
NTT software optimization using an extended
Harvey butterfly

Jonathan Bradbury 1, Nir Drucker 2 and Marius Hillenbrand 3

1 IBM Systems - Poughkeepsie
2 IBM Research - Haifa

3 IBM Research and Development Germany

Abstract. Software implementations of the number-theoretic transform (NTT)
method often leverage Harvey’s butterfly to gain speedups. This is the case in
cryptographic libraries such as IBM’s HElib, Microsoft’s SEAL, and Intel’s HEXL,
which provide optimized implementations of fully homomorphic encryption schemes
or their primitives.
We extend the Harvey butterfly to the radix-4 case for primes in the range [231, 252).
This enables us to use the vector multiply sum logical (VMSL) instruction, which is
available on recent IBM ZR© platforms. On an IBM z14 system, our implementation
performs more than 2.5× faster than the scalar implementation of SEAL we converted
to native C. In addition, we implemented a mixed-radix implementation that uses
AVX512-IFMA on Intel’s Ice Lake processor, which happens to be ∼ 1.1 times faster
than the super-optimized implementation of Intel’s HEXL. Finally, we compare the
performance of our implementation using GCC versus Clang compilers and discuss
the results.
Keywords: Number Theoretic Transform · Software optimization · IBM ZR© platforms
· Homomorphic Encryption · AVX512-IFMA

1 Introduction
Homomorphic encryption (HE) solutions and general privacy-preserving solutions are
rapidly being adopted by large organizations. According to Gartner [Gar21]: “by 2025,
50% of large organizations will adopt privacy-enhancing computation for processing data
in untrusted environments or multiparty data analytics use cases.”. One of the barriers to
adopting these solutions is the high cost of running private computation in terms of latency,
memory usage, and bandwidth. Thus, improving the latency of HE solutions is of great
interest. This is currently being done using dedicated hardware as in [DS16, SLPD20],
optimized software algorithms as in [CHK+19, Har14], or by leveraging specific hardware
capabilities in software such as in the homomorphic encryption for arithmetic of approximate
numbers (HEAAN) library [JLK+20] and the Intel homomorphic encryption acceleration
library (HEXL) [BKS+21].

The most time-consuming primitive required to evaluate a homomorphically encrypted
circuit is the key-switching operation, which relies heavily on number-theoretic transform
(NTT) computations for speeding up the required polynomial multiplications. For this
reason, NTT is often the main target for optimization in research that focuses on FHE
performance (e.g., [JLK+20, SLPD20]). In fact, the list of works that deal with NTT
optimizations in hardware and software for different rings and moduli sizes is too long for
us to include here. Thus, we refer the reader to [LN16, Har14, BKS+21], which will serve
as our baseline for comparison.

https://orcid.org/0000-0002-1029-6373
https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0003-2659-7784


The FHE cryptosystems we aim to optimize (e.g., CKKS [CHK+19]) operate over the
ring of polynomials Fq[X]/(XN + 1), where N is a power of two. The performance of the
NTT algorithm in this ring depends on the degree N , the modulo q, and the performance
of the chosen NTT butterfly. The number of iterations in a radix-k NTT is logkN , where
at every iteration the CPU consumes at least the N polynomial coefficients and N powers
of ω, a primitive 2Nth root of unity. For example, when 232 < q < 264, every coefficient
is often resides in an 8-byte word, and 2N coefficients reside in 512KiB. On modern
processors with L2 caches that are smaller than 512KiB, this increases the number of slow
load and store operations. In contrast, the L2d-cache of our IBM z14 is 4MiB large. In
many cases, this allows all the NTT operations to be performed directly from the L2d
cache. Here, the bottleneck of the algorithm becomes the serialization of the algorithm,
particularly the performance of the butterfly algorithm.

It is possible to balance the register and memory pressure by choosing the correct
NTT radix. For example, [BH21] uses radix-32 for IBM Z systems, and [JLK+20] uses
radix-16 for x86-64 CPUs and radix-32 for GPUs. Even HEXL recently added a radix-4
scalar implementation that relies on radix-2 butterflies. However, other parameters may
affect the algorithm run-time, including the number of multipliers, their operand sizes,
and the instruction set architecture (ISA). For example, the AVX512-IFMA available on
x86-64 CPUs allows implementors to receive the lower/higher part of a 104-bit product in
a single instruction. Another example is the VMSL instruction available on IBM Z systems,
which returns the sum of two 112-bit products in a single instruction. In this paper, we
suggest new radix-4 butterflies and discuss the trade-offs they offer on different systems
with different ISAs.

Our contribution. We present new radix-4 butterflies for the forward and inverse NTT,
which allow us to leverage hardware capabilities such as the VMSL instruction on IBM
Z platforms. We apply and measure these implementations on the IBM Z and x86-64
platforms. Our measurements show a speedup of more than 2.5× on IBM Z systems
compared to the NTT code for SEAL [Lai17], which we converted from C++ to C, and
∼ 1.1 times speedup on x86-64 platforms compared with the code for HEXL [BKS+21],
which we also converted from C++ to C. Our measurements also show a 20% reduction in
speed when we compiled the scalar code with GCC as compared to compiling it with Clang.
For completeness, we analyze the compiled binaries and suggest an explanation for this
slowdown. We made our code available as an open-source sample under the Apache-2.0
license and uploaded it to GitHub 1

Organization. The document is organized as follows. Section 2 provides some background
and describes our notation. Section 3 presents our extended Harvey butterflies. We discuss
some optimizations that rely on mixed radices NTT algorithms in Section 4. In Sections
5 and 6, we describe specific optimizations for IBM Z and x86-64 systems, respectively.
We report our experiments and results in Section 7. In Section 8, we analyze the GCC
slowdown, and we conclude in Section 9.

2 Background and notation
Let Fq be a finite field of characteristic q with residue classes represented as elements
from Z ∩ [0, q). The elements in the polynomial quotient ring Rq = Fq[X]/(XN + 1)
are polynomials of a degree at most N − 1 with integer coefficients in Fq, where q ≡ 1
(mod 2N) and N is a power of two. We may refer to a polynomial a =

∑
aix

i by its
coefficients i.e., a = (a0, . . . , aN−1). We denote coefficient-wise multiplication (hereafter

1https://github.com/IBM/optimized-number-theoretic-transform-implementations

2

https://github.com/IBM/optimized-number-theoretic-transform-implementations


element-wise multiplication) of two polynomials a, b by a� b. For a specific platform, we
denote its word-size with β. For example, for typical CPUs β = 232 or β = 264. For two
unsigned integers 0 < a, b < β, the functions l(ab) = ab (mod β) and h(ab) =

⌊
ab
β

⌋
return

the lower and higher parts of the product ab, respectively. The operator � a is the left
shift operator by a bits and by a | b we mean that a divides b.

2.1 NTT
The NTT algorithm is a variant of the fast Fourier transform (FFT) algorithm over Rq. It
receives a polynomial a = (a0, . . . , aN−1) ∈ Rq and a fixed N ’s primitive root of unity ω
as inputs and it outputs ã = (ã0, . . . , ãN−1) ∈ Rq, where ãi =

∑N−1
j=0 ajω

ij . The inverse
function a = InvNTTω(ã) is given by ai = 1

N

∑N−1
j=0 ãjω

−ij .

Polynomial multiplication in Rq. For some primitive 2Nth root of unity ψ ∈ Fq, a, b ∈
Rq, ā = (a0, a1ψ, . . . , aN−1ψ

N−1) and b̄ = (b0, b1ψ, . . . , bN−1ψ
N−1) it holds that

ab = (1, ψ−1, . . . , ψ−(N−1))� InvNTT
(
NTT (ā)�NTT

(
b̄
))

(1)

Equation (1) allows performing polynomial multiplication in Rq using O(N logN) modular
multiplications over Fq instead of O(N2).

Shoup modular multiplication. The most time-consuming primitive in NTT algorithms
is modular multiplication between the coefficients of a and the fixed (precomputed)
powers of ω. Theorem 1 describes a modular multiplication method attributed to Victor
Shoup [Har14] and implemented in NTL 2, a high-performance library for number theory
operations.

Theorem 1 (Shoup reduction [Har14] part of Theorem 1). Let w ∈ Fq, t < β, ω′ =
⌊
ωβ
q

⌋
,

and r =
⌊
ω′t
β

⌋
. When q < β

2 it follows that

0 ≤ ωt− rq < 2q < β

Proof. [Har14][Theorem 1]

We denote this multiplication by ShoupModMul(t, ω, ω′, q) = ωt− q
⌊
ω′t
β

⌋
for a fixed

global parameter β.

NTT algorithms and implementations. Appendix A presents one variant of the NTT
and inverse-NTT (InvNTT) algorithms as specified in [LN16]. These algorithms are
implemented in different libraries that provide HE optimizations such as Microsoft SEAL
[Lai17] and Intel HEXL [BKS+21]. We use these algorithms as our baseline.

The main bottleneck of the NTT and InvNTT algorithms is the Cooley-Tukey (CT)
[CT65] and Gentleman-Sande (GS) [GS66] butterflies, respectively. These are implemented
in SEAL and HEXL using Harvey’s butterflies [Har14], which we present in Algorithm 1.

2https://libntl.org/

3

https://libntl.org/


Algorithm 1 Harvey’s Butterflies [Har14]

Global parameters: A word-size β, a modulus q < β
4 ; ω ∈ Fq ; ω′ =

⌊
ωβ
q

⌋
< β

Input: 0 ≤ x, y < 4q
Output: x = x+ ωy, y = x− ωy (mod 4q)

1: procedure HarveyFwdButterfly(x, y, ω, ω′, q, β)
2: if x ≥ 2q then x = x− 2q
3: t = ShoupModMul(y, ω, ω′, q)
4: return (x+ t, x− t+ 2q)

Input: 0 ≤ x, y < 2q
Output: x = x+ y, y = ω(x− y) (mod 2q)

1: procedure HarveyInvButterfly(x, y, ω, ω′, q, β)
2: x′ = x+ y
3: if x′ ≥ 2q then x′ = x′ − 2q
4: t = x− y + 2q
5: y′ = ShoupModMul(t, ω, ω′, q)
6: return x′, y′

2.2 Dedicated CPU instructions

The optimizations in this paper target the IBM Z and x86-64 single instruction multiple
data (SIMD) architectures. Specifically, they are designed for the IBM VMSL instruction
and the Intel AVX512-IFMA instruction set.

VMSL. The IBM z14 and z15 systems come together with the vector facility (VF) and
vector-enhancements facility (VEF) 1/2 ISA [IBM21]; these include the VMSL instruction
that we illustrate in Algorithm 2. This instruction operates on wide 128-bit registers V2,
V3, V4, and a 4-bit scalar m6. It first multiplies two 56-bit unsigned integers residing
in two 64-bit words using a “redundant representation” in V2, V3. Subsequently, it
adds the two products together with the 128-bit word of V4 in the destination register
V1. Examples for software optimizations that leverage the VMSL instruction include
[YZD+20, GADO17, BH21].

Algorithm 2 V1 = VMSL(V2, V3, V4, m6)
Inputs: V2,V3,V4 (128-bit wide registers), m6 a bitset elements of 4 bits.
Outputs: V1 (a 128-bit wide register)

1: procedure VMSL(V2, 3, 4, 6)
2: T1 = V2[00 : 056] ∗ V3[00 : 056]� m6[0]
3: T2 = V2[64 : 120] ∗ V3[64 : 120]� m6[1]
4: V1 = T1 + T2 + V4

AVX512-IFMA. The latest Intel processors, such as the third generation Intel R© Xeon R©

Scalable Processors (code-named Ice Lake or Tiger Lake) include the new AVX512-IFMA
ISA extension [int21a]. This extension presents two new instructions, VPMADD52LUQ and
VPMADD52HUQ, which we illustrate in Algorithm 3. These instructions operate on wide
512-bit registers V1, V2, V3. The instructions first multiply two 52-bit unsigned integers
residing in two 64-bit words using a “redundant representation” in V2, V3. Subsequently,
the instructions accumulate the low (VPMADD52LUQ) or high (VPMADD52HUQ) halves of
the 104-bit products using 64-bit accumulators in the destination register DST. Some
examples for using AVX512-IFMA include [DG19, GK16, DG17, KG19, BKS+21].

4



Algorithm 3 DST = VPMADD52(V1, V2, V3)
Inputs: V1, V2, V3 (512-bit wide registers)
Outputs: DST (a 512-bit wide register)

1: procedure VPMADD52LUQ(V1, V2, V3)
2: for j = 0 to 7 do
3: i = 64j
4: T [127 : 0] = V2[i+ 51 : i] ∗ V3[i+ 51 : i]
5: DST[i+ 63 : i] = V1[i+ 63 : i] + T [51 : 0]

6: procedure VPMADD52HUQ(V1, V2, V3)
7: for j = 0 to 7 do
8: i = 64j
9: T [127 : 0] = V2[i+ 51 : i] ∗ V3[i+ 51 : i]
10: DST[i+ 63 : i] = V1[i+ 63 : i] + T [103 : 52]

3 Extended Harvey’s butterfly
Radix-2 NTT algorithms often involve loading and storing the polynomial coefficients
log2(N) times. When N is large, this may lead to many cache misses. To this end, some
implementations prefer to use higher radix values, such as a power of two k > 2, that
reduces the number of iterations to logk(N). For example, the implementations reported
in [JLK+20] use radix-32 NTT for GPUs and radix-2 through radix-16 for CPUs. Another
example in [BH21] provides a radix-32 NTT implementation. These implementations load
sets of k values and perform log2(k) radix-2 butterflies on every set.

3.1 Expanded radix-4 butterflies
We aim to leverage the VMSL instruction that can handle two multiplications in parallel.
For that, we first expand the radix-4 butterflies in Algorithm 4 and then present an
optimized version of them (Algorithms 5, 6).

Algorithm 4 Radix-4 Butterflies
Input: x, y, z, t ∈ Fq , wi ∈ Fq for 0 < i < 5
Output: x, y, z, t ∈ Fq
Remark: All operations are performed in Fq .

1: procedure CT radix-4 butterfly(x, y, z, t, ωi)
2: x′ = x+ zω1 + (yω2 + tω4)
3: y′ = x+ zω1 − (yω2 + tω4)
4: z′ = x− zω1 + (yω3 + tω5)
5: t′ = x− zω1 − (yω3 + tω5)
6: return (x′, y′, z′, t′)

7: procedure GS radix-4 butterfly(x, y, z, t, ωi)
8: x′ = x+ y + z + t
9: y′ = (x+ y − z − t)w1
10: z′ = (x− y)w2 + (z − t)w3
11: t′ = (x− y)w4 − (z − t)w5
12: return (x′, y′, z′, t′)

Lemma 1. Let x, y, z, t ∈ Fq be the inputs to the radix-4 butterfly and let ω1, ω2, ω3 ∈ Fq
be the relevant three powers of the primitive 2N th root of unity ω. Let ω4 = ω1ω2,
ω5 = −ω1ω3, then the first procedure of Algorithm 4 is the expanded version of the radix-2
CT butterfly for the radix-4 case.

5



Proof. Denote by (a′, b′) = CT2(a, b, ωi) the radix-2 CT butterfly function. Then the
output of the first radix-2 iteration is

(a1, b1) = CT2(x, z, ω1) = (x+ ω1z, x− ω1z)
(a2, b2) = CT2(y, t, ω1) = (y + ω1t, y − ω1t)

and of the second radix-2 iteration is

(x′, y′) = CT2(a1, a2, ω2) = (a1 + ω2a
2, a1 − ω2a

2)
= (x+ zω1 + yω2 + tω2ω1, x+ zω1 − yω2 − tω2ω1)
= (x+ zω1 + yω2 + tω4, x+ zω1 − yω2 + tω4)

(z′, t′) = CT2(b1, b2, ω3) = (b1 + ω3b
2, b1 − ω3b

2)
= (x− zω1 + yω3 − tω3ω1, x− zω1 − yω3 + tω3ω1)
= (x− zω1 + yω3 + tω5, x− zω1 − yω3 − tω5)

Lemma 2. Let x, y, z, t ∈ Fq be the inputs to the radix-4 butterfly and let ω1, ω2, ω3 ∈ Fq
be the relevant three powers of the primitive 2N th root of unity ω. Let ω4 = ω1ω2,
ω5 = −ω1ω3, then the second procedure of Algorithm 4 is the expanded version of the
radix-2 GS butterfly for the radix-4 case.

Proof. Denote by (a′, b′) = GS2(a, b, ωi) the radix-2 GS butterfly function. Then the
output of the first radix-2 iteration is

(a1, b1) = GS2(x, y, ω2) = (x+ y, xω2 − yω2)
(a2, b2) = GS2(z, t, ω3) = (z + t, zω3 − tω3)

and of the second radix-2 iteration is

(x′, y′) = GS2(a1, a2, ω1) = (a1 + a2, a1ω1 − a2ω1)
= (x+ y + z + t, xω1 + yω1 − zω1 − tω1)
=
(
x+ y + z + t, (x+ y − z − t)ω1

)
(z′, t′) = GS2(b1, b2, ω1) = (b1 + b2, b1ω1 − b2ω1)

= (xω2 − yω2 + zω3 + tω3, xω2ω1 − yω2ω1 − zω3ω1 + tω3ω1)
= ((x− y)ω2 + (z − t)ω3, (x− y)ω4 − (z − t)ω5)

3.2 Optimized butterflies
We optimize the expanded butterflies by first extending Shoup’s modular multiplication to
receive two variables or more as input. Theorem 2 extends Theorem 1 for the sum of k
parallel multiplications.

Theorem 2 (An extension of [Har14] Theorem 1). For some integers k, α > 0 and an

integer 0 < i < k, let wi ∈ Zq, 0 ≤ ti < αq, w′i =
⌊
wiβ
q

⌋
, and r =

⌊∑k

i
w′

iti

β

⌋
. When

q < β
kα it follows that

0 ≤

 k∑
i

witi

− rq < 2q

6



Proof. From the definition of w′i, and r we have

0 ≤ wiβ

q
− w′i < 1, 0 ≤

∑k
i w
′
iti

β
− r < 1

We multiply these equations by qti
β and q, respectively, and get

0 ≤ witi −
w′iti
β
q <

qti
β

0 ≤
∑k
i w
′
iti

β
q − rq < q

Summing them together yields

0 ≤

 k∑
i

witi

− qr < q

β

 k∑
i

ti

+ q <
kαq2

β
+ q < 2q < β

where the last equation holds when kαq2

β < q, i.e., q < β
kα

Corollary 1. For 0 ≤ ti < β it follows that 0 ≤ w1t1 + w2t2 − rq < (k + 1)q

We denote this multiplication for a fixed global parameter β, and the fixed values α = 8
and k = 2 by

ExtendedModMul(t1, t2, ω1, ω
′
1, ω2, ω

′
2, q) = ω1t1 + ω2t2 − q

⌊
ω′1t1 + ω′2t2

β

⌋
.

Algorithms 5, 6 present an optimized version of the expanded radix-4 butterflies. In a
sense, we followed Harvey’s [Har14] method for butterfly optimization, but we do it for
the radix-4 expanded cases.

Algorithm 5 CT radix-4 optimized butterfly

Input: 0 ≤ x, y, z, t < 8q, wi ∈ Fq , w′i =
⌊
wiβ
q

⌋
< β for 0 < i < 5

Output: 0 ≤ x′, y′, z′, t′ < 8q
1: procedure CT radix-4 optimized butterfly(x, y, z, t, ωi, ω′i)
2: if x > 4q then x = x− 4q
3: z = ShoupModMul(z, ω1, ω′1, q)
4: a = ExtendedModMul(y, t, ω2, ω′2, ω4, ω′4, q)
5: b = ExtendedModMul(y, t, ω3, ω′3, ω5, ω′5, q)
6: x′ = x+ z + a
7: y′ = 2q + x+ z − a
8: z′ = 2q + x− z + b
9: t′ = 4q + x− z − b
10: return (x′, y′, z′, t′)

Theorem 3. For q < β
16 , Algorithm 5 is correct and is equivalent to Algorithm 4 first

procedure except that the inputs and outputs are reduced modulo 8q instead of q.

Proof. It is easy to observe that Lines 6− 8 in Algorithm 5 are equivalent to lines 2-5 in
the first procedure of Algorithm 4 up to some multiples of q. Therefore, it is only left to
show that the outputs are reduced modulo 8q. In Line 6 of Algorithm 5, x < 4q by Line 2,

7



z < 2q by Theorem 1, and a, b < 2q by Theorem 2, where y, t < 8q and q < β
16 . It follows

that

0 < x+ z + a < 8q
0 < 2q + x+ z − a < 8q
0 < 2q + x− z + b < 8q
0 < 4q + x− z − b < 8q

Algorithm 6 GS radix-4 optimized butterfly

Input: 0 ≤ x, y, z, t < 2q, wi ∈ Fq , w′i =
⌊
wiβ
q

⌋
< β for 0 < i < 5

Output: 0 ≤ x′, y′, z′, t′ < 8q
1: procedure GS radix-4 optimized butterfly(x, y, z, t, ωi, ω′i)
2: a = z + t
3: b = x+ y
4: z′ = ShoupModMul(4q + b− a, ω1, ω′1, q)
5: d1 = 2q + x− y
6: d2 = 2q + z − t
7: y′ = ExtendedModMul(d1, d2, ω2, ω′2, ω3, ω′3, q)
8: t′ = ExtendedModMul(d1, d2, ω4, ω′4, ω5, ω′5, q)
9: x′ = a+ b
10: if x′ > 4q then x′ = x′ − 4q
11: if x′ > 2q then x′ = x′ − 2q
12: return (x′, y′, z′, t′)

Theorem 4. For q < β
8 , Algorithm 6 is correct and is equivalent to the second procedure

of Algorithm 4 except that the inputs and outputs are reduced modulo 2q instead of q.
Proof. First, we show equivalence between the two algorithms. By Lines 2,3,9-11:

x′ = a+ b = z + t+ x+ y (mod 2q)

By Lines 5-7:

y′ = d1ω2 + d2ω3 (mod 2q) =
= (2q + x− y)ω2 + (2q + z − t)ω3 (mod 2q)
≡ (x− y)ω2 + (z − t)ω3 (mod 2q)

By Line 4:

z′ = (2q + b− a)ω1 (mod 2q) = (x+ y − z − t)ω1 (mod 2q)

Finally, by Lines 6-8

t′ = d1ω4 + d2ω5 (mod 2q) ≡
= (2q + x− y)ω4 + (2q + z − t)ω5 (mod 2q)
= (x− y)ω4 + (z − t)ω5 (mod 2q)

It is left to show that the outputs are always reduced modulo 2q and that the inputs
to the modular multiplication functions are of valid sizes. We know that 0 < x, y, z, t < 2q.
Then, at Line 4, the input to the ShoupModMul function is 0 < 4q + b − a = 4q + x +
y − z − t < 8q, which is a valid input when 8q < β. In addition, 0 < d1 = 2q + x− y < 4q
and 0 < d2 = 2q + z − t < 4q; therefore, according to Theorem 2, these are valid inputs
to ExtendedModMul when q < β

8 . Finally, according to Theorems 1, 2 the outputs of
the modular multiplications are always smaller than 2q and only x′ requires additional
reduction at Lines 10-11.

8



3.3 Butterfly characteristics
Figures 1 and 2 provide schematic illustrations of a CT radix-4 butterfly using four radix-2
butterflies or using our proposed butterfly, respectively. For brevity, we analyze the forward
butterfly, the inverse butterfly analysis follows. We highlight branches with green, and the
lower l() and upper h() halves of modular multiplication products in yellow and orange,
respectively; logical operations appear in white. These illustrations assume that the
architecture only supports binary operations. Figure 1 (resp. 2) involves 4 (1) branches,
8 (8) calls to l(), 4 (5) calls to h(), and 16 (16) other binary operations. This means we
reduce the number of branches by 75% at the cost of slightly more multiplications. One
reason is that we designed our butterfly to receive inputs reduced by modulo 4q instead of
2q as before.

Figure 1: An illustration of a sequence of (binary) operations in a radix-4 butterfly that
uses four radix-2 butterflies. The values q, 2q, wi, w′i were loaded in advance.

The most important advantage of our butterfly is its 6-level depth. This is almost half
the depth of the radix-2 based circuit, although radix-2 allows better pipelining when it
is supported by the architecture. In contrast, the disadvantage of our butterfly is that it
requires loading five powers of ω instead of only three in the radix-2 case. In practice, the
above number doubles itself because we use Shoup’s modular multiplication.

Consider two extreme cases: the first and last iteration of the NTT algorithm. The
first iteration uses the same powers of ω for all butterflies, whereas the last iteration uses a
different set of powers per butterfly. At the first iteration, we can fix 10 (resp. 6) registers
to store the powers of ω and an extra 4 (resp. 3) to store q, 2q, 4q, and zero (resp q, 2q,
and zero). The rest of the registers are available for the computations. In contrast, the
last iteration needs to account for the load operations of the different powers of ω. For
example, if an architecture includes 32 registers. Then, we can fix 14 (resp. 9) of them
and use the other 18 (resp. 23) for the butterfly computations. In summary, our butterfly
suggests a nontrivial trade-off between parallelization and register pressure.

9



Figure 2: An illustration of a sequence of (binary) operations in our proposed radix-4
butterfly. The values q, 2q, 4q, wi, w′i were loaded in advance.

Remark 1. When the architecture provides fused multiply-add (FMA) instructions, we can
use them to reduce one depth level from every Shoup modular multiplication. We describe
the transformation in Figure 3 and note that this transformation is already implemented in
HEXL [BKS+21]. Applying this transformation results in a reduction of two levels (resp.
one) in the depth of the schemes shown in Figure 1 and 2, respectively.

Figure 3: Shoup’s modular multiplication using FMA instructions.

4 Mixed radix algorithms
Let N = 2m, then a radix-k NTT algorithm assumes that m | k2 . When this is not the
case, the algorithm must be a mixed-radix algorithm. Specifically in our case (k = 4),
when m is odd, we need to perform one additional radix-2 iteration. We set this iteration
as the last iteration in NTT and the first iteration in InvNTT. The reason is that these
iterations consume the largest number of powers of ω, where the radix-2 variants may be
preferred. Algorithms 7 and 8 present our mixed radix NTT and InvNTT implementations,
respectively. We emphasize that before calling the Harvey butterflies, we must reduce the
input values modulo 4q.

10



Algorithm 7 CT radix-4 NTT
Input: a ∈ Rq , N = 2m, q a prime satisfying q ≡ 1 (mod 2N), Ω̄ in Extended-Reverse order.
Output: ã = NTTω(a) in bit-reversed order.

1: procedure CT radix-4 NTT(a,N, q, Ω̄)
2: t = N , ã = a
3: bound_r4 = m is even ? N : N

2
4: for (m = 1; m ≤ bound_r4; m = 4m) do
5: t = t/4
6: for i = 0; i < m; i++ do
7: m1 = m+ i
8: w = (Ω̄m1 , Ω̄2m1 , Ω̄2m1+1, Ω̄m1 Ω̄2m1 ,−Ω̄m1 Ω̄2m1+1)
9: for (j = 4it; j < (4i+ 1)t; j++) do
10: (ãj , ãj+t, ãj+2t, ãj+3t) = CT-radix4butterfly(ãj , ãj+t, ãj+2t, ãj+3t, w)
11: if m is odd then
12: for (i = 0; i < N ; i+ = 2) do
13: ai = min(ai, ai − 4q)
14: (ãi, ãi+1) = HarveyButtefly(ãi, ãi+1, wN+i)
15: return ã

Algorithm 8 GS radix-4 NTT
Input: ã ∈ Rq , N = 2m, q a prime satisfying q ≡ 1 (mod 2N), Ω̄ in Extended-Reverse order.
Output: a = InvNTT (ã) in bit-reversed order.

1: procedure GS radix-4 NTT(a,N, q,Ω)
2: t = 1, m = N , a = ã
3: if m is odd then
4: for (i = 0; i < N ; i+ = 2) do
5: ai = min(ai, ai − 4q)
6: (ai, ai+1) = HarveyButtefly(ai, ai+1, wN+i)
7: m = m

2 , t = 2t
8: else
9: for (i = 0; i < N ; i+) do
10: ai = min(ai, ai − 4q)
11: ai = min(ai, ai − 2q)
12: for (m = m

4 ; m > 0; m = m
4 ) do

13: for j = 0; j < m; j++ do
14: m1 = m+ i
15: w = (Ω̄m1 , Ω̄2m1 , Ω̄2m1+1, Ω̄m1 , Ω̄2m1 ,−Ω̄m1 , Ω̄2m1+1)
16: for (i = 4jt; i < (4j + 1)t; i++) do
17: (aj , aj+t, aj+2t, aj+3t) = GS-radix4butterfly(aj , aj+t, aj+2t, aj+3t, w)
18: t = t ∗ 4
19: return a

4.1 The order of the power of ω

The construction of [LN16] proposed storing in Ω the N powers of ω in a bit-reverse order.
Algorithms 7 and 8 assume this reverse order; this means that at every iteration they read
the element ω1 from index i and two consecutive elements ω2, ω3 from index 2i. Then,
the algorithms compute ω4 and ω5 by performing a multiplication of the above operands.
This multiplication can be pre-computed and cached. Caching ω4, ω5 requires storing an
additional 2(N − 1)/3 =

∑log4N
i=1

(
2N
4i

)
elements, two per the N

4i butterflies at the ith
iteration. We propose two methods of storing the powers of ω that start from Ω and
generate an array Ω̄.

• Extended-Reverse order - Ω̄0 = Ω0, Ω̄2 = Ω1, Ω̄1 = Ω̄3 = 0, and for i ∈ [2, . . . , N)

Ω̄2i = Ωi Ω̄2i+1 =
{

i is even Ωi ∗ Ω̄i (mod q)
else q − (Ωi−1 ∗ Ω̄i (mod q))

11



• Compressed order - Ω̄ contains a consecutive list of sets of five elements (ω1, ω2, ω3, ω4, ω5)
in the exact order in which they are consumed by Algorithm 7.

The advantage of the Extended-Reverse method is that Ω̄ closely follows the structure of
Ω from [LN16]. That said, the advantage of the Compressed method is that it only needs
to store 5(N−1)

3 < 2N elements.

5 The VMSL implementation
We followed work [BH21] that presents an optimized NTT implementation, which leverages
the VMSL instruction for prime fields with characteristic q < 232. Specifically, [BH21] targets
the cryptographic signature scheme Dilithium [DKL+17], which uses q = 223 − 213 + 1. As
opposed to their method, we target primes in the range [232, 252), where the field elements
do not fit in 32-bit containers and we cannot directly use 32-bit multipliers. We use an
upper bound to limit the size of the primes to 252 so they comply with the VMSL ability
to handle β = 56-bit words and to meet the Theorem 3 requirement that q = β

16 .

Figure 4: Implementing the ExtendedModMul algorithm using the VMSL instructions.
Instructions description is available at [int21a].

Figure 4 demonstrates the advantage of using our proposed butterfly on architectures
that provide VMSL-like instructions. Here, we compute the sum of the two products yw′2
and tw′4 by issuing the VMSL instruction. Then we take its lower and higher 56-bit halves
in parallel and add the results to l(−qr1). We observed that using VMSL, we can reduce
one circuit-depth level.

As explained above, the last NTT iteration is unique because it involves loading ten
powers of ω per radix-4 butterfly. In contrast, the other iterations allow reusing these
powers for two butterflies or more. Here, it is possible to perform two radix-4 butterflies
in parallel using almost all the vector registers. We believe that this lack of generality
between the iterations prevented the compiler from performing loop unrolling. Thus, we
optimized the code by using two code paths: a single radix-4 butterfly for the last iteration
and a double (parallel) radix-4 butterfly for the others.

6 The AVX512-IFMA implementation
Figure 4 shows how to perform our butterfly using AVX512-IFMA, which involves instruc-
tions that return the lower or higher half of a 104-bit product. Here, we target primes in
the range [232, 248), where we use an upper bound to limit the size of the primes to 248

so they comply with the AVX512-IFMA ability to handle β = 52-bit words and to meet
the Theorem 3 requirement that q = β

16 . Unlike the VMSL case, here the execution depth
stayed the same, although the number of operations was reduced.

12



Figure 5: Implementing the ExtendedModMul algorithm using the AVX512-IFMA instruc-
tions.

We summarize the characteristics of the vector instructions that we used in our
implementations in Table 1. We used the AVX512-IFMA instructions for multiplication,
the VPSUBQ and VPMINUQ for modular reduction, and the memory/permute operations
for arranging the data in registers. We used the instructions latencies to predict the
overall latency of our implemented butterflies. A radix-2 butterfly involves five serial
instructions: three additions and two multiplications, overall 3 ∗ 4 + 2 = 11 cycles. A
radix-4 butterfly that relies on four radix-2 butterflies requires at least 11 ∗ 2 = 22 cycles,
but we need to add four more cycles to account for the instructions’ throughput. In
contrast, our proposed butterfly involves six serial instructions: three multiplications, and
three additions, overall 3 ∗ 4 + 3 = 15 cycles. Here, we also add four cycles to account for
the instructions’ throughput.

Table 1: The characteristics of the vector instructions used in our implementations. The
data for the Ice Lake architecture is taken from [Int21b].

Purpose Instructions Latency Throughput
Multiplication VPMADD52HUQ, VPMADD52LUQ 4 0.5
Math & Logic VPADDQ, VPANDQ, VPXOR 1 0.5

Math VPSUBQ 1 0.3
Math VPMINUQ 3 1

Memory VMOVDQ64 8 0.5
Memory VPBROADCASTQ 3 1
Memory VPGATHERQQ 26 5
Memory VPSCATTERQQ 11 2
Memory VPUNPCKLQDQ, VPUNPCKHQDQ 1 1
Permute VSHUFI64X2, VPERMT2Q, VINSERTI64X4 3 1
Permute VPBLENDMQ 1 0.33

Similar to what we did for our IBM Z code, we provide here a special treatment for the
final iterations, where we switched back from our proposed radix-4 butterfly to perform
several radix-2 butterflies. Specifically, as noted in [BKS+21], the last three iterations
of a radix-2 butterfly are unique because loading and storing the involved operands into
eight-wide 64-bit word registers must be done in a special order. To this end, the code
of [BKS+21] uses a serial combination of VMOVDQU, VPERMT2Q, and VPBLENDMQ per
iterations with a latency of 3 + 1 + 8 = 14. We observed that when combining the
last four radix-2 iterations into one big radix-16 iteration, we can avoid some loads and
stores. In addition, we can replace the serial VPERMT2Q, and VPBLENDMQ, with only
one VSHUFI64X2 instruction with a latency of 3. This also provides code simplification.
Figure 6 shows the data arrangement in wide registers and the instructions we use.

13



Remark 2. When there is no inter-operable requirement between different HE libraries,
it is possible to have the coefficients of ã = NTT (a) in any order as long as it can be
understood by the InvNTT (ã) implementation. This was already observed in [LN16]
where Algorithm 9 leaves the output in bit-reverse order. We can use this observation to
avoid the final VPUNPCKLQDQ in Figure 6.

Figure 6: A comparison between the permutation instructions for the last 4 radix-2
iterations used in [BKS+21] (upper red arrows) and our radix-16 implementation (lower
green arrows).

6.1 The order Ω̄
Our x86-64 implementation starts from a compressed order of Ω̄ and uses some order
techniques from [BKS+21]. For example, to avoid extra shuffling during the NTT imple-
mentation, we duplicate some powers of ω in the last three iterations. Specifically, 4 and 2
times for the third to last and second to last iterations. In addition, we shuffle the powers
of the last iterations to meet the order as presented in Figure 9c. Consequently, our radix-4
implementation requires 5N

25 + 10N
24 + 5N

22 = 65
32N < 3N and our combined radix-4 with

radix-16 implementation requires 5N
24 + 4N

23 + 2N
22 + N

2 = 29
16N < 2N .

7 Experiments methodology and results
We start by describing our experimentation platforms and methodology for measurements.

7.1 Experiments setup
We carried out the experiments on two platforms:

• IBM Z: A z14 platform. This platform has 15 GB RAM, 128KiB L1d and L1i cache,
4MiB L2d cache, and 128MiB L3 cache. Running through a KVM hypervisor.

• x86-64: Dell XPS 13 7390 2-in-1 with the 10th Intel R©CoreTM Generation (Micro
architecture Codename “Ice Lake”[ICL]) Intel R©CoreTM i7-1065G7 CPU 1.30GHz.
This platform has 16 GB RAM, 48K L1d and 32K L1i cache, 512K L2 cache, and
8MiB L3 cache, where we turned off the Intel R© Turbo Boost Technology.

The code. The code is written in C using IBM Z and x86-64 C intrinsics. The im-
plementation uses the VEF (vector) instructions and the x86-64 uses the AVX512 and
AVX512-IFMA instructions. The code was compiled with GCC (version 10) in 64-bit
mode, using the “O3” optimization level, and run on a Linux (Ubuntu 20.04.2 LTS) OS.

We compared several NTT implementations.

14



• rad2-ref - A reference (scalar) implementation based on [LN16].

• rad2-seal - A radix-2 scalar NTT code that we extracted from SEAL [Lai17] and
converted to C.

• rad4 - A radix-4 scalar implementation based on Algorithms 7, 8.

• rad4x4 - A radix-16 scalar implementation based on four radix-4 butterflies.

• rad2-dbl - Two rad2-ref scalar implementations that run in parallel.

For IBM z14 we also compared

• rad4-vmsl - A radix-4 vectorized implementation based on Algorithms 7, 8 and the
VMSL instruction.

For x86-64 we also compared

• rad2-hexl - A radix-2 NTT code that we extracted from HEXL [BKS+21] and
converted to C. This code uses the AVX512-IFMA ISA.

• rad2-ifma - A radix-4 scalar NTT code that uses AVX512-IFMA instructions.

• rad2-ifma2 - A radix-4 scalar NTT code that uses AVX512-IFMA instructions but
returns the results in a different order then the reversed-binary order.

• r4r2-ifma - A radix-4 NTT implementation that uses AVX512-IFMA and performs
the last 4 iterations in radix-2.

• r216-ifma - A radix-16 NTT implementation that uses AVX512-IFMA and radix-2
butterflies.

Third party code. For a fair comparison we converted the SEAL and HEXL imple-
mentations from C++ to C using the following procedures. We removed templates and
made some functions static inline functions. We replaced reinterpret_cast
and static_cast with C-style casting. Specifically, for HEXL we fixed the BitShift
parameter to 52 and removed code paths (and branches) that deal with other values.
Set the InputLessThanMod parameter as an input parameter to the relevant functions.
Converted the HEXL_LOOP_UNROLL_N macros to LOOP_UNROLL_N macros and Defined
the HEXL_CHECK and HEXL_VLOG macros as empty macros.

7.2 Measurements methodology
The performance measurements reported hereafter were measured in nanoseconds using
the clock_gettime C function (per single core), where a lower count is better. We
used the following measurement methodology in our experiments. Each measured function
was isolated, run 10 times (warm-up), followed by 200 iterations that were measured and
averaged. To minimize the effect of background tasks running on the system, we repeated
every experiment 10 times and recorded the minimal result.

7.3 Results
Figure 7 compares our different implementations on IBM Z for the forward and inverse
NTT. We start by observing that the implementation of SEAL is faster than our naïve
reference implementation. The main difference lies in the manual loop unrolling that is
done in the SEAL code. Our scalar radix-4 (without special loop unrolling) implementation

15



(a) NTT (b) InvNTT

Figure 7: Performance comparison of different NTT implementations on z14. The results
are reported in milliseconds where lower is better.

(a) Scalar implementations (b) AVX512-IFMA implementations

Figure 8: A comparison of different NTT implementations on x86-64 platform. Panel (a)
and Panel (b) use the SEAL and HEXL code that we converted to C, respectively, as a
baseline. The rest of the implementations were normalized accordingly, where higher is
better.

has similar performance to the radix-2 implementation of SEAL. Next, we observed that
our radix-4 vector implementation is 2.5× faster than the rad2-seal implementation.

Our attempt to perform two NTT evaluations in parallel, in order to reuse the values
of Ω̄ did not show a significant performance improvement. We saw similar performance for
the InvNTT. The InvNTT is slower than the NTT because of the final multiplication by
N−1 and the fact that we need to first reduce the input modulo 2q.

HEXL provides a super optimized implementation that already uses the AVX512-
IFMA instruction set. Thus, in Figure 8 Panel b we set the implementation of HEXL
as the baseline and normalized the performance of the other vectorized implementations
accordingly. We did the same for the scalar implementations in Panel a, where we set the
SEAL code as our baseline.

For the scalar implementations, we saw a performance advantage for our radix-4
butterflies with larger values of N . In contrast, we did not observe any advantage to using
a radix-16 implementation with our radix-4 butterflies. For the vectorized implementations,
we observed that our radix-4 butterflies achieved similar performance to the HEXL radix-2
implementation. However, we did see a ∼ 1.1 times speedup when using the radix-4
butterflies for the first few iterations and then using our optimized radix-16 butterfly for
the last iteration. We also noted some performance improvement when we left the NTT
output unordered.

To complete the analysis on the x86-64 platform, we used Intel software developer
emulator (SDE) [Int17] to count the number of instructions executed during each of the

16



(a) Memory access instructions (b) Math & Logic instructions

(c) Permute instructions

Figure 9: Instruction number comparison between different NTT implementations on
x86-64 that leverage the AVX512-IFMA instructions.

tested functions. We wrapped the boundaries of each function with the “SSC marks”
1 and 2, respectively. This was done by executing “movl ssc_mark, %ebx; .byte
0x64, 0x67, 0x90” and invoking the SDE with the flags “-start_ssc_mark 1
-stop_ssc_mark 2 -mix”. The results are presented in Figure 9, where we organized
the instructions into three groups: memory operations, math and logic operations, and
permutation operations. A full description of the instructions is available at [int21a].
We see that our r4r2 implementation uses the least amount of memory instructions.
As expected, the number of VPXORQ (xor operation) and VPMADD52LUQ stayed the
same in all implementations while the number of VPMADD52HUQ was slightly higher for
implementations that involved the radix-4 butterfly. The reduction in the number of
VPSUBQ and VPMINUQ instructions (subtraction and minimization instructions, resp.) for
radix-4 based implementations is due to the lower number of modulo reductions that these
implementations perform.

8 GCC slowdown
We evaluated the code using both GCC and Clang. Surprisingly, we saw a large gap of
20% between the resulting binaries. Figure 10 provides this comparison.

Analysis on x86-64. We invoked the following instruction to collect system information
about the rad2, rad2-seal and rad4 implementations when compiled with GCC or Clang
on the x86-64 platform.

sudo perf stat -B -e cache-references, cache-misses, cycles, instructions, branches,
faults, mem_load_retired.l1_miss, branch-misses, mem-loads, mem-stores,
mem_load_retired.l2_miss, mem_load_retired.l3_miss ntt-variants-bench x

17



Figure 10: Slowdown comparison of different NTT implementations for N ∈ {9, . . . , 14}
when compiled with Clang versus GCC. Lower values indicate a bigger gap between GCC
and Clang. The code was compiled on the IBM Z and x86-64 platforms.

We observed no difference in the following parameters: mem_load_retired.l2_miss, cache-
misses, faults, mem_load_retired.l3_miss. Figure 11 shows some parameters where we
observed a major difference. First, we noticed that the number of branches and branch-
misses when using our radix-4 butterflies is reduced compared to a radix-2 implementation.
While the number of branches was only slightly higher in the GCC output binary, we
still observed a higher number of branch misses. In addition, the number of executed
instructions is 25− 46% higher in GCC compared to the Clang output binary. Finally, we
saw that at least for the radix-2 case, the number of memory stores is higher in the GCC
case, which may suggest that Clang does a better job of managing the registers.

9 Conclusions

Having a performant NTT implementation is critical for accelerating HE computations. We
presented new radix-4 butterflies and analyzed their characteristics. We then explored and
measured several different mixed-radix implementations. We demonstrated the advantage
of our butterflies on two different architectures: IBM Z and x86-64. We believe that other
architectures may also find it useful, especially future hardware designs that target NTT.

A NTT algorithms

Algorithms 9 and 10 are the forward and inverse NTT algorithms from [LN16], respectively.

18



(a) Instructions (b) Mem-stores

(c) Branch-misses (d) Branches

Figure 11: A comparison of several parameters of the rad2, rad2-seal, and rad4 implemen-
tations when compiled with GCC or Clang on an x86-64 platform.

Algorithm 9 CT radix-2 NTT [LN16]
Input: a ∈ Rq , N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψrev , which holds the powers
of ψ in bit-reversed order.
Output: ã = NTTψ(a) in bit-reversed order.

1: procedure CT radix-2 NTT(a,N, q, ψrev)
2: t = N , ã = a
3: for (m = 0; m < N ; m = 2m) do
4: t = t/2
5: for i = 0; i < m; i++ do
6: w = ψrev [m+ i]
7: for (j = 2it; j < (2i+ 1)t; j++) do
8: (X,Y ) = (ãj , ãj+tw)
9: (ãj , ãj+t) = (X + Y,X − Y ) (mod q)
10: return ã

Algorithm 10 Gentleman-Sande (GS) Radix-2 InvNTT [LN16]
Input: ã ∈ Rq , N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψ−1

rev , which holds the powers
of ψ−1 in bit-reversed order.
Output: a = InvNTT (ã) in bit-reversed order.

1: procedure Gentleman-Sande (GS) Radix-2 InvNTT(ã, N, q, ψ−1
rev)

2: t = 1, a = ã
3: for (m = N/2; m > 0; m�= 1) do
4: for (i = 0; i < m; i++) do
5: w = ψ−1

rev [m+ i]
6: for j = 2it; j < (2i+ 1)t; j++) do
7: (X,Y ) = (aj , aj+t)
8: (aj , aj+t) = (X + Y,w(X − Y )) (mod q)
9: t = 2t
10: for (j = 0; j < N ; j++) do
11: aj = aj ·N−1

12: return a

19



References
[BH21] Jonathan Bradbury and Basil Hess. Fast Quantum-Safe Cryptography on

IBM Z. Technical report, 2021. URL: https://csrc.nist.gov/CSRC/media/
Events/third-pqc-standardization-conference/documents/accepted-
papers/hess-fast-quantum-safe-pqc2021.pdf.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D.M. de Souza, and Vinodh
Gopal. Intel HEXL : Accelerating Homomorphic Encryption with Intel AVX512-
IFMA52. Technical report, 2021. URL: https://eprint.iacr.org/2021/420.

[CHK+19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A Full RNS Variant of Approximate Homomorphic Encryption. In
Carlos Cid and Michael J Jacobson Jr., editors, Selected Areas in Cryptography
– SAC 2018, pages 347–368, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-10970-7_16.

[CT65] James W Cooley and John W Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.
doi:10.2307/2003354.

[DG17] Nir Drucker and Shay Gueron. Paillier-encrypted databases with fast ag-
gregated queries. In 2017 14th IEEE Annual Consumer Communications
Networking Conference (CCNC), pages 848–853. IEEE, IEEE, Jan 2017.
doi:10.1109/CCNC.2017.7983244.

[DG19] Nir Drucker and Shay Gueron. Fast Modular Squaring with AVX512IFMA.
In Shahram Latifi, editor, 16th International Conference on Information
Technology-New Generations (ITNG 2019), pages 3–8, Cham, 2019. Springer
International Publishing. doi:10.1007/978-3-030-14070-0_1.

[DKL+17] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium Algorithm Specifica-
tions and Supporting Documentation. 2017. URL: https://pq-crystals.org/
dilithium/data/dilithium-specification.pdf.

[DS16] Wei Dai and Berk Sunar. cuHE: A Homomorphic Encryption Accelerator
Library. In Enes Pasalic and Lars R Knudsen, editors, Cryptography and
Information Security in the Balkans, pages 169–186, Cham, 2016. Springer
International Publishing. doi:10.1007/978-3-319-29172-7_11.

[GADO17] Umme Salma Gadriwala, Christopher Kumar Anand, Curtis D’Alves, and Bill
O’Farrell. Accelerating Poly1305 Cryptographic Message Authentication on the
Z14. In Proceedings of the 27th Annual International Conference on Computer
Science and Software Engineering, CASCON ’17, pages 48–54, Riverton, NJ,
USA, 2017. IBM Corp. doi:10.5555/3172795.3172802.

[Gar21] Gartner. Gartner identifies top security and risk management
trends for 2021. Technical report, March 2021. URL: https:
//www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-
identifies-top-security-and-risk-management-t.

[GK16] Shay Gueron and Vlad Krasnov. Accelerating big integer arithmetic using
intel ifma extensions. In 2016 IEEE 23nd Symposium on Computer Arithmetic
(ARITH), pages 32–38, 2016. doi:10.1109/ARITH.2016.22.

20

https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/hess-fast-quantum-safe-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/hess-fast-quantum-safe-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/hess-fast-quantum-safe-pqc2021.pdf
https://eprint.iacr.org/2021/420
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.2307/2003354
https://doi.org/10.1109/CCNC.2017.7983244
https://doi.org/10.1007/978-3-030-14070-0_1
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.5555/3172795.3172802
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://doi.org/10.1109/ARITH.2016.22


[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms—For fun and profit.
AFIPS Conference Proceedings - 1966 Fall Joint Computer Conference, AFIPS
1966, pages 563–578, 1966. doi:10.1145/1464291.1464352.

[Har14] David Harvey. Faster arithmetic for number-theoretic transforms. Journal of
Symbolic Computation, 60:113–119, 2014. doi:10.1016/j.jsc.2013.09.002.

[IBM21] IBM. z/Architecture Principles of Operation SA22-7832-12, April 2021.
URL: https://www.ibm.com/support/pages/zarchitecture-principles-
operation.

[Int17] Intel. Intel R© Software Development Emulator, version 8.12.0.
https://software.intel.com/en-us/articles/intel-software-
development-emulator, January 2017.

[int21a] intel. Intel R© 64 and IA-32 architectures software developer’s manual,
June 2021. URL: http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[Int21b] Intel. Intel R© intrinsics guide, Oct 2021. URL: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/.

[JLK+20] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Keewoo Lee, Namhoon Kim,
Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. HEAAN Demystified:
Accelerating Fully Homomorphic Encryption Through Architecture-centric
Analysis and Optimization, 2020. arXiv:2003.04510.

[KG19] Dusan Kostic and Shay Gueron. Using the new vpmadd instructions for
the new post quantum key encapsulation mechanism sike. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), pages 215–218, 2019.
doi:10.1109/ARITH.2019.00050.

[Lai17] Kim Laine. Simple Encrypted Arithmetic Library 2.3.1. Technical re-
port, Microsoft, WA, USA, 2017. URL: https://www.microsoft.com/en-
us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the Number Theoretic
Transform for Faster Ideal Lattice-Based Cryptography. In Sara Foresti and
Giuseppe Persiano, editors, Cryptology and Network Security, pages 124–139,
Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-
48965-0_8.

[SLPD20] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: An ar-
chitecture for computing on encrypted data. International Conference on
Architectural Support for Programming Languages and Operating Systems -
ASPLOS, pages 1295–1309, 2020. doi:10.1145/3373376.3378523.

[YZD+20] James You, Qi Zhang, Curtis D’Alves, Bill O’Farrell, and Christopher K.
Anand. Using z14 Fused-Multiply-Add Instructions to Accelerate Elliptic
Curve Cryptography. (Report 2020/481):284–291, 2020. URL: https://
eprint.iacr.org/2020/481.

21

https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1016/j.jsc.2013.09.002
https://www.ibm.com/support/pages/zarchitecture-principles-operation
https://www.ibm.com/support/pages/zarchitecture-principles-operation
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://arxiv.org/abs/2003.04510
https://doi.org/10.1109/ARITH.2019.00050
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1145/3373376.3378523
https://eprint.iacr.org/2020/481
https://eprint.iacr.org/2020/481

	Introduction
	Background and notation
	NTT
	Dedicated CPU instructions

	Extended Harvey's butterfly
	Expanded radix-4 butterflies
	Optimized butterflies
	Butterfly characteristics

	Mixed radix algorithms
	The order of the power of 

	The VMSL implementation
	The AVX512-IFMA implementation
	The order 

	Experiments methodology and results
	Experiments setup
	Measurements methodology
	Results

	GCC slowdown
	Conclusions
	NTT algorithms

