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Abstract

Oblivious transfer (OT) is a foundational primitive within cryptography owing to its con-
nection with secure computation. One of the oldest constructions of oblivious transfer was from
certified trapdoor permutations (TDPs). However several decades later, we do not know if a
similar construction can be obtained from TDPs in general.

In this work, we study the problem of constructing round optimal oblivious transfer from
trapdoor permutations. In particular, we obtain the following new results (in the plain model)
relying on TDPs in a black-box manner:

– Three-round oblivious transfer protocol that guarantees indistinguishability-security against
malicious senders (and semi-honest receivers).

– Four-round oblivious transfer protocol secure against malicious adversaries with black-box
simulation-based security.

By combining our second result with an already known compiler we obtain the first round-
optimal 2-party computation protocol that relies in a black-box way on TDPs.

A key technical tool underlying our results is a new primitive we call dual witness encryption
(DWE) that may be of independent interest.

1 Introduction

Oblivious transfer (OT) is one of the most recognizable protocols in cryptography. It is a protocol
executed by two parties, designated as sender and receiver, with inputs (l0, l1) and b respectively.
The goal of the protocol is for the receiver to learn lb, while not learning anything about l1−b. At
the same time, the sender should be oblivious to the receiver’s input b. The importance of OT
is underlined by its fundamental role in cryptography, as it is known to be both necessary and
sufficient for secure multiparty computation (MPC) [Kil88]. In fact, recent works [BL18, CCG+20]
further strengthen this connection to devise round-preserving transformations from OT to MPC.

In this work, we revisit the well-studied problem of building round-optimal OT in the plain
model that are secure against malicious adversaries, who may arbitrarily deviate from the protocol
specification. We focus on the task of building such protocols from general assumptions, and in
particular, trapdoor permutations (TDPs). Roughly speaking, TDPs are permutations that are easy
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to compute, but hard to invert unless one knows a “trapdoor” (in which case inversion becomes
easy).

OT and TDPs are, in fact, historically linked — the first constructions of semi-honest1 1-out-
of-2 OT protocols [EGL82] were based on TDPs. Subsequent works devised compilation strategies
to transform the protocol of [EGL82] to the setting of malicious senders and receivers. In partic-
ular, [KO04] constructed a four-round OT protocol that makes non-black-box use of TDPs. More
recently, [ORS15] improved this result by only making black-box use of TDPs. Moreover, the round
complexity of these protocols is optimal (w.r.t. black-box simulation) [KO04].

A significant disadvantage of these works (including [EGL82]), however, is that when it comes
to proving security against malicious adversaries, they require the TDPs to be certifiable. Namely,
it must be possible to publicly recognize whether a given (possibly adversarially chosen) function
is a permutation.

Investigating how to construct complex cryptographic protocols relying on trapdoor permuta-
tions is interesting from both the theoretical and the practical perspective.

Indeed, for this reason, the issue of certifiability of TDPs has garnered much interest in the
context of the other popular application of TDPs, which is to build non-interactive zero-knowledge
(NIZK) [GRSB19, FLS90, BY93, Gol04, Gol08, Gol11, GR13, CL18, KKM12]. In a similar vein,
in this work we ask whether it is possible to forego the reliance on certifiability in building round-
optimal OT from TDPs:

Does there exist fully black-box round-optimal OT from trapdoor permutations?

Indeed, one simple way to relax the certifiability requirement is to let the party choosing the
TDP proving in zero-knowledge that the TDP was sampled honestly. However this necessarily
increases the number of rounds (or requires trusted assumptions). Such an approach has been
used in [OVY90], in which the authors show that one-way permutations (without trapdoors) are
sufficient to construct OT if one of the two parties is all-powerful. Thus, the problem becomes
interesting if one considers the round complexity of constructions.

On the use of Certifiability. To the best of our knowledge, we are not aware of any maliciously
secure round-optimal OT protocol that uses the underlying trapdoor permutations even in a non-
black-box way.

In both of the classical applications of TDPs, namely, NIZK and OT, the certifiability property
is crucially used for security. In the case of NIZKs, it is used to guarantee soundness against
malicious provers in the classical protocol of [FLS90]. In the case of OT, it is used to guarantee
security against malicious senders. In both of these applications, one of the parties (the prover, in
the case of NIZKs, and the sender, in the case of OT) is required to sample a function f from a family
of trapdoor permutations. This is done by sampling an index I via the index generation algorithm
of the family of functions. If the party does not sample the index I honestly, the resultant function
is no longer guaranteed to be a permutation. In such a scenario, in both of these applications,
security completely breaks down (we will give an example hereafter in the paper). A cheating
prover is able to break soundness, and a cheating sender is able to break receiver input privacy.

In the context of NIZKs, [BY93] proposed a technique to address this issue when the TDP family
is full domain. Here, we say that a TDP family is full domain if the domain is {0, 1}p(n) for some
polynomial p, else we say that the domain is partial. Subsequent works [Gol08, Gol11, Gol04, GR13]

1A semi-honest adversary, unlike a malicious adversary, follows the protocol specification. However, it may still
try to glean additional information from the execution of the protocol.
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showed that for the case of partial domain, it suffices for one to start with TDPs that are doubly-
enhanced, i.e., TDPs that additionally have domain and range samplers with additional security
properties (see Section 2.1). [CL18] was able to further relax the requirements for partial domain
to only require TDPs that are public-domain, i.e. the domain is both efficiently recognizable, and
almost uniformly sampleable. In [GRSB19] the authors propose a non-interactive proof to certify
that the RSA public key specifies a permutation in the random-oracle (RO) model.

These solutions, however, are in the common random string (CRS) model (or in the RO model),
and are not applicable to our plain model setting. The main technical focus of our work is to
eliminate the use of certifiability in building OT, without relying on a CRS or on the RO, and
requiring the least possible number of rounds. To achieve this goal, we rely on new notion of dual
witness encryption (DWE).

1.1 Our Results

We resolve the aforementioned question in the affirmative, and provide details for our result below.

Dual Witness Encryption. As a stepping stone to our solution, we define the notion of dual
witness encryption for the pair of disjoint languages (L0, L1) such that L1 is in NP. Intuitively,
the notion defines a public-key encryption scheme where the public key (the instance) can either
come from L0, L1 or may even lie outside the union of these two sets. The scheme guarantees: (i)
information theoretic security when encryption is performed using a public-key belonging to the
set L0; and (ii) efficient decryption when encrypted using a public-key belonging to the set L1 if
the decryptor is additionally in possession of a witness attesting to this fact.

For use in our OT protocols, we construct a dual witness encryption (DWE) scheme where the
public keys will correspond to functions f . Specifically, we build a DWE scheme for (L0, L1) where
(i) L0 is the set functions for which a large fraction of points in the domain result in collisions (the
reader can think of this as meaning that at least half the points in the domain result in collision
on application of functions f in L0); whereas (ii) L1 is the set of TDPs output by an honest TDP
generation algorithm Gen. While we discuss the details of the encryption scheme in the technical
overview, for the purposes of this discussion it is helpful to think of an (overly) simplified version
of a ciphertext in the encryption scheme to be (f(k), k ⊕m)2 where k is a randomly sampled key,
and m is the message to be encrypted. Intuitively, if the instance f used to compute an encryption
is a function for which many points in the domain have the same image, then f(k) (which is a
part of the ciphertext) information theoretically hides the specific key k chosen for encryption, and
thereby hides the message m. Instead, if the function f used for the decryption is a TDP, and the
randomness used to generate such a function is known, then there exists an efficient procedure that
inverts f(k) and decrypts the message. We note that in this case there are instances that belong
neither to L0 nor to L1 (e.g., the functions for which only a small fraction of points in the domain
result in collisions). This is our main tool for tackling uncertifiability. As stated above, this is an
oversimplification of our scheme, and we provide more details both for the construction of the tool,
and how it is used, in the next section.

As an additional contribution, we show the existence of a dual witness encryption schemes for
other languages. For instance the pair of languages (L0, L1), where L0 represents the language of
Diffie-Hellman (DH) tuples, and L1 represents the language of non-DH tuples. In this case, when
an encryption is computed using a DH tuple, the encrypted message is information theoretically

2Note that this is not an accurate description of the encryption scheme, but is helpful to provide an intuition.
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hidden. In any other case, when the encryption is computed using a tuple that is not DH, it is
possible to efficiently decrypt the message. Moreover, the decryption is efficient if the exponents
of the non-DH-tuple are known by the decryptor. We also argue that it is possible to extend the
above construction to the language of non-Quadratic Residuosity tuples [GMR85]3.

Comparison with similar notions. Dual witness encryption is similar to witness encryption
with some important differences: First, we require semantic security to hold even against un-
bounded adversaries when the instance used for the encryption belongs to L0. Second, unlike
witness encryption, we do not define completeness or hiding for instances that are outside L0 and
L1.

The notion of instance-dependent commitment (ID commitment) [BMO90, CCKV08] enables
a committer to commit to a message with respect to an NP language L. When the statement
used to compute the commitment is not in L, then the commitment is statistically hiding, in any
other case the commitment is statistically binding. The notion of extractable ID commitment, in
addition, admits an efficient extraction procedure that on input a commitment computed with
respect to an instance in L, outputs the committed message. In [GOVW12] the authors show how
to construct such an extractable ID commitment scheme for all the languages that admit hash proof
systems (e.g., QNR, QR, DDH, DCR). It is easy to see that an extractable ID commitment for the
language L is a DWE for the languages (L0, L1) with L0 = {0, 1}? − L and L1 = L. Moreover,
any DWE such that L0 ∪ L1 = {0, 1}? is an extractable ID commitment for the language L1.
The main difference between DWEs and extractable ID commitments is that the extractable ID
commitments are defined with respect to one NP-language, whereas our notion provides different
guarantees depending on whether the statement is in L0, L1 or in neither of the two languages.

Round Optimal Oblivious Transfer. Using Dual Witness Encryption (DWE), we obtain the
following results.

Theorem 1 (informal). Assuming full domain trapdoor permutations, we construct a fully black-
box three-round oblivious transfer protocol that is secure against semi-honest receivers and malicious
senders.

Theorem 2 (informal). Assuming full domain trapdoor permutations, we construct a fully black-
box four-round fully simulatable oblivious transfer protocol.

Round Optimal Two-Party Computation. An immediate corollary from the Theorem 1, in
conjunction with the work of [IKO+11] building a non-interactive secure two-party protocol in the
OT-hybrid model is the following.

Corollary 1. Assuming full domain trapdoor permutations, there exists a fully black-box round
optimal secure two-party computation protocol.

Functions with partial domain. To the best of our knowledge, to extend the results of previous
works [ORS15, KO04] in the case of functions with partial domain requires, in addition to the
certifiability property, (i) the existence of a sampler which uniformly samples elements from the
domain/range; and (ii) the existence of an efficient algorithm that checks whether a given element
belongs inside or outside the domain of the function. These properties are called respectively

3We note that in this example L0 ∪ L1 = {0, 1}?, but this is not always the case, as we show hereafter.
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efficiently sampleable domain/range and efficiently recognizable domain. We show how to extend
our theorems and corollary to the case of functions with partial domain by removing the requirement
on the function to be certifiable, while maintaining the same requirements of efficiently sampleable
domain/range and efficiently recognizable domain.

1.2 Organization of the Paper

In the next section we provide the fundamental background required to read our paper. We dedi-
cate Section 3 to defining the notion of dual witness encryption, providing a few examples for the
languages of DH tuples and QR tuples. In Section 4 we show how to instantiate a DWE for the
language of non-TDPs. We devote Sections 5 and 6 to our 4-round OT protocol secure against ma-
licious adversaries, and Section 7 to our round-optimal 2-PC protocol. For the formal construction
and proofs of our 3-round OT protocol we refer the reader to Appendix B.

2 Background

Notation. We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a

and b are two strings then by a||b we denote the concatenation of a and b). For a finite set Q, x
$←− Q

denotes a sampling of x from Q with uniform distribution. We use “=” to check equality of two
different elements (i.e. a = b then...), “←” as the assigning operator (e.g. to assign to a the value
of b we write a ← b). and := to define two elements as equal. We use the abbreviation PPT that
stands for probabilistic polynomial time. We use poly(·) to indicate a generic polynomial function.
A polynomial-time relation R (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗
such that membership of (x,w) in R can be decided in time polynomial in |x|. For (x,w) ∈ R,
we call x the instance and w a witness for x. For a polynomial-time relation R, we define the
NP-language LR as LR = {x|∃w : (x,w) ∈ R}. Analogously, unless otherwise specified, for an
NP-language L we denote by RL the corresponding polynomial-time relation (that is, RL is such
that L = LRL

). When it is necessary to refer to the randomness r used by and algorithm A
we use the following notation: A(·; r). We assume familiarity with the notion of computational
and statistical indistinguishability, sigma-protocols and with the DDH assumption. We refer to
Appendix A.2 and Appendix A.3 for the formal definitions.

2.1 Injective TDFs and TDPs

In this section we define the notion of trapdoor function following mostly the notation proposed
in [CL18].

Definition 1 (Trapdoor function). A family of one-way trapdoor functions, or TDFs, is a collection
of finite functions, denoted fα : {Dα → Rα}, accompanied by PPT algorithms Gen, SD (domain
sampler), SR (range sampler) and two (deterministic) polynomial time algorithms Eval (forward
evaluator) and Inv (backward evaluator) such that the following conditions hold.

1. On input 1λ, the algorithm Gen selects a random index α of a function fα, along with a
corresponding trapdoor td.

2. On input α, algorithm SD samples an element from domain Dα.
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3. On input α, algorithm SR samples an image from the range Rα.

4. On input α and any x ∈ Dα, y ← Eval(α, x) with y = fα(x).

5. On input td and any y ∈ Rα, Inv(td, y) outputs x such that Eval(α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on a random image,
sampled by SR or by evaluating Eval on a random pre-image sampled by SD, when given only the
image and the index α but not the trapdoor td. That is, let I0(1λ) denote the first element in the
output of Gen(1λ) (i.e., the index); then, for every polynomial-time algorithm A, it holds that:

Prob
[

(α
$←− I0(1λ);x

$←− SD(α); y ← Eval(α, x), x′
$←− A(α, y) : Eval(α, x′) = y

]
≤ ν(λ). (1)

Or, when sampling an image directly using the range sampler:

Prob
[

(α
$←− I0(1λ); y

$←− SR(α);x′
$←− A(α, y) : Eval(α, x′) = y

]
≤ ν(λ). (2)

Additionally, it is required that, for any α
$←− I0(1λ), the distribution sampled by SR should be

close to the distribution sampled by Eval(SD(α)). In this context we require the two distributions
be computationally indistinguishable. We note that this requirement implies that the two hardness
requirements given in equations 1 and 2 are equivalent. The issue of closeness of the sampling

distributions is discussed further at the end of this section. If fα is injective for all α
$←− I0(1λ),

we say that our collection describes an injective trapdoor function family, or iTDFs (in which
case Inv(td, ·) inverts any images to its sole pre-image). If additionally Dα and Rα coincide than

for any α
$←− I0(1λ), the resulting primitive is a trapdoor permutation. If for any α

$←− I(1λ),
SD = {0, 1}poly(λ), that is, every poly-bit string describes a valid domain element, we say the
function is full domain. Otherwise we say the domain is partial.

Definition 2 (Hard-Core Predicate). h is a hard-core predicate for fα if its value is hard to predict
for a random domain element x, given only α and fα(x). That is, if for any PPT adversary A
there exists a negligible function ν such that

Prob
[

(α
$←− I0(1λ);x

$←− SD(α); y
$←− Eval(α, x), h(x)← A(α, y)

]
≤ 1/2 + ν(λ).

2.1.1 Enhancements

Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used for cases where
sampling is required to be available in a way that does not expose the pre-image. We recall the
notion of enhanced injective TDF proposed in [CL18] that extends the definition proposed by
Goldreich to the case of injective TDF (where the domain and range are not necessarily equal).

Definition 3 (Enhanced injective TDF [Gol04]). let {fα : Dα → Rα} be a collection of injective
TDFs, and let SD be the domain sampler associated with it. We say that the collection is enhanced
if there exists a range sampler SR that returns a random sample out of Rα, and such that, for every
polynomial-time algorithm A, it holds that

Prob
[

(α
$←− I0(1λ); y

$←− SR(α; r);x′
$←− A(α, r) : Eval(α, x′) = y

]
≤ ν(λ).
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Definition 4 (Enhanced Hard-Core Predicate [Gol11]). let {fα : Dα → Rα} be an enhanced
collection of injective TDFs with domain sampler SD and range sampler SR. We say that the
predicate h is an enhanced hard-core predicate of fα if it is computable in PPT time and for any
PPT adversary A there exists a negligible function ν such that

Prob
[

(α, td)
$←− Gen(1λ); r

$←− {0, 1}λ; y ← SR(α; r);x← Inv(td, y);A(α, r) = h(α, x)
]
≤ 1/2+

ν(λ)
or equivalently, if the following two distribution ensembles are computationally indistinguishable:

{(α, r, h(α, Inv(td, SR(α, r)))) : (α, td)
$←− Gen(1λ), r

$←− {0, 1}?}
{(α, r, u) : α

$←− I0(1λ), r
$←− {0, 1}?, u $←− {0, 1}}

2.1.2 Additional Properties

We define multiple notions of certifiability for trapdoor functions, where each requires the existence
of a general prover and verifier protocol for the function family. Let fα : {Dα → Dα} be a trapdoor
permutation family, given by (Gen, S,Eval, Inv) (where S = SR = SD), we now define the following
properties.

Efficiently recognizable domain: that is, there exists a polynomial-time algorithm RD which,
for any index α and any string x ∈ {0, 1}∗, accepts on (α, x) if and only if x ∈ Dα. In other
words, Dα is defined as the set of all strings x such that RD(α, x) accepts.

Efficiently sampleable domain: that is, there exists a PPT algorithm SDR that on input α
outputs a pair of (x, r) such that Eval(α, x) = S(α; r) where x is sampled uniformly in Dα.

Efficiently sampleable range: that is, for any index α and r
$←− {0, 1}λ, S(α; r) samples uni-

formly in Dα.

We stress that these properties should hold with respect to any α, including ones that were not
generated by running Gen(1λ). We also note that despite the similarities between the notions of
doubly enhancement and efficiently sampleable domain, these two are incomparable. The notion
of efficiently sampleable domain just requires the existence of a sampling algorithm that samples
uniformly in Dα even for a maliciously chosen α, and it puts no requirements of one-wayness.
Note that any trapdoor permutation family with full domain trivially enjoys all the properties
listed above (one example is given by the candidate trapdoor permutation proposed in [Rab79]).
We show how to obtain a secure 2-party computation that relies on injective enhanced trapdoor
permutations that have efficiently sampleable range and domain in a black-box way (note that we
put no requirements on the certifiability of the injectivity). We finally recall that previous works
required the existence of the same samplers even in the case of certifiable TDPs.

2.2 Commit-and-Open Protocols

In [FMV19] the authors provide the definition of 3-round commit-and-open protocols. In this the
prover (committer) has two inputs m0,m1 ∈ M and a bit b ∈ {0, 1} (we denote with M the
message space of the commitment scheme). Informally, the message mb is fixed in the first round of
the protocol, and the message m1−b can be decided in the last round where the messages (m0,m1)
are revealed to the verifier (receiver). More formally, a commit-and-open protocol is a tuple of
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PPT algorithms Πc&o := (P := (P0,P1),V := (V0,V1)) specified as follows. The algorithm P0

takes as input mb and outputs a string γ ∈ {0, 1}? and auxiliary state information α ∈ {0, 1}?.
The algorithm V0 outputs a random string β

$←− B (where B represents the message space of
the valid second rounds for Πc&o). The algorithm P1 takes as input (α, β, γ,m1−d) and outputs
a string δ ∈ {0, 1}?. The deterministic algorithm V1 takes a transcript (γ, β, (δ,m0,m1)) and
outputs a bit. Following [FMV19], we denote with < P(m0,m1, b),V(1λ) > an execution of P
where P uses (m0,m1, b) as input, and denote with T := (γ, β, (δ,m0,m1)) the transcript obtained
in this execution. We say that P satisfies completeness if honestly generated transcripts are always
accepting (i.e., V1 outputs 1).

Definition 5 (Secure commit-and-open protocol. [FMV19]). We say that a 3-round protocol Πc&o

is secure if it enjoys completeness and satisfies the following properties.
-Existence of Committing Branch: for every PPT malicious prover P? := (P?0,P

?
1) there exists a

negligible function ν such that

Prob[V1(T ) = 1 and V1(T ′) = 1 and m0 6= m′0 and m1 6= m′1 :

(γ, α)
$←− P?0, β, β

′ $←− V0, (δ,m0,m1)
$←− P?1(α, β), (δ′,m′0,m

′
1)

$←− P?1(α, β′)] ≤ ν(λ)

where T := (γ, β, (δ,m0,m1)) and T ′ := (γ, β′, (δ′,m′0,m
′
1)), and where the probability is

taken over the random coin tosses of P and V.
-Committing Branch Indistinguishability: for all PPT malicious verifier V?, and for all messages

m0,m1 ∈M, we have that

{T : T
$←−< P (m0,m1, 0),V?(1λ) >}λ∈N ≈ {T : T

$←−< P (m0,m1, 1),V?(1λ) >}λ∈N

The authors of [FMV19] show that one of the protocols proposed in [ORS15] that relies on
statistically binding and computationally hiding commitment (and it is black-box in the use of the
underlying primitives) satisfies the above definition. Since statistically binding and computationally
hiding commitments can be constructed using one-to-one one way-functions in a black-box manner
then there exists a secure commit-and-open protocol that uses the underlying one-way function is
a black-box way. We refer to [FMV19] for more discussion on the notion of commit-and-open and
for its black-box instantiation from one-to-one one-way-functions.

2.3 Oblivious Transfer and 2-PC

Here we follow [ORS15]. Oblivious Transfer (OT) is a two-party functionality FOT , in which a
sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and wants to obtain the
string lb. The security requirement for the FOT functionality is that any malicious receiver does
not learn anything about the string l1−b and any malicious sender does not learn which string has
been transferred. This security requirement is formalized via the ideal/real world paradigm. In
the ideal world, the functionality is implemented by a trusted party that takes the inputs from S
and R and provides the output to R and is therefore secure by definition. A real world protocol
Π securely realizes the ideal FOT functionalities, if the following two conditions hold. (a) Security
against a malicious receiver: the output of any malicious receiver R? running one execution of Π
with an honest sender S can be simulated by a PPT simulator Sim that has only access to the ideal
world functionality FOT and oracle access to R?. (b) Security against a malicious sender. The joint
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view of the output of any malicious sender S? running one execution of Π with R and the output
of R can be simulated by a PPT simulator Sim that has only access to the ideal world functionality
FOT and oracle access to S?. We also consider the weaker definition of OT introduced in [ORS15]
which is referred as one-sided simulatable OT. In this we do not demand the existence of a simulator
against a malicious sender, but we only require that a malicious sender cannot distinguish whether
the honest receiver is playing with bit 0 or 1. That is, we require that for any PPT malicious
sender S? the view of S? executing Π with the receiver R playing with bit 0 is computationally
indistinguishable from the view of S? where R is playing with the bit 1. Finally, we consider the
FmOT functionality where the sender S and the receiver R run m executions of OT in parallel.

Definition 6 ([ORS15]). Let FOT be the Oblivious Transfer functionality as described previously.
We say that a protocol Π securely computes FOT with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R? controlling the receiver in the real model, there ex-
ists a non-uniform PPT adversary Sim for the ideal model such that: {REALΠ,R?(z)(1

λ)}z∈{0,1}λ ≈
IDEALFOT ,Sim(z)(1

λ)}z∈{0,1}λ,

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (controlling

the receiver) after a real execution of protocol Π, where the sender S has inputs l0, l1 and the
receiver has input b. IDEALf,Sim(z)(1

λ) denotes the analogous distribution in an ideal execution
with a trusted party that computes FOT for the parties and hands the output to the receiver.

2. For every non-uniform PPT adversary S? controlling the sender it holds that:
{ViewRΠ,S?(z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewRΠ,S?(z)(l0, l1, 1)}z∈{0,1}?
where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

Definition 7 ([ORS15]). A protocol Π securely realizes FOT with fully simulatability if Π is one-
sided simulatable and additionally for every non-uniform PPT adversary S? controlling the sender
in the real model, there exists a non-uniform PPT adversary Sim for the ideal world such that
{REALΠ,S?(z)(1

λ, b)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1
λ, b)}z∈{0,1}λ, where REALΠ,S?(z)(1

λ, b) denotes
the distribution of the output of the adversary S? (controlling the sender) and the output of the hon-
est receiver, after a real execution of protocol Π, where the receiver has input b. IDEALFOT ,Sim(z)(1

λ, b)
denotes the analogous distribution but in an ideal execution with a trusted party that computes FOT
for the parties and hands the output to the honest receiver.

In this work we also consider the notion of parallel OT, which is the same as the previous
definition, except that the sender has multiple pairs of inputs and the receiver has multiple bits.

2.3.1 Secure Two-Party Computation [ORS15]

Let F (x1, x2) be a two-party functionality run between parties P1 holding input x1 and P2 holding
input x2. In the ideal world, Pi with (i ∈ {1, 2}) sends its input xi to the F and obtains only
y = F (x1, x2). We say that a protocol Π securely realizes F if the view of any malicious P ?i
executing Π with an honest Pj with i 6= j combined with the output of Pj (if any) can be simulated
by a PPT simulator that has only access to F and has oracle access to P ?i .
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3 Dual Witness Encryption (DWE)

A Dual Witness Encryption scheme for the languages L0, L1 with L0, L1 ⊆ {0, 1}? is equipped with
two PPT algorithms: Enc and Dec. Enc takes as input x ∈ {0, 1}λ, a message m ∈ {0, 1}λ and
outputs ct ∈ {0, 1}poly(λ). Dec takes as input x ∈ {0, 1}λ,w ∈ {0, 1}λ, ct ∈ {0, 1}poly(λ) and outputs
a message m ∈ {0, 1}λ ∪ {⊥}.

Definition 8. A Dual Witness Encryption scheme PK-IBS = (Gen,Enc,Dec) for the languages
(L0, L1) is secure if it enjoys the following properties.

Completeness: Pr[m← Dec(x,w,Enc(x,m)) = 1 : (x,w) ∈ RL1) ≥ 1− ν(λ).

Hiding: For any adversary A and for any x ∈ L0 the following holds:

Pr[b
$←− {0, 1}; (m0,m1)← A(x) ∧ b← A(aux,Enc(x,mb))] < ν(λ)

3.1 DWE for the languages of DH and QR Tuples.

In this section we show how to construct a DWE for the languages of DH and and QR tuples.
We do not need these constructions to build our OT and 2PC protocols, we only want to show
that our primitive can be instantiated also with respect to other languages. The two constructions
rely on similar ideas, hence, we provide the details only for the construction for DH tuples. Our
constructions are based on the sigma-protocol for the language of the DH and QR tuples and
on some observations made in [CPV20, CCH+19] on these sigma protocols. Following [CPV20],
we recall the well-known Sigma protocol ΣDH = (P,V) for the language L0 := {(g, h, U, V ) :
∃α s.t. U = gα and V = hα}. On common input T = (g, h, U, V ), and honest prover’s private input
α such that U = gα and V = hα, the following steps are executed. We denote the size of the group
G by q.

• P picks r ∈ Zq at random and computes and sends A := gr, B := hr to V;

• V chooses a random challenge c ∈ {0, 1} and sends it to P;

• P computes and sends z = r + α · c to V;

• V accepts if and only if gz = A · U c and hz = B · V c.

In [CPV20] the authors observe that the above protocol has the following interesting property.
There exists a PPT algorithm ChallExt that on input a first round a = (A,B) of ΣDH , a non-DH
tuple T and γ such that h = gγ , outputs the only valid second round c ∈ {0, 1} (if any exists) such
that there is some z that would make the verifier to (mistakenly) accept the transcript (a, c, z) with
respect to the instance T . The algorithm ChallExt works as follows. Let T = (g, h,X,W ) be a
non-DH tuple such that X = gα, W = hβ, α 6= β and h = gγ . Upon input (T = (g, h,X,W ), a, γ),
algorithm ChallExt parses a as (A,B), and if Aγ = B then it outputs 0, else it outputs 1. Note
that when the first round of ΣDH corresponds to a DH tuple, (i.e., Aγ = B) and T is not a DH
tuple, then the only c that would make true the conditions gz = A · U c and hz = B · V c is c = 0.
Instead, if (g, h,A,B) does not represent a DH tuple (i.e., Aγ 6= B) then there exists z such that
gz = A · U c and hz = B · V c if and only if c = 1. In what follows, we make use of this special
property of ΣDH , and we refer to ChallExt as the bad-challenge extractor. The same holds true for
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the classical Sigma protocol for QR [GMR89] (along the lines of the full version of [CCH+19, Sec.
6.2]). The above observation, together with the fact that ΣDH is SHVZK immediately yields to a
DWE for the languages (L0, L1) where L1 = {0, 1}?−L0, and where the NP-relation associated to
L1 is RL1 := {(g, h,X,W ), γ : h = gγ and W 6= Xγ}.

In more detail, the encryption algorithm works by running the SHVZK simulator for ΣDH on
input T ∈ L0 ∪ L1 and the message to be encrypted m ∈ {0, 1}. The output of the SHVZK
algorithm corresponds to (A := gz−αm, B := hz−βm, z). The output of our encryption algorithm
then corresponds to (A,B).

If T ∈ L1 (i.e., it is a non-DH tuple), then we can run the bad-challenge extractor ChallExt to
reconstruct m in polynomial-time (note that the tuple (g, h,A,B) is DH only if m = 0). In the
case when T is a DH tuple, then, by the completeness and the SHVZK properties of ΣDH , (A,B)
encodes no information on the message m. Indeed, it is alway possible to find a valid z that makes
the transcript (A,B),m, z accepting for any m ∈ {0, 1}. For sake of completeness we now provide
the formal description of our protocol, that we denote with (EncNDH,DecNDH).

- Let m ∈ {0, 1} be the message to be encrypted. The encryption algorithm EncNDH takes as
input the tuple T = (g, h,X,W ) and the message m ∈ {0, 1} and does the following steps.

1. Sample z ∈ Zq and compute A← gz

Xm , B ← hz

Wm

2. Output A,B.

- The algorithm DecNDH takes as input T ∈ L1, the ciphertext (A,B) and the witness γ such
that (T, γ) ∈ RL1 , and outputs ChallExt(T,A,B, γ).

Theorem 3. (EncNDH,DecNDH) is a secure black-box DWE scheme with message space {0, 1} for
the languages (L0, L1) defined above, where the relation associated to L1 is RL1.

3.1.1 DWE for all NP languages

If we do not care about the decryption algorithm being efficient (PPT), then the above approach
can be extended to any NP language L that admits a sigma-protocol Σ. Indeed, if the instance
used during the encryption is x /∈ L, then the special soundness of Σ guarantees that for any first
round of Σ there exists at most one challenge that would make the verifier to accept. This means
that the first output of the SHVZK simulator of Σ on input x and the message m ∈ {0, 1} encodes
m. Hence, an unbounded decryptor can easily compute it. On the other hand, when x ∈ L, then
the first round of Σ (hence, the first output of the SHVZK simulator) information theoretically
hides the message m (due to the completeness and the SHVZK properties of Σ).

4 Black-Box DWE for Trapdoor Permutations

A function fα : Dα → Dα is an ε-permutation if at most an ε fraction of the points in Dα have
more than one pre-image (under fα). More formally, we have the following.

Definition 9. Let fα : {Dα → Dα}. The collision set of fα, denoted with C(fα), is {x1 ∈ Dα :
∃x2 ∈ Dα s.t. x1 6= x2 and Eval(α, x1) = Eval(α, x2)}. Let ε ∈ [0, 1], we call fα an ε-permutation if
|C(fα)| ≤ ε|Dα|.
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We say that fα is an almost permutation if it is an ε(n)-permutation where ε is a negligible
function and n = |Dα|. Let fα : {Dα → Dα} be a collection of trapdoor permutations with
efficiently sampleable range and domain accompanied by the algorithms (Gen, S,Eval, Inv). We
then define L as the language of trapdoor functions with efficiently sampleable range and domain
that have a collision set greater (or equal) than half of the entire domain. More formally, L0 = {α :
|C(fα)| ≥ 2−1|Dα|}. We also define L1 as the set trapdoor function in the range of the generation
algorithm Gen (i.e., L1 = {α : (α, td) ← Gen(1λ; r), r ∈ {0, 1}λ}) We provide a DWE scheme for
the languages (L0, L1). Informally, this encryption scheme maintains the hiding of the encrypted
message if the collision set of fα is sufficiently large (i.e., fα is a lot non-injective). Instead, if the
function is generated using Gen(1λ), then any message can be decrypted using the corresponding
trapdoor (which is also an output of Gen and thus can be obtained from the randomness r, which
represents the witness).

4.1 Our Constructions

We start by constructing a dual witness encryption scheme (Encf1,Dec
f
1) for one-bit messages for the

language (L0, L1) described above. Let fα be a trapdoor permutation with efficiently sampleable
range accompanied by the algorithms (Gen, S,Eval, Inv) with domain (and range) of size 2λ.

- Let m ∈ {0, 1} be the message to be encrypted, α ∈ L1, and n := 2λ2. The encryption
algorithm Encf1 takes as input (α,m) and does the following steps.

1. Compute a random secret sharing of m such that m = m1 ⊕ · · · ⊕mn.

2. For i← 1, . . . , n pick xi
$←− S(α) and compute yi ← fα(xi).

4

3. For i← 1, . . . , n parse xi as x1
i || . . . ||xλi , pick ji

$←− {1, . . . , λ} and compute ci ← mi⊕xjii .

4. Output ct←
(
ji, yi, ci)i∈[n].

- The algorithm Decf1 takes as input α, r and a ciphertext cti, and executes the following steps.

1. Compute (α, td)← Gen(1λ; r).

2. Parse ct as
(
ji, yi, ci

)
i∈[n]

.

3. For i = 1, . . . , n compute xi ← Inv(α, td, yi), parse xi as x1
i || . . . ||xni and compute mi ←

ci ⊕ xjii .

4. Compute and output m← m1 ⊕ · · · ⊕mn.

Theorem 4. (Encf1,Dec
f
1) is a secure black-box DWE scheme for the languages (L0, L1) with mes-

sage space {0, 1}.

We refer to App. D.3 for the formal proof of the theorem. We note that to obtain a DWE
secure scheme (Encf ,Decf) for messages of length κ ∈ N we can just run κ parallel executions of
(Encf1,Dec

f
1).

4To not overburden the notation we use fα instead of Eval(α, ·) as the evaluation algorithm hereafter in the paper.

12



4.1.1 DWE for or Statements

For our OT constructions we use as a main tool a DWE for the languages (L2f
0 , L

2f
1 ) where

L2f
0 := {α0, α1 : |C(fα0)| ≥ 2−1|Dα0 | or |C(fα1)| ≥ 2−1|Dα1 |} and L2f

1 = {α0, α1 : (α0, td0) ←
Gen(1λ; r0) and (α1, td1) ← Gen(1λ; r1), r0, r1 ∈ {0, 1}λ}. (we recall that we denote with C(fα)
the collision set of the function indexed by α). Informally, we require the semantic security of the
encryption scheme to hold if at least one of the functions used as a part of the public-key has a
collision set of sub-exponential size. Our scheme (Enc2f ,Dec2f) works as follows.

- The encryption algorithm Enc2f on input x := (α0, α1) and the message to be encrypted
m ∈ {0, 1}κ does the following steps.

1. Run Encf on input α0 and m thus obtaining ct0.
2. Run Encf on input α1 and ct thus obtaining ct1 and output ct1

- The decryption algorithm Dec2f on input x := (α0, α1), the witness w := (r0, r1) and the
ciphertext ct1, executes the following steps.

1. Compute (α0, td0)← Gen(1λ; r0) and (α1, td1)← Gen(1λ; r1).
2. Run Decf on input α1, r1, ct1 and td1 thus obtaining ct0.
3. Run Decf on input α0, r0 ct0 and td0 thus obtaining m and output m.

Theorem 5. (Enc2f ,Dec2f) is a black-box DWE scheme for the languages (L2f
0 , L

2f
1 ) with message

space {0, 1}κ.

The proof in this case follow via standard hybrid arguments.

5 Almost Secure OT Protocol

In this section we show how to obtain a protocol ΠOT = (SOT , ROT ) that securely realizes FOT
with one-sided simulation against any weak adversarial sender S?OT . Informally, we show that if the
malicious sender S?OT samples the trapdoor permutations used in the protocol in some particular
ways then ΠOT is secure, otherwise we give no security guarantees. At a very high level our protocol
works like the four-round one-side simulatable OT protocol proposed in [ORS15]. As highlighted
in the Introduction, in the ORS protocol the sender sends a trapdoor permutation f in the second
round which is used by the receiver to compute the third round. In case that f is non-injective
then a malicious sender, by just inspecting the third round sent by the receiver, could extract the
receiver’s input. In our protocol we try to avoid this attack by modifying the ORS protocol in
two aspects: 1) the sender sends two trapdoor functions5 in the first round and 2) the receiver
samples a random bit to decide which function to use to run ORS and which function to use to
run DWE scheme Π. Π is a DWE scheme that guarantees security if the trapdoor function used
for the encryption has a lot of collisions, and it is used by the receiver to encrypt the third round
of ORS. Unfortunately we cannot prove that this OT protocol is (in general) secure, but we can
prove that it is secure if one of the following cases occurs.

1. The malicious sender uses functions that are almost permutation. This comes with no surprise
since in this case an execution of ΠOT looks like an execution of the ORS protocol.

5We need to send two pairs of functions, but for now we omit this since it is a technical detail that will be helpful
in the security proof.
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2. The malicious sender uses functions that have a lot of collisions (exponentially many). In this
case the security of the DWE scheme kicks in protecting all the information that are related
to the ORS protocol that depends on the TDPs (i.e., the information that could leak the
receiver’s bit when the functions sampled by the sender are non-injective).

Despite this limitation, in Section 6 we show that the security enjoyed by ΠOT is (surprisingly)
enough to obtain a secure OT protocol. We now provide a more detailed description of ΠOT and
prove formally its weak security in the case of malicious sender. Moreover, we show that ΠOT is
secure against any PPT adversarial receiver under the standard simulation base security notion.

To construct ΠOT we make use the following tools.
1. A commit-and-open protocol Πc&o := (P0,P1,V0,V1).
2. An enhanced trapdoor permutation with efficiently sampleable range and domain F :=

(Gen, S, SDR, f, f
−1)6 with hard-core predicate h and domain (and range) of size 2λ.

3. The DWE scheme (Enc2f ,Dec2f) for the languages (L2f
0 , L

2f
1 ) described in Sec. 4.

We now give an informal description of our protocol and refer to Fig. 1 for the formal description.
Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1} be the input of SOT .

In the first round ROT runs P0 on input a string r1−b
$←− {0, 1}λ thus obtaining the first round

of the commit-and-open protocol Πc&o.
In the second round SOT picks a pair of random strings and samples four trapdoor per-

mutations. That is, SOT picks R0
$←− {0, 1}λ, R1

$←− {0, 1}λ, and for all i, j ∈ {0, 1} samples

ρi,j
$←− {0, 1}λ, computes (fi,j , f

−1
i,j )

$←− Gen(1λ, ρi,j). Then SOT runs V0 thus obtaining γ and sends
{fi,j}i,j∈{0,1} , β, R0, R1 to ROT .

In the third round ROT chooses a bit d and computes (z′, r′)
$←− SDR(fd,b) and rb ← r′ ⊕Rb.

Then ROT computes the third round δ of Πc&o to open the commitment to the messages r1−b (that
is fixed in the first round) and rb by running P1 on input α, β, γ and rb. In the end, ROT encrypts
the opening of Πc&o using the DWE scheme on input (f1−d,0, f1−d,1) and the message δ||r0||r1 thus
obtaining c and sends (c, d) to SOT .

In the fourth round SOT decrypts c using the witness ρ1−d,0 and ρ1−d,1, thus obtaining the
opening information of Πc&o represented by δ, r0 and r1. Then SOT checks if (δ, r0, r1) represents
a valid opening for Πc&o by running V1. If it is not, then SOT stops and outputs ⊥, otherwise
she computes ω0 ← f−1

d,0 (S(fd,0, r0 ⊕ R0)) and ω1 ← f−1
d,1 (S(fd,1, r1 ⊕ R1)). Then for j = 0, 1, SOT

encrypts the input lj via one-time pad using as a key the output of the hard-core predicate of fd,j
on input ωj thus obtaining Wj . SOT then sends (W0,W1) to ROT and stops.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ h(fd,b, z

′
1).

In Fig. 1 we propose a formal description of the protocol.

Theorem 6. If F is family of enhanced trapdoor permutations then for every non-uniform PPT
adversary R? controlling the receiver in the real model, there exists a non-uniform PPT adversary
Sim for the ideal model such that {REALΠOT ,R

?
OT (z)(1

λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1
λ)}z∈{0,1}λ.7

We refer to App. D.1 for the formal proof of the theorem.

6For convenience, we drop (Eval(α, ·), Inv(α, ·)) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(fα, ·), Inv(fα, td, ·) respectively, when fα and td are clear from the context. We also use the function fα instead
of the index α as input of the algorithm S and SDR.

7We refer to Sec. 2.3 for a formal definition of REALΠOT ,R
?
OT (z) and IDEALFOT ,Sim(z)
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ROT (b) SOT (l0, l1)

r1−b
$←− {0, 1}λ

(γ, α)
$←− P0(r1−b)

γ
−−−−−−−−−−−−−−−−−−→

∀i, j ∈ {0, 1}, ρi,j
$←− {0, 1}λ

(f0,0, f
−1
0,0 )

$←− Gen(1λ, ρ0,0)

(f0,1, f
−1
0,1 )

$←− Gen(1λ, ρ0,1)

(f1,0, f
−1
1,0 )

$←− Gen(1λ, ρ1,0)

(f1,1, f
−1
1,1 )

$←− Gen(1λ, ρ1,1)

β
$←− V0(1λ)

R0
$←− {0, 1}λ, R1

$←− {0, 1}λ
{fi,j}i,j∈{0,1} , β, R0, R1

←−−−−−−−−−−−−−−−−−−−−
d

$←− {0, 1}
(z′, r′)

$←− SDR(fd,b),
rb ← r′ ⊕Rb
δ

$←− P(α, β, γ, rb)
x := (f1−d,0, f1−d,1)

c
$←− Enc2f(x, δ||r0||r1)

c, d
−−−−−−−−−−−−−−−−−−→

x := (f1−d,0, f1−d,1)
w := (ρ1−d,0, ρ1−d,1)
δ||r0||r1 ← Dec2f(x,w, c)
if V1(γ, β, δ, r0||r1) = 0 then

stop and output ⊥
else continue as follows
ω0 ← f−1d,0 (S(fd,0, r0 ⊕R0))

ω1 ← f−1d,1 (S(fd,1, r1 ⊕R1))

W0 = l0 ⊕ h(fd,0, ω0)
W1 = l1 ⊕ h(fd,1, ω1)

W0,W1

←−−−−−−−−−−−−−−−−−−
Output lb = Wb ⊕ h(fd,b, z

′)

Figure 1: Description of ΠOT .
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Theorem 7. For every non-uniform PPT adversary S?OT controlling the sender, if one of the
following holds with overwhelming probability

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or

2. (f0,0, f0,1) ∈ L2f
0 and (f1,0, f1,1) ∈ L2f

0 .

then {ViewROTΠOT ,S
?
OT (z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewROTΠOT ,S

?
OT (z)(l0, l1, 1)}z∈{0,1}?

We refer the reader to App. D.2 for the formal proof of the theorem.
We now prove a lemma that will be helpful hereafter. Before doing that, we introduce some

additional notations. We say that a value y ∈ Y is good if there exists and is unique a value x such
that fα(x) = y. We now denote with Eg

i the event in which a randomly sampled element from the
range of fi is good and prove this additional lemma.

Lemma 1. For every non-uniform PPT adversary S?OT controlling the sender, if one of the fol-
lowing holds with overwhelming probability

1. Prob
[
Eg

i,j
]
≥ 1− ν(λ) ∀i, j ∈ {0, 1} or

2. Prob
[
Eg

0,0
]
< 2−1 or Prob

[
Eg

0,1
]
< 2−1 and Prob

[
Eg

1,0
]
< 2−1 or Prob

[
Eg

1,1
]
< 2−1

then {ViewROTΠOT ,S
?
OT (z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewROTΠOT ,S

?
OT (z)(l0, l1, 1)}z∈{0,1}?

6 Secure OT from almost secure OT

In Theorem 7 we have showed that ΠOT = (SOT , ROT ) guarantees that the input of the receiver
is protected only in the case that at least one of the following properties holds:

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or

2. (f0,0, f0,1) ∈ L2f
0 and (f1,0, f1,1) ∈ L2f

0 .
Moreover, Theorem 6 guarantees ΠOT is secure against malicious receivers. In this section we show
that the above property is sufficient to obtain a one-sided simulatable OT by means of a compiler
that takes as input ΠOT and outputs a one-sided simulatable OT. Our compiler is inspired by the
work of [HKN+05]. In this the authors show how to combine k OTs (that we call OT candidates) to
obtain an OT protocol that is secure against malicious sender even if k−1 of the OT candidates are
insecure against malicious senders8. At a very high level the construction proposed in [HKN+05]
works as follows. First Harnik et al. show a construction that works for k = 2 and then propose a
generic compiler that transforms (1, 2)-combiner into a (1, k)-combiner. The (1, 2)-combiner works
as follows. Consider two OT candidates Π0

OT and Π1
OT . Let b be the input of the receiver and

(l0, l1) be the input of the sender.
1. The sender chooses a random bit r

2. The receiver chooses random bits b0, b1 such that b = b0 ⊕ b1.

3. The parties run Π0
OT where the receiver uses b0 as input and the sender uses the pair (r, r⊕l0⊕

l1). The parties also run Π1
OT where the receiver uses b1 as input and sender uses (r⊕l0, r⊕l1)

8To prove our theorem we do not need a fully secure combiner. That is, we only need a combiner that guarantees
security in the case that one execution of ΠOT is secure against malicious senders and all the executions of ΠOT are
secure against malicious receivers.
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4. The receiver output corresponds to the XOR of his outputs in both executions.
To extend the above construction to the case where k > 2, Harnik et al. consider k OT

candidates and organize them as leaves of a binary tree, and applies the construction proposed
above to every internal node (in a bottom up fashion). Now, by the properties of the combiner,
for every node that securely implements OT, its ancestor must also securely implement OT. The
output of the whole tree must therefore also securely implement OT since the root is an ancestor
to all leaves. If the running time of the above (1, 2)-combiner for malicious sender is m times
that of its candidates, then the running time of the whole construction is mΩ(log k). Thus, in
order for the running time to be polynomial, m must be a constant (which it is actually the case
if we use the (1, 2)-combiner showed in this section). We now denote with ΠOT = (SOT , ROT )
the protocol obtained by combining 4λ2 parallel executions of ΠOT as described above, we prove
that ΠOT is secure with one-sided simulation accordingly to Def. 6. In our formal description we
assume, without loss of generality, that the sender’s (receiver’s) algorithm of ΠOT to compute its
first message takes as input the security parameter, the input and a message (if any), and returns
an auxiliary input and the first message to be sent. To compute the message for the round i, the
sender’s (receiver’s) algorithm takes as input the auxiliary input and all the messages that have
been send and received up to that round, and returns the message to be send. We propose a formal
description of ΠOT in Fig. 2. To prove that ΠOT is secure we cannot just rely on the security
of the combiner since a malicious sender could sample the trapdoor functions in such a way that
the security of all the OT executions is compromised. We show that this can happen only with
negligible probability. We denote with Πi

OT the i-th execution of ΠOT in a run of ΠOT . To denote
the messages of Πi

OT we extend the notation used in the description of ΠOT by writing mi (or mi)
if m is a symbol used in the description of ΠOT (e.g., in the second round of Πi

OT the sender sends
f i0,0, . . . f

i
1,1, β

i, Ri0, R
i
1). At a high level the proof works in this way. If by contradiction all the OT

executions are insecure this implies that in any of the OT executions the malicious sender sends
the TDPs (f i0,0, f

i
0,1, f

i
1,0, f

i
1,1) such that for all pi ∈ {0, 1}

1. if the instance (f ipi,0, f
i
pi,1

) is used to run the DWE scheme then hiding of the DWE would
not hold and

2. if (f i1−pi,0, f
i
1−pi,1) are used to run the remaining computation of Πi

OT then Πi
OT would be

insecure (i.e., (f i1−pi,0, f
i
1−pi,1) might not be injective).

This means that any OT executions Πi
OT has a pair of TDPs (f id′,0, f

i
d′,1) with d′ ∈ {0, 1} that

are not injective and that have a collision set smaller than 2−1|Dα|. However, we note that if di = d′i
in a sufficiently large number of executions then we have that the there is an execution j where
rj0⊕R

j
0 and rj1⊕R

j
1 are such that yj0 ← S(f jdj ,0, r

j
0⊕R

j
0) and yj1 ← S(f jdj ,1, r

j
1⊕R

j
1) have exactly one

pre-image each with overwhelming probability. This would allow us to apply the lemma 1 and state
that Πi

OT is secure. Then we can simply rely on the security of the combiner to claim that ΠOT is
secure. To argue that such a value j exists we use the fact that the receiver picks di randomly in
{0, 1} for all i ∈ {1, . . . , 4λ2}.

Theorem 8. If enhanced permutations with efficiently sampleable range and domain exist, then
ΠOT securely realizes the oblivious transfer functionality FOT with one-sided simulation with black-
box use of the underlying primitive.

We refer to App. D.2.1 for the proof of the theorem. The protocol ΠOT described in this section
restricts the sender to use two bits as input (bit-OT). In some applications (as the one that we
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Common input: Security parameters: λ := 2κ for some k ∈ N, n := 4λ2

Input to ROT : b ∈ {0, 1}. Input to SOT : l0 ∈ {0, 1}, l1 ∈ {0, 1}.
ROT → SOT

1. Run GB on input (b, 1, log(n)) thus obtaining b1, . . . , bn.
2. For i = 1, . . . , n run ROT on input 1λ and bi thus obtaining (auxir, ot

i
1).

3. Send ot11, . . . , ot
n
1 to SOT

SOT → ROT
1. Run GL on input (l0, l1, i, log(n)) thus obtaining (l10, l

1
1), . . . , (ln0 , l

n
1 ).

2. For i = 1, . . . , n run SOT on input 1λ, oti1, (auxis, l
i
0, l

i
1) thus obtaining oti2.

3. Send ot12, . . . , ot
n
2 to ROT .

ROT → SOT
1. For i = 1, . . . , n run ROT on input (oti1, ot

i
2, aux

i
r) thus obtaining oti3.

2. Send ot13, . . . , ot
n
3 to SOT

SOT → ROT
1. For i = 1, . . . , n run ΠOT on input (oti1, ot

i
2, ot

i
3, aux

i
s) thus obtaining oti4.

2. Send ot14, . . . , ot
n
4 to ROT .

Output Phase of ROT
1. For i = 1, . . . , n run ROT on input (oti1, ot

i
2, ot

i
3, ot

i
4) and auxir thus obtaining libi .

2. Output l1b1 ⊕ · · · ⊕ lnbn

GB(b, i, n)

Pick r
$←− {0, 1}, compute b0 ← b⊕ r and set b1 ← r.

If i = n then return (b0, b1) else return GB(b0, i+ 1, n), GB(b1, i+ 1, n).
GL((l0, l1), i, n)

Pick r
$←− {0, 1}, compute l0,0 ← r, l0,1 ← r ⊕ l0 ⊕ l1, l1,0 ← r ⊕ l0, l1,1 ← r ⊕ l1.

If i = n then return (l0,0, l0,1), (l1,0, l1,1)

else return GL((l0,0, l0,1), i+ 1, n), GL((l1,0, l1,1), i+ 1, n).

Figure 2: Formal description of ΠOT

are going to consider in this work) it is crucial that the sender input is represented by strings
l0 ∈ {0, 1}κ, l1 ∈ {0, 1}κ with κ ∈ N (string-OT). The work of Brassard et al. [BCS96] proposes
a way to construct an information theoretically secure string OT protocol from an information
theoretically secure bit OT protocol. The idea proposed in [BCS96] is to use run κ bit-OT executions
in such a way that that regardless of the choices of the input bits of malicious receivers in these
executions, he can only obtain one of the two inputs. We show how to use the technique proposed
in [BCS96] to transform our bit-OT protocol ΠOT into a string-OT protocol Πκ

OT := (SκOT , R
κ
OT ).

We refer the reader to App. C for the formal description of the protocol and its proof. We note
that Πκ

OT can be easily run in parallel polynomialy many times. The proof of this claim follows
arguments similar to the arguments proposed in the proof of the Theorem 13.
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7 Black-Box Round Optimal 2PC

In [ORS15, Sec. 3.2] the authors show how to obtain a fully simulatable OT protocol using in a
black-box way: (parallel) one-sided simulatable OTs and one-to-one one-way functions. Using this
result we can state the following theorem.

Theorem 9. If enhanced trapdoor permutations with efficiently sampleable range and domain exist,
then there exists a 4-round protocol OT that securely realizes the oblivious transfer functionality
FmOT with black-box use of the underlying primitive.

An immediate corollary from the above result, in conjunction with the work of [IKO+11] building
a non-interactive secure two-party protocol in the OT-hybrid model is the following.

Corollary 2. If enhanced trapdoor permutations with efficiently sampleable range/domain and
one-to-one OWFs exist, then there exists a round optimal protocol that securely realizes any 2-party
functionality with BB use of the primitives.
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A Additional notions

A.1 Parallel OT

Definition 10 (Parallel oblivious transfer functionality FmOT [ORS15]). The parallel Oblivious
Transfer Functionality FmOT is identical to the functionality FOT , with the difference that takes in
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input m pairs of string from S (l10, l
1
1, . . . , l

m
0 , l

m
1 ) (whereas FOT takes just one pair of strings from

S) and m bits from R, b1, . . . , bm (whereas FOT takes one bit from R) and outputs to the receiver
values (l1b1 , . . . , l

m
bm

) while the sender receives nothing.

Definition 11 ([ORS15]). Let FmOT be the Oblivious Transfer functionality as described in Def. 10.
We say that a protocol Π securely realizes FmOT with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R? controlling the receiver in the real model, there ex-
ists a non-uniform PPT adversary Sim for the ideal model such that for every x1 ∈ {0, 1}, . . . , xm ∈
{0, 1}

{REALΠ,R?(z)(1
λ, (l10, l

1
1, . . . , l

m
0 , l

m
1 ))}z∈{0,1}λ ≈

{IDEALFmOT ,Sim(z)(1
λ, (l10, l

1
1, . . . , l

m
0 , l

m
1 ))}z∈{0,1}λ

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (controlling

the receiver) after a real execution of protocol Π, where the sender S has inputs (l10, l
1
1, . . . , l

m
0 , l

m
1 )

and the receiver has input (x1, . . . , xm). IDEALFmOT ,Sim(z)(1
λ) denotes the analogous distribu-

tion in an ideal execution with a trusted party that computes FmOT for the parties and hands
the output to the receiver.

2. For every non-uniform PPT adversary S? controlling the sender it holds that for every
x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} and for every y1 ∈ {0, 1}, . . . , ym ∈ {0, 1}:

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1 ), (x1, . . . , xm))}z∈{0,1}? ≈

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1 ), (y1, . . . , ym))}z∈{0,1}?

where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

A.2 Standard Notions

Definition 12 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
ensembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y ,
if for every PPT distinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Prob

[
t

$←− Xλ : D(1λ, t) = 1
]
− Prob

[
t

$←− Yλ : D(1λ, t) = 1
] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 12 with the only difference that the
distinguisher D is unbounded. In this case use X ≡ Y to denote that two ensembles are statistically
indistinguishable.

A.3 Sigma Protocols and the DDH assumption

Let L be an NP language, with corresponding relation R. A Sigma protocol Σ = (P,V) for R is a
3-round public-coin protocol. In particular, an execution of Σ proceeds as follows:
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• The prover P computes the first message using as input the instance to be proved x ∈ L with
the corresponding witness w, and outputs the first message a with an auxiliary information
aux; we denote this action with (a, aux)←$ P(x,w).

• The verifier V, upon receiving a, sends a random string c←$ {0, 1}` with ` ∈ N.

• The prover P, upon input c and aux, computes and sends z to V; we denote this action with
z←$ P(aux, c).

• The verifier V, upon input (x, a, c, z), outputs 1 to accept and 0 to reject; we denote this
action with V(x, a, c, z) = d where d ∈ {0, 1} denotes whether V accepts or not.

Definition 13 (Sigma protocol [CDS94]). A 3-move protocol Σ with challenge length ` ∈ N is a
Sigma protocol for a relation R if it enjoys the following properties:

• Completeness. If (x,w) ∈ R, then all honest 3-move transcripts for (x,w) are accepting.

• Special soundness. There exists an efficient algorithm Extract that, on input two accepting
transcripts (a, c, z) and (a, c′, z′) for x with c′ 6= c (we refer to such two accepting transcripts
as a collision) outputs a witness w such that (x,w) ∈ R.

• Special honest-verifier zero knowledge (SHVZK). There exists a PPT simulator algo-
rithm Sim that takes as input x ∈ L and c ∈ {0, 1}`, and outputs an accepting transcript for
x where c is the challenge (we denote this action with (a, z)←$ Sim(x, c)). Moreover, for all
`-bit strings c, the distribution of the output of the simulator on input (x, c) is identical to
the distribution of the 3-move honest transcript obtained when V sends c as challenge and P
runs on common input x and any private input w such that (x,w) ∈ R.

A.3.1 The DDH Assumption.

Let G be a cyclic group with generator g, and let A,B and X be elements of G. We say that
(g,A,B,X) is a Diffie-Hellman tuple (a DH tuple, in short) if A = gα, B = gβ for some integers
0 ≤ α, β ≤ |G| − 1 and X = gαβ. If this is not the case, the tuple is called non-DH. To verify that
a tuple is DH, it is sufficient to have the discrete log α of A to the base g, and then to check that
X = Bα. We thus define the polynomial-time relation RDH = {((g,A,B,X), α) : A = gα and X =
Bα} of all DH tuples.

The Decisional Diffie-Hellman assumption (the DDH assumption) posits the hardness of dis-
tinguishing a randomly selected DH tuple from a randomly selected non-DH tuple with respect to
a group generator algorithm. For sake of concreteness, we consider the specific group generator
GG that, on input 1λ, randomly selects a λ-bit prime p such that q = (p − 1)/2 is also prime and
outputs the (description of the) order q group G of the quadratic residues modulo p along with a
random generator g of G.

Assumption 1 (DDH Assumption). For every PPT algorithm A there exists a negligible function
ν : N→ [0, 1] s.t.∣∣∣Prob

[
A((G, q, g), gα, gβ, gγ) = 1 : (G, q, g)

$←− GG(1λ);α, β, γ
$←− Zq

]
−

Prob
[
A((G, q, g), gα, gβ, gαβ) = 1 : (G, q, g)

$←− GG(1λ);α, β, γ
$←− Zq

] ∣∣∣ ≤ ν(λ).
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B 3-Round OT Secure Against Malicious Senders

B.1 Almost Secure 3-round OT

In this section we propose a 3-round protocol Πsh−R
OT := (Ssh−R

OT , Rsh−R
OT ) that is secure against semi-

honest receiver and that retains the privacy of the receiver’s input against malicious senders under
some conditions. In more details, we show that the privacy of the receiver’s input is preserved as
long as the sender chooses the trapdoor permutation accordingly to a predefined distribution. In
the next section we show how to modify Πsh−R

OT to make it resilient against any adversarial behavior.

To construct Πsh−R
OT we make use the following tools.

1. An enhanced trapdoor permutation with efficiently sampleable range and domain F :=
(Gen, S, SDR, f, f

−1)
2. The DWE scheme (Encf ,Decf) for the languages (L0, L1) where L0 = {α : |C(fα)| ≥ 2−1|Dα|}

and L1 = {α : (α, td)← Gen(1λ; r), r ∈ {0, 1}λ}.
We now give an informal description of our protocol and refer to Fig. 3 for the formal description.
Let b ∈ {0, 1} be the input of Rsh−R

OT and l0, l1 ∈ {0, 1} be the input of Ssh−R
OT .

In the first round Ssh−R
OT picks a random string ρ

$←− {0, 1}, generates a trapdoor permutation

(f, f−1)
$←− Genf(1λ; ρ), and sends f to Rsh−R

OT .

In the second round Rsh−R
OT computes (z′, zb)

$←− SDR(f) and z1−b
$←− SD(f). Then Rsh−R

OT
encrypts these values using the DWE scheme on input the public-key pk := f thus obtaining c and
sends c to Ssh−R

OT .

In the third round Ssh−R
OT decrypts c using the witness ρ thus obtaining z0, z1. Then Ssh−R

OT
computes ω0 ← f−1(z0) and ω1 ← f−1(z1). Then for j = 0, 1, Ssh−R

OT encrypts the input lj via
one-time pad using as a key the output of the hard-core predicate of f on input ωj thus obtaining
Wj . S

sh−R
OT then sends (W0,W1) to Rsh−R

OT and stops.

In the output phase, Rsh−R
OT computes and outputs lb = Wb ⊕ h(f, z′).

In Fig. 3 we propose a formal description of the protocol.

Theorem 10. For every non-uniform adversary Ssh−R
OT

?
controlling the sender, if one of the fol-

lowing holds with overwhelming probability

1. f is almost a permutation or

2. f ∈ L0.

then the two distributions are statistically indistinguishable

{ViewR
sh−R
OT

Πsh−R
OT ,S?(z)

(l0, l1, 0)}z∈{0,1}? , {View
Rsh−R
OT

ΠOT ,S?(z)(l0, l1, 1)}z∈{0,1}?

where ViewROT
Πsh−R
OT ,S?(z)

denotes the view of adversary S? after a real execution of protocol Πsh−R
OT with

the honest receiver Rsh−R
OT .

Proof. We divide the proof is two parts, one for each of the case listed above.
Case 1. Note that in this case we have the guarantee that the functions f is almost a per-

mutation, therefore we can just rely on the fact that f is an almost permutations with efficiently
samplable domain and range.
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Rsh−R
OT (b) Ssh−R

OT (l0, l1)

ρ
$←− {0, 1}λ

(f, f−1)
$←− Genf(1λ; ρ)

f
←−−−−−−−−−−−−−−−−−−

(z′, zb)
$←− SDR(f),

z1−b
$←− SR(f)

c
$←− Encf(f, z0||z1)

c
−−−−−−−−−−−−−−−−−−→

z0||z1 ← Decf(f, ρ, c)
ω0 ← f−1(z0)
ω1 ← f−1(z1)
W0 = l0 ⊕ h(f, ω0)
W1 = l1 ⊕ h(f, ω1)

W0,W1

←−−−−−−−−−−−−−−−−−−
Output lb = Wb ⊕ h(f, z′)

Figure 3: Description of Πsh−R
OT .

Case 2. In this case we can rely on the hiding of (Encf ,Decf) since f ∈ L0. Therefore, the
encryption sent in the third round hides in an information theoretical sense all the values computed
by Rsh−R

OT that depends on the function f (which might not be injective and thus leaking the bit of
the receiver).

The prof proceeds similarly to the proof for the case 1 with the following differences. We consider

the hybrid H⊥0 that is exactly like View
Rsh−R
OT

Πsh−R
OT ,S?(z)

(l0, l1, 0) except for the fact that c contains and

encryption of 0λ. {ViewR
sh−R
OT

Πsh−R
OT ,S?(z)

(l0, l1, 0)} ≡ H⊥0 due to the hiding of the DWE scheme. Similarly,

we consider the hybrid H⊥1 that is exactly like View
Rsh−R
OT

Πsh−R
OT ,S?(z)

(l0, l1, 1) except for the fact that c

contains an encryption of 0λ.

To prove that H⊥0 ≡ View
Rsh−R
OT

Πsh−R
OT ,S?(z)

(l0, l1, 0) we just rely on the fact that f has efficiently

samplable domain and range algorithms.

Theorem 11. If enhanced trapdoor permutations exists, the Πsh−R
OT is secure against semi-honest

Rsh−R
OT .

Proof. The proof of this theorem follows almost the same argument of [GR13, Claim 3.1] The

simulator on input (b, lb), sample three strings r1, r2, r3
$←− {0, 1}λ and does the following steps.

1. f
$←− Genf(1λ).
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2. (z′, zb)← SDR(f ; r1), z1−b ← SD(f ; r2).

3. c← Encf(f, z0||z1; r3).

4. W0 ← lb ⊕ h(f, z′), W1 ← {0, 1}λ.

5. Output (b, (r1, r2, r3), f, c,W0,W1).

The output of the simulator is computationally indistinguishable from the view of the receiver.
Indeed, an adversary that distinguishes between the simulated and the real experiment also dis-
tinguishes between when W1−b is uniformly distributed and when W = h(f, f−1(S(f, z1−b)), thus
contradicting the assumption that h is an hard-core predicate for the enhanced trapdoor OWPs f .

B.2 Secure 3-Round OT

Using a technique very similar to the one proposed in Section 6, we now propose a protocol Πsh−R
OT

that is secure against semi-honest receiver and retains the privacy of receiver against any malicious
sender (we refer to the theorems below for the formal statements on the security enjoied by our
protocol). We propose only the formal description of the protocol Πsh−R

OT := (Ssh−R
OT , Rsh−R

OT ) in
Figure 4 (and the formal security proof) since the techniques are very similar to the techniques
used in Section 6. We refer the reader to the technical overview or to Section 6 for an informal
discussion of our techniques.

Theorem 12. If enhanced permutations with efficiently sampleable range and domain exist, then
Πsh−R
OT securely realizes the oblivious transfer functionality FOT against semi-honest receivers and

{View
Rsh−R

OT
Πsh−R

OT
,SOT

?(z)
(l0, l1, 0)}z∈{0,1}? ≈ {View

Rsh−R

OT
Πsh−R

OT
,Ssh−R

OT
?
(z)

(l0, l1, 1)}z∈{0,1}?

Moreover, Πsh−R
OT makes black-box use of the underlying primitive.

Proof. Security against malicious sender. Before proving this part of the theorem, we prove
the following lemma.

Lemma 2. For every non-uniform PPT adversary S?OT controlling the sender, if one of the fol-
lowing holds with overwhelming probability

1. Prob
[
Eg

i
]
≥ 1− ν(λ) ∀i ∈ {0, 1} or

2. Prob
[
Eg

i
]
< 2−1

then

{View
Rsh−R

OT
Πsh−R

OT
,SOT

?(z)
(l0, l1, 0)}z∈{0,1}? ≈ {View

Rsh−R

OT
Πsh−R

OT
,Ssh−R

OT
?
(z)

(l0, l1, 1)}z∈{0,1}?

Proof. The first condition implies that the functions sent by the malicious sender in the first round
are almost permutations with overwhelming probability. Therefore, we can invoke the Theorem 10
to conclude this part of the proof. If the second condition holds, then with overwhelming probability
the collision sets of f has size at least 2−1|D| . Hence, also in this case we can invoke the Theorem 10
and conclude the proof.
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Common input: Security parameters: λ := 2κ for some k ∈ N, n := 4λ
Input to Rsh−R

OT : b ∈ {0, 1}.
Input to Ssh−R

OT : l0 ∈ {0, 1}, l1 ∈ {0, 1}.

Ssh−R
OT → Rsh−R

OT
1. Run GL on input (l0, l1, i, log(n)) thus obtaining (l10, l

1
1), . . . , (ln0 , l

n
1 ).

2. For i = 1, . . . , n run SOT on input (li0, l
i
1) thus obtaining (auxis, ot

i
1).

3. Send ot11, . . . , ot
n
1 to Rsh−R

OT .

Rsh−R
OT → Ssh−R

OT
1. Run GB on input (b, 1, log(n)) thus obtaining b1, . . . , bn.
2. For i = 1, . . . , n run ROT on input (bi, oti1) thus obtaining oti2.
3. Send ot12, . . . , ot

n
2 to Ssh−R

OT
Ssh−R
OT → Rsh−R

OT
1. For i = 1, . . . , n run ΠOT on input (oti1, ot

i
2, aux

i
s) thus obtaining oti3.

2. Send ot13, . . . , ot
n
3 to Rsh−R

OT .

Output Phase of Rsh−R
OT

1. For i = 1, . . . , n run ROT on input (oti1, ot
i
2, ot

i
3) and auxir thus obtaining libi .

2. Output l1b1 ⊕ · · · ⊕ lnbn

GB(b, i, n)

Pick r
$←− {0, 1}, compute b0 ← b⊕ r and set b1 ← r.

If i = n then return (b0, b1) else return GB(b0, i+ 1, n), GB(b1, i+ 1, n).
GL((l0, l1), i, n)

Pick r
$←− {0, 1}, compute l0,0 ← r, l0,1 ← r ⊕ l0 ⊕ l1, l1,0 ← r ⊕ l0, l1,1 ← r ⊕ l1.

If i = n then return (l0,0, l0,1), (l1,0, l1,1)
else return GL((l0,0, l0,1), i+ 1, n), GL((l1,0, l1,1), i+ 1, n).

Figure 4: Formal description of Πsh−R
OT

We are now ready to complete this part of the proof. Let Πi
OT be the i-th execution of ΠOT

with i ∈ {1, . . . , 4λ} and let fi be the function chosen by the malicious sender to execute Πsh−R
OT

i
; we

denote with Eg
i the event in which a uniformly random values r is sampled such that y ← SR(f i; r)

is good, with i ∈ {1, . . . , 4λ2} ∈ {0, 1}.
As we have proven in Theorem 10, if for some i ∈ {1, . . . , 4λ} we have that

1. f i is almost a permutations or

2. f i ∈ L.

then Πsh−R
OT

i
is secure against malicious senders and so would be Πsh−R

OT because of the security
offered by the combiner. Let us now assume that it does not exist i such that at least one of the
conditions showed above holds. This means that for all i = 1, . . . , 4λ we have that |C(f i)| < 2−1|D|.

We have that for all i ∈ I the probability that the values (z0, z1) are good is Pr[Ebg
i] :=

Pr[Eg
i,0 ∧ Eg

i,1] ≥ 4−1 (since Pr[Eg
i,0] ≥ 2−1 and Pr[Eg

i,1] ≥ 2−1).
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We are now interested in proving that there exists an index i ∈ I such that Pr[Ebg
i,d] is 1−ν(λ).

This would conclude this part of the proof since, by the Lemma 2, this implies that one of the
execution of Πsh−R

OT is secure. The probability that such an execution does not exists is Pr[¬Ebg
i]4λ =

(1− Pr[Eg
i,0 ∧ Eg

i,1])4λ < (1− 4−1)4λ < 2−λ.
Security against semi-honest sender. The proof follows similarly to what is described in

the proof of Theorem 11.

C From Bit OT to String OT

The protocol ΠOT described in this section restricts the sender to use two bits as input (bit-OT).
In some applications (as the one that we are going to consider in this work) it is crucial that the
sender input is represented by strings l0 ∈ {0, 1}κ, l0 ∈ {0, 1}κ with κ ∈ N (string-OT).

The work of Brassard et al. [BCS96] proposes a way to construct an information theoretically
secure string OT protocol from an information theoretically secure bit OT protocol. The idea
proposed in [BCS96] is to use run κ bit-OT executions in such a way that that regardless of the
choices of the input bits of malicious receivers in these executions, he can only obtain one of the two
inputs. We show how to use the technique proposed in [BCS96] to transform our bit-OT protocol
ΠOT into a string-OT protocol Πκ

OT := (SκOT , R
κ
OT ).

Let I = {i1, . . . , im} be a set such that 1 ≤ i1 < . . . im ≤ n. Let y ∈ {0, 1}n, we denote
with yI the concatenation of the bits of y in the positions indexed by I. In [BCS96] the authors
proposed instantiations of a function g with the property that for any two subset I, J ⊆ {1, . . . , n}
seeing the bits of xI0 and xJ1 releases information on at most one of g(x0) or g(x1). This function
g : {0, 1}n → {0, 1}κ can be instantiated in an information theoretically secure way as showed
in [BCS96]. Let (l0, l1) ∈ {0, 1}κ × {0, 1}κ be the input of SκOT and b be the input of RκOT . The
protocol Πκ

OT works as follows.

1. SκOT picks x0
$←− {0, 1}n, x1

$←− {0, 1}n such that g(x0) = l0 and g(x1) = l1.

2. SκOT and RκOT preform n executions of ΠOT where SκOT uses (xi0, x
i
1) (where xid corresponds

to the i-th bit of xd for all d = 0, 1) as input and RκOT uses b as input.

3. RκOT upon receiving the output zi from the i-th execution of ΠOT for all i ∈ {1, . . . , n}
computes and outputs g(z1|| . . . ||zn).

Theorem 13. If enhanced trapdoor permutations with efficiently sampleable range and domain
exist, then Πκ

OT securely realizes the oblivious transfer functionality FOT with one-sided simulation
with black-box use of the underlying primitive and the input domain of the receiver is {0, 1}κ×{0, 1}κ
with κ ∈ N.

Proof. The proof against malicious sender follows via standard hybrid arguments. That is, we
consider the hybrid Hi where the first i executions of ΠOT are run using the bit 0 as input and
the remaining n − i executions using 1. H0 represents the real world execution where RκOT uses
the bit 1 and Hn to the real world execution where RκOT uses the bit 0. If by contradiction there
exists a malicious sender RκOT

? that distinguishes H0 from Hn then there exists an index j such
that Hj and Hj+1 are distinguishable. The reduction to the security of ΠOT would run internally
SκOT

? computing all the ΠOT executions but the j + 1-th execution for which he acts as a proxy
between SκOT

? and the challenger of ΠOT .
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In the case of a malicious receiver RκOT
? we need to simulate its view when it can obtain

bits of x0 and x1 given access to FOT from which we can only obtain either l0 or l1. Our proof
approach follows the one proposed in [GKOV12]. The simulator simply run n instantiations of the
simulator Sim of ΠOT (which exists by definition) following the below strategy. Let T0, T1 be two
sets indicating the indices for which the malicious receiver queries with input 0 and 1 respectively.
Observe that T0 and T1 will always be disjoint. For every query made by the malicious receiver
we need to provide it with a response. Our strategy would be to provide it with a random bit as
long as neither T0 nor T1 “biases” g (Definition 2.1 of [BCS96], i.e., no information about either
l0 or l1 has been revealed by the values of x0, x1 provided to the malicious receiver so far). At
the first point when Tb (for some b ∈ {0, 1}) biases g, we query FOT with b thus obtaining lb. We
then sample xb consistently with lb and the values provided to the malicious receiver so far and
continue the simulation. By Definition 2.2 of [BCS96], for the encoding function g only one among
T0 and T1 can bias g. This fact allows us to continue choosing bits in x1−b at random without
querying for l1−b. We note that to prove that this simulator is valid we need to show the view of
RκOT

? in the real world is indistinguishable from the output of the simulator. This part of the proof
follow almost the same arguments used in the second part of the proof of Theorem 8 given that
Sim maintains the main thread. Note also that our simulator maintains the main thread as well.

D Security Proofs

D.1 Proof of Theorem 6

Proof. To prove the security against a malicious receiver R?OT we need to first show how the
simulator Sim works. Sim extracts the input b of R?OT by rewinding Πc&o and calls the ideal
functionality thus obtaining lb. At this point Sim uses lb to compute W 1

b according to the description
of ΠOT and sets W 1

1−b to a random bit.
More formally, we now show a PPT simulator Sim that, having only access to the ideal world

functionality FOT , can simulate the output of any malicious R?OT running one execution of ΠOT
with an honest sender SOT . The simulator Sim works as follows. Having oracle access to R?OT ,
Sim runs as acts as SOT until the third round thus sending the functions f0,0, f0,1, f1,0, f1,1, β and
the two random strings R0 and R1. Let c, d be the messages sent in the third round by R?OT . Sim
computes δ||r0||r1 ← Dec2f(x,w, c) and check if V2(γ, β, δ, r0||r1) = 0. If it is then Sim outputs ⊥
and stops, otherwise Sim rewinds R?OT by sending two fresh random strings R0 and R1 such that

R0 6= R0 and R1 6= R1, and a freshly generated β
$←− V0(1λ).

Let c, d be the messages sent in the third round by R?OT after this rewind. Sim computes
δ||r0||r1 ← Dec2f(x,w, c) (note that if d 6= d then also the statement and the witness for the DWE
scheme change during the rewinding thread). If V2(γ, β, δ, r0||r1) = 0 (or R?OT does not reply send
the third round), then we use the following standard argument. If p is the probability of R?OT of
giving an accepting third round9, λ/p rewinds are made until R?OT gives another answer.

Once that a new third round is received and V2(γ, β, δ, r0||r1) = 1 then there are only two cases
that could occur due to the existence of committing branch property of Πc&o:

1. rb? 6= rb? and r1−b? = r1−b? for some b? ∈ {0, 1} or
2. r0 = r0 and r1 = r1.

9We assume that p is non-negligible since the proof for the case where p is negligible is trivial.
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That is, R?OT can either open to the same messages r0 and r1, or change at most one of the
opened messages. This yields to the following important observation. If one among r0 and r1

changes during the rewind, let us say rb? for b? ∈ {0, 1} (case 1), then the input bit used by R?OT
has to be b?. Intuitively, this comes from the fact that the only efficient way (i.e., without inverting
the TDP) for a receiver to get the output is by picking a message rb? such that he knows how to
compute the inverse of one between S(fd,0, R0 ⊕ r0) and S(fd,1, R1 ⊕ r1). Therefore, the simulator
invokes the ideal world functionality FOT using b? as input, and upon receiving lb? computes
Wb? = lb? ⊕ h(f−1

d,b?(S(fd,b? , rb? ⊕ Rb?))) and sets W1−b? to a random bit. Then Sim goes back to
the main thread and sends W0 and W1 to R?OT in the last round.

In the case where the opening of Πc&o stays the same after the rewinding procedure (case two),
Sim just picks a random bit b?{0, 1} and acts as described above.

We formally prove that the output of Sim is computationally indistinguishable from the output
of R?OT in the real world execution. The proof goes through hybrid arguments starting from the
real world execution. We gradually modify the real world execution until the input of the honest
party is not needed anymore such that the final hybrid would represent the simulator for the ideal
world. We denote by OUTHi,R?OT (z)(1

λ) the output distribution of R?OT in the hybrid experiment
Hi.

– H0 is identical to the real execution. More precisely H0 runs R?OT using fresh randomness and
interacts with him as the honest sender would do on input (l0, l1).

– Hrew
0 proceeds according to H0 with the difference that R?OT is rewound up to the second round

by receiving two freshly generated random strings R0, R1 and β
$←− V1. This process is

repeated until R?OT completes the third round again (every time using different randomness).
More precisely, if R?OT aborts after the rewind then a fresh second round is sent up to λ/p
times, where p is the probability of R?OT of completing the third round in H0. If p := poly(λ)
then the expected running time of Hrew

0 is poly(λ) and its output is statistically close to the
output of H0. When the third round is completed the hybrid experiment comes back to the
main thread and continues according to H0

– H1 proceeds according to Hrew
0 with the difference that after the rewinds executes the following

steps. Let r0 and r1 be the messages opened by R?OT in the third round of the main thread
and r0 and r1 be the messages opened during the rewind.

Due to the existence of committing branch property of Πc&o we have that there exits
b? ∈ {0, 1} such that r1−b? = r1−b? . After the rewind H1 goes back to the main thread and

computes W1−b?
$←− {0, 1}λ and Wb? = lb? ⊕ h(f−λd,b?(S(fd,b? , rb? ⊕ Rb?))) and sends (W0,W1)

to R?OT . The difference between H0 and H1 is that in the latter hybrid experiment W1−b? is
a random bit whereas in H1 W1−b? = l1−b? ⊕ h(f−λd,1−b?(S(fd,1−b? , r1−b? ⊕R1−b?))).

We now prove that the indistinguishability between Hrew
0 and H1 comes from the security

of the hardcore bit function h for the TDP F . More precisely, assuming by contradiction
that the {OUTHrew

0 ,R?OT (z)(1
λ)} and {OUTH1,R?OT (z)(1

λ)} are distinguishable and construct an

adversary AF that distinguishes between the output of h(x) and a random bit having as input

r such that y
$←− S(fd,1−b? ; r) and f−1

d,1−b?(y) = x.

AF , on input the challenge (f, r, u) executes the following steps.

1. Start R?OT and upon receiving γ pick (f0,0, f
−1
0,0 )

$←− Gen(1λ), (f0,1, f
−1
0,1 )

$←− Gen(1λ),

(f1,0, f
−1
1,0 )

$←− Gen(1λ), (f1,1, f
−1
1,1 )

$←− Gen(1λ), β
$←− V0(1λ), R0

$←− {0, 1}λ, R1
$←− {0, 1}λ
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and send {fi,j}i,j∈{0,1} , β, R0, R1 to ROT .

2. Upon receiving (c, d) from R?OT set x = (f1−d,0, f1−d,1), w = (ρ1−d,0, ρ1−d,1) and com-
pute δ||r0||r1 ← Dec2f(x,w, c). If V2(γ, β, δ, r0||r1) = 0 then output a random bit and
stop. Otherwise rewinds ROT by sending a freshly generated {f i,j}i,j∈{0,1} , β, R0, R1

and repeat this process until R?OT answer again the third round with some values c, d
such that V2(γ, β, δ, r0||r1) = 1 with δ||r0||r1 ← Dec2f(x,w, c), x = (f1−d,0, f1−d,1),
w = (ρ1−d,0, ρ1−d,1).

3. Check if there exists t ∈ {0, 1} such that rt 6= rt. If such a bit exists then set b? := t,

otherwise sample b?
$←− {0, 1}. Computes the following steps.

3.1. Pick a random bit j ∈ {0, 1}, three random strings ρ′j,b? , ρ
′
1−j,0, ρ

′
1−j,1

$←− {0, 1}λ, set

gj,1−b? := f and compute (gj,b? , g
−1
j,b?)

$←− Gen(1λ, ρ′j,b?), (g1−j,0, g
−1
1−j,0)

$←− Gen(1λ, ρ′1−j,0),

(g1−j,1, g
−1
1−j,1)

$←− Gen(1λ, ρ′1−j,1), β
$←− V0(1λ).

3.2. Compute R′1−b? ← r1−b? ⊕ r, R′b?
$←− {0, 1}λ, β′

$←− V0(1λ).

3.3. Rewind R?OT up to the second round and send {gi,j}i,j∈{0,1} , β′, R′0, R′1 to him.

4. Upon receiving (c′, d′) from R?OT if d 6= j then output a random bit and stop. Otherwise
set x′ := (g1−j,0, g1−j,1), w′ := (ρ′1−j,0, ρ

′
1−j,1) and compute δ′||r′0||r′1 ← Dec2f(x′, w′, c′).

5. If V2(γ, β′, δ, r′0||r′1) = 0 then repeat the step 3.1, otherwise continue with the following
steps.

6. If r′1−b? 6= r1−b? then stop and output a random bit, otherwise set W1−b? ← u ⊕ l1−b?
and compute ωb? ← g−1

d,b?(S(rb? ⊕ R1)), Wb? = lb? ⊕ h(fd,b? , ωb?) and send (W0,W1) to
R?OT .

7. Output what R?OT outputs.

Note that if u = h(x) then R?OT acts as in Hrew
0 , otherwise R?OT acts as in H1. By

contradiction, we are assuming that there exists an adversary A that has a non-negligible
advantage adv in distinguishing H rew

0 from H1. Since the probability that the AF guesses the
correct b? and a bit j such that j = d is 1/4, then we can claim that AF breaks the security
of the hardcore bit predicate with probability 1/2 + adv/4, thus reaching a contradiction.

D.2 Proof of Theorem 7

Proof. Let d be the bit sent by ROT in the third round. We divide the proof is two parts, one for
each of the case listed above.

Case 1. Note that in this case we have the guarantee that the functions fd,0 and fd,1 are almost
permutations, therefore the proof can proceed as follows.

We consider the experiment H0 where ROT ’s input is 0 and the experiment H1 where ROT ’s
input is 1 and we prove that S?OT cannot distinguish between H0 and H1. More precisely, in the
experiment H1 the bit 1 instead of the bit 0 is used to compute the messages of Πc&o. To prove
that H0 ≈ H1 we can rely on the fact that fd,0 and fd,1 are almost permutations with efficiently
samplable domain and range and on the committing branch indistinguishability property of Πc&o.

Case 2. In this case we can rely on the hiding of (Enc2f ,Dec2f) since (f1−d,0, f1−d,1) ∈ L2f
0 .

Therefore, the encryption sent in the third round hides in an information theoretical sense all the
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values computed by ROT that depends on the functions fd,0 and fd,1 (which might not be injective
and thus leaking the bit of the receiver).

The prof proceeds similarly to the proof for the case 1 with the following differences. We
consider the hybrid H⊥0 that is exactly like H0 except for the fact that c contains and encryption of
0λ. H0 ≡ H⊥0 due to the hiding of the DWE scheme. Similarly, we consider the hybrid H⊥1 that is
exactly like H1 except for the fact that c contains an encryption of 0λ. To prove that H⊥0 ≈ H⊥1 we
just rely on the committing branch indistinguishability property of Πc&o, and this would conclude
the proof.

D.2.1 Proof of Theorem 8

Proof. Security against malicious sender. Before proving this part of the theorem, we prove
the following lemma.

Proof. The first condition implies that the functions sent by the malicious sender in the first round
are almost permutations with overwhelming probability. Therefore, we can invoke the Theorem 7 to
conclude this part of the proof. If the second condition holds, then with overwhelming probability
the collision sets of f0,j and f1,i, for some i, j ∈ {0, 1}, have size at least 2−1|D| . Hence, also in
this case we can invoke the Theorem 7 and conclude the proof.

We are now ready to complete this part of the proof. Let Πi
OT be the i-th execution of ΠOT

with i ∈ {1, . . . , 4λ2} and let (f i0,0, f
i
0,1, f

i
1,0, f

i
1,1) be the four functions chosen by the malicious

sender to execute Πi
OT ; we denote with Eg

i,d,b the event in which a uniformly random values r is
sampled such that y ← SR(f id,b; r) is good, with i ∈ {1, . . . , 4λ2}, d, b ∈ {0, 1}.

As we have proven in Sec. 5, if for some i ∈ {1, . . . , 4λ2} we have that

1. f i0,0 and f i0,1 and f i1,0 and f i1,1 are almost permutations or

2. (f i0,0, f
i
0,1) ∈ L2f

0 and (f i1,0, f
i
1,1) ∈ L2f

0 .

then Πi
OT is secure against malicious senders and so would be ΠOT because of the security offered

by the combiner. Let us now assume that it does not exist i such that at least one of the conditions
showed above holds. This means that for all i = 1, . . . , 4λ2 there exists a bit d′i ∈ {0, 1} such that
|C(f i1−d′i,0

)| < 2−1|D| and |C(f i1−d′i,1
)| < 2−1|D|.

Let di be the selection bit used by the receiver in the i-th execution of ΠOT ; we denote with
Econdsi the event in which in the i-th execution of ΠOT we have that |C(f idi,0)| < 2−1|D| and |C(f idi,1)| <
2−1|D| (i.e., di = 1− d′i). Since di is randomly (and independently) chosen by the receiver in each
execution ΠOT we have that Pr[Econdsi] = 2−1.

Hence the probability that there exists at least an index j1 ∈ {1, . . . , λ} in the first λ executions
of ΠOT such that Econdsj1 holds is Pr[∃j1 : Econdsj1 ] ≥ 1 − 2−λ. Generalizing, we have that the
probability that there exists an index jk ∈ {1 + λk, . . . , λ(k+ 1)} for all k = 0, . . . 4λ− 1 such that
Econdsjk occurs is Pr[∃jk : Econdsjk ] = 1−2−λ. Let I := {i0, . . . , i4λ−1} the set containing all these
indexes.

We have that for all i ∈ I the probability that the values SR(f idi,0, r
i
0⊕Ri0) and SR(f idi,1, r

i
1⊕Ri0)

are good is Pr[Ebg
i,d] := Pr[Eg

i,d,0 ∧ Eg
i,d,1] ≥ 4−1 (since Pr[Eg

i,d,0] ≥ 2−1 and Pr[Eg
i,d,1] ≥ 2−1).
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We are now interested in proving that there exists an index i ∈ I such that Pr[Ebg
i,d] is 1−ν(λ).

This would conclude this part of the proof since, by the Lemma 1, this implies that one of the
execution of ΠOT is secure. The probability that such an execution does not exists is Pr[¬Ebg

i]4λ =
(1− Pr[Eg

i,0 ∧ Eg
i,1])4λ < (1− 4−1)4λ < 2−λ.

Security against malicious receiver. We want to prove that for every non-uniform PPT
adversary R?OT controlling the receiver in the real model, there exists a non-uniform PPT adversary

Sim for the ideal model such that {REALΠOT ,R
?
OT

(z)(1
λ)}z∈{0,1}λ ≈ {IDEALFOT ,Sim(z)(1

λ)}z∈{0,1}λ .

As showed in the proof of Theorem 6, for every non-uniform PPT adversary R?OT controlling
the receiver in the real model, there exists a non-uniform PPT adversary Sim for the ideal model
such that
{REALΠOT ,R

?
OT (z)(1

λ)}z∈{0,1}λ ≈ {IDEALFOT ,Sim(z)(1
λ)}z∈{0,1}λ . Moreover, Sim maintains the

main thread.
The simulator Sim internally uses Sim for any of the executions of ΠOT . More formally Sim

works as follows.
1. Run the adversary A and for each message that refers to a new execution of Πi

OT start a
new instance of Sim and act as a proxy between A and Sim for all the messages that refer to
Πi
OT .

2. Upon receiving the bits b1, . . . , b4λ
2

from the simulators10 compute b = b1 ⊕ · · · ⊕ b4λ2
and

send b to FOT .
3. Upon receiving lb from FOT compute a random secret sharing (l1b , . . . , l

4λ2

b ) such that lb =

(l1b ⊕ · · · ⊕ l4λ
2

b )
4. For i = 1, . . . , 4λ2 keep running the i-th simulated execution using lib as input.
5. Output the concatenation of the outputs of all the simulators.

The proof proceeds via hybrid arguments. More precisely, we start by consider the hybrid
experiment H0 that corresponds to the real world execution where the input (l0, l1) is used by SOT
and then we consider the experiment Hi where the simulator Sim (instead of the honest sender
procedure) is used in the first i parallel executions of ΠOT . Supposing by contradiction that the
output distributions of Hi and Hi+1 (for some i ∈ {1, 4λ2 − 1}) are distinguishable, then we can
construct a malicious receiver R?OT that breaks the security of ΠOT against malicious senders. We
note that the fact that the first i executions of ΠOT are replaced with executions of Sim could
disturb the reduction to the security of ΠOT when proving that the output distribution of Hi
is indistinguishable from the output distribution of Hi+1 (this because of the rewinds made by
Sim) and this requires some care. More precisely, as described in the security proof of ΠOT , the
simulation made by Sim roughly works by rewinding from the third to the second round. After
that Sim goes back to the main thread and from this moment onwards Sim works straight line. The
feature that we use in this proof to avoid issue due to the rewinds made by the execution of the
simulators of Sim is the fact that Sim maintains the main thread. Let COT be the challenger of
ΠOT against malicious receiver; our adversary R?OT works as following.

1. Upon receiving the first round of ΠOT from R?OT , forward the (i + 1)-th component oti+1
1

(that refers to the first message of Πi+1
OT ) to COT 11.

2. Upon receiving oti+1
2 from COT interacts against R?OT by computing the second round of

10Note that the i-th execution of Sim outputs a bit bi if the adversary is non-aborting as proved in Theorem 6.
11We recall that ΠOT is constructed by executing in parallel 4λ2 instantiations of ΠOT , therefore in this reduction

we are just replacing the (i + 1)-th component of every rounds sent to R?OT with the value received by COT . Vice
versa, we forward to C? the (i+ 1)-th component of the rounds received from R?OT .
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ΠOT according to Hi (Hi+1) with the difference that in the (i+ 1)-th position the value ot2
is used.

3. Upon receiving the third round of ΠOT from R?OT , forward the (i+ 1)-th component oti+1
3

to COT .
4. Upon receiving ot4 from COT interacts against R?OT by computing the fourth round of ΠOT
according to Hi (Hi+1) with the difference that in the (i + 1)-th position the value oti+1

4 is
used.

5. Output what R?OT outputs.
We recall that in Hi (and as well as in Hi+1) in the first i execution of ΠOT the simulator is

used, therefore a rewind is made from the third to the second round. During the rewinds R?OT can
forward to R?OT the same second round ot2. Moreover, due to the main thread property enjoyed by
Sim, after the rewind R?OT can continue the interaction against R?OT without rewind C?. Indeed if
Sim does not maintain the main thread then, even though the same ot2 is used during the rewind,
R?OT could send a different ot3 making impossible to efficiently continue the reduction. We note

that since Sim maintains the main thread so does Sim.

D.3 Proof of Theorem 4

Proof. The completeness follows immediately from the definition of trapdoor permutation. To
prove the hiding property we proceed as follows.

We say that a value y ∈ Dα is bad if there exist at least one pair (x0, x1) ∈ Dα ×Dα such that
y = fα(x0) = fα(x1) and x0 6= x1. We denote with Eg the event in which a uniformly random

values x is sampled (i.e., x
$←− S(α)) and fα(x) is good. We denote with GoodGuessi the event

where the values yi and ji chosen during the encryption process are such that:
- yi is bad, hence there exist at least two values xi and x̃i such that xi 6= x̃i and fα(xi) = fα(x̃i).
- the value ji ∈ {1, . . . , λ} chosen during the encryption is such that if xi is parsed as x1

i , . . . x
ji
i , . . . x

λ
i

and x̃i is parsed as x̃1
i , . . . x̃

ji
i , . . . x̃

λ
i then xjii 6= x̃jii .

We can compute Pr[GoodGuessi] = Pr[Eb]λ−1 ≥ 2−1λ−1, where λ−1 represents the probability
of guessing the index ji where the two values xi and x̃i differ.

To conclude the proof we just need to show that Pr[∃k s.t. GoodGuessk] ≥ 1−ν(λ). We note that
this would be sufficient to conclude the proof since in this case ct represents a valid encryption of
both 0 and 1. Indeed, we have that Pr[∃k s.t. GoodGuessk] = 1−Pr[∀k ∈ {1, . . . , n}¬GoodGuessk] =

1−
∏n
i=1 Pr[¬GoodGuessi] ≥ 1−

(
1− 1

2λ

)n
≥ 1− e−λ
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