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Abstract. In crowd-sourced data aggregation over the Internet, participants share their data points
with curators. However, a lack of strong privacy guarantees may discourage participation, which moti-
vates the need for privacy-preserving aggregation protocols. Moreover, existing solutions remain limited
with respect to public auditing without revealing the participants’ data. In realistic applications, how-
ever, there is an increasing need for public verifiability (i.e., verifying the protocol correctness) while
preserving the privacy of the participants’ inputs, since the participants do not always trust the data cu-
rators. At the same time, while publicly distributed ledgers may provide public auditing, these schemes
are not designed to protect sensitive information.
In this work, we introduce two protocols, dubbed Masquerade and zk-Masquerade, for computing private
statistics, such as sum, average, and histograms, without revealing anything about participants’ data.
We propose a tailored multiplicative commitment scheme to ensure the integrity of data aggregations
and publish all the participants’ commitments on a ledger to provide public verifiability. zk-Masquerade
detects malicious participants who attempt to poison the aggregation results by adopting two zero-
knowledge proof protocols that ensure the validity of shared data points before being aggregated and
enable a broad range of numerical and categorical studies. In our experiments, we use homomorphic
ciphertexts and commitments for a variable number of participants and evaluate the runtime and the
communication cost of our protocols.
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1 Introduction

A variety of Internet applications require gathering and aggregating data from different organizations or
individuals to perform studies, collect statistics, and mine interesting patterns about the participating popu-
lation. Common applications of data aggregation can be found in finance, where financial institutions need to
gain insights on customer clusters, as well as in healthcare, where aggregated data are used to discover effec-
tive treatments and track the spread of highly infectious diseases. In certain use cases, all participants trust
the entity conducting the study (called data curator) with their personal data, which results in a straightfor-
ward solution. Nevertheless, in the case of a curious curator that has incentives to peak into sensitive user
data (e.g., for targeted advertisements or even affect election results [29]), the problem becomes significantly
more challenging to both protect the privacy of each participant and compute the desired statistics.

Common approaches to support privacy-preserving crowdsourcing rely on anonymizing or adding noise
to the collected data so that individual inputs cannot be deduced from the output. Unfortunately, these
techniques have limitations since data anonymization can be bypassed [16,41], while local differential privacy
(DP) may generate excessive accumulated noise. A practical alternative entails adding noise to the output
of the queries using DP techniques so that the presence or absence of a single user cannot be detected from
the query answers [20]. Unfortunately, such approaches assume a trusted curator and mostly focus on output
privacy, i.e., they do not protect the data privacy of each individual user from the curator. The works in
[51,21,8] provide strong privacy guarantees and high utility, however, they still add a non-negligible amount
of noise to the results. We provide comparisons with related works in section 9.

The work of [51] introduced private data aggregation (PDA), a special case of secure multiparty compu-
tation (MPC) in which multiple participants jointly compute a function over their private data while keeping
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them private [53]. MPC assumes that client data are distributed amongst two or more computing parties and
that the data are secure as long as these parties do not collude. While it is possible to use general-purpose
MPC to collect statistics from multiple individuals, however, this comes with significant overheads due to
support for arbitrary computation. Additionally, many MPC frameworks [36,31,2] allow only the computing
parties to provide private inputs; at the same time, since the input parties are allowed to send any input to
the aggregation, it is possible for a malicious participant to poison the result by uploading invalid data. To
defend against such attacks, specialized checks have to be implemented within MPC that require additional
communication and computation. Finally, generic solutions do not provide public verifiability since data
confidentiality relies on the computing parties not publishing their shares.

Homomorphic encryption (HE) allows performing meaningful calculations directly on encrypted data
without decrypting it, which enables outsourcing a computation to semi-honest servers and returning the
encrypted result to the party that initiated the computation [37,25,52]. In particular, HE offers an elegant
solution for PDA: each participant encrypts and uploads their private data to a computing party (curator)
that performs the aggregation, which in turn returns the encrypted sum to the requesting party (analyst),
who decrypts the final sum. Partially HE (PHE) schemes support only one mathematical operation (either
addition or multiplication) to be performed on ciphertexts, whereas fully HE (FHE) enables both, but incurs
significant overheads, especially for non-linear operations and comparisons. Nevertheless, HE alone does not
offer any integrity guarantees to the public on the correctness of the computation. Therefore, the public
has to rely on the assumption that all computations are error-free and no party has introduced an invalid
ciphertext to the homomorphic sum. Without special integrity checks to enable public audits, relying solely
on HE allows computation errors to remain undetected.

Distributed ledgers (e.g., blockchains) can be used as public bulletin boards to enhance transparency and
enable public verifiability. However, most of them are either public and reveal data patterns (e.g., Bitcoin),
or private without support for public verifiability.
Our contribution. We present two novel constructions for publicly verifiable PDA (PVPDA) that allow
multiple Internet users to share their data points with an oblivious curator, who is unable to deduce any
information from the data (other than what it is learned from the published result). Our two protocols,
called Masquerade and zk-Masquerade, allow any auditor to check after the protocol execution is over that
the protocol results are correct. Our protocols focus on different threat models and introduce a trade-off with
performance. In particular, both protocols involve one analyst (i.e., a party that originates the computation
and will eventually reveal the statistics), ℓ participants that share their private data, and the curator who
gathers the encrypted data and performs the secure data aggregation. In Masquerade the participants also
publish commitments to their data to a public bulletin board, which can be later used to verify the correctness
of the result by any auditor and prevent the curator from acting maliciously. Masquerade introduces a new
multiplicative-homomorphic commitment scheme that does not rely on any trusted party. On the other hand,
zk-Masquerade assumes that either the curator or the analyst as well as multiple participants are malicious
and uses zero-knowledge proofs (ZKPs) to enable verifiability.

In both protocols, the analyst outsources the data aggregation to the curator and verifies the correctness
of the results (we remark that our protocols enable public verifiability). High-level overviews of our protocols
are illustrated in Fig. 1:

– An overview of the Masquerade protocol is depicted in Fig. 1 (a). Masquerade can be viewed as a single-
server PVPDA protocol as the curator performs most of the computation, save for the final decryption.
More specifically, the curator receives homomorphic ciphertexts directly from the participants, which
do not reveal anything about their sensitive data as only the analyst has the decryption key. Next,
the curator aggregates the ciphertexts and shares with the analyst only the encrypted result of the
computation, rendering it impossible for the analyst to learn anything except what can be inferred from
the final output. Additionally, each participant publishes commitments to their encrypted messages to
a public ledger, and the analyst combines them homomorphically to attest to the correctness of the
encrypted result (e.g., detect double-voting).

– An overview of our zk-Masquerade protocol is shown in Fig. 1 (b). Contrary to the previous protocol,
in zk-Masquerade both the analyst and the curator share the decryption key and both parties perform
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Fig. 1. Overview of Masquerade and zk-Masquerade. (a) Each participant sends their encrypted data to the
curator and publishes a commitment to it on the bulletin board. The curator, in turn, performs the homomorphic
aggregation and publishes the encrypted result. Finally, the analyst verifies the correctness of the encrypted sum using
the commitments and decrypts. (b) Each participant publishes their encrypted data along with a zero-knowledge
proof that their ciphertext is well-formed to the bulletin board. Next, the curator performs homomorphic aggregation
and publishes the encrypted result. Finally, both the curator and the analyst jointly decrypt and acquire the result.

similar computations. Notably, zk-Masquerade addresses the problem of malicious participants attempt-
ing to tamper with the aggregation by leveraging non-interactive zero-knowledge proof (ZKP) protocols
and by having each participant publish their encrypted data and proofs to a bulletin board. Based on
the type of study, these ZKP protocols ensure that the participants follow the protocol faithfully by
proving that their encrypted data points lie either in a range or within a set of valid messages, without
disclosing the actual plaintexts. Therefore, malicious participants cannot corrupt the homomorphic sum
by sending encryptions of invalid messages. Both the curator and the analyst can check the proofs and
compute the encrypted result individually, and they jointly decrypt the final result only if their encrypted
aggregations are the same.

Notably, both Masquerade and zk-Masquerade enable public verifiability from any external auditor either
through the commitments or through the published ciphertexts and the ZKPs.

Both our protocols enable two classes of studies: Quantitative and Categorical. An example of the former
class includes privacy-preserving smart metering, where users share their electricity consumption readings
with a service provider over consecutive time periods to calculate their bill. Smart metering imposes a
potential risk to user privacy since fine-grained readings may disclose sensitive information about the clients’
habits. Examples in the latter class include surveys where individuals select one category among multiple
options. For instance, a study that investigates if the juries in federal courts come from a diverse group of
socioeconomic status includes sensitive personal information. This application can be instantiated natively
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using our protocols, where each jury provides a private categorical input representing their ethnicity. Then,
our protocols privately generate a histogram that represents how diverse a group of juries is. Our scheme
establishes a novel way for quantitative and categorical studies by protecting each participant’s privacy.
Overall, our contributions can be summarized as follows:
– Design of a novel commitment scheme that enables homomorphic multiplication between commitments.

We leverage this scheme to generate a global commitment over the encryption of the aggregation result
using the individual commitments of the participants and provide verifiable guarantees to the public that
there was no error in the homomorphic aggregation of the ciphertexts.

– Construct two privacy-preserving data aggregation protocols with public verifiability that offer different
threat models and performance trade-offs.

– A data-encoding methodology that allows homomorphic aggregations for both quantitative variables
(i.e., data that take numerical values) and categorical data (i.e., data grouped into discrete classes),
which enables a broad range of privacy-preserving studies.

Roadmap: The rest of the paper is organized as follows: Following a preliminary discussion on the Paillier
cryptosystem, its threshold variant, and commitment schemes (section 2), in section 3 we present an overview
of our protocols, our threat models, and two applications. In Section 4, we present a new commitment scheme
with multiplicative homomorphism, while in section 5 we elaborate on our two protocols called Masquerade
and zk-Masquerade. Next, in section 6, we extend our protocols to support categorical studies and in section 7
we discuss the security of our approach. Sections 8 and 9 evaluate the performance of our schemes and
compare them with related works. Finally, our concluding remarks appear in section 10.

2 Cryptography Background

2.1 Paillier Cryptosystem

Homomorphic encryption (HE) allows performing certain mathematical operations on encrypted data that
correspond to applying related operations on plaintexts, without decrypting. In this paper, we employ Pail-
lier’s partially HE (PHE) scheme that supports the addition of encrypted messages [44]. Paillier uses a
public/private key pair and supports probabilistic encryption (paired with deterministic decryption); its
additive homomorphic property can be summarized as follows: Given two ciphertexts c1 = Encpk(m1) and
c2 = Encpk(m2), one can compute c = Encpk(m1+m2); we omit the randomness for clarity. Below we outline
its basic operations.

Key Generation: Let N be the product of two large primes p and q, such that GCD(pq, (p− 1)(q− 1)) = 1

and λ = LCM(p− 1, q− 1). Select a random generator g
$←− Z×N2 and ensure that N divides the order of g by

checking if µ = (L(gλ mod N2))−1 mod N exists, where L(u) = (u− 1)/N. The public key is pk = (N, g) and
the secret key is sk = (λ, µ).

Encryption: Select randomness ρ
$←− Z×N such that GCD(ρ,N) = 1. A ciphertext c ∈ Z×N2 is defined as

c = Encpk(m, ρ) = gmρN mod N2 for plaintext m ∈ ZN .

Decryption: An inverse mapping from Z×N2 to ZN is defined as m = Decsk(c) = L(cλ mod N2) · µ mod N .

Homomorphic Operations: A notable homomorphic property of the Pailier cryptosystem enables the
product of two ciphertexts to decrypt to the sum of their corresponding plaintexts:
Encpk(m1, ρ1) · Encpk(m2, ρ2) = (gm1ρ1

N ) · (gm2ρ2
N ) mod N2 = gm1+m2(ρ1ρ2)

N
mod N2, which equals

Encpk(m1+m2, ρ1ρ2). In general, the product of ℓ ciphertexts is equivalent to the encryption of the summa-
tion of the ℓ corresponding plaintexts (we omit the randomness ρ):∏ℓ

i=1 Encpk(mi) = Encpk(
∑ℓ

i=1 mi) mod N2. (1)

Finally, the Paillier cryptosystem allows the multiplication of a ciphertext with a constant, which results in
the encryption of the product of the plaintext with the constant, as follows:

Encpk(m1, ρ)
m2 =

(
gm1ρN

)m2
mod N2 = gm1·m2ρN ·m2 mod N2 = Encpk(m1m2, ρ

m2). (2)
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2.2 Threshold Paillier

The authors of [23] and [17] proposed threshold versions of Paillier’s cryptosystem, in which, a pre-determined
number of parties need to collaborate to decrypt a ciphertext jointly. For simplicity, we focus on the case
where the number of parties is two, and they both need to agree to perform the decryption. More specifically,
we focus on the malicious two-party setting with a dishonest majority as described in [28]. Below, we offer
a brief description of the protocol; the full protocols appear in [28].

Distributed Key Generation: The goal of the two parties is to jointly generate a shared Paillier decryption
key. They first generate an RSA composite N without disclosing any information about its factorization to
each other; to do that, the two parties generate ElGamal and Paillier keys, prove the correctness of their
public keys, and exchange them. The ElGamal keys are used for encryption and the (non-distributed) Paillier
keys are used for commitments. Next, the parties generate prime candidates for the potential composite,
which they run through a distributed biprimality test (i.e., both numbers are primes) for checking whether
the generated composite is a product of exactly two primes of an appropriate length. During this step,
each party generates an ElGamal encryption of a random prime and proves knowledge of plaintext for
the corresponding ciphertexts; then, they both check in zero-knowledge if the selected primes suffice, or
they repeat the candidate generation step. Next, they generate secret key shares of ϕ(N) as Jϕ(N)K0 =
N − p0 − q0 + 1 and Jϕ(N)K1 = −p1 − q1 and finally they generate additive decryption keys JskK0 and JskK1
such that sk = JskK0 + JskK1, sk ≡ 0 mod ϕ(N) and also sk ≡ 1 mod N .

Encryption & Homomorphic Operations: Same as in the non-threshold variant.
Distributed Decryption: Given a ciphertext c and a public Paillier key N = pq with unknown factoriza-
tion, secret key shares JskK0 and JskK1, and ElGamal commitments to the key shares, each party raises c to
its share of the secret key JskK0 or JskK1. Then, they prove that the decryption has been computed correctly
using the commitments of the shares and multiply them to receive the final plaintext. This essentially pro-
vides a proof of correct decryption. By default, one party receives the decryption but the protocol can be
executed twice so both receive the decryption and proofs [28].

2.3 Commitment Schemes

A secure commitment scheme uses an algorithm Com to enable a sender S to commit to a value x while
keeping it hidden. S publishes a value c = Com(x, r) that was generated using randomness r; later, S can
open the commitment by disclosing x, r. Com binds S to the hidden value x and offers provable guarantees
to a receiver R that the value revealed later was the same to the one S originally committed to when c was
published. Early commitment schemes proved that it is possible for two parties to play a card game via the
telephone without having to trust each other [50].

For any commitment scheme to be secure, it must satisfy two basic properties: binding and hiding. The
first guarantees that upon committing to a secret value x, S cannot change x later. Formally, for all non-
uniform probabilistic polynomial-time (PPT) algorithms that output (x1, r1) and (x2, r2), the probability
that Com(x1, r1) = Com(x2, r2) with x1 ̸= x2, is negligible. The second property requires that c should not
reveal any information about x before opening, that is, for all non-uniform PPT algorithms, the probability of
extracting any information about x from c should be negligible. The Pedersen commitment scheme features
an additive homomorphic property so that for messages x1 and x2 with blinding factors r1 and r2 we have:
Com(x1, r1)·Com(x2, r2) = Com(x1+x2, r1+r2) [45]. In this work, we define a new multiplicative commitment
scheme (section 4) that enables computational integrity for Masquerade.

2.4 Zero-knowledge Proofs (ZKPs)

A ZKP allows a prover P to assert the truth of a statement to a verifier V without revealing any fur-
ther information [27]. Succinct Non-interactive/Transparent Arguments of Knowledge (SNARKs/STARKs)
[24,7,40] focus on proving general-purpose statements and may incur high overheads compared to bespoke
solutions such as [15,39,38]. At a high-level, ZKPs must satisfy the following properties:
– Correctness: If P is honest, V will accept the proof.
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– Soundness: If V is honest, no cheating P can convince V to accept a false proof, except with negligible
probability.

– Zero-knowledge: If both P and V are honest, then the proof does not reveal anything about P’s private
statement, except the fact that it is true.

2.5 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic eliminates the interaction in public coin proof-of-knowledge protocols and makes
them non-interactive [22] by relying on the random oracle (RO) model [6] to substitute the random challenge
generated by V with a challenge that is the output of a hash function over the previous protocol messages.
The sequence of messages (and their commitments) in the protocol are referred to as transcript. Modeling
the hash function as a RO ensures the unpredictability of V, and public coins are obtained from the hash
digest bits using the transcript as input. This construction is secure as long as the hash function is a RO
that prevents P from guessing its output before the commitments are generated.

3 Our Problem Statement

3.1 Overview

Gathering and aggregating data from multiple parties over the Internet enables powerful analytics. Com-
panies can collect meaningful information about their clients’ behavior and demographics, while healthcare
researchers can discover more effective treatment methods to accelerate the overall healthcare facility. Such
studies correspond to one of two categories based on the type of data being used: The first class includes
variables that represent quantities (i.e., quantitative data) that take numerical values (such as age and profit).
The variables in the second class can take one value from a fixed set of options and are called categorical
data (such as age group, nationality, and employment status). In a quantitative study, the curator applies
a function f directly to the participants’ data (e.g., compute the average age of consumers or a weighted
arithmetic mean based on electricity cost), while in a categorical study, the curator applies f in each different
category to generate a histogram (e.g., find the total number of consumers by nationality). The latter can
be depicted as a bar graph that shows the frequency distribution of the participants’ responses.

Private Data Aggregation (PDA) computes similar aggregations and frequencies while tolerating a curious
curator that has incentives to peek at sensitive data points (e.g., to enable targeted advertisements) [51].
PDA enables many useful applications by assuring the participants that their data will only be used towards
the agreed analysis and private data cannot be tracked back to each individual; notably, the curator will
never access the sensitive data. However, public verifiability is crucial to enable any external auditor to
verify the correctness of the result. In this work, we are interested in defining secure publicly verifiable PDA
protocols for both quantitative and categorical studies. To motivate our case study, we summarize an example
from each of the two scenarios.

Categorical analysis. This class enables individuals to take part in surveys where they choose their replies
from fixed sets of answers. For example, course evaluations include questions with categorical data, where
each response is a one-hot encoding from a set of possible answers (e.g., “The instructor used the time
effectively.”, with four possible responses a) Strongly Disagree, b) Disagree, c) Agree, d) Strongly Agree
on a Likert scale [34]). These evaluations comprise an essential indicator for faculty and departments to
get feedback and improve their classes. In course evaluations, it is crucial that there is no link between
the participant and their responses so faculty are not biased towards individuals, and most importantly,
individuals are more likely to provide more accurate comments. In this case, public verifiability guarantees
to the students that their evaluations were counted and also the students can prove that they only submitted
one response.

Quantitative analysis. In this category, individuals can privately report numerical values that will be used
to compute a total sum, an average, or a weighted average. A notable example is smart metering, which
can be applied to multiple participating households. Smart meters communicate the electrical usage almost
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in real-time to provide better system monitoring and customer billing than traditional meters. However,
there are inherent privacy concerns since fine-grained measurements (e.g., one every 15 minutes) may reveal
personal information about the number of people in a household and their activities [13,18]. Our protocols
solve this problem by aggregating data over multiple participating households for a given period that would
still be sufficient for smart grid operators to perform enhanced monitoring and optimize prices but at the
same time will conceal private information. Public verifiability is essential to convince all the households
that the result was computed correctly. Our protocols naturally extend this application by computing the
weighted arithmetic mean of the participating households, as electricity rates can vary based on the area.
This allows participants and communities to compare their electricity consumption based on their (public)
area price and gain useful insights about their electricity rates.

3.2 Publicly Verifiable Private Data Aggregation (PVPDA)

Inspired by [5], we extend the notion of PDA to Publicly Verifiable PDA (PVPDA) which allows any auditor
that has access to the public messages that were exchanged during the protocol to check the correctness of
the output. The goal of a PVPDA functionality is to enable the curator to aggregate the participants’ private
data and at the same time allow any auditor to verify the protocol’s correctness (e.g., by inspecting a bulletin
board). Next, the analyst (who initiated the study and is interested in learning the final aggregation) receives
the final output along with guarantees that it was computed correctly. Below we discuss two different threat
models for PVPDA.

3.3 Threat Model

The different applications supported by our protocols require protection against a variety of threats. We
instantiate two protocols for PVPDA by utilizing a helper party which we call a curator, and an analyst that
initiates the study and learns the final result. Each protocol introduces a different threat model but both are
aligned with the models of secure two-party computation and they assume that the curator and the analyst
do not collude. Instantiating our protocol assuming two parties with mutual distrust enables computing the
aggregation without exposing sensitive information about the participants’ data [53]. We also assume the
existence of digital certificates within a public key infrastructure, as well as secure communication channels
(e.g., TLS). Below, we delve into the different threat models of Masquerade and zk-Masquerade.
Auditors. Both our protocols allow any auditor to inspect the correctness of the PVPDA protocol. The
auditors do not have any input during the protocol execution, and can thus behave arbitrarily. Any party
can be an auditor and inspect the public messages on the bulletin board and verify the correctness of the
protocol themselves.

3.3.1 Masquerade (homomorphic-commitment-based) Threat Model

Participants. In this protocol, we assume that the participants are verified and are interested in learning
the correct final result. Thus, they follow the protocol specification and do not behave maliciously, i.e., they
submit valid inputs (i.e., within a pre-agreed range or within a set of known messages). However, we assume
that participants may try to learn other participants’ private data.

Masquerade is also robust against participant dropouts who submit their inputs and stop participating.
Additionally, to defend against Sybil attacks that create a large number of illicit clients to influence the result
[19], both the curator and the analyst agree on a list of identities. Each participant signs their message and
the other participants (including the curator and the analyst) can verify the message signatures to prevent
forgeries [1]. Finally, to prevent clients from biasing the result, we allow one private input per client. Our
work focuses on protecting data confidentiality, rather than participant anonymity.
Case 1: Malicious Curator, Honest Analyst. A malicious curator may have incentives to deviate from
the protocol either to extract information about the participants’ sensitive data or to disproportionately
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influence the result. The curator may try to skip adding some participants’ encrypted data from the result
or even over-count some others. Thus, it is crucial to be able to detect such malicious behavior and pro-
vide public guarantees to the analyst and any auditors about the integrity of the computation. In both our
protocols, participants’ inputs are protected using a secure probabilistic PHE scheme (our protocol relies on
the Paillier cryptosystem with a 2048-bit modulus N). As PHE does not offer native integrity protections,
we introduce a novel multiplicative homomorphic commitment scheme (section 4) that provides public veri-
fiability without compromising the participants’ privacy. The analyst employs these public commitments to
verify the computational integrity of the homomorphic result.

Case 2: Semi-honest Analyst, Honest Curator. We assume a semi-honest analyst that is interested in
learning the aggregation results but has incentives to extract information about individuals’ data. Similarly
to the curator, our goal is to also provide public verifiability that the analyst has followed the protocol
specification and enable convincing the participants that the result was decrypted correctly. We consider
a bulletin board as an online append-only ledger that is verifiable by anyone (e.g., public auditors) and is
maintained by the analyst using standard consensus methods [43] or using a public blockchain network. The
analyst posts a proof of correct decryption to the bulletin board providing public verifiability.

3.3.2 zk-Masquerade (zero-knowledge-proofs-based) Threat Model

Malicious Participants. This protocol assumes malicious participants that may attempt to dispropor-
tionately affect the analysis by encrypting invalid inputs (e.g., a large negative number). To address this
threat, we adopt non-interactive ZKP protocols that allow the participants to prove to the curator that
the provided encrypted data correspond to a valid message. Both the curator and the analyst verify the
participants’ proofs and only consider the private inputs for which the ZKP verification is successful. This
guarantees that each participant submits a valid input (i.e., within a pre-agreed range) and cannot detect if
clients submitted valid but false data (e.g., lie about their age). It is crucial that both the curator and the
analyst verify the proofs since one of them may also be malicious and this way we guarantee that the other
party catches it. Finally, similarly to Masquerade, this protocol is robust against participant dropouts.

Case 1: Malicious Curator, Honest Analyst. Similarly to Masquerade, zk-Masquerade assumes a ma-
licious curator that may have incentives to deviate from the protocol either to extract information about
the participants’ sensitive data or to disproportionately influence the result. The curator may try to skip
adding some participants’ encrypted data from the result or even over-count some others. Thus, it is crucial
to be able to detect such malicious behavior and provide public guarantees to the analyst and any auditors
about the integrity of the computation. In zk-Masquerade, we use threshold encryption in which both the
curator and the analyst need to agree in order to decrypt the final result. For that reason, in this protocol,
we publish both the ciphertexts and the participants’ ZKPs to a bulletin board such that both parties as
well as any auditor can verify the correctness of the computation. Since the ciphertexts and the proofs are
public, we no longer need the homomorphic commitments.

Case 2: Malicious Analyst, Honest Curator. Lastly, we assume a malicious analyst that may deviate
from the protocol specification in order to learn individual participants’ private data or to change the final
aggregation result. Our goal is to also provide public verifiability that the analyst has not cheated, similarly to
the curator. Both parties proceed with threshold decryption only if the homomorphic results match. Finally,
both the analyst and the curator must post proof of correct decryption to the bulletin board providing public
verifiability.

4 Our Multiplicative Commitment Scheme

Here we propose a new commitment scheme based on RSA [46] with multiplicative homomorphism. Recall
from section 2.3 that the Pedersen commitment scheme has additive homomorphism [45]. Let N be a public
RSA modulus such that N = pq, where p, q are secret primes, let e be a public prime that satisfies e > N2
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and GCD(e, ϕ(N2)) = 1, and let gm be a public element of high order in Z×N2 . To bind to a secret message
m ∈ Z×N2 , the sender S generates a random secret r ∈ Z×N2 and calculates c as:

c = Com(m, r) = megrm mod N2. (3)

Assuming that the RSA problem with modulus N2 and public exponent e is hard to invert, this commitment
scheme (intuitively) satisfies the hiding and binding requirements. During the reveal phase, both the secret
message m and the randomness r are published, and the verifier checks if they produce the same commitment
as c.

Theorem 1. The scheme with multiplicative homomorphism from Eq. 3 satisfies the hiding and binding
properties.

Proof. First, we show that the scheme is perfectly hiding. Sender S confirms that N2 < e and e is a
prime, so that GCD(e, ϕ(N2)) = 1 and e is invertible mod ϕ(N2). We will show that c = megrm mod N2 is
indistinguishable from random values in Z×N2 : Since gm is an element of high order in Z×N2 (by construction)
and r is uniformly random in Z×N2 , then grm mod N2 is uniformly distributed in a subgroup of Z×N2 with order
|gm|. Likewise, the product megrm mod N2 is also uniformly distributed in a subgroup of Z×N2 with order
|gm|, so it is indistinguishable from a random element of Z×N2 as the order of gm is high; thus, no information
can be learned about m from c.

Next, we prove that our scheme is computationally binding under the RSA assumption (i.e., the problem
of computing eth roots modulo a composite N2 is computationally hard). Our goal is to show that if a S can
find two different messages m,m′ with corresponding randomness r, r′ that collide to the same commitment
c = c′, this would imply we can easily compute eth roots modulo N2 so that the RSA problem would be
easy (contradiction). To show this, we assume it is possible to find m ̸= m′ and r ̸= r′, so that c = megm

r =
c′ = m′

e
gm

r′ mod N2. In this case, megm
r = m′

e
gm

r′ mod N2 ⇐⇒ gr−r
′

m = (m′/m)e mod N2.
Using the fact that r, r′ ∈ Z×N2 and e is a prime larger than N2, it holds that r− r′ < e and also GCD(r−

r′, e) = 1. Thus, from Bèzout’s identity, there exist integers A,B (that can be computed in polynomial time
using the extended Euclidean algorithm), so that A(r − r′) +Be = GCD(r − r′, e) = 1. Then, we have:

g1m = gA(r−r′)+Be
m =

(
g(r−r

′)
m

)A
gBe
m mod N2

=
(
(m′/m)

e )A(
gBm

)e
mod N2

=
(
(m′/m)

A
gBm

)e
mod N2,

and thus, g
1/e
m = (m′/m)

A
gBm mod N2.

The above steps can efficiently compute the eth root of gm mod N2, which contradicts the hardness
assumption of RSA for a sufficiently large composite N2. Therefore, the original assumption that S can bind
a commitment c to more than one message is false, as expected.

From Eq. 3 we observe that our commitment has a multiplicative homomorphic property; we can compute
a commitment for the multiplication of two messages m1 and m2 by knowing the individual commitments
to these two messages. To open this new commitment, the randomness r1 and r2 used for each individual
commitment should be added. Note that this is distributed identically to a fresh commitment to m1 ·m2.
More formally:

Com(m1, r1) · Com(m2, r2) mod N2 =
(
m1

e · gr1m
)
· (m2

e · gr2m ) mod N2

=
(
(m1 ·m2)

e · gr1+r2
m

)
mod N2

= Com(m1 ·m2, r1 + r2),

which can be extended to ℓ messages as follows:∏ℓ
i=1 Com(mi, ri) = Com(

∏ℓ
i=1 mi,

∑ℓ
i=1 ri) mod N2. (4)
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In the next section, we describe how the analyst in Masquerade leverages this property to generate a com-
mitment over the encrypted sum without accessing the individual encrypted messages, relying solely on the
public commitments of each encrypted message. By the hiding property (Theorem 1), each commitment to a
message does not reveal anything to the analyst about the message itself. Additionally, the binding property
guarantees the computational integrity of ciphertext aggregation, since an error in the aggregation result
would prevent an auditor from successfully opening the aggregate commitment. Masquerade offers public
verifiability by publishing all the commitments to a ledger and enabling any party to be able to audit them.

5 Publicly Verifiable Private Data Aggregation (PVPDA) Protocols

In this section, we describe Masquerade and zk-Masquerade, our cryptographic constructions for secure
PVPDA over the Internet. Our protocols support quantitative data by design and we extend our constructions
to support categorical data (Section 6).

5.1 Masquerade: Homomorphic Commitments on Homomorphic Data

Each participant (a) locally encrypts their private data using Paillier, (b) publishes in a bulletin board a
multiplicative commitment on the ciphertext, and (c) sends their encrypted data to the curator. The curator
first verifies the correctness of the commitment, and then homomorphically adds the participant’s data to
an encrypted accumulator if the commitment is correct; otherwise, the curator rejects the participant’s data.
As soon as all participants have sent their data, the curator publishes the encrypted sum.

The analyst audits the protocol by accumulating the homomorphic commitments from the ledger and
verifying that they open with the encrypted sum. Since the commitments and the final sum are public, any
auditor (or even a participant) can repeat the same process and be convinced that their private data were
included in the computation, as well as verify the correctness of the encrypted aggregation. We remark that
the need for public verifiability remains critical in real-world applications. Masquerade explicitly enables
the participants and the analyst to verify that no errors were introduced in the aggregation result (e.g., by
omitted inputs or over-counting) since the analyst asserts that the aggregated commitment opens successfully
to the encrypted sum. Upon verifying that the curator’s result is correct, the analyst decrypts and publishes
the result along with a proof of correct decryption of the final result.

5.1.1 Benefits

A crucial property of our scheme is that it does not require interactive communication between the partic-
ipants and the curator. Each participant generates and sends their encrypted data and their commitment
locally and then disconnects from the protocol. Since our commitment scheme does not reveal anything
about the participants’ data, any public ledger that does not rely on a trusted setup is sufficient.

Furthermore, if some clients deliberately stop participating in the protocol (i.e., participant dropout), our
scheme remains resilient since we do not rely on any user secret for decryption of the final result. In contrast,
in earlier PDA protocols that are based on secret-sharing a single client can easily corrupt the protocol by
just withdrawing their participation. We compare with related works in section 9.

5.1.2 Protocol

We now discuss our PVPDA protocol, depicted in Fig. 2. First, the analyst generates a Paillier key-pair
sk, pk as well as the random prime e and the maximum-order element gm required for our commitment
scheme (section 4) and publishes the pk (including modulus N2), e, and gm. Notably, we use the same
N2 both as the public commitment modulus and as Paillier’s encryption modulus. Then, each participant
probabilistically encrypts their private message using Paillier and commits to the generated ciphertext (recall,
these commitments do not reveal anything about either the ciphertext or the plaintext). Then, the participant
sends their ciphertext to the curator along with the randomness used for the commitment and publishes the
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commitment value to the ledger. The curator calculates the homomorphic addition of the participants’
messages, adds the individual commitment randomness ri, and publishes the Paillier ciphertext along with
the sum of all ri’s to the bulletin board.

Public Verifiability for Curator. Finally, the analyst verifies the integrity of the homomorphic result
using the formula of Eq. 4 to ensure the multiplication of the client commitments along with the aggregated
randomness equals the commitment over the encrypted sum.

1: 1 Key-Generation (Analyst)

2: (sk, pk)
$←− Gen(1κ)▷ Paillier key generation. Security level

κ in bits.
3: N = p · q using p, q from sk
4: N2 is used both for Paillier and commitment
5: Randomly select prime e, s.t. e > N2.

6: gm
$←− maximal order Z×

N2

7: Publish to the ledger: pk, gm, e
8: Private Analyst Output: sk

1: 4 Audit-Decrypt (Analyst)

2: Assert
∏ℓ

i=1 ci mod N2 ?
= Com(ctsum, rsum) ▷ Verify

commits
3: sum← Decsk(ctsum) ▷ Decrypt result

4: ct′sum ← Encpk(sum, ρ) ▷ ρ, ρ′ $←− Z×
N2

5: ct0 ← ctsum ∗ (ct′sum)−1 ▷ Encryption of zero

6: π0
$←− Prove(ct0, Encpk(0, ρ

′)) ▷ Prove ct0 = Encpk(0, ρ
′)

7: Publish to the ledger sum, ct0, ct
′
sum, ρ, ρ′, π0

1: 2 Encrypt-Prove-Commit (Participant)

2: cti ← Encpk(mi, ρi) ▷ ρi
$←− Z×

N2

3: ci = Com(cti, ri) ▷ ri
$←− Z×

N2

4: Publish to the ledger: ci
5: Privately transmit to the Curator: cti, ri

1: 5 Public Verification (Auditor)

2: Assert
∏ℓ

i=1 ci mod N2 ?
= Com(ctsum, rsum) ▷ Verify

commits

3: Assert ct′sum
?
= Encpk(sum, ρ) ▷ Verify ct′sum

4: Assert ct0
?
= ctsum ∗ (ct′sum)−1 ▷ Verify ct0

5: Accept/Reject← Verify(pk, π0, ct0)

1: 3 Aggregate (Curator)

2: Assert ci
?
= Com(cti, ri) ▷ Verify the commitment

3: ctsum ←
∏ℓ

i=1 cti mod N2 ▷ Aggregate ciphertexts

4: rsum ←
∑ℓ

i=1 ri ▷ Aggregate randomness

5: Publish to the ledger ctsum, rsum

Fig. 2. Masquerade protocol for PVPDA. In the top right (inside the parentheses), we indicate which party
runs each algorithm. Com stands for the commitment algorithm.

For example, given two participant messages m1 and m2, the curator receives two ciphertexts Encpk(m1)
and Encpk(m2) and computes Encpk(m1) · Encpk(m2) mod N2 (here, we omit the randomness of Paillier
encryption). Moreover, the curator sums the commitments’ randomness (r1 + r2). The analyst reads the
published commitments to these two ciphertexts and can verify the commitment to the encrypted sum
without having access to the individual ciphertexts as:

Com
(
Encpk(m1), r1

)
· Com

(
Encpk(m2), r2

)
mod N2

=
(
Encpk(m1)

e · gr1m
)
·
(
Encpk(m2)

e · gr2m
)
mod N2 =

(
Encpk(m1) · Encpk(m2)

)e · (gr1+r2
m

)
mod N2

= Com
(
Encpk(m1) · Encpk(m2) mod N2, r1 + r2

)
= Com

(
Encpk(m1 +m2), r1 + r2

)
.

Therefore, the analyst and any auditor can compute and open the commitment for the encrypted sum
received from the curator by using the accumulated randomness. In our implementation, the analyst acts as
an auditor, but we also enable any party to further verify the protocol by inspecting the public ledger. With
a successful commitment opening, an auditor is assured that no errors occurred during the aggregation.
Public Verifiability for Analyst. Masquerade enables any auditor and the participants to audit not only
the curator but also the analyst, efficiently verifying that the published sum is the correct decryption of the
ciphertext that the curator published to the ledger. We also adopt the ZKP protocol for proving ciphertext
equality over Ns+1 modulus with s = 1 from [17] and we apply the Fiat-Shamir heuristic in the random
oracle model to convert the ZKP into a non-interactive variant.

Let ctsum be the encrypted result and sum be the decryption published by the analyst. In this case, we
can provide public verifiability that the analyst decrypted and published the correct result: The analyst first
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encrypts sum using randomness ρ into ct′sum, and then computes a ciphertext ct0, which is the homomorphic
result of ctsum minus ct′sum, and posts ct0, ct

′
sum, along with the randomness ρ to the ledger. By construction,

if ctsum is an encryption of sum, then ct0 is an encryption of zero. Finally, the analyst uses the aforementioned
non-interactive ZKP (Appendix A, Protocol 1) and offers public verifiability that ct0 is an encryption of zero,
which means that ctsum is an encryption of sum. Notably, it is not possible for the analyst to cheat and
publish a wrong sum, as ct0 would not be an encryption of zero, which breaks the soundness of the ZKP
[17].

5.1.3 Weighted Arithmetic Mean

Next, we extend this core protocol to support computing the weighted arithmetic mean based on both the
participants’ private inputs and some public weights. From Eq. 2, it follows that the curator can multiply
encrypted participant inputs with weight values wi ∈ ZN , where i ∈ [1, ℓ]. Based on the previous exam-
ple, for ciphertexts Encpk(m1) and Encpk(m2), the curator computes Encpk(m1)

w1 · Encpk(m2)
w2 mod N2 =

Encpk(w1m1) · Encpk(w2m2) mod N2, and also sums the commitments’ randomness. Finally, the analyst in-
corporates the weights in the commitments received from the participants by applying the following formula:
wi

e · Com
(
Encpk(mi), ri

)
=

(
wi · Encpk(mi)

)e
grim = Com

(
Encpk(wimi), ri

)
.

5.2 zk-Masquerade: Thwarting Malicious Participants with ZKPs

We now introduce our zero-knowledge variant of Masquerade, which has a more strict threat model and
relies on non-interactive ZKPs instead of multiplicative commitments. Each participant (a) encrypts their
private data locally using Paillier, (b) generates a non-interactive ZKP that enables its recipient to verify
that the ciphertext is the encryption of a message that lies in a range of valid messages, and (c) publishes
their encrypted data along with a proof to the bulletin board. Notably, our approach supports arbitrary
ranges based on the target application. Moreover, a core difference from Masquerade is that zk-Masquerade
uses threshold Paillier, with the curator and the analyst holding shares of the decryption key. Thus, as long
as at least one of them is honest, the participants can publish their encrypted data.

In our threat model, we assume that one computing party can be malicious (either only the curator or
the analyst). Therefore, the protocol asks both to verify the validity of the ZKPs and then homomorphically
add the participant’s data to an encrypted accumulator if the proof is correct; otherwise, the participant’s
data is rejected. As soon as all participants have sent their inputs, the encrypted sum is published and both
the analyst and the curator verify that they computed the same sum. This can be followed by any auditor
that also wants to verify the computation. The analyst and the curator proceed with threshold decryption
only if the homomorphic sums match.

5.2.1 Protocol

We now discuss our zk-Masquerade protocol, depicted in Fig. 3. First, the analyst and the curator jointly
generate a threshold Paillier key-pair (dA, dC), pk with unknown factorization and they publish the pk [28].
Then, each participant probabilistically encrypts their private message using Paillier and creates a ZKP prov-
ing that their private plaintext that corresponds to their public ciphertext is well-formed without revealing
the plaintext. Then, each participant publishes both the ciphertext and the ZKP to the ledger. The curator
first checks the proof and then accumulates ciphertext if the ZKP verification was successful, otherwise, the
curator skips the malicious client. Finally, the curator helps the analyst to decrypt the encrypted result and
provide proofs of correct decryption, as in [28].

As participants contribute their data encrypted, the curator has no way of detecting if a malicious client
performs a data pollution attack by sending an encryption of an overwhelmingly large number. Our zk-
Masquerade protocol limits each participant’s influence in the aggregate results by restricting the values
they can input into the protocol. Specifically, to mitigate such attacks, we incorporate non-interactive ZKP
protocols, namely a range proof and a set-membership proof. The former enables the participants to prove
that their Paillier ciphertext encrypts a message m that lies within a valid range, i.e., m ∈ [0, ℓ] [35,10], while
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1: 1 Key-Generation (Analyst & Curator)

2: ((dA, dC), pk)
$←− Gen(1κ) ▷ Threshold Paillier distributed

key generation. Security level κ in bits.
3: N = p · q with unknown factorization.
4: Publish to the ledger pk
5: Private Analyst Output dA

6: Private Curator Output dC

1: 2 Encrypt-Prove-Commit (Participant)

2: cti ←− Encpk(mi, ρi) ▷ ρi
$←− Z×

N2

3: πi
$←− Prove(cti,mi) ▷ Prove cti is an encryption of mi

4: Publish to the ledger cti, πi

1: 3 Aggregate (Curator)

2: Accept/Reject←− Verify(pk, πi, cti) ▷ Verify the proof

3: ctsum ←−
∏ℓ

i=1 cti mod N2 ▷ Aggregate ciphertexts

4: Publish to the ledger ctsum

1: 4 Audit-Decrypt (Analyst & Curator)

2: Analyst: Accept/Reject←− Verify(pk, πi, cti) ▷ Verify proofs
for i ∈ ℓ.

3: ct′sum ←−
∏ℓ

i=1 cti mod N2 ▷ Aggregate ciphertexts for
which the proofs were accepted

4: Analyst checks: ct′sum
?
= ctsum ▷ Verify ctsum

5: Analyst: ctA ← (ctsum)dA mod N2 and prove correct
decryption using commitment to dA.

6: Curator: ctC ← (ctsum)dC mod N2 and prove correct
decryption using commitment to dC .

7: Curator: Send ctC and proof of correct decryption to an-
alyst.

8: Both: Check the proofs of correct decryption. Abort if ver-
ification fails.

9: Analyst: sum = ((ctA · ctC) mod N2 − 1)/N
10: Publish to the ledger sum

1: 5 Public Verification (Auditor)

2: Accept/Reject←− Verify(pk, πi, cti) ▷ Verify proofs for i ∈ ℓ.

3: ct′sum ←−
∏ℓ

i=1 cti mod N2 ▷ Aggregate ciphertexts for
which the proofs were accepted

4: Assert ct′sum
?
= ctsum ▷ Verify ctsum

5: Check proofs of correct decryption.

Fig. 3. zk-Masquerade protocol for PVPDA. In the top right (inside the parentheses), we indicate which party
runs each algorithm. Prove and Verify stand for the prover and the verifier algorithms, respectively, which are discussed
in Section 5.2.

the latter proves that m lies within a set of messages, i.e., m ∈ {m1,m2, . . . ,mk} [4,17]. In both cases, the
client manages to convince the curator by only showing the Paillier encryption of m without leaking any
information about m. We include these protocols for completeness in Appendix A (Protocols 2 and 3).

As discussed in Section 2.4, ZKP protocols must satisfy three basic properties: completeness, soundness,
and zero-knowledge. Completeness guarantees that an honest participant (P) can always convince the curator
(V) about a valid statement. Soundness guarantees that if the curator is honest and the participant’s private
data are not well-formed (i.e., are not within a pre-specified range or a set of public messages), then the
curator will reject the proof with overwhelming probability. We formalize the soundness by introducing a
security parameter t: the probability of an adversary convincing an honest verifier in range proofs is 2−t,
and in set-membership proofs it is A−t, where A is the size of the randomness used for the protocol. Finally,
zero-knowledge guarantees that the proof does not reveal anything about the private participant’s data,
except that they are well-formed.

We utilize the zero-knowledge range proof protocol for quantitative aggregations, while the set-membership
proof is used to assert that the participants select a message from some predefined categories (described in
section 6). We instantiate these ZKP protocols as public coins in the random oracle model [6] via the Fiat-
Shamir heuristic (discussed in Section 2.5) to eliminate the interaction and transform the interactive proofs
to their non-interactive variants [22]. Therefore, the curator verifies the correctness of the proof for the
ciphertext sent by each participant and homomorphically increments the sum if and only if the proof was
accepted. In Fig. 3, the proof for the participant i is depicted as πi, whereas the prover and verifier algorithms
are Prove and Verify, respectively.

6 Enabling Categorical Data Aggregation

Both our protocols naturally support the aggregation of quantitative data. On the other hand, categorical
variables represent types of data that may be divided into groups, where each group should be encoded
and accumulated separately. For instance, an aggregation based on four age groups (e.g., “infant”, “child”,
“adolescent”, and “adult”) requires four counters, one for each category. In categorical data, each participant’s
influence is limited since they can contribute at most one to the sum of a category. For example, if the
attribute type is “age group”, each participant may only contribute to one of the categories and increment
that counter (e.g., “adult”).
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00 . . . 01 . . . 00 . . . 00 00 . . . 00 00 . . . 00

C1

C2

CS

...
...

EncodingsCateg.

Paillier plaintext space (κ bits)

(a) Encodings for S categories.

CS sum . . . C3 sum C2 sum C1 sum

Paillier plaintext space (κ bits)

⌊κ/S⌋ bits

(b) Accumulated sums for each category.

Fig. 4. Histograms Overview. We divide the plaintext space into different sections, each of which corresponds to
a different category. Homomorphic addition of ciphertexts results in the summation of the bits from each category.

Taking these two requirements into account, we design a specialized encoding to incorporate different
categories into one encrypted message. A possible solution for categorical variables would be to use multiple
invocations of our quantitative PVPDA protocols so that every invocation would aggregate one category. Each
participant could contribute an encryption of either a “one” or a “zero”, depending on their selection, and also
prove in zero-knowledge that the submitted ciphertext is an encryption of a binary number. Unfortunately,
in cases where the response should be “one-hot encoded” (e.g., “age group”), this solution is not sufficient, as
it enables malicious participants to contribute to more than one category and tamper with the aggregation
result. Although in each invocation they could submit a valid encryption and a proof, the set of their responses
could be invalid (e.g., submit multiple encryptions of True).

We introduce an encoding that enforces the participants to select 1-out-of-S categories using a single
message that encodes both the selected category as well as the remaining S − 1 non-selected categories. We
encode each category as a power 2⌊

κ/S⌋, where κ are the bits of the plaintext: specifically, the first category

is represented as (2⌊
κ/S⌋)

0
= 1, the second category is represented as (2⌊

κ/S⌋)
1
= 2⌊

κ/S⌋, and so on. In Fig. 4
(a) we illustrate these encodings. We remark that performing homomorphic addition between ciphertexts
from the same category will increment the ⌊κ/S⌋-bit counter for the specific category, and leave the counters
for the S − 1 remaining categories unmodified. The accumulations for each selected attribute create a one-
dimensional histogram with S categories, as illustrated in Fig. 4 (b). We complement our zk-Masquerade
protocol with the non-interactive set-membership proof described in section 5.2 to guarantee benevolent
client behavior; in this case, each participant encrypts one of S possible messages (i.e., a power 2⌊

κ/S⌋) and
creates a zero-knowledge set membership proof that the ciphertext is the encryption of one of these powers.

Using the same number of plaintext bits, our protocols also support responses that enable the participants
to select multiple categories at the same time, if those are valid answers. To support such messages, the set
membership proof includes all the possible combinations of valid responses. For instance, a response for both
C1 and C3 from Fig. 4 (a) would be in the form 00 . . . 00 | · · · | 00 . . . 01 | 00 . . . 00 | 00 . . . 01. Adding the
above response with another response for C1 will result in 00 . . . 00 | · · · | 00 . . . 01 | 00 . . . 00 | 00 . . . 10, which
accumulates both responses.

Notably, by having large plaintext sizes our encoding can also support multidimensional histograms. For
instance, extending the example of age groups, the analyst can also consider if a participant is a smartphone
user. We use these two variables (i.e., “age groups” and “smartphone user”) to form a two-dimensional array
with all combinations and encode each index in the array into a unique category from Fig. 4 (a). Since
“age groups” has four possible values and “smartphone user” has two, the number of categories is S = 8. To
increase the number of categories and preserve enough bits for each accumulation, a larger plaintext space can
be used by increasing κ. This introduces a trade-off between the number of categories and the performance of
our protocol since larger modulus sizes may increase performance overheads. Additional examples of realistic
Internet applications of Masquerade are shown in Table 1.
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Table 1. Example applications of Masquerade including the application type (i.e., numerical or categorical), as well
as potential entities for the curator, the analyst, and the participants.

Application Application Type Participants Curator Analyst

Course-evaluations Numerical/Categorical Students
US Department of Education,
State, etc.

University

Smart-metering Numerical Households AWS Utility company
Auctions Categorical Participants AWS Auctioneer

Healthcare Numerical/Categorical Patients
Insurance company,
federal agency, etc.

Hospital

Banking Numerical/Categorical Customers Federal/state department Bank

7 Security Analysis

We prove the security of our protocols in the real-ideal world paradigm by describing a simulator Sim that can
indistinguishably simulate the view of the honest parties [12]. Let RealParty({mi}i∈ℓ) be a random variable
representing the view of Party ∈ {Curator,Analyst, Pi for i ∈ ℓ} in the real protocol execution, and ranges
over the randomness of the parties.

We define the security of our protocols by comparing what an adversary can do in the real protocol
execution versus what it can do in an ideal execution that involves a trusted third party that receives the
inputs. In the ideal world, the trusted party is assumed to be honest and computes the functionality on the
parties’ inputs, and returns the result to each party. An adversary in the ideal world, also called a simulator,
that interacts with the functionality must be able to generate a view that is similar to the real-world view.
In the real world, an adversary that interacts with the real protocol should not be able to do anything
that it could not do in the ideal world (e.g., learn private inputs or alter the expected outputs). In other
words, a protocol is secure if it is possible in the ideal world to generate something indistinguishable from
the real-world adversary’s view.

7.1 Security Analysis of Masquerade

Theorem 2. Assuming that Eq. 3 is a secure commitment scheme with multiplicative homomorphism and
satisfies the hiding and binding properties and the Paillier cryptosystem is semantically secure against chosen-
plaintext attacks (IND-CPA), then the Masquerade protocol (Fig. 2) securely implements a PVPDA protocol
against a malicious curator or corruption of a semi-honest analyst with semi-honest participants.

Proof. Semi-honest Corruption of Participants and Analyst. We assume that a set L′ = {1, . . . , ℓ′}
of ℓ′ < ℓ participants are corrupt as well as the analyst. We denote the remaining honest participants as
L = {j, . . . , ℓ}, where j = ℓ′ +1. Without loss of generality, we assume that the corrupt participants are the
first ℓ′ ones. The analyst receives the final encrypted sum as well as the aggregated commitment randomness.
Then, the analyst checks that the product of the commitments opens to the commitment of the encrypted
sum and the aggregated randomness. Observe that as long as the Paillier encryption is secure, nothing is
revealed about each honest participant’s individual data points. We define a PPT simulator such that for all
participant inputs {mi}i∈ℓ,

RealAnalyst,L′
({mi}i∈ℓ) ≈ SimAnalyst,L′

(sum, {mi}i∈L′).

SimAnalyst,L′
simulates the messages sent by the honest parties as follows: First, the simulator generates

ĉtj = Encpk(sum −
∑ℓ′

i=1 mi), which is an encryption of the final sum minus the inputs of the corrupt
participants for i ∈ L′. Then, the simulator publishes a commitment ĉj to this ciphertext as the commitment
of the first honest participant and saves the randomness of this commitment r̂j . Next, the simulator replaces
every other honest participant’s encrypted message cti with a fresh encryption of zero ĉti = Encpk(0), follows
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the protocol specification, and generates commitments ĉi = Com(ĉti, r̂i) to these encryptions and publishes

them. Then, it creates ctsum as the product of the products of ciphertexts of the corrupt (
∏ℓ′

i=1 cti) and

the honest parties (
∏ℓ

i=j ĉti). It can be seen that ctsum is an encryption of the correct sum. The simulator

computes rsum by following the protocol and adding up the randomness of the corrupt parties (
∑ℓ′

i=1 ri) with

the randomness of the honest parties (
∑ℓ

i=j r̂i). Finally, the simulator sends ctsum = ĉtj ·
∏ℓ

i=j+1 Encpk(0) ·∏ℓ′

i=1 cti = Encpk(sum) and rsum = r̂j +
∑ℓ

i=j+1 r̂i ·
∏ℓ′

i=1 ri to the analyst. The latter checks that:

Com(ĉtj , r̂j) ·
ℓ∏

i=j+1

Com(Encpk(0), r̂i) ·
ℓ′∏
i=1

Com(cti, ri)

= Com(Encpk(sum−
ℓ′∑
i=1

mi), r̂j) ·
ℓ∏

i=j+1

Com(Encpk(0), r̂i) ·
ℓ′∏
i=1

Com(Encpk(mi), ri) mod N2

= Com(Encpk(sum−
ℓ′∑
i=1

mi) ·
ℓ∏

i=j+1

Encpk(0) ·
ℓ′∏
i=1

Encpk(mi), r̂j +

ℓ∑
i=j+1

r̂i +

ℓ′∑
i=1

ri)

= Com(Encpk(sum−
ℓ′∑
i=1

mi +

ℓ∑
i=j+1

0 +

ℓ′∑
i=1

mi), r̂1 +

ℓ∑
i=j+1

r̂i +

ℓ′∑
i=1

ri)

= Com(Encpk(sum), rsum) = Com(ctsum, rsum).

We now argue that each successive pair of hybrids below is indistinguishable:

– HYB0: The view of the corrupt parties in a real execution of the protocol. This includes cti, ci, and ri
for i ∈ L′, ci for i ∈ L, as well as ctsum and rsum.

– HYB1: The same as HYB0, except, that we replace the message of the first honest participant mj with

sum−
∑ℓ′

i=1 mi for i ∈ L′, as well as every other message of honest participants {mi}i∈{j+1,ℓ} with zero,

i.e., cti = Encpk(mi) becomes cti = Encpk(0) and thus ci = Com(Encpk(0), ri) for ri
$←− Z×N2 .

– HYB2: The view of the corrupt parties output by SimAnalyst,L′
.

Observe that HYB0 and HYB1, are indistinguishable by the CPA security of the Paillier encryption scheme.
Finally, observe that HYB1 and HYB2 are identical.

Malicious Corruption of Curator. The curator receives the ciphertexts from the participants, as well as
the commitments, and the commitment randomness. Then, the curator computes the encrypted sum and
the aggregated randomness. It is straightforward to see that as long as the Paillier encryption is secure,
nothing is revealed about each participant’s individual data points. We define a PPT simulator such that
for all participant inputs {mi}i∈ℓ,

RealCurator({mi}i∈ℓ) ≈ SimCurator().

Note that the simulator does not need to access individual client messages or even the final result.
SimCurator simulates the messages sent by the honest parties as follows: The simulator replaces every
participant’s encrypted message cti with a fresh encryption of zero. Next, the simulator follows the pro-
tocol specification and generates commitments to these encryptions and sends them to the curator. Fi-
nally, after the simulator receives ctsum =

∑ℓ
i=1 0 and rsum =

∑ℓ
i=1 ri from the curator, it checks that

Com(ctsum, rsum) =
∏ℓ

i=1 ci. If this check passes, the simulator decrypts ctsum. Otherwise (if the check does
not pass), the simulator detects malicious activity and discards it. Our homomorphic commitment provides
public verifiability without compromising the participants’ privacy and ensures any auditor that the curator
computed the encrypted sum correctly.

We now argue that each successive pair of hybrids below is indistinguishable:
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– HYB0: The view of the curator in a real execution of the protocol. This includes cti, ci, and ri for
i ∈ {1, . . . , ℓ}, as well as ctsum and rsum.

– HYB1: The same as HYB0, except, that we replace every {mi}i∈ℓ with zero, i.e., cti = Encpk(mi) becomes

cti = Encpk(0) and thus ci = Com(Encpk(0), ri) for ri
$←− Z×N2 .

– HYB2: The view of the curator output by SimCurator.

Observe that HYB0 and HYB1, are indistinguishable by the CPA security of the Paillier encryption scheme.
Finally, observe that HYB1 and HYB2 are identical.

7.2 Security Analysis of zk-Masquerade

Theorem 3. Assuming that the threshold Paillier cryptosystem is semantically secure against chosen plain-
text attacks (IND-CPA) and the ZKPs satisfy the three properties from section 2.4, then the zk-Masquerade
protocol (Fig. 3) securely implements a PVPDA protocol against malicious corruption of ℓ′ clients with either
the curator or the analyst.

Proof. Malicious Corruption of Curator with Multiple Participants. Observe that the honest partic-
ipants’ data are protected against a malicious curator since neither Paillier ciphertexts nor the ZKPs reveal
anything about the plaintexts. We also assume that a set L′ = {1, . . . , ℓ′} of ℓ′ < ℓ participants are corrupt.
We denote the remaining honest participants as L = {j, . . . , ℓ}, where j = ℓ′ + 1.

We define a PPT simulator such that for all honest participant inputs {mj}j∈L,

RealCurator,L′
({mi, }i∈ℓ) ≈ SimCurator,L′

().

We can simulate this case by replacing the messages of all honest parties with encryptions of zero and
valid ZKPs to these encryptions. Note that [28] fully simulates the threshold Paillier scheme in the two-
party setting with security against malicious behavior, thus, for brevity we omit the simulations of the
distributed key generation and the distributed decryption. This case is trivial as neither the curator nor
any of the corrupted participants L′ receive any output, thus the simulator can send encryptions of zero

and valid ZKPs to the curator. SimCurator,L′
simulates the messages sent by the honest parties by replacing

every honest participant’s encrypted message cti with a fresh encryption of zero and a valid ZKP to this
encryption and sends them to the curator. Each successive pair of hybrids below is indistinguishable:

– HYB0: The view of the corrupt parties in a real execution of the protocol.
– HYB1: The same as HYB0, except, that we replace every {mi}i∈ℓ with zero, i.e., cti = Encpk(mi) becomes

cti = Encpk(0) and thus πi = Prove(cti, 0). Indistinguishable from the previous by the CPA security of
the Paillier encryption scheme.

– HYB2: The view of the corrupt parties output by SimCurator,L′
. Identical to the previous hybrid.

Malicious Corruption of Analyst with Multiple Participants. Since the malicious analyst only learns
the encrypted sum (and thus the final result), nothing is revealed about each participant’s individual data
points. We define a PPT simulator such that for all participant inputs {mj}j∈ℓ,

RealAnalyst,L′
({mi}i∈ℓ) ≈ SimAnalyst,L′

(sum),

where sum =
∑ℓ

i=1 mi is the final aggregation result. Note that the simulator needs a way to extract
the malicious parties’ inputs to invoke the functionality for computing the data aggregation, which can be
achieved from the ZKPs (as shown in [35] for the range proof and in [4] for the set-membership proof).

Next, the simulator computes sum−
∑ℓ′

i=1 mi and replaces the honest parties inputs with random additive

shares of sum−
∑ℓ′

i=1 mi, s.t., each input is less than the ZKP threshold and encrypts them. The simulator
creates valid ZKPs for these encryptions and sends them to the analyst (as if they were posted in the public
ledger). The simulator follows computes ctsum, partially decrypts it, creates a proof of correct decryption,
and sends all these values to the analyst. Finally, a corrupt analyst that does not decrypt ctsum correctly
cannot create a valid proof of decryption. In this case, the auditors will detect a corrupt analyst. We argue
indistinguishability as follows:
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– HYB0: The view of the corrupt parties in a real execution of the protocol.
– HYB1: The same as HYB0, except, that we replace the messages of the honest participants with random

additive shares of sum−
∑ℓ′

i=1 mi for i ∈ L′ s.t., each input is less than the ZKP threshold and encrypts
them. The simulator creates valid ZKPs for these encryptions and sends them to the analyst. This hybrid
is indistinguishable from HYB0 by the CPA security of the Paillier encryption scheme.

– HYB2: The view of the corrupt parties output by SimAnalyst,L′
. Identical to HYB1.

8 Experimental Evaluations

Our evaluations assess the performance of our protocols and examine how they scale with an increasing
number of participants. We expect both protocols to scale linearly with the number of clients, with the
zero-knowledge protocols (i.e., zk-Masquerade) dominating the execution time, especially as the soundness
parameter t increases. Finally, the set-membership proof is more computationally intensive than the range
proof, and thus we expect the quantitative studies to be faster than the categorical ones.

8.1 Experimental Setup

For our experimental evaluation of the curator and the analyst, we used two t3.2xlarge AWS EC2 instances
running with eight virtual processors up to 2.5 GHz and 32 GB RAM. For the experiments evaluating the
participants, we used a Lenovo laptop with an i7-8650U CPU running at 1.90 GHz, and we implemented
our Masquerade framework in Go 1.16. In our experiments, the latency between the curator and the analyst
was negligible (about 0.014 ms) as both are hosted in AWS instances. The communication between the
participants and the AWS instances (curator and analyst) is 9.65 ms on average. The back-end of the curator
is fully parallelizable and can take advantage of all the available threads of the host. In zk-Masquerade, for
every participant, the curator spawns a new thread to verify the zero-knowledge proof of the participant and
aggregates their private data only if the ZKP verification was successful. This optimization provides a speed-
up proportional (roughly) to the number of parallel cores of the curator. In Masquerade, we still use the
same parallelization technique but as the aggregation is significantly faster than the ZKP verification, this
does not offer significant speedup. Without loss of generality, in our implementation, the analyst maintains a
public append-only ledger. After our protocols have finished execution, we offer a website for inspecting the
ledger. Note that the ledger can also be maintained by any trusted third party, or be distributed between the
analyst and the curator. Finally, both the Paillier cryptosystem and our commitment scheme are instantiated
with a 4096-bit modulus N2 following the key size recommendations of [3].
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Fig. 5. Total protocol timings in seconds for an increasing number of participants with t = 60 and K = 4. Here
we report the online protocol time, i.e., from the moment the participants send their data until the final result is
aggregated.
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8.2 Performance Evaluation

In Fig. 5 we present the online protocol costs of Masquerade and zk-Masquerade assuming both honest and
malicious participants. In the former case, the participants’ ciphertexts are well-formed and the curator
accepts all the encrypted data directly. We use the timings of Masquerade as a baseline to demonstrate
the trade-off of the zero-knowledge protocols for the quantitative and categorical studies (note, the honest
participant cost does not depend on the type of study). Fig. 5 demonstrates the experimental timings for
quantitative variables of zk-Masquerade (i.e., blue circles), categorical variables (i.e., orange “X”s trend),
Masquerade for both quantitative and categorical values (i.e., green squares), and the timing for an auditor
(i.e., red “+”s trend) with an increasing number of participants. For the ZKPs, we used soundness parameter
t = 60 bits.

The experimental timings include the computation performed by the analyst and the curator until the
result of the aggregation is published by the analyst. We note that Fig. 5 does not include the offline cost
for key generation or participant cost (these are discussed later in this Section) since all the participants can
precompute their ciphertexts, proofs, and commitments before engaging in the protocol. Finally, the timings
also include latency, which has a negligible performance cost. For the reported cost of the categorical study
in Fig. 5 we used a set with S = 4 classes. As expected, for both types of studies we report a linear increase
in the total aggregation cost as the number of participants grows. Additionally, for up to 8 participants
the cost of the quantitative and categorical remains almost constant for zk-Masquerade, due to the thread
parallelization in the curator’s back-end. When we compare both trends that use ZKPs with the trend of
Masquerade (which only uses commitments), we observe that protecting against malicious participants incurs
about two orders of magnitude additional overhead. Likewise, the quantitative study is about half an order
of magnitude faster than the categorical one, which is attributed to the complexity of the set-membership
proof [4]. Finally, we observe that the time to audit the ledger for Masquerade is almost constant with
an increasing number of participants as it mostly comprises modular multiplications. Next, we analyze the
individual performance of the participants, the curator, the analyst, and the auditor and discuss how each
one affects the total performance of our protocol.

40 60 80 100 120 140
Soundness Parameter (t)

0

2

4

6

8

10

12

Ti
m

e 
(s

ec
.)

Range Proof Prover (Lenovo)
Range Proof Verifier (EC2)
Set Proof Prover (Lenovo)
Set Proof Verifier (EC2)

Fig. 6. Time measurements in seconds for both range and set-membership proofs for the prover and the verifier with
an increasing soundness parameter t in bits and K = 4.

Participant Perspective. The computation costs for each participant include the Paillier encryption cost,
the ZKP cost (only in zk-Masquerade), and the commitment cost (only in Masquerade). Notably, our protocol
allows the participants to pre-compute everything offline. Both the Paillier encryption cost and the cost
of committing to encrypted data are negligible compared to the ZKP generation cost. Fig. 6 shows the
proof generation time for participants for both range and set-membership proofs for varying the soundness
parameter t. Similarly, Table 2 reports the ZKP size in KBytes with an increasing t for range and set-
membership proofs.
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Both the computation and space costs of the range proofs scale linearly to the soundness parameter t.
Similarly, the computation and space costs of the set-membership proofs scale linearly to t, but are also
affected by the number k of messages in the set. In Table 3 we show the timings for P and V for the set-
membership proof with increasing set sizes. Our results show that the performance cost of both P and V
increases linearly to the set size.

Table 2. Size of the Zero-knowledge Proof Protocols for zk-Masquerade.

Soundness Parameter (t) 40 60 80 100 120 140

Range Proof (KB) 36.0 57.4 78.1 103.1 118.4 142.2
Set Proof (KB) 309.6 464.5 619.3 774.1 929.0 1083.9

Smartphone participants. This is the first work to further evaluate the participant costs using a smart-
phone edge device; in particular, we use a smartphone equipped with a Qualcomm Snapdragon 865 at 2.84
GHz. In our analysis we use soundness t = 40, and observer that the participant cost is dominated by P.
Overall, the cost for a range proof is 2.14 seconds, while a set-membership proof with S = 4 takes 4.78
seconds (i.e., about 0.014% of the phone’s effective battery life). In all cases, the commitment cost was
negligible at just 78 ms. This analysis highlights that using a modern smartphone instead of a laptop (c.f.
Fig. 6 prover costs for t = 60) incurs very similar overheads.

Table 3. Set-membership proof timings with an increasing number of set elements for soundness t = 60 for zk-
Masquerade.

Set Size (S) 2 4 8 16 32 64

Prover Time (Lenovo) (sec.) 1.92 2.94 7.92 14.61 30.55 63.83
Verifier Time (EC2) (sec.) 2.08 2.61 6.97 13.26 31.93 65.14

Curator Perspective. Assuming ℓ participants, the total curator overhead corresponds to: ℓ homomorphic
additions (Eq. 1) and, in zk-Masquerade, the verification cost for ℓ proofs. The curator in Masquerade is
significantly faster than zk-Masquerade; below we focus on the latter and analyze the cost of having ZKPs.
As shown in Fig. 6 for the proof generation, the verification cost of both proof types scales linearly to the
soundness parameter. As shown in Table 3, set-membership verification incurs a linear overhead to the size
of the set of valid messages. Moreover, the verification cost for set-membership is about half an order of
magnitude higher compared to range ZKP due to the increased complexity of [4]. This difference justifies
why quantitative studies are faster than categorical (as reported in Fig. 5).

In either study type, the curator verifies one proof for each of the ℓ participants and performs one
homomorphic addition if the proof is verified successfully. The overall communication cost of the curator is
ℓ times the proof size (Table 2), as well as the cost of transmitting the final results to the analyst (i.e., ctsum
and rsum). Likewise, without any optimizations, the curator’s performance overhead is ℓ times the cost for
one participant; using 8 parallel threads, the curator’s performance is about 5.3 times faster. We remark
that the total performance of the protocol is dominated by the curator’s overhead.

Analyst Perspective. In our implementation, the analyst maintains the public ledger. In Masquerade,
the timing cost of the analyst can be attributed to: (1) the key generation, (2) the ℓ multiplications and
additions of the commitments and the random parameters, respectively, and (3) the constant costs of opening
the commitment and decrypting the aggregation result. The key generation offline cost involves generating
two large prime numbers and a group element of maximum order. For 2048, 4096, and 8192-bit plaintexts
(i.e., N bitsize), key generation takes 43.1 milliseconds, 202 milliseconds, and 1.27 seconds, respectively.
In Masquerade, in addition to decrypting the encrypted sum, the only additional cost of the analyst is to
support public verifiability by aggregating all participant commitments and showing that it correctly opens
with the homomorphic sum (Alg. 4 in Fig. 2).
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Table 4. A comparison with existing PDA schemes based on the cryptographic technique they utilize, the type of
variables they support and their robustness against dropping participants and malicious inputs.

Approach
Cryptographic

Technique
Quant.
Vars

Categ.
Vars

Robust
(Dropouts)

Public
Verifiability

Robust
(Malicious
Inputs)

Proof Scaling
Quant./Categ.

Shi et al. [51] THE* & Diff. Privacy N/A
Chan et al. [14] THE & Diff. Privacy N/A
Joye et al. [30] THE N/A

Danezis et al. [18] THE N/A
Leontiadis et al. [32] THE N/A

PUDA [33] THE N/A
Bonawitz et al. [9] Pairwise Masking N/A

SEPIA [11] S.Sharing, Generic MPC Quadratic / N/A
Giannopoulos et al. [26] S.Sharing, Generic MPC N/A

zkLedger† [42] Pedersen Commitments Quadratic / N/A
Prio‡ [15] S.Sharing Linear / Linear

Masquerade PHE & Commitments N/A
zk-Masquerade THE & ZKP Constant / Linear

† zkLedger is the only related work that achieves both public verifiability and being robust against malicious inputs, however,
the transaction verification is quadratic to the number of participants causing major scalability issues (the authors only
experiment with at most 20 participants). Additionally, zkLedger does not support categorical variables.

‡ Prio introduces a mechanism called affine-aggregatable encodings (“AFEs”) to encode a series of bits as quantitative or
categorical variables. Prio does not guarantee public verifiability and each client only communicates with the servers (no
support for a distributed ledger).

* Threshold Homomorphic Encryption (THE): The private key is shared between n participating parties and in order to
decrypt a message at least t-out-of-n parties are required.

In zk-Masquerade, the timing cost of the analyst is very similar to the one of the curator as the analyst
audits the curator. The communication cost of the analyst in Masquerade entails receiving the individual
commitments from each participant, while in zk-Masquerade the analyst audits the proofs from the ledger
and also computes its local encrypted sum to audit the curator.

Auditor Perspective: Finally, any auditor can access a copy of the ledger in order to verify that the protocol
was executed correctly, which allows public verifiability. The auditor in Masquerade uses the accumulated
randomness and verifies that the participants’ homomorphic commitments open with the encrypted sum.
This verification is similar to the one that the analyst performs in Fig. 2. Lastly, as mentioned in section 5.1,
the auditor verifies that the published decrypted sum is indeed a correct decryption of the ciphertext that
the curator published to the ledger. We measured the auditor timings in Fig. 5 (i.e., yellow circles) with a
modern Lenovo laptop (the same machine was also used for the participants) and we observe almost constant
overhead. Auditing zk-Masquerade is more expensive as the auditor has to essentially repeat the computation
of the analyst.

9 Related Work

In this section, we discuss several recent works in PDA that rely on cryptographic techniques such as
HE, secure multiparty computation (MPC), and differential privacy. Existing solutions introduce different
trade-offs between computation and communication costs, depending on the underlying privacy technique
they employ. Interestingly, some protocols provide robustness against dropouts, while only a few are secure
against malicious clients that provide malformed inputs. Our protocols and only two other works allow the
participants to verify the outcome of the protocol. Next, we discuss these existing works and how they
compare with Masquerade and zk-Masquerade.

In MPC, multiple parties want to jointly compute a function over their private data while keeping
those inputs private [53]. Most common constructions are either based on garbled circuits or on HE and
secret sharing [11,2,36,26,31]. The latter is more computationally efficient than the former but incurs high
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communication costs. Such generic MPC protocols can be used for PVPDA but since they are not optimized
solely for this task, they are not as efficient as customized PVPDA solutions such as our protocols. Likewise,
generic schemes allow the participants to provide any input to the aggregation, whereas Masquerade protects
against malicious inputs using the two non-interactive ZKPs discussed in section 5.2. Both MPC and the
works in [18,33] that use thresholding-based cryptography (such as Shamir’s secret-sharing [49]) remain
susceptible to participant dropouts as the participating parties need to be online to partially decrypt the
result. Conversely, Masquerade and zk-Masquerade is immune by design to participants intentionally leaving
the computation and offers public verifiability, where third parties can audit the result.

Shi et al. [51] proposed a PDA methodology based on random shares and distributed noise genera-
tion. The authors of [14] and [30] extended Shi’s protocol by handling client dropouts and enabling larger
plaintext spaces, respectively. Likewise, the work in [18] is also based on secret-sharing techniques for privacy-
preserving smart meter readings, yet it cannot tolerate participant dropouts. PUDA [33] is a pairing-based
scheme that uses a trusted dealer to set up secret keys and enables public verification using homomorphic
tags. While these aforementioned protocols support only quantitative variables our protocols enable both
categorical and quantitative studies. Additionally, in these works, any malicious client can corrupt the re-
sults, while zk-Masquerade offers robust protection against malicious clients. The work in [9] features an
efficient t-out-of-n secret sharing protocol, however, like most related works, it cannot tolerate malformed
inputs from malicious participants. Trinocchio [48] outsources a computation from a single client to multiple
workers in a privacy-preserving way and generates verifiable guarantees of the correct computation. Trinoc-
chio additionally describes a multi-client version but this variant requires a special key generation and also
is susceptible to malicious inputs: if any client provides incorrect information, the computation is aborted.
Moreover, among the aforementioned works, only PUDA and our protocols offer public verifiability.

Prio [15] introduces a technique called secret-shared non-interactive proofs (SNIPs) to validate that
clients’ inputs are the encryption of either a “0” or a “1”. It is based on multiple non-colluding servers and
is the most closely related to zk-Masquerade. To aggregate longer values than just one bit, Prio encodes the
participants’ private data as a sequence of bits, where each bit is verified by a different SNIP, and computes
the sum of these encodings. Therefore, since SNIPs inherently prove one bit, to prove messages of bigger
sizes the proof size increases linearly to the number of bits. Notably, the range proofs in zk-Masquerade incur
constant size and time, whereas our set-membership proofs scale linearly to the set elements. For very small
client inputs, Prio’s design enables fast participant timings: For instance, the authors report that for 1-bit
up to 4-bit integers, the participant timing varies between 0.01 to 1 second, depending on the number of
the multiplication gates on the SNIP circuit. We emphasize that zk-Masquerade offers superior scalability,
given that our plaintext dynamic range spans thousands of bits (e.g., 2048 bits in our experiments), allowing
for the encoding of substantially more information. While the authors of Prio do not report any timings for
categorical studies (which can be theoretically supported with modified proofs), their approach introduces
additional overheads, considering that each participant must prove that the sum of all the bits is exactly
one. Finally, Prio does not operate on a public ledger and does not offer any public verifiability protections,
contrary to our approach.

In zkLedger [42], the authors propose a method that protects participants’ privacy and allows public
verifiability. In this case, the participants rely on Pedersen commitments [45] and Schnorr-type ZKPs [47]
to publish their transactions on a public ledger, before an auditor can combine all the public commitments
and verify their correctness. Likewise, in both Masquerade and zk-Masquerade we allow the analyst to
audit the commitments and the proofs respectively. Notably, since both the commitments and the proofs
in our protocols are public, any participant or third party can also audit the committed result. In terms of
performance, zkLedger incurs significant overheads since the transaction verification costs are quadratic to the
number of participants, so practicality is significantly impacted in studies with more than 10-20 participants.
Conversely, our experiments report that our approach scales gracefully to thousands of participants.

Table 4 summarizes all notable existing works and compares them with ours. Interestingly, these ap-
proaches use a broad range of cryptographic techniques, yet all of them have homomorphic properties. We
observe that most of these constructions are tailored to quantitative studies, while only our protocol and
Prio [15] provide encodings to represent categorical variables (e.g., Likert scales). Moreover, only PUDA,
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zkLedger, and Masquerade allow practical auditing and public verifiability, which is an important benefit for
real-world applications. Although several prior works have focused on malicious participants intentionally
dropping out of the protocol, only zk-Masquerade, SEPIA, Prio, and zkLedger protect against malicious
inputs using non-interactive ZKPs; notably, only zk-Masquerade offers constant ZKP costs for quantitative
studies.

The security and threat models of the aforementioned existing works vary based on the number of
computing parties, the types of studies they support, and their robustness against malicious participants.
The protocols in [51,14,30] use a single untrusted aggregator, and assume the aggregator obliviousness model
which ensures that the aggregator learns only the sum of users’ inputs and nothing else. The authors of [33]
extended the aggregator obliviousness model and introduce the concept of aggregate unforgeability, which
assumes that one party performs the aggregation and another party decrypts and publishes the final result.
Aggregate unforgeability ensures that the aggregator cannot convince the data analyzer to accept a bogus
sum. Similarly to our work, in this model, the two parties should never collude. In [9], the authors introduce
three different security models, one which ensures security only against the clients, one which ensures security
only against the server, and a mixed security model for a threshold of colluding clients with the server. The
work in [11] uses the honest-but-curious model and is secure as long as no more than half of the computing
nodes collude, while the authors of [26] use the Sharemind MPC framework with three honest-but-curious
non-colluding nodes. Lastly, the protocol in [42] is secure against malicious input providers (e.g., banks)
and keeps the transactions private as long as the sender, the receiver, and the auditor do not collude,
whereas the authors of [15] use a small set of servers (e.g., three) and protect the client privacy if not all the
servers collude. Like Masquerade and zk-Masquerade, most related works rely on two or more non-colluding
servers. However, as shown in Table 4, only zk-Masquerade offers public verifiability while protecting against
malicious inputs and scales with an increasing number of participants.

10 Concluding Remarks

We present Masquerade and zk-Masquerade, two new schemes for publicly verifiable private data aggrega-
tion over the Internet that ensures that participants’ inputs are kept private and the analyst only learns
the final aggregate result. We have expanded our protocol to work both with quantitative and categorical
variables, enabling a variety of different studies. Masquerade publishes our novel multiplicative homomorphic
commitments on a ledger to enable public verifiability, which is an essential property for real-world applica-
tions where participants need to assess the correctness of the encrypted sum and verify that their response
is included in the final result. In zk-Masquerade, we defend against malicious participants by adopting a
range proof and a set-membership proof and verifying that the encrypted data are well-formed and that each
participant has limited influence on the protocol. Moreover, the public verifiability property of our protocols
allows the analyst and any auditor (e.g., a participant or an external party) to verify that the protocol result
was computed faithfully and that the announced decryption of the encrypted aggregate is correct. Our exper-
iments demonstrate that Masquerade and zk-Masquerade can scale gracefully to thousands of participants,
and can further support smartphone clients.
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A Zero-Knowledge Proof Protocols

A.1 Zero-Knowledge Enc(0) Proof

Protocol 1 describes a non-interactive ZKP to prove that a given ciphertext is an encryption of zero. We
adopt the protocol for proving ciphertext equality over Ns+1 modulus with s = 1 from [17] and the Fiat-
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Protocol 1 Zero-Knowledge Encryption-of-Zero Proof

Public Inputs: Let c be a Paillier ciphertext known to both P and V. The soundness parameter t is the bit size of
the verifier challenge h.
Private Inputs: P knows the randomness ρ such that c = ρN mod N2.
Goal: The prover P convinces the verifier V that c is the encryption of zero.

The protocol:

1. Proof:
(a) P generates a random ρ′ ∈ Z∗

N and computes a← ρ′
N

mod N2 and sends it to V.
(b) P computes h← SHA256(N, c, a)
(c) P computes z ← ρ′ ∗ ρh mod N2 and sends it to V.

2. Verification:
(a) V generates the randomness based on the transcript as h← SHA256(N, c, a).
(b) V verifies that zN = a ∗ ch (mod N2).

Shamir heuristic in the random oracle model to convert the ZKP to a non-interactive variant. Let c be a
Paillier encryption of zero known both to P and V and ρ be the secret randomness used for c (i.e., c = ρN

mod N2). As described by the protocol, P generates and sends a and z to V, who in turn can easily check
that Encpk(0, z) = zN mod N2 = a ∗ ch mod N2.

Protocol 2 Zero-Knowledge Range Proof

Public Inputs: Let R = {0, . . . , ℓ} be a range of ℓ+ 1 messages and c = gmρN mod N2 be the Paillier encryption
of a secret message m ∈ {0, . . . , ℓ}. Let t be the soundness parameter.
Private Inputs: P knows secret message m ∈ R.
Goal: The prover P convinces the verifier V that c is the encryption of a message in R.

The protocol:

1. Setup:
(a) For i ∈ {1, . . . , t}, P chooses random w1

1, . . . , w
t
1 ← {ℓ, . . . , 2ℓ} and computes wi

2 = wi
1 − ℓ.

(b) P switches the values of wi
1 and wi

2 with probability 1/2 independently for each i ∈ {1, . . . , t}.
(c) For i ∈ {1, . . . , t}, P computes ci1 = Encpk(w

i
1, ρ

i
1) and ci2 = Encpk(w

i
2, ρ

i
2), where ρi1, ρ

i
2 ← ZN are the

randomness used in the Paillier encryption.
2. Commit: P generates h← {0, 1}t in the random oracle model as h← H(c11, c

1
2, . . . c

t
1, c

t
2).

3. Proof: For each i ∈ {1, . . . , t}:
(a) Depending on the value of hi, P sets zi as follows:

zi =

(wi
1, ρ

i
1, w

i
2, ρ

i
2), hi = 0

(j,m+ wi
j , ρ · ρij mod N),

j ∈ {1, 2} | m+ wi
j ∈ {ℓ, . . . , 2ℓ},

hi = 1.

(b) Finally, P sends c11, c
1
2, . . . c

t
1, c

t
2 and z1, . . . , zt to V.

4. Verification: V generates h as in step 2) and then parses zi according to the value of hi. For every i ∈ {1, . . . , t}:
(a) If hi = 0, V checks that ci1 = Encpk(w

i
1, ρ

i
1) and ci2 = Encpk(w

i
2, ρ

i
2) and that one of ŵi

1, ŵ
i
2 ∈ {ℓ, . . . , 2ℓ} while

the other is in {0, . . . , ℓ}, where zi = (wi
1, ρ

i
1, w

i
2, ρ

i
2).

(b) If hi = 1, V checks that c⊕ cij = Encpk(wi, ρi) and wi ∈ {ℓ, . . . , 2ℓ}, where zi = (j, wi, ρi).
(c) V outputs 1 if and only if all of the above checks pass.
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A.2 Zero-Knowledge Range Proof

Protocol 2 describes a non-interactive ZKP that a Paillier ciphertext c encrypts a message m from within a
range of plaintexts R = {0, . . . , ℓ}. We adopt the range proof from [35] and make it non-interactive using the
Fiat-Shamir heuristic in the random oracle model to eliminate the interaction between the prover and the
verifier. More specifically, in step (2), P generates the randomness h based on the transcript of the protocol
until that point (i.e., c11, c

1
2, . . . c

t
1, c

t
2). In step (4), V generates h herself based on the public transcript and

continues with the verification of the proof. The soundness parameter t corresponds to the number of queries
that the prover has to answer in order to convince the verifier, i.e., the probability that it answers all is at
most 2−t.

A.3 Zero-Knowledge Set Membership Proof

Finally, in Protocol 3, we describe a non-interactive variant of a ZKP that asserts that a Paillier ciphertext c
encrypts a message m from a public set of plaintexts S = {m1, . . . ,mk} [4]. Our proof uses the Fiat-Shamir
heuristic in the random oracle model to eliminate the interaction between the prover and the verifier. In step
(2), the prover generates the (unpredictable) challenge h as SHA256(u1, . . . uk) so that anyone can re-generate
h from the u vector. If the protocol is iterated t times and m′ ̸∈ S , then the probability that a malicious
prover convinces an honest verifier that m′ ∈ S is 1/At, where A is the size of the challenge.

Protocol 3 Zero-Knowledge Set Membership Proof

Public Inputs: Let S = {m1, . . . ,mk} be a public set of k messages and c = gmiρN mod N2 be the Paillier
encryption of mi, where i is secret. Let t be the soundness parameter and A the number of bits of the hash function
H.
Private Inputs: P knows secret message m ∈ S.
Goal: The prover P convinces the verifier V that c is the encryption of a message in S.

The protocol (iterated t times):

1. Setup:
(a) P chooses a random ρ′ ∈ Z∗

N and randomly generates vectors h and v with k − 1 values each, such that
{hj}j ̸=i ∈ ZN and {vj}j ̸=i ∈ Z∗

N .
(b) P computes vector u of size k as:

uj =

{
ρ′

N
mod N2, j = i

vNj (gmj/c)hj mod N2, j ̸= i.

2. Commit: P generates h← {0, 1}A in the random oracle model as h← H(u1, . . . uk).
3. Proof: P computes hi = h −

∑
j ̸=i hj mod N , vi = ρ′ ρhig(h−

∑
j ̸=i hj)÷N mod N and sends v1, . . . , vk,

u1, . . . , uk, and h1, . . . , hk to V.
4. Verification:

(a) V generates the randomness based on the transcript as h ← H(u1, . . . uk) and verifies that h =
∑

j hj

mod N .
(b) Finally, V verifies that vNj = uj(c/g

mj )hj mod N2 for each j ∈ {1, . . . , k}.
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