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ABSTRACT
Password-authenticated key exchange (PAKE) is a major area of
cryptographic protocol research and practice. Many PAKE pro-
posals have emerged in the 30 years following the original 1992
Encrypted Key Exchange (EKE), some accompanied by new theoret-
ical models to support rigorous analysis. To reduce confusion and
encourage practical development, major standards bodies including
IEEE, ISO/IEC and the IETF have worked towards standardizing
PAKE schemes, with mixed results. Challenges have included con-
trasts between heuristic protocols and schemes with security proofs,
and subtleties in the assumptions of such proofs rendering some
schemes unsuitable for practice. Despite initial difficulty identify-
ing suitable use cases, the past decade has seen PAKE adoption in
numerous large-scale applications such as Wi-Fi, Apple’s iCloud,
browser synchronization, e-passports, and the Thread network pro-
tocol for Internet of Things devices. Given this backdrop, we consol-
idate three decades of knowledge on PAKE protocols, integrating
theory, practice, standardization and real-world experience. We
provide a thorough and systematic review of the field, a summary
of the state-of-the-art, a taxonomy to categorize existing protocols,
and a comparative analysis of protocol performance using repre-
sentative schemes from each taxonomy category. We also review
real-world applications, summarize lessons learned, and highlight
open research problems related to PAKE protocols.1

1 INTRODUCTION
While user-chosen passwords remain widely used for authentica-
tion [20], many password-based protocols are vulnerable to offline
guessing attacks [99]. This motivates use of password-authenticated
key exchange (PAKE) protocols, dating to Bellovin and Merritt’s
1992 Encrypted Key Exchange (EKE) [15]. EKE allows two parties
to establish a high-entropy session key with authentication based
on a low-entropy shared password without being subject to offline
guessing attacks. Distinct from earlier work [73], EKE does not
require a trusted third party or public-key infrastructure (PKI).

Many PAKE proposals and variants followed, some with new the-
oretical models to support rigorous analysis. The area also attracted
strong industrial interest, including prolonged patent disputes in
the 2000s [21]. To reduce confusion and encourage deployment,
standards bodies including IEEE, ISO/IEC and IETF have pursued
the standardization of PAKE protocols—helping move them from
academic study to commercial use. These activities suggest a PAKE
research timeline with three main periods: 1992–2008, 2008–2018,
and 2018–present. (Fig. 1 in Section 2.1 gives further details.)

Thirty years of PAKE research has left a field rich in theory, prac-
tice, standardization—and also real-world lessons, many extending
1Version: 8 March 2022. This update reflects the version to appear in AsiaCCS 2022.

to broader areas of cryptography and security. PAKE research has
also led to many interesting questions. For example, a typical PAKE
protocol involves only 2 or 3 flows of messages; why is a protocol
involving so few messages, so difficult to get right? Of the many
provable secure PAKE protocols proposed, why are so few used
in practice? How did the standardization of PAKE proceed, and
how is it that several standardized PAKE protocols are still found
to have vulnerabilities? If PAKE protocols appear naturally resis-
tant to phishing attacks, why have they not replaced password
authentication in web applications?

Answers to these questions appear not yet to have been pur-
sued in broad, organized manner in one place, or are absent. This
motivates our comprehensive review and systematization of PAKE
protocols. We review the theory, practice, standardization and real-
world applications of PAKE, and draw lessons accordingly. Our
contributions include the following.

• We systematically review major PAKE proposals from the
past 30 years, including recent updates.
• We categorize PAKE protocols by their main properties and
design strategies, and offer a taxonomy.
• Using selected PAKE category representatives, we compare
performance of state-of-the-art protocols delivered by the
leading design approaches.
• We review real-world applications that use PAKE, and dis-
cuss the pros and cons of using these protocols versus non-
PAKE alternatives.

Our inclusion of recentwork, standardization insights, and lessons
learned complements and updates the extensive survey of Boyd et
al. [21, Chapter 8]. Our taxonomy systematically highlights critical
approach details (e.g., ideal cipher, hash-to-group/hash-to-curve
and trusted setup) within classes of PAKE protocols, and challenges
in implementing certain protocols including CPace and OPAQUE
(both recently selected by IETF for standards). Our comparative
analysis of PAKE performance takes into account crucial factors
often neglected in previous studies, e.g., group setup and exponent
length.

2 LANDSCAPE AND BACKGROUND
Before giving a taxonomy (Section 3), we summarize three periods
of PAKE research (see Figure 1), and review EKE.

2.1 Three periods of PAKE research
During the first period (1992–2008), IEEE P1363.2 played a major
role in the standardization of PAKE. In response to strong aca-
demic and industrial interest in the first half of this period, in 2000,
IEEE formed a P1363.2 working group with the mission to review
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Figure 1: Timeline: PAKE protocols. Color-coding is based on the taxonomy explained in Section 3.

existing PAKE proposals in order to choose a secure subset for stan-
dardization. This IEEE project ended in 2008. Protocols in the final
1363.2 specification [51] included SRP [100], SPEKE [52], PAK [79],
AMP [68] and variants.

This 8-year standardization process served as a touchstone to test
PAKE theory in practice. Unfortunately, nearly all PAKE protocols
selected were found to have security issues. Several, including SRP,
SPEKE and AMP were found vulnerable to attacks and required
revision. In particular, AMPwas repeatedly revised [69]. Among the
schemes selected, only SRP and SPEKE appeared to be used in prac-
tical applications; both continued to be revised after IEEE 1363.2.
The latest respective versions are SRP-6a and Patched SPEKE [44].
The IEEE P1363.2 group, initially proposed as a four-year project,
was extended annually after 2004 to address various issues in the
draft standard until 2008. After 2008, the IEEE specification was no
longer maintained, and as of November 2019, the proposed standard
in IEEE 1363.2 [51] had been officially withdrawn.

During the second period (2008–2018), ISO/IEC played a main
role in standardizing PAKE. The 8-year IEEE P1363.2 effort was less
successful thanmany had hoped—on ending in 2008, it was clear the
PAKE problem remained unsolved. This spurred researchers to de-
sign new PAKE protocols. ISO/IEC inherited work from IEEE 1363.2
in an ISO/IEC 11770-4 standard, and continued in an active role to
maintain this standard. In particular, 11770-4 was revised during
2014 and 2017 to include two new PAKE schemes, J-PAKE [45] and
AugPAKE [92], and a patched version [44] of SPEKE.

After 2008, the next 10 years saw more deployment of PAKE
in real-world applications. SPEKE [52] was adopted in Blackberry
Messager (BBM) for secure messaging. SRP-6a [94] was adopted

to implement credential recovery in 1password, ProtonMail and
Apple’s iCloud. J-PAKE [45] was adopted in 2015 by the Thread
Group. Section 3.2 also discusses the use of another PAKE protocol
in IEEE 802.11: SAE (Dragonfly) [47].

During the third wave (2018–2021, ongoing at the time of writ-
ing), the IETF has been a main force driving further development of
PAKE—in particular, integrating PAKE into TLS 1.3. The TLS 1.3 pre-
shared key (PSK) ciphersuite allows two parties with a pre-shared
secret to quickly establish secure communication. This provides a
natural use case for PAKE because, in many cases, the pre-shared
secret is a password, making the PSK ciphersuite vulnerable to
offline dictionary attacks [32]. In June 2019, IETF initiated an open
selection process to standardize PAKE protocols. This selection pro-
cess ended in March 2020 with two winners declared: CPace [39]
and OPAQUE [55], whose details are given in the Appendix.

2.2 Balanced and augmented protocols
PAKE protocols are commonly classified as either balanced or aug-
mented. A balanced PAKE assumes that the two parties share a
secret, which is a password or derived from a password. Typical
requirements for a secure balanced PAKE include [45]: 1) resisting
offline dictionary attacks; 2) limiting online attacks to one password
guess per protocol execution; 3) ensuring session-key security; and
4) providing forward secrecy.

When a balanced PAKE is used in a client-server setting, if the
secret stored on the server is stolen, it can be directly used to
impersonate the client. To address this, an augmented PAKE adds a
“server compromise resistance” requirement: 5) even if the server
is compromised, an offline dictionary attack is needed in order to
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impersonate the client. This is typically realised by requiring that
the client remember a password, while the server stores only a
one-way transformation of it. Jarecki et al. [55] recently suggested
an extra “pre-computation resistance” requirement, such that: 6) an
attacker must perform an offline dictionary attack that cannot make
use of any pre-computed table. Note that these requirements increase
the burden on attackers, but do not stop attacks; once a server is
compromised, an offline dictionary attack should be expected (one
response is to update all passwords [33]).

2.3 EKE: Seeding a new field
EKE was the first PAKE protocol. In Bellovin and Merritt’s 1992 pa-
per [15], EKE referred to a suite of variants: RSA-EKE, ElGamal-EKE
and DH-EKE. They followed the same basic idea: use a password to
encrypt a public key as part of a key transport (RSA and ElGamal) or
key agreement (DH) process. As a main difference, in key transport
the session key is generated by one party; in key agreement it is
jointly generated [83].

However, the use of a password to encrypt a public key is deli-
cate. For the rest of the paper, we use𝑤 to denote an (often weak)
password. Public keys have specific algebraic structures; this pro-
vides an oracle enabling offline dictionary attacks. This is especially
problematic for an RSA key—for example, the fact that an RSA
public exponent 𝑒 must be odd enables a passive attack to filter out
certain passwords. Although this issue may be mitigated by adding
random padding to 𝑒 , Patel [86] presented further attacks. Since the
RSA modulus 𝑛 = 𝑝 × 𝑞 must be sent in the clear [15], the attacker
can freely manipulate 𝑛 to establish an algebraic relationship with
the public key 𝑒 to be encrypted by a password. This relationship al-
lows the attacker to filter password guesses offline. Patel concludes:
“The attack [against RSA-EKE] is unavoidable unless the protocol
is radically modified.”

Other RSA-based PAKE designs have been proposed. One from
1997 was Open Key Exchange (OKE), by Lucks [74]. Rather than
using the password to encrypt an RSA key, OKE sends RSA public
keys in the open (hence the protocol name). The password is sup-
posedly protected by a combined use of hash and RSA encryption
operations. In 2000, MacKenzie et al. [80] presented an active attack
on OKE to recover a party’s password; they then modified OKE to
obtain a new balanced PAKE, SNAPI, with an augmented version,
SNAP-X. (They later showed SNAP-X to be insecure, replacing it
by SNAP-Z in a journal version [81].)

As a major limitation of RSA-based PAKE designs, including
SNAPI, generating per-session RSA keys in realtime is more costly
thanDiffie-Hellman (DH) keys. To address this, MacKenzie et al. pro-
posed reusing RSA keys across sessions, forgoing forward secrecy,
above. This is a major reason why nearly all practical PAKE designs
are based on discrete log (DH) instead of factoring (RSA) problems.

Among the three EKE variants, DH-EKE is considered the most
promising—and is particularly important in the provable security
literature, as its security was formally proven in 2000 by Bellare,
Rogaway and Pointchevel [12]. The BRPmodel used in this proof has
beenwidely adopted by other researchers. More precisely, this proof
was for the EKE2 variant of DH-EKE, whose key exchange flows are
the same as DH-EKE, except they include also user identities and the
key exchange items in the key derivation function. The protocol

works in the whole range of a multiplicative group 𝑍 ∗𝑝 , using a
primitive root modulo 𝑝 as the generator 𝑔 (Fig. 3, Appendix).

The provable security of EKE2 was disputed by Zhao, Dong
and Wang [102] during the IEEE P1363.2 review process. In 1996,
Jaspan [56] discussed a DH-EKE password information leakage
problem: if an eavesdropper captures E𝑤 (𝑔𝑥 )—here E𝑤 denotes a
secure block cipher like AES, with a weak password𝑤 as the key—
use of the correct password will decrypt the ciphertext to a value in
[1, 𝑝−1] while other guesses yield a value in [0, 2 ⌈log2 (𝑝) ⌉ −1]. This
discrepancy provides an oracle for a passive attacker to partition
passwords. The same leakage problem applies to EKE2. In the 1992
EKE paper [15], the authors already noted this issue in a general
context of using a password to encrypt a public key that does not
fit precisely the data range for a symmetric cipher; they proposed
adding a random pad to a public key using non-modulo arithmetic
to fill the data range for encryption, but exact padding details were
not specified. Choosing 𝑝 as close as possible to a power of 2 [56]
also reduces (without eliminating) secret leakage.

The formal proof of EKE2 avoids this information leakage by
assuming E is an “ideal cipher” (IC) [12]; then encryption reveals
no information about the content even for a low-entropy key. It
is assumed that the cipher works like a random function in the
encryption, but the decryption function “must take strings of a
fixed size and map them to [group] elements” [21]. However, the
EKE2 paper does not instantiate such a cipher.

After the formal proof of EKE2, Bellare and Rogaway [14] sub-
mitted EKE2 (renamed AuthA) to IEEE P1363.2 as a standardiza-
tion candidate. This submission was supported in 2003 by Bresson,
Chevassut and Pointcheval [23], whose simplified EKE2 variant,
One-Encryption Key-Exchange (OEKE), was also supported by a
security proof. Whereas EKE2 encrypts both flows in the key ex-
change process, OEKE only encrypts one (its proof assuming the
same IC as EKE2).

As part of the IEEE P1363.2 submission [14], Bellare and Rogaway
proposed several ways to instantiate an IC. One was: “E𝑤 (𝑥) =
𝑥 · 𝐻 (𝑤) where 𝐻 is a random oracle”, but they did not instantiate
𝐻 (which cannot be just replaced by a one-way hash). In 2006, Zhao,
Dong and Wang [102] analyzed these IC constructions, and argued
that they were inadequate for practical use. As no secure instan-
tiation of an IC was identified, EKE2 was not included into IEEE
1363.2, nor its simpler variant OEKE. However, the AuthA proposal
inspired follow-up work using a password to derive random masks
to obscure group elements, e.g., in PAK [79] and SPAKE2 [6], which
in turn require hash-to-group and a trusted setup, respectively.
These lead to different classes of protocols as explained next.

3 TAXONOMY: PAKE DESIGN CLASSES
The main PAKE designs have used passwords three ways: 1) as
an encryption key; 2) as an input string to derive a generator; 3)
as an integer in modular arithmetic (in the exponent for a multi-
plicative group, or as a scalar in an additive group over an elliptic
curve). The third case includes protocols having different security
properties depending on the design approach and formal analysis
model (e.g., common reference string, random oracle). Based on
these, we identify five classes of PAKE protocols as follows (see
Table 1 for a summary of major PAKE schemes, color-coded into
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these classes; and the Appendix for further taxonomy details and
relationships between classes). Our categorization combines as-
pects of security (proof) models, major assumptions, and concrete
construction approaches.

C1 Password used as encryption key. This class includes us-
ing a password as encryption key, and typically must assume
an ideal cipher. Examples: EKE [15], EKE2 [12], OEKE [23],
A-EKE [16], KHAPE [38].

C2 Password-derived generator. A protocol group generator
is derived from a password. Examples: SPEKE [52], SPEKE2 [80],
Patched SPEKE [44] and B-SPEKE [53], PAK [79], SAE (Drag-
onfly) [47], PACE [30], SRP-5 [98], CPace/AuCPace [39],
OPAQUE [55].

C3 Trusted setup. The protocol relies on a trusted setup, which
defines two (or more) generators whose discrete logarithm
relationship must be unknown. Examples: KOY [59], KI [64],
JG [57], SPAKE2 [6], SESPAKE [89], TBPEKE/VTBPEKE [87],
KC-SPAKE2+ [93].

C4 Secure two-party computation. Here PAKE is viewed as a
two-party secure computation problem on an equality func-
tion; use of a non-interactive zero-knowledge proof (ZKP)
aims to check that parties follow a specification honestly.
Example: J-PAKE [45].

C5 Password-derived exponent. In this class, a password is
used to derive 𝑔𝑤 as a verifier in a type of Diffie-Hellman
key exchange. Examples: SRP-3 [100], SRP-6 [101], AMP [68],
revised AMP [69], AugPAKE [92].

As Table 1 shows, PAKE security proofs are generally constructed
in one or more of three security models:

(1) Ideal cipher (IC),
(2) Common reference string (CRS), and
(3) Random oracle (RO).
IC models a symmetric encryption function that leaks no infor-

mation about content even when using a low-entropy key [12]. CRS
models a function that returns a common reference string trusted
by everyone [60]; in PAKE, such a trusted string normally includes
two or more generators whose discrete log relationship must be
unknown (i.e., no one knows how to represent one generator as
the power of another). RO models a function that returns a random
string of fixed length (say 𝑛 bits) for any input string but always
the same string for the same input [13], [65], [8, §5.3.1]. So to prove
security in the RO model means: construct a convincing argument
by first replacing some function (e.g., a hash) in the actual proto-
col by an idealized one that returns a random value as described;
prove the idealized protocol has certain properties; then hope the
actual protocol delivers those properties when using a concrete
hash function, e.g., SHA-3, assumed to behave similarly.

Many PAKE protocols “proven” in the RO model require the
idealized function be instantiated by a secure hash-to-group func-
tion (H2G), or hash-to-curve (H2C) in an elliptic curve setting [49],
similar to a one-way hash but whose output aims to be a random
non-identity element (generator) in a designated prime-order group.

In the following sections, we consider PAKE specs in two settings:
with a multiplicative group over a finite field (MODP), and an
additive group on an elliptic curve (EC). As selection criteria, we
focus on protocols that have attracted academic and industrial

interest, and are used in commercial applications. For augmented
PAKE, we focus on the classical scenario involving a single server
rather than multiple servers [54].

3.1 Class-1: Password as an encryption key
Section 2.3 discussed balanced techniques in this category. Here
we discuss augmented versions. In 1993, Bellovin and Merritt [16]
proposed a generic “A” method to transform a balanced EKE scheme
to an augmented version denoted A-EKE. Their method is based
on a digital signature scheme, with the server storing a password-
derived public key for signature verification. This “A” method is
generally applicable to transform a balanced PAKE to an augmented
version.

In 2021, Gu, Jarecki and Krawczyk [38] proposed an augmented
scheme called HKAPE (key-hiding asymmetric PAKE). HKAPE fol-
lows the same idea as in EKE by using a password to encrypt a
key exchange protocol. However, instead of encrypting an unau-
thenticated (Diffie-Hellman) key exchange protocol, the authors
proposed to encrypt an authenticated key exchange protocol based
on HMQV [82] or 3DH [67, §5.1].2 The authors proved security
of HKAPE in an ideal-cipher-and-RO model under the Gap CDH
assumption. To instantiate the ideal cipher, they first require hash-
to-curve functions to encode group elements into binary strings in
so-called “quasi bijective” mapping (called quasi as the strict bijec-
tive mapping appears hard). The construction of the hash-to-curve
functions depends on an IETF internet draft [49], which remains
a draft (unfinished) at the time we write this paper. Second, they
require “implementations of ideal ciphers of sufficiently long block
length”, i.e., between 512 and 1024 bits for the combined input
length for elliptic curves of 256 bits. The detailed construction and
analysis of such an ideal cipher is “left for future work”. Overall,
the difficulty to instantiate an ideal cipher has prevented wide use
of Class-1 protocols to date.

3.2 Class-2: Password-derived generator
Jablon [52] proposed a Class-2 protocol SPEKE (Simple Password
Exponential Key Exchange) in 1992. The key idea is to use a H2G
function, denoted 𝑓 , to map a password to a generator (non-identity
element) in a prime-order group. Initially, Jablon defined 𝑓 =

𝑤2 mod 𝑝 , for 𝑝 a safe prime (meaning (𝑝 − 1)/2 = 𝑞 is also prime).
The square operation maps the password into an element in a sub-
group of 𝑍 ∗𝑝 of prime order 𝑞. In 2004, Zhang [103] showed that for
this 𝑓 , an active attacker can test multiple passwords at once by
exploiting the exponential equivalence among passwords. During
IEEE P1363.2 standardization, to address this issue, a hash opera-
tion was added before squaring, revising 𝑓 to: 𝑓 = 𝐻 (𝑤)2 mod 𝑝 .
In 2014, Hao and Shahandashti [46] noted that the lack of iden-
tity binding in the SPEKE key exchange makes it vulnerable to
an unknown key-share attack [21, p.167]. As a result, SPEKE was
revised [44] in ISO/IEC 11770-4:2017 to include user identities in
the key derivation function. Figure 4 (Appendix) gives the latest
SPEKE specification as in ISO/IEC 11770-4:2017.

The original SPEKE protocol was supported by heuristic security
arguments. In 2001, MacKenzie [78] presented a formal analysis
(in an unrefereed technical report) of a variant of SPEKE, SPEKE2,
2For 3DH, see also: https://signal.org/blog/simplifying-otr-deniability/
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Table 1: PAKE landscape (rows ordered by classes, which are colored-coded per the taxonomy)

Class: Scheme Year Security model Assumptions Related standards Properties

Requires ideal cipher

Requires hash-to-curve

Requires trusted setup

Peer-reviewed pub exists

Used in commercial app

Balanced PAKE
C1: DH-EKE [15] 1992 – – –  ✓
C1: EKE2 [12] 2000 IC CDH –  ✓
C1: OEKE [23] 2003 IC CDH –  ✓
C2: SPEKE [52] 1996 – – IEEE 1363.2, ISO/IEC 11770-4  ✓ ✓
C2: PAK [22] 2000 RO† DDH IEEE 1363.2  ✓
C2: PPK [22] 2000 RO† DDH IEEE 1363.2  ✓
C2: SPEKE2 [78] 2001 RO† DIDH –  
C2: PACE v1 [17] 2006 IC, RO† Adaptive gPACE-DH ISO/IEC 18013-3  ✓
C2: PACE v2 [30] 2008 IC, RO† GCBDH ISO/IEC 18013-3  ✓
C2: SAE (Dragonfly) [47] 2008 RO† CDH, DIDH IEEE 802.11  ✓ ✓
C2: Patched SPEKE [46] 2014 – – ISO/IEC 11770-4  ✓
C2: CPace [39] 2019 RO† sCDH/sSDH/sTCDH –  ✓
C3: KOY [59] 2001 CRS DDH –  ✓
C3: Kobara-Imai [64] 2002 CRS DDH –  ✓
C3: Jiang-Gong [57] 2004 CRS DDH –  ✓
C3: SPAKE2 [6] 2005 RO†, [CRS] GCDH –  ✓
C3: SESPAKE [89] 2017 RO†, [CRS] CDH –  
C3: TBPEKE [87] 2017 RO†, [CRS] GSDH –  ✓
C4: J-PAKE [45] 2008 RO CDH, DDH ISO/IEC 11770-4 ✓ ✓

Augmented PAKE
C1: A-EKE [16] 1993 - CDH –  ✓
C1: KHAPE [38] 2021 IC, RO† GCDH –   ✓
C2: B-SPEKE [53] 1997 – – –  ✓
C2: PAK-X [22] 2000 RO† DDH –  ✓
C2: SRP-5 [98] 2001 – – IEEE 1363.2  
C2: PAK-Z [79] 2002 RO† CDH –  
C2: PAK-Z+ [36] 2005 RO† CDH IEEE 1363.2  
C2: OPAQUE [55] 2018 RO† One-more DH –  ✓
C2: AuCPace [39] 2019 RO† sCDH/sSDH/sTCDH –  ✓
C3: VTBPEKE [87] 2017 RO†, [CRS] GSDH –  ✓
C3: KC-SPAKE2+ [93] 2020 RO†, CRS CDH –  ✓
C5: SRP-3 [100] 1998 – – IETF RFC 2945 ✓
C5: AMP [68] 2001 – – – ✓
C5: SRP-6 [101] 2002 – – IEEE 1363.2, ISO/IEC 11770-4 ✓
C5: Revised AMP [69] 2005 – – IEEE 1363.2, ISO/IEC 11770-4
C5: AugPAKE [92] 2010 RO Strong DH ISO/IEC 11770-4

RO: requires a one-way hash function with appropriate properties. RO†: requires an H2G function with RO-like properties.
CRS: common reference string, explicitly stated in the paper. [CRS]: implicit assumption in the paper. IC: ideal cipher model.

A dash for ‘Security model’ means that we are not aware of any formal proofs asserted for security properties of the protocol.

based on a new Decision Inverted-Additive Diffie-Hellman (DIDH)
assumption in a RO model. SPEKE2 mandates an explicit key confir-
mation [83] at the expense of requiring more rounds; this process
is optional in the original SPEKE paper and specifications per IEEE
1363.2 and ISO/IEC 11770-4. Thus, Mackenzie’s security proofs
do not directly apply to SPEKE. Furthermore, the proofs apply a
weaker security definition whereby an online attacker may test
multiple passwords in one go (recall that a stricter definition limits
online attacks to one password guess per protocol execution). It
also remains unclear whether formal security proofs can be given
for SPEKE under more standard Computational Diffie-Hellman
(CDH) and Decision Diffie-Hellman (DDH) assumptions. In 2019,
Haase and Labrique [39] proposed another SPEKE variant, CPace,
by including the session identifiers and the users’ identities in the
𝑓 function. They initially gave a security proof for CPace in a RO
model under a standard CDH assumption, but this assumption was
disputed during the IETF PAKE selection process [42], and sub-
sequently changed to a combination of the Strong CDH (sCDH),

Strong simultaneous CDH (sSDH), and Strong twist CDH (sTCDH)
problems [4].

PACE is a protocol suite proposed in a 2006 report [25] (with
corrections and revisions 2006–2016) for machine readable travel
documents such as e-passports, by Germany’s Federal Office for
Information Security (BSI). As a core component, a set of func-
tions map passwords to group elements. The original protocols
in the BSI report saw limited public scrutiny. In 2009, Bender, Fis-
chlin and Kügler [17] analyzed the initial version (PACE v1) in a
random-oracle-and-ideal-cipher model under a General Password-
Based Chosen-Element DH (gPACE-DH) Problem. In 2012, Coron
et al. [30] analyzed an updated version (PACE v2) in a RO-and-IC
model3 under a Gap Chosen-Base Diffie-Hellman (GCBDH) as-
sumption. The main change in v2 is a new Integrated Mapping (IM)
method that hashes a password to points on certain elliptic curves
more efficiently (with curves restricted to 𝑝 = 2 mod 3; 𝑝 is the

3The RO-and-IC model used to analyze PACE v1 and v2 does not require an ideal
cipher (e.g., unlike EKE2), thus allowing use of AES as symmetric cipher.
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characteristic of the prime field). The security analysis is limited
to a restricted model: the adversary is not allowed to interact with
a reader, and can only interact with a chip when it is not already
interacting with a reader.

In all versions of PACE [17, 30], user identities are omitted in
the message flows, making the protocol potentially vulnerable to
an unknown key-share attack as reported on SPEKE [46]. How-
ever, such an attack is beyond the scope of the restricted model,
since PACE is designed for an RFID reader and an RFID chip with
fixed roles of “reader” and “chip” hardcoded in their respective soft-
ware implementations. Applying PACE as a general PAKE protocol
for Internet use will require modifying the protocol; at least user
identities need to be included.

SAE (also called Dragonfly) is among the PAKE protocols that
have been used in practical applications, most notably in Wi-Fi Pro-
tected Access 3 (WPA3), a commercial profiling of the IEEE 802.11
standard. The protocol was first proposed in 2008 by Harkins [47],
unaccompanied by security proofs. In 2014, a small-subgroup attack
was reported by Clarke and Hao [28] and subsequently fixed by
a revision. To support SAE’s standardization in the IETF, in 2015
Lancrenon et al. [71] offered an SAE security proof in a RO model
under CDH and DIDH assumptions, adapting the SPEKE2 proof
by MacKenzie [80]; the proof does not, however, take into account
side-channel attacks. Shortly after being made mandatory in 2018 in
WPA3 (personal mode), SAE was shown vulnerable to side-channel
timing attacks [96]. The problem arises in implementing the 𝑓
function (we give details shortly).

PAK is a suite of variants proposed in 2003 by Boyko, MacKenzie
and Patel [22] (see also [21]). The variants include PAK, PPK and
PAK-X, all relying on the same 𝑓 function used in SPEKE; to our
knowledge [76], none have been used in practical applications. A
formal security proof of properties of these variants was given
under a DDH assumption in the RO model. PAK and PPK are both
balanced schemes, with PAK mandating explicit key confirmation
while PPK makes it optional; PAK-X is an augmented version.

We now briefly discuss augmented Class-2 PAKE schemes. In
1997, Jablon [53] proposed a generic “B” method to extend a bal-
anced SPEKE scheme to an augmented version denoted B-SPEKE.
This method is based on a Diffie-Hellman scheme with the server
storing a password-derived Diffie-Hellman public key. The same
“B” method is generally applicable to transform a balanced PAKE
to an augmented version. Other augmented schemes include PAK-
X [77], SRP-5 [98], OPAQUE [55] and AuCPace [39]. During the
IEEE P1363.2 review process, PAK-X was found vulnerable and
replaced by PAK-Z [79], which was found vulnerable and replaced
by PAK-Z+ [36].

A challenge affecting all Class-2 protocols is how to instanti-
ate the 𝑓 function in different group settings. Recall in an EC set-
ting, 𝑓 is called a hash-to-curve (H2C) function. Jablon originally
(1996) defined 𝑓 only for a MODP setting with safe-prime modu-
lus. IEEE 1363.2 extended it to work with DSA (Digital Signature
Algorithm) [83] groups and elliptic curves as discussed below.

In a general MODP setting, 𝑝 = 𝑘 · 𝑞 + 1 is the modulus, where
𝑝 , 𝑞 are large primes and 𝑘 a co-factor. For DSA groups, 𝑞 is much
shorter than 𝑝 , for efficiency [83, §11.5]. IEEE 1363.2 [51] defines

the mapping function: 𝑓 (𝑤) = 𝐻 (𝑤)𝑘 mod 𝑝 . Here, there is a theo-
retical possibility that 𝐻 (𝑤) falls into a small subgroup of 𝑍 ∗𝑝 . In
that case, 𝑓 in IEEE 1363.2 simply returns “invalid”. The specifi-
cation does not mandate any checking on the output nor provide
any exception handling for the “invalid” case, but notes that when
“suitably large values” of the group parameters are chosen, the prob-
ability of this happening by chance is negligible (on the order of
1/𝑞). For completeness, we note that when an “invalid” output is
returned, the user may have to change the password. Dragonfly
tries to address this issue by including a counter in a loop so as to
guarantee that a valid output is always returned (see “Hunting and
Pecking with MODP Groups” in [48]). As a consequence, 𝑓 is no
longer constant-time. Nonetheless, the practical difference between
the methods in IEEE and Dragonfly seems negligible given that the
probability of an “invalid” output occurring by chance is negligible.
(However, it is unclear if an attack action, e.g., fault injection [95],
could significantly increase the probability of the “invalid” case.)

In the EC setting, IEEE 1363.2 [51] defines the H2C function for
an elliptic curve 𝑦2 = 𝑥3 + 𝑎 · 𝑥 + 𝑏 in three steps: 1) first apply a
one-way hash to the password to obtain an x-coordinate value; 2)
use a loop with a counter to iteratively map the x value to a point on
the curve; 3) multiply the mapped point with a co-factor. There is a
theoretical possibility that the mapped point in 2) might fall into a
small subgroup, and then the computed result in step 3) will be an
identity point. In this case, the function simply returns “invalid”.
Similar to the MODP setting, the IEEE specification does not specify
any exception handling for the “invalid” return, but notes that the
probability for this happening at random is negligible. The H2C
function in IEEE 1363.2 was adopted to implement an EC version of
Dragonfly in 2018 in WPA3, but found vulnerable in 2020 to timing
side-channel attacks [7, 96]. The main problem is that the mapping
function in step 2) is not constant-time. We note that Blackberry
Messenger (BBM) [18] uses an EC version of SPEKE based on the
same H2C function in IEEE 1363.2 [51], and hence is potentially
vulnerable to the same attack. IETF has been trying to address this
problem by defining constant-time mapping [50, 90] in step 2) for
selected curves, but this work is still on-going at the internet draft
stage [49] as we write this paper.

3.3 Class-3: Trusted Setup (TS)
The first Class-3 protocol was KOY byKatz, Ostrovsky and Yung [59]
in 2001. Its underlying motivation was to design a provably secure
PAKE without requiring a RO model, following work to this end
in 2000 by Goldreich and Lindell [37]. KOY has 3 rounds for uni-
lateral authentication (4 rounds for mutual authentication). As a
central idea, a trusted setup (TS) is assumed, including here a set of
5 generators, with no one knowing the discrete log of any of these
generators with respect to any of the others (and the party choosing
them must be trusted on this assumption). While the original paper
asserts a formal security proof for the KOY protocol under a DDH
assumption in a “standard” model, due to dependence on TS, a more
precise statement is that the proof is in a common reference string
(CRS) model, as acknowledged later [60]. A general framework for
PAKE in a CRS model was given by Gennaro et al. in 2003 [35] and
Katz et al. [61] in 2011; in 2014, Abdalla reviewed the CRS model
for PAKE [1].
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After KOY other TS-based PAKE schemes appeared, including
Kobara-Imai [64], Jiang-Gong [57], SPAKE2 [6], SESPAKE [89] and
TBPEKE [87]. Among these, SPAKE2, from 2005 by Abdalla and
Pointcheval [6], is regarded as the most efficient. SPAKE2 (Fig. 7, Ap-
pendix) uses three generators and assumes the discrete log relation
between any two of them is unknown. The authors gave a RO-model
proof, initially under a CDH assumption. This proof does not deliver
forward secrecy; for that, the assumption is changed to Gap Compu-
tational Diffie-Hellman (GCDH) [2]. They proposed to obtain a TS
as “the output of a [H2G] random oracle” [2], a proof technique sub-
sequently adopted by SESPAKE [89], TBPEKE/VTBPEKE [87] and
KC-SPAKE2+ [93]. Given the reliance on TS, the proof is implicitly
in a CRS model, as noted by Becerra et al. [11].

Class-3 augmented PAKE schemes include VTBPEKE and KC-
SPAKE2+. VTBPEKE was proposed in 2017 by Pointcheval and
Wang [87]. They gave a RO-model proof under a gap simultaneous
Diffie-Hellman (GSDH) assumption. Again due to reliance on a TS,
the proof is implicitly in a CRS model. KC-SPAKE2+ was proposed
in 2020 by Shoup [93] as a variant of SPAKE2+ [26] with mandatory
key confirmation. Shoup analyzed the security of the protocol in
the RO and CRS models under a CDH assumption.

A critical issue for Class-3 protocols is how the TS is instantiated.
One frequently suggested way [35, 57, 59] is to employ a trusted
third party (TTP) to choose the parameters used. Of course, a TTP
may also be viewed as “a third party who can break your security
policy” [8]; no universally trusted third party exists. Another way
is using a secure hash function to generate fixed generators for
standardized use (e.g., see the SPAKE2 internet draft [70]). Note
that reliance on the discrete log relationship of fixed values remain-
ing unknown is a significant risk for a system to be used by very
large user bases over many years. In non-TS-based PAKE systems,
solving a single discrete log problem instance breaks a single ses-
sion; in TS-based systems, it breaks security for all sessions and all
users (typically without their knowledge). No major commercial
deployment of a TS scheme exists, to our knowledge.

3.4 Class-4: Secure two-party computation
The only Class-4 protocol to date is J-PAKE, proposed in 2008
by Hao and Ryan [45]. The core idea is to treat PAKE as a se-
cure two-party computation problem. The aim is that each party
learns only the 1-bit output of a function that tests the equality of
two passwords. J-PAKE extends the traditional two-party computa-
tion problem, by deriving a session key when the passwords are
equal. Its design modifies the 2006 AV-net multi-party computation
(MPC) protocol of Hao and Zielínski [43], by which multiple parties
compute a boolean-OR function, to instead compute an equality
function. J-PAKE requires neither H2C nor a TS, simplifying im-
plementation. In 2016, Lancrenon et al. [72] proposed two variants
which use less computation, but respectively rely on H2C and TS.

J-PAKE (Fig. 8, Appendix) relies on a zero-knowledge proof (ZKP)
technique, namely Schnorr’s non-interactive ZKP [83, §10.4.4], to
ensure that a sender knows the private key 𝑥 when sending 𝑔𝑥 .
ZKP had previously seen little use in PAKE as first, ZKP can be
computationally expensive (J-PAKE uses 3 ZKPs in each direction);
and second, ZKP was viewed as incompatible with the mainstream
BRP model due to the difficulty to use rewinding arguments to

prove extraction of knowledge in simulation [3]. While the original
paper’s security proof for J-PAKE (in a RO model with CDH and
DDH assumptions) is considered informal by some (it is not con-
structed in the formal BRP model), in 2015 Abdalla et al. [3] defined
a modified BRP model with algebraic adversaries (to be compatible
with ZKP), used this for a formal proof of J-PAKE under a Decision
Square DH assumption, and then reduced this assumption to CDH
and DDH by using a RO model.

3.5 Class-5: Password-derived exponent
Class-5 schemes are all augmented. Here 𝑔𝑤 is stored at the server
for use in verification, in a DH-like key exchange with a client.
The first Class-5 protocol was SRP-3, in 1998 from Wu [100] (“-
3” as two earlier versions were abandoned). After submission to
IEEE P1363.2, it was noted that an active attacker could test two
passwords at once; SRP-3 was replaced by SRP-6. After the P1363.2
group concluded in 2008, security concerns led to a further update,
SRP-6a (Fig. 9, Appendix).

Other Class-5 protocols follow a design similar to SRP. AMP,
proposed in 2001 by Kwon [68], claimed to be the “most efficient”
augmented PAKE. After AMP was submitted to IEEE P1363.2, it
was found vulnerable to the two-guess attack reported on SRP-3,
and revised to AMP+; efficiency concerns led to a further revision
in 2002. While AMP+ was being standardized in IEEE P1363.2,
it was found to lack the claimed server compromise resistance,
again modified and replaced by the “the unified variant AMP2” [69].
AugPAKE was initially proposed in 2010 by Shin and Kobara in
an RFC [91], but the validity of its security proof is challenged by
Jarecki et al. [55].

4 COMPARING EFFICIENCY
We now select representative protocols from each class for a com-
parative performance analysis. As Table 1 notes, PAKE protocols
use a wide variety of security models and assumptions in their se-
curity proofs—which precludes precise security comparisons. Thus
we focus here on computational efficiency for parameter choices,
e.g., modulus bitlengths and exponent sizes, that provide compara-
ble (asserted) security. Our summary (in Table 3) provides a view
of relative performance, while separately noting further costs due
to required H2C functions or trusted setup (TS), the latter being a
non-computational cost.

We first list the class representatives. Our selection criteria in-
cluded academic interest and industrial use, plus simplicity, matu-
rity and efficiency within classes. We do not distinguish balanced
and augmented schemes as this does not affect our comparative
analysis between different design strategies.
C1: EKE2. It is a classic scheme in its class. Variants cost roughly

the same computationally.
C2: Patched SPEKE. It is the most efficient in its class (with the

same efficiency as SPEKE, while addressing known attacks).
We also include CPace [39] and OPAQUE [55], based on IETF
having selected them for standardization.

C3: SPAKE2. It is the most efficient in this class.
C4: J-PAKE. It is the sole class member.
C5: SRP-6a. It is the only class member widely used in practice,

to our knowledge.
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4.1 Long and short exponents
For Diffie-Hellman exponentiation over the range 𝑍 ∗𝑝 , exponents
are mod 𝑝 − 1, so full-sized (long) exponents have bitlength log2 (𝑝).
Shorter exponents reduce computational cost, as modular exponen-
tiation cost is linear in exponent bitlength [83, §14.6]. However, a
too-short exponent compromises security. For example, Pollard’s
rho algorithm (which is parallelizable) finds discrete logs in running
time square-root of the size of the search space, while a modifi-
cation of Pollard’s lambda method allows recovery of a number
of exponent bits, depending on how 𝑝 − 1 factors [85]; the latter
motivates using safe primes, which help address small-subgroup
attacks [84, §4.8], as do prime-order subgroups as used in DSA.

At first glance, EKE and SPEKE require only two exponentia-
tions, which seems impossibly few, as even unauthenticated DH
requires that many (plus one more, if one charges for public-key
validation). However, simply counting the number of exponentia-
tions is misleading. Both EKE and SPEKE specify a safe prime as
modulus (in their original specs). Given a 2048-bit safe prime 𝑝 , the
exponents in EKE and SPEKE are 2048 and 2047 bits resp. (Fig. 3
and 4, Appendix). In contrast, using DSA groups, exponents of only
224 bits are commonly used. Here we give, for a 2048-bit 𝑝 , one
full-length SPEKE exponentiation costs about 2047/224 ≈ 9 times
as much as for a (112-bit security) DSA group; and for a 3072-bit 𝑝 ,
3071/256 ≈ 12 times as much as for a (128-bit security) DSA group.
Counting this way, for a given modulus, EKE and SPEKE (with long
exponents) are far less efficient than a regular (DSA-group) DH
protocol.

Direct use of short exponents in SPEKE was initially consid-
ered [52], e.g., for a 3072-bit safe prime 𝑝 , choose a random 256-bit
secret exponent; but it was later recommended [54] to use them
while ensuring computations in a prime-order (DSA) subgroup,
consistent with other recommendations [85]. Following this path,
IEEE 1363.2 [51] generalized its SPEKE spec to allow short expo-
nents as in DSA groups, resulting in changing 𝑓 (as noted in §3.2)
to 𝑓 = 𝐻 (𝑤)𝑘 mod 𝑝 ; again 𝑝 = 𝑘 ·𝑞 + 1 and 𝑘 is a co-factor. Com-
pared with a safe-prime modulus, the probability for getting an
“invalid” output by chance in a DSA group (same modulus size) in-
creases, but remains negligible (without considering attack actions
like fault injection [95]). However, in a DSA group, it now requires
one exponentiation to validate a received public key. With a safe
prime modulus, validation involves checking only the exponential
is not 1 or 𝑝 − 1, ruling out small subgroups [52].

Table 2 summarizes costs for SPEKE in different groups. With
short exponents reducing exponentiation costs, the 𝑓 function now
dominates the overall cost. Hence, using the same DSA group,
SPEKE remains far more costly than a DH.

In an EC setting, SPEKE requires an H2C function to map a
password to a random generator. The H2C defined in IEEE 1363.2
(later adopted by ISO/IEC 11770-4 and WPA3), based on a trial-
and-increment method, leaks side-channel information about the
password [96]. This can be addressed by Icart’s method [50] to
map a string to a point on a curve in constant-time, suitable for
certain curves where 𝑝 ≡ 2 mod 3. Another method due to Shallue,
Woestijne and Ulas [24, 90], suits curves where 𝑝 ≡ 3 mod 4. These
methods require that one define custom H2C solutions for different
curves, and the mappings may not work for (future) new curves.

2048-bit modulus 3072-bit modulus

Safe prime DSA Safe prime DSA

Hash to group – 1 (×8) – 1 (×11)
Generate 𝑔𝑥 1 (×9) 1 1 (×12) 1
Validate 𝑔𝑦 – 1 – 1
Compute 𝑔𝑥𝑦 1 (×9) 1 1 (×12) 1

Total 2 (×9) 11 2 (×12) 14

Table 2: SPEKE costs in different MODP groups. Under “2048-
bit/Safe prime”, long exponents are assumed for prudence; 1 (×9)
denotes that the cost of one exponentiation (2047-bit exponent) is
about the same as 9 typical (224-bit exponent) DSA-group exponen-
tiations. The hash-to-group function requires an exponentiation
with a 1823-bit exponent (co-factor), which similarly has cost equal
to 8 exponentiations with 224-bit exponent. Similar scaling applies
for a 3072-bit modulus.

Furthermore, existing “constant-time” methods [24, 50, 90] map an
input string to a point on an elliptic curve, including small-subgroup
points [42]. It is possible to check the output iteratively to ensure it
always returns a valid generator (required by Class-2 schemes, as
discussed) but doing so forfeits the (desired) constant-time property.
An IETF internet draft [49] aims to address these issues by defining
custom H2C functions for (ten) selected curves; until this work is
finalized, the actual H2C cost remains unknown. For this reason,
Table 3 uses “H2C” to denote this function’s (unknown) cost.

4.2 Performance comparison
Table 3 compares system performance for the selected PAKE schemes
(respective Appendix sections give cost breakdown details). The
aspects noted are: type (balanced/augmented), class (C1-C5), num-
ber of rounds, number of flows, key confirmation (implicit/explicit),
number of modular exponentiations in MODP groups, number of
scalar multiplications in EC groups, and whether the scheme re-
quires a trusted setup. A round (different from a flow) is a step which
all participants can complete without depending on each other [21,
§1.5.12]. For example, the original EKE protocol is 1-round, but it
requires 2 flows of message exchange. EKE2 [12] breaks the symme-
try of EKE by including the ordered identities in the key derivation
function. As a result, it becomes 2-round, still with 2 flows of mes-
sage exchange; the two users cannot send the data at the same time
in one round because of the ordered identities. With the exception
of SRP-6a, selected PAKE protocols generally support implicit key
confirmation; explicit key confirmation can be realized by adding
one more round or flow without significantly changing the com-
putational costs in the table. We use a MODP setting with 3072-bit
modulus; a 2048-bit modulus would not change the main results
shown. For public key validation, we note that in a DSA-like group
this requires one exponentiation, but for a safe-prime modulus or
in an EC setting, the cost is negligible.

In Table 3, in OPAQUE we use HMQV [82] as originally pro-
posed [55] as the “most efficient” way to instantiate the key ex-
change scheme. (After OPAQUE’s selection by IETF, the designers
proposed replacing HMQV with a different 3DH protocol; how-
ever, the proposed change remains unfinalized in an IETF internet
draft [66] at the time we write this paper.) The OPAQUE paper
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Class: Scheme Year Type Rnd Flow KC MODP (safe prime) MODP (DSA) EC Other

C1: EKE2 [12] 2000 Bal 2 2 Imp 2 (×12) – –
C2: Patched SPEKE [46] 2014 Bal 1 2 Imp 2 (×12) 1 (×11) + 3 2+H2C
C2: CPace [39] 2019 Bal 3 3 Imp 2 (×12) 1 (×11) + 3 2+H2C
C2: OPAQUE [55] 2018 Aug 2 2 Imp C: 4.5 (×12), S: 3.5 (×12) C: 1 (×11) + 6.5, S: 5.5 C: 4.5+H2C, S: 3.5
C3: SPAKE2 [6] 2005 Bal 2 2 Imp – 3 2 TS
C4: J-PAKE [45] 2008 Bal 2 3 Imp – 14 11
C5: SRP-6a [94] 2009† Aug 4 4 Exp C: 2 (×12) + 1, S: 2 (×12) + 1 – –

Table 3: Comparison of selected PAKE schemes with focus on computational costs (protocol specifications and detailed cost breakdowns
can be found in the Appendix). Computational cost columns give the number of exponentiations in the MODP setting (assuming a 3072-bit
modulus for concreteness, and to apply scaling to account for long exponents as explained in Table 2) or the number of multiplications in the
EC setting (this is independent of the EC bitsize). TS implies an extra non-computational cost (trust or risk). C: Client side cost. S: Server side
cost. †This year is based on the SRP-6a patch in OpenSSL-0.9.8j.

does not explicitly specify whether a party should validate the re-
ceived public keys in HMQV. Based on Menezes [82] and Hao [40],
we consider public-key validation essential in HMQV to prevent
known attacks, with the cost counted accordingly in the table (i.e.,
one exponentiation in DSA and negligible cost in safe prime and
EC). For both CPace and OPAQUE, the original papers assume an
H2C function as the main building block, leaving the protocols
undefined for the MODP setting. Neither paper instantiates H2C;
both assume it incurs negligible cost. To give a complete picture,
Table 3 records the cost for CPace and OPAQUE in a MODP setting
based on using the same H2G function as other Class-2 protocols.
In an EC setting, since H2C has not been instantiated, the table
uses “H2C” to denote this non-zero cost.

On round efficiency, EKE2, Patched SPEKE, SPAKE2 andOPAQUE
have the fewest flows (i.e., 2). Among these, Patched SPEKE has
the theoretical advantage that its 2 flows can be completed in one
round. J-PAKE and CPace require 3 flows; SRP-6a requires 4 (note
that it includes explicit key confirmation by default; other proto-
cols treat it as optional). To add explicit key confirmation requires
one more flow. The round efficiency of CPace is based on its orig-
inal paper [39]. After CPace was selected by IETF, the designers
proposed to modify the protocol by removing one session ID and
defining user identities as optional input to H2C in order to reduce
rounds; but this proposed change remains unfinalized in an internet
draft [5] as we write this paper.

A computational efficiency comparison requires considering TS
and H2C as factors. First, consider TS. From Table 3, SPAKE2 has
the lowest computational cost in both MODP and EC settings, but
its security critically relies on the secure instantiation of a TS; a
compromised TS compromises the security of all sessions–similar
to breaking TS in Dual EC [27].

Next, consider H2C in the EC setting. Since H2C has not been
instantiated in many cases, a direct comparison of Class-2 (Patched
SPEKE, CPace, OPAQUE) to other protocols is precluded. How-
ever in the MODP case, with the 𝑓 function fully defined in IEEE
1363.2 [51], we can calculate the cost of Class-2 protocols using
either a safe-prime modulus or DSA group; we use the lower cost in
our comparisons. As seen from Table 3, when CPace and OPAQUE
are extended in the MODP setting using known H2G mapping tech-
niques, the cost under DSA is lower than under safe prime for the
same modulus size; in a DSA group, the overall cost is dominated by

H2G. In a MODP setting, the computational cost is roughly equal
for Patched SPEKE, J-PAKE, CPace and OPAQUE; SRP-6a is higher.

5 REAL WORLD USE CASES
Since EKE’s conception, debate has continued on the best target
applications for PAKE. Many arguments have suggested replacing
password authentication in web applications, including to address
phishing, but to little effect—apparently due to major deployment
barriers and the inertia of incumbent web authentication password
protocols (see Manulis et al. [75]). Strong arguments have likewise
been made for integrating PAKE into TLS, prompting a 2019 IETF
PAKE selection process; an earlier 2007 TLS-SRP effort (based on
SRP-6) supported by RFC 5054 failed to result in wide adoption [31].
Participants on CFRG e-mail4 offered the conclusion: “PAKE in SSL
has always been a solution in search of a problem”. PAKE has also
been proposed for use in end-to-end secure email [97]. This begs
the question: what are the real use cases for PAKE?

To pursue this, we review major instances of PAKE adoption
in real-world commercial systems, and compare with non-PAKE
alternatives, in three selected areas: credential recovery, device
pairing, and end-to-end (E2E) secure channels (see Table 4). We
distinguish amethod as preventive or detectivewith the latter relying
on user vigilance to detect attacks.

We note two basic requirements for a practical PAKE application:
1) a trustworthy password-entry interface, and 2) a trustworthy
out-of-band channel to share passwords between two parties (e.g.,
reading a password from one device and entering it to another). In
existing PAKE applications, the password-entry interface is usually
integrated into the underlying operating system, or the app. By
contrast, a web page is not a trustworthy interface since it can be
easily manipulated (e.g., by JavaScript) [8, §3.4]. This, along with
other web deployment hurdles as noted above ([31], [75, §9]), has
prevented PAKE from being used in many web applications. How-
ever, the adoption of PAKE in e-passport, Wi-Fi and IoT suggests
the utility and demand for PAKE beyond web applications.

5.1 Credential recovery
SRP-6a has been used in iCloud (and similarly in 1Password and
ProtonMail) to recover user credentials (called “escrow recovery” in

4Email of 16/02/2016, https://irtf.org/cfrg
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Use case Methods Example Type Property

No dependence on a PKI

Prevents external attacks

Prevents insider attacks

Credential
recovery

SRP-6a iCloud Preventive G#  #
PKI+pwd Google sync Preventive #  #

Device
pairing

PACE E-passport Preventive   –
Dragonfly WPA3 Preventive  G# –
Passkey Bluetooth Preventive  # –
Num com† Bluetooth Detective   –

E2E
secure
channel

J-PAKE Thread Preventive    
EC-SPEKE BBM Preventive  G#  
PKI+pwd TLS 1.3 Preventive #   
Signal† WhatsApp Detective    
ZRTP† VoIP Detective    

 (provides property); G# (partially provides); # (does not provide);
– (not applicable). †Requires manual security-check by end-users.
Table 4: Use case properties: PAKE, non-PAKE

iCloud documentation). To recover a keychain stored at the iCloud
server, users log onto their iCloud account using username and
password plus an SMS code as a second factor for authentication,
then enter another (6-digit) iCloud security code serving as a low-
entropy𝑤 for establishing a secure channel with the iCloud server
based on SRP-6a (running on top of TLS) to retrieve the keychain.
The SRP-6a registration phase is done over a TLS channel, but the
(PAKE) key exchange does not rely on TLS.

Google Sync provides an alternative non-PAKE solution based
on a PKI and passwords (Mozilla Sync 1.5 works similarly). In
Google Sync, the user’s profile (containing all cached passwords in
Chrome) is stored at the Google server. To retrieve the sync data,
users simply log onto their Google account using a Chrome browser.
The user can optionally provide a further password to encrypt the
sync profile stored at the server.

As Table 4 shows, the partial dependence on TLS or a PKI appears
to give SRP-6a in iCloud an advantage over Google sync under a
specific scenario. In iCloud, TLS is only required during the registra-
tion phase of SRP-6a, not during key exchange. Therefore, iCloud
may provide more protection than Google sync during credential
recovery if TLS or its underlying PKI is broken. However, as a major
limitation, neither iCloud nor Google Sync protects against insider
attacks. If the service provider hands over password-encrypted
user credentials to a government agency, the credentials will be
vulnerable to offline dictionary attacks.

5.2 Device pairing
PACE is used by third generation e-passports. An e-passport reader
scans the Machine Readable Zone (MRZ) of a passport page, with
MRZ data used as a shared secret for PAKE mutual authentication
with the e-passport’s embedded RFID chip [30]. WPA3 uses another
PAKE protocol, Dragonfly, to establish a secure channel between a
Wi-Fi access point and client. However, as noted in Section 3.2, the
trial-and-increment H2C function used (based on IEEE 1363.2) is
vulnerable to side-channel attacks [96]. The non-PAKE alternatives
include Passkey Entry (PE) and Numeric Comparison (NC) in the

latest Bluetooth pairing specification, 5.3 [19]. PE requires a user
to read a 6-digit number from one device and enter it to another
device, but has been found vulnerable to impersonation attacks [29].
NC requires a user to manually compare a 6-digit display on both
devices after performing an ECDH protocol in order to confirm
authentication, hence working as a detective measure. Here, a PKI-
based TLS is unsuitable for these pairing applications as there is no
pre-existing PKI.

5.3 End-to-end (E2E) secure channel
Examples of PAKE applications here include use of J-PAKE in
Thread (and similarly in Palemoon and Smoke Chat); and EC-based
SPEKE (EC-SPEKE) in Blackberry Messager (BBM) Protect to estab-
lish end-to-end secure channels between parties over the Internet.
EC-SPEKE uses the same IEEE 1363.2 trial-and-increment H2C
function as Dragonfly in WPA3, which as noted in Section 3.2, has
side-channel issues.

In this category, we note three non-PAKE alternatives to estab-
lish E2E secure channels. One is to rely entirely on TLS—but in
many applications (including IoT), an underlying PKI is not in place
or trusted [84, §8.5]. Another is to use detective methods as in Sig-
nal [88] or ZRTP [104]. Signal requires users to manually compare
(60-digit) fingerprints of other users’ public keys before running an
authenticated (X3DH) key agreement. However, studies have shown
that users cannot be relied on to carry out such checks [58, 88]. Sim-
ilarly, ZRTP first executes a DH protocol between two phone users
and then requires them to manually compare an authentication
string (typically 6 digits) derived from the session key.

6 LESSONS AND OPEN PROBLEMS
Here we extract lessons (Ln) from the theory, practice, standardiza-
tion and real-world applications of PAKE protocols.

L1 (Complete specifications). A PAKE protocol should be com-
pletely specified to enable analysis and open implementations. PAKE
schemes face adoption barriers if their published security proofs
assume constructs for which any implementation details are un-
available. Examples include assumptions of ideal ciphers, and H2G
functions missing for some group settings. Omitted details also hide
subtle issues that must be addressed in full analysis, and hamper im-
plementation. In future standardization of PAKE (and other security
techniques), we recommend open-source full prototypes accom-
pany submitted candidate protocols as reference implementations,
to ensure all details are defined.

L2 (Realistic assumptions). Security proofs should specify both
the underlying model and realistic assumptions; unrealistic or ques-
tionable assumptions erode the value of proofs and impede adoption.
As an example, the motivation for several provable PAKE schemes
was to remove the RO assumption, to avoid criticism that equating
an RO to a hash function is heuristic in nature [13]. However, the
alternative of employing a trusted third party (TTP) [59] in a CRS
model increases implementation challenges. To address this, re-
searchers (re)introduced RO to avoid a TTP defining a CRS [6] (see
Table 1). But then, as §3.3 notes, finding one discrete log relationship
between two hardcoded generators forever breaks all sessions—a
concern limiting the adoption of Class-3 protocols. From this, we
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learn that some new models and assumptions remove old issues,
but introduce new ones.

L3 (Revising standards). PAKE standards, like many other se-
curity standards, must be regularly revisited to address new attacks.
Designing security protocols is notoriously difficult [9]. Several
standardized PAKE schemes with designs based on heuristic argu-
ments (such as SRP, AMP and SPEKE), required repeated revisions
as new attacks emerged. Many PAKE schemes with security proofs
were accompanied by incomplete protocol specifications (e.g., lack-
ing details on instantiation of IC, H2C and TS, per L1 and L2 above).
While IEEE P1363.2, initially set out as a 4-year standardization
project, was extended to 8 years, the final spec was eventually
withdrawn in 2019, after flaws continued to be found in the 2008
specification [51].

L4 (Emergent use cases). Use cases for new protocols emerge or
evolve with deployment environments. A motivation for the original
EKE protocol was E2E encrypted telephone calls [15]. This was
difficult to implement in 1992 (due to the transcoding of analogue
voice data across heterogeneous telecom networks [10]) but appears
to be less problematic in today’s SIP-based phone network [63].
Back in 1992, Wi-Fi, e-passports and the notion of IoT had yet to
emerge, or were ahead of technology evolution; today, they are
examples of the large-scale, real-world use of PAKE (cf. Table 4).

L5 (Trade-offs). PAKE protocols are rarely directly comparable,
with different trade-offs between security models, performance and
other functionality. It is impossible to declare any one PAKE protocol
“best” for all applications, due to the variance in the importance
of given properties in different applications and environments,
e.g., H2C costs vs. a TS (non-computational complexity). Thus, we
believe a systematization as given herein offers valuable insights
regarding tradeoffs.

Among open problems, we highlight three. First, several PAKE
protocols, including IETF-favored CPace and OPAQUE, critically
depend on an H2C function to map a password to a base generator
on an elliptic curve. However, finding a secure and efficient H2C that
guarantees “valid” output and works with general elliptic curves
remains an open problem (§3.2). Second, existing augmented PAKE
schemes provide limited protection of stored passwords in the case
of server compromise. OPAQUE’s pre-computation resistance aims
to ensure offline dictionary attacks cannot employ pre-computation
tables (§2.2), but this is only partial protection. An ideal augmented
PAKE scheme might fully protect stored passwords even in case of a
server compromise (e.g., via hardware security modules, but doing
so adds cost). Third, few PAKE protocols resist attacks based on
quantum computers [8, §5.7]; none of the PAKE schemes selected
by IEEE, ISO/IEC or IETF do so. The design and standardization of
quantum-secure PAKE protocols remains an open challenge (e.g.,
see Gao et al. [34]).

As a final remark, PAKE presents an interesting case study to
reflect on how the theory of provable security has been developed,
refined and tested in this field. Heuristic designs, common in early
PAKE research, have been found to be unreliable, falling into re-
peated break-and-patch cycles. Since 2000, provable security has
been proposed as the path to escape this cycle. Yet, of many now-
available PAKE protocols accompanied by proofs asserting security
properties, few have been fielded. Most designs swing between
difficult choices, relying on 1) an ideal cipher, 2) a hash-to-group

function, or 3) a trusted setup, but none of these has turned out to be
straightforward to implement. As knowledge about PAKE protocols
continues to evolve, we have provided a snapshot-in-time picture of
where we are after 30 years of research. We hope that the insights
gained from systematizing knowledge in this domain are useful to
readers—including lessons on theory vs. practice, standardization
efforts, and real-world deployments.
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APPENDIX
A PAKE TAXONOMY AND PROTOCOLS
Here we give further details on the relationships between the five
classes of PAKE protocols in the taxonomy.We also provide algorith-
mic summaries for the representative schemes, both for reference
and to support the conclusions in Section 4 regarding computational
cost comparisons.

Password
as a key

class 1

IC

Password-derived
generator

class 2

RO†

Password as an integer

class 4class 3 class 5

CRS RO n/a

Figure 2: Taxonomy. IC: ideal cipher model. RO†: ran-
dom oracle model assuming secure hash-to-group func-
tion (hash-to-curve in EC setting). CRS: common reference
string model assuming a trusted setup. RO: random oracle
model assuming secure one-way hash function. Finally, n/a
denotes absence of a generally applicable model or estab-
lished proofs (cf. Table 1).

Common ways to use a password in a PAKE protocol are: 1) as
an encryption key; 2) as an input string to derive a generator; and 3)
as an integer used in modular arithmetic.5 The first two correspond
to Class 1 and 2 resp. (Fig. 2). When a password is used as an integer
in modular arithmetic (the modulus for exponent arithmetic being
𝑝 − 1 for protocols like EKE2 and SRP that use the whole range
of 𝑍 ∗𝑝 , or 𝑞 in protocols using a subgroup of 𝑍 ∗𝑝 of prime-order 𝑞),
there are three further cases depending on a protocol’s design and
proof model. In general, in Class 3 security proofs are in a CRS
model, assuming a trusted setup; Class 4 proofs are in a RO model,
assuming a secure one-way function; and Class 5 protocols lack
commonly accepted security proofs in a formal model.6

Representative schemes from these five classes are listed in Ta-
ble 5, with algorithmic summaries given in the sections below, along
5The PDM (Password-Derived Moduli) protocol of Kaufman and Perlman [62] uses a
client password to derive a modulus, but PDM is viewed as a password-authenticated
key retrieval (PAKR) protocol [51], with properties distinct from PAKE protocols. PDM
is thus omitted from our taxonomy. We are not aware of any PAKE protocol based on
a password-derived modulus—perhaps due to per-session modulus derivation adding
a considerable cost [21].
6Among Class 5 protocols, only AugPAKE claims to have formal security proofs, but
to date it appears in only an unrefereed technical report [92], and the validity of the
proofs has been questioned [55].

Class Representative scheme(s)
1 EKE2
2 Patched SPEKE, CPace, OPAQUE
3 SPAKE2
4 J-PAKE
5 SRP-6a

Table 5: Summary of representative schemes

with detailed explanations of computational costs to support the
costs summarized in Table 3 (§4.2). Recall that𝑤 denotes an (often
weak) password, and to simplify our descriptions here, we use a
one-way hash 𝐻 as a key derivation function. As before, for the
MODP case we choose a 3072-bit modulus for concreteness (allow-
ing Table 3’s pragmatic comparison of the costs of short and long
exponentiations).

A.1 EKE2 protocol (Class 1)

Alice (A) Bob (B)
𝑥 ∈𝑅 [0, 𝑝 − 1] 𝐴, E𝑤 (𝑔𝑥 mod 𝑝)

−−−−−−−−−−−−−−−−−−−→
𝐵, E𝑤 (𝑔𝑦 mod 𝑝)
←−−−−−−−−−−−−−−−−−−−

𝑦 ∈𝑅 [0, 𝑝 − 1]
Compute 𝐾 Compute 𝐾

Figure 3: EKE2 protocol [12]

Fig. 3 summarizes EKE2 [12] in 𝑍 ∗𝑝 . Here 𝑝 is a safe prime and 𝑔 a
primitive root (generator) mod 𝑝 . A and B denote the identities of
Alice and Bob resp. The session key is (∥ denotes concatenation):
𝐾 = 𝐻 (𝐴 ∥ 𝐵∥ 𝑔𝑥 ∥ 𝑔𝑦 ∥ 𝑔𝑥𝑦). Given a 3072-bit safe-prime modulus
𝑝 , each party performs two exponentiations (3072-bit exponent):
one to compute an ephemeral public key and one to compute the
session key. There appears no easy way to extend this specification
to other groups settings, e.g., DSA and EC, without modifying the
protocol.

A.2 Patched SPEKE protocol (Class 2)

Alice (A) Bob (B)
𝑥 ∈𝑅 [1, 𝑞 − 1] 𝐴, 𝑓 (𝑤)𝑥 mod 𝑝

−−−−−−−−−−−−−−−−−−→
Validate key

Validate key 𝐵, 𝑓 (𝑤)𝑦 mod 𝑝
←−−−−−−−−−−−−−−−−−−

𝑦 ∈𝑅 [1, 𝑞 − 1]
Compute 𝐾 Compute 𝐾

Figure 4: Patched SPEKE [44] (spec: ISO/IEC 11770-4:2017)

Fig. 4 summarizes Patched SPEKE [44]. It works in a subgroup of
𝑍 ∗𝑝 of prime order 𝑞, with 𝑝 = 2 · 𝑞 + 1 a safe prime. Function 𝑓
is defined: 𝑓 (𝑤) = 𝐻 (𝑤)2 mod 𝑝 . To validate the received key is
to check it is in 𝑍 ∗𝑝 (non-zero), and not 1 or 𝑝 − 1 (small subgroup
elements). The session key is computed as: 𝐾 = 𝐻

(
𝑠𝐼𝐷 ∥ 𝑓 (𝑤)𝑥𝑦

)
,

where 𝑠𝐼𝐷 includes user identities and exchanged items. Given a
3072-bit safe-prime modulus 𝑝 , Alice performs two exponentiations
(3071-bit exponent in 𝑍𝑞 ): 1 for computing an ephemeral public key
𝑓 (𝑤)𝑥 , and 1 for computing the session key. The cost for Bob is the
same.

To extend the protocol to a DSA group requires a hash-to-group
function; see IEEE 1363.2 [51]. Given a DSA group with 3072-bit
𝑝 and 256-bit 𝑞, Alice performs one exponentiation (2815-bit ex-
ponent) to compute 𝑓 (𝑤) = 𝐻 (𝑤) (𝑝−1/𝑞) , and three further ex-
ponentiations (256-bit exponent): one to generate an ephemeral
public key 𝑓 (𝑤)𝑥 , one to validate the received public key 𝑓 (𝑤)𝑦 ,
and one to compute the session key. Here, to validate a public key
in a DSA group requires checking that the received value is in 𝑍 ∗𝑝
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(implying also non-zero), not equivalent (mod 𝑝) to 1, then one
exponentiation raising it to the power 𝑞 and confirming the result
equals 1. This is in contrast to the safe-prime case above, where
validation is simply checking that the received value is in 𝑍 ∗𝑝 , and
not 1 or 𝑝 − 1. Extending the protocol to an EC setting requires a
hash-to-curve function to implement 𝑓 (𝑤). In the EC setting, the
cost of public key validation is negligible. Therefore, the cost for
each party is one H2C plus two scalar multiplications.

A.3 CPace protocol (Class 2)

Alice (A) Bob (B)
SID𝐴 ∈𝑅 {0, 1}𝑛 𝐴, SID𝐴−−−−−−−−−−−−−−−→

SID𝐵 ∈𝑅 {0, 1}𝑛

Validate key 𝐵, SID𝐵, 𝑓 (𝑇 )𝑦←−−−−−−−−−−−−−−−
𝑦 ∈𝑅 [1, 𝑞 − 1]

𝑥 ∈𝑅 [1, 𝑞 − 1] 𝐴, 𝑓 (𝑇 )𝑥
−−−−−−−−−−−−−−−−→

Validate key

Compute 𝐾 Compute 𝐾

Figure 5: CPace protocol [39]

Fig. 5 summarizes CPace [39]. It works in a subgroup of 𝑍 ∗𝑝 of prime
order 𝑞 where 𝑞 | 𝑝 − 1. Modular operations are mod 𝑝 . SIDA and
SIDB are random bit strings generated by A and B resp., specified to
be of length𝑛 = 512 bits in the CPace reference implementation [39].
𝑇 = 𝐻 (SIDA∥SIDA∥𝑤 ∥𝐴∥𝐵). The session key is computed as: 𝐾 =

𝐻 (SIDA∥SIDB∥ 𝑓 (𝑇 )𝑥𝑦)where 𝑓 is the same hash-to-group function
as in Patched SPEKE (𝑓 in Fig. 4). To validate a received key is
to check if it is an element in the designated prime-order group.
Extending the protocol to an EC setting requires a hash-to-curve
function to implement 𝑓 . While the original paper [39] only defines
CPace in an EC setting assuming an unspecified hash-to-curve
function, here we define it for MODP and EC settings using the
same 𝑓 as in other Class-2 protocols. CPace’s computational cost is
the same as Patched SPEKE (Fig. 4).

A.4 OPAQUE protocol (Class 2)

Registration
Client (C) Server (S)

𝑝𝑢 ∈𝑅 [0, 𝑞 − 1] 𝐶−−→ 𝑘, 𝑝𝑠 ∈𝑅 [0, 𝑞 − 1]
𝑃𝑢 = 𝑔𝑝𝑢 𝑘, 𝑃𝑠←−−−−−

𝑃𝑠 = 𝑔𝑝𝑠

𝑚 = 𝐻

(
𝑤, 𝑓 (𝑤)𝑘

)
𝑐 = E𝑚 (𝑝𝑢 , 𝑃𝑢 , 𝑃𝑠 ) 𝑐−−→ Stores (𝐶 : 𝑘, 𝑝𝑠 , 𝑐, 𝑃𝑢 )
Login
𝑟, 𝑥 ∈𝑅 [0, 𝑞 − 1]
𝛼 = 𝑓 (𝑤)𝑟 , 𝑋 = 𝑔𝑥 𝐶,𝛼,𝑋

−−−−−−→
𝑦 ∈𝑅 [0, 𝑞 − 1]

𝑚 = 𝐻 (𝑤, 𝛽1/𝑟 ) 𝑆, 𝛽, 𝑐,𝑌
←−−−−−−−−

𝛽 = 𝛼𝑘 , 𝑐,𝑌 = 𝑔𝑦

𝑝𝑢 , 𝑃𝑢,𝑃𝑠 ← D𝑚 (𝑐)
𝐾 = 𝐾𝐸 (𝑝𝑢 , 𝑥, 𝑃𝑠 , 𝑌 ) 𝐾 = 𝐾𝐸 (𝑝𝑠 , 𝑦, 𝑃𝑢 , 𝑋 )

Figure 6: The OPAQUE protocol [55]

Fig. 6 summarizes OPAQUE [55]. It operates in a subgroup of 𝑍 ∗𝑝
of prime order 𝑞, where 𝑞 | 𝑝 − 1. Modular operations are mod 𝑝 .
At the registration phase, the user and the server run an Oblivious
Pseudorandom Functions (OPRF) protocol, whose central compo-
nent is a hash-to-group 𝑓 function (the same 𝑓 as in Patched SPEKE
in Fig. 4, and CPace in Fig. 5). The OPAQUE authors emphasize
that the registration must be done over a secure channel, otherwise
the protocol security can be compromised. At the end of the reg-
istration process, the server stores long-term secret keys 𝑘 and 𝑝𝑠
(chosen from 𝑍𝑞), together with 𝑃𝑢 = 𝑔𝑝𝑢 and 𝑐 = E𝑚 (𝑝𝑢 , 𝑃𝑢 , 𝑃𝑠 )
where E is an authenticated encryption scheme with key𝑚. The
client has selected 𝑝𝑢 ∈ 𝑍𝑞 , computed 𝑃𝑢 = 𝑔𝑝𝑢 and 𝑐 , and sent 𝑐
to the server as shown.

In the login phase, D is an authenticated decryption scheme.
𝐾𝐸 is an authenticated key exchange scheme. When HMQV [82]
is used to instantiate 𝐾𝐸 as originally recommended [55], both
parties compute 𝑑 = 𝐻 (𝑋, 𝑠) and 𝑒 = 𝐻 (𝑌,𝑢), where 𝐻 is a one-
way hash of ⌈log2 𝑞⌉/2 bits in the output. The session key is 𝐾 =

𝐻

(
𝑔 (𝑥+𝑑𝑝𝑢 ) (𝑦+𝑒𝑝𝑠 )

)
. Originally [55], OPAQUE is defined only in

an EC setting assuming an unspecified hash-to-curve function; we
generalize this here to MODP and EC settings, using the same 𝑓
function as other Class-2 protocols.

OPAQUE’s fit to Class 2 is from the SPEKE-like password-derived
generator 𝑓 (𝑤). Despite using symmetric encryptionwith a password-
dependent key𝑚, OPAQUE does not fall into Class 1 (𝑚 is high-
entropy, and an IC is not required).

For a 3072-bit safe-prime modulus 𝑝 = 2𝑞+1 (3071-bit exponents
in 𝑍𝑞) the client needs 4.5 exponentiations: 1 to compute 𝑓 (𝑤)𝑟 ;
1 to compute 𝑔𝑥 ; 1 to compute 𝛽1/𝑟 ; and 1.5 to compute session
key 𝐾 = 𝐻

(
(𝑌 · 𝑃𝑠𝑒 )𝑥+𝑑𝑝𝑢

)
= 𝐻

(
𝑔 (𝑥+𝑑𝑝𝑢 ) (𝑦+𝑒𝑝𝑠 )

)
. The server

performs 3.5 exponentiations (3071-bit exponent): 1 to compute 𝛼𝑘 ;
1 for 𝑔𝑦 ; and 1.5 for the session key.

If the protocol is implemented in a DSA group with 3072-bit 𝑝
and 256-bit 𝑞, the client must perform one exponentiation (2815-bit
exponent) to compute 𝑓 (𝑤), and 6.5 further exponentiations (256-
bit exponent) including 3 to compute 𝑓 (𝑤)𝑟 , 𝑔𝑥 , and 𝛽1/𝑟 resp., 2
to verify 𝛽 and 𝑌 are valid elements in the prime-order subgroup,
and 1.5 to compute the session key. The server must perform 5.5
exponentiations (256-bit exponent): 2 to verify the received 𝛼 and𝑋
are valid elements in the prime-order subgroup resp., 2 to compute
𝛼𝑘 and 𝑔𝑦 resp., and 1.5 to compute the session key. In the EC
setting, the cost of public key validation is negligible, with client
cost H2C plus 4.5 scalar multiplications, and server cost 3.5 scalar
multiplications.

After OPAQUE was selected by the IETF in 2020, the designers
replaced HMQV with 3DH [67, §5.1]. (3DH was used in an early
version of Signal as the key exchange protocol; it was replaced by
X3DH.7) As the modified OPAQUE is still being defined in an IETF
internet draft [66] when we write this paper, we do not analyze its
efficiency here.

7For X3DH, see: https://signal.org/docs/specifications/x3dh/
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A.5 SPAKE2 protocol (Class 3)

Alice (A) Bob (B)
𝑥 ∈𝑅 [0, 𝑞 − 1] 𝐴,𝑔𝑥𝑀𝑤 mod 𝑝

−−−−−−−−−−−−−−−−−→
Validate key

Validate key 𝐵,𝑔𝑦𝑁𝑤 mod 𝑝
←−−−−−−−−−−−−−−−−−

𝑦 ∈𝑅 [0, 𝑞 − 1]
Compute 𝐾 Compute 𝐾

Figure 7: SPAKE2 protocol [6].

Fig. 7 summarizes SPAKE2 [6]. It works in a subgroup in 𝑍 ∗𝑝 of
prime order 𝑞, where 𝑞 | 𝑝 − 1. The trusted setup includes three
generators {g, M, N}; the discrete log relationship between every
pair of these must remain unknown. To validate a received key
is to confirm that it is an element in the prime-order subgroup
(cf. §A.2). The session key is 𝐾 = 𝐻 (𝐴, 𝐵,𝑔𝑥 , 𝑔𝑦,𝑤, 𝑔𝑥𝑦). Given a
DSA group with 3072-bit 𝑝 and 256-bit 𝑞, Alice performs three
exponentiations (256-bit exponent): one to compute 𝑔𝑥𝑀𝑤 (using a
simultaneous computation technique [83, §14]), one to validate the
received public key 𝑔𝑦𝑁𝑤 , and one to compute 𝑔𝑥𝑦 in the session
key. Bob’s cost is the same. In an EC setting, the algorithm works
the same, but the cost of public key validation is negligible (so the
main cost for each party is two scalar multiplications).

A.6 J-PAKE protocol (Class 4)

Alice (A) Bob (B)
𝑥1 ∈𝑅 [0, 𝑞 − 1]
𝑥2 ∈𝑅 [1, 𝑞 − 1] 𝐴,𝑔𝑥1 , 𝑔𝑥2 ,ZKP{𝑥1, 𝑥2 }−−−−−−−−−−−−−−−−−−−−−−−→

Validate ZKPs

𝑦1 ∈𝑅 [0, 𝑞 − 1]
Validate ZKPs 𝐵,𝑔𝑦1 , 𝑔𝑦2 ,ZKP{𝑦1, 𝑦2 }←−−−−−−−−−−−−−−−−−−−−−−−−

𝑦2 ∈𝑅 [1, 𝑞 − 1]
Validate ZKP 𝛽𝑦2 ·𝑤 ,ZKP{𝑦2 · 𝑤 }←−−−−−−−−−−−−−−−−−−−−−

𝛼𝑥2 ·𝑤 ,ZKP{𝑥2 · 𝑤 }−−−−−−−−−−−−−−−−−−−−−→
Validate ZKP

Compute 𝐾 Compute 𝐾

Figure 8: J-PAKE protocol [45]

Fig. 8 summarizes J-PAKE [45]. It works in a subgroup in 𝑍 ∗𝑝 of
prime order 𝑞 where 𝑞 | 𝑝 − 1. All modular operations are mod 𝑝 .
To validate a ZKP (technically, a Schnorr non-interactive ZKP)
means verifying simple equations [41, §2.4] to confirm that the
sender knows the exponent; this takes one exponentiation to gen-
erate the ZKP and two to verify it. Let 𝛼 = 𝑔𝑦1𝑔𝑦2𝑔𝑥1 and 𝛽 =

𝑔𝑥1𝑔𝑥2𝑔𝑦1 serve as new generators to compute𝑈 = 𝛼𝑥2 ·𝑤 and 𝑉 =

𝛽𝑦2 ·𝑤 . Alice computes the session key: 𝐾 = 𝐻 ((𝑉 /𝑔𝑦2 ·𝑥2 ·𝑤)𝑥2 ) =
𝐻 (𝑔 (𝑥1+𝑦1) ·𝑥2 ·𝑦2 ·𝑤). Symmetrically, Bob computes the same session
key: 𝐾 = 𝐻 ((𝑈 /𝑔𝑥2 ·𝑦2 ·𝑤)𝑦2 ) = 𝐻 (𝑔 (𝑥1+𝑦1) ·𝑥2 ·𝑦2 ·𝑤). Given a DSA
group with 3072-bit 𝑝 and 256-bit 𝑞, Alice performs 14 exponen-
tiations (256-bit exponent): 3 to compute 𝑔𝑥1 , 𝑔𝑥2 , and 𝛼𝑥2 ·𝑤 ; 3 to
compute the three ZKPs; 6 to validate three received ZKPs; and 2 to
compute the session key. The cost for Bob is the same. In an EC set-
ting the protocol works the same—but here, because the public key
validation incurs negligible cost, it takes one scalar multiplication to
generate the ZKP, and one (vs. two in a DSA group) to verify it [41,
§3.4], so overall each party performs 11 scalar multiplications.

A.7 SRP-6a protocol (Class 5)

Client (C) Server
𝑎 ∈𝑅 [2, 𝑝 − 1], 𝐴 = 𝑔𝑎 𝐶,𝐴

−−−−−→
Look up 𝑠 , 𝑣
𝑏 ∈𝑅 [2, 𝑝 − 1]

𝑥 = 𝐻 (𝑠, 𝑤),𝑢 = 𝐻 (𝐴, 𝐵) 𝑠, 𝐵
←−−−−−

𝐵 = 𝑘 · 𝑣 + 𝑔𝑏

𝑆 = (𝐵 − 𝑘 · 𝑔𝑥 )𝑎+𝑢·𝑥 𝑢 = 𝐻 (𝐴, 𝐵)
𝐾 = 𝐻 (𝑆) 𝑆 = (𝐴𝑣𝑢 )𝑏

𝑀1 = 𝐻

(
𝐻 (𝑝) ⊕ 𝐻 (𝑔), 𝐾 = 𝐻 (𝑆)

𝐻 (𝐶), 𝑠,𝐴, 𝐵, 𝐾
)

𝑀1−−−−→
Check𝑀1

Check𝑀2 𝑀2←−−−−
𝑀2 = 𝐻 (𝐴,𝑀1, 𝐾)

Figure 9: SRP-6a (http://srp.stanford.edu/)
.

Fig. 9 summarizes SRP-6a. It works in the whole range of a mul-
tiplicative group 𝑍 ∗𝑝 where 𝑝 = 2 · 𝑞 + 1 is a safe prime and 𝑔 is
a primitive root (generator) mod 𝑝 . All modular operations are
mod 𝑝 . At registration, the server stores 𝑠 and 𝑣 = 𝑔𝐻 (𝑠,𝑤) , where 𝑠
is a salt (e.g., 64-bit). During the login phase (Fig. 9), 𝑘 = 𝐻 (𝑝,𝑔).
SRP-6a differs from SRP-6 [101] which uses 𝑘 = 3, and from SRP-
3 [100] which uses 𝑘 = 1 and there 𝑢 is a “randomly generated
parameter” instead of 𝐻 (𝐴, 𝐵). Given a 3072-bit modulus 𝑝 and a
256-bit hash function 𝐻 , the client performs one exponentiation
(3072-bit exponent) to compute 𝑔𝑎 , one exponentiation (256-bit
exponent) to compute 𝑔𝑥 , and another exponentiation (3072-bit
exponent) to compute 𝑆 . The server performs one exponentiation
(3072-bit exponent) to compute 𝑔𝑏 , one exponentiation (256-bit
exponent) to compute 𝑣𝑢 and another exponentiation (3072-bit
exponent) to compute 𝑆 .

To date, there is no known EC version of SRP-6a. The little-
known SRP-5 [98] (see also Zhao et al. [102, §5]) was specifically
designed as an EC version of SRP-6 by using a hash-to-curve func-
tion and is included in IEEE 1363.2:2008 [51, §9.9] (on the other hand,
not supporting MODP), but is best viewed as a distinct protocol
and has received less analytic attention.
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