
reducing the memory requirements so that the left-hand side becomes TS2 in-
stead of TS. A simpler description of the Schroeppel–Shamir algorithm was
given by Howgrave-Graham and Joux [48]. The idea is that one does not need
to compute the two lists in full to find a collision but instead one can compute
them on the fly using priority queues. This approach uses four lists rather than
two.

Generalisation

It is self-evident that this attack can be generalised to work against the Ideal-SISf,g,m,`,ρ
due to elements in Rg having a canonical representative, hence allowing us to
efficiently find collisions.

3.3 Combinatorial attacks

Another strategy is a divide and conquer approach in which one solves smaller
problems and combines the solutions to give a solution to the original problem.
The smaller problems will, in general, be variants of the inhomogeneous problem,
but the approach to solving them is much the same as with the homogeneous
case. As explained in [17], these smaller problems will have a smaller solution
space and a higher density, that is a higher expected number of solutions. For-
mally, the density of the inhomogeneous SIS problem is defined as

δ =
#{z ∈ Z` | ‖z‖ ≤ ρ}

#Zmq
≈
(

2πe

`

)`/2
ρ`√
`πqm

,

where the approximation is for large ` using Stirling’s formula. For combinatorial
attacks, it is more natural to consider the problem in which, rather that requiring
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‖z‖ ≤ ρ, we instead require the coordinates zi to lie in some subset Z ⊂ Z which
we denote by (I)SISm,`,q,Z . In this case, the density of the problem is defined
to be (#Z)`q−m. Typically, Z = {0, 1} is considered for combinatorial attacks,
though this is not strictly necessary.

If the density of the problem is much less than 1 then the problem is said to
have low density while if it is much larger than 1 it is a high density problem.
If the density is close to one the problem is said to have “density 1”. Differing
attacks apply to problems with different densities.

The attack of Camion, Patarin and Wagner

When the problem has very high density, one can use the attack first described
by Camion and Patarin [26] for the subset-sum problem and generalised by
Wagner [72]. Here, we present the analysis given in [62] to solve the SISm,`,q,Z
problem. First, one splits the ` coordinates of z into 2k groups of roughly equal
size. For each group, compute the list of all possible values AzT mod q for z
having entries from Z in the coordinates in the group and zero otherwise. Each

list contains roughly d := (#Z)`/2
k

elements in Zmq . Next, one combines the lists
in pairs by finding all pairs, x in the first list and y in the second list, for which
the first logq d coordinates of x + y are zero modulo q. The expected length of

this new list is again approximately d. Now, one will have 2k−1 lists containing
vectors that are zero in the first logq d coordinates. Repeat the previous process
on each consecutive set of logq d coordinates until one has a single list of size
roughly d and whose elements are zero in the first k logq d coordinates. Search
this final list for a solution in which all coordinates are zero. The parameter k
is chosen such that m ≈ (k + 1) logq d, which is equivalent to

2k

k + 1
≈ ` log(#Z)

m log q
.

We note that, as opposed to lattice reduction techniques, in this case having a
larger ` is beneficial as a larger k can be chosen which means the lists are shorter
and the attack is more efficient.

We remark that Minder and Sinclair give some refinements on the above
attack which speed it up slightly [63].

The attack of Howgrave-Graham and Joux and the improvement of
Becker, Coron and Joux

In the case of a relatively sparse solution z (typically with Z = {0, 1}) one can
attempt to split the solution by the weight (number of non-zero coordinates) of
z. In the context of the subset-sum problem, Howgrave-Graham and Joux [48]
proposed this method of splitting up z with the idea to reduce the problem to
two smaller problems, solving each recursively, and combining the solutions to
give a solution to the original problem.
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Suppose one is looking for a solution z of known weight ω to the SISm,`,q,Z
problem defined by A. Concretely, the idea is to choose a subgroup H ≤ Zmq
and a random r ∈ Zmq /H and split the problem into the two problems AzT1 ≡
rT mod H and AzT2 ≡ −rT mod H where z1 and z2 have weight ω/2 (and entries
in Z). The hope is that there is a pair of solutions such that z1+z2 is a solution to
the original problem. The subgroup H is chosen to trade-off the probability that
the random choice of r leads to a valid splitting of z. In the setting considered by
Howgrave-Graham and Joux the subgroup H is equivalent to reducing modulo
some modulus, that is H is isomorphic to Zmq′ for some q′ | q but in our case
there is no guarantee a q′ of a suitable size exists. In this case one can instead
consider H which correspond to the congruence being satisfied in a certain set
of coordinates only, that is H is isomorphic to Zm′q for some m′ < m.

As mentioned, one problem with this approach is one should know the weight
of a solution; if this is not the case one can guess the weight is in some range
[ω−2ε, ω+2ε] and then the solutions of the smaller problems should have weight
in [ω/2− ε, ω/2 + ε].

The original attack of Howgrave-Graham and Joux was improved upon by
Becker, Coron and Joux [18] by allowing a larger coefficient set for the smaller
problems allowing for some cancellation to occur in the sum z1 + z2; thus the
smaller problems now have a larger density and better parameter choices can be
used.

Reducing to LWE: the attack of Bai et al.

As well as analysing the combinatorial attacks above with an eye towards the in-
homogeneous SIS problem, Bai et al. [17] also introduced another combinatorial
attack on this problem by reducing it to the Ideal-LWEX,q,`−m,1,m,χ problem in
which the secret is short and where χ is some unknown distribution over the set
Z. The idea is to write the matrix A defining the problem in Hermite normal
form. Assuming A has rank m so that there exists an invertible m×m submatrix
of A (which we may assume by reordering the columns consists of the first m
columns), there exists a matrix U such that UA =

(
Im A′

)
. Then, in the inho-

mogeneous case, AzT ≡ tT mod q if and only if UtT ≡ A′zT2 + zT1 mod q where
z =

(
z1 z2

)
.

Since there are only m such LWE samples, many of the attacks discussed in
Section 5 below cannot be applied to this case. Instead, the authors propose to
apply the same combinatorial algorithms described above to the inhomogeneous
SIS problem defined by A′ but adapted to look for approximate collisions due
to the presence of the additional zT1 term.

In more detail, for the Camion, Patarin and Wagner approach, one computes
the initial lists as before but when combining two lists one only requires the logq d
coordinates under consideration to be in Z and hence only approximately zero
modulo q. Suppose one is considering x from one list and y from the other with
xT ≡ A′zT1 mod q and yT ≡ A′zT2 mod q where the first j logq d coordinates of
both x and y lie in Z for some j ≥ 0. One wants to check whether the coordinates
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from j logq d + 1 to (j + 1) logq d of x + y lie in Z; however a problem occurs
in that in the preceding coordinates one is no longer summing zeros but small
elements which may grow to no longer be in Z. To get around this, Bai et al.
propose that one is only allowed to add x + y to the new list if the non-zero
elements in the first j logq d coordinates of x and y occur in differing coordinates
so that no growth occurs.

When adapting the Howgrave-Graham and Joux approach of splitting the
solution by weight, Bai et al. split both z1 and z2 by weight and when combining
solutions the non-zero coordinates in both parts should not overlap. As before,
this can be extended to allow for a slightly larger allowed set of solutions for the
subproblems to increase the density and allow some cancellation to occur when
combining solutions but now separately in both z1 and z2.

Generalisation

Bai et al. [17] offer a high-level framework encompassing the attacks described
in this subsection. The approach is to consider what they call the (G,m,B)-ISIS
problem, where G is an Abelian group, m is a natural number and B ⊂ Z is a
small subset of the integers containing zero. The problem is defined by a pair
(A, s) ∈ Gm×G and one must find an x ∈ Bm such that Ax = s. In the words of
the authors, all these combinatorial algorithms are obtained by combining two
basic operations (possibly recursively):

1. Compute lists of small solutions to some constrained problem obtained by
“splitting” the solution space (i.e., having a smaller set of possible x) in
a quotient group G/H. Splitting the solution space lowers the density (ex-
pected number of solutions), but working in the quotient group G/H com-
pensates by raising the density again.

2. Merge two lists of solutions to give a new list of solutions in a larger quotient
group G/H ′.

Our Ideal-SIS problem almost fits within the framework of Bai et al., the
obvious approach is to write it as the (Rmg , `, {z ∈ R | ‖z‖ ≤ ρ})-ISIS problem
(with s = 0), but our B is not a subset of the integers. When g is an integer this
problem can be rectified by forgetting the ring structure and considering it as the
(Zmng , ln,B′)-ISIS problem for some suitable B′ ⊂ Z depending on the bound on
the infinity norm of a valid solution. The case of polynomial g may look trickier
but actually there isn’t an issue here when one notes that the approach of these
algorithms is to first solve the problem in quotient groups G/H. We can simply
choose G = Zmna and as the final quotient group use H = Hm

0 where H0 ⊆ Zna is
the group generated by {ι(gXi) : 0 ≤ i < n} when taken modulo a. Although
such subgroups H were not explicitly used in [17], this choice of H is the natural
generalisation of the subgroup H = pZnq for p | q for integers p and q.

With this style of attack it is potentially advantageous that a has many
divisors as this provides many options for the choice of subgroup H. However
it is more practical to consider subgroups which also decrease the dimension of
the lattice associated with the quotient G/H.
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For problems which have a more elaborate ring structure than Z, Bai et al.
propose to use the “symmetries” of the ring to speed up the attacks. These
symmetries only appear in very special rings and those suggested do not apply
when g is a non-constant polynomial as they are not fixed by the symmetry.

Requirements. Such combinatorial attacks rely on the existence of suitable
subgroups H of Rmg . When m is large such subgroups always exist however for
small m they may not, for example the MHLC problem has Rmg = ZM for a
Mersenne prime M which has no non-trivial subgroups. Furthermore, such an
attack is aided when the solution space can be nicely partitioned using disjoint
linear subspaces.

4 Attacks on the NTRU family of problems

4.1 The standard NTRU lattice attack

Right from its very inception, attacks utilizing lattice reduction were considered
against the NTRU problem. In the first draft of the NTRU scheme, circulated at
the CRYPTO ‘96 rump session, a simple lattice attack was already briefly men-
tioned [45]; however, the lattice attack was analysed in detail by Coppersmith
and Shamir [31]. We remark that these attacks are against a slightly different
problem than the one we defined due to [45] including an extra factor p for an
integer p coprime to q.

To begin, one notes that in the Ideal-NTRUf,q,1,χ,ρ problem we are searching
for a u′ ∈ R = Z[X]/(f(X)) such that the scalar-vector product u′(1,h) mod
q consists of two elements with small coefficients. By making the relationship
between the coefficients explicit we can formulate this problem in terms of a
lattice problem.

Let us define hi to be the coset representative of hXi of degree at most
n − 1, where as usual n = deg f , and write hi =

∑n−1
j=0 hi,jX

j . Similarly, write

u′ =
∑n−1
j=0 u

′
jX

j then one requires

(
u′0 u

′
1 · · · u′n−1

)


1 0 · · · 0 h0,0 h0,1 · · · h0,n−1
0 1 · · · 0 h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 hn−1,0 hn−1,1 · · · hn−1,n−1

 ,

when reduced modulo q into the symmetric interval about zero, to have small
components and thus be a short vector. Equivalently, we must find a short vector
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in the lattice generated by the rows of the matrix

1 0 · · · 0 h0,0 h0,1 · · · h0,n−1
0 1 · · · 0 h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 hn−1,0 hn−1,1 · · · hn−1,n−1
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


.

We call this lattice the standard NTRU lattice and denote it by ΛNTRU(h).
Clearly, with the obvious notation for the coefficients of u and v, the lattice

contains the vector (
u0 u1 · · · un−1 v0 v1 · · · vn−1

)
which is short.

It is potentially profitable to multiply the first n columns of this matrix
by a real scalar λ to balance the size of the coefficients of λu with those of
v. In addition, if the coefficients of u are distributed with a non-zero mean
µu, such as in the binary coefficient case, and similarly for µv, then one can
instead consider the closest vector problem in this lattice with target vector(
µu · · · µu µv · · · µv

)
.

When considering the shortest vector problem, the lattice has volume (λq)n

and the Gaussian heuristic states we expect the shortest non-zero vector to have

length roughly at most
√
λqn/πe. If

√
λ2 ‖u‖2 + ‖v‖2 is sufficiently smaller than

this value then performing lattice reduction on this lattice with a strong enough
algorithm can recover a suitable u′.

As an example, the parameters f(X) = (X509 − 1)/(X − 1) and q = 2048
are specified in the specification document of the NTRUEncrypt submission to
NIST’s post-quantum cryptographic standardization process as suitable param-
eters for a category 1 public-key encryption scheme. Further, u is a uniformly
random ternary polynomial and v is a ternary polynomial having q/16− 1 coef-

ficients equal to 1 and the same number equal to −1. Thus ‖v‖2 = 254 and for

simplicity let us assume ‖u‖2 = 339, then we take λ =
√

254/339. If the stan-
dard NTRU lattice were to behave like a random 2n-dimensional lattice with
volume (λq)n then we would expect a shortest non-zero vector of length roughly
324.7. One the other hand, we actually know that the lattice contains a vector
of length roughly

√
2 · 254 ≈ 22.5 which is much smaller than predicted by the

Gaussian heuristic.
While the lattice contains a very short lattice vector, it turns out that in

practice, for large enough parameters, lattice reduction algorithms which are
strong enough to recover such a short vector are still prohibitively expensive in
practice so such attacks cannot be applied directly to cryptosystems utilising
the NTRU problem when instantiated properly.
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Generalisation

Suppose we have an element h = vu−1 ∈ Rm×mg sampled from the Ideal-NTRU dis-
tribution. We can apply the standard lattice attack on this problem by consid-
ering the 2mn-dimensional lattice

Λ(h) = {(ι(x), ι(y)) ∈ Z2mn | x,y ∈ Rm and hxT ≡ yT mod gRm},

which clearly contains the vectors (ι(ui), ι(vi)) where uTi is the ith column of
the secret matrix u and similarly for the vTi . This lattice therefore contains at
least m linearly independent short vectors.

We can easily construct a spanning set for Λ(h) by letting x run over a Z-
basis of Rm (e.g. a copy of the power-basis of R in each of the m components)
and taking yT = hxT . Further, we must add the vectors (0, gz) as z runs over
a basis for Rm. The lattice Λ(h) has volume |Rmg | = am deg r with high prob-
ability.4 Thus, the Gaussian heuristic implies that the expected length of the
shortest vector in Λ(h) is about

√
mn/πeadeg(r)/2n while if the error distribu-

tion samples elements with independent coefficients from a centred distribution
having standard deviation σ then we expect to find at least m linearly indepen-
dent vectors having norm roughly

√
2mnσ. If we are required to find u′ and v′

with norms less than ρ as in the definition of the Ideal-NTRU problem, then we
only need to find lattice vectors of length approximately

√
2mρ and we see that if

ρ�
√
n/2πeadeg(r)/2n then we must find unusually short vectors in the lattice.

By assumption, these vectors exist and if there aren’t shorter non-zero vectors
in the lattice it is simply the task of running a good enough lattice reduction
algorithm in order to find them. In particular, we will need m such lattice vectors
for which the first half of the coordinates correspond to vectors in Rm which are
linearly independent modulo gRm so that we can recover an invertible u′.

As with the lattice attack against Ideal-SIS, our lattice contains trivial vectors
when considered modulo gR and these trivial vectors can be very short as in the
MLHR problem for which g = X − 2 itself gives rise to vectors of norm

√
5.

Even if there are short trivial vectors we can still try to recover short non-trivial
vectors from the reduced basis for the lattice which could allow one to obtain a
small enough solution. However, experimentally we found the size of any solution
we could recover using strong lattice reduction was too large when gR contains
polynomials with very short coefficient vectors such as the case of MLHR.

To summarise, the following are necessary conditions to be able to mount a
successful attack; however, they may not be sufficient on their own:

Requirements. For this attack to work on the Ideal-NTRUf,g,m,χ,ρ problem we
require:

√
2πe · σ < adeg(r)/2n

√
n · σ < ρ

√
2mn · σ < min{‖x‖ | x ∈ gR \ {0}}

4 If the GCD of all the entries of v (lifted to R) together with g is not 1 then the
volume is larger.
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where σ is the standard deviation of the distribution χ. The three conditions come
respectively from the expected length of any (ι(ui), ι(vi)) being smaller than the
Gaussian heuristic, than the bound ρ required for a solution to exist and finally
that it is shorter than any non-zero spurious vector.

Remark 1. Even if g is an integer, in some cases, such as when f = Xn − 1, the
first m rows of the reduced basis for the lattice will not be linearly independent
as elements of Rm since multiplication by X gives another short vector in the
lattice. This means they will not give the invertible matrix required and so one
must look further than just the first m rows of the reduced basis to find suitable
linearly independent vectors. While this does add some more complexity to the
attack it is not the bottleneck so we do not consider this issue further here.

4.2 Zero-forcing attacks

It was noted by May [58] that the standard lattice attack does not take into
consideration that it is typical for the coefficient vectors of u and v not only to
be short but actually be rather sparse; that is to say many of their coefficients
are zero. To aid lattice reduction, he suggested to multiply certain columns in
the standard lattice by a large scaling factor in order to reduce the space of
short lattice vectors and all but necessitate that the vectors found will be zero
in these columns. Initially, in the context of having f(X) = Xn − 1, the first
c columns corresponding to coefficients of v were suggested to be chosen, akin
to the assumption that there exists a so-called zero-run of c zero coefficients in
v since multiplying by Xi (a so-called rotation) cyclically shifts the coefficients
while leaving their value unchanged.

It was quickly noted by a number of people that one need not choose con-
secutive coefficients but any set of c columns works. In fact, May and Silverman
argue that choosing columns uniformly at random is the best recourse for an
attacker using this approach [59].

While the above method strongly encouraged lattice reduction algorithms to
produce vectors with zeros in certain coordinates, it does not actually reduce the
dimension of the lattice being reduced, only the dimension of the space of small
solutions. Silverman [69] demonstrates a much more efficient manner of achieving
this property that does reduce the dimension of the lattice to be reduced, which
he calls a zero-forced lattice.

The approach is a straightforward application of simple linear algebra. One
starts with the n linear equations in 2n unknowns

vj ≡
n−1∑
i=0

uihi,j mod q for j ∈ {0, 1, . . . , n− 1}

and chooses subsets I,J ⊆ {0, 1, . . . , n − 1} which are the indices of u and v,
respectively, which are being forced to be zero. Naturally, we assume |I|+ |J | ≤
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n. Setting ui = 0 for i ∈ I and vj = 0 for j ∈ J gives us |J | linear equations

n−1∑
i=0
i/∈I

uihi,j ≡ 0 mod q for j ∈ J

in n− |I| unknowns. Suppose we can rewrite this system of linear equations in
a way to express the variables ui for i ∈ I ′ ⊆ {0, 1, . . . , n− 1} \I in terms of the
remaining variables, where |I ′| = |J |:

uι ≡
n−1∑
i=0

i/∈I∪I′

uiβi,ι mod q for ι ∈ I ′.

Substituting these expressions back into the remaining equations we started with
gives a reduced system of n− |J | equations

vj ≡
n−1∑
i=0

i/∈I∪I′

uiαi,j mod q for j ∈ {0, 1, . . . , n− 1} \ J

in 2(n − |J |) − |I| unknowns, for some constants αi,j . This system will have a
small solution if the initial choices of I and J were good ones. The lattice that
is now of interest is generated by the rows of the matrix(

λIn−|I|−|J | A
0 qIn−|J |

)
,

where A = (αi,j) where i runs through {0, 1, . . . , n − 1} \ (I ∪ I ′) and j runs
through {0, 1, . . . , n−1}\J . Running a strong enough lattice reduction algorithm
on this lattice will reveal any pairs (u′,v′) which conform to the choice of I and
J .

It should be noted that for any vector found by reducing the zero-forced
lattice above there is no absolute guarantee that the ui are small for i ∈ I ′. One
can consider so-called non-lossy zero-forced lattices which ensure these other
coefficients are small [67]. The non-lossy zero-forced lattice is spanned by the
rows of the block matrixλIn−|I|−|J | A λB

0 qIn−|J | 0
0 0 λqI|J |

 ,

where B = (βi,ι) for i ∈ {0, 1, . . . , n−1}\(I∪I ′) and ι ∈ I ′. However, Rosenberg
notes that in most of the cases he considered the attack is more efficient if one
does not include these extra columns.

Again, this type of attack works best when the defining polynomial modulus
f is very sparse as then rotations of (u,v) are still sparse so the probability of
choosing good sets I and J is significantly improved.
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The attack of Beunardeau et al.

Soon after the initial appearance of [1] in which the authors claimed adapting
known lattice attacks against NTRU would be ineffective against the MLHR
problem, Beunardeau, Connolly, Géraud and Naccache [20] presented a combi-
natorial attack, using lattice reduction as a subroutine, which they claimed could
be used to successfully solve the MLHR problem with parameters which were
claimed to give a security of roughly 120 bits. While not mentioned anywhere,
one should see this attack as the natural generalisation of the zero-forcing attack
on the NTRU problem given above.

Recall that the MLHRn,h problem can be written in our language as the
Ideal-NTRUXn−1,X−2,1,χ,ρ problem in which χ is the uniform distribution over
polynomials with binary coefficients having exactly h coefficients equal to one.
In this case, the ring Rg is equal to ZM for a Mersenne number M = 2n−1 hence
the problem involves only large integer arithmetic. We will follow the original
description of the attack given in [20].

The main starting point to the attack is to note that, as elements of ZM , v
and u have Hamming weight h as binary strings and hence have sparse binary
expansions. This allows one to guess that certain bits in v or u are zero. For
this, Beunardeau et al. partition the set {0, 1, . . . , n− 1} into interval-like parts
in two ways: one for v and one for u. Such an interval-like partition P is given
by indices 0 ≤ p1, . . . , pk < n and the parts are of the form {pi, . . . , pi+1 − 1}
for 1 ≤ i < k and {pk, . . . , n − 1} if p1 = 0 and {pk, . . . , n − 1, 0, . . . , p1 − 1}
otherwise.

Each part of an interval-like partition will be called a block and blocks will
be classified as either type 0 or type 1 as follows. A type 0 block is one in which
we guess that the binary expansion of the integer in question (either v or u) has
all bits equal to 0; a type 1 block makes no assumption on the bits. Furthermore,
only balanced partitions are considered which means that the total length of the
type 0 blocks differs by at most one from the total length of the type 1 blocks in
the partition. Blocks of type 0 will also be called zero blocks and those of type
1 called non-zero blocks.

In essence then, when choosing a pair of partitions for v and u we are guessing
approximately half of the bit positions in each of v and u are zero. Now given
that exactly h of the n bits are one in the case of interest, for a given partition
there is a probability of approximately 2−h that a given integer modulo M =
2n − 1 having Hamming weight h conforms to the guess. Thus the probability
over all possible pairs v and u that one chooses a correct pair of partitions is
approximately 2−2h.

Suppose the partitions we have chosen for u and v have non-zero blocks start-
ing at bits s1, . . . , sk/2 and t1, . . . , tk/2 respectively. Further, denote by ui and
vi the lengths of the non-zero blocks and set w := maxi(ui, vi). For a parameter
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K, define the lattice ΛK(h) as the span of the rows of the matrix

2w−u1 0 · · · 0 0 0 · · · 0 KH2s1

0 2w−u2 · · · 0 0 0 · · · 0 KH2s2

...
...

. . .
...

...
...

. . .
...

...
0 0 · · · 2w−uk/2 0 0 · · · 0 KH2sk/2

0 0 · · · 0 2w−v1 0 · · · 0 −K2t1

0 0 · · · 0 0 2w−v2 · · · 0 −K2t2

...
...

. . .
...

...
...

. . .
...

...
0 0 · · · 0 0 0 · · · 2w−vk/2 −K2tk/2

0 0 · · · 0 0 0 · · · 0 KM


.

We can write

u =

k/2∑
i=1

xi2
si mod M, v =

k/2∑
i=1

yi2
ti mod M

for non-negative integers xi, yi which for a correctly chosen pair of partitions
can be taken to be small. Choosing an appropriately large K further means that
(x1, . . . , xk/2, y1, . . . , yk/2, 0) is a short vector in ΛK(h); however, there may be

shorter vectors in the lattice. In particular, there are vectors of length
√

2` + 1
for any ` = si+1 − si, ` = ti+1 − ti, ` = n+ s1 − sk/2 or ` = n+ t1 − tk/2 so that
for larger values of k there will be too many other shorter vectors in the lattice
to stand a chance of finding one of interest.

The attack consists of sampling pairs of balanced interval-like partitions uni-
formly at random, constructing the lattice ΛK(h) corresponding to this pair of
partitions and then running the LLL algorithm in the hope of recovering the
vector corresponding to a suitable solution v′, u′ with both having binary ex-
pansions of Hamming weight h and with h = v′u′−1 mod M . We note that as
f = Xn − 1, rotations of u and v are also valid solutions which aids the attack.

This attack was analysed by de Boer, Ducas, Jeffery and de Wolf in [22];
they argue that under standard lattice heuristics, for each possible pair of par-
titions the probability of solving the MLHRn,h problem using this approach is(
1
2 + c

(
k
h + o(1)

))2h
for a small constant c which they estimate to be 1/140.

They therefore suggest one should start by considering partitions with a small
number of blocks k, taking advantage of the smaller dimension for the con-
structed lattice and slightly larger success probability and gradually increase k
until one finds a suitable solution.

We remark that this analysis is done with respect to all possible choices of
u and v. It is an open question as to whether there exist choices of u and v for
which this attack does not succeed with constant probability in time 2(2+δ)h+o(1).

Generalisation

Switching from an integer to a polynomial ciphertext modulus presents a slight
problem for the zero-forcing attack as now the coordinates of the lattice vectors
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are not independent with respect to reduction modulo the ciphertext modulus,
a fact which becomes important when choosing which coefficients to set to zero.
As seen with the MLHR problem where f = Xn−1 and the ciphertext modulus
is X − 2, or more generally when g is monic and linear, one should instead
partition the n coordinates into blocks which should be treated in a similar way
to individual coordinates.

More generally, when there is coordinate dependency due to g being a non-
constant polynomial, finding a basis for the sublattice of the standard Ideal-NTRU lat-
tice which corresponds to setting a certain set of blocks to be zero is unfeasible.
Instead, one can consider the superlattice

Λ′(h) = {(ι(x), ι(y), z) ∈ Zm(2n+deg r) | x,y ∈ Rm, z ≡ ι(repg(xhT−y)) mod a}

which contains Λ(h) as the sublattice for which z = 0. Here we have abused
notation slightly as ι takes elements of R to elements of Zn, however elements
of ι(Rep(Rg)) only have non-zero coordinates in the first deg r positions so we
can drop the remaining zero coordinates.

Using the trick of multiplying the final m deg r coordinates by a large scalar
before applying lattice reduction means we will find many vectors for which these
coordinates are zero, just as May did. In particular, we will want to perform
lattice reduction on some sublattice of

Λ′K(h) = {(x,y, z) ∈ Zm(2n+deg r) | (x,y,K−1z) ∈ Λ′(h))},

for a large integer K, corresponding to setting some of the coordinates to zero.
Due to the freedom now present in introducing z it is straightforward to

compute a generating set of vectors for the sublattice of Λ′K(h) for which a
given set among the first 2mn coordinates are all zero. The most important
point here is to look at the form taken by the vectors of such a sublattice which
are zero modulo the ciphertext modulus g as these are not actually solutions.

Returning to the case of the MLHR problem and the attack of Beunardeau
et al. we saw that there were vectors in the standard lattice attack whose norm
was
√

5. However, they always contained consecutive non-zero coordinates up to
cycles since they correspond to X`(X−2) for some `. In the zero-forcing attack,
let us assume for simplicity that the coordinate corresponding to the constant
coefficient (of some copy of R) has not been picked to be set to zero. We know
that X` − 2` ≡ 0 mod gR so we have vectors of norm

√
1 + 2`+1 for 1 ≤ ` < n

whenever the `th coordinate of the same copy of R can also be non-zero.
We therefore see that in general the length of these trivial vectors depends

on the gap between consecutive coordinates which have not been set to zero.
In this sense, it makes more sense to consider which coordinates we allow to be
non-zero rather than the description in terms of blocks that was given in [20].
The connection between the two views is that the coordinates we allow to be
non-zero are the coordinates which begin a non-zero block.

Explicitly, suppose we chose the sublattice so that the non-zero coordinates
for the ith copy of Rm corresponding to x are at columns αi,j ∈ {0, . . . , n − 1}
and are at columns βi,j for the ith copy of Rm corresponding to y, where we
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start counting the columns from zero rather than one. Then the sublattice is
spanned by the rows of

Kι(repg(h1,1X
α1,1)) · · · Kι(repg(hm,1Xα1,1))

Kι(repg(h1,1X
α1,2)) · · · Kι(repg(hm,1Xα1,2))

...
...

Ikx Kι(repg(h1,2X
α2,1)) · · · Kι(repg(hm,2Xα2,1))

...
...

Kι(repg(h1,mX
αm,1)) · · · Kι(repg(hm,mXαm,1))

...
...

−Kι(repg(Xβ1,1)) 0 · · · 0
−Kι(repg(Xβ1,2)) 0 · · · 0

...
...

...

Iky 0
. . . 0

...
. . .

...
0 · · · 0 −Kι(repg(Xβm,1))
...

...
...

aKIdeg r
. . .

aKIdeg r



,

where kx and ky are the total number of non-zero coordinates across the columns
for x and y, respectively. Thus this lattice has dimension kx + ky + deg(r)m.

In the general setting, and where deg g ≥ 2, the shape of f and g affects how
one should proceed. For example, it may no longer be true in general that any
element of Rg can be written as cXp for some integer c and power p making it
much more unlikely to choose a good set of non-zero coordinates when one tries
to proceed as before.

There are some further cases in which we can utilise the previous approach by
first rewriting the problem in that form. For example, in the case that f = Xn−1
and g = X`− b for small b then if ` and n are coprime there exists a p such that
`p ≡ 1 mod n in which case the map X 7→ Xp can be used to first transform the
problem into one with g = X−b. More generally, if the greatest common divisor
of ` and n is d then we can transform the problem into one with g = Xd − b so
we can assume that deg g | n. Now, we can play the same game except instead
of treating each copy of Rg as a single integer to be written in base b we have d
integers (the coefficients of the polynomial resulting from applying repg) which
are to be written in base b. We choose coefficients of this base b expansion which
we allow to be non-zero and hope that there is a solution where these non-zero
coefficients are small enough to be found by lattice reduction. A similar idea
works for f = Xn + 1 by considering the greatest common divisor with 2n
instead of n.
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When f = Xn + f0 for some small integer f0 and g has small degree and
small coefficients and the above paragraph does not apply, one should choose sets
of deg g consecutive coordinates which are allowed to be non-zero. To illustrate
this, we give the following example.

Example 1. Suppose we have f = Xn − 1 and g = X2 − X − 2 for some odd
n (so that there is no evaluation at −1 attack). It is easy to check that Xp ≡
1
3 (2j+1 + (−1)j)Xp−j + 2

3 (2j − (−1)j)Xp−j−1 mod gR for any 0 ≤ j < p. Taking
our sublattice of Λ′K(h) to have pairs of consecutive non-zero coordinates means
we will always be able to find a vector in this sublattice corresponding to a
desired solution. Furthermore, there are trivial vectors in the sublattice of norm
1
3

√
22j+3 − 4(−2)j + 14 where j is the difference (modulo n coming from the

structure of R) between two such pairs of non-zero coordinates (counting from
the first coordinate of each pair, say). Thus, so long as we spread out our guesses
for these pairs of consecutive non-zero coordinates enough to ensure that any
trivial vectors in the sublattice are not too short then we have a reasonable
probability of solving the Ideal-NTRU problem by running the LLL algorithm
on that sublattice (over a random distribution of u and v).

On the other hand, when g is not of this form due to having at least one
coefficient that is not small then we can apply the standard Ideal-NTRU lattice
attack of Section 4.1.

We further remark that in the case of the MLHR problem, de Boer et al.
modify the lattice to balance the expected sizes of the first kx +ky entries of the
lattice vectors by scaling the ith coordinate by certain powers of two. Further,
to simplify matters they chose exactly k non-zero coordinates in every copy of
R so that kx = ky = km.

Without scaling, our lattice now has volume (aK)rm and as we take K to be
very large the lattice is clearly in the approximation regime so we expect that
running the LLL algorithm will output particularly short vectors. In practice,
when attacking the MLHR search problem we found that even with a suitable
guess for the non-zero coordinates, LLL is not guaranteed to find a valid solution
since other shorter vectors may exist in the lattice which do not correspond to
admissible solutions due to having negative entries (although they will most
often do so).

Requirements. The main requirement for this type of attack is that the small
elements we are interested in have sparse coefficient vectors, meaning that many
of the coefficients are zero. Further, the applicability and usefulness of the attack
are very dependent on the shape of f and g. Again, if these polynomials are
very sparse and have very small coefficients the attack works well while the more
non-zero coefficients that f and g have and the larger they are, the harder the
attack is to perform.

4.3 Meet-in-the-middle attack

Following a description given by Odlyzko; Howgrave-Graham, Silverman and
Whyte [49] describe and analyse a meet-in-the-middle attack on the NTRU
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problem. One assumes that u has a fixed number d of coefficients which are
one and the remaining coefficients are all zero. The main idea is to split u in
two, u = u1 + u2, such that both u1 and u2 have d/2 non-zero coefficients. One
notes that hu1 + hu2 ≡ v mod q so that the coefficients of hu1 and −hu2 differ
by either zero or one modulo q when v has binary coefficients.

When f = Xn−1, it is easy to show that some rotation of u (i.e. some uXj)
has exactly d/2 non-zero coefficients among its first n/2, thus we can restrict the
possible u1 to only have non-zero coefficients among its first n/2 coefficients and
to u2 only among its last n/2 coefficients. One must then compute all possible
hu1 and sort them into a suitably chosen set of buckets. Secondly, one begins
computing −hu2 for each u2 in turn, in each case searching in the associated
buckets for a u1 such that h(u1 + u2) has binary coefficients. When such a pair
(u1,u2) is found one stops otherwise one continues to the next u2.

In the basic approach, they suggest choosing an integer k such that 2k is
larger than

(
n/2
d/2

)
and labelling each bucket by a binary string of length k. If bi

is the most-significant bit of the ith coefficient of hu1 then one places u1 in the
bucket labelled (b0b1 · · · bk−1)2. One computes the buckets in which to check for
a collision in the same way, though now also any bucket with a label which arises
by adding one to each element of any subset of the first k coefficients of −hu2

is also checked.
The authors of [49] analyse the time and memory required for this as well as

further improvements to this design.

The meet-in-the-middle attack of de Boer et al.

The same idea can be applied to the MLHRn,h problem. Indeed, de Boer et
al. [22] not only analysed the attack of Beunardeau et al. but also such a meet-
in-the-middle attack. If we define |C|Ham to be the Hamming weight of C as a
bit string for any C ∈ {0, 1, . . . ,M − 1} where again M = 2n − 1, then the aim
of the attack is to find a u such that |u|Ham = h and |hu mod M |Ham = h. To
do this one defines two sets, depending on a parameter α ∈ [0, 1],

S
(α)
1 :=

{
s ∈ {0, 1, . . . ,M − 1}

∣∣∣ 2d(1−α)ne | s and |s|Ham = bαhc
}

S
(α)
2 :=

{
s ∈

{
0, 1, . . . , 2d(1−α)ne − 1

} ∣∣∣ |s|Ham = d(1− α)he
}
.

While there is no guarantee that u can be written as u1 +u2 for some u1 ∈ S(α)
1

and u2 ∈ S(α)
2 , due to the form of M , it is true that 2ku can be written in this

form for at least one 0 ≤ k < n and both 2ku and 2kv = h · 2ku mod M still
have Hamming weight h.

The attack begins by enumerating the pairs (u1,hu1 mod M) for all u1 ∈
S
(α)
1 and then for each u2 ∈ S(α)

2 computing −hu2 mod M and looking for an
approximate collision with some hu1 such that the Hamming distance between
hu1 mod M and −hu2 mod M is not much bigger than 2h.

In order to efficiently check for an approximate collision de Boer et al. employ
a locality-sensing hash function. In particular, for any subset B ⊆ {0, 1, . . . , n}
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one defines the hash function HB : Z/ZM → F|B|2 which when applied to an n-
bit integer (bn−1bn−2 · · · b0)2 returns (bi1 , . . . , biB ) where B = {i1, . . . , iB} and
the ij are ordered in some fixed order, say ascending order. For a suitable size
B of B one has that if two n-bit integers have Hamming distance not much
larger than 2h then they are likely to agree on HB. By storing the hash value
HB(Hs1 mod M) instead of simply Hs1 mod M and sorting via this value one
can quickly find all such collisions withHB(−hu2 mod M) and then test whether
each u1 coming from such a collision has the property that |u1 + u2|Ham = h
and |h(u1 + u2) mod M |Ham = h. If so then u = u1 + u2 gives a solution to the
MLHRn,h problem.

On analysing this approach and under some simple heuristics the authors
gave the following lemma.

Lemma 1 (Lemma 3 from [22]). When α = 1/2 and B =
⌈
log2

(
n/2
h/2

)⌉
, the

time complexity of the meet-in-the-middle algorithm is Õ
(√(

n
h

))
.

By using a quantum algorithm they also show that choosing α = 1/3 and

B =
⌈
log2

(
n/3
h/3

)⌉
gives a running time of Õ

(
3

√(
n
h

))
with the same memory

requirement with most of that memory required to be quantumly accessible.

Generalisation

The generalisation of this type of attack is pretty straightforward. Given a quo-
tient of small elements h = vu−1 in Rm×mg , the basic idea is to split the small
element u into two parts as u = u1 + u2 where u1 ∈ U1 and u2 ∈ U2 for two
sets U1 and U2. Then one can compute and store all possible values hu1 and
attempt to find a u2 such that −hu2 approximately collides with one of the
stored values. An approximate collision occurs between hu1 and −hu2 if their
difference consists of small elements; namely that h(u1 + u2) is small. The hope
is that u1 + u2 and h(u1 + u2) satisfy the requirements to be a solution to the
problem.

One wants to define the sets U1 and U2 in a way which minimises their size
while still allowing for at least one solution u′ to be written as a sum of one
element of each set. We have seen the two cases where f = Xn − 1 and g is
either constant or linear and small elements of R are taken to have many zero
coefficients and the remaining coefficients are one. In both cases determining
an approximate collision is easy, though to speed up the process of finding one,
the list of stored values is processed so that entries are placed in a number of
different buckets.

When moving to the general setting a few issues can arise. Perhaps the most
important of which is whether there is an efficient test for determining approxi-
mate collisions as this seems to rely on an efficient method for testing smallness.
Secondly, for a more general polynomial f one may not be able to rely on a sym-
metry argument to reduce the size of U1 and U2 since multiplying by X need
not preserve smallness. On a similar note, the error distribution used will play a
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role in how to optimally define U1 and U2. Alternatively, when m > 1 splitting
u component wise with respect to m gives an easy choice for U1 and U2.

Requirements. To be able to apply this attack one must be able to efficiently
determine whether two elements of Rg differ by a small element: an approxima-
tion collision. When m = 1 the attack works best when the distribution of small
elements χ is sparse and remains fixed under multiplication by X.

4.4 A hybrid attack

In [47], Howgrave-Graham gives a hybrid attack on the NTRU problem, Ideal-NTRUf,q,1,χ,ρ,
which combines lattice reduction and a meet-in-the-middle approach. This at-
tack assumes that f is the original NTRU polynomial f = Xn − 1 and that u
and v have binary coefficients.

The starting point for the attack is the observation that while running a
moderately strong lattice reduction algorithm (say the BKZ algorithm with a
relatively small block size) does not recover a solution, it does produce a reduced
basis whose first few, say k, Gram-Schmidt vectors have length q and whose final
few, say k′, Gram-Schmidt vectors have length 1.

Defining the slightly modified basis matrix for the standard NTRU lattice as

B :=

(
qIn 0
H In

)
,

where H = (hi,j) with the hi,j as defined in Section 4.1, then this means there
are matrices P ∈ GL(2n,Z) and Q orthogonal such that the partially reduced
basis matrix is PB and T := PBQ is lower-triangular. More illustratively, this
final product can be written asIk 0 0

0 P ′ 0
0 0 Ik′

qIk 0 0
∗ B′ 0
∗ ∗ Ik′

Ik 0 0
0 Q′ 0
0 0 Ik′

 =

qIk 0 0
∗ T ′ 0
∗ ∗ Ik′

 ,

with P ′B′Q′ = T ′. Since Q is orthogonal, the lattice spanned by the rows of T
contains the short vector

(
v0 v1 · · · vn−1 u0 u1 · · · un−1

)
Q as well as the n− 1

other similar vectors coming from the cyclic symmetry of R. Furthermore, due
to the structure of Q, these short vectors are binary in their first k and last k′

coordinates.
Suppose we are looking for the lattice vector v in the row span of T and let

v̄ be the vector whose first 2n − r′ entries are zero and final r′ binary entries
match those of v. Howgrave-Graham showed that, if v− v̄ is small enough then
applying Babai’s nearest plane algorithm to the target vector v̄T − v̄ and the
lattice generated by the rows of T , then one can recover v. Thus a valid strategy
is to enumerate over possible v̄ for a suitable r′.

The more efficient attack proposed is to apply a meet-in-the-middle attack
of the same type described in Section 4.3 on the vector v̄. With a modified
approach requiring less memory, this hybrid attack is claimed to be the most
practical attack on the NTRU problem for these parameters.
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4.5 A folding attack

When the defining polynomial f is of the form Xn − 1 and n is composite, say
d | n and 1 ≤ d < n, then Xd − 1 divides f and hence there is a natural ring
homomorphism

π : R =
Z[X]

(Xn − 1)
→ Z[X]

(Xd − 1)

given by simply reducing modulo Xd − 1.

Gentry [39] showed that this ring homomorphism can be used to transform
the 2n-dimensional standard NTRU lattice to a 2d-dimensional folded lattice
which contains small vectors corresponding to the rotations of the folded secret
elements π(u) and π(v).

There are two points to this, firstly that we can construct this smaller di-
mensional lattice from the public value h and secondly that the shortest vectors
in this lattice do correspond to a rotation of π(u) and π(v).

The first point is straightforward; since π is a ring homomorphism which
fixes q we have that π(h)π(u) = π(hu) ≡ π(v) mod q. Thus we can construct
the folded lattice in the same way as the standard lattice by replacing h with
π(h) and n by d.

For the second point, we must look at how small the coefficient vectors of
π(u) and π(v) are. Since each coefficient of the folded element is a sum of n/d
of the original coefficients, they will remain small when d is not too small.

If one can mount a successful attack on this smaller dimensional problem one
can recover the folded secret elements π(u) and π(v). Gentry gives a method
to recover the full secret (u,v) from this partial information which reduces the
dimension 2n of the standard lattice attack to a dimension of roughly 2(n− d).
This reduction comes from the fact that knowledge of π(u) gives us d linear
relations between the coefficients of u and similarly for the coefficients of v. We
refer to the paper [39] for the explicit case when n = 2d.

Gentry remarks that this attack only really requires that, modulo q, the poly-
nomial f has a factor f1 such that the projection Zq[X]/(f(X))→ Zq[X]/(f1(X))
does not distort the notion of smallness too much. Namely, the coefficients of f1
must be very small and, ideally, only the low degree monomials (except the lead-
ing term) should have non-zero coefficients. This condition on f1 seems highly
sporadic in general.

Generalisation

Due to π being a ring homomorphism such an attack can be directly applied
to the more general Ideal-NTRUf,q,m,χ,ρ problem component-wise. For a more
general ciphertext modulus g, we would need an appropriate factor of f when
considered modulo g and again π(χ) must remain a distribution of small ele-
ments.
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4.6 A subfield attack

In the case that the defining polynomial f is irreducible then the ring R can be
seen as an order in the number field K = Q(X)/(f(X)). If this number field
has subfields then one can consider maps whose codomain is contained in such a
subfield, L say. Such maps include the relative norm and trace maps, NK/L and
TrK/L.

Since the norm map is multiplicative and the trace map is additive it is
natural to consider the norm map first as the public value h is a quotient of
small elements. Importantly though, this quotient is taken modulo q so one
must consider how the norm map interacts with reduction modulo q. As the
relative norm map is defined as the product of the field embeddings, σi, that fix
L and hence q we have for any lift h̃ of h to R ⊆ K that for any k ∈ R

NK/L(h̃+ qk) =
∏
i

σi(h̃+ qk) =
∏
i

(
σi(h̃) + qσi(k)

)
≡
∏
i

σi(h̃) = NK/L(h̃) mod qOL,

where OL is the ring of integers of L.5 This is true since considering the left
hand side of the equivalence as a polynomial in q, all coefficients are symmetric
with respect to the field embeddings and hence lie in OL. For much the same
reasoning, we also have TrK/L(h̃ + qk) ≡ TrK/L(h̃) mod qOL. Hence, there is a
well-defined notion of taking the norm or trace of an element of Rq which we
denote in the same manner.

Using the relative norm map Now it is clear that NK/L(u)NK/L(h) =
NK/L(v), we are in much the same situation as with the folding attack, dis-
cussed above, only with NK/L instead of π. Firstly, one needs to see how large
the elements NK/L(u) and NK/L(v) are and secondly, if one can recover these
elements, how can one recover the original u and v?

This sort of approach was first considered in [40, Section 6 and 7] where it is
attributed to Gentry, Szydlo, Jonsson, Nguyen and Stern. The setting is slightly
different in the fact that they work with the defining polynomial f(X) = Xn−1
for a prime n (so folding is not possible) which is not irreducible however it is
closely related to the case when the defining polynomial is the irreducible nth
cyclotomic polynomial Φn(X) and the subfield is the maximal real subfield. The
Gentry-Szydlo algorithm described in Section 7 of their paper can be seen as a
method for computing v from h and the relative norm of v with respect to the
maximal real subfield.

More generally, Albrecht, Bai and Ducas [5] were the first to consider the
case of arbitrary subfields of cyclotomic number fields. They use the following
heuristic on the growth of the canonical norm ‖ · ‖can and the operator norm
| · |op, defined as |y|op := supx∈K× ‖xy‖

can
/ ‖x‖can.

5 The ring of integers of L, OL, is the set of elements in L which are the root of a
monic polynomial with integer coefficients.
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Heuristic 1. Let [K : Q] = n and [K : L] = ` and suppose that u and v are
sampled from a reasonable isotropic distribution of variance ς2. Then, for any
c > 0, there exists a constant C such that∥∥NK/L(v)

∥∥can ≤ (ςnC)` , ∥∥NK/L(u)
∥∥can ≤ (ςnC)` ,∣∣NK/L(u)

∣∣
op
≤ (ςnC)`,

∣∣NK/L(u)−1
∣∣
op
≤ (nC/ς)`

except with probability O(n−c).

This heuristic tells us that for suitable subfields, so that the numerator and
the denominator are small compared to q, one may be able to recover NK/L(u)
and NK/L(v) by using a strong enough lattice reduction algorithm on the stan-
dard NTRU lattice ΛNTRU(NK/L(h)), as long as the associated lattice vector
remains an unusually small vector. In particular, Albrecht et al. give the follow-
ing theorem.

Theorem 1 (Theorem 2 from [5]). Let û and v̂ be elements of OL such that

the principal ideals they generate are coprime and that ûĥ ≡ v̂ mod qOL for
some ĥ ∈ OL. By an abuse of notation write (x̂, ŷ) for the vector which concate-

nates the coefficients of x̂ and ŷ. If (x̂, ŷ) ∈ ΛNTRU(ĥ) has length satisfying

‖(x̂, ŷ)‖ ≤ q

‖(û, v̂)‖

then x̂ = wû and ŷ = wv̂ for some w ∈ OL.

Finally, the authors give a simple method to lift a short lattice vector (x̂, ŷ) ∈
ΛNTRU(NK/L(h)) as in the above theorem to a pair (u′,v′) ∈ ΛNTRU(h) by
setting u′ = x̂ and v′ = hx̂−1. While this will not return the shortest vector
in ΛNTRU(h) it may be small enough to be a solution to the NTRU problem
Ideal-NTRUf,q,1,χ,ρ when q is exponentially large. Explicit details of this can be
found in [5].

Using the relative trace map Another approach to a subfield attack is to use
the relative trace map as was done by Cheon, Jeong and Lee [29] in work that
was done concurrently to [5]. Unlike with the relative norm map, the relative
trace map is not multiplicative. Instead, one has when [K : L] = ` that

TrK/L(h) =
∑̀
i=1

σi(h) ≡
∑̀
i=1

σi(v)

σi(u)
=

∑
i=1 σi(v)

∏
j 6=i σj(u)∏`

i=1 σi(u)

≡
TrK/L

(
σ1(v)

∏`
i=2 σi(u)

)
NK/L(u)

mod qOL.

From this, one can notice that when u and v have roughly the same size, applying
the norm map gives a better bound on the numerator of the result. However,
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when v is significantly larger than u the trace map is better. Since one can
compute h−1 this also holds when u is significantly larger than v.

Cheon et al. focus on the power-of-two cyclotomic case and consider u and v
to have Euclidean norms bounded by reals D and N , respectively. Let us write
ψD and χN for distributions which satisfy these bounds and NTRUf,q,χN ,ψD,ρ

for the NTRU problem (with m = 1) which uses these two distributions for v
and u, respectively. Then they prove the following reduction can be achieved by
using the trace map.

Theorem 2 (Theorem 1 from [29]). Let q be a positive integer and D and N
be positive real numbers and let n be a power of two. Set ρ := min{q/2D

√
n, q/2N

√
n}.

Then for m > 1 with m | n, there is a reduction from NTRUXn+1,q,χN ,ψD,ρ to
NTRUXm+1,q,χN′ ,ψD′ ,ρ

′ , where

ρ′ = min{q/2D′
√
n, q/2N ′

√
n, q/2n3/2N2

∥∥v−1∥∥},
D′ = Dm

√
(n/
√
m)log2m/

√
m and

N ′ = NDm−1
√

(n/
√
m)log2m/

√
m.

The proof uses the same method as [5] to lift a solution from a subfield to
the full field. Further, much the same requirements on q are required for this
result to be used in a practical attack; a very large q. Again, for what this means
precisely, see [29].

Other work Finally, we comment that Kirchner and Fouque [52] revisited the
subfield attack and proposed a variant of these subfield attacks which performs
better in practice.

Generalisation

Let us assume that f is irreducible and hence K = Q[X]/(f(X)) is a number
field containing R as a subring. If this is not the case we may be able to first
apply the ideas from Section 4.5 to reduce to this case. Further, we let L be a
subfield of K and denote by NK/L and TrK/L the relative norm and trace maps
from K to L, respectively. For simplicity, we assume m = 1 however we later
show how this generalises for larger m.

We first need to determine whether the multiplicative property of the norm
map respects reduction modulo g when g is a polynomial. To do this we note that
hu ≡ v mod gR is equivalent to the existence of k ∈ R such that h̃u = v + kg
in R. Suppose [K : L] = ` and σ1, σ2, . . . , σ` are the ` distinct field embeddings
K ↪→ C fixing L. For the approach to work we require a modulus g′ ∈ OL ⊂ L
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such that NK/L(h)NK/L(u) ≡ NK/L(v) mod g′OL. Now we compute

NK/L(h̃)NK/L(u) = NK/L(h̃u) = NK/L(v + kg)

=
∏̀
i=1

σi(v + kg) =
∏̀
i=1

(σi(v) + σi(k)σi(g))

= NK/L(v) +
∑̀
j=1

σj(k)σj(g)
∏
i=1
i 6=j

σi(v) + · · ·

and since k and v are unknown we realistically need g′ to divide σi(g) for every
i which seems to force g ∈ L, so that g is fixed by each σi, and then we take
g′ = g. The result would also hold if there was a way to choose h̃ such that k = 0
however we have no way to know how to choose such h̃ without knowledge of
u and v already. For arbitrary g not in L then, the required condition will not
hold in general and the attack appears to be foiled in this case.

When using the trace map instead of the norm map a similar obstruction
occurs. In the simplest case we take ` = 2 and let σ1 be the identity map
embedding K into C. Now, writing our relation instead as vu−1 = h̃ + kg in K
we have

TrK/L
(
vu−1

)
=

v

u
+ σ2

(v

u

)
=

vσ2(u) + uσ2(v)

uσ2(u)
=

TrK/L(vσ2(u))

NK/L(u)

so that if σ2 and both the trace and norm maps sufficiently maintain smallness,
the trace of a quotient of small elements is also a quotient of small elements. This
time we require a modulus ĝ ∈ L such that TrK/L(h̃) ≡ TrK/L(vu−1) mod ĝOL.
We again compute

TrK/L(vu−1) = TrK/L(h̃ + kg) = TrK/L(h̃) + Tr(kg)

= TrK/L(h̃) + kg + σ2(k)σ2(g)

and for the same reasoning, the condition g ∈ L is sufficient to allow ĝ = g and
appears to be necessary for the congruence to hold for any arbitrary lift h̃.

For larger values of `, the formula for the trace of a quotient becomes

TrK/L(vu−1) =
TrK/L

(
v
∏`
i=2 σi(u)

)
NK/L(u)

,

which again for appropriate choices may be seen as a quotient of small elements
and the attack can proceed as before.

In both approaches then, the subfields of K we can use are those between K
and Q(g(θ)) for θ a root of f . If g is linear then there are no such (non-trivial)
subfields. An example for which g is a non-constant polynomial and this attack
can be applied is when f is a power-of-two cyclotomic polynomial, and g can
be written as a polynomial in some power of X, Xp say, where p is a power of
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two that is larger than one. Concretely, for example, the choice f = X1024 + 1,
g = X8 −X4 − q for very large q would allow the choice L = Q(ζ512) of subfield
of K = Q(ζ2048).

When considering the problem for larger values of m we note that the entries
of the matrix h are of the form hi,j = hi,j(vi,u)/ det(u) where vi is the ith row
of v and hi,j is a sum of m! distinct monomials of degree m in the entries of vi
and u. This can be seen by using Cramer’s rule. One can attempt to recover the
numerators and common denominator assuming they are small enough via the
above methods, since the determinant is exponential in m we can only realisti-
cally expect this to work for small m. Indeed, in the next section we briefly look
at using the determinant map as a multiplicative homomorphism, this allows
one to recover det(u) with high probability, when applicable.

Remark 2. We point out that, as described in [5, Section 3.3], one can näıvely
lift a solution h′ ≡ v′u′−1 mod g in the subfield L to one in K for h ≡ ts−1 by
setting s = π(u′) and t = π(u′(hπ(h′)−1)) where π is the natural inclusion map
L→ K.

Requirements. In conclusion, for this attack we need to be able to consider
the problem in a number field K with a subfield L for which g ∈ L. Further, the
infinity norm of g should be exponential in the degree of K.

Determinant attack

In the specific case where the module structure introduces square matrices over
the ciphertext space Rg, the determinant map det : Rm×mg → Rg provides a
similar norming down function to the trace and norm. In this case, there is no
restriction on g as we always have

v ≡ hu mod gRm×m ⇒ det(v) ≡ det(h) det(u) mod gR.

However, with the determinant map the size of elements blows up exponentially
in m, and so the attack will only be applicable for very small m or an exponen-
tially large infinity norm |g|∞. Further, there is no simple way to find a solution
to the original problem from only det(u) and det(v) meaning this attack can
only be applied to try to solve a decisional version of the Ideal-NTRU problem.

5 Attacks on the LWE family of problems

5.1 A brute force attack on the LWE secret

The most näıve approach to solving the search LWE problem Ideal-LWEX,q,m,1,`,χ
is to try to guess the secret s. If we guess that the secret is s′ we can compute the
value c = b − as′. If s′ = s then the components of c will be samples from the
LWE error distribution χ, otherwise they will be essentially uniformly random
values modulo q. With enough samples one can determine which is the case with
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any desired probability. By searching over all possible s′ until we find one where
the components of c are suitably distributed we can solve the LWE problem.
This approach is a brute force approach.

One can perform a more intelligent brute force attack by first usingm samples
to convert the problem to normal form as described in Section 2.8. Now, one has
a much smaller search space for the possible secret.

Albrecht, Player and Scott [7] give the following result on the time and mem-
ory complexity of this exhaustive attack. Here t is chosen so that the error is
bounded by tαq with overwhelming probability and DZ,α is the discretised Gaus-
sian with parameter α.

Theorem 3 (Theorem 5.1 from [7]). The time complexity of solving the
Ideal-LWEX,q,m,1,`,DZ,α with success probability ε using an exhaustive search is
` · (2tαq + 1)m · 2m and the memory complexity is m when ` ≥ m + m′, t =
ω(
√

logm) and

m′ =
log(1− ε)−m log(2tαq + 1)

log(2tα)
.

It is clear that exactly the same approach can be carried out for the general
Ideal-LWEf,g,m,k,`,χ problem as long as the distribution χ can be efficiently
distinguished from uniform when reduced modulo g.

5.2 A meet-in-the-middle attack on sparse secret LWE

Adapting the idea of Odlyzko’s meet-in-the-middle attack on the NTRU problem
described in Section 4.3, Cheon, Hhan, Hong and Son [28] give a meet-in-the-
middle attack on the LWE problem when the secret is both sparse and has
ternary entries, that is from {−1, 0, 1}. We note that Bai and Galbraith [16]
mentioned the existence of such a meet-in-the-middle attack on LWE but did
not give details however they did state that the attack requires Õ(3n/2) space
and time.

The basic idea is to assume that the secret vector s has Hamming weight at
most h and to split it in some way as s = s1+s2 where both parts have Hamming
weight at most h/2. One then has the approximate equality, when considered
modulo q,

as1 ≈ b− as2

since b ≡ as + e mod q. Further, suppose that the entries of e are all bounded
by B. Näıvely, one can first list all possible values of as1 as s1 varies through
all possible ternary vectors of Hamming weight at most h/2 and then compute
b− as2 for each possible s2 until one finds an approximate collision on the list;
that is the coordinates differ by at most B.

Rather than this näıve approach, Cheon et al. apply the same techniques
described in Section 4.3 to sort the list into 2` buckets based on the most signifi-
cant bit of each entry. Now, instead of checking all items on the list in the second
step, one just needs to check a limited number of buckets; the only adaptation
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needed is that one must potentially check many more buckets as one must ac-
commodate coordinates differing by up to B rather than simply by 1. Further,
they suggest splitting up the secret in a potentially unbalanced way; namely,
into s1 of Hamming weight at most h1 and s2 of Hamming weight at most h2
with h = h1 + h2.

As written above, the attack is against the search version of the LWE prob-
lem, however Cheon et al. consider it as an attack on the decision problem by
deciding the samples are uniformly random if no secret s2 can be found which
creates an approximate collision with any of the as1.

Generalisation

One can readily adapt this approach to work more generally. One assumes that
the secret is distributed according to a distribution of small elements (not neces-
sarily the same as the errors); if not one first applies the transformation to normal
form given in Section 2.8. Again, the attack then follows the same approach as
the meet-in-the-middle attack on Ideal-NTRU but instead we are looking for an
approximate collision between b− as2 and as1 such that s1 + s2 = s. Again, we
will assume s1 and s2 lie in two sets S1 and S2 and we try to find the smallest
possible choices for S1 and S2 which allow such a splitting of an arbitrary secret.

Typically, this is done by only allowing certain module coordinates to be
non-zero in the case where the module dimension m is much larger than one, or
else allowing only certain coefficients of elements from R to be non-zero.

One small difference arises when considering the Ideal-LWE problem instead
of the Ideal-NTRU problem. Firstly, one need not compute as1 using the full
element a. Instead one can choose a smaller `′ with 1 ≤ `′ ≤ ` such that after
dropping the last `−`′ rows of a and b the secret is still (almost) unique with high
probability. If one does find multiple possible secrets one can use the remaining
samples to check whether each one is valid or a spurious solution.

As before, the main obstruction which could stop this attack from working
is if there is no efficient way to test for an approximate collision which would be
the case if there is no efficient test of smallness in Rg.

In general, assuming that one can efficiently test for approximate collisions,
if S is the set of all possible secrets (with high probability) then the meet-in-
the-middle attack takes Õ(

√
|S|) time and memory in the classical setting and

Õ( 3
√
|S|) time and memory in the quantum setting due to Grover’s algorithm.

Requirements. This approach requires an efficient method of determining ap-
proximate collisions. Further, when m = 1 the attack works best when R has
symmetries which allow the sets S1 and S2 to be chosen to be smaller than with-
out such symmetries.
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5.3 Reducing LWE to BDD: The primal attack

One can view the Ideal-LWEX,q,m,1,`,χ problem as the bounded distance decod-
ing (BDDγ) problem on `-dimensional integer q-ary lattices of the form6

Λq(a) :=
{

z ∈ Z`
∣∣ zT ≡ asT mod q for some s ∈ Zmq

}
with target vector (any lift of) b. Here, the approximation factor γ defining the
problem depends on the choice of χ. This assumes that one can find n linearly
independent rows of a so that one can recover s from as, if not one can only
recover partial information about s without more samples.

The primal attack consists of solving this bounded distance decoding prob-
lem using lattice reduction as was first suggested by Lindner and Peikert [54].
Since lattice reduction techniques strongly depend on the dimension of the lat-
tice, which here is the number of LWE samples, it is not wise to use too many
samples when constructing the so called primal lattice Λq(a). Further, there are a
number of different approaches to solving the BDDγ problem, perhaps the most
straightforward of which is to use Babai’s nearest plane algorithm [14] which
takes as input a basis matrix B for a lattice and a target vector t and outputs
a vector e such that t− e lies in the lattice Λ(B).

The idea of Babai’s nearest plane algorithm is to recursively compute the
closest vector to the target vector in the sublattice spanned by the last i ba-
sis vectors. This process can be performed in polynomial time as follows. Let
b?1, . . . ,b

?
d be the Gram-Schmidt vectors in order of increasing length. Then

setting td := t one computes for i from d to 1 the vectors

ti−1 := ti −
⌈
〈ti,b?i 〉
〈b?i ,b?i 〉

⌋
bi

and returns t0. Denoting the fundamental parallelepiped of the lattice spanned
by the Gram-Schmidt vectors by P(B?), Babai gave the following result.

Lemma 2 ([15]). Let B be a basis matrix for a lattice Λ and B? be the corre-
sponding Gram-Schmidt matrix. For a target vector t in the span of Λ, Babai’s
nearest plane algorithm returns the unique vector e ∈ P(B?) such that t−e ∈ Λ.

Clearly then, using Babai’s nearest plane algorithm requires a well-reduced
basis of the lattice as input if it is to be used to solve the bounded distance
decoding problem. Hence, one applies a strong lattice reduction algorithm to
the basis before applying this so-called decoding step. Many methods for solving
the BDD problem follow this approach of first reducing the lattice and then
applying some kind of decoding step, however not all do.

Lindner and Peikert [54] use a simple extension of Babai’s nearest plane
algorithm tailored to the known Gaussian distribution of the error typically
used in the LWE problem. This approach introduces a quality/time trade-off

6 We note that the LWE and SIS lattices are dual to each other up to a scaling factor
q, Λq(A) = qΛ⊥q (AT )∗.
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in decoding allowing a faster but weaker lattice reduction step at the cost of
increasing the time for decoding, this however can give a lower overall running
time for the attack.

The main drawback of Babai’s nearest plane algorithm is that for a typical
reduced basis the first few Gram-Schmidt vectors are much shorter than average
and the final few much longer, thus the parallelepiped P(B?) is very ‘long and
skinny’ so the algorithm is unlikely to recover the Gaussian error in the LWE
samples. To overcome this Lindner and Peikert introduce a second recursion
layer which recurses over some di ≥ 1 distinct planes on the ith outer recursion
with the effect of making the parallelepiped wider in the direction of b?i by a
factor of di. One should then choose the di which maximises mini(di ‖b?i ‖) so
as to capture the most probability mass of the error distribution. One can see
this as trying the di closest integers to 〈ti,b?i 〉/〈b?i ,b?i 〉 in Babai’s nearest plane
algorithm rather than simply only the closest. One then has the following lemma.

Lemma 3 (Lemma 4 from [54]). For t ∈ Span(B), the modified nearest plane
algorithm returns the set of all v ∈ Λ(B) such that t ∈ v + P(DB?) where D
is the diagonal matrix with diagonal di. The running time is essentially

∏
i di

times that of Babai’s nearest plane algorithm.

On the assumption that the discrete Gaussian error DZ,α used has large
enough width α, the success probability of the modified nearest plane algorithm
is very close to

∏
i erf (di ‖b?i ‖

√
π/(2αq)).

Returning to the lattice reduction phase, Lindner and Peikert employ BKZ
reduction which achieves a given root Hermite factor δβ depending on the block
size β. They give the optimal dimension `, corresponding to the number of LWE

samples used, as ` =
⌊√

m log q/ log δβ

⌉
.

Improvements to this approach have been suggested by Liu and Nguyen [55]
using (pruned) enumeration, and further by Aono et al. [11]. However, a gen-
eralised framework was proposed by Herold et al. [44] which encompassed all
such enumeration techniques for decoding and showed that asymptotically they
achieve the same running time.

Alternatively, one can use the embedding technique of Kannan [50] to reduce
the BDDγ problem to an instance of the unique shortest vector problem, uSVPγ′ ,
as was done by Lyubashevsky and Micciancio [56]. Here, one embeds the target
vector t together with the original lattice Λ(B) in a higher dimensional lattice
with basis matrix (

B 0
t t

)
for some embedding factor t.

This approach to solving the BDD problem in the context of the LWE prob-
lem was considered by Albrecht et al. in [6]. They give the following lemma on
the gap between the shortest non-zero vector and the second lattice minimum.

Lemma 4 (Lemma 2 from [6]). Let a ∈ Z`×mq , α > 0 and let c > 1. Further,
let e be drawn from the discrete Gaussian DZ`,αq. Under the assumption that the
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shortest vector of Λq(a) is at least as large as predicted by the Gaussian heuristic
and the assumption that the columns of a are linearly independent over Zq, one
can create an embedded lattice with λ2/λ1-gap greater than

min
{
q, q

1−m/`Γ (1+`/2)1/`√
π

}
cαq
√
`√

π

≈
min

{
q, q1−m/`

√
`

2πe

}
cαq
√
`√

π

with probability greater than 1− (c · exp((1− c2)/2))`.

When applying a lattice reduction algorithm achieving root Hermite factor
δ0, the experimental results of Albrecht et al. match those of Gama and Nyu-
gen [38] whereby the vector ±(e, t) lies in the reduced basis with some fixed
probability whenever the gap satisfies

λ2
λ1
≥ τtδ`0

for some real constant 0 < τt ≤ 1 depending on the desired probability level.
Experimentally, they found that τ‖e‖ ≥ 0.4 is needed for a success probability of
0.1 with the parameters of Regev [65], depending on the algorithm used. Albrecht

et al. also determine that a value of ` =
⌊√

m log q/ log δβ

⌉
is optimal in this

case too.
Determining the optimal choice for t does not appear to be a simple task.

One choice proposed by Lyubashevsky and Micciancio [56] is t = Dist(Λ(B), t)
so that the new lattice contains a vector of length

√
2t. Although this value is

not known exactly, it can be approximated. According to Albrecht et al., for
smaller values of t it is difficult to determine the gap λ2/λ1. The choice t = 1
has been found to be more efficient in practice giving a value of τ1 ≈ 0.3 [6].

One concludes with the following result.

Lemma 5 (Lemma 5.18 from [7]). Any lattice reduction algorithm achieving
log root Hermite factor

log δ0 =
log2(cτα

√
2e)

4m log q

can be used to solve the Ideal-LWEX,q,m,1,`,DZ,α problem via reduction to uSVP
with success probability greater than ετ · (1− (c ·exp((1−c2)/2))`) for some c > 1
and some fixed τ ≤ 1 and 0 < ετ < 1 as a function of τ .

Generalisation

We can straightforwardly generalise the LWE lattice to

Λ(a) := {ι(r) ∈ Zk`n | r ∈ R`×k, r ≡ at mod gR for some t ∈ Rm×kg }

and note that the target vector ι(repg(b)) is somewhat close to a point in this
lattice. Indeed if e is not too large we again have an instance of the bounded
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distance decoding problem. With high probability Λ(a) is full rank and has
volume adeg(r)k(`−m).

We can perform lattice reduction on Λ(a) to find a reduced basis of the lattice
and with this basis we can perform a decoding step in an attempt to find a lattice
vector close to the target vector as before.

The constructed lattice will have k orthogonal components corresponding
to the k independent columns of the secret matrix s so we can independently
perform lattice reduction on each orthogonal component. This is equivalent to
the fact that we can view b = as + e as k distinct instances of Ideal-LWE (with
k = 1) which have the same public matrix a. Thus without loss of generality for
security, we can consider the case k = 1 only so that s and e are vectors having
entries in Rg and R respectively.

To be able to recover the secret by solving the bounded distance decoding
instance we require that the norm of the error vector is not much larger than
the length of the shortest vector in Λ(a). This is true in the standard settings of
LWE and polynomial LWE but we can see immediately that if g is a polynomial
with small coefficients, or indeed any of the polynomials in gR has only small
coefficients, then the shortest vector in Λ(a) may be much smaller than the norm
of the error vector, essentially meaning that in practice such a lattice attack
is futile. This is not immediately evident though since lattice basis reduction
outputs a whole basis for the lattice. Thus, in theory, it might be that one can
still recover some secret information by solving the BDD instance. However, this
has not been possible in practice and remains merely speculative.

Requirements. For the primal attack to work on the Ideal-LWEf,g,m,1,`,χ prob-
lem, and hence also on the Ideal-LWEf,g,m,k,`,χ problem, when using the embed-
ding technique with embedding constant 1 we require:√

`nσ2 + 1 <
√

(`n+ 1)/2πe · adeg(r)(`−m)/(`n+1)√
`nσ2 + 1 < min{‖x‖ | x ∈ gR \ {0}}

where σ is the standard deviation of the distribution χ. The conditions come
from the fact that we need the vector we want to find to have norm smaller than
the Gaussian heuristic as well as that no other shorter non-zero vectors exist in
the lattice.

5.4 Reducing short secret LWE to inhomogeneous SIS

When considering the short secret variant of the learning with errors problem
one can enhance the primal attack as was done by Bai and Galbraith [16] where
they focussed on the case when the secret has components in {0, 1} or {−1, 0, 1}.
The idea is to reduce the problem to the inhomogeneous SIS problem as we now
explain.

Suppose one is given an Ideal-LWEX,q,m,1,`,χ instance (a,b) ∈ Z`×mq × Z`×1q

in which the secret s ∈ Zm×1 is short. Define `′ := `+m, a′ :=
(
a I`

)
and z :=(

sT eT
)

where e ≡ b−as mod q is the short error vector. Then a′zT ≡ b mod q
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is an instance of the inhomogeneous Ideal-SISX,q,`,`′,ρ problem with target vector
b and ρ an upper bound on ‖z‖ (with high probability).

The standard approach to solving the inhomogeneous version of the SIS prob-
lem is to find one solution w without consideration of its size, for example in
this case w =

(
0 bT

)
, and then attempt to solve the BDDρ problem in the asso-

ciated SIS lattice Λ⊥q (a′) with target vector w. On finding a vector v ≈ w with

a′vT ≡ 0T mod q, we note that z = w−v is short and satisfies a′zT ≡ b mod q
as required. One hopes that the first m coordinates of −v are indeed the LWE
secret s.

To solve the bounded distance decoding problem one can use any of the
approaches given in the preceding section discussing the primal attack. Bai and
Galbraith use the embedding technique with embedding constant t = 1.

If one has ‖s‖ � ‖e‖, Bai and Galbraith suggest multiplying the first m
columns of Λ⊥q (a′) by a scalar µ to balance the vector w − v before solving
the closest vector problem (the target vector w does not need to change as
it is zero in these coordinates). A further trick suggested when the secret has
binary coefficients is to change the target vector to

(
− 1

2µ1m bT
)

where 1m
is the vector of all 1s of length m. In this manner the difference w − v =(
± 1

2µ · · · ±
1
2µ e1 · · · em

)
is more balanced.

Generalisation

This reduction works more generally and allows one to reduce short secret
Ideal-LWEf,g,m,k,`,χ to k instances of the inhomogeneous Ideal-SISf,g,`,m+`,ρ

problem which all have the same matrix A =
(
a I`

)
defining the problem but

with differing target vector t, namely the rows of bT , and solution vector z the
corresponding row of

(
sT eT

)
; hence ρ should be taken as an upper bound on the

size of such vectors. One important distinction must be made however in that
while the inhomogeneous Ideal-SIS problem allows any solution which satisfies
the bound ρ, we are looking for a particular solution in order to solve the short
secret Ideal-LWE problem which may be an issue for certain choices of g.

For example, if using the embedding technique as mentioned above, then one
must consider the lattice

Λ(a,b) = {(ι(x), ι(y), z) ∈ Zd | x ∈ Rm, y ∈ R`, axT + yT ≡ zbT mod gR},

where d := (`+m)n+1 and attempt to find the short lattice vector (ι(s), ι(e), 1).
We can construct this lattice by computing a spanning set {vi}mni=0 of the solution
space to ax + y − zb = 0 over R. Namely, we set v0 = (0, ι(repg(b)), 1) and

the other vectors v1, . . . ,vmn as (ι(pi,j), ι(−apTi,j), 0) for i = 1, . . . ,m and j =
1, . . . , n, where pi,j is the power-basis for the i-th copy of R in Rm. Then the
lattice is spanned by the rows of the block-matrix
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v0

...
vmn

G 0
G 0

. . .
...

G 0


∈ Z(d+mn)×d, G :=


ι(g)
ι(Xg)

...
ι(Xn−1g)

 ∈ Zn×n. (1)

It is clear that the vector (ι(s), ι(e), 1) lies in this lattice and that it is rather
short. However, the important fact for this approach to work isn’t that this
vector is short but again that it is shorter than all the other non-zero vectors
in the lattice Λ(a,b), which is not necessarily the case. This issue is something
that also other methods for solving the inhomogeneous Ideal-SIS problem must
contend with in this setting.

The main example of this is with the MLHC problem in which the lattice (1)
contains many vectors of Euclidean length

√
5; this will be much smaller than

the length of an element sampled from the error distribution used in practice. A
similar phenomenon is observed when considering the LPN problem (LWE with
modulus 2); lattice reduction fails because there are many vectors of norm 2.
Other approaches are required to attack these sorts of problems.

Again, one may wish to try to balance the entries of the solution vector if the
secret and error distributions are different in the original Ideal-LWE instance.

5.5 Reducing LWE to SIS: The dual attack

The idea of the dual attack is to reduce the problem of solving the decision
LWE problem to solving the SIS problem as was suggested by Micciancio and
Regev [62]. The approach is to find a short vector in the (scaled) lattice dual to
the primal lattice Λq(a) which we noted is the SIS lattice Λ⊥q (aT ).

Suppose that one has found a short vector v ∈ Λ⊥q (aT ) so that va ≡ 0 mod q,

the attack proceeds by taking the inner product of v with the vector bT . If we
are in the case that the samples came from the LWE distribution As,χ then

〈v,bT 〉 ≡ vas + 〈v, eT 〉 ≡ 〈v, eT 〉 mod q

which is the inner product between two short vectors and so is also relatively
small. If however, the samples were uniformly random and assuming the greatest
common divisor of the coordinates of v together with q is one, the inner prod-
uct will also be uniformly random modulo q. Distinguishing between these two
distributions therefore allows one to attack the decision LWE problem.

In [62], the authors suggest that when χ is a discrete Gaussian with pa-
rameter α, DZ,α, then if one can only find a vector v with ‖v‖ ≥ 1.5

√
2π/α

then the two distributions are within negligible statistical distance of one an-
other. On the other hand and in the same setting, Lindner and Peikert [54]
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state that when ‖v‖ is not much larger than 1/α then the advantage in distin-
guishing is very close to exp(−π(‖v‖α)2). Hence, to use this approach to solve
Ideal-DLWEX,q,m,1,`,DZ,α with advantage ε one must solve the Ideal-SISX,q,m,`,ρ
problem for ρ = 1

α

√
ln(1/ε)/π.

If one uses lattice reduction to solve the SIS instance then typically one finds
a number of short vectors rather than just one. Naturally, having many relatively
short vectors vi such that via ≡ 0 mod q increases the chance of being able to
distinguish between the uniform distribution and the LWE distribution by using
the Chernoff bound [30].

It has been suggested by Albrecht [4] that when using lattice reduction it may
be possible to amortize its cost to find multiple short vectors in the dual lattice
by first performing one strong lattice reduction step, noting the shortest vector
and then re-randomising the reduced basis by a sparse unimodular matrix and
running a cheaper reduction algorithm to recover another short vector, repeating
this process a number of times gives multiple short vectors which experimentally
enable a better advantage in distinguishing.

Generalisation

Suppose we are given the pair (a,b) ∈ R`×mg ×R`×kg then we again aim to find

a short vector v ∈ R` such that va ≡ 0 mod gR. Then we have that if (a,b)
is from the Ideal-LWE distribution then vb ≡ vas + ve ≡ ve mod gR which
has coefficients that are the inner products of two short vectors. Again, we can
assume k = 1 so we do. If v is short enough this should be distinguishable from
vb with b a random matrix. This can be rephrased as finding a short vector v
in the scaled dual lattice of a:

Λ⊥(a) = {ι(x) ∈ Z`n | x ∈ R`, xa ≡ 0 mod gR}.

To find a basis for this lattice, see Section 3.1 where we consider the general
lattice attack on the Ideal-SIS problem. This time, with high probability, the
lattice has full rank `n and volume am deg r. We remark that for there to be
non-trivial vectors in this lattice we require ` > m which we already assume to
be the case in the definition of the problem.

As with the primal attack, if the secret s is known to be sampled from a
distribution of small elements then this information can be used to enhance the
dual attack [16]. We can construct the lattice

Λ′λ(a) = {(λι(x), ι(y)) ∈ R`n × Zmn | x ∈ R`, y ∈ Rm, xa ≡ y mod gR}

for a real scalar λ and find a short non-zero vector (λι(v), ι(w)) in this lattice. If
(a,b) is taken from the Ideal-LWE distribution then we have vb ≡ vas + ve ≡
λws+ve mod gR. One chooses λ to balance the size of λs and e so that we have
the sum of two products of small elements of roughly the same size. Alternatively,
if b is uniformly random then vb is uniformly random over vR`g.

Just as in the primal attack, if gR contains short vectors then the lattice
Λ⊥(a) (or Λ′λ(a)) will contain short trivial vectors. However, unlike in the primal
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attack this does not immediately cause the attack to fail as we are not interested
in finding a specific vector, only a short enough non-trivial vector (that is non-
zero when considered as an element of R`g). Since these non-trivial vectors must
exist, it is just a matter of running a strong enough lattice reduction algorithm
to find them. We found that running BKZ can find non-trivial vectors of length
roughly δ`n0 am deg(r)/`n, where δ0 depends on the block size used as given in [27].

In the general case, we observed that the coefficients of v roughly follow a
(discretised) Gaussian distribution centred about zero so its norm is approxi-
mately Chi distributed. If we denote the standard deviation of the distribution
of the coefficients of the vectors found by solving the Ideal-SIS problem by σSIS
then, together with the approximation for the length of the short vector we can
find, we have

√
`nσSIS ≈

√
2

Γ((`n+ 1)/2)

Γ(`n/2)
σSIS ≈ δ`n0 am deg(r)/`n.

Suppose (a,b) is from the Ideal-LWE distribution so that vb ≡ ve mod gR,

we first consider ve in R as
∑`
i=1 viei where vi, ei ∈ R with ei sampled from

the error distribution χ. Suppose for simplicity that the coefficients of elements
sampled from χ have variance σ2

χ and further define the constants fα,β,γ , for
0 ≤ α, β, γ < n by

Xα ·Xβ ≡
n−1∑
γ=0

fα,β,γX
γ mod f,

then

ve =

n−1∑
γ=0

n−1∑
α=0

n−1∑
β=0

(∑̀
i=1

vi,αei,β

)
fα,β,γ

Xγ

where vi,α are the coefficients of vi and ei,β are the coefficients of ei. For
f of cryptographic interest, by which we mean having small coefficients so
that the fα,β,γ are small, we find the coefficient of Xγ of ve computed over
R is approximately normally distributed with zero mean and variance σ2

γ :=

`σ2
SISσ

2
χ

∑n−1
α,β=0 |fα,β,γ |. The analysis assumes that the standard deviations are

large enough that discrete Gaussians behave like their continuous counterparts.

However, we can only compute vb modulo gR. Since Rg has adeg r distinct

elements, if
∏n−1
γ=0 σγ is much larger than this value we do not expect to be

able to distinguish using vb mod gR. In the case n = 1 of LWE this reduces
to the same remark of Lindner and Peikert [54] that ‖v‖ should not be much
larger than g/σχ. In their case they can conclude by considering the statistical
distance that the advantage of distinguishing is very close to exp(−2π2σ2

χ/g
2).

In our more general case we can do the same although we were unable to find a
formula for the advantage in the general case due to its intricate dependence on
the shape of the ciphertext modulus g.
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Example 2. As a simple yet important example, consider the case when f =
Xn ± 1; then

|fα,β,γ | =

{
1 if α+ β ≡ γ mod n

0 otherwise
,

and hence each coefficient of ve is approximately normal with variance `nσ2
SISσ

2
χ.

In the case that g is a positive integer, the advantage of distinguishing can be
considered coefficient wise so that it is close to exp(−2π2`nσ2

SISσ
2
χ/g

2) per coef-

ficient when
√

2π`nσ2
SISσ

2
χ is not much larger than g. With the integer version

of Ring-LWE [41] where g = X− q we again have a similar result for q not much
smaller than

√
2π‖v‖σχ, one must essentially distinguish the uniform distribu-

tion on Znq from the spherical discrete Gaussian distribution of variance roughly
`n‖v‖2σ2

χ and the advantage will be essentially the same.

Of course, having multiple short non-trivial vectors can increase the advan-
tage of distinguishing.

Requirements. For the dual attack on the Ideal-LWEf,g,m,k,`,χ problem using
a lattice reduction algorithm achieving root Hermite factor δ0 one must have

δ`n
2

0 σnχn
−n/2

n−1∏
γ=0

√√√√ n−1∑
α,β=0

|fα,β,γ | 6� a(1−m/`) deg r.

This condition is very dependent on the shape of both f and g, the attack is most
feasible when f is sparse and/or has small coefficients and at least one of the
coefficients of g are large.

5.6 The Blum-Kalai-Wasserman algorithm

In [21] Blum, Kalai and Wasserman introduced an algorithm which solves the
learning parity with noise problem using a slightly subexponential time and
number of samples. This algorithm came to be known as the BKW algorithm.
Regev [66], noted that one can adapt the BKW algorithm to work against the
LWE problem but it requires 2O(m) time and samples. We remark that in the
case of LWE one can use the sample amplification technique of Herold et al. [44]
to increase the number of samples one has available if required.

In its simplest form, the approach is somewhat similar to the dual attack
in that one finds a short vector in the dual lattice of A though this time this
vector will be a ternary vector of length

√
2t for some chosen t, having entries

in {−1, 0, 1}, and so we will require many more samples; one can compare this
with the attack of Camion, Patarin and Wagner in Section 3.3. As with the dual
attack, this will attempt to solve the decisional variant of the LWE problem.

Instead of using lattice reduction to find such a vector in the dual lattice,
the BKW algorithm splits the dimension m of the first component of the LWE
samples into t blocks of length roughly m/t and proceeds iteratively block by
block computing, at each stage i = 1, . . . , t, samples whose first components are
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zero on the first i blocks and which are a signed sum of 2i original samples.
One thus ends up with samples of the form (0,b′) where b′ is equal to either
the signed sum of 2t samples from the LWE error distribution χ or is uniformly
random.

During each step, one simply considers samples produced in the previous
step, say that have first component having zeros in the first i blocks, and looks
for two samples which agree on the (i + 1)th block.7 Upon finding such a pair,
subtracting one sample from the other component-wise produces a sample of
the required form. If no such collision is found, more samples are requested and
processed until such a collision is found. Thus, the approach can be seen as
constructing t+1 sorted lists Li of samples, indexed from 0 to t, all of which are
initially empty and for each sample we proceed through each list modifying the
sample until we can insert it into a list for which no sample in list Li matches the
(modified) sample on block i. The modifications come when a match is found in
a previous list Lj and then one subtracts the sample found in that list from the
modified sample so that the newly modified sample has first component which
is zero on the jth block. All samples which have not been inserted into a list by
Lt−1 are inserted into Lt and when there are enough samples in Lt one stops.
This can be seen as analogous to performing Gaussian elimination on the rows of
the matrix a but instead of considering each column independently we consider
blocks of (roughly) m/t columns.

It can immediately be seen that such an approach requires storing t lists each
containing approximately qm/t entries and while this can be reduced somewhat
it is ultimately the dominant factor in determining the running time of this
style of attack. Albrecht et al. [10] analysed the complexity of this approach
for attacking the decision LWE problem. Here we give the slightly modified
conclusion presented in [64] which assumes the need for more samples than the
optimistic number used in [10].

Theorem 4 (Theorem 6 from [64]). Let 0 < u ≤ m and set t = dmu e. The
expected cost of using the BKW algorithm to solve the Ideal-DLWEX,q,m,1,`,DZ,α

problem with success probability ε is

qu − 1

2

(
t(t− 1)

2
(m+ 1)− ut(t− 1)

4

)
− u(qu − 1)

12

(
(t− 1)3 +

3

2
(t− 1)2 +

1

2
(t− 1)

)
additions/subtractions in Zq to produce the lists and

ε exp(2tπα2)
t(m+ 2)

2

7 Since changing the sign of both components of a sample gives another valid sample
with the same magnitude of noise we should also look for blocks which sum to zero
rather than whose difference is zero, this will be implicitly assumed throughout this
whole section.
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additions/subtractions in Zq to produce the new samples, all of which uses

t

⌈
qu

2

⌉
+ ε exp(2tπα2)

original samples. The memory requirement is

qu

2
t

(
m+ 1− ut− 1

2

)
elements of Zq.

In order to be able to distinguish the two distributions using the same ideas in
the dual attack one should choose t such that

√
2tαq ≤ q and hence t ≤ −2 logα.

This gives the following corollary.

Corollary 1. The expected cost of applying the BKW algorithm to attack the
Ideal-DLWEX,q,m,1,`,DZ,α problem is O(qn/(−2 logα)(−2 logα)2n) operations in

Zq using ` ≥ −2 logα
⌈
qm/(−2 logα)/2

⌉
+ poly(m) samples.

Attacking the search variant

More generally, one can consider using the BKW algorithm to attack the search
version of the problem as explained in [10]. This approach can be split into
three different stages. The first stage is the iterative Gaussian elimination stage
explained above, though one stops before the last iteration. The second stage
is to perform a hypothesis test on a candidate for a part of the secret vector s
in order to recover a component of it. Finally, using this partial information a
back substitution stage is performed so that one can proceed to solving a smaller
instance of the problem.

Splitting up the secret vector s into blocks in the same way as when split-
ting the first component of a sample, the hypothesis testing stage will attempt
to recover in reverse order the blocks of s. The back substitution phase takes
this knowledge, say one concluded that blockwise the secret has final blocks
s′i+1, . . . , s

′
t and write s′i

T
= (0, 0, . . . , 0, s′i+1, . . . , s

′
t), and computes for each

sample (a,b) in list Li−1 the new sample (a′,b′) = (a(i),b− as′i mod q) where
a(i) is the vector consisting of the first i blocks of a. If s′i is a correct guess
then s − s′i is non-zero only on the first i blocks. This means that (a′,b′) is a
lower dimensional sample with secret s(i) and error a sum of 2i outputs from
the original error distribution; further, a′ has the property that it is zero on all
but its last block. Hence the problem has been reduced to a smaller dimensional
one of the same form and one can proceed to the hypothesis testing stage using
these new samples.

In [10], the authors note that for the hypothesis testing stage one can simply
use an exhaustive search over the part of the secret being tested since even with
this approach the running time is dominated by the first stage. They score each
guess using the log-likelihood ratio and take the guess with the highest score.
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Alternatively, any other method which can tolerate the enlarged errors can be
used in this step.

Duc, Tramèr and Vaudenay [35] replaced the log-likelihood ratio approach
in the hypothesis testing stage by one using a multidimensional discrete Fourier
transform and made further optimizations. They give the following analysis of
the BKW algorithm when used against the search LWE problem.

Theorem 5 (Theorem 17 from [35]). Let u and t be positive integers such
that ut = m and denote by C the small constant in the complexity of the fast
Fourier transform computation. Further, let 0 < ε < 1 be a targeted success rate
and define ε′ := (1− ε)/t. For 0 ≤ j ≤ t− 1, set

`j,ε := 8u log(q/ε)
(
1− πα2

)−2t−j
.

The time complexity to solve the Ideal-LWEX,q,m,1,`,DZ,α problem with probability
at least ε is c1 + c2 + c3 + c4 where

c1 =
qu − 1

2

(
(t− 1)(t− 2)

2
(m+ 1)− u

6
(t(t− 1)(t− 2))

)
is the number of additions in Zq to produce the lists,

c2 =

t−1∑
j=0

`j,ε
t− 1− j

2
(n+ 2)

is the number of additions in Zq to produce the samples required to recover all
blocks of s with probability ε,

c3 = 2

t−1∑
j=0

`j,ε

+ Cmqu log q

is the number of operations in C to prepare and compute the discrete Fourier
transforms, and

c4 = (t− 1)(t− 2)u
qu − 1

2

is the number of operations in Zq for back substitution. The number of samples
required is

(t− 1)
qu − 1

2
+ `0,ε.

Finally, the memory complexity in number of elements from Zq and C is respec-
tively

qu − 1

2
(t− 1)

(
m+ 1− ut− 2

2

)
+ `0,ε and qu.
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Further improvements The first stage was later modified by Guo, Johansson and
Stankovski [42] in order to more efficiently find collisions. Instead of looking for
exact collisions between two samples on a given block of the first component
they relax this by using a q-ary linear code of length the given block size and
consider there to be a collision when the two blocks map to the same codeword.
This gives rise to some additional error which is the inner product of the actual
difference on the two blocks and the corresponding secret block; hence, if the
secret is not initially short one should first apply the normal form transformation
given in Section 2.8. Again, one iterates the procedure over the different blocks
and since additional errors arising in the first blocks increase exponentially in
the later iterations one should choose different codes with decreasing rates as
one runs over the different blocks. This approach is called coded-BKW. Since
coded-BKW improves on the first stage of the attack which is the bottleneck of
the algorithm, this approach outperforms the previous works; the exact analysis
is rather technical and relies on a number of algorithm specific parameters so we
do not state it here.

A similar proposal to coded-BKW was given in concurrent work by Kirchner
and Fouque [51]. Instead of using coding theory to improve the first stage they
generalise the approach of Albrecht et al. [8] called lazy modulus switching which
was used to attack the LWE problem with a binary secret. There, a collision
is taken to occur between two samples whose first components after modulus
switching are equal on a given block, though one does not actually perform
modulus switching until it is needed, hence the term lazy; this can be seen as
requiring a collision in only the most significant bits of coefficients in the block.
This latter point of view is adopted by Kirchner and Fouque who allow the
number of significant bits required for a collision to decrease as one iterates over
the blocks, at the same time allowing the remaining blocks to consist of a larger
number of coefficients to keep the overall size of the lists roughly constant. They
give the following analysis of this approach under a bound on the secret.

Theorem 6 (Theorem 4 from [51]). Assume that the secret s is such that
|si| ≤ S for all i = 1, . . . ,m with S ≥ 2 and define β =

√
m/2/α. Assume

further that max(β, log q) = 2o(m/ logn) and β = ω(1). Then one can solve the
Ideal-DLWEX,q,m,1,`,DZ,α in time 2(m/2+o(m))/ ln(1+log β/ logS) for large enough `.

Finally, in the case of polynomial LWE, Stange [70] offers some methods
to speed up the hypothesis testing phase and removing the need for a back-
substitution phase. Since it is the iterative phase which is the bottleneck of this
approach these ideas do not significantly improve the running time of the attack
however they are still interesting. We discuss these ideas in Appendix A.

Generalisation

Since this attack only uses the module structure it can be applied in much the
same way whenever m is reasonably large. In the other case, for example where
m = 1 so we have polynomial LWE, we could convert the problem to an LWE
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instance by considering Rg as a free Za-module of dimension deg r however this
loses sight of some of the additional ring structure that we would like to take
advantage of. We will see in Appendix A how one can use this structure although
this will not significantly speed up this approach.

Requirements. One can readily apply the BKW algorithm to instances of the
Ideal-LWEf,g,m,k,`,χ problem when the module dimension m is relatively large
and ` is very large. If m is small one may be able to use the fact that Rg is a
free Za-module of dimension deg r with which to define a block structure. If `
is not large enough one may be able to apply sample amplification techniques to
increase it.

5.7 The Arora-Ge attack

When the error distribution χ used in the LWE distribution As,χ is very narrow,
Arora and Ge [13] noticed that one can attack the problem by defining a system
of non-linear equations in the entries of the secret vector s. With enough samples
one can linearise the system, and solve for the secret.

One first chooses an integer d such that the (discretised) error is bounded by
d with very high probability when sampled from χ. Define the polynomial

P (η) := η

d∏
i=1

(η − i)(η + i);

then with very high probability we have P (e) = 0 when e ← χ. Let x =
(x1, . . . , xm) be m variables. Then for each sample (ai,bi) ← As,χ we have
a multivariate polynomial

pi(x) = P (bi − 〈ai,x〉)

for which pi(s) ≡ 0 mod q. Define the variables yv, indexed by a vector v ∈ Nm0
with 0 ≤

∑m
i=1 vi ≤ 2d + 1, where yv =

∏m
i=1 x

vi
i . In total there are

(
m+2d+1

m

)
such variables so with enough samples it is likely that, when linearised, the
equations pi(y) ≡ 0 mod q are overdetermined and one can attempt to solve the
linear system of equations. If all the error terms are indeed bounded by d then
one can recover the secret as a solution.

As we require many samples to set up the linear system we must worry about
the possibility that one of the error terms is larger than d causing the attack to
fail. If one increases d even slightly then one needs significantly more samples
and we have the same problem that it is now much more likely that one of the
samples contains an error term larger than the new value for d. In practice then,
the attack works well only when we can take d to be very small. More generally,
Albrecht, Cid, Faugère and Perret give the following result after refining the
analysis of this approach.

Theorem 7 (Theorem 5 from [9]). Let DZ,α be the discrete Gaussian with
parameter α and define D := 8(αq)2 logm+1. Denote by ω the linear algebra con-
stant. If D ∈ o(m) then the Arora-Ge algorithm solves the Ideal-LWEX,q,m,1,`,DZ,α
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problem in time complexity

O
(

2ωD log(m/D)αq2 log q
)

and memory complexity

O
(

22D log(m/D)αq2 log q
)
.

If D ∈ o((αq)2 log n) then the Arora-Ge algorithm solves the Ideal-LWEX,q,m,1,`,DZ,α

problem in time complexity

O
(

2ωm log(D/m)αq2 log q
)

and memory complexity

O
(

22m log(D/m)αq2 log q
)
.

When performing the linearisation approach given by Arora and Ge one must
have access to as many samples as required and if this is not the case then this
approach fails. However, other approaches to solving a system of multivariate
equations exist. Both Ding [34, 33] and Albrecht et al. [9] have proposed to use
Gröbner bases to find a solution to the system of multivariate equations. Under
the assumption that the polynomials pi form a semi-regular system, they give the
following result showing that using Gröbner bases gives an exponential speed-up
over linearisation. However, it does not lead to a subexponential attack on the
LWE problem.

Theorem 8 (Special case of Theorem 6 from [9]). Let ω be the linear alge-
bra constant and set α =

√
m/q. There is an algorithm solving the Ideal-LWEX,q,m,1,`,DZ,α

problem, where ` = exp(πm/4), in time complexity O
(
2m(2.35ω+1.13)

)
and mem-

ory complexity O
(
25.85m

)
with success probability at least 1− 2/π

√
m.

Generalisation

The attack also works against polynomial LWE, that is Ideal-LWEf,q,1,1,`,χ,
simply by considering a polynomial LWE sample as n LWE samples; however,
this is best suited for error distributions that are defined coefficient-wise. For
example, if the error distribution produces error polynomials with coefficient
vectors of at most a fixed Hamming weight h, one can proceed as in the original
attack against the learning parity with structured noise problem and consider
any suitable polynomial p(x), defined with respect to a full polynomial LWE
sample, of degree h + 1 using the idea that among any h + 1 coefficients of the
error there is at least one that is zero so their product is guaranteed to be zero.
Since any set of h + 1 coefficients gives a distinct polynomial it makes sense to
use all of them so in this case instead of defining p as a single polynomial we
define it as

(
n
h+1

)
polynomials each of degree h + 1 and depending on a single
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polynomial LWE sample. We follow this latter approach of having p be a set of
polynomials defined by a sample from Rmg ×Rg.

Porting this attack to the generic ciphertext modulus setting presents a com-
plication. In the simplest case, the polynomial p(x) evaluates to zero only in the
components of samples of χ. However, when the ciphertext modulus g is not just
a constant, the small coefficients of samples from χ become intertwined when
reduced modulo g. One may think of trying to reverse the operation of reduction
modulo g when this is easy to do such as the case of a linear g (this amounts to
expanding with respect to some integer base) however this is not a polynomial
operation so is not compatible with this attack.

Instead, we must consider the coefficients of the distribution χ when reduced
into Rep(Rg), these coefficients will be polynomials in the original error coeffi-
cients. In the integer modulus case the polynomial p had degree 2D+ 1 because
we assumed that with overwhelming probability the error coefficient can be one
of only 2D + 1 values. In the general case that g is not a constant polynomial
we must typically use a larger degree for p due to the increased range of possible
values a given coefficient in Rep(Rg) can take. This can dramatically increase
the degree of the polynomials making up p; how much depends on how the co-
efficients of the original error e in R are mixed when reduced modulo g into
Rep(Rg).

For example, if g is linear then elements in Rep(Rg) are constants so all
coefficients are mixed; in this case p will consist of a single polynomial whose
degree is now (2D + 1)n in the simple bounded error case. As another example
we can consider f = Xn + 1 and g = Xn/2− b for some b so that a = b2 + 1 and
r = g. In this case, when mapping an error from R to Rep(Rg), each coefficient of
the output depends only on two of the input coefficients so that we need to use
a p consisting of n/2 polynomials of degree (2D+ 1)2 when the error coefficients
are bounded by D.

This growth in the maximal degree of the polynomials defining p renders
this attack all but useless when either D is large or the coefficients of an error
term mix too much in Rep(Rg). In the case of the MLHC problem, the error
polynomials have a fixed Hamming weight, say h, and g = X − 2, this leads
to the polynomial p having degree at least

(
n
h

)
, again making this approach

intractable.

Requirements. The Arora-Ge attack requires that the ciphertext modulus is an
integer or more generally that very little mixing of error coefficients occurs when
going from R to Rep(Rg). Further, the errors must be taken from a very narrow
distribution.

5.8 Evaluation attacks

One can consider the folding attack of Gentry on NTRU described in Sec-
tion 4.5 as the first evaluation attack. Here we consider how such an attack
can be mounted on the polynomial LWE problem instead. In [36], Eisenträger,
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Hallgren and Lauter gave a simple attack on the Ideal-LWEf,q,1,1,`,χ prob-
lem when the defining polynomial f has a root at 1 when taken modulo a
prime modulus q: f(1) ≡ 0 mod q. Due to this property, the evaluation at one
map Zq[X]/(f(X)) → Zq given by a(X) + (q, f(X)) 7→ a(1) + qZ is well de-
fined. The attack consists of applying this map component wise to the sam-
ples (a,b) and noting that the evaluation at one map is a ring homomor-
phism so that if the samples are sampled from the polynomial LWE distribution
then b(1) = a(1)s(1) + e(1) mod q and we have one dimensional LWE samples
with secret s(1). Hence, one can test each possible value of s(1), computing
b(1) − a(1)s(1) mod q and consider this new distribution. In the case of an in-
correct guess for s(1) or the case of uniformly random b, since q is prime, the
distribution is uniformly random modulo q. On a correct guess for s(1) however,
the distribution will be non-uniform so that for large enough q it is distinguish-
able and hence we can determine that the original samples were not uniformly
distributed. In this way, one can solve the Ideal-DLWEf,q,1,1,`,χ problem in time

Õ(q).
The authors further suggest a slight generalisation of the attack for which f

has a root ξ modulo q of small order in Z×q . The attack now uses the evaluation
at ξ map instead of the evaluation at 1 map. Further, ei(ξ) may no longer be
small but due to the small order of ξ can still be distinguished from uniform
with non-negligible advantage for suitably large q.

The above evaluation attack was analysed by Elias et al. in [37] where they
give the following proposition.

Proposition 1 (Proposition 1 and 2 from [37]). Let q be a prime and
f(X) ∈ Z[X] of degree n be such that there exists ξ ∈ Z with f(ξ) ≡ 0 mod q
and ξ having order t in the multiplicative group Z×q . Also let χσ be the spherical
Gaussian distribution on Z[X]/(f(X)), with respect to the power basis, with
standard deviation σ but that has been truncated at width 2σ. Assume one of the
three following cases:

1. (4σn/t)t < q and set p = (4σn/t)t/2;
2. ξ = ±1 and 8σ

√
n < q and set p = 1/2;

3. ξ has small multiplicative order t ≥ 3 modulo q and

8σ

√
n√
t

√
β2t − 1√
β2 − 1

< q,

and set p = 1/2.

Then one can solve Ideal-DLWEf,q,1,1,`,χσ with probability at least 1 − p`. The

running time of this attack is Õ((`+ n)q) in case 1 and Õ(`q) otherwise.

Generalisation

The attack can be generalised to the generic ideal setting upon considering that
evaluation-at-z is equivalent to reduction moduloX−z. The resulting congruence
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is well defined as long as (X − z, f(X), g(X)) 6= (1) as Z[X]-ideals. In fact, one
can consider more generally reduction modulo a polynomial h(X) as long as
(f(X), g(X), h(X)) 6= (1) as ideals. Reducing samples modulo h(X) into the
ring Z[X]/(f(X), g(X), h(X)) gives samples in a smaller ring which may be
easier to solve than in Rg if the error distribution is mapped to one which is
still distinguishable from uniform. For larger values of m it is straightforward to
consider applying the same techniques coordinate-wise.

While this attack is potentially very powerful, it is straightforward to choose
parameters where there are no suitable choices for h. We note that the MLHC
problem is naturally immune to this attack, since neither evaluation at 2, nor
evaluation at 1, results in any non-trivial information.

Requirements. For this attack to work we require the existence of a polyno-
mial h(X) ∈ Z[X] for which the Z[X]-ideal (f(X), g(X), h(X)) is not trivial
and where the reduction modulo (g(X), h(X)) of the error distribution is still
distinguishable from the uniform distribution.

5.9 Zero-forcing: The attack of Coron and Gini

Inspired by the zero-forcing attack of Beunardeau et al. on the MLHRn,h problem
[20], Coron and Gini [32] give a variant of the attack against the Mersenne low
Hamming combination assumption, i.e. Ideal-DLWEXn−1,X−2,1,1,2,χ with χ the
uniform distribution on binary polynomials in R having h non-zero coefficients
and the secret also sampled from χ. Further, this can easily be modified to attack
the MLHCn,h, Ideal-LWEXn−1,X−2,1,1,1,χ, problem which success 2−2h over all
possible choices of s and e.

First, assume that one is given (a1,b1) and (a2,b2) where bi ≡ ais+ei mod
M for i = 1, 2, where again M = 2n − 1, and s, e1, e2 are n bit integers with
binary expansions having Hamming weight h. One again chooses a balanced
interval-like partition for each of s, e1 and e2 this time consisting of k, ` and j
blocks respectively. In their approach, blocks are not classified as zero or non-
zero and can be thought of as implicitly consisting of a non-zero block together
with its following zero block. Let the partition of s have blocks starting at indices
p1, . . . , pk, and similarly q1, . . . , q` for e1 and r1, . . . , rj for e2.
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For a constant β, one constructs the lattice spanned by the rows of the matrix

β 0 0 · · · 0 0 · · · 0 b12−q1 0 · · · 0 b22−r1

0 1 0 · · · 0 0 · · · 0 −a12pk−q1 0 · · · 0 −a22pk−r1

0 0 1 · · · 0 0 · · · 0 −a12pk−1−q1 0 · · · 0 −a22pk−1−r1

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 1 0 · · · 0 −a12p1−q1 0 · · · 0 −a22p1−r1

0 0 0 · · · 0 1 · · · 0 −2q`−q1 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · 1 −2q2−q1 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 M 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 0 1 · · · 0 −2rj−r1

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 · · · 0 0 0 · · · 1 −2r2−r1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 M


and notes that, on writing

s =

k∑
i=1

xi2
pi mod M, e1 =

∑̀
i=1

yi2
qi mod M, and e2 =

j∑
i=1

zi2
ri mod M,

the vector
(
β x1 · · · xk y1 · · · y` z1 · · · zj

)
lies in the lattice and for a well chosen

set of partitions it is a short vector.
Just as in the attack of Beunardeau et al. the approach is to sample random

balanced interval-like partitions with k = ` = j, construct the associated lattice
and run LLL reduction on it in the hope of recovering s, e1 and e2 (or some

rotation). The probability of success is now given by
(
2
3

)3h ≈ 2−1.75h over all
possible choices of s, e1 and e2. Now, if b1 and b2 are actually random integers
modulo M then the success probability of finding a solution consisting of three
n-bit integers having Hamming weight h is negligible so one can distinguish
between the two cases with non-negligible advantage in time O(21.75h).

If one removes the final j columns of the lattice and sets e1 = e and a1 = a
then one recovers the attack on the MLHCn,h problem mentioned above which
runs in time O(22h).

Generalisation

The idea here is the same as the zero-forcing attacks on Ideal-NTRU only applied
to the primal-LWE lattice instead of the NTRU lattice. This time, we will first
have to slightly modify the LWE lattice. We assume that k, the number of
independent secrets, is one as before and that the secret s is sampled from the
error distribution (we drop this condition later but it helps to ease the exposition)
and that the error distribution produces elements of R which have many zero
coefficients. Define d = (m+ `)n+ `deg r + 1 and the modified lattice

Λ′(a,b) =
{

(ι(x), ι(y), z, w) ∈ Zd
∣∣∣ x∈Rm, y∈R`,

z≡ι(repg(wb+axT+yT )) mod a

}
,

56



where again we have abused notation and dropped the zero coefficients appearing
at the end of z.

As before, we are only interested in vectors for which z is zero so we will scale
these coordinates by a large constant K. We may also scale the final coordinate
by some small non-zero scalar W to balance the coordinates of the small vector
we are trying to recover. For this purpose we define the lattice

Λ′K,W (a,b) = {(x,y, z, w) ∈ Zd | (x,y,K−1z,W−1w) ∈ Λ′(a,b)}.

It is clear that if b = as + e then (ι(s), ι(e),0,−W ) is a short element in
this lattice. Further, we can easily compute a basis for the lattice by setting the
first basis vector as (0,0,Kι(repg(b)),W ), the next mn vectors running over the
power-basis for x ∈ Rm and fixing y = 0 and w = 0, the next `n vectors running
over the power-basis for y ∈ R` while x and w are fixed to zero and finally `deg r
vectors which perform reduction modulo Ka in the third component, while all
other entries are set to zero.

Just as before, the important point now is that it is easy to find a basis for
the lattice corresponding to setting certain coefficients of some element of R to
be zero. The approach of the zero-forcing attack is to guess positions that can be
set to zero to significantly reduce the dimension of this lattice, then reducing this
sublattice using LLL and assuming that the guess was correct we may be able
to find the corresponding secret and errors. For more details on how exactly this
is done see the zero-forcing attack on the Ideal-NTRU problem as the process is
almost identical.

Remark 3. Finally, we remark that the attack is still applicable if the secret is
not sampled from the error distribution and one cannot convert the problem to
such an instance. To proceed, one simply drops the columns corresponding to x
in Λ′(a,b) and allow z to be any element satisfying z ≡ ι(repg(wb + axT + yT ))
for some x ∈ Rm.

Requirements. The requirements for this attack are much the same the zero-
forcing attack on Ideal-NTRU, only this time the errors also need to be sparse;
something that is typically not the case for standard LWE type problems. Further,
f and g should have sparse coefficient vectors with small coefficients.

6 Conclusion

In this paper we have detailed the most relevant attacks on standard variants of
the NTRU, LWE and SIS problems as well as those on the newer MLHR and
MLHC problems and considered if and how they can be applied to the more
general Ideal-NTRU, Ideal-LWE and Ideal-SIS problems which use a general
polynomial ciphertext modulus.

We have seen that attacks such as the Arora-Ge attack and the zero-forcing
attacks require very specific parameter choices in order to be generalised be-
yond their original intended use while other attacks such as lattice attacks on
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the Ideal-SIS problem can be applied for any choice of ciphertext modulus. In
between these two extremes, we have attacks such as subfield attacks on the
Ideal-NTRU problem and the primal attack on Ideal-LWE which still require the
ciphertext modulus to conform to a rather restrictive set of requirements as well
as the dual attack on Ideal-LWE and combinatorial attacks on Ideal-SIS which
have more minimal requirements on the ciphertext modulus.

Whilst we were able to give somewhat high-level conditions which need to be
satisfied for the attacks we consider to be applicable, determining a set of con-
crete parameter choices for which a problem achieves a certain level of security
is currently not possible outside of the standard problems. It remains important
future work to obtain a deeper understanding of the applicability and running
times of the generalised attacks presented in this work. In doing so it may then
be possible to provide concrete estimates for the security of a given instance of
either the Ideal-NTRU, the Ideal-LWE, or the Ideal-SIS problems.
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A Ring-BKW

One can apply the BKW attack directly to any ring variant of the learning with
errors problem, under the assumption that the error term has small coefficients,
by considering one sample as n LWE samples. If one does this however, a ring
sample which is zero on the first block only has one LWE sample with this
property in general.

Instead of simply splitting the coefficients into blocks as in the original BKW
attack, Stange, in an unpublished work [70], proposes to use the ring structure
to do better. We remark that the exposition here mainly follows the first version
of [70] which includes the use of the Chinese remainder theorem to reduce the
size of the problem. This idea was removed in later versions of the paper since
such a reduction can be achieved using the other main idea present in the first
version which is to use the trace map.

Stange’s attack restricts to using the power-of-two cyclotomic polynomial
in the polynomial LWE setting and further assumes that q is prime and8 q ≡
1 mod 4 so that, on defining ν := ord2(q − 1) ≥ 2, t := 2ν−1 and u := n/t, we
have

Xn + 1 ≡ f1(X) · · · ft(X) mod q

with each fi irreducible modulo q and having degree u. Hence, we have the
isomorphisms

Rq :=
Zq[X]

(Xn + 1)
∼=

Fq[X]

(f1(X))
× · · · × Fq[X]

(ft(X))
∼= Fqu × · · · × Fqu = Ftqu

using the Chinese remainder theorem. In fact, we have fi = Xu − c2i−1 where
the c is any root of Xt + 1 in Fq.

We further assume, for simplicity, that the error distribution can be written
so that we can sample it coefficient wise from χ and allow the secret to be
sampled from an arbitrary distribution.

This structure of Rq gives us two tools which are used to improve the BKW
attack; firstly, we can apply a ring homomorphism from Rq to some smaller
ring and secondly, one can use the subfield structure inside the fields Fqu or the
number field Q[X]/(f(X)). Both tools cannot simply be applied näıvely as we
now see.

For a ring homomorphism ρ : Rq → R/a ∼= Fqu , for a | qR, the coefficient-wise

error distribution is mapped to the coefficient wise distribution ξ :=
∑t−1
i=0 ρ(Xu)iχi

8 If not using the CRT decomposition then q is assumed only to be an odd prime
which is unramified in R.
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where χi are independent and identically distributed according to χ. This is true
since ρ fixes Fq and hence χ. We therefore see that smallness is not preserved in
general.

In the case of going from the field Fqu to a subfield Fqd or from Q[X]/(f(X))
to a subfield we can use the field norm or trace maps. However, applying these
maps also increases the size of the errors in much the same way as we saw in
Section 4.6.

Once these two obstacles have been overcome the approach is as before. First
choose a block size β | u and perform the BKW algorithm on the coefficients of
the CRT representations of the first component of the samples if using the CRT
decomposition or simply on the first component of the samples if not. In doing
so we can reduce the problem to solving the problem for instances in smaller
subfields. After solving these instances we can rebuild the original secret. We
now give the details.

CRT Reduction Let us write ρi : Rq → Fq[X] for i = 1, . . . , t defined simply
by reduction with respect to fi(X) to a polynomial of degree at most u. We
choose not to map into Fq[X]/(fi(X)) for clarity later on and instead define
multiplicative binary operations �i : Fq[X]× Fq[X]→ Fq[X] given by a�i b :=
ρi(ab). Define the t× t matrix P as

P :=


ρ1(X0) ρ2(X0) · · · ρt(X

0)
ρ1(Xu) ρ2(Xu) · · · ρt(X

u)
...

...
. . .

...
ρ1(Xn−u) ρ2(Xn−u) · · · ρt(Xn−u)



=


1 1 · · · 1
c c3 · · · c2t−1

...
...

. . .
...

ct−1 c3(t−1) · · · c(2t−1)(t−1)

 .

We note that the entries of P are elements of Fq in our specific case so we
consider P to be a matrix in GL(t,Fq). If we write ρ = (ρ1, . . . , ρt) as the full
CRT isomorphism then for an element a ∈ Rq with coefficients aj ∈ Fq we have

ρ(a) = ρ

n−1∑
j=0

ajX
j

 =

n−1∑
j=0

ajρ(Xj) =

t−1∑
i=0

u−1∑
j=0

aiu+jX
j

 ρ(Xiu).

We thus define αi :=
∑u−1
j=0 aiu+jX

j , α = (αi)
t−1
i=0 and note that ρ(a) = αP .

Further, denoting P−1 = (µi,j)
t
i,j=1 we have µi,j = c−(2i−1)(j−1)/r and α =

ρ(a)P−1 which implies αi =
∑t
j=1 µj,i+1ρj(a). Assume now that (a,b = as+e)

is a sample from the polynomial learning with errors problem. We thus see that
if ρj(a) = 0 for all j except t then we have ρj(b) = ρj(e) for all j except for t
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where we have ρr(b) = ρt(a)�t ρt(s) + ρt(e). Hence for each i we have

t∑
j=1

µj,iρj(b)︸ ︷︷ ︸
βi

= µt,iρt(a)︸ ︷︷ ︸
αi

�tρt(s) +

t∑
j=1

µj,iρj(e)︸ ︷︷ ︸
εi

which we can consider as a polynomial LWE sample in the ring Zq[X]/(ft(X))

with secret ρt(s) and error εi =
∑u−1
j=0 eiu+jX

j which has small coefficients
assuming the original samples had small error coefficients ej .

More generally, if for some j0 we have ρj(a) = 0 for j = 1, . . . , j0 − 1 and
ρj(s) is known for j = j0 + 1, . . . , t then we can compute samples

(ãi, b̃i) :=

µj0,iρj0(a),

t∑
j=1

µj,iρj(b)−
t∑

j=j0+1

µj,iρj(a)�j ρj(s)

 (2)

which when considered modulo fj0 are polynomial LWE samples with secret
ρj0(s) and error distrubtion χu.

The trace map Let us first suppose that we have polynomial LWE samples (a,b)
where the ring is also a field isomorphic to Fqu as is the case with the samples

(ãi, b̃i) (over multiple instances of suitable (a,b)). We consider the trace map
Tr : Fqu → Fqd for some d | u in this case. For convenience we denote by Sq the
subfield Fqd in this case.

Alternatively, if we have samples in Rq where R = OK for K = Q[X]/(f(X))
we let L ⊆ K be the 2dth-cyclotomic subfield and note that the trace map
TrK/L : K → L respects reduction modulo q. That is for a,b ∈ R we have
TrK/L(a + qb) = TrK/L(a) + qb′ for some b′ ∈ OL. This time, denote by Sq the
subset of Rq corresponding to OL/qOL, then we have a well defined trace map
Tr : Rq → Sq (again see Section 4.6 for more detail). We also set u = n in this
case.

We specifically use the same notation Tr and Sq in both cases as the maps
behave in the same manner so we can give a unified treatment. Whichever case
we are in, we can apply the trace map to the samples to give

Tr(b)︸ ︷︷ ︸
b′

= Tr(as + e) = Tr(as) + Tr(e) = Tr(a)︸ ︷︷ ︸
a′

Tr(as)

Tr(a)︸ ︷︷ ︸
s′

+ Tr(e)︸ ︷︷ ︸
e′

.

We need s′ to depend only on s and not on a. To achieve this one notes that,
for λ ∈ Sq, Tr(λa) = λTr(a) so if every sample has a in some fixed coset of S×q
this is true. In particular, suppose they all lie in the coset υS×q and Tr(υ) ∈ S×q ,
then we have s′ = Tr(υs)/Tr(υ).

Looking at the new error e′ = Tr
(∑u−1

i=0 eiX
i
)

=
∑u−1
i=0 eiTr(Xi), one notes

Tr(Xi) =

{
0 if i 6≡ 0 mod (u/d)
u
dX

i otherwise,
(3)
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irrespective of which case we are in and hence e′ = u
d

∑d−1
i=0 eiu/dX

iu/d. Thus
the (non-zero) coefficients of e′ are u

d times a sample from the original coef-

ficient error distribution. Thus, if one instead defines new samples (ã, b̃) :=(
d
uTr(a), duTr(b)

)
we have polynomial LWE samples with secret s′ and errors

with coefficients sampled from χ.

Solving this new instance of the polynomial LWE problem using some other
method gives us s′ but we cannot recover s immediately. For this one notes that
(a,−bXn−j) is a sample with secret −sXn−j and more importantly the same
error distribution for j = 1, . . . , d−1 after taking the trace, namely we will have
d
uTr

(
−
∑u−1
i=0 eiX

n−j+i
)

=
∑d−1
i=0 eiu/d+jX

iu/d.9 We can therefore apply the

same approach to recover ςj := Tr(−υsXn−j)/Tr(υ) for each j = 0, . . . , u/d−1.
Using (3) we can see that

d
uTr(υ)

u/d−1∑
j=0

ςjX
j = d

u

u/d−1∑
j=0

Tr(−υsXn−j)Xj = υs

and then multiplying by υ−1 gives us the secret s in the full field.

Putting it together We have seen that one can reduce the polynomial LWE
problem with f = Xn + 1, n a power of two, and q ≡ 1 mod 4 to one in a finite
field using the Chinese remainder theorem, assuming that all but one of the
components of the ‘a-part’ of the samples are zero. Further, if required we can
reduce the problem in a finite field to one in a subfield if all the samples have
their ‘a-part’ in the same coset of the multiplicative group of the subfield.

Alternatively, for the same f and now q any odd prime that is unramified we
can use the cyclotomic subfield structure to reduce the problem to one using a
smaller power-of-two cyclotomic field if we can recover enough samples for which
the ‘a-part’ lies in a fixed coset of the ring of integers of this smaller cyclotomic
field.

Such conditions can be satisfied by a suitable choice of block size β and
ordered basis with respect to which BKW reduction is performed. In particular,
to use the above mentioned subfields we must choose a block size β | d. Further,
the basis should be ordered globally with respect to the CRT mapping, if used,
and then we use the basis 1, X,X2, . . . , Xu−1 ordered according to the following
rules:

– if one of Xi and Xj generates a strictly smaller subfield10 than the other,
then it comes after the other;

– if Xi and Xj generate the same subfield then the ordering is the standard
one.

9 Stange instead multiplies the b by Xj rather than its inverse which leads to a
distortion of the error when applying the trace map.

10 The subfield is modulo q in the case of using the CRT decomposition and of K
otherwise.
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If using the CRT decomposition, we will recover samples in the final BKW
list whose first component’s CRT decomposition is all zero except in the last
coordinate which will lie in Fqβ . Using such samples, we can recover the final
CRT component of the secret (in Fqu). With this knowledge we can find the
appropriate BKW list to repeat the process for the previous CRT components
until we have recovered all components of the original secret.

Otherwise, we will recover samples in the final BKW list whose ‘a-part’ lies
in Sq, while not guaranteed to be in S×q , this is enough to be able to apply the
trace map as in the previous section to be able to recover the original secret by
solving n/d polynomial LWE problems in Sq. This method has the advantage
that no back-substitution of the partial secret is required so all smaller dimen-
sional problems can be solved in parallel, something which is not true when using
the CRT decomposition.

We remark that the only growth in the size of the error coefficients occurs
during the BKW reduction step and depends exponentially on the number of
blocks n/β used. Further, it is possible to use any of the improvements to the
basic BKW reduction algorithm together with this attack as well as using blocks
of differing size though we do not expand on this here.

Generalisation

We attempt to generalise Stange’s attack to Ideal-LWE, remaining in the case
m = 1 for simplicity, as we now explain. Firstly, we consider in which cases one
can successfully apply the CRT map. Secondly, we look at what to replace the
trace map with when it does not exist due to the problem no longer being defined
in a finite field or with respect to a power-of-two cyclotomic number field where
the trace map is very well behaved. We will see that we have differing levels of
success in both parts.

CRT reduction To be able to utilize the CRT decomposition we assume that
we can write f =

∏t
i=1 fi+κg for polynomials fi ∈ Z[X] of the form fi = Xu−ci

for distinct ci ∈ Z and a polynomial κ ∈ Z[X]. Assume further that as ideals
(fi, g) can be written as (ai, ri) where ai | a. We also require that the t × t
Vandermonde matrix with (i, j)th entry ci−1j is invertible modulo a; that is its
determinant

∏
1≤i<j≤t(cj − ci) is coprime to a, hence so is each cj − ci. Further,

define integers µi,j which are thought of as the entries of the inverse of the above
Vandermonde matrix so that we have

t∑
u=1

µu,ic
j−1
u ≡ δi,j mod a,

where δi,j is the Kronecker delta function.
Then we define the maps ρi : Rg → Z[X]/(fi, g) ∼= Zai [X]/(ri(X)) for i =

1, . . . , t as reduction modulo fi. We will actually need to use maps ρ̃i : Rg → Rg
which map a to the representative of ρi(a) in Rep(Z[X]/(fi, g)) and then reduce
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this modulo g so that it is an element of Rg. Suppose a ∈ Rg is such that for
some 1 < j0 ≤ t we have ρ̃i(a) = 0 for 1 ≤ i < j0 and that we know the values
of ρ̃i(s) for j0 < i ≤ t. For b ≡ as + e mod gR, we then have ρ̃i(b) = ρ̃i(e)
for 1 ≤ i < j0 but we don’t necessarily have ρ̃i(b) − ρ̃i(ρ̃i(a)ρ̃i(s)) = ρ̃i(e) for
j0 ≤ i ≤ t as this equation only holds modulo the ideal (fi, g) = (ai, ri). By
considering degrees, we can instead write

ρ̃i(b)− ρ̃i(ρ̃i(a)ρ̃i(s)) = ρ̃i(e) + ai∆i,

with ∆i a polynomial of degree at most deg(rj)− 1 and with small coefficients.
This is our first potential obstruction.

Next, we define

(ãi, b̃i) :=

µj0,iρ̃j0(a),

t∑
j=1

µj,iρ̃j(b)−
t∑

j=j0+1

µj,iρ̃j (ρ̃j(a)ρ̃j(s))

 .

We then have b̃i− ãiρ̃j0(s) ≡
∑t
j=1 µj,iρ̃j(e) +

∑t
j=j0

µj,iaj∆j mod (fj0 , g). We

further consider the term
∑t
j=1 µj,iρ̃j(e); to this end we define the polynomials

ε` :=
∑k−1
i=0 e(`−1)k+iX

i where the ei are the coefficients of e. It is clear that

ρ̃j(e) ≡
∑t
`=1 ε`c

`−1
j mod (fj , g) so we define κj such that we have

ρ̃j(e) =

t∑
`=1

ε`c
`−1
j + ajκj

in Rg. Ideally, we want κj = 0 for all j but this is not true in general so we have
a second obstruction. We therefore have

t∑
j=1

µj,iρ̃j(e) =

t∑
`=1

ε`

t∑
j=1

µj,ic
`−1
j +

t∑
j=1

µj,iajκj = εi +

t∑
j=1

µj,iajκj

since by definition
∑t
j=1 µj,ic

`−1
j = δi,`. Thus we can conclude that

b̃i − ãiρ̃j0(s) = εi +

t∑
j=1

µj,iajκj +

t∑
j=j0

µj,iaj∆j .

Considering the sample (ãi, b̃i) modulo (fj0 , g) with secret ρj0(s) we see that
the error is given by

εi +

t∑
j=1

µj,iajκj +

t∑
j=j0+1

µj,iaj∆j mod (fj0 , g) (4)

which in general is not small due to the last two terms.
We note two cases where we can still apply this attack. Firstly, for the case

that g is an integer we have that for each i, ai = a = g, and hence the only
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term left in the error in (4) is εi which has small coefficients when lifted to
Z[X]/(fj0(X)). We remark that there is no reason to assume g is prime, though
the Vandermonde matrix is less likely to be invertible if g has many small factors.

Secondly, we look at the case of g = X − b; in this case a =
∏
i ai and

the fact that the Vandermonde matrix is assumed to be invertible implies that
the ai = bu − ci are coprime. We have that ε` ≈ e`u−1b

u−1 and hence ρ̃j(e) =∑t
`=1 ε`c

`−1
j ≈

∑t
`=1 e`u−1b

u−1c`−1j ≈ en−1bu−1ctj which may be relatively small

compared to aj0 when ctj is of the order of b or smaller. In other words, if this is
the case then κj is small.

Further, we note that
∑t
j=1 µj,iaj ≡

∑t
j=1 µj,i(cj0 − cj) ≡ δ1,icj0 − δ2,i mod

aj0 . Unfortunately, in general the terms κj + ∆j are not equal so this is not
very useful however when t = 2 we see that the additional error term is equal to
(κ3−j0 +∆3−j0)cj0 if i = 1 and −(κ3−j0 +∆3−j0) when i = 2; thus choosing the
samples with i = 2 still gives small error terms assuming κj is small for all j.

Requirements. In summary, we have two situations in which we can use
the CRT decomposition. Firstly, when g is an integer and f can be written as∏t
i=1(Xu− ci) modulo g for integer ci such that the ci− cj are invertible modulo

g for j 6= i. Secondly, when g = X − b with f ≡ (Xu − c1)(Xu − c2) mod g for
integers c1, c2 such that c1 − c2 invertible in Rg and c21 and c22 are of the order
of b in magnitude or smaller. Finally, in both cases we require a large number
of samples to be able to run the BKW reduction.

Generalised trace reduction For this approach we assume that we can write
f(X) = f̃(Xd) and g(X) = g̃(Xd) for some d > 1. Let deg f̃ = ñ. We first
define the map θ : Z[X] → Z[X] by θ(

∑
i aiX

i) =
∑
i : d|i aiX

i. Clearly the

map is a homomorphism of abelian groups (with respect to addition). We define
C ⊆ Z[X] to be the subring of elements for which θ is the identity map, i.e. C
is the set of elements which can be written as an integer sum of powers of Xd.
Then for c =

∑
j cjX

dj ∈ C and a =
∑
i aiX

i we have ac =
∑
i

∑
j aicjX

i+dj

which implies

θ(ac) =
∑
i : d|i

∑
j

aicjX
i+dj = θ(a)c.

Since f, g ∈ C, we see that θ respects reduction modulo f and g, namely that
θ(a + kf + lg) = θ(a) + θ(k)f + θ(l)g. We can therefore define θ̃ : Rg → Rg in
the same manner as θ. Define the set Sg to be the subring of Rg which is fixed

by θ̃.
Now, suppose we have samples (ai,b = ais+ei) ∈ Rg×Rg such that each ai

lies in the same coset of R×g /S
×
g , say υS×g . We can relax this slightly to assuming

that we can write ai = ciυ for some ci ∈ Sg and υ ∈ R×g . Then, assuming further

that θ̃(υ) ∈ S×g so that ci = θ̃(ai)/θ̃(υ), we have

θ̃(bi) = θ̃(ciυs + ei) = ciθ̃(υs) + θ̃(ei) = θ̃(ai)
θ̃(υs)

θ̃(υ)
+ θ̃(ei).
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Clearly, if the coefficients of ei are small then so are those of θ̃(ei). Thus the sam-
ples (θ̃(ai), θ̃(bi)) are from a smaller instance (the dimension has been reduced
by a factor d) of the same problem with the secret now being θ̃(υs)/θ̃(υ).

More generally, assuming that the constant term of f is invertible modulo a,
one can consider the samples (θ̃(ai), θ̃(biX

−j)) for 0 ≤ j < d which for the same
reasoning can be seen to have secret σj := θ̃(υsX−j)/θ̃(υ) and errors θ̃(eiX

−j).

Due to the shape of f and g we will have θ̃(eiX
−j) ≡

∑ñ−1
t=0 ei,td+jX

td mod (f, g)
where ei,t are the coefficients of ei. We can solve these smaller instances of
the problem to recover the σj using any other suitable method. Once one has

recovered the σj it is easy to see that θ̃(υ)
∑d−1
j=0 σjX

j = υs and hence dividing
this by υ gives the full secret.

What remains is thus to derive samples which have ai ∈ υSg for some invert-

ible υ, for which θ̃(υ) is also invertible, from ordinary samples more efficiently
than simply computing a coset representative a/θ̃(a) and looking for multiple
collisions. This is where the BKW algorithm is used. One can perform BKW re-
duction until we find samples whose first component a is in Sg since this can be
viewed as an additive group; this amounts to taking υ = 1. More generally, one
could consider a/υ rather than a for any suitable υ and run the same reduction
in parallel for differing values of υ if computing power and memory is cheap; this
will find samples with first component in the υSg.

Requirements. To be able to apply the generalised trace reduction, both f and
g must be integer sums of powers of Xd for some d > 1. Also the constant term
of f should be invertible modulo a. As for all BKW attacks one must have access
to a large number of samples or use some type of sample amplification technique
that is compatible with the ring structure.
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