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Abstract

Although there have been many successes in verifying proofs
of non-interactive cryptographic primitives such as encryp-
tion and signatures, formal verification of interactive crypto-
graphic protocols is still a nascent area. While in principle, it
seems possible to extend general frameworks such as Easy-
crypt to encode proofs for more complex, interactive proto-
cols, a big challenge is whether the human effort would be
scalable enough for proof mechanization to eventually acquire
mainstream usage among the cryptography community.

We work towards closing this gap by introducing a sim-
ple framework, Interactive Probabilistic Dependency Logic
(IPDL), for reasoning about a certain well-behaved subset of
cryptographic protocols. A primary design goal of IPDL is
for formal cryptographic proofs to resemble their on-paper
counterparts. To this end, IPDL includes an equational logic
to reason about approximate observational equivalence (i.e.,
computational indistinguishability) properties between pro-
tocols. IPDL adopts a channel-centric core logic, which de-
composes the behavior of the protocol into the behaviors
along each communication channel. IPDL supports straight-
line programs with statically bounded loops. This design al-
lows us to capture a broad class of protocols encountered in
the cryptography literature, including multi-party, reactive,
and/or inductively-defined protocols; meanwhile, the logic
can track the runtime of the computational reduction in secu-
rity proofs, thus ensuring computational soundness.

We demonstrate the use of IPDL by a number of case
studies, including a multi-use, secure message communica-
tion protocol, a multi-party coin toss with abort protocol,
several oblivious transfer constructions, as well as the two-
party GMW protocol for securely evaluating general circuits.
We provide a mechanization of the IPDL proof system and
our case studies in Coq, and our code is open sourced at
https://github.com/ipdl/ipdl.

∗Author order randomized.

1 Introduction

With new decentralized computing paradigms such as
blockchains and cloud outsourcing, distributed cryptographic
protocols involving rich building blocks such as commit-
ment, zero-knowledge proof, oblivious transfer, and multi-
party computation are being rolled out at an unprecedented
pace. Compositional and scalable computer-aided proofs for
such cryptographic protocols have also become increasingly
more important, since they help us verify that new crypto-
graphic primitives match their purported security goals.

In the cryptographic literature, the de facto framework
for reasoning about distributed cryptography is Universal
Composability (UC) [15]. UC adopts a so-called simulation-
paradigm, where we want to prove the protocol in question sat-
isfies approximate observational equivalence (i.e., computa-
tional indistiniguishability) to a particular idealization which
relies on trusted functionalities rather than cryptographic
mechanisms. Any cryptographic protocol proven secure in
UC is known to be concurrently and modularly composable.

To enable scalable formal verification for complex cryp-
tography, our goal is to provide an easy-to-use system for
encoding and mechanically checking proofs for multi-party
protocols. For the system to be usable by cryptographers, it is
important that proofs in the system approximately match how
cryptographers write proofs on paper.

State of affairs. While a line of work focused on formal
verification of cryptography, most earlier works fall short of
verifying general, multi-party cryptographic protocols. Earlier
works either focused on verification of non-interactive primi-
tives and do not provide a native protocol-calculus for encod-
ing interactive multi-party protocols (e.g., Easycrypt [10] and
FCF [37]), or focused on restricted classes of protocols using
specific cryptographic primitives such as encryption and mes-
sage authentication, symbolically modeling encryption and
authentication as certain ideal abstractions to facilitate formal
verification [13, 20, 21, 31]. For the latter line of works (often
referred to as the symbolic approach), it is imperative that the
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“symbolic” ideal abstractions of cryptography exactly match
what actual cryptography can provide, and this turns out to be
subtle and non-trivial. It was observed that in some works, the
symbolic abstractions are a mismatch of what actual cryptog-
raphy can provide, and consequently, even a formally verified
protocol can be broken when instantiated with actual cryptog-
raphy [3, 32]. CryptoVerif is a related symbolic-style prover
that reasons directly in the computational model [12], but is
focused on automation over expressivity.

Formally verifying distributed cryptographic protocols is
an exciting nascent area that has recently attracted increasing
attention from the cryptography as well as the formal meth-
ods communities. A couple recent systems, EasyUC [18]
and CryptHOL [28] made initial attempts at this goal. These
systems adopt bisimulation (i.e., relational invariant) to rea-
son about observational equivalence between protocols (i.e.,
the observable traces induced by protocols are identically
distributed). Bisimulation-style proofs mix reasoning about
low-level distributional equivalence with higher-level cryp-
tographic reasoning, making it somewhat cumbersome and
unnatural for cryptographers to use these systems — im-
proving the usability of such systems was phrased as a
major open question in earlier works [18]. A few recent
works [5, 22, 26, 38] made one-off efforts to mechanize the
proofs of a single, specific MPC protocol in Easycrypt; how-
ever, these works do not aim to provide a general logic for en-
coding cryptographic protocols in general, and their approach
does not natively reason about concurrent composition of pro-
tocols. Finally, an elegant line of work [7–9] beginning with
Bana and Comon [8] combines both symbolic-style and equa-
tional reasoning with unconditional computational soundness.
While their framework natively supports automation, it has
not been mechanized and it remains unclear how easy it is
to encode larger-scale developments such as secure function
evaluation or multi-party protocols. We give a more detailed
comparison with Bana-Comon in Section 7.

1.1 Our Contributions

In this paper, we propose IPDL (short for Interactive Proba-
bilistic Dependency Logic), a language and proof system for
reasoning about multi-party cryptographic protocols. IPDL is
designed with the following desiderata in mind:

• Ease of use. As mentioned, we would like the experience
of using IPDL to resemble how cryptographers write
proofs on paper. One novelty of IPDL is that its logic
directly captures approximate observational equivalence
reasoning, which is at the core of common simulation-
style proofs for cryptographic protocols Unlike previous
works [18, 28] which reason about entire actors (i.e. par-
ties or functionalities), IPDL adopts a channel-centric
logic, which decomposes the behavior of the protocol
into the behaviors along each communication channel.

This is the insight that enables us to have a simple equa-
tional logic.

• Support for a broad class of protocols. IPDL’s logic
supports straightline protocols with statically bounded
loops (i.e., loops with a-priori known bounds) — we
stress, however, that adversaries are treated as arbitrary
probabilistic polynomial-time machines in IPDL. The
statically bounded loops can be used to parametrize the
number of parties, the size of the circuit (e.g., in a secure
function evaluation example), the number of invocations
in a reactive functionality, and so on. This allows us
to capture a broad class of protocols, including most
protocols studied in the cryptography literature (see our
case studies for examples).

• Computational soundness. Since IPDL’s logic is straight-
line supporting statically bounded loops, it allows the
logic to symbolically track the runtime and error of the
reduction. In this way, the core logic can reason about
the security loss in IPDL proofs.

• Compositional guarantees. IPDL’s approximate obser-
vational equivalence notion (also referred to as approx-
imate equivalence for simplicity) follows the elegant
Universal Composability (UC) paradigm [15]. In a typi-
cal simulation-style proof, we want to reason that some
real-world protocol’s security is as strong as some ideal-
world specification. To do this, we can encode a simula-
tor in IPDL that interacts with the real-world adversary
and the ideal specification, and we prove in IPDL that
the real-world and ideal-world executions are approxi-
mately equivalent in terms of the view from an external
environment. In this way, IPDL supports the reasoning
of concurrent composition of cryptographic protocols
(either with itself or with other protocols) [15].

While IPDL follows the UC paradigm to provide concur-
rent composition, it is not our goal to capture the full extent of
the expressiveness of UC. For example, currently we assume
a static corruption model where the set of corrupt parties are
determined a-prori. As mentioned, we also impose certain
restrictions on the protocols (i.e., straightline with statically
bounded loops) to allow explicit tracking of the runtime of the
programs, and ensure computational soundness. This seems
to be the right sweet-spot between ease-of-use and compre-
hensiveness: we chose the simplifications carefully such that
IPDL can nonetheless capture a broad class of protocols stud-
ied in the cryptography literature; and these simplifications
allow us to encode proofs in IPDL that are concise and resem-
ble on-paper proofs.

Mechanization using Coq. We have implemented IPDL in
Coq, and open sourced it at https://github.com/ipdl/
ipdl. The main strength of our implementation is that we
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support parameterized protocols, or families of protocols de-
finable by a function in Coq. By doing so, we are able to
support protocols indexed over arbitrary Coq types – this in-
cludes protocols defined for q adversary queries, n parties, or
inductive protocols such as MPC for general circuits.

Rich case studies. We have implemented several case stud-
ies which demonstrate how IPDL can help scale up formal
verification to more complex protocols than before. The case
studies and proofs are included in our open source too. Cur-
rently, we provide the following case studies:

1. a multi-use, secure communication network out of an au-
thenticated one using a CPA-secure encryption scheme;

2. a maliciously secure n-party coin toss with abort protocol
assuming idealized commitments;

3. several semi-honest oblivious transfer (OT) construc-
tions, including OT from trapdoor permutations [24],
1-out-of-4 OT from 1-out-of-2 [2, 36], and a preprocess-
ing protocol for OT [1, 11]; and

4. a semi-honest 2-party GMW protocol [24], defined over
a general family of circuits.

Proof effort. The secure network example can be encoded
in 195 lines of code, including description and proofs. In
comparison, the recent EasyUC work [18] required 12203
lines of code to realize a single-use secure network 1. Among
these above case studies, the most sophisticated is GMW,
which uses the OT as a building block. Encoding the descrip-
tion and proof of GMW+OT in IPDL is accomplished with
less than 3201 lines of code. As a rough point of compar-
ison, the related work by [5] took 11069 lines of code to
encode the garbled circuit + OT [39] protocol (and more-
over, their work is a one-off effort focused on mechanizing
a single protocol rather than providing a general logic and
framework). For some other one-off efforts at mechanizing
MPC proofs [5, 22, 38], we were not able to find open source
code online, so we cannot provide a direct comparison in
terms of lines of code.

2 IPDL by Example: Multi-use Secure Net-
work

In this section, we introduce IPDL and its equational style
of reasoning through an example protocol for constructing

1Among the 12203 lines for EasyUC’s secure network example, roughly
speaking, 260 lines describe the real-world protocol, 182 lines describe the
ideal functionality, 190 lines describe the simulator, and the remaining lines
are the proof. We did not count their key exchange since our implementation
assumed a trusted key setup. As the EasyUC paper [18] itself acknowledges,
part of the complexity arises from the fact that EasyCrypt is procedure-based
and does not natively support a protocol calculus; consequently, there was a
significant amount of tedious work in writing “boilerplate” code that route
messages in between parties and functionalities.

a simple secure communication network out of an authen-
ticated one using a CPA-secure encryption scheme. Before
we introduce the protocol, we will first introduce the basic
syntax and semantics of IPDL, along with some background
information protocol security.

2.1 Terminology and Background

We define some basic terminology and review some back-
ground on UC [15]. A protocol is any (distributed) message-
passing system, which may give outputs and react to inputs.
For protocols to have a meaningful security definition, they
may exhibit probabilistic behavior but not (possibilistic) non-
determinism. Protocols communicate over channels, which
for us are unidirectional (i.e., either input or output). The chan-
nels of a given protocol can be split into interfaces, which are
subsets of the channels of a given protocol.

We express the security properties of a protocol through
two interfaces: the external interface, which is used for the
high-level I/O behavior of the protocol; and the attacker in-
terface, which is used to define the threat model. Given two
protocols P and Q with the same external interface but (pos-
sibly) differing attacker interfaces, we say that P realizes Q
when there exists a simulator S which converts the attacker
interface of Q to that of P, such that P is observationally
equivalent to Q composed with S. This type of simulator is
also called a converter in earlier work, such as Constructive
Cryptography [30].

We often call the attacker for P the adversary, and call the
attacker for Q the simulator. Intuitively, when P realizes Q,
any adversary’s capability of influencing the external interface
in P is upper bounded by the simulator, since any attack on P
can be turned into an equivalent attack on Q.

We typically think of P as the implementation (or the real
protocol) and Q as the specification (or the ideal protocol).
While P is comprised of parties who interact with each other
using cryptographic mechanisms and may be arbitrarily cor-
rupted by the adversary, Q is comprised of idealized parties
who instead interact with a trusted third party (the function-
ality) which performs the protocol’s logic in a centralized
and trustworthy way. The simulator’s capabilities in the ideal
protocol are constrained by the functionality and ideal parties
to be simple and easy to understand.

Relation to UC. Here, we compare our terminology to
UC [15]. In UC, a real world protocol is defined to be the com-
position of all honest party’s code and any hybrid functional-
ities, while an ideal protocol is usually taken to specifically
mean the ideal functionality and all ideal parties. Our notion
of protocol is more generic, and refers to any message-passing
system definable in IPDL. In particular, any individual party’s
code in IPDL is considered a protocol, as is any arbitrary
composition of protocols.
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2.2 IPDL in a Nutshell

IPDL is a calculus and equational theory for reasoning about
probabilistic protocols. The main judgement of IPDL is that

P δ
= Q, where P and Q are interactive protocols, and δ is a

computational error, which upper-bounds the advantage of a
computational attacker from distinguishing P from Q. IPDL
supports UC-style reasoning: given protocols P and Q, one
can ask whether there exists an appropriately typed simulator

S such that P δ
= Q||S, for a reasonable choice of δ.

In contrast to the semantics of UC [15] which utilizes sys-
tems of Interactive Turing Machines that must be activated
sequentially, IPDL allows for messages to happen in any order
consistent with the protocol. This is possible since all mes-
sages in IPDL are assumed to be scheduled by the attacker.

The key insight of IPDL is to adopt a channel-centric rather
than agent-centric viewpoint. All channels in IPDL are write-
once, and have a unique behavior associated to them by a
reaction, which is a program that may sample probabilistic
values and read the value of other channels (once those chan-
nels have fired). To enable a simple equational theory, all
dependencies between channels are required to be statically
determined. Thus, control flow may only happen at the level of
data, but not on the level of the protocol. We stress, however,
that the equational logic of IPDL is proven sound relative to a
general cryptographic adversary who may use more complex
control flows.

2.3 Multi-Use Secure Communication in
IPDL

As a first example, we show how to construct a secure net-
work from an authenticated network2. This is accomplished
through message encryption, such that an eavesdropper can-
not learn any information about the messages sent between
Alice, the sender, and Bob, the recipient. Our secure network
abstraction is multi-use, i.e., it is parametrized by a parameter
q that denotes the number of messages exchanged between
Alice and Bob. In this example, we assume that both Alice
and Bob are honest and the adversary is a passive eavesdrop-
per (although later on, in our case studies, we will have cases
where the parties can be semi-honest or maliciously corrupt).

We conduct the example using syntax from our Coq mech-
anization which encodes our IPDL core logic. In our Coq
implementation, the counterpart of our main judgement in

IPDL, P δ
= Q, is written as P ~= Q. Our current Coq mecha-

nization has not yet implemented the tracking of error bounds
which is part of the IPDL core logic described in Section 3;
nonetheless we prove on paper that our logic is computation-
ally sound (see Section 3).

2The cryptographic literature uses the terms “secure channel” and “au-
thenticated channel” [15], but we avoid overloading the term “channel” so
“channel” always means the low-level, write-once IPDL channels.

More details for our Coq embedding is given in Section 5.

Definitions of authenticated and secure network. Fig-
ure 1 shows the IPDL encoding of the definitions of an au-
thenticated network and a secure network, respectively. A
network Net is parametrized with 1) q, which denotes the
maximum number of messages exchanged, 2) m, which de-
notes the length of each message, and 3) leakage, which
denotes a leakage function, and a parameter l which denotes
the length of the leakage. In the definition of Net, I denotes
a vector of q input channels between Alice and the ideal func-
tionality Net, O denotes a vector q output channels between
Bob and the ideal functionality Net; and leak and ok each
denotes a vector of q channels between the ideal functionality
and the adversary.

In Lines 8-9, for each j < q, Net reads from the jth chan-
nel in I to obtain a message x, applies the leakage function
to x, and returns the result to the adversary through the jth
channel in leak. To do so, we first we perform a parallel
composition in IPDL over all j < q (written \||_(j < q)).
We then assign the jth channel of leak (written leak ## j)
to the reaction through the syntax ::=.

Similarly, in Lines 10-12, for each j < q, Net reads from
the jth channel in ok, the jth channel in I to obtain a message,
and assigns the message to the jth channel in O. Note here
that we do not use the value along the jth ok channel, but only
its timing: thus, the jth channel of O only fires once the jth
channel of ok does. In other words, the receiver Bob receives
the message only when the adversary okays it.

Given our definition of Net, we can now define both the
authenticated and secure networks. On Line 15, we define an
authenticated network Auth q m to be equal to Net instanti-
ated with the leakage function id (i.e., the identity function).
This means that the adversary can read the contents of all mes-
sages in an authenticated network. Similarly, on Line 16 we
define a secure network Sec q m to to be equal to Net with
the constant leakage function fun _ => [tuple], which re-
turns the empty bitstring. Thus in Sec, the adversary receives
no information about message contents. However, the adver-
sary still learns the timing information of each message; and
moreover, since the messages length m is a public parameter,
the adversary is assumed to know m, too.

Protocol realizing a secure network. Figure 2 shows the
IPDL encoding of a protocol that realizes a secure network
from an authenticated one, through the use of encryption. The
construction takes the same parameters as Sec, i.e., q and
m, for the number of messages and length of each message,
respectively. Additionally, it takes the following parameters
for c and k, for the ciphertext length and key length, and genK,
enc, and dec, for generating keys, encryption, and decryption.

We first define the key generation functionality (in Line
12), which samples a key from the distribution genK, and as-
signs it to the channel K (which is taken as a parameter of
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1 Definition Net (q m : nat) {l : nat} (leakage : m -> l)

2 (* External channels *)

3 (I O : q.-tuple (chan m))

4 (* Attacker channels *)

5 (leak : q.-tuple (chan l)) (ok : q.-tuple (chan TUnit))

6 :=

7 [||

8 \||_(j < q) (leak ## j) ::= (x <-- Read (I ## j);;

9 Ret (leakage x));

10 \||_(j < q) (O ## j) ::= (_ <-- Read (ok ## j);;

11 x <-- Read (I ## j);;

12 Ret x)

13 ].

14

15 Definition Auth q m := Net q m id.

16 Definition Sec q m := Net q m (fun _ => [tuple]).

Figure 1: Definitions of authenticated and secure networks
in IPDL. Both networks are parameterized by the number of
queries in question, q, and the length of messages, m.

the functionality). Then, we define the code for Alice in Line
14, who is parameterized by a vector of channels I for mes-
sage inputs, a channel K for the encryption key, and a vector
of channels send for communicating with the authenticated
network. For each j < q, Alice: reads a message from the jth
channel of I; a key from the channel K; generates a ciphertext
by encrypting the message under the key; and assigns the
ciphertext to the jth send channel. We define Bob similarly
on Line 21: for each j < q, we read the jth ciphertext, read
the key, and output the corresponding decryption to the jth
channel of O.

We have the real protocol in total on Line 27. It is parame-
terized similarly to the Sec functionality, except it has leakage
channels of length c instead of zero. We compose protocols
together in IPDL through first generating local communica-
tion channels, and composing the subprotocols together using
these local channels. On Line 30, we generate the channel K
for key generation (using the Coq syntax k <- new k). Then,
on Lines 31 and 32, we generate two fresh vectors of chan-
nels, send and recv for the underlying authenticated network.
This is done with similar syntax send <- newvec q @ c:
here, q is the length of the vector, and c is the length of mes-
sages on each channel. Finally, on Lines 34-37, we compose
together the key generation functionality, Alice, Bob, and the
underlying authenticated network. Thus, the authenticated
network will deliver ciphertexts from send to recv, but only
after leaking the ciphertexts along leak and receiving the ok
message.

2.4 Simulator and Proof

To show that our real protocol is secure, we must show that
the attacker’s capabilities in the real world are upper bounded
by those in the ideal world, wherein Alice and Bob rely on
the functionality Sec to communicate. Recall that in the real

1 Section AuthToSec.

2 (* Same as in Net *)

3 Context (m q : nat).

4 (* Ciphertext and Key length *)

5 Context (c k : nat).

6

7 (* Algorithms for encryption *)

8 Context (genK : Dist k).

9 Context (enc : m -> k -> Dist c).

10 Context (dec : c -> k -> m).

11

12 Definition FKey (K : chan k) := (K ::= Samp genK).

13

14 Definition alice (I : q.-tuple (chan m)) (K : chan k)

15 (send : q.-tuple (chan c)) :=

16 \||_(j < q) (send ## j) ::=

17 (msg <-- Read (I ## j) ;;

18 key <-- Read K ;;

19 ctxt <-- Samp (enc msg key) ;;

20 Ret ctxt)).

21

22 Definition bob (recv : q.-tuple (chan c)) (K : chan k)

23 (O : q.-tuple (chan m)) :=

24 \||_(j < q) (O ## j) ::=

25 (ctxt <-- Read (recv ## j) ;;

26 key <-- Read K ;;

27 Ret (dec ctxt key)).

28

29 Definition Real (I O : q.-tuple (chan m))

30 (leak : q.-tuple (chan c))

31 (ok : q.-tuple (chan TUnit)) :=

32 K <- new k ;;

33 send <- newvec q @ c ;;

34 recv <- newvec q @ c ;;

35 [||

36 FKey K;

37 alice I k send;

38 bob recv K O;

39 Auth q c send recv leak ok

40 ].

Figure 2: Authenticated-to-secure network protocol in IPDL.

1 Definition Sim

2 (leakI : q.-tuple (chan 0)) (okI : q.-tuple (chan TUnit))

3 (leakR : q.-tuple (chan c)) (okR : q.-tuple (chan TUnit))

4 :=

5 K <- new key ;;

6 [||

7 K ::= (Samp genK) ;

8 \||_(j < q) (leakR ## j) ::=

9 (_ <-- Read (tnth leakI j);;

10 key <-- Read K;;

11 e <-- Samp (enc [tuple of nseq _ false] key);;

12 Ret e);

13 \||_(j < q) (okI ## j) ::= (x <-- Read (okR ## j) ;;

14 Ret x)

15 ]

Figure 3: Simulator for the authenticated-to-secure network
example in IPDL.
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Ideal World + Sim Simplified Ideal World

Real World (RW) Simplified RW Simplified RW
+ Message-free Ciphertext

Decryption Correctness CPA Security

Figure 4: Outline of proof for our Secure Network example in IPDL.

world, the attacker learns any ciphertexts Alice sends through
the leak channels, but in the ideal world, the attacker learns
only the timing of each message. In both the real and ideal
worlds, the attacker may use the ok channels to schedule the
delivery of each message.

Definition of the simulator. The simulator is shown in Fig-
ure 3. We describe the simulator informally. It is parame-
terized by four vectors of channels: two, leakI and okI,
communicate with the ideal world; and two, leakR and okR

communicate with the real world. The simulator must do two
things: it must receive timing information for the jth message
through leakI, and produce a real-looking ciphertext along
leakR; and it must receive scheduling information along okR,
and produce scheduling information along okI.

To produce the real-looking ciphertexts for leakR, the
simulator first generates a key channel K, similar to the real
world, and samples K using genK (Line 6). Then, when it
receives timing information for the jth message through
leakI (Line 8), encrypts the all-zeroes message using K

(Line 10), and outputs the ciphertext along the jth channel
of leakR. (The all-zeroes message is encoded in Coq by
[tuple of nseq _ false].) This simulation is success-
ful, since ciphertexts reveal no information about the message
if the encryption scheme is CPA secure. Finally, the simulator
may simply forward all scheduling decisions for from okR to
okI (Line 12).

Proof of security. Once the simulator is constructed, we
compose the ideal world with the simulator using locally gen-
erated channels and ask whether the result is approximately
equivalent to the real world. This equivalence judgement
proves that the adversary’s view (leakR and okR), as well
as Alice and Bob’s view (I and O) cannot be distinguished
between the two protocols. In the following theorem, ~= is
the Coq notation for the approximate equivalence judgement

in IPDL (written on paper as δ
=).

1 Theorem AutSec_Security I O leakR okR :

2 real I O leakR okR ~=

3 (leakI <- newvec q @ 0 ;;

4 okI <- newvec q @ TUnit ;;

5 [||

6 ideal I O leakI okI;

7 Sim leakI okI leakR okR

8 ].

We now outline the IPDL proof required to prove the above
theorem. The proof is outlined in Figure 4, and contains a
number of steps:

1. Simplifying the ideal world with simulator: We first ap-
ply a number of equational rewrites to the ideal world. In
effect, these equational rewrites will inline the behavior
of the simulator into the ideal functionality. Recall from
Figure 1 in Line 10 that the jth channel of O reads from
the jth channel of ok, which for our ideal functionality
is named okI. However, the simulator from Figure 3 in
Line 13 forwards the value along the jth channel of okR
into okI. In this instance, we can fold the definition of
okI into O, which rewrites O so that it reads from okR di-
rectly. Since the internal channel okI is now now longer
used, we may eliminate it from the protocol. IPDL is
specifically designed to perform these kinds of rewrites,
and do so in a succinct manner.

After doing the same inlining step for the internal chan-
nel leakI, we receive the following protocol:

1 K <- new k ;;

2 [||

3 K ::= Samp genK;

4 \||_(j < q) (leakR ## j) ::=

5 (key <-- Read K ;;

6 _ <-- Read (I ## j) ;;

7 c <-- enc [tuple of nseq _ key] key ;;

8 Ret c);

9 \||_(j < q) (O ## j) ::=

10 (_ <-- Read (okR ## j) ;;

11 msg <-- Read (I ## j) ;;

12 Ret msg)

13 ]

2. Simplifying the real world: After simplifying the ideal
world, we perform similar inlinings in the real world.
Specifically, we inline the definition of send (coming
from Alice) into the authenticated network, and inline
the definition of recv (coming from the authenticated
network) into Bob. Once we do so, we get that the value
of Bob’s output is equal to the decryption of Alice’s
generated ciphertext. To simplify Bob’s output we apply
an axiom which models the correctness of decryption for
the encryption scheme. The axiom allows us to perform
an equational rewrite to each of Bob’s output channels
in O, and transform it to the reaction that simply reads
the message from I.
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3. Applying CPA security in the real world: When we apply
the rewrites in Step 2, we receive the following protocol:

1 K <- new k ;;

2 [||

3 K ::= Samp genK;

4 \||_(j < q) (leakR ## j) ::=

5 (key <-- Read K ;;

6 msg <-- Read (I ## j) ;;

7 c <-- enc msg key ;;

8 Ret c);

9 \||_(j < q) (O ## j) ::=

10 (_ <-- Read (okR ## j) ;;

11 msg <-- Read (I ## j) ;;

12 Ret msg)

13 ]

Note that this protocol is almost the same as the simpli-
fied ideal world from Step 1: The behavior along the O
channels are exactly the same, but the behavior of the
leakR channels here encrypts the real message, while
the protocol in Step 1 encrypts the filler message.

To prove these two protocols equivalent, we first apply a
congruence rule, which allows us to factor out the com-
mon behaviors for O, and focus only on the equivalence
of the leakR channels between the real and ideal worlds.
At this point, we can directly apply our equational axiom
for CPA security, which states that no adversary can tell
the difference between encryptions of arbitrarily chosen
messages from encryptions of filler messages (given that
they key is secret). This axiom applies directly to our
two worlds, which finishes the proof.

3 Core Logic

In this section, we describe the core calculus of IPDL in
detail, along with its semantics. Sections 3.1, 3.2, and 3.3
describe the syntax, typing rules, and equational logic of IPDL.
In Sections B and B.1 we describe the semantics of IPDL
protocols and their interaction with adversaries.

3.1 Syntax
The syntax of IPDL is shown in Figure 5. All data types τ in
IPDL are assumed to have a bitstring length |τ|, along with an
interpretation JτK : {0,1}|τ|. For our examples, we assume a
unit type, booleans, products, and bitstrings of a given length
n ∈ N, along with their standard bitstring interpretations.

Protocols in IPDL are composed of expressions, distribu-
tions, reactions, and protocols. Expressions are built out of
collection of function symbols f(e1, . . . ,en), with an assumed
typing rule and interpretation mapping bitstrings to bitstrings
(of the appropriate lengths, depending on the type of f). For
clarity, we show the standard connectives for unit, bool, prod-
ucts, and bitstrings (not shown).

Distributions represent probabilistically determined mes-
sages. Along with distribution symbols D(e1, . . . ,en) which,

Variables x
Channels c
Channel Sets I,O,C ::= {c1, . . . ,cn}
Data Types τ ::= unit | bool | τ1× τ2

| bits(n) (with n ∈ N)
| . . .

Variable Contexts Γ ::= x1 : τ1, . . . ,xn : τn
Channel Contexts ∆ ::= c1 : τ1, . . . ,cn : τn
Expressions e ::= x | tt | true | false

| if e then e1 else e2
| (e1,e2) | fst(e) | snd(e)
| f(e1, . . . ,en)

Distributions D ::= 1e | x : τ← D1; D2
| Unif(τ) | D(e1, . . . ,en)

Reactions R ::= Ret e
| Samp D
| Read c
| x : τ← R1; R2

Protocols P,Q ::= c := R | P1 || P2
| νc : τ. P | 0

Figure 5: Syntax of IPDL Protocols.

similarly to function symbols, have a type and an interpreta-
tion, we assume the unit distribution 1e, monadic bind, and
the uniform distribution Unif(τ) for any IPDL type τ. Distri-
butions are assumed to always have unit mass.

Reactions can be seen as effectful programs which may
sample from probability distributions and read from channels.
Reactions themselves also carry a monadic structure. reaction
with no variables is called closed; a reaction with no reads is
necessarily equal to a sampling. Note that reactions may not
contain any control flows themselves; thus, all effects which a
reaction may perform are statically determined. Reactions in-
tuitively have a semantics mapping valuations on channels to
either distribution on return values or an error (if the required
input channels do not have values set yet.)

Finally, a protocol is an interacting network of reactions. A
protocol can either be defined by assigning a closed reaction
to a channel, a parallel composition, the spawning of a new,
fresh channel, or the zero protocol 0.

3.2 Typing
Typing Γ ` e : τ for expressions and Γ `D : τ for distributions
is standard. The typing ∆; Γ ` R : I→ τ for reactions is shown
in Figure 6; it says that R is a reaction reading from channels
in I and returning a distribution of type τ, if successful. The
channel context ∆ declares the channels available for sending
and receiving messages (we note that ∆ stays unchanged
throughout the typing judgement), and the variable context Γ

is used for constructing messages.
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Γ ` e : τ

∆; Γ ` Ret e : /0→ τ
RET

Γ ` D : τ

∆; Γ ` Samp D : /0→ τ
SAMP

∆ ` c : τ

∆; Γ ` Readc : {c}→ τ
READ

∆; Γ ` R1 : I1→ τ1 ∆; Γ,x : τ1 ` R2 : I2→ τ2

∆; Γ ` x : τ1← R1; R2 : I1∪ I2→ τ2
BIND

Figure 6: Typing for Reactions.

Typing for programs has the form ∆ ` P : I→ O, where I
and O are finite sets of channel names denoting inputs and
outputs, respectively. The typing rules for IPDL are given
in Figure 8. Rule RCT states that the inputs and outputs to
a reaction c := R are given by set I of the channels R reads
from except c, and the single channel c, respectively. The
most subtle rule is PAR, which states that P || Q is well-typed
if P and Q have disjoint outputs; and if so, then the inputs of
P || Q are inputs of either P or Q (or both) that do not appear
as outputs in the other program, and the outputs of P || Q are
the outputs of P or Q. This rule bears a close resemblance to
typed approaches to module linking; e.g., as in [23]. We note
that ∆ ` I→ O implies I∩O = /0.

Typing Γ ` e : τ for expressions and Γ ` D : τ for distribu-
tions is standard. The typing ∆; Γ ` R : I→ τ for reactions is
shown in Figure 6; it says that R is a reaction reading from
channels in I and returning a distribution of type τ, if success-
ful. The channel context ∆ declares the channels available
for sending and receiving messages (we note that ∆ stays un-
changed throughout the typing judgement), and the variable
context Γ is used for constructing messages.

Typing for protocols has the form ∆ ` P : I→ O, where I
and O are finite sets of channel names denoting inputs and
outputs, respectively. The typing rules for IPDL are given
in Figure 8. Rule RCT states that the inputs and outputs to
a reaction c := R are given by set I of the channels R reads
from except c, and the single channel c, respectively. The
most subtle rule is PAR, which states that P || Q is well-typed
if P and Q have disjoint outputs; and if so, then the inputs of
P || Q are inputs of either P or Q (or both) that do not appear
as outputs in the other program, and the outputs of P || Q are
the outputs of P or Q. This rule bears a close resemblance to
typed approaches to module linking; e.g., as in [23].

3.3 Equational Logic
The main feature of IPDL is that we are enabled to reason
equationally about protocols using rewrite rules. To obtain
computational soundness, our equational logic tracks the ad-
versary’s run time and computational error incurred during
the proof.

At the level of expressions, we assume a user-defined equa-
tional theory supporting judgements of the form Γ ` e1 = e2 :
τ for well-typed e1 and e2. We assume a similar judgement
Γ ` D1 = D2 : τ for distributions. We assume that equality
(both for expressions and distributions) is well-behaved with
respect to substitution. For distributions, we additionally as-
sume the equational theory for commutative monads as well
as the weakening rule:

Γ ` D1 : τ x /∈ D2

Γ ` x : τ← D1; D2 = D2

We now describe the equational theory for reactions, simi-
larly written Γ`R1 =R2. Most rules are standard, and encode
the equational theory of commutative monads. We highlight
the most interesting rules here, and leave the rest for the ap-
pendix in Figure 10. We first have two rules for relating the
monadic structure of reactions and distributions:

∆; Γ ` Samp
(
x : τ1← D1; D2

)
=
(
x : τ1← Samp D1; Samp D2

) [SAMPBIND]

∆; Γ ` Samp 1e = Ret e
[SAMPRET]

Next, we have the contraction rule, stating that reading
from the same channel twice is equivalent to reading it once:

∆; Γ `
(
x : τ1← Read c; y : τ1← Read c; R

)
=
(
x : τ1← Readc; R[y/x]

) [CONTR]

For protocols, we have the judgement ∆ ` P δ
= Q, which

states (informally) that any computational adversary (called
the “environment” in UC [15]) with running time at most k
cannot distinguish interaction with P from Q with advantage
greater than δ(k). Here, δ : N→ R is an error, which maps
adversary running times to an upper bound on distinguishing
advantage. Since greater computation power allows the adver-
sary to gain distinguishing advantage, we assume throughout
that δ is an increasing function. We allow user defined axioms
for (approximate) program equivalences, which are used to
define assumptions on the security of a cryptosystem or hard-
ness assumption. The equational theory of programs is given
in Figure 7. Our judgement is directly inspired from the work
on Task-PIOA [17]. We will write ∆ ` P = Q for the special
case of exact equality when δ is the constant zero function.

We now discuss a selection of the rules from Figure 7.
The most important rule is [COMPCONG], which states that
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∆ ` P = P
[REFL]

∆ ` P1
δ
= P2

∆ ` P2
δ
= P1

[SYM]
∆ ` P1

δ1= P2 ∆ ` P2
δ2= P3 δ3 = δ1 +δ2

∆ ` P1
δ3= P3

[TRANS]

∆1,x : τ1,y : τ2,∆2 ` P1
δ
= P2

∆1,y : τ2,x : τ1,∆2 ` P1
δ
= P2

[EXCHANGE]
∆ ` P1

δ
= P2 x /∈ ∆

∆,x : τ ` P1
δ
= P2

[WEAKENING]

∆; · ` R1 = R2

∆ ` (c := R1) = (c := R2)
[REACTCONG]

∆ ` P δ
= Q : I→ O axiom

∆ ` P δ
= Q

[AXIOM]

∆ ` P1
δ
= P2 Q b-bounded δ

′(k) = δ(ccomp ∗ |∆| ∗max(k,b))

∆ ` P1 || Q
δ′
= P2 || Q

[COMPCONG]
∆,c : τ ` P δ

= Q

∆ ` νc : τ. P δ
= νc : τ. Q

[NEWCONG]

∆ ` P1 || P2 = P2 || P1
[COMPSYM]

∆ ` (P1 || P2) || P3 = P1 || (P2 || P3)
[COMPASSOC]

∆ ` P : C→ /0 C ⊆ I∪O
∆ ` P || Q = Q

[ABSORBCOMP]
c /∈ P

∆ ` P || νc : τ. Q = νc : τ. P || Q
[COMPNEW]

∆ ` νc1 : τ1. νc2 : τ2. P = νc2 : τ1. νc1 : τ2. P
[NEWEXCHANGE]

x /∈ R2

∆ `
(

c1 :=
(
x : τ0← Read c0; ; R1

)
||
(
c2 :=

(
y : τ2← Read c1; ; R2

)))
=
(

c1 :=
(
x : τ1← Read c0; ;R1

)
||
(
c2 :=

(
x : τ0← Read c0; ; y : τ1← Read c1; ; R2

)))
[RESOURCETRANS]

c1 /∈ ∆ c1 /∈ R1 c1 /∈ R2

∆ `
(

νc1 : τ1. c1 := R1 || c2 :=
(
x : τ1← Read c1; ; R2

))
=
(

c2 :=
(
x : τ1← R1; ; R2

)) [UNFOLD]

∆ `
(
x : τ1← R1; ; y : τ1← R1; ; Ret(x,y)

)
=
(
x : τ1← R1; ; Ret(x,x)

)
∆ `

(
c1 := R1 || c2 :=

(
x : τ1← Read c1; ; R2

))
=
(

c1 := R1 || c2 :=
(
x : τ1← R1; ; R2

)) [SUBSTITUTION]

x /∈ R2

∆ `
(

c1 := R1 || c2 :=
(
x : τ1← Read c1; ; R2

))
=
(

c1 := R1 || c2 :=
(
x : τ1← R1; ; R2

)) [UNUSEDRESOURCE]

Figure 7: The IPDL proof system for protocol equivalence.

∆ ` 0 : /0→ /0
ZERO

∆; · ` R : I→ τ ∆ ` c : τ

∆ ` (c := R) : I \{c}→ {c}
RCT

∆,c : τ ` P : I→ O∪{c} c /∈ I c /∈ O
∆ ` νc : τ. P : I→ O

HIDE

∆ ` P : I1→ O1 ∆ ` Q : I2→ O2 O1∩O2 = /0

I = (I1∪ I2) \ (O1∪O2) O = O1∪O2

∆ ` P || Q : I→ O
PAR

Figure 8: Typing Rules for Protocols.

if P1 is approximately equivalent to P2, then for any Q (of
the appropriate type), P1||Q is approximately equivalent to
P2||Q. This is the rule that enables modular reasoning in IPDL.
To reason about the error incurred by using this rule, we
define the notion of b-boundedness: an IPDL program Q is
b-bounded if, intuitively, its behavior can be simulated with
a probabilistic algorithm with at most b time steps (defined
formally in B). Given this notion, the rule [COMPCONG]
changes the attacker’s running time to O(|∆| ∗max(k,b));
this is because the attacker for P1 (and P2) must simulate the
behavior of Q, which increases its running time.

Similarly, [HIDECONG] states that δ
= forms a congruence

under the spawning of a new channel. Rule [HIDECOMP]
states that our hiding operator commutes with parallel com-
position, under the assumption that no extra channels are af-
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fected. We note that this rule is closely related to the concept
of scope extrusion in the π-calculus (i.e., as in [34]).

Rule [RESOURCE TRANS] states that if c0 is an input to the
reaction defining c1, and c1 is an input to the reaction defining
c2, then we may freely add c0 to the inputs of c2.

The last three rules specify under what conditions we may
replace a read from a channel c by the reaction R defining it.
The first scenario in which this is sound is when the reaction
R is non-probabilistic – this is rule [SUBST]. The second
case when we may replace a read from c by the reaction R
is when the value read from c is in fact never used – this
is rule [UNUSEDRESOURCE]. Lastly, we may perform this
replacement if the channel c is read from in precisely one
place – this is rule [UNFOLD]. Reading from right to left,
this rule also serves to relate the monadic bind at the level of
reactions to the parallel composition of programs.

3.4 Semantics
We now informally describe our semantic model for IPDL,
as well as our proof of soundness. Technical details can be
found in Section B. We interpret each IPDL program P as an
I/O automaton, which is a probabilistic transition system that
can deliver outputs and react to inputs.

IPDL equivalence judgements are proven sound relative to
a semantic adversary, who is formulated as a dual automaton
(along with some extra data). The adversary is responsible
for interacting with the protocol, choosing the order in which
outputs occur, and eventually outputting a decision bit after
some k number of rounds. We define k-bounded adversaries
to be those which run for k rounds, and each round may only
take k time steps in its internal transition functions. 3 Given a
k-bounded adversary A and IPDL program P, we write A(P)
to mean the distribution on booleans defined by letting A and
P interact for k rounds, and observing the decision bit of A.
We stress that our automata model, and thus our adversarial
model, is not limited to the syntax of IPDL, but instead can
describe arbitrary behaviors, including conditional branching
and other forms of control flow.

Soundness. Our soundness theorem states that whenever
∆ ` P δ

=Q, any k-bounded adversary has an advantage at most
δ(k) in distinguishing P from Q. Note here that δ is derived
from a proof in our logic, and will consist of the sum of a
number of errors incurred by applying IPDL axioms.

Theorem 1. Suppose ∆`P : I→O and ∆`Q : I→O are two

IPDL programs such that ∆ ` P δ
= Q. Then for all k-bounded

adversaries A, |Pr[A(P) = 1]−Pr[A(Q) = 1]| ≤ δ(k).

The proof of Theorem 1 is given in Section B. We now
give some detail about the proof. For the rules with error zero,

3Without loss of generality we take k be the upper bound on the adver-
sary’s running time per round and the number of rounds.

we employ bisimulation arguments, to directly show the two
protocols have the same behaviors. For the [COMPCONG]
rule, we must transform an arbitrary adversary A for the com-
position P1||Q to an adversary A||Q for the protocol P1. The
bound ccomp ∗ |∆| ∗max(k,b) comes directly from the proof.

4 Parameterized Programs and Computa-
tional Soundness

In this section, we consider parameterized protocols: fami-
lies of IPDL protocols {Pj}, ranging over some index set j.
Parametrization in IPDL can be used to encode the number of
parties (e.g., our n-party coin flip with abort example), num-
ber of reactive sessions (e.g., our secure network example),
as well as for ranging over more complicated index sets (e.g.,
for expressing arbitrary circuits in our GMW example). In
Section 4.1, we describe how Theorem 1 applies to PPT adver-
saries and computational indistinguishability. In Section 4.2,
we describe some derived equational rules for reasoning about
parameterized programs.

4.1 Soundness for PPT Adversaries
While our core logic in Section 3 does not reason about pa-
rameterization, we show here that we can use the logic to
reason about protocols which depend on a security parameter.
In this section, we consider parameterized IPDL protocols of
the form {Pλ}, parameterized by a security parameter λ ∈ N.
Similarly, we consider families of channel contexts {∆λ}, and
families of errors {δλ}.

We lift computational indistinguishibility to parameterized
IPDL protocols in a straightforward manner. First, note that
the family of errors {δλ} can be seen as a two-place function:
the first argument is the security parameter, while the second
is the adversary’s running time. Correspondingly, we say that
the family {δλ} is negligible if for all polynomials p, δλ(p(λ))
is a negligible function of λ. We define PPT adversaries
to be families of adversaries {Aλ} such that there exists a
polynomial p where Aλ is p(λ)-bounded. Then, we have the
following corollary immediate from Theorem 1:

Corollary 1. Suppose that ∆λ ` Pλ δλ

= Qλ, and the family
{δλ} is negligible. Then, for any PPT adversary {Aλ}, the
quantity

|Pr[Aλ(Pλ) = 1]−Pr[Aλ(Qλ) = 1]|

is a negligible function of λ.

The (parameterized) error parameter {δλ} may grow in
IPDL for two reasons: either by applying an axiom, or by
applying the [COMPCONG] rule, which grows the adversary’s
runtime by the runtime of the common context. As long as
the proof has polynomially many rewrites, the error family
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for each axiom is negligible, and the runtime of each context
for the [COMPCONG] rule is polynomial, we are guaranteed
that {δλ} is a negligible family of errors.

4.2 Derived IPDL Constructs and Equations

We now turn to reasoning principles in IPDL for parameter-
ized programs. To build parameterized programs systemati-
cally, we introduce two pieces of syntactic sugar on top of
the core IPDL syntax. Let n ∈ N be a variable in the ambient
meta-logic. First, vectorized channel generation, ν

−→v n : τ. P,
generates a fresh vector of channels {vi}i∈{1...n} for use in
protocol P. Second is the notation || j∈J Pj for composing a
family of protocols Pj together, for all j in some finite index
set J. Both pieces of syntactic sugar are reflected in our Coq
formalization, as seen e.g. in Section 2. While each Pj must be
an IPDL program, we emphasize that the mapping j 7→ Pj and
the index set J are all defined in the ambient logic and may
make use of arbitrary set theoretic reasoning. This reflects
our Coq formalization, which uses the bigop and fintype

libraries from ssreflect [25] to manage parameterized compo-
sition and index sets of bounded natural numbers.

Derived IPDL rules. We additionally introduce a number
of derived rules for IPDL for reasoning about parameterized
programs. We describe the most important rules here, and
leave the rest for Figure 11 in the Appendix.

One of our most widely used rules is [EQBIG], which states
that parameterized composition is a congruence, which states
that in order to prove that || j∈J Pj is equivalent to || j∈J Q j, it
suffices to show that Pi is equivalent to Qi for each i ∈ J.

Next, we have a number of rules involving manipulating
the index sets for parameterized composition, directly in-
spired from the bigop library. Most importantly, we have
that we can arbitrarily split up compositions: any composition
|| j∈J Pj can be split into the composition of || j∈J∩K Pj and
|| j∈J∩K̃ Pj, where K̃ is the complement of K. We additionally
have that composition is compatible with parameterized com-
position: that is, || j∈J Pj composed with || j∈J Q j is equivalent
to || j∈J(Pj || Q j).

Finally, we describe our most powerful rule, [HYBRID]:

∀k < n,Γ ` ( ||
j<k

Pj)||R = ( ||
j<k

Q j)||R

⇒ Γ ` ( ||
j<k

Pj)||Pk||R = ( ||
j<k

Pj)||Qk||R

Γ ` ( ||
j<n

Pj)||R = ( ||
j<n

Q j)||R
[HYBRID]

This rule states that to transform one composition of a
protocol family {Pj} into another one {Q j} (say, for the index
set {0 . . .n}) in the presence of a common context R, we may
instead prove that for any k < n, if we have the composition
of {Pj} j≤k along with R, we may rewrite the last Pk to Qk.

5 Encoding in Coq

In this section, we describe our encoding of IPDL in Coq.

Basic syntax. First, we describe how we embed types, ex-
pressions, and distributions. Our encoding is shallow, mean-
ing that expressions and functions in IPDL are represented us-
ing their native Coq analogues. IPDL types are given by an in-
ductive Coq type type := TBool | TUnit | TBits (n

: nat) | TPair (t1 t2 : type). As is standard, IPDL
types in Coq come equipped with a function interpType :

type -> Type, which maps each IPDL type into its inter-
pretation as a Coq type. This mapping is standard; we use the
tuple library of ssreflect [25] to model bitstrings. We model
distributions syntactically, as finite boolean decision trees.

We now turn to channels, reactions, and IPDL protocols:

1 Axiom chan : type -> Type.

2

3 Definition Chan := {t : type & chan t}.

4

5 Inductive rxn : type -> Type :=

6 | Samp {t : type} : Dist t -> rxn t

7 | Ret {t : type} : t -> rxn t

8 | Read {t : type} (c : chan t) : rxn t

9 | Bind {t1 t2 : type} : rxn t1

10 -> (t1 -> rxn t2)

11 -> rxn t2.

12

13 Inductive WfRxn : list Chan -> rxn t -> Prop := ...

14

15 Inductive ipdl : Type :=

16 | prot0 : ipdl

17 | Out {t} (c : chan t) : rxn t -> ipdl

18 | Par : ipdl -> ipdl -> ipdl

19 | New t : (chan t -> ipdl) -> ipdl.

To model channel binding in Coq, we opt for the weak
HOAS approach [19], which models channels through a type-
indexed abstract Coq type, given by an axiom. Since chan-
nels have type tags, we use a dependent sum to speak about
the collection of all channels, Chan. Reactions are encoded
monadically, as in Section 3. For ease of use, we adopt the
usual monadic syntax x <-- r ;; k to represent monadic
binds. For convenience, we do not enforce that reactions are
well-typed through the Coq type system, but instead embed
the typing judgement in the proposition WfRxn: if WfRxn G r

holds, then r performs exactly the reads as specified through
the sequence of channels G. This encoding is faithful to the
syntax in Section 3, which does not allow pattern matching or
branching at the level of reactions: since WfRxn enforces that
all Read effects must be identical in all branches, the reaction
is equivalent to one without reaction-level branching.

Finally, in Line 17, we encode IPDL programs through
the datatype ipdl. In the datatype we use syntax Out and
Par, but these are also captured by the Coq notations ::=

and || respectively. Since we use weak HOAS, we are
enabled to encode channel binding in New through an or-
dinary Coq function. We allow use of the more natural
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syntax x <- new t ;; P. As is standard [19], this en-
coding requires us to additionally encode the predicate
chansOf : ipdl -> Chan -> Prop to model the free
variables of IPDL programs, since we cannot soundly as-
sume decidable equality of channels. We provide tactics for
(mostly) automatically discharging goals involving chansOf

and related constructions.

Typing judgements. We similarly encode the typing judge-
ment of IPDL programs through an inductive datatype. It
follows the same rules as in Section 3, except for the ν op-
erator for local channel generation. Since we cannot directly
assume a specific channel is globally fresh in Coq (e.g., as in
nominal calculi [4]), we parameterize the typing judgement
by a finite collection of channels X and assume that the new
channel c is only fresh against the channels in X.

Equational theory. We encode equivalences of reactions
and IPDL programs through the inductive datatypes EqRxn
and EqProt, respectively. Our libraries for IPDL make heavy
use of Coq’s support for setoid rewriting to enable easy proofs.
Their definitions closely follow the rules in Section 3, except
for the following differences: 1) we do not reason about a
separate monadic bind operator for distributions and reactions,
but only the one for reactions; 2) we give ourselves the liberty
to include a few derived rules for managing channel depen-
dencies and reasoning about probability distributions; 3) our
Coq implementation currently does not reason about compu-
tational error (i.e., the δ parameter). We plan on introducing
reasoning about computational error and protocol run time to
a future iteration of our implementation.

Encoding of parameterized protocols. One of the major
strenghts of our Coq encoding is that we are able to write ar-
bitrary Coq programs to generate IPDL protocols, effectively
using Coq as a meta-programming environment for IPDL. Fol-
lowing Section 4, we use the bigop library from ssreflect [25]:
we model parameterized composition || j∈J Pj using the syn-
tax \||_(j < n | p j) f j where f is a function of type
'I_n -> ipdl, and 'I_n is the type of natural numbers less
than n. While we do have support for more general index sets
– as in the bigop library, we support using sequences for index
sets, as well as general finite types – we only use bounded nat-
ural numbers for our proof developments. We model parame-
terized channel generation ν

−→v n : τ. P through the notation
x <- newvec n @ t ;; P, which is defined by induction
on n. Here, the type of x is n.-tuple (chan t), or the type
of lists of length exactly n. This type is borrowed from the
tuple library of ssreflect. All the derived rules in Section
4 are implemented as lemmas in Coq, proven from the basic
equational rules of IPDL.

6 Case Studies

In this section, we briefly describe all case studies we have
mechanized in IPDL. We defer more detailed description to
Appendix C, including Coq sources for selected protocols.

6.1 Case Studies
Multi-use secure network. Our first case study is a multi-
use secure network, and we refer the reader to the earlier
Section 2 for more details. 4

Semi-honest OT constructions. In (1-out-of-2) OT, there
is a sender who has a pair of messages m0 and m1, and a
receiver who has an index bit i. The ideal functionality for
OT receives these three protocol inputs, and returns to the
receiver mi. The sender receives no protocol output. All OT
protocols we consider are in the semi-honest setting, in which
the adversary observes corrupted parties’ private data, but
cannot harm integrity. We encode semi-honest security in
IPDL by annotating each corrupted party with explicit leakage
channels for the adversary, and extending their protocol code
appropriately.

We verify three OT protocols: OT from trapdoor permuta-
tions, the OT construction by Goldreich et al. [24], a simple
preprocessing scheme for OT [1, 11], and construction of 1-
out-of-4 OT from 1-out-of-2 OT [2,36]. All OT constructions
are roughly of the same complexity, and emphasize different
parts of the system; in particular, the proofs for OT often
require complex rerandomization steps, in which we trans-
form uniform randomness to eliminate channel dependencies.
More details about all OT protocols is given in Section C.1.

Semi-honest, two-party GMW protocol. Our second ma-
jor case study for IPDL is the GMW protocol [24], a semi-
honest secure multiparty computation protocol over bits based
on secret sharing. First, we model boolean circuits in Coq as
follows:

1 Inductive Op (A B k : nat) :=

2 | InA : 'I_A -> Op A B k

3 | InB : 'I_B -> Op A B k

4 | And : 'I_k -> 'I_k -> Op A B k

5 | Xor : 'I_k -> 'I_k -> Op A B k

6 | Not : 'I_k -> Op A B k.

7

8 Definition Circ A B n := forall (k : 'I_n), Op A B k.

9

10 Definition CircOutputs n o := o.-tuple ('I_n).

Above, we first introduce the type Op A B k of operations
which may make use of all of Alice’s inputs (numbered
0 . . .A−1), Bob’s inputs (numbered 0 . . .B−1), and all wire
IDs from 0 to k−1. We then define a circuit to be a mapping

4 While our example reasons only about a fixed size of message, it is
straightforward to adapt our example to the variable length case by consider-
ing a type of messages up to a given length.
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from all wire IDs j < n to an operation which may make use
of all wires up to j−1. This definition of boolean circuits is
equivalent to a more ordinary, inductively defined variant, but
is nicer to work with in proofs. Our circuits support multiple
outputs, which are modeled through a finite mapping from
wire IDs to output IDs, which we define using a o.-tuple,
or fixed-size list of length o. (We assume the same outputs
for each party.)

We describe how we encode the ideal/real protocol of
GMW in Appendix C.3.

Coin flip with abort. This protocol allows n mutually
distrusting parties to collaboratively generate fair random-
ness [14]. To do so, each party locally generates a bitstring
uniformly from {0,1}k and sends a cryptographic commit-
ment of the bitstring to all other parties. We assume a broad-
cast channel for the commitments to prevent equivocation.
Once all other commitments have been collected, each party
opens their respective bit, and all parties output the collective
XOR of all opened bitstrings. We model the commitment
and broadcast channels using a standard UC commitment
functionality, which prevents equivocation by construction.
Our proof is secure in the malicious model. Modeling details
about the protocol are given in depth in Section C.4.

6.2 Proof Effort

In Figure 9, we outline the lines of code needed for each
case studies considered. Our simplest example is our secure
network example from Section 2, which consists of a number
of simple rewriting steps along with the application of two
IPDL axioms. Our OT examples, while simple to define, take a
modest effort to prove, with the largest proof being the 1-4 OT
at 749 lines of code. While the number of lines is moderate,
the complexity of the proof script is low: most of the lines
consist of repetitive tactic invocations as well as intermediate
rewriting steps being explicitly defined as hybrids. It is likely
that proofs like these can be further automated with additional
engineering effort. Our most complex examples are the GMW
protocol and the n-Coin Flip, both of which have proofs of
less than 2000 lines of code. Out of the 1995 lines of code for
the n-Coin Flip, 345 of them were definitions of intermediate
hybrids while the rest were either proof scripts or auxiliary
lemmas.

We compare our proof effort with related mechanization
efforts in Section 1.

7 Additional Related Work

More detailed comparison with Bana-Comon. A promis-
ing direction ( [8], [9], [7]) for protocol verification is initiated
by Bana and Comon, where the attacker is not limited by in-
teracting with idealized cryptography, but instead constrained

Case study LoC (Definitions) LoC (Proof)
Secure Network 73 122
Trapdoor OT 75 568
Preprocessing OT 40 249
1-4 OT 88 749
n-Coin Flip 100 1995
GMW 324 1397

Figure 9: Case studies considered and lines of code.

by a number of logical axioms which state what the attacker is
not able to do. While this framework has made advances com-
pared to symbolic systems, there is to date no publicly avail-
able mechanization of their framework. While some IPDL
proofs can likely be automated using these techniques, we an-
ticipate that our more complicated parameterized proofs (e.g.,
inducting over circuits, handling n parties) would require sig-
nificant engineering effort similar to ours to mechanize using
their framework. Indeed, the strength of our parameterized
approach is derived from the usage of a general-purpose theo-
rem prover for defining parameterized protocols; this has no
counterpart yet in the Bana-Comon framework.

Frameworks for cryptographic protocols. In the cryptog-
raphy literature, Universal Composability [15] and Construc-
tive Cryptography [30] are the two dominant definitional
frameworks for simulation-based security. Several automata-
based frameworks also exist, such as [6] and [16], which,
while similar in spirit, aim for a more formal treatment. Addi-
tionally, some works use process calculi to model computa-
tional cryptographic protocols, such as [35]. A recent effort to
formalize the semantics of UC is ILC [27]. While a useful step
towards giving formal reasoning support for UC, it does not
yet provide support for verification. Additionally, a number
of works formalize standalone (non-UC) proofs of interactive
protocol security using special-purpose embeddings of pro-
tocols into Easycrypt. For example, [26] gives an on-paper
reduction of the security of Maurer’s MPC protocol [29] to a
certain trace property which is directly verified in Easycrypt

An interesting alternative framework is given in Miccian-
cio and Tessaro [33] (hereafter M&T), where they use com-
plete partial orders to represent cryptographic protocols as
the least fixed point of a recursive set of equations. There
is some amount of conceptual overlap between M&T and
IPDL: their monotonicity requirement (that further inputs can
only create more outputs) is similar to our encoding of pro-
tocols, which cannot make use of non-determinism through
observing scheduling decisions. However, the framework is
not mechanized, and cannot reason about computational error.
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A Future Work

The first direction of future work for IPDL is to increase its
expressivity while still retaining the equational flavor of its
logic. For example, support for adaptive corruption and more
flexible control flows would be interesting.

An exciting future direction is to integrate IPDL with an un-
derlying battle-hardened cryptographic proof system (such as
EasyCrypt [10]) which may enable more expressiveness, thus
achieving ease-of-use and generality simultaneously. Other
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exciting future directions include to provide a greater degree
of proof automation, compiling IPDL programs to executable
code (e.g., in C) and proving the correctness of the compila-
tion. We anticipate that IPDL could also be seen as an equa-
tional interface for more expressive tools such as EasyUC [18]
or CryptHOL [28]. Additionally, it would be interesting to
combine IPDL with ILC [27], n programming language for
UC semantics.

B Semantics

In this section, we give semantics to well-typed IPDL pro-
grams. Every type can be straightforwardly interpreted as the
set of bitstrings of a certain length; if c is a channel declared
in a typing context ∆, we will write |c| for the length of bit-
strings assigned to c and by abuse of notation we will use
natural numbers n to stand for the set of bitstrings of length n.
Analogously to types, we interpret variable typing contexts Γ

as natural numbers, again corresponding to a set of bitstrings
of the specified length. We interpret channel typing contexts
∆ as mappings of channel names c to natural numbers |c|,
specifying that a given channel will carry bitstrings of the
given length.

We first describe our semantic model of I/O automata. Let
∆ be a channel context, as above. Then, an I/O automaton
consists of the following data, for I and O disjoint sets of
channels which form ∆:

• a finite set St of states

• a start state s? : St

• a valuation function St× (o : O)→ 1+ |o|

• an input transition function St× (Σi:I |i|)→D(St)

• an output transition function St× (o : O)→D(St)

The valuation function tells us the value of the output o, if
any, in a given state. The input transition function takes a
state s and an assignment i := v, where v is a value of the
correct type, and returns a distribution on states. The output
transition function takes a state s and an output o, and returns
a distribution on states.

We write s|o for the value of the output o in state s. Given
a state s, we write 〈i := v〉 s and 〈o〉s for the distribution
resulting from performing the specified input or output. Using
the monadic bind, we can generalize this to distributions σ as
〈i := v〉σ and 〈o〉σ.

There are several canonical ways to produce new proto-
cols from old ones. For our purposes, the following three are
important:

• Given a protocol P in the typing context ∆,c 7→ |c| with
an output c, we can restrict P in the obvious way to
obtain a new protocol νc : |c|. P in the reduced typing

context ∆. The new protocol has the same states as P
but its valuation and output transition functions are now
restricted to channels from ∆.

• Given a protocol P with an output o, we define a new pro-
tocol P|o as follows: we have the same states as in P but
both before and after performing any input assignment
or output computation, we perform o.

• Given two protocols P and Q in the same typing context
with inputs I1 and I2 and outputs O1 and O2 such that
O1 ∩O2 = /0, we can define a new protocol P || Q as
follows:

– the states are pairs (s, t), where s and t are states of
P and Q, respectively

– the start state is (s?, t?), where s? and t? are the
start states of P and Q, respectively

– the valuation is defined as

* (s, t)|o := s|o if o ∈ O1

* (s, t)|o := t|o if o ∈ O2

– to perform an input assignment i := v in (s, t), we
perform i := v in s and/or t as applicable:

* If i ∈ I1 and i /∈ I2, the resulting distribution is
〈i := v〉s×1t .

* If i /∈ I1 and i ∈ I2, the resulting distribution is
1s×〈i := v〉 t.

* If i ∈ I1 and i ∈ I2, the resulting distribution is
〈i := v〉s×〈i := v〉 t.

– to compute an output o in (s, t), we compute o in
s or t, accordingly as to whether o is an output of
P or Q. If applicable, we forward the result to the
other protocol:

* If o ∈ O1 and o /∈ I2, the resulting distribution
is 〈o〉s×1t .

* If o ∈ O2 and o /∈ I1, the resulting distribution
is 1s×〈o〉 t.

* If o ∈ O1 and o ∈ I2, we draw a new state r
from 〈o〉s. If r|o = u for some u ∈ |o|, the re-
sulting distribution is 1r×〈o := u〉 t, otherwise
1r×1t .

* If o ∈ O2 and o ∈ I1, we draw a new state r
from 〈o〉 t. If r|o = u for some u ∈ |o|, the re-
sulting distribution is 〈o := u〉s×1r, otherwise
1s×1r.

For our soundness result, we also need to introduce the
concept of a channel embedding. Given two contexts ∆ and
∆′, a channel embedding θ : ∆→ ∆′ is an injective function
from the indices in ∆ to ∆′ which preverse channel typing.

We are now ready to describe the interpretation of an IPDL
program ∆ ` P : I → O. We will proceed in two steps: in
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the first step we define a one-step interpretation [[−]]1 using
the above constructs, and in the second step we define the
final interpretation [[−]] in terms of the one-step interpretation.
When asked to perform an output o, the one-step interpretation
attempts to first compute all the hidden channels that o may
directly or indirectly depend on; however, it does not yet
attempt to compute any output channels, even those that o
directly depends on. This is the job for the final interpretation.

Formally, we define [[P]]1 by induction on the structure of
P as follows:

• [[0]]1 has a unique state and no output actions

• [[o := R : τ]]1 has mappings of channel names c to bit-
strings of length 1+ |c| as states, where c is either an
input to the reaction R or the output o. The start state
maps every channel name to ⊥. Performing an input
assignment i := v in a state s amounts to setting the value
of i in s to v, if not already defined. To compute an output
o in a state s, we check if c is already defined in s; if so,
we do nothing. Otherwise we execute the reaction R in s
(yielding ⊥ if any of the required input channels are not
defined in s).

• [[P || Q]]1 := [[P]]1 || [[Q]]1

• [[νc : τ. P]]1 := νc : [[τ]]. [[P]]1|c

It is now possible to prove that for any output o, we
have [[P]]1|o|o = [[P]]1|o and for any two outputs o1,o2 we
have [[P]]1|o1 |o2 = [[P]]1|o2 |o1 . If {o0, . . . ,on} are the outputs
of P, we define the final interpretation of P to be [[P]] :=
[[P]]1|o0 . . . |on . Thus, if an output o2 depends on an output o1,
in the final interpretation the computation of o2 will take into
account the result of the computation of o2, if any.

Another important property of our semantics of IPDL is
that the |o operator is compatible with composition, in the
following sense:

Lemma 1. For any IPDL programs P and Q with dis-
joint outputs, and any output o of P, ([[P]]1||[[Q]]1)|o =
([[P]]1|o||[[Q]]1)|o.

The above lemma can be verified manually by enumerating
the cases in which o may fire in each state of the composition,
and whether o is an input of Q. A similar result holds for the
symmetric case where we add |o to Q, instead of P.

By applying the above lemma many times, we have that
[[P||Q]] = ([[P]]||[[Q]])|o1,...,ok , where o1, . . . ,ok is an arbitrary
enumeration of the outputs of P and Q.

Boundedness for IPDL programs In order to reason in
a computationally sound manner, we need to estimate the
running times of IPDL protocols. We say that an IPDL pro-
tocol Q is b-bounded when the size of the state of [[Q]] (in
bits) is bounded by b, and for each transition function of the

final interpretation [[Q]], there exists a probabilistic Turing
machine that runs for at most b time steps which computes
this function.

B.1 Adversaries
An environment or adversary for a protocol P with inputs I
and outputs O is specified by:

• a dual adversary protocol A with states St, inputs I′ ⊆O,
and outputs I ⊆ O′

• a stepping function St→D(St)

• a decision function St→ bool

• an accept function (O∪O′)→ St→ bool

• a schedule {0, . . . ,k−1}→ (O∪O′)

In particular, the adversary does not have access to the states
of the protocol. At each step, the schedule decides on perform-
ing one of the outputs (of either the protocol or the adversary).
In each case, the adversary probabilistically steps to a new
state as given by the stepping function. The adversary has the
ability to refuse the execution of any scheduled channel.

We now describe how the adversary interacts with a seman-
tic protocol P. Given a state s of the adversary, a state t of
the protocol, and an output o : O∪O′ to be performed, we
probabilistically determine a new adversary state and a new
protocol state as follows:

• We call the stepping function in state s and draw a new
adversary state r from the resulting distribution.

• If the accept function for o at s is false, the resulting
distribution is 1r×1t .

• Otherwise we ask the composed protocol A || P to per-
form o in the state (r, t), to obtain the resulting distribu-
tion 〈o〉(r, t).

We can lift this single execution step to act on distributions
of pairs (s, t) of adversary and protocol states. We inductively
perform this lifted execution step on each scheduled channel
to obtain a final distribution on pairs of adversary and protocol
states. At this point we call the decision function to turn the
resulting distribution on adversary states to a distribution on
booleans. This distribution, denoted A(P), will be the result
of the interaction between the adversary and the protocol.

We call an adversary k-bounded if:

• the states have length at most k

• the schedule has length at most k

• for each i, the corresponding input transition function is
k-bounded
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∆; Γ ` R = R
[REFL]

∆; Γ ` R1 = R2

∆; Γ ` R2 = R1
[SYM]

∆; Γ ` R1 = R2 ∆; Γ ` R2 = R3

∆; Γ ` R1 = R3
[TRANS]

Γ ` e1 = e2

∆; Γ ` Rete1 = Rete2
[RETCONG]

Γ ` D1 = D2

∆; Γ ` sample D1 = sample D2
[SAMPLECONG]

∆; Γ ` R1 = R3 ∆; Γ,x : τ1 ` R2 = R4

∆; Γ `
(
x : τ1← R1; ;R2

)
=
(
x : τ1← R3; ; R4

) [BINDCONG]
∆; Γ ` sample 1e = Rete

[SAMPLERET]

∆; Γ ` sample
(
x : τ1← D1; D2

)
=
(
x : τ1← sample D1; ; sample D2

) [SAMPLEBIND]

∆; Γ `
(
y : τ2← (x : τ1← R1; ; R2); ; R3

)
=
(
x : τ1← R1; ; y : τ2← R2; ; R3

) [BINDBIND]

∆; Γ `
(
x : τ1← Rete; ; R

)
= [e/x]R

[RETBIND]
∆; Γ `

(
x : τ← R; ; Retx

)
= R

[BINDRET]

x /∈ R2 y /∈ R1

∆; Γ `
(
x : τ1← R1; ; y : τ2← R2; ; R3

)
=
(
y : τ2← R2; ; x : τ1← R1; ; R3

) [EXCHANGE]

∆; Γ `
(
x : τ1← read c; ; y : τ1← read c; ; R

)
=
(
x : τ1← readc; ; [y/x]R

) [CONTR]

Figure 10: Equivalence of Reactions in IPDL.

• for each o, the corresponding output transition function
is k-bounded

• for each i or o, the corresponding accept function is k-
bounded

• the stepping function is k-bounded

• the decision function is k-bounded

We define a bisimulation between two comparable pro-
tocols P and Q as a binary relation ∼ on distributions on
the states of P and Q respectively, satisfying the following
conditions:

• Initial: the unit distributions on the respective initial
states of P and Q are related by ∼

• Inputs: if µ ∼ η, then for any input assignment i := v
there exist (convex) coefficients c1, . . . ,cn and distribu-
tions µ1, . . . ,µn, η1, . . . ,ηn such that µk ∼ ηk for each
k = 1, . . . ,n and

〈i := v〉µ = Σk:=1...nckµk = Σk:=1...nckηk = 〈i := v〉η

• Outputs: if µ∼ η, then for any output o there exist (con-
vex) coefficients c1, . . . ,cn and distributions µ1, . . . ,µn,
η1, . . . ,ηn such that µk ∼ ηk for each k = 1, . . . ,n and

〈o〉µ = Σk:=1...nckµk = Σk:=1...nckηk = 〈o〉η

Any bisimulation between P and Q is also a bisimulation
between P|o and Q|o, and likewise between νc : τ. P and

νc : τ. Q. Of special interest are bisimulations where µ ∼ η

implies µ = 1x and η = 1y for some states x and y (denoted
x∼ y) such that x|o = y|o for any output o. It is easy to see that
the existence of such a bisimulation between protocols P and
Q implies indistinguishablility of P and Q by any adversary
of any bound.

Validity and Proof of Soundness We say the judgement

∆ ` P δ
= Q : I → O is valid if for any channel embedding

θ : ∆′ → ∆ between channel contexts, and any k-bounded
adversary,

|Pr[A(θ [[P]]) = 1]−Pr[A(θ [[Q]])]| ≤ δ(k).

Note here that the bound we prove is invariant up to channel
embedding. This immediately implies Theorem 1, by apply-
ing the identity embedding.

We now sketch the proof of soundness for the equational
rules in our logic:

• The [REFL], [SYM], and [TRANS] rules are clear.

• The [EXCHANGE] and [WEAKENING] rules follow at
once from the invariance under protocol embeddings.

• The [REACTCONG] rule is also clear and [AXIOM] holds
by assumption.

• To prove [COMPSYM] and [COMPASSOC], we define
bisimulations by (s, t)∼ (t,s) and ((s, t),u)∼ (s,(t,u))
respectively.
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Γ ` ν
−→v n+1 : τ. P = ν

−→u n : τ. νx : τ. P[−→u x/−→v ]
[NUVEC-R]

Γ ` ν
−→v n+1 : τ. P = νx : τ. ν

−→u n : τ. P[x −→u /−→v ]
[NUVEC-L]

Γ ` ν
−→v 0 : τ. P = P

[NUVEC-0]

Γ ` ν
−→v n : τ. ν

−→w m : σ. P = Γ ` ν
−→w m : τ. ν

−→v n : σ. P
[NUVEC-COMM]

Γ,−→v n : τ ` P = Q
Γ ` ν

−→v n : τ. P =−→v n : τ. Q
[EQ-NUVEC]

∀ j ∈ J,Γ ` Pj = Q j

Γ ` ||
j∈J

Pj = ||
j∈J

Q j
[EQBIG]

Γ ` ||
j∈J

Pj = ||
j∈J∩K

Pj || ||
j∈J∩K̃

Pj
[BIGPAR-DECOMP]

Γ ` ||
j∈{k}

Pj = Pk
[BIGPAR-1]

Γ ` ||
j∈ /0

Pj = 0
[BIGPAR-0]

Γ ` ( ||
j∈J

Pj) || ( ||
j∈J

Q j) = ||
j∈J

(Pj || Q j)
[BIGPAR-PAR]

∀i j, i 6= j⇒ v.i /∈ Pj

Γ ` ν
−→v n : τ. ||

j<n
Pj = ||

j<n
(ν v : τ. Pj[v/v. j])

[BIGPAR-NU]

∀k < n,Γ ` ( ||
j<k

Pj)||R = ( ||
j<k

Q j)||R⇒ Γ ` ( ||
j<k

Pj)||Pk||R = ( ||
j<k

Pj)||Qk||R

Γ ` ( ||
j<n

Pj)||R = ( ||
j<n

Q j)||R
[HYBRID]

Figure 11: Derived rules for parameterized IPDL protocols.

• To prove [ABSORBCOMP], we define a bisimulation by
(_, t)∼ t.

• The rules [COMPNEW] and [NEWEXCHANGE] are clear
since both sides are interpreted as identical protocols.

• The rules [RESOURCETRANS], [SUBST], and
[UNUSEDRESOURCE] follow from the fact that we
can choose our final interpretation of both sides to be
[[·]]1|c1 |c2 , i.e., prior to any query we attempt to fire c1
before c2.

• In the rule [UNFOLD], we can similarly choose our fi-
nal interpretation of the body inside the program-level
bind on the left-hand side to be [[·]]1|c1 |c2 . This again
attempts to fire c1 before c2, and this amounts precisely
to performing the reaction R1 inside the reaction-level
bind on the right-hand side.

• The rule [NEWCONG] follows from the fact that any
adversary for the protocols on the bottom is also an
adversary for the protocols on top.

It remains to prove the rule [COMPCONG]. We first give
the following two constructions on adversaries:

Composition Given an adversary A for a semantic compo-
sition of protocols P and Q (not necessarily coming from
IPDL), we can compose A with Q to form an adversary for
P whose interaction with P yields precisely the same final
distribution on booleans as the interaction of the original ad-
versary A with P || Q. Let A : I′→ O′ and Q : I2→ O2. Let
d,a,s be the decision, accept, and stepping functions of the
adversary. The protocol for the new adversary is A || Q; the
schedule is the same as the one for A; the decision function
maps a state (s,_) to d(s); the accept function for a channel
c ∈ O2 ∪O′ maps a state (s,_) to ac(s); the accept function
for a channel c ∈ (I2 ∪O2) (I′ ∪O′) maps any state to true;
the step function maps a state (s, t) to sc(s)×1t .

Restriction Given an adversary A for a protocol P|o (not
necessarily coming from IPDL), we can turn A into an ad-
versary for P whose interaction with P yields precisely the
same final distribution on booleans as the interaction of the
original adversary A with P|o. Let S be the set of states of
A. The new schedule is obtained by scheduling o before and
after every channel in the schedule for A. The set of states for
the new adversary is S+S+S. We now define the rest of the
structure:
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• The states in the left branch encode the original states
of A. All inputs and outputs leave a left-branch state
unchanged (and will never be called on a left-branch
state). Their decision function is the original decision
function for A. They accept all channels for scheduling,
even though the structure of the new schedule guarantees
that only o is ever scheduled in a left-branch state. The
step function for any channel turns a left-branch state
into the corresponding middle-branch state.

• The states in the middle branch encode the states of A
after performing o on the left. All inputs and outputs
leave a middle-branch state unchanged (and will never
be called on a middle-branch state). Their decision func-
tion maps every state to false (and will never be called
on a middle-branch state). Their accept function is the
original accept function for A. The step function for any
channel is the original step function for A with the pro-
viso that it furthermore turns a middle-branch state into
a right-branch state.

• The states in the right branch encode the states of A
before performing o on the right. The input and output
transition functions are the original ones for A. Their
decision function maps every state to false (and will
never be called on a right-branch state). They accept all
channels for scheduling, even though only o will ever
be scheduled in a right-branch state. The step function
for any channel turns a right-branch state into the corre-
sponding left-branch state.

Now, we may prove the rule sound. Given a k-bounded ad-
versary A for the protocols [[P1||Q]] and [[P2||Q]], we will turn
it into an appropriate adversary for [[P1]] and [[P2]]. First, by
Lemma 1, we see that [[P1||Q]] = ([[P1]] || [[Q]])|o1,...,o` (and
similarly for P2), where ` is the number of outputs of P1 and Q.
We then apply the second construction for restriction above
` times to receive an equivalent adversary for [[P1]] || [[Q]].
Finally, we apply the first construction for composition to re-
ceive an adversary A′ for [[P1]]. By construction, the behavior
of A′ interacting with [[P1]] produces the same final output
distribution on booleans as the behavior of A interacting with
[[P1||Q]], and similarly for P2.

It now remains to estimate the bound for A′, as a function
of k, the bound for A. Suppose Q is b-bounded. Then, the first
construction has a bound of O(|∆| ∗max(k,b)), by estimating
the runtime of each transition in the protocol A || [[Q]]. The
second construction has a bound of O(k), since the sched-
ule for the adversary grows by a constant amount, and each
transition of the semantic protocol has a runtime of at most
O(k). Since we run the second construction at most |∆| times
(bounding the number of outputs), we have that the adversary
A′ is bounded by O(|∆| ∗max(k,b)).

C More Details on Case Studies

C.1 OT from Trapdoor Permutations

The ideal functionality for (1-2) OT is given in Figure 12. It is
given by a single reaction which simply selects a boolean from
the receiver, a pair of messages from the sender, and outputs
the appropriate component of the pair. Our definition of ideal
OT is parameterized by the type of messages, L. (Recall that
all IPDL types are in bijection with bitstrings of an appropriate
length.) For this simple definition, we eschew the use of ideal
parties; instead, if the receiver is corrupted, we simply spawn
another copy of the OT functionality with the same inputs,
but an output for the adversary. The adversary learns nothing
if the sender is corrupted.

The trapdoor OT protocol depends on the security of a
hardcore predicate, which consists of a family of trapdoor
permutations f along with a predicate B such that it is diffi-
cult to distinguish the value B(x) from uniform, given only f
and f (x) for a uniformly chosen x in the domain of f . While
the type system of IPDL does not include general functions
(since they take exponential space to describe), we can still
model trapdoor permutations by representing f with the fol-
lowing data: an evaluation key, a trapdoor key, an distribu-
tion for generating trapdoor keys, a derivation function from
trapdoor keys to evaluation keys, and evaluation functions,
both forwards using the evaluation key, and backwards us-
ing the trapdoor key. Only the evaluation and trapdoor keys
need to represented as IPDL values: the generation algorithm,
derivation function, and evaluation functions can instead be
represented as distributions and function symbols in IPDL, re-
spectively. Given this data, we can easily model the hard-core
predicate’s security as an approximate equivalence between
IPDL programs.

In the trapdoor OT protocol, the sender (Alice) sends a ran-
domly chosen trapdoor permutation f to the receiver (Bob),
but keeps the inverse of f secret. In return, Bob sends a pair
of values, appropriately constructed using uniform random-
ness and f . Finally, Alice sends her pair of messages back to
Bob, appropriately blinded by Bob’s message. Assuming Bob
constructed his message correctly, and that B is a hard-core
predicate for f , this is a secure construction.

In this protocol, and as is common to all of our OT con-
structions, the adversary learns nothing in the case when Alice
is corrupted; thus, we only focus on the case when Bob is
corrupted. In this case, the simulator is able to read Bob’s
index bit and the output of the OT, and must reconstruct Bob’s
view of the protocol for the adversary. The most subtle part of
the proof is that for Bob’s view to be simulatable, we cannot
reason only about the uniformity of a single bit B(x), but in-
stead of a pair of bits B(x) and B(y) (given only f , f (x), and
f (y)). We thus prove as a lemma that this generalized notion
of security for the hard-core predicate follows from the usual
one.
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1 Definition OTIdeal (L : type) (i : chan TBool)

2 (m : chan (L ** L)) (o : chan L) :=

3 o ::= (

4 x_i <-- Read i ;;

5 x_m <-- Read m ;;

6 Ret (if x_i then x_m.`2 else x_m.`1)).

Figure 12: Specification of OT functionality in IPDL.

C.2 1-4 OT from 1-2 OT
While the above two OT protocols only operate over pairs
of messages, the GMW protocol in Section 6.1 instead re-
quires an OT protocol which operates over four messages,
instead of two. This case study mechanizes a construction for
1-4 OT from three instances of 1-2 OTs. In the protocol, the
sender blinds their four messages by a combination of six ran-
dom strings, and sends these blinded messages to the receiver.
These random strings are additionally given as input to the
underlying OTs as messages. The receiver uses their two in-
dex bits as index bits for the underlying OTs. The randomness
is carefully chosen so that the appropriate randomness only
cancels out for the intended message, and all other messages
appear uniformly random.

The IPDL proof of the above construction requires a subtle
analysis which uses rerandomization, or mapping uniform
randomness through a bijection. Specifically, we show the
following two protocols are (exactly) equivalent in IPDL:
the first takes as input a boolean on a channel i, and returns
uniformly random values an channels c and d; instead, the
second uniformly samples two values x and y, and sets c to
be the value if i then x else y, and similarly sets d to be the
value if i then y else x. Once the above lemma is established,
the proof follows from a number of straightforward channel
inlinings.

C.3 Two-Party GMW Protocol
Given the definitions in Section 6.1, the ideal protocol for
GMW is straightforward. The ideal parties for Alice and Bob
forward their inputs to the functionality, and eventually re-
ceive outputs from the functionality. We focus on the case
when Alice is corrupt, so she also forwards her inputs and
outputs to the simulator. We additionally assume that the sim-
ulator learns the timing of Bob’s inputs (but not their content);
this is important for a technical reason, which we will explain
below. Given inputs from Alice and Bob along channel vec-
tors −→u A and −→v B, the functionality generates a fresh set of
vectors −→w n for the circuit wires, runs evalCirc(c,−→u ,−→v ,−→w ),
and delivers the circuit outputs to the ideal parties accordingly.

Notably, this definition of the functionality – and thus, also
our GMW formalization – encodes reactive MPC, in which
Alice and Bob can give inputs to the protocol depending on
prior outputs. This is possible since our encoding has the
feature that the only causal relationships between wires are

those imposed by dataflow; thus, if an output wire wk does
not depend on Alice’s jth output, Alice is enabled to give the
jth input to the protocol after she receives the value for wk.

The implementation of the GMW protocol is also straight-
forward, and follows the standard construction: Alice and Bob
secret share their inputs, collaboratively compute the circuit
over their secret shares, and open their shares for the output
wires. To compute the nonlinear AND operation, Alice must
use a 1-4 OT protocol to obliviously send Bob a single bit
which encodes the XOR of the cross-terms of the two secret
shared variables. As described in C.1, we model semi-honest
corruption by instrumenting the corrupted party (here, Alice)
to leak to the adversary any inputs she receives from Bob, and
any randomness she generates during the protocol. Thus, the
adversary receives five types of messages from Alice: Alice’s
randomness generated during the OTs, Alice’s protocol input,
Alice’s secret share for Bob of her input, Alice’s share of
Bob’s input, and Bob’s opening of the output wires.

The simulator follows a standard construction in which it
evaluates a “blinded” copy of the real protocol in its head,
having access to only Alice’s private data, but not Bob’s. The
central step in the proof of security is the construction of
an invariant between the real world and ideal world with
simulator, such that Bob’s share of wire w in the real world is
equal to the XOR of the true value of wire w in the ideal world
with Alice’s simulated share, coming from the simulator. By
constructing this invariant, we use the [HYBRID] rule to easily
reason about the GMW protocol without needing to perform
an explicit induction on the circuit.

C.4 Coin Flip

Security for the coin flip protocol is defined as an ideal func-
tionality that: generates a uniform bitstring; leaks it to the
simulator; and once the simulator returns with an ok message,
broadcasts the bitstring to all ideal parties. All non-corrupted
ideal parties then output the same randomness from the func-
tionality.

This functionality is intended to model three main proper-
ties: fairness (if one honest party receives output, they all do);
agreement (all honest parties receive the same output); and
uniformity of the agreed-upon output. However, we do not
prove privacy of the output bit, or guaranteed delivery.

Unlike the other case studies, we prove this example secure
in the malicious setting, where the adversary is able to take
over the behavior of all corrupted parties. In order to do so
in a structured way, we do not allow the adversary to directly
control internal protocol channels, but instead give it access
to distinguished adversarial channels as proxies. We then, for
each corrupted party, write a shim which simply forwards
messages between the internal protocol channels and those
for the adversary (and vice versa).

Our protocol is defined over an arbitrary number of par-
ties and an arbitrary corruption scenario, modeled as a func-
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1 Definition CoinFunc (K : nat)

2 (* Channels for simulator *)

3 (leak : chan K) (ok : chan TUnit)

4 (* Broadcast channel for ideal party *)

5 (send : chan K) :=

6 b <- new K ;;

7 [||

8 b ::= (Unif K);

9 leak ::= (x <-- Read b ;; Ret x);

10 send ::= (_ <-- Read ok ;;

11 x <-- Read b ;; Ret x)

12 ].

13

14 Definition CoinIParty (K : nat) {n : nat}

15 (honest : 'I_n -> bool)

16 (i : 'I_n)
17 (send out : chan K) :=

18 if honest i then

19 (out ::= (x <-- Read send ;; Ret x))

20 else

21 prot0.

22

23 Definition CoinIdeal (K : nat) {n : nat}

24 (honest : 'I_n -> bool)

25 (out : n.-tuple (chan K))

26 (ok : chan TUnit)

27 (leak : chan K) :=

28 send <- new K ;;

29 [||

30 CoinFunc leak ok send;

31 \||_(i < n) CoinIParty honest i send (out ## i)

32 ].

Figure 13: Specification of ideal protocol for n-party coin flip
in IPDL.

tion honest : 'I_n -> bool. However, for simplicity our
proof assumes that there are at least two parties such that the
first one is corrupted and the last is honest. This is without
loss of generality, since the protocol is clearly symmetric, and
the security goal is degenerate if all parties are corrupt and
immediate if no parties are corrupt.

Since IPDL is channel-centric rather than process-centric,
modeling and reasoning about a protocol with n parties and a
fixed number of messages is no harder than reasoning about a
protocol with a fixed number of parties, and n messages (such
as the GMW protocol). Indeed, one of the first simplification
steps we take in the proof is to isolate the behaviors among
all channels. For a simple example, suppose that we have a
protocol where n parties each first send a message x, and then
a second message y. Instead of reasoning about the protocol
|| j Pj, where Pj is the code of the jth party, we instead use the
[BIGPAR-PAR] rule from Section 4 to rewrite the protocol as
(|| j x. j ::= r j) || (|| j y. j ::= r′. j). While a simple observation,
this form of rewrite enables a much smoother verification than
without.

Encoding of the Ideal Protocol in IPDL The function-
ality and corresponding ideal protocol is given in IPDL in

Figure 13. The functionality is parameterized over three chan-
nels: leak and ok, which are thought of as meant for the
simulator, and send, which will be used to broadcast a value
to all ideal parties. First, on Line 6, it generates a fresh chan-
nel b carrying a boolean for internal use. It then spawns off
three subcomputations: first, on Line 8 we set b to be a uni-
formly random boolean; second, on Line 9, we leak b to the
simulator, by copying its value to the leak channel; finally,
on Line 10, we wait for the ok message from the simulator,
then copy the value of b to the send channel.

On Lines 14 – 19, we have the ith ideal party, CoinIParty.
The ideal party is parameterized by the total number of parties
n, a predicate honest : 'I_n -> bool where 'I_n is the
type of natural numbers less than n (from ssreflect [25]), the
index of the current party, i : 'I_n, and two channels, send
and out. If the ith party is honest, then we simply copy the
value from send to out (Line 17); otherwise, we do nothing
(Line 19), given by the empty protocol prot0.

Finally, on Lines 21-29, we define the ideal protocol, which
is composed of the functionality and all n ideal parties. In
addition to the ok and leak channels for the simulator, the
protocol is also parameterized by a n-length vector of output
channels out : n.-tuple (chan K). The protocol gener-
ates the internal send channel, and first invokes the function-
ality on Line 27. It then on Line 28 spawns, for each i < n, a
copy of the ith ideal party, taking input along the send chan-
nel, and producing output on the ith output channel (written
here as out ## i.) We make heavy use of the bigop library
from ssreflect to handle n-ary compositions over an index
set, as in Line 28. Also, note that while the send channel is
defined once inside of the functionality, it is able to be read
by all n parties; thus, all channels in IPDL naturally support
broadcast.

Encoding of the Real Protocol In the real protocol, each
party broadcasts a commitment of their randomly chosen bit,
receives everyone else’s commitments, and then broadcasts an
opening of their commitment. We model the commitment by
operating in a hybrid setting, wherein each party has access
to an ideal functionality for performing commitments. This
functionality is given below:

1 Definition FComm (K : nat)

2 (* inputs from party *)

3 (commit : chan K) (open : chan TUnit)

4 (* outputs to broadcast *)

5 (committed : chan TUnit) (opened : chan K) :=

6 [||

7 committed ::= (_ <-- Read commit ;; Ret tt);

8 opened ::= (x <-- Read commit ;;

9 _ <-- Read open ;; Ret x)

10 ].

The commitment functionality is parameterized by input
channels commit and open, which are to be used by the
party the functionality is meant for, and output channels
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committed and opened, which will be broadcast to all. On
Line 7, the channel committed is set to wait for commit be-
fore firing. On Line 8, the channel opened is set to the value
of commit, but only after the channel opened has fired.

We now turn to the actual protocol, which is given in Fig-
ure 14. Similar to the ideal protocol, we model malicious
corruption by splitting the party’s code into two parts: one for
if the party is honest, and one if the party is corrupted.

We first describe the honest party, given on Lines 25-36.
We note that the party is parameterized by all channels appear-
ing at the top of the Section, on Lines 15-21. These include
the inputs from all broadcast commitments and openings, and
the outputs from the party itself, both for its own commit-
ment as well as its protocol output. First on Lines 25-26 we
generate two fresh vectors of channels, committed_sum and
opened_sum, which will be used for aggregation of multi-
ple values. The first parameter to newvec, n, is the length of
the channel vector, while the second parameter is the type of
the channels. The party first commits to a uniformly chosen
input, as given on Line 28. On Lines 29-32, the party then
computes a fold over the signals coming from the channels in
committed: since each channel in this vector carries a unit
value, we are merely accumulating timing dependencies into
the channels in committed_sum. On Line 33, the party then
opens their commitment, based on the timing of the last chan-
nel in committed_sum. In effect, this causes the party to wait
for all commitments to happen before the party opens theirs.
Line 34 similarly folds the channels in opened together into
opened_sum, so that the last channel in opened_sum carries
the collective XOR of all opened commitments. The party
outputs this value on Line 35.

To encode the corrupted party on Lines 39-46, for conve-
nience we define a shim for the corrupted party, which acts to
separate the adversary’s channels from the internal protocol
channels. The adversary’s channels, defined on Lines 4-9, are
divided into inputs and outputs. The inputs from the adversary
are advCommit and advOpen, which allow the adversary to
control the ith party’s commit and open messages (if the ith
party is corrupt.) This is reflected in Lines 40 and 41 in the
corrupted party, which copy the ith channel of advCommit
to the corrupted party’s commit channel, and similarly for
open. The outputs to the adversary are advCommitted and
advOpened, which are both tuples of tuples of channels. On
Line 42, the ith component of advCommitted is set equal
(pointwise) to the ith party’s view of the committed tuple of
input message. Similarly, on Line 44 the ith component of
advOpened is set to the ith party’s view of opened. Finally,
to define the party we again case split on whether party i is
honest, and choose the corresponding implementation.

Finally, we now define the real protocol in total in Lines
55-68. We first generate all internal channel vectors for the
commitment functionalities, and then spawn all n commit-
ment functionalities and n parties.

1 Context (K : nat) {n} (honest : 'I_n -> bool)

2 (* inputs from adversary *)

3 (advCommit : n.-tuple (chan K))

4 (advOpen : n.-tuple (chan TUnit))

5 (* outputs to adversary *)

6 (advCommitted : n.-tuple (n.-tuple (chan K)))

7 (advOpened : n.-tuple (n.-tuple (chan K)))

8 (* output channels of protocol *)

9 (out : n.-tuple (chan K)).

10

11 Section CoinRealParty.

12 Context {n} (i : 'I_n)
13 (* inputs to party *)

14 (committed : n.-tuple (chan TUnit))

15 (opened : n.-tuple (chan K))

16 (* outputs from party *)

17 (commit : chan K)

18 (open : chan TUnit)

19 (partyOut : chan K).

20

21 Definition CoinRealParty_honest

22 :=

23 committed_sum <- newvec n @ TUnit ;;

24 opened_sum <- newvec n @ K ;;

25 [||

26 commit ::= (Unif K);

27 cfold committed

28 (fun _ _ => tt)

29 (fun _ => tt)

30 committed_sum;

31 open ::= (_ <-- Read (committed_sum ## ord_max);;

32 Ret tt);

33 cfold opened xort id opened_sum;

34 partyOut ::= (Read (opened_sum ## ord_max))

35 ].

36

37 Definition CoinRealParty_corr

38 [||

39 commit ::= (Read (advCommit ## i));

40 open ::= ((advOpen ## i));

41 \||_(j < n) (advCommitted ## i ## j) ::=

42 (Read (committed ## j))

43 \||_(j < n) (advOpened ## i ## j) ::=

44 (Read (opened ## j))

45 ].

46

47 Definition CoinParty

48 if honest i then CoinRealParty_honest

49 else CoinRealParty_corr.

50 End CoinRealParty.

51

52 Definition CoinReal :=

53 commit <- newvec n @ K ;;

54 committed <- newvec n @ TUnit ;;

55 open <- newvec n @ TUnit ;;

56 opened <- newvec n @ K ;;

57 [||

58 \||_(i < n)

59 FComm (commit ## i)

60 (committed ## i)

61 (open ## i)

62 (opened ## i);

63 \||_(i < n) CoinParty

64 i committed opened

65 (commit ## i) (open ## i) (out ## i)

66 ].

Figure 14: Real protocol for n-party coin flip in IPDL.
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Simulator and Proof Sketch To show that CoinReal re-
alizes CoinIdeal, we must show the existence of a simula-
tor CoinSim which transforms the adversarial channels of
CoinReal into those of CoinIdeal.

Since the security condition is degenerate in the case when
all parties are corrupted or all are honest, we focus without
loss of generality on the case where the first party is corrupted,
and the last party is honest. Intuitively, the simulator runs a
copy of the real world protocol “in its head”, but modified
in the following way: the last party, instead of generating a
commitment uniformly, generates its commitment by read-
ing the commitments of all other parties (honest or not), and
XORing all other commitments together, along with the value
along the channel leak from the ideal world. This ensures
that the bit that all the parties inside the simulated real world
all agree to the same value as is chosen by the functionality.
In turn, when all simulated parties open their commitments,
the simulator then outputs ok to the functionality. Since all
commitments by honest players appear uniform, and the sim-
ulator only submits ok after all corrupted players open their
commitments, it follows that the adversary’s view in the real
and ideal worlds are identical, and all honest party’s behavior
is identical as well.
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