
Don’t Reject This: Key-Recovery Timing Attacks
Due to Rejection-Sampling in HQC and BIKE

Qian Guo3, Clemens Hlauschek1,5, Thomas Johansson3, Norman Lahr2,
Alexander Nilsson3,4 and Robin Leander Schröder1

1 Technische Universität Wien, {clemens.hlauschek,leander.schroeder}@inso.tuwien.ac.at
2 Fraunhofer SIT, Darmstadt, Germany, norman@lahr.email

3 Lund University, Lund, Sweden,
{alexander.nilsson,qian.guo,thomas.johansson}@eit.lth.se

4 Advenica AB, Malmö, Sweden
5 RISE GmbH, Wien

Abstract. Well before large-scale quantum computers will be available, traditional
cryptosystems must be transitioned to post-quantum (PQ) secure schemes. The NIST
PQC competition aims to standardize suitable cryptographic schemes. Candidates
are evaluated not only on their formal security strengths, but are also judged based on
the security with regard to resistance against side-channel attacks. Although round
3 candidates have already been intensively vetted with regard to such attacks, one
important attack vector has hitherto been missed: PQ schemes often rely on rejection
sampling techniques to obtain pseudorandomness from a specific distribution. In
this paper, we reveal that rejection sampling routines that are seeded with secret-
dependent information and leak timing information result in practical key recovery
attacks in the code-based key encapsulation mechanisms HQC and BIKE.
Both HQC and BIKE have been selected as alternate candidates in the third round of
the NIST competition, which puts them on track for getting standardized separately
to the finalists. They have already been specifically hardened with constant-time
decoders to avoid side-channel attacks. However, in this paper, we show novel timing
vulnerabilities in both schemes: (1) Our secret key recovery attack on HQC requires
only approx. 866,000 idealized decapsulation timing oracle queries in the 128-bit
security setting. It is structurally different from previously identified attacks on the
scheme: Previously, exploitable side-channel leakages have been identified in the
BCH decoder of a previously submitted HQC version, in the ciphertext check as
well as in the pseudorandom function of the Fujisaki-Okamoto transformation. In
contrast, our attack uses the fact that the rejection sampling routine invoked during
the deterministic re-encryption of the decapsulation leaks secret-dependent timing
information, which can be efficiently exploited to recover the secret key when HQC is
instantiated with the (now constant-time) BCH decoder, as well as with the RMRS
decoder of the current submission. (2) From the timing information of the constant
weight word sampler in the BIKE decapsulation, we demonstrate how to distinguish
whether the decoding step is successful or not, and how this distinguisher is then
used in the framework of the GJS attack to derive the distance spectrum of the secret
key, using 5.8 × 107 idealized timing oracle queries. We provide details and analyses
of the fully implemented attacks, as well as a discussion on possible countermeasures
and their limits.

Keywords: Timing Attack · Rejection Sampling · Fujisaki-Okamoto Transformation
· Post-Quantum Cryptography · HQC · BIKE

mailto:{clemens.hlauschek,leander.schroeder}@inso.tuwien.ac.at
mailto:norman@lahr.email
mailto:{alexander.nilsson,qian.guo,thomas.johansson}@eit.lth.se

2 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

1 Introduction
The progress in the research field of quantum computing weakens the previously estimated
security guarantees of most currently deployed cryptographic primitives. In 2017, Michele
Mosca [Mos17] estimated that the chance of having a large-scale quantum computer that
breaks RSA-2048 to be 1/6 within a decade and 1/2 within 15 years; or even faster (6-12
years) by having massive investment, following Simon Benjamin [Ben17]. While such
estimates and predictions are contested [Dya18, Kal20], it is important that the transition
to post-quantum secure cryptographic algorithms happens well before an actual large-scale
quantum computer is being built, as sensitive data might be stored for cryptanalysis at a
later time, for example by surveillance infrastructure such the NSA’s 3-12 exabyte data
center in Utah [Hog15].

The security strengths of the new cryptographic primitives need to be evaluated with
regard to possible attacks from classical as well as from quantum adversaries. But not
only the algorithmic design need to withstand possible (theoretical) attacks, deployed
schemes need to have secure implementations that withstand practical implementations
attacks [HPA21], such as side-channel [Koc96, KJJ99, RKL+04] and fault attacks [BDL97,
BDL01]. Not every cryptographic design has a straightforward elegant implementation
that can be easily secured against all relevant implementation attacks. Daniel Bernstein
and Tanja Lange repeatedly (e.g., in their analysis of the NIST ECC standards [BL16])
emphasize that a good cryptographic design requires simplicity of a secure implementation,
and recommend that standardization bodies such as the National Institute of Standards
and Technology (NIST) should require simplicity for secure implementations.

Timing attacks, first described by Kocher [Koc96], are arguably one of the most
dangerous implementation attacks (right after more trivial, but still hard to spot, leakages
such as the Heartbleed vulnerability [DKA+14]): An adversary just needs a communication
channel to the target device and a precise timing measurement. It is often possible to mount
an attack even remotely over the network [BB05, BT11, KPVV16, MSEH20, MBA+21],
without physical access. Crosby et al. [CWR09] explore the limits of remote timing attacks.
Often, timing leaks that have been mitigated against remote exploitation, such as the Lucky
Thirteen attack [AP13] on TLS, can still be exploited in a Cloud/Cross-VM setup [AIES15].
These attacks exploit the timing variations which depend on the secret key material. When
the timing variations include enough information the recovery of the secret key becomes
possible.

In December 2016, the NIST announced a competition [oSN16] which aims to stan-
dardize schemes for post-quantum cryptography (PQC) and encouraged the authors to
submit a reference implementation that addresses side-channel attacks in addition to the
specification. NIST specifically motivates research to counter advanced side-channel attacks
in the current, third round of the competition [MAA+20]. The two schemes Hamming
Quasi-Cylic (HQC) [AAB+21] and the Bit Flipping Key Encapsulation (BIKE) [ABB+21]
are promising code-based key encapsulation schemes and alternate candidates in the third
round of the competition. As alternate candidates, they might be standardized by NIST in
addition to the competition finalists in a fourth round. In its latest PQC standardization
status report [MAA+20], NIST lauds HQC for its constant-time improvements, while
voicing serious concerns over BIKE’s side-channel protections and Indistinguishability
under Chosen Ciphertext Attack (IND-CCA) security.

BIKE can be described as the McEliece scheme instantiated with Quasi-Cyclic Moderate
Density Parity-Check (QC-MDPC) codes [MTSB13], using the equivalent Niederreiter
scheme. The specification of BIKE is secure under the Indistinguishability under Chosen
Plaintext Attack (IND-CPA) notion, where the security is related to some hard decoding
problems in the Hamming metric. With an additional assumption on the probability of
decryption errors that may occur in the BIKE decoding step, the scheme is shown to
be IND-CCA secure, using the implicit-rejection variant of the Fujisaki-Okamoto (FO)

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 3

transformation proposed by Hofheinz, Hövelmanns, and Kiltz (HHK) [HHK17]. Similarly,
the Public Key Encryption (PKE) variant of HQC is secure under the IND-CPA notion.
The Key Encapsulation Mechanism (KEM) variant of HQC utilizes another variant of
the HHK FO transformation, converting the PKE variant to be secure with regard to
IND-CCA. Many post-quantum secure schemes, e.g., code- and lattice-based, use the
HHK transformation because it is resistant to the decryption errors that can occur in the
decryption procedure of many non-traditional schemes. The attacks on BIKE as well as
on HQC demonstrated in this paper are both possible due to the specific applications of
the FO transformation to the respective underlying IND-CPA schemes. It is interesting
to observe that the process of transforming an encryption scheme from a less secure to a
more secure version introduces more complexity and hard-to-spot vectors for additional
implementation vulnerabilities. However, our attacks require a static key setting and an
active chosen-ciphertext attacker, a scenario where one would not employ just an IND-CPA
secure scheme.

Related work. Our attacks, though structurally different from previous ones, build on a
history of related side-channel attacks and cryptanalysis, leading to incrementally more
secure and improved versions of the schemes. Recently, Wafo-Tapa et al. [WTBB+19]
and Paiva et al. [PT19] present timing attacks on the non-constant time implementation
of the Bose-Chaudhuri-Hocquenghem (BCH)-decoder of HQC. Both approaches exploit
the dependence between the running time of the decoding procedure and the number of
decoded errors. Paiva et al. require 400 · 106 decryption runs for the 128-bit security
parameters. Wafo-Tapa et al. reach a key recovery after just 5441 calls with 93% success
rate for the same security level. They proposed a constant-time BCH decoding to fix this
issue.

Guo et al. [GJN20] show that the FO transformation of various proposed schemes
is vulnerable to a timing attack by exploiting the comparison step in the decapsulation
function, which is usually non-constant time (for example, when implemented via the
memcmp function of the standard C library). The authors apply this timing attack to
the lattice-based scheme FrodoKEM [NAB+20]. The attack requires 230 decapsulation
calls. They state that their attack is applicable to other proposed PQC schemes, among
others, to HQC. They show the applicability to LAC [LLJ+19] in the appendix but do
not explicitly show the effectiveness to HQC. The countermeasure to avoid the leakage
is to use another constant-time comparison, e.g., as provided by OpenSSL1. However, in
the same paper, Guo et al. describe how, more generally, any timing variance in the FO
transformation that allows to distinguish between modifications that are below or above
the error correction capability of the underlying primitive can in principle be used to
mount key recovery attacks on IND-CCA secure KEM schemes. The research community
seems to be acutely aware of the need to implement FO-based decapsulation methods in
a constant time manner, as the source code of both HQC and BIKE, as well as recent
discussions on the NIST PQC Forum2 indicate.

An important attack for schemes based on QC-MDPC codes such as BIKE is the
GJS attack [GJS16]. The attack uses an identified dependence between error patterns in
decoding failures and the secret key. This attack assumes that the scheme is used in a
static key setting requiring IND-CCA security. The Error Amplification attack [NJW18]
builds on the GJS attack [GJS16], but improves it by using only a single initial error vector
that results in a decoding failure and then modifies this in order to efficiently generate
many more error vectors causing a decoding failure. These attacks are avoided in the
BIKE scheme by selecting parameters such that the probability of a decoding failure for
properly generated ciphertexts is very small.

1https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html
2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/iVbJkCytoog

https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/iVbJkCytoog

4 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Most recently, Ueno et al. [UXT+22] explore a generic side-channel attack of the FO
transformation commonly used in many PQC schemes: By exploiting side-channel leakage
during non-protected Pseudorandom Function (PRF) execution in the re-encryption of
the KEM decapsulation, they demonstrate that Kyber, Saber, FrodoKEM, NTRU, NTRU
Prime, BIKE, SIKE, as well as HQC are vulnerable. The current reference implementation
of HQC uses non-protected SHAKE as the relevant PRF.

Motivation. To the best of our knowledge, none of the previous attacks on HQC or
BIKE, nor attack mitigations for those schemes, considered the non-constant time rejection
sampling routine. Rejection sampling is one method to generate pseudorandom values
from a specific distribution. The first side-channel attack targeting rejection sampling has
been demonstrated at the CHES 2016 against the lattice-based signature BLISS [BHLY16],
exploiting cache-access pattern from the Gaussian sampler. In contrast to the Gaussian
samplers common in lattice-based schemes, HQC and BIKE use rejection sampling to
generate random vectors with a specific Hamming weight. As we show in this paper, it
turns out that the branching and thus the run-time of the rejection sampling routine in
HQC and BIKE is indirectly in dependence relationship with the key.

This despite the fact that the current HQC specification states that the optimized
reference implementation (using the vectorized Single Instruction Multiple Data (SIMD)
instructions on an x86 machine) is now constant-time, and the source code is well analyzed
concerning the leakage of any sensitive information. More specifically, the authors of HQC
claim “to have thoroughly analyzed the code to check that only unused randomness (i.e.
rejected based on public criteria) or otherwise nonsensitive data may be leaked.” [AAB+21].
However, the specification reveals a subtle error: The modular design of the HQC KEM
uses the FO transformation to transform an IND-CPA version of HQC into the IND-CCA
KEM. This IND-CPA version is specified separately as a non-deterministic encryption
scheme, where the Encrypt algorithm generates its randomness within the function. The
specified KEM version then invokes a slightly different HQC.PKE encryption scheme that
fixes the randomness via parameter passing to make the encryption deterministic. This
subtle error in the specification might have hidden the fact that the rejection sampling
invoked by the re-encryption step in the decapsulation routine has a dependence to the
secret key: From reading this erroneous specification, it is easy to miss the fact that
the rejection sampling in the Encrypt function is indeed dependent on the secret in the
decapsulation. Adding further to the confusion, the plaintext message m can be chosen by
the attacker in the IND-CPA scheme, and only becomes a secret-depending value in the
IND-CCA KEM due the FO transformation.

On the other hand, the BIKE specification [ABB+21] demands (in the current version
4.2a, in Section 3.5 Practical security considerations for using BIKE) with regard to
side-channel attacks only that the decoder must be implemented in constant time, but
does not mention such considerations for the constant-weight hashing function, which is
supposed to be implemented via rejection sampling.

While HQC uses non-constant time rejection sampling to generate pseudorandom
vectors with a specific Hamming weight in the re-encryption step of the decapsulation due
the employed variant of the HHK FO transformation, BIKE uses the implicit-rejection
version of it, optimized so that it does not invoke the encryption function during the
decapsulation. However, despite dispensing the re-encryption step, BIKE uses rejection
sampling in the plaintext verification of the decryption step in the decapsulation routine.

Contributions. In this work, we analyze the current KEM variant of HQC and BIKE
and show that they are still vulnerable to timing attacks. More specifically, we present

• hitherto unconsidered timing variations dependent on the secret key in the determin-
istic re-encryption of the KEM decapsulation of HQC, and in BIKE decapsulation in

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 5

the plaintext-checking step of the decryption routine, both due to the non-constant
time rejection sampling routines,

• a novel timing attack on the optimized reference implementation of HQC achieving
a full secret key recovery with high probability,

• another novel timing attack on the existing implementations of BIKE achieving either
a full secret key recovery or an efficient message recovery, where the key recovery
attack uses the framework of the GJS attack to derive the distance spectrum of the
secret key, and

• a discussion of possible countermeasures to avoid the identified leakage in the
deterministic re-encryption step.

Timeline and Response. The attack on HQC, first described in the master thesis of one
of our co-authors [Sch21] and then later in eprint 2021/1485/20211115:124514 [HLS21], and
independently brought to the attention of NIST by the co-authors from Lund University
has been acknowledged by the authors of HQC, who in response started working on more
optimized countermeasures [Gab21]. We further identified that a similar side-channel
exists in BIKE [Sch21, HLS21]. A concrete attack strategy exploiting the side-channel
was discovered concurrently to our work and first published by BIKE co-author Nicolas
Sendrier [Sen21]. To the best of our knowledge, we are the first to present a fully
implemented version of an attack exploiting the identified side-channel. Also in parallel
to the writing of this paper, Nicolas Sendrier [Sen21] presented a different approach than
suggested here to mitigate the vulnerability, specific to BIKE: Sendrier first shows that
the sampling routine we attack can be slightly biased in BIKE, which allows the use of a
novel variant of Fisher-Yates sampling [Knu97, p.145] that is constant-time.

Organization. The remaining of the paper is described as follows. In Section 2, we give
the preliminaries as well as a description of the specifications of the two KEM schemes
HQC and BIKE, respectively. In Section 3, we explain the identified timing weakness in
the functions that use rejection sampling and we describe in detail the full key recovery
attack on HQC. In the same section we follow up by describing the details of another type
of the attack applied on BIKE. In Section 4, we then present all the evaluation results
from actually implementing the two previously described attacks. In Section 5, we discuss
possible countermeasures and, finally, Section 6 concludes the paper.

2 Background
In this section, we introduce the background information on the schemes, HQC and BIKE,
and the preliminaries that we require to explain our attacks in the following sections.

2.1 Preliminaries
We use a notation that we consider as close as possible to both the notations used by the
HQC [AAB+21] as well as the BIKE [ABB+20] specification.

F2 denotes the binary finite field. Both HQC and BIKE use a cyclic polyomical ring,
but with different parameters. So, for an integer n ∈ Z (resp., r ∈ Z in BIKE), we obtain
the ring R = F2[X]/(Xn − 1), (resp. R = F2[X]/(Xr − 1)). Elements in R will be
represented by lower-case bold letters. These elements can be interchangeably considered
as row vectors in a vector space over F2. Respective matrices will be represented by upper
case bold letters. For h ∈ R, let |h| denote the Hamming weight of a vector or polynomial
h.

6 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Table 1: The HQC parameter sets [AAB+21]. The base Reed-Muller code is defined by
[128, 8, 64].

RS-S Duplicated RM
Instance n1 k dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17,664 17,669 66 75
hqc-192 56 24 33 5 640 320 35,840 35,851 100 114
hqc-256 90 32 49 5 640 320 57,600 57,637 131 149

2.2 Hamming Quasi Cyclic – HQC
HQC is a code-based post-quantum IND-CCA secure KEM. It is an alternate candidate
in the third round of the NIST PQC competition [AAB+21]. Our work refers to the
recent specification from June 2021. The HQC framework from which HQC stems was
introduced by Aguilar et al. [AMBD+18]. Its security is reduced to problems related to
the hardness of decoding random quasi-cyclic codes in the Hamming metric. The scheme
uses a concatenated code C which combines an internal duplicated Reed-Muller code with
the outer Reed-Solomon code. The resulting code has a publicly known generator matrix
G ∈ Fk×n1n2

2 .
The parameters are listed in Table 1 and we explain them in the following. The

inner duplicated Reed-Muller code is defined by [n2, 8, n2/2] and the outer, shortened
Reed-Solomon code (RS-S) by [n1, k, n1 − k + 1], with k ∈ {16, 24, 32} depending on the
corresponding security level. The concatenated code C is of length n1n2. To avoid algebraic
attacks the ambient space of vector elements is of length n which is the first primitive
prime greater than n1n2. It defines the polynomial quotient ring R = F2[X]/(Xn − 1).

HQC.PKE. The PKE variant of HQC consists of the Algorithms 1 to 3. The key
generation in Algorithm 1 samples the elements h, x, and y from R uniformly at random
where the Hamming weights of x and y are ω. The secret key sk consists of x and y. The
public key pk includes h and s = x + h · y. The encryption function Algorithm 2 first
samples the vectors e of weight ωe as well as r1 and r2 of weight ωr. The randomness
of the sampling is seeded by the additional input θ. Therewith, the sampling becomes
deterministic which is desired for the verification in the later decapsulation function. The
ciphertext is a tuple with u = r1 + h · r2 and v = mG + s · r2 + e. The term mG in
Line 6 corresponds to the encoding procedure of the concatenated code C. It begins with
the external Reed-Solomon code which encodes a message m ∈ Fk

2 into m1 ∈ Fn1
28 . Then

the inner Reed-Muller code encodes each coordinate/byte m1,i into m̄1,i ∈ F128
2 using

RM(1, 7). Finally, m̄1,i is repeated 3 or 5 times depending on the security parameter
to obtain m̃1,i ∈ Fn2

2 . Thus, we get mG = m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2
2 . The

decryption function in Algorithm 3 is to decode the term v− u · y which results in

(mG + s · r2 + e)− (r1 + h · r2) · y
= mG + (x + h · y) · r2 − (r1 + h · r2) · y + e
= mG + x · r2 − r1 · y + e.

Thus, the decoder has to correct the error

e′ = x · r2 − r1 · y + e.

The decoding succeeds if |e′| ≤ δ. The Decryption Failure Rate (DFR) denotes the
probability when the weight exceeds the decoder’s capacity.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 7

Algorithm 1:
HQC.KeyGen

Input: param
Output: sk, pk

1 h = Sample(R)
2 x = Sample(R, ω)
3 y = Sample(R, ω)
4 sk = (x, y)
5 pk = (h, s = x + h ·y)

Algorithm 2:
HQC.Encrypt

Input: pk, m, θ
Output: c = (u, v)

1 SampleInit(θ)
2 r1 = Sample(R, ωr)
3 r2 = Sample(R, ωr)
4 e = Sample(R, ωe)
5 u = r1 + h · r2
6 v = mG + s · r2 + e

Algorithm 3:
HQC.Decrypt

Input: sk = (x, y)
c = (u, v)

Output: m
1 m = C. Decode(v−u ·y)

Algorithm 4: HQC.Encaps
Input: pk
Output: K, (c, d)

1 m = Sample(Fn1n2
2)

2 θ = G(m)
3 c = HQC.Encrypt(pk, m; θ)
4 K = K(m, c)
5 d = H(m)

Algorithm 5: HQC.Decaps
Input: sk = (x, y), (c = (u, v), d)
Output: K

1 m′ = HQC.Decrypt(sk, c)
2 θ′ = G(m′)
3 c′ = HQC.Encrypt(pk, m′; θ′)
4 if c 6= c′ ∨ d 6= H(m′) then
5 K =⊥
6 K = K(m′, c)

HQC.KEM. The authors of HQC decided to use the Hofheinz-Hövelmanns-Kiltz (HHK)
transformation [HHK17] to obtain an IND-CCA secure Key Encapsulation Mechanism
from the IND-CPA secure PKE scheme described before. In contrast to the original FO
transformation, the HHK approach is able to handle decryption failures. The KEM scheme
may be used to share securely a random symmetric key K between two parties. The key
generation is the same as for the PKE. The sender of a message applies the encapsulation
function in Algorithm 4 to wrap a randomly chosen K and the receiver executes the
decapsulation function in Algorithm 5 to obtain the same key or aborts if a decryption
failure occurs.

The KEM construction requires the three independent cryptographic hash functions
G, K, and H. To encapsulate a randomly chosen message m the randomness θ for the
encryption is derived by G(m). The shared key K is a linkage of both the message m and
the ciphertext c and is computed by K(m, c). Finally, d is derived by computing the hash
H(m).

In the decapsulation, the decryption function is invoked with the secret key sk and
the ciphertext c to obtain the message m′. To verify the ciphertext for integrity, a re-
encryption of the message m′ is performed using the randomness θ′ derived from m′. Then,
the procedure checks whether the re-encrypted ciphertext c′ matches the received c and
whether the sent digest d equals the hash value of the decrypted message m′. If this check
succeeds, K(m, c) is output, otherwise failure.

2.3 Bit Flipping Key Encapsulation – BIKE
BIKE is another code-based post-quantum KEM targeting IND-CCA security, which is
also an alternate candidate in the third round of the NIST PQC competition. As other
candidates, it has updated its specification from round to round and we consider the
specification submitted to the most recent round of the NIST PQC competition (being
round 3) [ABB+20]. It can briefly be considered as the McEliece scheme instantiated

8 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Table 2: BIKE parameters.

Security r w t DFR

Level 1 12,323 142 134 2−128

Level 3 24,659 206 199 2−192

Level 5 40,973 274 264 2−256

with QC-MDPC codes [MTSB13], using the equivalent Niederreiter scheme. Quasi-Cyclic
Moderate Density Parity-Check codes are similar to more well known Quasi-Cyclic Low
Density Parity-Check (QC-LDPC) codes, but parity checks have a somewhat larger weight
(O(n) instead of a constant, where n is the code length). The security of the scheme relies
on quasi-cyclic variants of hard decoding problems from coding theory in the Hamming
metric. The security level it provides is bounded by the complexity of solving these hard
problems with the best known algorithms. In the case of BIKE we have a small probability
of decryption failure, which gives on occurrence an error in decapsulation. Typically, a
high security level demands that this probability of failure is negligible, say 2−128 or even
smaller.

Let us now give a brief overview of the specification of BIKE. It is specified from three
main values, being the Hamming weight of the error vector t, the row weight of the secret
parity check matrix w, and the block length r. To achieve a given security level λ for
IND-CPA security, the parameters t and w should be chosen according to the complexity
of solving the underlying hard problems. To additionally achieve IND-CCA security, one
need to make sure that the decryption failure probability is upper bounded by 2−λ. The
block length r does not affect the computational hardness of the underlying problems
much, but do affect the decryption failure probability.

In setup, one sets the target security level λ and the generates the parameters (r, t, w)
and an additional parameter l, which gives the size of the shared key output, in bits. We
also fix hash functions H, K, L and a decoder Decode. The message space isM = {0, 1}l and
the shared key space is K = {0, 1}l. We return to the hash functions later. BIKE uses the
the cyclic polynomial ring R = F2/(Xr − 1); Hw is the secret key space Hw = {(h0, h1) ∈
R2 : |h0| = |h1| = w/2}; finally Et is the set of errors Et = {(e0, e1) ∈ R2 : |e0|+ |e1| = t}.

The BIKE KEM consists of several algorithms. First, the key generation KeyGen is
done as described in Algorithm 6. It creates the secret key sk, consisting of two low weight
vectors h0 and h1 of length r, as well as a special value σ, used in case of error in decoding.
It also creates the public key pk, being a length r vector computed as h = h1h0

−1. The
notation Sample(X) means that we uniformly pick an element from the set X .

Next, the encapsulation algorithm Encaps outputs a ciphertext c that contains an
encapsulated key value, using only the public key. It first selects a random bitstring m
of length l. It then hashes this value to a weight t error vector (e0, e1) ∈ Et. Hashing is
done using the special hash function H, which outputs weight t vectors. A ciphertext is
then formed, where the first part is c0 = e0 + e1h. The second part of the ciphertext
is c1 = m ⊕ L(e0, e1). We note that with knowledge of (h0, h1) in the secret key, one
can efficiently reconstruct (e0, e1) from c0. Then one can also reconstruct m from c1.
The final step computes a shared key through K = K(m, c). All steps are illustrated in
Algorithm 7.

The decapsulation algorithm Decaps is the final algorithm to describe. It outputs
the shared key from the ciphertext c using the secret key. It first computes the error
vector used to create c0 by e′ = Decode(c0h0, h0, h1). Here Decode is a kind of bit-
flipping decoder [Gal62]. The choice of decoder is a trade-off between efficiency and failure
probability. In the BIKE specification, the Black-Gray-Flip (BGF) decoder is selected.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 9

Algorithm 6:
BIKE.KeyGen

Input: ·
Output: sk = (h0, h1, σ)

pk = h ∈ R
1 (h0, h1) = Sample(Hw)
2 h = h1h0

−1

3 σ = Sample(M)
4 sk = (h0, h1, σ)
5 pk = h

Algorithm 7:
BIKE.Encaps

Input: pk = h
Output: K, c

1 m = Sample(M)
2 (e0, e1) = H(m)
3 c = (e0 + e1,

m⊕L(e0, e1))

4 K = H(m, c)

Algorithm 8:
BIKE.Decaps

Input: sk = (h0, h1, σ)
c = (c0, c1)

Output: K
1 e′ =

Decode(c0h0, h0, h1)
2 m′ = c1 ⊕ L(e′)
3 if e′ = H(m′) then
4 K = K(m′, c)
5 else
6 K = K(σ, c)
7 end

Next m′ = c1 ⊕ L(e′). If e′ was correctly received, then m′ = m. This is now checked by
computing and comparing if e′ = H(m′). If so, the shared key is set to K = K(m, c). The
steps are illustrated in Algorithm 8.

3 Timing Attacks on HQC and BIKE
In this section we present the timing attacks on the schemes HQC and BIKE and the
underlying vulnerabilities in both cases.

3.1 The Timing Attack on HQC
In the following, we show how the current optimized HQC implementation [AAB+] from
June 2021 which is specified in [AAB+21] leaks timing information which enables the
construction of a plaintext distinguisher. Then, this distinguisher is used as a plaintext-
checking oracle within existing attacks described in [BDH+19] to achieve the key-recovery on
the, now, deprecated version of HQC using BCH and repetition codes. Further, we propose
an attack that enables the key-recovery on the current version using Reed-Solomon (RS)
and Reed-Muller (RM) codes.

The vulnerability in the HQC implementations. As described in Section 2.2, the en-
cryption function described in Algorithm 2 requires to sample bit vectors of a specified
Hamming weight ω. The implementation of the sampling function uses rejection sampling
to comply to the security properties, e.g., if a position is sampled twice. The runtime of
the rejection sampling algorithm depends on the given seed θ. In the KEM version the en-
and decapsulation procedures derive the seed for the encryption function from the message
m by G(m). The dependence on the message in the decapsulation allows us to construct a
plaintext distinguisher which we use to mount a timing attack afterwards.

The Sample function. The considered implementation of HQC implements the weighted
vector sampling in the function vect_set_random_fixed_weight. For brevity we refer to
this function as Sample. In each iteration the function generates random positions from
the range {0, . . . , n − 1} to set a bit at that position to 1 until w distinct bit positions
have been sampled. Concretely, if the sampled bit position has already been sampled
before the sample is rejected. Otherwise, the bit position is stored in an array. At the end,
the vector of weight w is constructed by setting the bits at the w distinct positions that

10 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

crypto_kem_dec

hqc_pke_decrypt m
SHA3 θ

hqc_pke_encrypt

vect_set_random_fixed_weight
(Sample)

×3

seedexpander

×[1,∞)

Legend:

function f

function g

×3
f calls g 3 times

input
output

Figure 1: Visualization of the information flow in the decapsulation function of the current
HQC KEM implementation [AAB+].

were sampled. The number of times a bit position collides with a previously sampled bit
position is directly proportional to the runtime of the algorithm.

The randomness in the Sample function is deterministic and determined by an eXtendable-
Output Function (XOF) implemented by the seedexpander function. For our analyses
we assume that the outputs of the XOF are uniformly, independent and identically dis-
tributed (iid). The XOF influences the path that is taken through the function and
is initialized with the seed θ = G(m). The message m is obtained from the decoding
of the ciphertext c, c.f., Line 1 in Algorithm 3. This data flow is illustrated in Fig. 1.
Therefore, the message m controls how many iterations the rejection sampling algorithm
takes. Further, a rejection leads to another call of the seedexpander function and, thus,
to a large timing gap.

Additional seedexpander calls. We refer to seedexpander calls which are executed
conditionally within the loop in the Sample function, c.f. Fig. 1, as additional seedexpander
calls. For details, we refer to the original source code which can be found in the file
vector.c, line 31, in [AAB+]. In general, unless otherwise specified, we only count
the number of additional seedexpander calls and skip the default initial call. The
seedexpander is initially used to produce 3 · ωr bytes of randomness and store it into a
buffer. If this randomness is sufficient to generate ωr distinct bit positions, no additional
seedexpander calls are issued. However, if even a single sample is rejected the algorithm
will need to produce additional randomness by issuing another seedexpander call. The
sampled bit positions are in the range of {0, . . . , n− 1}. To generate these positions, the
algorithm performs an inner rejection sampling algorithm. The inner rejection sampling
algorithm samples a position from {0, . . . , 224 − 1} that is to be reduced modulo n, where
n < 224. However, the position is rejected if it is above the largest multiple of n that is
smaller than 224 which is defined by η :=

⌊
224/n

⌋
n or UTILS_REJECTION_THRESHOLD in

the implementation. This is to avoid biasing the distribution and discussed in detail in
Section 5.2.

Thus, sampling distinct bit positions can fail in two ways: (1) The sampled position in
{0, . . . , 224 − 1} is larger than η or (2) it collides with a previously sampled one. We can
model rejection sampling of a position as a Bernoulli variable with the success probability
p = η/224. Each attempt to generate a valid bit position below n consumes 3 bytes of
randomness. If the algorithm succeeds in picking a distinct bit position in every iteration,
it does not need additional randomness. In this case seedexpander is not called within
the for loop. However, if even a single sample fails or collides the algorithm will need to
produce additional randomness, as it now requires more than 3 · ωr bytes. The probability

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 11

Table 3: The approximated probabilities p for successfully sampling a bit position in the
range required for unbiased modulo reduction, p̃ for completing the rejection sampling
routine without exhausting the initially generated randomness, and for a message that
causes at least 3 additional seedexpander invocations.

Instance p (in %) p̃ (in %) (1− p̃)3 (in %)

hqc-128 99.94 81.95 0.58
hqc-192 99.79 65.93 3.95
hqc-256 99.97 79.09 0.91

of all ωr samples succeeding and picking distinct positions out of n bit positions is

p̃ =
ωr−1∏
i=0

(
p

n− i

n

)
which evaluates, for instance, to approx. 81.95% for the hqc-128 parameter set. Thus,
only 1 − p̃ ≈ 18.05% of all possible seeds θ result in at least one additional call to the
seedexpander function. The probabilities for all parameter sets are listed in Table 3.

Decapsulation timing. Inspecting the decapsulation function in Algorithm 5 the timing
variation is caused by the invocation of the encryption function using the seed θ = G(m).
Viewing the encryption function in Algorithm 2 we observe three calls to the previously
discussed Sample function. One for each of the random vectors: r1, r2, e, where the weight
parameters ωr and ωe are equal. Each of these calls is using the same seedexpander
instance, whose randomness depends upon the seed θ. In each of these three invocations
there is a 1− p̃ chance that seedexpander is called at least once within the for loop. Thus,
(1− p̃)3 of messages result in three or more calls to seedexpander.

3.1.1 The Distinguisher

Given a ciphertext c we can distinguish whether the decrypted message m yields the same
timing behavior during the encryption as another ciphertext. We define a distinguisher D
as:

DO(c1, c2) := O(c1) ?= O(c2) (1)
where O = TB(sk, ·) is the decapsulation timing oracle and yields the timing behavior –
the number of seedexpander calls – of the provided ciphertext under the secret key sk
and · ?= · returns whether the two arguments are equal or not. The advantage of D when
distinguishing a given ciphertext c1 that decrypts to m1 from another ciphertext c2 that
decrypts to a uniform randomly chosen message m2 is given by:

| Pr
c2 ←$ C

[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2 ←$ C

[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) 6= Decrypt(sk, c2)]|

= | Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) 6= Decrypt(sk, c2)]|

= 1− Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) 6= Decrypt(sk, c2)]

where C is the ciphertext space. The last formula shows that the advantage is at a maximum
when the probability of obtaining the same timing behavior for another ciphertext c2 that

12 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

decrypts to a different message is at a minimum. We can achieve this by minimizing the
probability of the timing behavior of c1 by picking a suitable message m1.

3.1.2 The Secret Key Recovery Attack

By using the observations of the vulnerability analysis to get a distinguisher described in
Section 3.1.1 for a secret key recovery we propose the following attack idea. We pick a
message m that has the property of resulting in 3 additional calls to the seedexpander
function. Regarding the low probabilities in Table 3, we know that most of the messages
do not share this property with our chosen message m. Therefore, since we can determine
whether a decryption has resulted in exactly 3 calls or not through the timing behavior,
we can distinguish whether a ciphertext decrypts to the message m with high advantage.
Next, we compute a ciphertext c = (u, v) by manually setting r1 to 1 ∈ R, and r2 and e
to 0 ∈ R during the encryption of m. This ciphertext has the desirable property, that the
error that the decoder has to correct during the decryption is just y, a part of the secret
key:

v− u · y = mG + s · r2 + e− (r1 + h · r2) · y = mG− r1 · y = mG− y. (2)

If we are able to find the error −y = y, we can compute the remaining part of the secret key
as x = s− h · y. Note, that we do not need x as it is never used during the decapsulation.
Further, note that this ciphertext is not valid, since we cannot fully control r1, r2, or e
during the encryption. For valid ciphertexts, these are derived from m via the XOF and
the Sample function. We do not require a valid ciphertext, as our timing-side channel will
reveal information, even if the ciphertext is rejected by the decapsulation oracle.

To recover the error y we follow the basic principles outlined by Hall et al. [HGS99].
The authors propose adding an error e′ to the ciphertext c until we detect that the modified
ciphertext c′ decrypts to a different message m′. Then, we test for every bit b in the
ciphertext c′, whether flipping it causes the ciphertext to decrypt back to the original
message m. If it does, we know that the bit b is an error bit in the modified ciphertext c′.
Otherwise, b is not an error.

Unfortunately, we cannot directly apply this method to HQC for several reasons: (1)
Instead of correcting errors we need to determine the error e of our original ciphertext
c = mG + e. (2) Further, when flipping erroneous bits in the modified ciphertext it does
not decrypt back to the original message in most cases. Thus, we would not detect that the
bit is an error. (3) Finally, the timing side-channel can not distinguish pairs of messages
that induce the same number of seedexpander calls. Therefore, we sometimes do not
detect that our modified ciphertext does not decrypt to the same message m anymore.

The first issue can be solved by keeping track of the error e′ that we add to c to obtain
c′. If we flip a bit b in the ciphertext c′ and it decrypts back to the original message m,
we know that b is an error in c′ = c + e + e′. Let e′′ = e + e′. If the bit b is an error in
e′′, then b is an error in e if and only if the b-th bit of e′ is not set. Or in other words, if
we did not introduce the error ourselves, we know that the bit is an error. Otherwise, we
know that the bit is correct. The second issue vastly increases the number of timing oracle
calls since it introduces a very high false negative rate. We do not gain any information if
the ciphertext does not decrypt back to the original message. To address this issue, we
retry the entire function multiple times, with many different e′. Eventually, we obtain a
decision for every bit. The third issue may be solved by obtaining three or more decisions
for every bit, and then obtaining a final decision with a majority vote.

Our resulting attack approach is detailed in Algorithm 9. First, we need to find a
proper message m which yields 3 additional seedexpander calls. Therefore, we perform an
exhaustive but low effort search. According to Eq. (2), we apply the modified encryption
to m to obtain the initial ciphertext c = (u, v). Further, we define a proper majority
threshold T as the majority of N votes. Afterwards, we apply Algorithm 10 to find another

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 13

Algorithm 9: KeyRecovery
Input: Ciphertext c, parameter N to compute majority threshold T .
Output: y.

1 for b = 0 to n1n2 − 1 do y[b]← 0, t[b]← 0, r[b]← 0
2 repeat
3 (c′, bs)← FindDiffMsg(c)
4 e′ ← RecoverError(c′)
5 majority ← true
6 T ←

⌊
N
2
⌋

+ 1
7 for b = 0 to n1n2 − 1 do
8 if e′[b] = 1 then
9 t[b]← t[b] + 1

10 if b 6∈ bs then r[b]← r[b] + 1
11 end
12 if r[b] < T and t[b]− r[b] < T then
13 majority ← false
14 end
15 end
16 until majority = true
17 for b = 0 to n1n2 − 1 do y[b]← r[b] ≥ T
18 return e

ciphertext c′ = (u, y + e′) and the corresponding m′ that differs from m. We only add e′
to v because the input to the decoder evaluates to additional errors just in the secret key
part y, c.f., Eq. (3).

Decrypt(sk, (u, v + e′)) = C. Decode(v + e′ − u · y) = C. Decode(mG + e′ − y) (3)

In particular c′ should have exactly one more error bit than the decoder could correct.
From this state, flipping any bit in c′ and checking whether the ciphertext decodes again
reveals whether that bit was an error bit in c or not. We can exploit this property to
recover y later on. Starting from c and an error of e′ = 0, we iteratively increase the weight
of e′ by flipping single, random bits. After each flip, we send the modified ciphertext to
the decapsulation timing oracle DTB(sk,·) and check if the ciphertext causes a different
amount of time in the decryption operation than our original ciphertext. If it does, we
have found a ciphertext c′ that decrypts to a different message m′.

Then, for each bit position b in v + e′, we flip the bit and send (u, v + e′ + 2b) to
the decapsulation timing oracle, where 2b is a vector with the bth bit set. If we detect
that the timing is again equal to the timing of our original ciphertext, we assume that
the decryption yields back the original message m and that the corresponding bit in the
secret key part y is set. Otherwise, we assume that the ciphertext decrypts to a different
message and that there is no error bit set at this position.

Finally, Algorithm 9 calls Algorithms 10 and 11 multiple times until a majority is
revealed at each bit position for a 0- or 1-bit. To determine the majorities the counters
in t record the total number of votes that have been cast for each bit b. The counters in
r record the number of 1-votes for each bit b, i.e., the number of votes that the bit b is
set. The number of 0-votes for a bit b is computed by t[b]− r[b]. For a majority either the
number of 1-votes or the number of 0-votes has to exceed bN/2c+ 1.

Reducing the number of oracle queries. We can improve the attack by targeting a
specific word of the duplicated RM code. Specifically, consider that the code used in HQC

14 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Algorithm 10: FindDiffMsg
Input: c
Output: c′, flipped bits bs

1 c′ ← c
2 bs← RandomPermutation([0, . . . , n1n2− 1])

3 for i = 0 to n1n2 − 1 do
4 Flip bit bs[i] in v of c′

5 if DTB(sk,·)(c, c′) = 0 then
6 return (c′, bs[0, . . . , i])
7 end
8 end

Algorithm 11: RecoverError
Input: Modified ciphertext c′

Output: Combined error e
1 e← 0
2 for i = 0 to n1n2 − 1 do
3 Flip bit i in v of c′

4 if DTB(sk,·)(c, c′) = 1 then
5 Set bit i in e
6 end
7 Flip bit i in v of c′

8 end

· · ·

n1n2

n2

n− n1n2

Figure 2: An element of F2[x]/〈xn − 1〉 and its segmentation into codewords of the inner
code.

is a concatenated code combining an outer RS code with an inner duplicated RM code.
During encoding, each element in the alphabet Fq from a word of the outer code is mapped
to a message that the inner code can encode. We can obtain an oracle whether a word of
the inner code decoded correctly by corrupting v such that a single additional corrupted
inner code word would result in a decoding failure. We achieve this by corrupting δ – the
error correction capacity of the outer code – elements of the outer code. We then may
add an error e′ to a single element of words of the RS code. A similar procedure has
been previously described [BDH+19, Ex.15] to attack Lepton [YZ17] which uses BCH and
repetition codes.

The oracle we construct here may also enable faster attacks [WTBB+19] if the noise
learning problem [BDH+19] is solved for duplicated RM codes. We do not implement such
a version of the attack as we are not aware of a solution to this problem.

Recovering the entire secret key. Using the methods described so far we can recover
n1n2 bits of the secret key y. However, we are missing n− n1n2 bits, that are required
for using y during decryption. In Fig. 2 the structure of HQC codewords is displayed.
Depending on the codes used, there are n1 RM or repetition code codewords. However,
n−n1n2 bits of the n bits in total are never used during decoding. Thus, these bits cannot
be obtained using the methods described so far. We now show how this situation can
be remediated, and how it does not have a significant impact on the success probability,
when the attack accounts for it. This issue was not addressed in some other attacks
against HQC [WTBB+19]. Fortunately, the difference between n and n1n2 is small for
most parameters. However, for some parameters the difference could dominate the attack’s
complexity, if we were to brute force every possible combination. The largest difference
with the new parameter sets is 37 bits in hqc-256. We can check whether a combination
of bits is correct by checking whether we can decrypt an honestly encrypted message
successfully. Fortunately, we can drastically reduce the search space while retaining a very
high success probability. Assuming the number of bits set in the remaining bits is ≤ 2, the

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 15

Table 4: Remaining n − n1n2 bits that must be recovered for each parameter set, the
number of ways to pick the remaining bits with a weight of up to 2, the probability that
the weight is 0, and the probability that the weight is ≤ 2.

Instance n1n2 n ω n − n1n2
∑2

i=0

(
n−n1n2

i

)
Pr[Z = 0] Pr[Z ≤ 2]

hqc-128 17,664 17,669 66 5 16 ≈ 98.1 % ≈ 100.0 %
hqc-192 35,840 35,851 100 11 67 ≈ 97.0 % ≈ 100.0 %
hqc-256 57,600 57,637 131 37 704 ≈ 91.9 % ≈ 100.0 %

number of ways to pick these bits is
∑2

i=0
(

n−n1n2
i

)
. This number is low enough for all

parameter choices to enumerate using a brute force search.
We now investigate the success probability given this dramatic search space reduction.

We define Yi,o,w to be the number of elements that land inside a region of i elements when
sampling w distinct elements uniformly from a region of i + o elements. The region i (or
“inside”) corresponds to the bits that are set in the remaining n− n1n2 bits. The region o
(or “outside”) corresponds to the n1n2 bits that we have already obtained using the attack.
Then the probability that x of the w distinct elements land inside the region of i elements
is:

Pr[Yi,o,w = x] =
(

i
x

)(
o

w−x

)(
o+i
w

)
We now let Z = Yn−n1n2,n1n2,ω. Assuming the attack was successful for all n1n2 bits, the
success probability is approx. 98.1% for hqc-128 when we guess that all remaining bits are
zero, represented by the column Pr[Z = 0] in Table 4. However, this loss is preventable by
brute-forcing the remaining bits. We can come very close to a success probability of 1,
even for a modest search of only ≤ 2 set bits.

3.2 The Timing Attack on BIKE
Central elements for our attack are the decoding algorithm and the hash functions, which
are described here a bit more. From the specification we see that the decoding step calls
Decode(s, h0, h1) which returns either (e0, e1) ∈ R2 such that e0h0 + e1h1 = s or the
failure symbol ⊥. First, note that there is no restriction on the weight of the returned error
in the Decode algorithm. Any weight is possible as long as e0h0 + e1h1 = s. Secondly,
if decoding is not successful and the failure symbol is returned, it has to be coded into
a binary value. In existing reference implementations, failure is indicated by assigning a
specific value like (e0, e1) = 0.

For the hash functions used, K and L are considered as standard hash functions,
mapping to l-bit strings. But H is a special hash function, since its output is a vector of
weight t. It finds its output by a rejection sampling method. Its description is given in
Algorithm 12 and uses also a pseudorandom number generator called AES-CTR-Stream(·)3

in the round-3 submission to NIST. In brief, the algorithm is producing a list of w different
bit-positions in {0, ..., len− 1}, which correspond to the positions of the ones in the weight
t = w error vector of length len = 2n that should be the output of the H hash function.
The first step in the algorithm is to call AES-CTR-Stream(·) to get a new position value
and add it to the list if it was not previously already selected. The number of required
calls for randomness (the final value of the i variable) varies, depending on the number of
collisions with already selected values.

The situation in BIKE is very similar to the HQC case. Looking at the definition of
Encaps/Decaps (see Algorithms 7 and 8) we have seen that the rejection sampling takes

3In the most recent version, the designers instead employ SHAKE256.

16 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Algorithm 12: WAES-CTR-PRF
Input: seed, w (32 bits), len
Output: A list of w different bit-positions in {0, ..., len− 1}.

1 wlist = φ; ctr = 0; i = 0
2 s = AES-CTR-Stream(seed,∞) // ∞ denotes "sufficiently large"
3 mask = (2dlog2 re − 1)
4 while ctr < w do
5 pos = s[32(i + 1)− 1 : 32i] & mask // & denotes bitwise AND
6 if ((pos < len) AND (pos 6∈ wlist)) then
7 wlist = wlist ∪ pos; ctr = ctr + 1;
8 end
9 i = i + 1

10 end
11 return wlist, s

place in the H function, in order to generate a random error vector of fixed-weight. A
non-constant time implementation of H thus means that we can distinguish between the
cases m = m′ and m 6= m′ with some probability. The value m′ directly depends on the
ability of the decoder to correctly extract the error vector e = (e0, e1) from the ciphertext
c. This means that we have, as for the case of HQC, a distinguisher between chosen
ciphertexts above and below the error correction capability of the decoder. This assumes
the rejection sampling algorithm is not implemented in constant time, of course. BIKE
officially claims only a IND-CPA secure scheme with the ephemeral key use-case, although
they claim IND-CCA security if the decoder they use can be shown to have a decoding
failure rate lower than the bit-security level of the scheme.

We are now ready to formulate an attack on BIKE, based on the described observations.
As before, we consider an IND-CCA scenario, where we assume that we can compute
ciphertexts (with encapsulated keys), feed a ciphertext for decapsulation and observe the
output of decapsulation. This may for example be an attempt to establish a joint key. As
this is a timing attack, we also add the assumption that we get timing information from
the decapsulation step.

We leverage the GJS attack [GJS16, NJW18] and use the rejection sampling vulnera-
bility as way to act as a distinguisher of decoding failure. This attack assumes that the
scheme is used in a static key setting requiring IND-CCA security. The Error Amplification
attack [NJW18] builds on the GJS attack [GJS16], but requires only a single initial error
vector that results in a decoding failure and then modifies this in order to generate many
more error vectors. Let us give very brief descriptions of these attacks.

3.2.1 The GJS Attack

The GJS attack [GJS16, NJW18] was described as an attack on QC-MDPC public-key
schemes, using decryption failures that occur. As BIKE is a QC-MDPC scheme, the attacks
are directly applicable. In our case, the secret key is (h0, h1), which also determines the
secret parity-check matrix of the code to be decoded. Central is the notion of distance
between two ones at position i1 and i2, i1 < i2, in a vector. It is defined as the smallest
value of (i2− i1) and (i1− i2) + r, where r is the length of the vector (the smallest distance
between the two ones in cyclic sense).

The distance spectrum for a length r vector x is denoted D(x). It is (in its simplest
form) defined as

D(x) = {d : 1 ≤ d ≤ r/2, d is a distance existing in x}.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 17

Algorithm 13: Key recovery from distance spectrum (from [GJS16])
Input: distance spectrum D(h0), partial secret key h0, current depth l
Output: recovered secret key h0 or message "No such secret key exists"

1 Initial recursion parameters: distance spectrum D(h0), empty set for secret
key, current depth 0

2 if l = w then
3 return h0 // secret key found
4 end
5 for all potential key bits i do
6 if all distances to key bit i exist in D(h0) then
7 Add key bit i to secret key h0
8 Make recursive call with parameters D(h0), h0 and l + 1
9 if recursive call finds solution h0 then

10 if h0 is the secret key then
11 return h0 // secret key found
12 end
13 end
14 Remove key bit i from secret key h0
15 end
16 end
17 return "No such secret key exists"

It can be extended by also introducing µ(d), where µ(d) is the number of times the distance
d is present in vector x, when d ∈ D(x).

The approach is now to examine the decoding result for different error patterns. In
particular, one picks errors from special subsets. For example, let Ψd be the set of all binary
vectors of length n = 2r having exactly t ones, where all ones are placed with distance d
in the first half of the vector. The other half of the vector is zero. The construction of Ψd

gives repeated ones at distance d at least t/2 times, where

Ψd = {(e, 0) | ∃ distinct s1, s2, . . . , st, s.t. esi
= 1, and

s2i = (s2i−1 + d) mod r for i = 1, . . . , t/2, and |e| = t}
(4)

In the attack phase one sends many messages with the error selected from the subset
Ψd. When there is a decoding error one records this. With enough samples one can
compute an empirical decoding error probability for the subset Ψd. Furthermore, this
is done for d = 1, 2, . . . , r/2. The main observation is that there is a strong correlation
between the decoding error probability for error vectors from Ψd and the existence of a
distance d between two ones in the secret vector h0. If there exists two ones in h0 at
distance d, the decoding error probability is much smaller than if distance d does not exist
between two ones.

After sending many messages, we look at the decoding error probability for each Ψd

and classify each d, d = 1, 2, . . . , U according to its multiplicity µ(d), since each distance
can appear not only once but many times. This provides a distance spectrum for the
secret vector h0, which we write D(h0). Finally, from D(h0) it is an easy task to compute
h0. One can even have a smaller number of wrong values in D(h0) and still be able to
compute h0. We list the basic key reconstruction algorithm from [GJS16] in Algorithm 13
for completeness. The advanced version that is capable of recovering keys from distance
spectrum with errors is proposed in [GJW19].

18 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Algorithm 14: Pseudo code of attack: BikeAttack(h, w∗, M, I)
// Preamble

1 m← Plaintext such that H(m) is easily distinguishable by timing attack
2 while True do
3 Generate random e, of hamming weight w∗

4 if DecodingFailureDistinguisher(e, I) = True then
5 break // Found the first e which causes a decoding failure
6 end
7 end

// Main body
8 F, G, A, B ← empty vectors
9 for i← 1, M do

10 e∗ ← Move random non-zero bit in e
11 ∆Dd ← Distance spectrum differences between e and e∗
12 if DecodingFailureDistinguisher(e∗, I) = True then
13 e← e∗
14 Update lists F, G with ∆Dd according to [NJW18]
15 else
16 Update lists A, B with ∆Dd according to [NJW18]
17 end
18 end

// Postamble
19 A′ ← max(A)−A + min(A)
20 D ← F + G + A′ + B
21 Recover secret key with distance spectrum D as per [GJS16]

3.2.2 The Secret Key Recovery Attack

The attack now follows the procedure listed in Algorithm 14 and using the distinghuisher
in Algorithm 15. Let us step through the different parts of the attack in more detail.

1. We start by finding m such that H(m) is easily distinguishable by a timing attack.
Here we pick m with an extraordinarily distinct timing profile (i.e. long or short) in
the rejection sampling. It means that we have many or few collisions in Algorithm 12
that makes execution require more or less time, than the average case. Selection of
strategy, as well as details on the number of calls, will be discussed later.

2. Construct an error pattern e = (e0, e1) with higher than normal Hamming weight
so that we are as close to the decoding limit as possible. We assume one part of e
(w.l.o.g., e1) is an all-zero vector.

3. Calculate c and transmit to target.

4. Determine if m′
?= m by timing attack.

5. Repeat from step 2. to collect many e where m′ 6= m as per GJS attack or Error
Amplification attack

6. After sufficiently many errors are collected, we could determine the distance spectrum
statistically.

7. The secret key can be recovered via the reconstruction method in [GJS16] or the
improved reconstruction method in its extended version [GJW19] that can handle
errors in the recovered distance spectrum.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 19

Algorithm 15: DecodingFailureDistinguisher(e, I)
1 e0, e1 ← e
2 c← (e0 + e1h, m⊕ L(e0, e1))
3 S ← ∅
4 for i← 1, I do
5 start← RDTSCP
6 BIKE.Decaps(c)
7 stop← RDTSCP
8 S ← S ∪ (stop− start)
9 end

10 Determine decoding failure f or not with S
11 return f

We can check the correctness of this approach. First, L takes input from R2, so it
delivers a result for any choice of e = (e0, e1). Hence we can build ciphertexts accordingly.
In the decaps step, c0 ∈ R is always a valid input to the decoder. The decoder delivers an
error e′ or a failure. But since the result from the decoder is fed into the L with input in
R2, the failure symbol must be interpreted as a fixed value in R2 (as is also done in the
reference code). Altogether, there are no problems with the domain and range of functions.
We can feed decaps with ciphertext corresponding to error vectors with higher weight
than specified. It is only in the last check of e′ = H(m′) that it will fail, since H is only
delivering error vectors of weight t.

4 Evaluation
In this section we present the empirical evaluations of both attack approaches described in
Sections 3.1 and 3.2.

4.1 Empirical Evaluation of the Attack on HQC
To confirm the previously postulated hypothesis about the timing behavior we performed
a leakage assessment by measuring the CPU cycles of the decapsulation function in the
hqc-128 setting for ten million random ciphertexts. Fig. 3a shows how more seedexpander
calls result in an increased running time. We observe up to 3 additional seedexpander
calls. In Fig. 3b we can see the frequency of different timing behaviors. As expected, the
frequency decreases when the number of additional seedexpander calls increases. Further,
the rate of three additional calls is low enough to be distinguishable to the other three
cases. The probability of four additional calls is negligible and does not occur.

We have empirically verified the existence of the timing variation by generating random
ciphertexts under a single keypair and measuring the number of cycles that the decapsula-
tion algorithm required for 100 random ciphertexts. To measure the number of cycles that
an operation takes we use the rdtsc instruction on x86 as recommended by Intel [Pao10].
Section 5.5 shows whether there is a difference in decapsulation time between pairs of 100
ciphertexts generated for a single keypair. We determine whether there is a statistically
significant difference using Welch’s t-test [Wel47] (α = 0.1%). The t-statistic for two
distributions X1 and X2 in Welch’s t-test is computed as:

X̄1 − X̄2√
s2

X1
N1

+
s2

X2
N2

(5)

20 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

Num. PRNG Samplings

2.4

2.5

2.6

2.7

C
lo
ck

cy
cl
es

×105

Num. Seedexpansions
0 1 2 3

(a) For each observed combination of the num-
ber of additional seedexpander calls and the
number of times a position was attempted to
be sampled we show a boxplot of the number of
cycles that the decapsulation function took.

0 1 2 3

Num. Seedexpansions

0

2

4

N
u
m
.
P
la
in
te
x
ts

×106

(b) Bar plot of the number of additional
seedexpander calls observed for the 10 million
random ciphertexts generated. 3 additional
seedexpander calls corresponds to the rarest
observed timing behavior.

Figure 3: Decapsulation timings and frequency of different timing behaviors. We observe
that the running time of the decapsulation function is proportional to the number of
seedexpansions and that more seedexpander calls are rare. The left figure shows a
standard box plot with the median indicated within the the box, which also shows the
quartiles. The whiskers extend to show 1.5 times the interquartile range.

where X̄i, s2
Xi

and Ni are the sample mean, variance and size of Xi, respectively. The
degrees of freedom are estimated by the Welch-Satterthwaite equation:

ν =

(
s2

X1
N1

+ s2
X2

N2

)2

(
s2

X1
N1

)2

N1−1 +

(
s2

X2
N2

)2

N2−1

. (6)

The results show that many pairs of ciphertexts emit a statistically significant difference
in decapsulation time. We have performed the same test again focussing only on the
seedexpander function and achieve very similar results.

We implemented the optimized attack against hqc-128 using an idealized timing oracle
that reveals the number of seedexpander calls during the decapsulation. The attack may
be implemented analogously for the other parameter sets. We set N = 5 for the number
of samples from which a majority must be formed for each bit. We performed the attack
6096 times in 114 CPU core hours on a Ryzen 5900X with 64 GiB DDR4 3600 MT/s CL18
RAM. Each attack required a median of 866,143 idealized timing oracle calls. Of the
6096 attacks 5315 were successful, yielding a success rate of more than 87 %. Among the
failed attacks, approx. 26 % terminated with less than 3 incorrect bits in the secret key
component y. An additional brute-force step comprised of approx.

∑3
i=0
(17,669

i

)
≈ 240

offline decapsulations could therefore further boost the success probability. Furthermore,
approx. 86 % of the failed attacks terminated with less than 20 incorrect bits and could
therefore drastically reduce the security level of HQC. Thus, even if we are not able to
recover all bits of the secret key we deem it likely that one can apply the known attacks

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 21

0 25 50 75 100 125
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

x

Pr
[in

co
rr

ec
t

bi
ts

≤
x]

Figure 4: Empirical cumulative distribution function of the number of incorrect bits
during the attacks. Approx. 87 % succeeded immediately. For those that failed additional
post-processing steps could further improve the success probability. The vertical line
indicates the weight of the secret key y. Less than 1 % of cases the attack terminated with
more incorrect bits than bits are set in the secret key.

to the HQC scheme which are listed in [AAB+21] as it will become feasible to solve the
syndrome decoding problem or to mount structural attacks. We empirically determined
the probability distribution of the number of incorrect bits after an attack and show the
cumulative distribution function in Fig. 4.

4.2 Empirical Evaluation of the Attack on BIKE
The BIKE specification changed in some major ways between round 2 and 3 and there are
now only a single bike variant with different security levels. The submitted version of the
specification is 4.1. The specification has been updated during round 3 to version 4.2 in
ways relevant to our attack; specifically the PRNG function used by the H function has
been replaced. Though, the side-channel and the presented attack remains, so the changes
are not detailed in this paper.

The presented version of the BIKE attack assumes the following pre-conditions:

1. It is possible to generate a decoding failure (and then use the Error Amplification
attack to generate a chain of related decoding failures). This is possible due to

• increasing the error weight when crafting the modified ciphertext artificially
increases the DFR.

• the lack of mandated weight-check on the error vector in the decapsulation
stage of the BIKE specification.4

2. The timing profile of the H function depends on its input (value of m), i.e. it is not
(or insufficently) protected against side-channels.

3. The attack requires a IND-CCA setting with static key re-use.

We now list some existing implementations and discuss the applicability of our attack:
4a weight check is discussed in the Design Rational chapter, but left out in the Specification chapter.

It is mentionend in the IND-CCA security reduction to be implicit in the e′ = H(m′) check, but not in
the specification of H.

22 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

• Reference implementation: All versions of the reference implementation of
BIKE fulfills these pre-conditions. But since it is not designed to protect against
side-channels the existence of an attack is not unexpected.

• Protected additional implementation: It should be noted that there is no
submitted official additional implementation in the submission package5 for NIST
PQC Round 3 version of the BIKE specification. The additional implementation
folder in the Round 3 submission package is the protected implementation of the
BIKE round 2 specification, version 3.26. This version is vulnerable to the attack
presented in this paper, with some minor modifications.

• Github version: Located at github.com/awslabs/bike-kem/ is another implemen-
tation, which has an additional weight check on the error vector (not given in the
BIKE specification), located before the call to the H function. The end result is
that in case of decoding failure or an error pattern of weight 6= t, the input to H is
randomized. This renders the described attack much more difficult to exploit, since
we are required to find a decoding failure without changing the weight of the error
vector. On the other hand, the extra weight check opens up an even more efficient
message recovery attack and we provide a very brief description of this in Section 4.3.
Liboqs from the Open Quantum Safe Project [SM16] appears to use the same
version of the BIKE implementation as the one above. Also, a recent 3rd party
Intel Haswell implementation due to [CCK21] that targets the Intel Haswell family
of CPUs to achieve greater speeds than the official implementation appears to be
based on the Github version and have copied the additional weight check.

• 3rd party ARM Cortex M4: In the same paper [CCK21], the authors present
a side-channel protected implementation targeting the ARM Cortex M4 processor.
This version does not employ the additional weight check and is thus vulnerable to
our attack.

The simulations and experiments related to BIKE in this paper is using the liboqs
implementation for BIKE version 4.1, with the additional weight checks turned off. This
enables us to verify our attack in a close to real world scenario. Ideally, the experiments
would also be performed on the unmodified 3rd party ARM Cortex M4 implementation.
Due to time-constraints however, we restricted ourselves to the Intel x86 platform-based
implementations of the submitted BIKE version.

The empirical investigation into BIKE-L1 shows the number of expected rejections by
the rejection sampling algorithm in Fig. 5. From the experiment we draw the following
conclusions about the targeted implementation:

1. The number of PRNG samplings θ are equal to the number of sampled bit positions
in e0, e1, therefore θ ≥ T .

2. θ, for BIKE-L1, has an expected value E(θ) ≈ 178.6, over the space of M.

3. The number of rejections for BIKE-L1 has an expected value of E(θ − T) = 44.6

4. The experiment shows a skewed7 normal distribution with a standard deviation of
σ = 7.714

5obtained on 2021-12-31 from https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-3/submissions/BIKE-Round3.zip

6the same is true for the additional implementation found on the bikesuite.org website (Last checked
2021-12-31)

7Skewed due to the influence of condition θ ≥ T

https://github.com/awslabs/bike-kem/
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/BIKE-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/BIKE-Round3.zip
bikesuite.org

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 23

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

23
7

24
1

Num. PRNG Samplings θ

102

104

106

108

1010
N
u
m
.
P
la
in
te
x
ts

Num. Seedexpansions
35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53

54
55
56
57

58
59
60
61

Figure 5: BIKE-L1 : Distribution of the number of samplings θ in H to the underlying
PRNG function as empirically simulated with approximately 1011 randomly generated
plaintexts. Also presented are the number of seed expansions to the PRNG function.

5. The underlying PRNG can serve 4 random samplings before requiring a new seed
expansion.

To determine the existence of the timing side-channel we observe the timing distributions
of the decapsulation method (Algorithm 8) as a function of θ. As we can see in Fig. 6 it is
indeed possible to distinguish between a high and low θ, although the variations are slight
and we therefore require a relatively large number measurements for the distinguisher to
give accurate outputs.

We performed the BIKE experiments in an HP EliteBook 820-G4 notebook with Intel
Core i5-7200@2.50GHz and 8Gb RAM running on Ubuntu 20.04 LTS. We set Linux
scaling governor to ’performance’, turned off hyper threading, and turned off all extraneous
processes.

Interestingly, the number of seed expansion calls does not appear to provide any
noticeable influence on the runtime of the implemented rejection sampling algorithm.
Consequently we must select a plaintext based on θ alone. Each seed expansion call is
a simple call into AES which generally is implemented using the Advanced Encryption
Standard New Instructions (AES-NI) CPU instruction set extension, which is very fast on
modern CPUs.

As previously noted, since it is a one-time pre-computational cost, we can spend an
almost arbitrary amount of computation looking for a good candidate plaintext which will
provide us with a distinct timing profile in the rejection sampling algorithm.

Since we do not control what new plaintext is generated by decoding failures our
candidate plaintext must cause a timing profile which is measurably distinct from other
likely plaintexts. Likely, in this context, relates to the notion of the probability of making
erroneous decisions for m′

?= m. That is, if m′ 6= m and |θm − θm′ | < ∆θ, for some value
∆θ for which the distinguisher is no longer reliable, then the distinguisher may output
the wrong decision. The probability of the decoder randomly returning such an m′ is the

24 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

23
7

24
1

Num. PRNG Samplings θ

2.66

2.67

2.68

2.69

2.70

2.71

C
lo
ck

cy
cl
es

×106

Num. Seedexpansions
35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53

54
55
56
57

58
59
60
61

Figure 6: Box plots of 106 timing measurements of BIKE-L1 Decaps per value of θ. Values
of θ with too few available plaintexts (< 10) are not simulated.

most important property to consider when determining the design and parameters of the
distinguisher.

For the attack to succeed the probability of |θm − θm′ | < ∆θ must be minimized. This
can be accomplished in two ways. First, by increasing the work-load of the pre-computation
phase we can find a candidate value of m with θm as high/low as possible. The second
way is to reduce the granularity (∆θ) of the distinguisher by increasing the number of
decapsulation measurements.

The probability of a distinguisher failure ε can easily determined by simulation. There
are many ways to construct a distinguisher with a reasonably low failure rate ε. We
selected a simple strategy where we use the minimum θm and where we use the 1% lowest
measurement as the representative value for each distinguisher decision. This is done in
order to select the value which is as close to noise free as possible.8

The distinguisher uses 2 phases; the profiling phase and the decision phase. In the
profiling phase we first select (m, θm) and ∆θ such that the the probability of |θm−θm′ | >=
∆θ, for a random θm′ , is less than the targeted ε. Then a large number of measurements
are collected for plaintext m∗ where θm∗ = θm + ∆θ. The 1% lowest measurement is
selected as a threshold.

In the decision phase a number of decapsulation measurements are collected and, again,
the 1% lowest value is selected. The selected value is compared against the previously
selected threshold. If the measurement value is above the threshold we guess a decoding
failure. If below, we determine decoding successful.

Clearly, the distinguisher can be made more sophisticated using statistical hypothesis
testing or machine learning. However, for simply validating the practicality of exploiting

8We don’t select the absolute minimum value as we have discovered that sometimes those values are
impossible outliers. An hypothesis is that they come from instruction-reordering by the CPU and/or
scheduling between CPU cores.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 25

0 2000 4000 6000

Distance

4.1

4.2

4.3

4.4
N
u
m
.
O
cc
u
re
n
ce
s

×105

Multip.
0

1

2

3

4

(a) Simulated aggregated distance spectrum us-
ing the Error Amplification attack. Listed in
the legend is the various multiplicities µ(d) of
the secret key.

4.1 4.2 4.3 4.4

Num. Occurences ×105

100

101

102

C
ou

n
t

Multip.
0

1

2

3

4

(b) Plotting as histogram, the multiplicities µ(d)
are quite separated and there should be no errors
while determining the distance spectrum of the
secret key.

Figure 7: Data is generated using Nf = 8.5×106 decoding failures and a distinguisher with
ε = 0.01. For each distance is listed the number of occurrences that the specific distance
was included in an error pattern that resulted in a decoding failure. The stratification into
separate layers for each multiplicity is clearly visible.

this side-channel, this distinguisher is quite sufficient.
Simulations show that we can obtain ε ≈ 0.01 by constructing a distinguisher with

∆θ = 22. This value is obtained with a candidate plaintext m with θm = 138 and
Nd = 1000 decapsulation measurements, per decision. This was determined using the
above parameters against 104 random error patterns of hamming weight 157, resulting in
a DFR of 0.1369.

To complete the empirical evaluation of the attack we finally perform a full simulation
of Algorithm 14. We have implemented the attack using an idealized oracle that output θ,
the number of PRNG samplings performed by H. To show the real-world applicability of
the attack the idealized oracle additionally simulates ε = 0.01, artificially. The simulation
results in the graphical representation of the distance spectrum of the secret key, as seen
in Fig. 7.

Due to ε, a confirmation step was added where each found decoding failure was
confirmed by an additional set of measurements. Otherwise the Error Amplification attack
is sensitive to bad distinguisher decisions. Due to the chain of error patterns that is
constructed it is critical that consecutive decoding failures are not missclassified. The
extra confirmation step prevents this.

Observed in the figure is a clear picture of the distance spectrum without classification
errors. This figure was obtained after about Nf = 8.5 × 106 decoding failures in the
decapsulation method for BIKE-L1. The simulation used a hamming weight of 149, which
using the Error Amplification attack resulted in a DFR ≈ 0.146, a good match for our
distinguisher above.

The final step is to do the key recovery, as detailed in [GJS16]. As in [GJS16], the
reconstruction cost is negligible compared with the cost of querying the decryption oracles
if the distance spectrum is fully recovered. The reason is that after quite few steps, the
wrong guesses will be rejected with high probability and only the correct guess path will
continue. One could balance the costs of building the distance spectrum and recovering the

26 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

secret key, as done in [GJW19], by allowing errors in the recovered distance spectrum. As
our aim is to demonstrate the new attack method, for simplicity, we leave this optimization
trick for future works.

Finally, we estimate that to perform an actual key recovery we require about 6.7× 1010

decapsulation measurements, or equivalently, 5.8× 107 number of idealized oracle calls.
These numbers are given by:

Nf

DFR︸ ︷︷ ︸
Ideal
oracle

×Nd + Nf ×Nd︸ ︷︷ ︸
Confirmation

= Nd ×Nf ×
1 + DFR

DFR .

We firmly believe that these numbers can be reduced by, e.g., by an improvement of the
distinguisher by statistical hypothesis testing, machine learning, or discarding ambiguous
results, etc. Further options are optimizing the hamming weight (and thus the DFR) of
the error patterns, allowing for larger ε and adding more confirmation steps, if necessary,
allowing errors in the distance spectrum by trading for increased computational cost in
the postprocessing stage, or spending further computational resources towards finding a
more distinct (m, θm).

4.3 Message-Recovery from the New Weight Check
The described key-recovery timing attack on BIKE does not work for the new Github
implementation and other related implementations (say in liboqs), due to an additional
weight check on the error vector before the call to the H function, a check that is not
explicitly specified. However, combined with the timing variation from the rejection
sampling, this new weight check opens a new path for very efficient message recovery. In
this section, we briefly describe such a message recovery attack.

We first build a distinguisher to distinguish if the weight check fails. In the new
implementation, in Algorithm 8 after the call e′ = Decode() in line 1, the weight of e′ is
checked. If the weight is not t, e′ is assigned a random value, otherwise it is kept. In line
2, m′ = c1 ⊕ L(e′) and in the next line there is the call to H(m′).

When we submit the same ciphertext to the BIKE decaps oracle multiple times, the
input to the H function call are different random vectors if the weight check fails; otherwise,
if the weight of e′ is t, the inputs will be the same fixed vector. We can then build a
distinguisher assuming that such execution time difference could be detected statistically
after repeating the decaps oracle calls with the same ciphertext for many times.

With this distinguisher, we could launch a simple message-recovery attack. Assume
that a correctly generated ciphertext c = (c0, c1) = (e0 + e1h, m⊕ L(e0, e1)) is received.
One can now flip the first and the ith bits of c0 (i.e., flipping the first and the ith bits of
unknown e0) and send the new ciphertext to the decaps oracle multiple times. Even though
the decaps output is meaningless, from the distinguisher using the timing measurement
one can detect if the flipped two bits have the same value. If they have the same value,
the weight of e′ will increase by 2, but if they have different values the weight of e′ will be
t. Since e0 is an extremely sparse vector, if we have more pairs among the (r − 1) pairs to
be the same, the first bit of e0 should be 0; otherwise, it should be 1. When the first bit
of e0 is decided, one can estimate the ith bit of e0.

Note that one could also flip the first bit of c0 and add the vector Eih to c0, where Ei
is the vector with only the ith position nonzero. This is equivalent to flip the first bit of
e0 and the ith bit of e1. Thus, the value of e1 can be roughly estimated. We can then
employ a post-processing step with ISD (information set decoding) algorithms to correct
some distinguishing errors in the previous steps.

The attack was not implemented since the additional check is not part of the specifi-
cation, but we can do a rough estimate of the complexity of such an attack. If we do a

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 27

few hundred oracle calls with the same ciphertext and run through 2r different modified
ciphertexts it appears very likely that the attack would be successful, since it would allow
for some distinguishing errors that an ISD approach would then correct. In total, we may
use several million oracle calls, which is much less than the described key-recovery attacks.
We leave the investigation of its exact performance for future work. The conclusion is that
the added weight check as it is done in the implementation is only weakening the security
of the scheme.

5 Discussion on Countermeasures
To counter our proposed attacks and to remove the exploitable leakage, we see two ways:
When analysing the construction of the KEM version of HQC, one might argue that finding
a different tranformation from the IND-CPA PKE that eliminates the re-encryption step
in the decapsulation might solve the problem. BIKE actually manages to optimize away
the re-encryption step using the HHK implicit rejection transform, but still needs to retain
the call to the constant-weight hashing funtion to check for decryption errors. Exploring
different options for IND-CCA transformations in both schemes might be interesting future
work. Short of finding a different IND-CCA transformation, the sampling of a fixed weight
bit vector must be implemented isochronously.

We focus on a constant-time implementation of the algorithm. Since both attacks we
presented exploit a structurally similar side-channel the countermeasure we present could
be applied to both HQC and BIKE. We implemented and evaluated the countermeasure for
HQC only. We identify two avenues for implementing a low fixed-weight vector sampling
algorithm that is constant-time in the used seed. For the first one we initialize the vector
of length n starting with a run of w set bits. Then we shuffle the array. This will result in
a random vector of weight w. To shuffle the array one could use, e.g., the Fisher-Yates
shuffling algorithm as described in [Knu97, p.145]. A naïve implementation of Fisher-Yates
shuffling will leak timing information, as it will use secret-dependent array accesses. Using
generic methods to make these array accesses constant-time results in an unacceptable
asymptotic time complexity. Nicolas Sendrier presents a sophisticated approach how the
Fisher-Yates shuffle can be modified to reduce the time complexity specifically for the use-
case of generating random low fixed-weight vectors [Sen21]. For the case of BIKE, he shows
that a small bias in the sampling distribution has a negligible impact on the security of the
scheme. His work was published as a response to the initial pre-print version of our work,
which only contained the attack on HQC and its countermeasure. While we are not aware
of an implementation and concrete evaluation, the decreased time complexity of Sendrier’s
approach makes the method very compelling. Our approach requires little deviation from
the already existing code-base, and allows existing implementations to be patched with
relative ease. Another approach would be to use a reverse sorting algorithm, using an
established sorting algorithm like merge-sort, as it is proposed in [WSN18] for a Classic
McEliece hardware implementation. The reverse merge-sort induces a slight bias which
is solved by a rejection and is therefore not suitable for a constant-time implementation,
unless one can show that the bias is acceptable. The Beneŝ-network used in the C reference
implementation of Classic McEliece is aligned to a vector size of a power of 2 which is not
the case in HQC.

We propose an approach that samples the specified number of distinct bit positions
in constant-time and sets the bits in the vector in constant-time. For HQC, only the
distinct position sampling is not constant-time. Our modification results in an algorithm
that is only probabilistically correct and may sample too few distinct bit positions. The
probability of this failure mode can be chosen arbitrarily small and made negligible.

To obtain our final countermeasure we perform several modifications to the algorithm.
After each modification the algorithm is a fully functioning algorithm, however has different

28 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

void vect_set_random_fixed_weight(
seedexpander_state *ctx,
__m256i *v256, uint16_t weight) {

- size_t random_bytes_size = 3 * weight;
+ size_t random_bytes_size = 2 * 3 * weight;
- uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0};
+ uint8_t rand_bytes[2 * 3 * PARAM_OMEGA_R] = {0};

Figure 8: 4 byte patch to HQC to remove additional seedexpander calls

side-channel behavior. The first modification in Section 5.1 is the simplest modification
possible: a 4 byte patch that prevents the seedexpander function from being called a
varying number of times in a single Sample call. It works by finding a loose upper bound
for the number of bytes that the entire Sample function requires. Following, in Section 5.2
we replace a rejection sampling algorithm used to generate random positions in the range
{0, . . . , n− 1} with a constant time algorithm using modulo reduction of a large number.
In Section 5.3 we then detail how the loose upper bound for the number of bytes to sample
used in Section 5.3 can be tightened by accurately modeling the distribution of the number
of times a number is sampled. We compute parameters required to make the probability
that the number of bytes sampled is insufficient negligible. The resulting parameters
depend upon whether the countermeasure in Section 5.2 was applied (κ1) or not (κps

),
as the original version can fail to sample a number (in the case of a rejection) and our
countermeasure always succeeds. As a final modification in Section 5.4 we modify the
the loop that generates random distinct positions to always perform the same number
of iterations κ resulting in a constant-time algorithm that can fail to produce a result of
the expected weight with negligible probability. The algorithm is approximately correct,
because we always perform κ iterations, even if we would need more iterations because
e.g. many bit positions collided with previously sampled ones. Lastly, we benchmark the
resulting countermeasure and compare it to the original in Section 5.5.

5.1 Remove Additional seedexpander Calls
The first attempt we make to get a countermeasure is to eradicate the concrete side-channel
that we use for the attack; The rejection sampling algorithm generates new random data
using the seedexpander function on demand. It is vanishingly unlikely that a single
Sample invocation induces more than one additional seedexpander call. Therefore, our
first, obvious countermeasure is to increase the number of bytes that are generated initially
to double the previous amount. This results in a patch to the sampling function shown in
Fig. 8. However, the algorithm is not constant-time: rejection sampling still performs a
different number of iterations depending on the message and each random number is also
sampled using rejection-sampling. While the countermeasure increases the effort required
to perform the attack, it could still permit attacks in a low-noise environment to recover
the key. Further, for BIKE the number of seedexpansions is not as large a factor for the
timing distribution and therefore such a patch would not have a lot of impact for BIKE.

5.2 On Constant-Time Random Number Generation
To further reduce the timing leakage we can try to remove the inner rejection used for
generating random indices into the vector. The inner rejection sampling is detailed in
Algorithm 16. Instead of rejection sampling integers in the range 0 ≤ x <

⌊
2k/m

⌋
m, we

generate b� log2 m random bits and then reduce the generated integer modulo m to the
desired range. This will bias the resulting distribution if m does not divide 2b, which is

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 29

Algorithm 16: Inner Rejection Sampling Algorithm
Result: Random number in [0, . . . , m− 1]

1 repeat
2 i←$ [0, 2k)
3 until i <

⌊
2k

m

⌋
m

4 return i mod m

the case here. Therefore, we need to pick a sufficiently large b for the statistical distance
to be negligible. In particular we are interested in minimizing the statistical distance (SD)
between the uniform distribution over {0, . . . , m− 1} and the distribution generated by
x mod m where x is drawn uniformly random random from {0, . . . , 2b − 1}. We define
the statistical distance between two probability distributions X and Y over some discrete
domain Ω to be:

SDX,Y = 1
2 ·
∑
z∈Ω
|Pr[X = z]− Pr[Y = z]|

Let Um be the uniform probability distribution over {0, . . . , m− 1}:

Pr[Um = z] =
{

1
z if 0 ≤ z < m

0 otherwise

Additionally, we define the probability distribution Mn which reduces an integer in
{0, . . . , n− 1} modulo m. Its probability distribution is given by:

Pr[Mn = z] =

bn/mc+1

n if 0 ≤ z < n mod m
bn/mc

n if n mod m ≤ z < m

0 otherwise

The statistical distance between these two distributions is:

SDUm,Mn
= 1

2 ·
∑

z∈{0,...,m−1}

|Pr[Um = z]− Pr[Mb = z]| (7)

= 1
2 ·
(

(n mod m) ·
∣∣∣∣∣ 1
m
−
⌊

n
m

⌋
+ 1

n

∣∣∣∣∣+ (8)

(m− (n mod m)) ·
∣∣∣∣∣ 1
m
−
⌊

n
m

⌋
n

∣∣∣∣∣
)

In Table 5 we computed the statistical distance between the uniform distribution and
the modular reduction technique for various numbers of bits b. The parameter m is the
length of the vector in HQC. We leave the choice of an acceptable statistical distance to
the designers of the scheme. For our further testing we use b = 128.

We can implement a modular reduction of a b-bit non-negative number x modulo a
small number efficiently using basic rules of modular arithmetic. We can represent x in
e.g. base 28 as x = x0 + 28 · x1 + 28·2 · x2 + · · ·+ 28·(`−1)x`−1 + 28·` · x` where ` =

⌈
b
8
⌉
. We

split up the computation of x mod m in the following way:

x mod m =

· · ·
z1︷ ︸︸ ︷x`−1 + 28 · (x` mod m︸ ︷︷ ︸

z0

)

 mod m · · ·

 mod m

30 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Table 5: Statistical distance between the uniform distribution over {0, . . . , m− 1} and the
distribution of random integers from 0 to 2b−1 reduced modulo m for hqc-128 (n = 17,669).

b log2 SDUm,M2b (approx.)

16 −4
32 −20
64 −52
128 −116
256 −244
512 −502

uint32_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX; ++k) {

random_data = ((uint32_t)rand_bytes[j++] | (random_data « 8));
random_data %= PARAM_N;

}

Figure 9: Constant time modulo reduction of x mod m in multiple steps where
BYTES_PER_INDEX is

⌈
b
8
⌉
.

Generalizing this, we can write an iterative algorithm that computes in iteration i:

zi =
{

x` mod m if i = 0
(x`−i + 28 · zi−1) mod m otherwise

and z` = x mod m. We can implement this algorithm for a random number x where each
xi is drawn from rand_bytes as shown in Fig. 9.

Additionally, while a divide instruction is not constant-time in general on most Instruc-
tion Set Architectures (ISAs), reducing modulo a constant is optimized by the compiler
into a sequence of instructions that can be executed in constant time. The optimization
performed by the compiler is a Barrett reduction [MvOV97, p.603]. This can be observed
in Fig. 10. Here the compiler replaced the idiv instruction by a series of shifts, additions
and multiplications. All of these instructions complete with a fixed latency on the Zen 3
ISA according to Agner’s instruction tables9. To ensure that the compiled result always
uses these instructions, which we have verified to be constant-time, we can copy the
compilation result into an __asm__ volatile block.

#include <stdint.h>

uint32_t f(uint32_t a) {
return a % 23869;

}

f:
mov eax, edi
mov ecx, edi
mov edx, 2948122845
imul rdx, rcx
shr rdx, 46
imul ecx, edx, 23869
sub eax, ecx
ret

Figure 10: Modular reduction of an integer a modulo a constant in C and the resulting
Intel-style x86 assembly with optimization level 2 using clang.

9https://www.agner.org/optimize/instruction_tables.pdf, accessed on 2021-11-05.

https://www.agner.org/optimize/instruction_tables.pdf

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 31

5.3 Tight Upper Bound on the Number of Samples Required
We wish to minimize the number of random bytes generated, while still ensuring that we
never run out of randomness during the rejection sampling function so that we only have to
perform seedexpansion once at the beginning of the function. To this end, we analyze the
probability of requiring a certain number of iterations in the rejection sampling algorithm.
We introduce the random variable Xn,i,ps , which is the number of distinct elements after
attempting to sample i elements from {1, . . . , n} with each sample succeeding with the
probability ps. The success probability ps can be used to model the case where the inner
rejection sampling algorithm has to retry sampling an element from {1, . . . , n}, because
the sampled element was not in the required range. Therefore, if a sample fails, it increases
the number of iterations, but no element is sampled. This yields the following recursive
relation:

Pr[Xn,i,ps = w] =

0 if i < w

1 if w = i = 0
ps if w = i = 1

ps
w

n
Pr[Xn,i−1,ps = w] +

(1− ps max(0,
w − 1

n
)) Pr[Xn,i−1,ps

= w − 1]
otherwise

(9)

We are now sufficiently equipped to compute the probability that the rejection sampling
algorithm requires ≤ i iterations to sample w distinct bit positions. This query is equivalent
to the probability, that after i iterations ≥ w distinct bit positions have been sampled. We
can compute this by simply summing over the number of distinct positions:

Pr[Xn,i,ps ≥ w] =
i∑

x=w

Pr[Xn,i,ps = x]

Finally, we define the random variable Un,w,ps
to be the number of iterations required to

sample w distinct elements out of {1, . . . , n} with each sample succeeding with probability
ps. Then, the probability of requiring ≤ i iterations is:

Pr[Un,w,ps
≤ i] = Pr[Xn,i,ps

≥ w]

We can use the random variable Un,w,ps
to minimize the number of random bytes that

we need to sample. The probability that a message emits ≥ 1 additional seedexpander
calls when the randomness reservoir provides sufficient entropy for κ random indices is:

1− (Pr[Un,ωr,ps
≤ κ])3

.

We would like this probability to be negligible. We can compute a suitable κ for which
the probability is ≤ 2−λ where λ is the security parameter. This is done by increasing
κ until the probability is low enough. The number of iterations depends on the success
probability of sampling a random index. When we retain the original inner rejection
sampling algorithm we use the success probability ps to compute κps . For the constant-
time random number generation we use a success probability of 1 to compute κ1. Note
that these probabilities are high enough for these messages to feasibly exist. However, we
deem it infeasible to compute such messages, as they are so rare.

The results of these computations can be seen in Table 6. Using κ we can optimize
the countermeasure to generate the least amount of randomness to eradicate additional
seedexpander calls. Note that κ1 ≤ κps , since the rejection sampling algorithm requires
less iterations when every random number generation succeeds. However, the constant-time

32 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

Table 6: Number of indices κ that must be derivable from the generated randomness
reservoir to achieve a probability on the order of the security parameter of a message
emitting multiple seedexpander calls. Here, ps is set to

⌊
2k/m

⌋
m/2k for when the original

rejection sampling is used or 1 when the bit position sampling cannot fail due to the use
of the constant-time random number generation scheme.

Instance κps log2(1 − (Pr[Un,ωr,ps ≤ κps])3) κ1 log2(1 − (Pr[Un,ωr,1 ≤ κ1])3)

hqc-128 99 ≈ −134 97 ≈ −129
hqc-192 152 ≈ −193 146 ≈ −195
hqc-256 192 ≈ −261 190 ≈ −259

Random Number Generator (RNG) still requires much more random bytes to be generated,
since it requires 16 bytes per index, instead of approx. 3 in expectation.

We can further optimize the runtime of the RNG by using the full width of the ISA’s
registers. Instead of reducing one byte at a time we can reduce 4 bytes at once by using
64 bit registers and multiplying each intermediate result zi−1 by 28·4, as we detail in
Listing 1. Further performance improvements may be achievable through the use of even
wider registers or SIMD instructions to produce multiple positions at once.

5.4 Constant-Time Monte-Carlo
We can now forge a constant-time algorithm that is approximately correct using minimal
modifications. It fails to produce a correct result with an error-probability that we can
choose to be arbitrarily low. The first step is to always produce the same number of
random positions into the generated vector. Additionally, for each position we keep track
of whether it is needed, i.e., whether the generated index has already been sampled before
and whether we have already sampled enough unique indices. Using this information, we
can then set the bit only if it is needed – in constant time. However, if we fail to sample
enough unique indices, the algorithm may produce a vector of too low weight. We cannot
catch this error and try again, as that would introduce a timing-variability. Therefore, we
must sample enough positions such that this case does not happen with overwhelming
probability. We can reuse the κ1 listed in Table 6 for this purpose. Using these parameters
the probability that we sample a vector of too low weight is ≤ 2−λ, where λ is the security
parameter.

Concretely, we keep track of the number of unique positions sampled and whether we
need each position by:

uint32_t count = 0;
uint8_t take[K_1];

We then sample κ1 positions from {0, . . . , n− 1}. Instead of trying to sample a position
again when a position is not unique, we store it unconditionally but keep track of whether

uint32_t rand_bytes[BYTES_PER_INDEX * K_1 / 4] = {0};
// [...]
uint64_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX / 4; ++k) {

random_data = (uint64_t) rand_bytes[j++] + (random_data « 32);
random_data %= PARAM_N;

}

Listing 1: Optimization in the random number generation by reducing 4 bytes at once.

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 33

we need the position:

tmp[i] = random_data;
uint8_t not_enough = count < weight;
uint8_t needed = (!exist) & not_enough;
take[i] = needed;
count += needed;

where exist is 1 iff the position has not been sampled before and i is the iteration count
in {0, . . . , κ1 − 1}. To avoid naming ambiguities in this section we henceforth refer to the
vector of n bits that is modified by the algorithm as the bit-array.

The next phase of the algorithm uses Advanced Vector Extensions (AVX2) instructions
to set the sampled bit positions in the bit-array. This algorithm is vectorized to process
the bit-array in 256 bit chunks. We modify this algorithm to only include a position if
take[i] is set by computing a bit mask that is 1256 if take[i] == 1 and 0256 otherwise.
We then modify the first loop to compute the bitwise and of bit256[i] and the mask
stored in take256:

__m256i take256 = _mm256_set1_epi64x(take[i]) == 1;
bit256[i] = bloc256&mask256&take256;

This results in bit256[i] being 0256 if the bit is not needed. When this 256 bit vector is
later xor-ed with the aux variable, it will have no impact, since 0⊕ x = x.

5.5 Evaluation of the Proposed Countermeasures
The side-channel evaluation results can be viewed in Fig. 11. The number of the detected
difference clearly diminishes as more of the suggested modifications are applied. In
particular, the final countermeasure eradicates all statistically significant timing differences
in the Sample function as can be seen in Fig. 11d. We conclude that the final countermeasure
eradicates all timing-leakage that we could detect from the algorithm with respect to the
seed used by the XOF.

We measure the number of cycles the Sample function requires for random messages
for the original and the two patched versions to evaluate the performance impact of the
additional instructions. We obtained 1 million measurements and removed outliers that
deviate more than 3 standard deviations from the mean. Additionally, we gave the process
a niceness of −20 on a dedicated machine. The process is pinned to a single core, and
all other processes are pinned to different cores. The results may be seen in Table 7.
We collected the mean and median number of cycles. The median number of cycles is
increasing with more patches applied. We can see that the RNG fix is extremely costly in
terms of cycle count and together with the seedexpander fix induces a 22.8 % increase in
the median number of cycles. The main fault is likely that the constant-time RNG method
generates and processes approximately 5 times the number of random bytes. Furthermore,
we observe that the seedexpander patch alone is extremely cheap and only incurs a 1 %
increase in the number of cycles.

While fixing the seedexpander side-channel is cheap, it is not sufficient to obtain
constant-time code. We were able to use the constant-time RNG in the design of further
algorithms. Unfortunately, the constant-time RNG comes with a heavy performance hit,
and it is not trivial to decide on a number of bytes to consume for each generated position.
The final modification is constant-time, however it has a non-zero probability of returning
an incorrect result. We choose this probability low enough for this to likely not be a
practical issue.

34 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(a) Original

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(b) seedexpander fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(c) seedexpander + RNG fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(d) seedexpander + RNG fix + constant iters

Figure 11: P-values for Welch’s t-test testing whether there is a statistically significant
difference between the computation time of the part invoking the Sample function in the
re-encryption of the decapsulation for each pair in 100 ciphertexts generated for a single
keypair. Orange indicates that a statistically significant difference was detected. The
final countermeasure eradicates all statistically significant timing differences in the Sample
function.

Table 7: Benchmark results in number of cycles for the modifications of the rejection
sampling algorithm. Modifications tested on hqc-128. Cycle counts include the entirety of
the decapsulation function.

Version Median Cycles
original 259,370 (+ 0.0%)
seedexpander fix 261,849 (+ 1.0%)
seedexpander + RNG fix 318,533 (+22.8%)
seedexpander + RNG fix + constant number of iterations 334,628 (+29.0%)

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 35

6 Conclusions, Lessons, and Future Work
We have presented novel key-recovery timing attacks on HQC and BIKE, where non-
constant-time rejection sampling procedures are implemented for generating random
vectors with a specific weight. The time differences caused by rejection sampling could
leak whether the input message to the deterministic re-encryption procedure (or to a
hash function) in the IND-CCA transformation is unchanged. Such secret information is
sufficient for recovering the secret key of HQC and BIKE.

The considered implementation of HQC in this work has been found vulnerable despite
the claim of the authors of HQC that the recent code is thoroughly analyzed so that only
unused randomness (i.e., rejected based on public criteria) or otherwise nonsensitive data
is leaked. The identified vulnerability probably has been hidden from scrutiny because
the modular design of the HQC KEM employing the FO transformation conceals the
dependence of the secret key to the rejection sampling function, due to a subtle error
in the specification: In the IND-CPA version of HQC, encryption is non-deterministic,
and thus the variations of the employed rejection sampling function is of no concern.
The KEM/DEM version of HQC, as specified in Figure 3 in the specification, invokes
a slightly different HQC.PKE encryption scheme than the one described in Figure 2 of
the specification: one that fixes the randomness to make encryption deterministic. Only
because the re-encryption in the KEM decapsulation is deterministic and because the seed
is derived from secret data, non-constant-time rejection sampling becomes a problem. This
highlights the issue of providing high level definitions of a cryptosystem: The definition is
good enough for an implementer to get the functionality correct, but hides from manual
inspection the ominous dependence identified and exploited in this work. However, in
the case of HQC the specification encourages the use of the exploited rejection sampling
algorithm. Therefore, the flaw we identify would likely be implemented by any implementer.
This problem also highlights the need for automated, possibly standardized tools to check
implementations for secret-dependent timing variations.

Regarding BIKE, we have identified a timing variation very similar to the one discovered
in HQC. This vulnerability can be exploited for a key-recovery attack on BIKE. We
found several vulnerable implementations, including the implementations in the NIST
round 3 submission. Interestingly, in the most recent versions from Github, an additional
weight check before the re-encryption procedure is employed, which can make the current
key-recovery attack version unpractical. We emphasize that this additional weight check
actually weakens the security of BIKE, since such a weight check allows more efficient
message-recovery attacks. We still suggest to have a fully constant-time implementation of
BIKE.

Our proposed countermeasure does incur a heavy performance degradation. However,
it does eliminate all timing-variations that we could detect from the analyzed function.
The constant-time variant of the Fisher-Yates algorithm proposed by Sendrier in a parallel
work to ours introduces a slight bias in the uniform distribution but without an impact on
the security properties of the scheme. It is another very interesting approach and should
be considered in upcoming implementations and research activities as well. Future work
could focus on improving the performance of the mentioned countermeasures through the
use of SIMD instructions or different algorithms.

References
[AAB+] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. Optimized implementation of HQC. available

36 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

at:https://pqc-hqc.org/download.php?file=hqc-optimized-implemen
tation_2021-06-06.zip.

[AAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute of
Standards and Technology, 2021. available at https://csrc.nist.gov/pr
ojects/post-quantum-cryptography/round-3-submissions.

[ABB+20] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh
Ghosh. BIKE. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions.

[ABB+21] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zemor, Valentin Vasseur, Santosh Ghosh,
and Jan Richter-Brokmann. BIKE. Technical report, National Institute of
Standards and Technology, 2021. available at https://csrc.nist.gov/pr
ojects/post-quantum-cryptography/round-3-submissions.

[AIES15] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Lucky 13 strikes back. In Feng Bao, Steven Miller, Jianying
Zhou, and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’15,
Singapore, April 14-17, 2015, pages 85–96. ACM, 2015.

[AMBD+18] Carlos Aguilar-Melchor, Olivier Blazy, Jean Christophe Deneuville, Philippe
Gaborit, and Gilles Zemor. Efficient Encryption from Random Quasi-Cyclic
Codes. IEEE Transactions on Information Theory, 64(5):3927–3943, 2018.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking
the TLS and DTLS record protocols. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 526–540.
IEEE Computer Society, 2013.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[BDH+19] Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan,
and Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 747–776. Springer, Heidelberg, May 2019.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture
Notes in Computer Science, pages 37–51. Springer, 1997.

https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 37

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. Journal of Cryptology,
14(2):101–119, 2001.

[Ben17] Simon Benjamin. Perspectives on the State of Affairs for Scalable Fault-
Tolerant Quantum Computers and Prospects for the Future. Presented at the
5th ETSI-IQC Workshop on Quantum-Safe Cryptography, 2017. available
at https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANT
UMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, August 2016.

[BL16] Daniel J Bernstein and Tanja Lange. Failures in NIST’s ECC standards.
pages 1–27, 2016. available at: https://cr.yp.to/newelliptic/nistecc-
20160106.pdf.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still
practical. In Vijay Atluri and Claudia Díaz, editors, Computer Security
- ESORICS 2011 - 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12-14, 2011. Proceedings, volume 6879
of Lecture Notes in Computer Science, pages 355–371. Springer, 2011.

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing BIKE for
the intel haswell and ARM cortex-M4. IACR TCHES, 2021(3):97–124, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8969.

[CWR09] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and lim-
its of remote timing attacks. ACM Trans. Inf. Syst. Secur., 12(3):17:1–17:29,
2009.

[DKA+14] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman, Math-
ias Payer, and Vern Paxson. The matter of heartbleed. In Carey Williamson,
Aditya Akella, and Nina Taft, editors, Proceedings of the 2014 Internet Mea-
surement Conference, IMC 2014, Vancouver, BC, Canada, November 5-7,
2014, pages 475–488. ACM, 2014.

[Dya18] Mikhail Dyakonov. The Case Against Quantum Computing. IEEE Spectrum,
2018. available at: https://spectrum.ieee.org/the-case-against-
quantum-computing.

[Gab21] Philippe Gaborit. Personal communication, November 2021.

[Gal62] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory,
8(1):21–28, 1962.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
359–386. Springer, Heidelberg, August 2020.

https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://spectrum.ieee.org/the-case-against-quantum-computing
https://spectrum.ieee.org/the-case-against-quantum-computing

38 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 789–815. Springer, Heidelberg, December 2016.

[GJW19] Qian Guo, Thomas Johansson, and Paul Stankovski Wagner. A key recovery
reaction attack on QC-MDPC. IEEE Trans. Inf. Theory, 65(3):1845–1861,
2019.

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against
several public-key cryptosystems. In Vijay Varadharajan and Yi Mu, editors,
ICICS 99, volume 1726 of LNCS, pages 2–12. Springer, Heidelberg, November
1999.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[HLS21] Clemens Hlauschek, Norman Lahr, and Robin Leander Schröder. On the tim-
ing leakage of the deterministic re-encryption in hqc kem. Cryptology ePrint
Archive, Report 2021/1485, version 20211115:124514 (posted 1636980314
15-Nov-2021 12:45:14 UTC), 8 2021. https://eprint.iacr.org/2021/148
5/20211115:124514.

[Hog15] Mél Hogan. Data flows and water woes: The Utah Data Center. Big Data &
Society, 2(2), 2015.

[HPA21] James Howe, Thomas Prest, and Daniel Apon. SoK: How (not) to design
and implement post-quantum cryptography. In Kenneth G. Paterson, editor,
Topics in Cryptology – CT-RSA 2021, pages 444–477, Cham, 2021. Springer
International Publishing.

[Kal20] Gil Kalai. The argument against quantum computers, the quantum laws of
nature, and google’s supremacy claims. CoRR, abs/2008.05188, 2020.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, pages 388–397. Springer US, Boston, MA, 1999.

[Knu97] Donald Ervin Knuth. The art of computer programming, Volume I: Funda-
mental Algorithms, 3rd Edition. Addison-Wesley, 1997.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KPVV16] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Ville-
gas. When constant-time source yields variable-time binary: Exploiting
curve25519-donna built with MSVC 2015. In Sara Foresti and Giuseppe
Persiano, editors, Cryptology and Network Security - 15th International
Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings,
volume 10052 of Lecture Notes in Computer Science, pages 573–582, 2016.

https://eprint.iacr.org/2021/1485/20211115:124514
https://eprint.iacr.org/2021/1485/20211115:124514

Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson and
Robin Leander Schröder 39

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei
Zhang, Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC. Technical
report, National Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-
2-submissions.

[MAA+20] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H
Dang, John M Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A
Perlner, Angela Y Robinson, Daniel C Smith-Tone, and Jacob Alperin-Sheriff.
Status report on the second round of the NIST post-quantum cryptography
standardization process. Technical report, National Institute of Standards
and Technology, Gaithersburg, MD, jul 2020.

[MBA+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk. Raccoon attack: Finding and
exploiting most-significant-bit-oracles in TLS-DH(E). In Michael Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 213–230. USENIX Association,
2021.

[Mos17] Michele Mosca. The Quantum Threat to Cybersecurity (for CxOs). Pre-
sented at the 5th ETSI-IQC Workshop on Quantum-Safe Cryptography, 2017.
available at https://docbox.etsi.org/Workshop/2017/201709_ETSI_I
QC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf.

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 2057–2073. USENIX Association,
2020.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. Mdpc-mceliece: New mceliece variants from moderate density parity-
check codes. In Proceedings of the 2013 IEEE International Symposium on
Information Theory, Istanbul, Turkey, July 7-12, 2013, pages 2069–2073.
IEEE, 2013.

[MvOV97] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[NAB+20] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christo-
pher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Techni-
cal report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions.

[NJW18] Alexander Nilsson, Thomas Johansson, and Paul Stankovski Wagner. Error
amplification in code-based cryptography. IACR TCHES, 2019(1):238–258,
2018. https://tches.iacr.org/index.php/TCHES/article/view/7340.

[oSN16] National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the post-quantum cryptography standard-
ization process, 2016. available at: https://csrc.nist.gov/CSRC/media/P
rojects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/7340
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

40 Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE

[Pao10] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures. Technical report, 2010. available at:
https://www.intel.com/content/dam/www/public/us/en/documents/w
hite-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf.

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors,
SAC 2019, volume 11959 of LNCS, pages 551–573. Springer, Heidelberg,
August 2019.

[RKL+04] Srivaths Ravi, Paul C. Kocher, Ruby B. Lee, Gary McGraw, and Anand
Raghunathan. Security as a new dimension in embedded system design. In
Sharad Malik, Limor Fix, and Andrew B. Kahng, editors, Proceedings of the
41th Design Automation Conference, DAC 2004, San Diego, CA, USA, June
7-11, 2004, pages 753–760. ACM, 2004.

[Sch21] Leander Schröder. A novel timing side-channel assisted key-recovery attack
against HQC. Master’s thesis, TU Darmstadt/TU Wien, 2021. https:
//doi.org/10.34726/hss.2022.91042.

[Sen21] Nicolas Sendrier. Secure sampling of constant-weight words application
to bike. Cryptology ePrint Archive, Report 2021/1631, 20211217:142141
(posted 1639750901 17-Dec-2021 14:21:41 UTC), December 2021. https:
//eprint.iacr.org/2021/1631/20211217:142141.

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the
internet and the open quantum safe project. In Roberto Avanzi and Howard M.
Heys, editors, SAC 2016, volume 10532 of LNCS, pages 14–37. Springer,
Heidelberg, August 2016.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi,
and Naofumi Homma. Curse of re-encryption: A generic power/em anal-
ysis on post-quantum kems. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(1):296–322, 2022.

[Wel47] Bernard Lewis Welch. The generalisation of student’s problems when several
different population variances are involved. Biometrika, 34(1-2):28–35, 01
1947.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based niederreiter
cryptosystem using binary goppa codes. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, pages 77–98. Springer, Heidelberg, 2018.

[WTBB+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit,
and Etienne Marcatel. A practicable timing attack against HQC and
its countermeasure. Cryptology ePrint Archive, Report 2019/909, 2019.
https://eprint.iacr.org/2019/909.

[YZ17] Yu Yu and Jiang Zhang. Lepton. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/pr
ojects/post-quantum-cryptography/round-1-submissions.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://doi.org/10.34726/hss.2022.91042
https://doi.org/10.34726/hss.2022.91042
https://eprint.iacr.org/2021/1631/20211217:142141
https://eprint.iacr.org/2021/1631/20211217:142141
https://eprint.iacr.org/2019/909
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Introduction
	Background
	Preliminaries
	Hamming Quasi Cyclic – HQC
	Bit Flipping Key Encapsulation – BIKE

	Timing Attacks on HQC and BIKE
	The Timing Attack on HQC
	The Timing Attack on BIKE

	Evaluation
	Empirical Evaluation of the Attack on HQC
	Empirical Evaluation of the Attack on BIKE
	Message-Recovery from the New Weight Check

	Discussion on Countermeasures
	Remove Additional seedexpander Calls
	On Constant-Time Random Number Generation
	Tight Upper Bound on the Number of Samples Required
	Constant-Time Monte-Carlo
	Evaluation of the Proposed Countermeasures

	Conclusions, Lessons, and Future Work

