
Mechanized Proofs of Adversarial Complexity and Application
to Universal Composability

(long version)

Manuel Barbosa

University of Porto (FCUP) & INESC

TEC

Porto, Portugal

mbb@fc.up.pt

Gilles Barthe

MPI-SP & IMDEA Software Institute

Bochum, Germany

gjbarthe@gmail.com

Benjamin Grégoire

Inria

Sophia Antipolis, France

benjamin.gregoire@inria.fr

Adrien Koutsos

Inria

Paris, France

adrien.koutsos@inria.fr

Pierre-Yves Strub

École Polytechnique

Palaiseau, France

pierre-yves@strub.nu

ABSTRACT
In this paper we enhance the EasyCrypt proof assistant to reason

about computational complexity of adversaries. The key technical

tool is a Hoare logic for reasoning about computational complexity

(execution time and oracle calls) of adversarial computations. Our

Hoare logic is built on top of the module system used by EasyCrypt

for modeling adversaries. We prove that our logic is sound w.r.t. the

semantics of EasyCrypt programs — we also provide full semantics

for the EasyCrypt module system, which was previously lacking.

We showcase (for the first time in EasyCrypt and in other compu-

ter-aided cryptographic tools) how our approach can express pre-

cise relationships between the probability of adversarial success

and their execution time. In particular, we can quantify existentially

over adversaries in a complexity class, and express general compo-

sition statements in simulation-based frameworks. Moreover, such

statements can be composed to derive standard concrete security

bounds for cryptographic constructions whose security is proved

in a modular way. As a main benefit of our approach, we revisit se-

curity proofs of some well-known cryptographic constructions and

we present a new formalization of Universal Composability (UC).

KEYWORDS
Verification of Cryptographic Primitives, Formal Methods, Interac-

tive Proof System, Complexity Analysis

1 INTRODUCTION
Cryptographic designs are typically supported by mathematical

proofs of security. Unfortunately, these proofs are error-prone and

subtle flaws can go unnoticed for many years, in spite of careful

and extensive scrutiny from experts. Therefore, it is desirable that

cryptographic proofs are formally verified using computer-aided

tools [23]. Over the last decades, many formalisms and tools have

been developed for mechanizing cryptographic proofs [4]. In this

paper we focus on the EasyCrypt proof assistant [6, 9], which has

been used to prove security of a diverse set of cryptographic con-

structions in the computational model of cryptography [2, 3]. In

this setting, cryptographic designs and their corresponding security

notions are modeled as probabilistic programs. Moreover, security

proofs provide an upper bound on the probability that an adversary

breaks a cryptographic design, often assuming that the attacker

has limited resources that are insufficient to solve a mathematical

problem. While EasyCrypt excels at quantifying the probability

of adversarial success, it lacks support for keeping track of the

complexity of adversarial computations. This is a limitation that

is common to other tools in computer-aided cryptography, and it

means that manual inspection is required to check that the formal-

ized claims refer to probabilistic programs that fall in the correct

complexity classes. While this may be acceptable for very simple

constructions, for more intricate proofs it may be difficult to in-

terpret what a proved claim means in the cryptographic sense; in

particular, existing computer-aided tools cannot fully express the

subtleties that arise in compositional approaches such as Universal

Composability [16]. This is an important limitation, as composi-

tional approaches are ideally suited for proving security of complex

cryptographic designs involving many layers of simpler building

blocks. This work overcomes this limitation and showcases the ben-

efits of reasoning about computational complexity in EasyCrypt,

through three broad contributions.

Formal verification of complexity statements. We define a formal

system for specifying and proving complexity claims. Our formal

system is based on an expressive module system, which enriches

the existing EasyCrypt module systemwith declarations of memory

footprints (specifying what is read and written) and cost (specifying

which oracles can be called and how often). This richer module

system is the basis for modeling the cost of a program as a tuple.

The first component of the tuple represents the intrinsic cost of

the program, i.e. its cost in a model where oracle and adversary

calls are free. The remaining components of the tuple represent the

number of calls to oracles and adversaries. This style of modeling

is compatible with cryptographic practice and supports reasoning

compositionally about (open) programs.

Our formal system is built on top of the module system and takes

the form of a Hoare logic for proving complexity claims that upper

bound the cost of expressions and commands. Furthermore, an

embedding of the formal system into a higher-order logic provides

support for reductionist statements relating adversarial advantage

and execution cost, for instance:

∀A.∃B. advS(A) ≤ advH(B) + ϵ ∧ cost(B) ≤ cost(A) + δ

where typically ϵ and δ are polynomial expressions in the num-

ber of oracle calls. The above statement says that every adversary

A can be turned into an adversary B, with sensibly equivalent

resources, such that the advantage of A against a cryptographic

scheme S is upper bounded by the advantage of B against a hard-

ness assumption H . Note that the statement is only meaningful

because the cost of B is conditioned on the cost of A, as the ad-

vantage of an unbounded adversary is typically 1. The ability to

prove and instantiate such ∀∃-statements is essential for capturing

compositional reasoning principles.

We show correctness of our formal system w.r.t. an interpreta-

tion of programs. Our interpretation provides the first complete

semantics for the EasyCrypt module system, which was previously

lacking. This semantics is of independent interest and could be used

to prove soundness of the two program logics supported by Easy-
Crypt: a Relational Hoare Logic [8] and a Union Bound logic [7].

Implementation in the EasyCrypt proof assistant. We have im-

plemented our formal system as an extension to the EasyCrypt

proof assistant, which provides mechanisms for declaring the cost

of operators and for helping users derive the cost of expressions

and programs. Our implementation brings several contributions

of independent interest, including an improvement of the mem-

ory restriction system of EasyCrypt, and a library and automation

support to reason about extended integers that are used for reason-

ing about cost. For the latter we follow [31] and reduce formulae

about extended integers to integer formulae that can be sent to

SMT solvers. Another key step is to embed our Hoare logic for

cost into the ambient higher-order logic—similar to what is done

for the other program logics of EasyCrypt. This allows us to com-

bine judgments from different program logics, and it enhances

the expressiveness of the approach. Implementation-wise, this ex-

tension required to add or rewrite around 8 kLoC of EasyCrypt.

The implementation and examples (including those of the paper as

well as classic examples from the EasyCrypt distribution, including

Bellare and Rogaway BR93 Encryption, Hashed ElGamal encryp-

tion, Cramer-Shoup encryption, and hybrid arguments) are open

source [20].

Case study: Universal Composability. Universal Composability [15,

17] (UC) is a popular framework for reasoning about cryptographic

systems. Its central notion, called UC-emulation, formalizes when

a protocol π1 can safely replace a protocol π2. Informally, UC-

emulation imposes that there exists a simulator S capable of fooling
any environment Z by presenting to it a view that is fully con-

sistent with an interaction with π1, while it is in fact interacting

with S(π2). This intuition, however, must be formalized with tight

control over the capabilities of the environment and the simulator.

If this were not the case, the definition would make no sense: exis-

tential quantification over unrestricted simulators is too weak (it

is crucial for the compositional security semantics that simulators

use comparable resources to real-world attackers), whereas uni-

versal quantification over unrestricted environments results in a

definition that is too strong to be satisfied [15, 16]. Moreover, when

writing proofs in the UC setting, it is often necessary to consider

the joint resources of a sub-part of a complex system that involves a

mixture of concrete probabilistic algorithms and abstract adversar-

ial entities, when they are grouped together to build an attacker for

a reductionistic proof. In these cases, it is very hard to determine

by inspection whether the constructed adversaries are within the

complexity classes for which the underlying computational assump-

tions are assumed to hold. Therefore, tool support for complexity

claims is of particular importance with UC — conversely, UC is a

particularly challenging example for complexity claims.

Using our enriched implementation of EasyCrypt, we develop

a new fully mechanized formalization of UC—in contrast to [19],

which chooses to follow closely the classic execution model for UC,

our mechanization adopts a more EasyCrypt-friendly approach that

is closer to the simplified version of UC proposed by Canetti, Cohen

and Lindell in [18]; this is further discussed in Section 5. Our mech-

anization covers the core notions of UC, the classic composition

lemmas, transitivity and composability, which respectively state

that UC-emulation (as a binary relation between cryptographic

systems) is closed under transitivity and arbitrary adversarial con-

texts. As an illustrative application of our approach we revisit the

example used in [19], where modular proofs for Diffie-Hellman

key exchange and encryption over ideal authenticated channels are

composed to construct a UC secure channel.

Discussion. The possibility to quantify over adversary using

complexity claims introduces conceptual simplifications in layered

proofs by i. supporting compositional reasoning and ii. avoiding

the use of explicit cost accounting modeling. The downside is that

it also introduces some additional burden on users, who now must

prove complexity claims. However, we note that our extension does

not invalidate existing Easycrypt developments: complexity claims

are optional, existing proofs have been left unchanged, and their

type-checking remains as fast as before. Furthermore, it is possible

to layer the complexity claims on top of standard EasyCrypt proofs

that do not capture the complexity aspects – in effect, this is what

we did in our example. We have also provided rudimentary support

to automate proofs of complexity claims, and could enhance this

support even further by adopting ideas from cost analysis. We think

that the current tool is significantly more usable and scalable than

prior versions without support for complexity reasoning.

Tomake this claimmore concrete, let us consider the implications

of refactoring an existing EasyCrypt development and extend it

to take advantage of cost analysis for both dealing with query

counts and to include complexity claims. Removing the layer of

modular wrapping that explicitly keeps track of query counts leads

to more readable code, and has essentially no impact on the proofs.

However, when it comes to complexity claims, new specifications

and proof scripts must be added to the development. The new

specifications consist of the description of the cost model and the

declarations of the types of the various algorithms, which include

explicit cost expressions. The additional proof effort consists of

applying our logic to prove complexity claims and discharging

the relevant side-conditions. As a coarse metric on the additional

proof and specification efforts required, we consider the ratio of

the number of lines of codes related to the cost analysis over the

total number of lines. For the example presented in the next section,

this ratio is 117/495. For the Universal Composability example, the

2

module type RO = {
proc o (r:rand) : plaintext compl[intr : to]}.

module type Scheme (H: RO) = {
proc kg() : pkey ∗ skey
proc enc(pk:pkey, m:plaintext) : ciphertext
proc dec(sk:skey, c:ciphertext) : plaintext option}.

module type Adv (H: RO) = {
proc choose(p:pkey) : (plaintext ∗ plaintext) compl[intr : tc , H.o : kc]
proc guess(c:ciphertext) : bool compl[intr : tд, H.o : kд]}.

module (Inv : INV) (H : RO) (A:Adv) = {
var qs : rand list
module QH = {
proc o(x:rand) = { qs← x::qs; r ← H.o(x); return r; }}

proc invert(pk:pkey,y:rand): rand = {
qs ← [];
(m0 ,m1)← A(QH).choose(pk);

h
$

←− dplaintext;
b ← A(QH).guess(y || h);
while (qs , []) {
r← head qs; if (f pk r = y) return r; qs← tail qs; }

}}.

Figure 1: Inverter for trapdoor permutation.

ratio is 270/2300 for the concrete protocol and 791/1775 for the

general composition theorems. We also note that there is a large

body of work on automated complexity analysis, as mentioned in

the related work section, which might reduce this overhead.

2 WARM UP EXAMPLE: PKE FROM A
ONE-WAY TRAPDOOR PERMUTATION

To illustrate our approach we will use a public-key encryption

(PKE) scheme proposed by [11] (BR93) that uses a one-way trapdoor

permutation and a hash function modeled as a random oracle (RO).
Intuitively, the RO is used to convert the message into a random

input for the trapdoor permutation so as to allow a reduction to

the one-wayness property. This proof strategy is used in BR93 and

many other schemes, including OAEP [11]. Figure 1 shows the code

of an inverter for the trapdoor permutation that is constructed from

an attacker against the encryption scheme.
1
This inverter simulates

the single random oracle used by the encryption scheme for the

attacker and recovers the pre-image to y with essentially the same

probability as the attacker breaks the encryption scheme.

We first define module types for random oracles RO, schemes

Scheme, and adversaries Adv. The module type for random oracles

declares a single procedure o with cost ≤ to . The module type for

schemes declares three procedures for key generation, encryption,

and decryption, and is parameterized by a random oracle H. No cost

declaration is necessary. The module type for (chosen-plaintext)

adversaries declares two procedures: choose for choosing two plain-

textsm0 andm1, and guess for guessing the (uniformly sampled) bit

b given an encryption ofmb . The cost of these procedures is a pair:

the second component is an upper bound on the number of times

it can call the random oracle, and the first is an upper bound on

its intrinsic cost, i.e. its cost assuming that oracle calls (modeled

as functor parameters) have a cost of 0. This style of modeling is

1
We use the following notation:

$

←− denotes a random sampling; || is bit-string concate-
nation; [] is the empty list; a :: l appends a to the list l.

routinely used in cryptography and is better suited to reason about

open code. This cost model is also more fine-grained than counting

the total cost of the procedure including the cost of the oracles, as

we have a guarantee on the number of time oracles are called.

Next, we define the inverter Inv for the one-way trapdoor permu-

tation. It runs the adversary A, keeping track of all the calls that A
makes to H in a list qs (using the sub-module QH), and then searches
in the list qs for a pre-image of y under f pk. Search is done through

a while loop, which we write in a slightly beautified syntax. This

inverter can be used to state the following reductionist security

theorem relating the advantage and execution cost of an adversary

against chosen-plaintext security of the PKE with the advantage of

the inverter against one-wayness.

Theorem 2.1 (Security of BR93). Let tf represent the cost of
applying the one-way function f and to denote the cost of H.o, i.e. the
implementation of a query to a lazily sampled random oracle. Fix the
type for adversaries τA such that:

costA.choose ≤ compl[intr : tc ,H.o : kc]

and costA.guess ≤ compl[intr : tд ,H.o : kд]

and fix τI such that:

costI.invert ≤ compl[intr : (5+tf)·(kc+kд)+4+to ·(kc+kд)+tc+tд] .

Then, ∀A ∈ τA ,∃I ∈ τI , advBR93

ind-cpa(A) ≤ advfow(I).

Here, IND-CPA refers to the standard notion of ciphertext indis-

tinguishability under chosen-plaintext attacks for PKE, where the

adversary is given the public key and asked to guess which of two

messages of its choice has been encrypted in a challenge ciphertext;

OW refers to the standard one-wayness definition for trapdoor

permutations, where the attacker is given the public parameters

and the image of a random pre-image, which it must invert. In the

former, advantage is the absolute bias of the adversary’s boolean

output w.r.t. 1/2; in the latter, advantage is the probability of suc-

cessful inversion.

We prove the statement by providing Inv(A) as a witness for the
existential quantification, which creates two sub-goals. The first

sub-goal establishes the advantage bound, which we prove using

relational Hoare logic. The second sub-goal establishes that our

inverter satisfies the required cost restrictions, and is proved using

our Hoare logic for complexity. We declare the type of Inv as:

cost Inv.invert ≤ compl[intr : (5 + tf) · (kc + kд) + 4,

H.o = kc + kд ,A.choose = 1,A.дuess = 1]

and so we first must establish that Inv belongs to this functor type. It
is easy to show that A.choose and A.guess are called exactly once, and
that H.o is called at most kc + kд times. So we turn to the intrinsic

complexity of Inv. The key step for this proof is to show that the loop

does at most kc +kд iterations. We use the length of qs as a variant:
the length of the list is initially 0, and incremented by 1 by each call

to the random oracle, therefore its length at the start of the loop is at

most kc + kд . Moreover, the length decreases by 1 at each iteration,

so we are done. The remaining reasoning is standard,
2
using the

cost of each operator—fixed by choice in this particular example to

1, except for the operator f. Our modeling of cost enforces useful

2
Notice that the condition of the loop is executed at most kc + kд time.

3

invariants that simplify reasoning. For instance, proving upper

bounds on the execution cost of Inv requires proving an upper

bound on the number of iterations of the loop, and therefore on

the length of qs upon entering the loop. We derive the complexity

statement in the theorem, which shows only the intrinsic cost of

Inv, by instantiating the complexity type of Inv with the cost of its

module parameterA. This illustrates how our finer-grained notion

of cost is useful for compositional reasoning.

Comparison with EasyCrypt. Our formalization follows the same

pattern as the BR93 formalization from the EasyCrypt library. How-
ever, the classic module system of EasyCrypt only tracks read-and-

write effects and lacks first-class support for bounding the number

of oracle calls and for reasoning about the complexity of programs.

To compensate for this first point, classic EasyCrypt proofs use
wrappers to explicitly count the number of calls and to return

dummy answers when the number of adversarial calls to an oracle

exceeds a threshold. The use of wrappers suffices for reasoning

about adversarial advantage. However, no similar solution can be

used for reasoning about the computational cost of adversaries.

Therefore, the BR93 formalization from the EasyCrypt library
makes use of the explicit definition of I, and users must analyze

the complexity of I outside the tool. As a result, machine-checked

security statements are partial (complexity analysis is missing), clut-

tered (existential quantification is replaced by explicit witnesses),

and compositional reasoning is hard (existential quantification over

module types cannot be used meaningfully).

3 ENRICHED EASYCRYPT MODULE SYSTEM
We present a formalization of our extended module system for

EasyCrypt. It is based on EasyCrypt current imperative probabilistic

programming language and module system, which we enrich to

track the read-and-write memory footprint and complexity cost

of module components through module restrictions. These module

restrictions are checked through a type system: memory footprint

type-checking is fully automatic, while type-checking a complexity

restriction generates a proof obligation that is discharged to the

user — using the cost Hoare logic we present later, in Section 4.

3.1 Syntax of Programs and Modules
The syntax of our language and module system is (quite) standard

and summarized in Figure 2. We describe it in more detail below.

We assume given a set of operators FE and a set of distribution

operators FD. For any д ∈ FE ∪ FD, we assume given its type:

type(д) = τ1 × · · · × τn → τ where τ1, . . . ,τn ,τ ∈ B with B the set

of base types. We require that bool is a base type, and otherwise

leave B unspecified.

We consider well-typed arity-respecting expressions built from

FE and variables in V . Similarly, distribution expressions d are

built upon FD andV . For any expression e , we let vars(e) be the
set of variables appearing in e (idem for distribution expression).

We assume a simple language for program statements. A state-

ment s can be an abort, a skip, a statement sequence s1; s2, an

assignment x ← e of an expression to a variable, a random sam-

pling x
$

←− d from a distribution expression, a conditional, a while

loop, or a procedure call x ← call F(®e).

Expressions (distribution expres-
sions are similar):

e ::= v ∈ V (variable)

| f (e1, . . . , en) (if f ∈ FE)

Statements:

s ::= abort (abort)

| skip (skip)

| s1; s2 (sequence)

| x ← e (assignment)

| x
$

←− d (sampling)

| x ← call F(®e) (proc. call)

| if e then s1 else s2 (cond.)

| while e do s (loop)

Procedure body:

body ::= { var (®v : ®τ); s; return e }

Function paths:

F ::= p.f (proc. lookup)

Module paths:

p ::= x (mod. ident.)

| p.x (mod. comp.)

| p(p) (func. app.)

Module expressions:

m ::= p (mod. path)

| struct st end (structure)

| func(x : M) m (functor)

Module structures:

st ::= d1; . . . ; dn (n ∈ N)

Module declarations:

d ::= module x = m

| proc f (®v : ®τ) → τr = body

Figure 2: Program and module syntax

The module system. In a procedure call, F is a function path of

the form p. f where f is the procedure name and p is a module path.

Basically, when calling p. f , the module system will resolve p to a

module structure, which must declare the procedure f (this will be

guaranteed by our type system). Formally, a module structure st is
a list of module declarations, and a module declaration d is either

a procedure (with typed arguments, and a body which comprises

a list of local variables with their types ®v : ®τ , a statement s and a

return expression e) or a sub-module declaration.

The component c of a module x can be accessed through the mod-

ule path expression x.c . Since a module can contain sub-modules,

we can have nested accesses, as in x.z.c . Hence, a module path

is either a module identifier, a component access of another module

path p, or a functor application. Finally, a module expression m is

either a module path, a module structure or a functor.

3.2 Module Signatures and Restrictions
The novel part of our system is the use of module restrictions in

module signatures. Objects related to module restriction are high-

lighted in red throughout this paper (this is only here to improve

readability, not to convey additional information). The syntax of

module signatures and restrictions is given in Figure 3. A mod-

ule structure signature S is a list of module signature declarations,

which are procedure signatures or sub-module signatures. Then,

a module signatureM is either a functor signature, or a structure

signature with a module restriction θ attached.

Module restrictions. A module restriction restricts the effects of

a module’s procedures. We are interested in two types of effects.

First, we characterize the memory footprint (i.e. global variables

which are read or written to) of a module’s procedures through

memory restrictions. Second, we upper bound the execution cost

of a procedure, and the number of calls a functor’s procedure can

make to the functor’s parameters, through complexity restrictions.
4

Signature structures (for any n ∈ N):

S ::= D1; . . . ;Dn

Module signature declarations:

D ::= proc f (®v : ®τ) → τr | module x : M

Module signatures:

M ::= sig S restr θ end | func(x : M) M′

Module restrictions:

θ ::= ϵ | θ, (f : λ) λ ::= ⊤ | λm ∧ λc

Memory restrictions (for any l ∈ N):

λm ::= +all mem\{v1, . . . , vl } | {v1, . . . , vl }

Complexity restrictions (for any l, k, k1, . . . , kl ∈ N):

λc ::= ⊤ | compl[intr : k, x1 .f1 : k1, . . . , xl .fl : kl]

Figure 3: Module signatures and restrictions

module type HSM = {
proc enc (x:msg) : cipher }.

module Hsm : HSM = {
proc enc (x:msg) : cipher = { . . . } }.

module type Adv (H : HSM) {+all mem, -Hsm} = {
proc guess () : skey compl[intr : k0 , H.enc : k]}.

Figure 4: Example of adversary with restrictions.

Restrictions are useful for compositional reasoning, as they al-

low stating and verifying properties of a module’s procedures at

declaration time. In the case of an abstract module (i.e. a module

whose code is unknown), restrictions allow to constrain, through

the type system, its possible instantiations. This is a key idea of

our approach, which we exploit to prove complexity properties of

cryptographic reductions.

For example, we give in Figure 4 EasyCrypt code corresponding
to an adversary against a hardware security module. In this sce-

nario the goal of the adversary is to recover the secret key stored in

the module Hsm. The example uses two types of restrictions. The

module-level restriction {+all mem, -Hsm} states that such an adver-
sary can access all the memory, except for the memory used by the

module Hsm. The procedure-level restriction [intr : k0, H.enc : k]
attached to guess, states that guess execution time is at most k0 (ex-

cluding calls to H.enc), and that guess can make at most k queries

to the procedure H.enc.
Formally, a module restriction is a list of pairs comprising a

procedure identifier f and a procedure restriction λ, and a procedure
restriction λ is either ⊤ (no restriction), or the conjunction of a

memory restriction λm and a complexity restriction λc:

Memory. A memory restriction λm, attached to a procedure f ,
restricts the variables that f can access directly. We allow for posi-

tive memory restrictions {v1, . . . ,vl }, which states that f can only

access the variables v1, . . . ,vl ; and negative memory restrictions

+all mem\{v1, . . . ,vl }, which states that f can access any global

variables except the variables v1, . . . ,vl .

Note that λm only restricts f ’s direct memory accesses: this

excludes the memory accessed by the procedure oracles (which are

modeled as functor’s parameters). This is crucial, as otherwise, an

adversary that is not allowed to access some oracle’s memory (a

standard assumption in security proofs) would not be allowed to

call this oracle. E.g., the adversary of Figure 4 can call the oracle

H.enc (which can be instantiated by Hsm), even though it cannot

access directly Hsm’s memory.

Complexity. A complexity restriction λc attached to a procedure

f restricts its execution time and the number of calls that f can

make to its parameters: it is either ⊤, i.e. no restriction; or the

restriction compl[intr : k, x1. f1 : k1, . . . , xl . fl : kl], which states

that: i) its execution time (excluding calls to the parameters) must

be at most k ; ii) f can call, for every i , the parameter’s procedure

xi . fi at most ki times. We require that all parameters’ procedures

appear in the restriction. This can be done w.l.o.g. by assuming

that any missing entry is zero (which is exactly what is done in our

EasyCrypt implementation).

3.3 Typing Enriched Module Restrictions
We check that modules verify their signatures through a type sys-

tem. The novelty of our approach lies in the enriched restrictions

attached to module signatures, and the typing rules that check

them. For space reasons, we only present the two main restriction

checking rules here (the full type system is in Appendix B).

Environments. Typing is done in an environment E.3 Essentially,

an environment is a list of declarations, which are either variable,

module or abstract module declarations.

E ::= ϵ | E, var v : τ | E,module x = m : M

| E,module x = absopen : Ml

An abstract module declarationmodule x = absopen :Ml states that

x is a module with signatureMl whose code is unknown, and allows

to model open code.
4
For any E, we let abs(E) = {x1, . . . , xn } be

the set of abstract module names declared in E.

Restrictions. The RestrMem rule checks that a procedure body

{ _; s; return e } (where s is the procedure’s instructions, and e the
returned expression) verifies a memory restriction through a fully

automatic syntactic check.

RestrMem

(memE (s) ⊔ vars(e)) ⊑ λm

E ⊢ { _; s; return e } ▷ λm

This syntactic check uses memE (s) and vars(e), which are sound

over-approximations of an instruction and expression memory

footprint (the approximation is not complete, e.g. it will include

memory accesses done by unreachable code).

The RestrCompl rule checks that an instruction verifies some

complexity restriction. The rule generates proof obligations in a

3
Actually, the type system in Appendix B uses more complex environment, called

typing environment, to account for sub-modules.

4
Abstract module must have low-order signatures, i.e. module structures, or functors

whose parameters are module structures (see Appendix B). This choice is motivated by

the fact that further generality is not necessary for cryptographic proofs (adversaries

and simulations usually return base values, not procedures); and, it allows the abstract

call rule of our cost Hoare logic Abs (in Figure 6) to remain tractable.

5

Hoare logic for cost. These proof obligations are discharged inter-

actively using the proof system we present later, in Section 4.

RestrCompl

E ⊢ {⊤} s {ψ | t} ⊢ {ψ } r ≤ tr (t + tr · 1conc) ≤compl λc

E ⊢ { _; s; return r } ▷ λc

Here, the proof obligation E ⊢ {⊤} s {ψ | t} states that the exe-
cution of s in any memory has a complexity upper bounded by t ,
and that the post-conditionψ holds after s’s execution. The proof
obligation ⊢ {ψ } r ≤ tr upper-bounds the cost of evaluating the

return expression r . Finally, the rule checks that the sum of t and
tr is compatible with the complexity restriction λc through the

premise (t + tr · 1conc) ≤compl λc. We leave the precise definition

of ≤compl to Section 4 (see Figure 27). Intuitively, t is a record of

entries of the form (x. f 7→ lf), each stating that the abstract mod-

ule x’s procedure f has been called at most lc times, plus a special

entry (conc 7→ lc) stating that s execution time, excluding abstract

calls, is at most lc . Then, t0 ≤compl λc checks that t0[x. f] ≤ λc[x. f]
for every functor parameter x. f , and that λc[intr] upper-bounds
everything else in t0.

4 COMPLEXITY REASONING IN EASYCRYPT
We now present our Hoare logic for cost, which allows to formally

prove complexity upper-bounds of programs. This logic manipu-

lates judgment of the form E ⊢ {ϕ} s {ψ | t}, where s is a statement,

ϕ,ψ are assertions, and t is a cost. We leave the assertion language

unspecified, and only require that the models of an assertion for-

mula ϕ are memories, and write ν ∈ ϕ whenever ν satisfies ϕ.
Essentially, the judgment E ⊢ {ϕ} s {ψ | t} states that s is a

program well-typed in the environment E (e.g. this means that s
can only call concrete or abstract procedures declared in E), and

that: i) the execution of the program s on any initial memory νi
satisfying the precondition ϕ (i.e. νi ∈ ϕ) terminates in time at most

t ; and ii), the final memory νf obtained by executing s starting from
νi satisfies the post-conditionψ (i.e. νf ∈ ϕ).

4.1 Cost Judgment
A key point of our Hoare logic for cost is that it allows to split

the cost of a program s between its concrete and abstract costs,

i.e. between the time spent in concrete code, and the time spent in

abstract procedures. To reflect this separation between concrete and

abstract cost, a cost t is a record of entries mapping each abstract

procedure x. f to the number of times this procedure was called,

and mapping a special element conc to the concrete execution time

(i.e. excluding abstract procedure calls). Since the set of available

abstract procedures (and consequently the number of entries in the

cost t) depends on the current environment E, we parameterize the

notion of cost by the environment E considered:

Definition 4.1. A E-cost is an element of the form:

t ::= [conc 7→ k, x1. f1 7→ k1, . . . xl . fl 7→ kl]

where E is an environment, k,k1, . . . ,kl are integers, and the xi . fi
are all the abstract procedures declared in E.

Example 4.1. Consider E with two abstract modules x and y:

E = (module x = absopen : sig (proc f _) restr _ end);

(module y = absopen : sig (proc h _) restr _ end)

Then [conc 7→ 10; x. f 7→ 0; y.h 7→ 3] represents a concrete cost of

10, at most three calls to y.h, and none to x. f .

Definition 4.2. A cost judgment for a statement is an element of

the form E ⊢ {ϕ} s {ψ | t} where E must be well-typed, s must be

well-typed in E and t must be an E-cost. We define similarly a cost

judgment for a procedure E ⊢ {ϕ} F {ψ | t}.

In Figure 5, we give a graphical representation of a cost judgment

for the procedure A(B,C).a, where A and C are concrete modules,

and B is an abstract functor with access to C as a parameter. Then,

intuitively, the cost judgment:

E ⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]}

is valid whenever tconc upper-bounds the concrete cost (in hatched

gray) which is the sum of: i) the intrinsic cost of A.a, which
is the cost of A.a without counting parameter calls, represented in

hatched blue in the figure, and must be at most ta as stated in

TA’s restriction; and ii) the sum of the cost of the three calls to C.c .
The cost of the execution of the abstract procedure B.b (in

hatched red), which excludes the two calls B.b makes to C.c ,
are accounted for by the entry (B.b 7→ 1) in the cost judgment.

Note that it is crucial that this excludes the cost of the two calls to

C.c, which are already counted in the concrete cost tconc .

Expression cost. We have a second kind of judgment ⊢ {ϕ} e ≤ te ,
which states that the cost of evaluating e in any memory satisfying

ϕ is at most te , where te is an integer, not a E-cost (indeed, an
expression cost is always fully concrete, as expressions do not

contain procedure calls). We do not provide a complete set of rules

for such judgments, as this depends on low-level implementation

details and choices, such as data-type representation and libraries

implementations. In practice, we give rules for some built-ins, a

way for the user to add new rules, and an automatic rewriting

mechanism which automatically prove such judgments from the

user rules in most cases.

4.2 Hoare Logic for Cost Judgment
We present our Hoare logic for cost, which allows to prove cost

judgments of programs. Our logic has one rule for each possible

program construct (assignment, loop,...), plus some structural rules

(e.g. weakening). We only describe a simple Hoare rule for condi-

tional construct, and then explain a core rule of our logic, which

handles abstract calls. All other rules are given in Appendix F.

Basically, our cost judgment are standard Hoare logic judgment

with the additional cost information, and both aspects must be

handled by the rules of our logic.

In some cases, these can be handled separately. E.g. the rule:

If

⊢ {ϕ } e ≤ te E ⊢ {ϕ ∧ e } s1 {ψ | t } E ⊢ {ϕ ∧ ¬e } s2 {ψ | t }

E ⊢ {ϕ } if e then s1 else s2 {ψ | t + te }

state that if: i) the evaluation of the condition e takes time at

most te ; ii) the execution of the then branch program s1, assuming

pre-condition ϕ ∧ e , guarantees the post-condition ψ and takes

6

s1

sc

s2

. . .

sc

B

sc

. . .

s3A:

B:

C:

concrete intrinsic (A.a) abstract

module type TC = { proc c () : unit }.
module C = { proc c () = { sc } }.

module type TB (C0 : TC) = {
proc b () : unit compl[intr : tb , C0 .c : 2] }.

module type TA (B0 : TB) (C0 : TC) = {
proc a () : unit compl[intr : ta, B0 .b : 1, C0 .c : 1] }.

module A (B0 : TB) (C0 : TC) : TA= {
proc a () = {
s1 ; C0 .c(); s2 ; B0(C0).b(); s3 ;

}}.

Judgment E ⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]} where E = (module B = absopen : TB).

Figure 5: Graphical representation of the different cost measurements.

time at most t ; iii) and the execution of the else branch, assuming

the pre-condition ϕ ∧ ¬e , guarantees the same post-condition ψ ,
and also takes time at most t ; then the full conditional statement

if e then s1 else s2, assuming pre-condition ϕ, guarantees the post-
conditionψ in time at most t + te . Note that we use the same cost

upper-bound t for both branches: essentially, t can be chosen to be

the maximum of the execution times of the then and else branches.
Other rules are more involved, and require the user to show

simultaneously invariants of the memory state of the program and

cost upper-bounds.

Abstract call rule without cost. This is the case of our rule for
upper-bounding the cost of a call to an abstract procedure F. To
ease the presentation, we first present a version of the rule for usual

Hoare judgment without costs, and explain how to add costs after.

abs-partial

f-resE (F) = (absopen x)(®p).f
E(x) = absopen x : (func(®y : _) sig _ restr θ end) θ [f] = λm ∧ _
FV(I) ∩ λm = ∅ ∀p0 ∈ ®p, ∀д ∈ procsE (p0), E ⊢ {I } p0 .д {I }

E ⊢ {I } F {I }

First, the function path F is resolved to (absopen x)(®p). f , i.e. a call
to the procedure f of an abstract functor x applied to the modules

®p (the case where x is not a functor is handled by taking ®p = ϵ).
Then, x’s module type is lookup in E, and we retrieve the module

restriction θ attached to it. The rule allows to prove that some

formula I is an invariant of the abstract call, by showing two things.

First, we show that I is an invariant of x. f , excluding calls to the
functor parameters. This is done by checking that x. f cannot access

the variables used in I , using its memory restriction λm (looked-up

by the premise θ [f] = λm ∧ _) and requiring that FV(I) ∩ λm = ∅ .
Then, we prove that I is an invariant of x. f ’s calls to functor

parameters. This is guaranteed by requiring that for every functor

parameter p0 ∈ ®p, for any of p0’s procedure д ∈ procsE (p0), the

judgment E ⊢ {I } p0.д {I } is valid.

Abstract call. We now present our Abs rule for cost judgments,
which is given in Figure 6. Essentially, the cost of the call to x(®p). f
is decomposed between:

• the intrinsic cost of x. f excluding the cost of the calls to

x’s functor parameters. This is accounted for by the entry

(x. f 7→ 1) in the final cost Tabs.

Abs

f-resE (F) = (absopen x)(®p).f
E(x) = absopenx : (func(®y : _) sig _ restr θ end)

θ [f] = λm ∧ λc λc = compl[intr : K, zj1 .f1 : K1, . . . , zjl .fl : Kl]
FV(I) ∩ λm = ∅ ®k fresh in I

∀i, ∀®k ≤ (K1, . . . , Kl), ®k [i] < Ki → E ⊢ {I ®k } ®p[ji].fi {I (®k + 1i) | ti k }

E ⊢ {I ®0} F {∃®k, I ®k ∧ ®0 ≤ ®k ≤ (K1, . . . , Kl) | Tabs }

where Tabs =
{
x.f 7→ 1;

(
G 7→

∑l
i=1

∑Ki−1

k=0
(ti k)[G]

)
G,x.f

}
Conventions: ®y can be empty (this corresponds to the non-functor case).

Figure 6: Abstract call rule for cost judgment.

• the cost of the calls to x. f functor parameters, which are

enumerated in the restriction:

λc = compl[intr : K , zj1 . f1 : K1, . . . , zjl . fl : Kl]

We require, for every i , a bound on the cost of the k-th call to

the functor argument zji procedure’s fi , where k can range

anywhere between 0 and the maximum number of calls x. f
can make to zji , which isKi . The cost of the k-th call to zji . fi
is bounded by (ti k) where k = ®k[i] and:

E ⊢ {I ®k} ®p[ji]. fi {I (®k + 1i) | ti k}

To improve precision, we let the invariant I depend on the

number of calls to the functor parameters through the integer

vector
®k . After calling ®p[ji]. fi , we update ®k by adding one

to its i-th entry (1i is the vector where the i-th entry is one

and all other entries are zero).

The final cost Tabs (except for x. f) is obtained by taking the sum,

over all functor parameters and number of calls to this functor

parameter, of the cost of each call.

4.3 Soundness
We define a formal denotational semantics of our language and

module system, and use it to prove the soundness of our rules.

For space reasons, we omit the details here (they can be found in

Appendix E and F), and only state the main soundness theorem.

Theorem 4.1. The proof rules in Figures 6, 26 and 27 are sound.
7

5 EXAMPLE: UNIVERSAL COMPOSABILITY
UC security guarantees that a protocol π1 can safely replace a

protocol π2 while preserving both the functionality and the secu-

rity of the overall system. The most common application of this

framework is to set π2 to be an idealized protocol that assumes a

trusted-third-party (TTP) to which parties delegate the computa-

tion; the specification of the TTP is called an ideal functionality F .
An ideal functionality F defines what protocol π1 should achieve

both in terms of correctness and security to securely replace the

TTP. Moreover, F can be used as an ideal sub-component when

designing higher-level protocols, which then can be instantiated

with protocol π1 to obtain a fully concrete real-world protocol.

The UC framework defines an execution model where proto-

col participants, attackers and contexts are modeled as Interactive

Turing Machines (ITM). The model was carefully tailored to give

a good balance between expressive power—e.g., one can capture

complex interactions in distributed protocols involving multiple

parties in a variety of communication models, various forms of

corruption, etc.—and a tailored (and relatively simple) resource

analysis mechanism that permits keeping track of the computing

resources available to both honest and malicious parties.

The model is described in detail in [15, 16]. However, most UC

proofs found in the literature refer only to a common understand-

ing of the semantics of the execution model and a set of high-level

restrictions that are inherent to the model. These include the al-

lowed interactions between different machines, the order in which

machines are activated, predefined sequences of events, etc. More

fine-grained descriptions of the execution model are sometimes in-

troduced locally in proofs, when they are needed to deal with more

subtle points or technicalities that can only be clarified at the cost of

extra details. This stands in contrast with typical game-based proofs

for simpler cryptographic primitives [8], where security proofs are

given in great detail. This is one of the reasons why, while there

has been impressive progress in machine-checking game-based

proofs [4], we are only now giving the first steps in formalizing

proofs in the UC setting [19, 22, 26]. Another reason is that the ITM

model for communication is difficult to express in procedure-based

semantics offered by tools that target game-based proofs.

To overcome these difficulties, we propose a new approach to

machine-checking UC proofs that shares many features of the sim-

plified version of UC proposed by Canetti, Cohen and Lindell in [18].

As in [18], we statically fix the machines/modules in the execution

model and we allow an adversarial entity to control which module

gets to be executed next, rather than allowing machines to pass

control between them more freely as in the original UC execution

model. The crucial difference to the ITM execution model is that the

above interactions are procedure-based, which means that when-

ever the environment passes control to the protocol, the internal

protocol structure will follow a procedure call tree that guarantees

(excluding the possibility of non-terminating code) that control re-

turns to the environment.
5
As in [18], we lose some expressiveness,

5
Intuitively, the UC model expresses a single line of execution using a token-passing

mechanism that allows one machine to transfer computational resources to another,

and even to create new machines. In our setting, resource analysis is much simpler. All

modules representing honest and adversarial entities are fixed from the start and the

cost model is concrete: all adversarial entities have a resource usage type, which means

they are known to execute a maximum number of operations and perform a bounded

module type IO = {
proc inputs (i:inputs) : unit
proc outputs(o:ask_outputs)

: outputs option }.

module type BACKDOORS = {
proc step (m:step) : unit
proc backdoor (m:ask_backdoor)

: backdoor option }.

module type E_INTERFACE = {
include IO
include BACKDOORS }.

module type PROTOCOL = {
proc init() : unit
include E_INTERFACE }.

Figure 7: PROTOCOL type in EasyCrypt.

but we do not go as far as hard-wiring a specific communications

model for protocols based on authenticated channels; instead, we

leave it to the protocol designer to specify the communications

model by using an appropriate module structure. We recover the

authenticated communications model of [18] by explicitly defining

a hybrid real-world, in which concrete modules for ideal authen-

ticated channels are available to the communicating parties. We

discuss the trade-offs associated with our approach more in depth

at the end of this section, drawing a parallel to the work in [19].

5.1 Mechanized Formalization in EasyCrypt
We propose a natural simplification of the UC execution model that

is based on EasyCrypt modules and show that this opens the way

for a lightweight formalization of UC proofs. This formalization

has been conducted in our extension of EasyCrypt (the proofs of

the lemmas and theorems of this section are fully mechanized).

Protocols and Functionalities as EasyCrypt modules. The basic

component in our UC execution model is a module of type PRO-
TOCOL given in Figure 7. Inhabitants of this type represent a full

real-world configuration—a distributed protocol executed by a fixed

number of parties—or an ideal-world configuration—an ideal func-

tionality executing a protocol as a trusted-third party. The type of

a protocol has a fixed interface, but it is parametric on the types of

values exchanged via this interface. The fixed interface is divided

into three parts: i) init allows modeling some global protocol setup;

ii) IO captures the interaction of a higher level protocol using this

protocol as a sub-component; and iii) BACKDOORS captures the

interaction of an adversary with the protocol during its execution.

When we define real-world protocols, a module of type PROTO-
COLwill be constructed from sub-modules that emulate the various

parties and the communications channels between them. In this

case, BACKDOORSmodels adversarial power in this communication

model. For ideal-world protocols, a PROTOCOL is typically a flat

description of the ideal computation in a single module; here BACK-
DOORSmodels unavoidable leakage (e.g., the length of secret inputs

or the states of parties in an interactive protocol) and external in-

fluence over the operation of the trusted-third party (e.g., blocking

the computation to model a possible denial of service attack).
6

number of procedure calls. Hence the resources used by any subset of modules in our

formalizations can be expressed as an expression on these type parameters.

6
Ideal-world backdoors are used to weaken the security requirements and are usually

tailored to bring the security definition down to a level that can be met by real-world

protocols. Note that the definition of meaningful ideal functionalities is a crucial aspect

of UC security theory; here we just provide a mechanism that permits formalizing

such definitions in EasyCrypt.

8

module UC_emul (E:ENV) (P:PROTOCOL) = {
proc main() = {
var b;
P.init(); b← E(P).distinguish(); return b; }}.

module CompS(F:IDEAL.PROTOCOL, S:SIMULATOR) : PROTOCOL = {
proc init() = { F.init(); S(F).init(); }
include F [inputs, outputs]
include S(F) [step, backdoor]}.

Figure 8: Execution model for real/ideal worlds (top) and
composition of functionality with a simulator (bottom).

Execution Model. The real- and ideal-world configurations are

composed by a statically determined set of modules, which com-

municate with each-other using a set of hardwired interfaces. The

execution model is defined by an experiment in which an external

environment interacts with the protocol via its IO and BACKDOORS
interfaces until, eventually, it outputs a boolean value (Figure 8).

The IO interface allows the environment to pass an input to the pro-

tocol using inputs or to retrieve an output produced by the protocol

using outputs. For example in the real-world, the environment can

use these procedures to give input to or obtain an output from one

of the sub-modules that represent the computing parties involved

in the protocol. The BACKDOORS interface allows the environment

to read some message that may be produced by the protocol us-

ing backdoor or make one of the protocol sub-components (parties)

advance in its execution using step to deliver a message.

We describe now the typical sequence of events in a real-world

execution; the ideal-world will become clear when we describe the

notion of UC emulation below. When the adversarial environment

uses the IO interface to pass input to a computing party, this may

trigger the computing party to perform some computations and, in

turn, provide inputs to other sub-modules included in the protocol

description; in most cases this will correspond to sending a message

using an idealized communications channel represented by an ideal

functionality.
7
Our convention is that inputs calls do not allow

obtaining information back (the return type is unit). This means

that any outputs produced by parties need to be pulled by the

environment with separate calls to outputs. Similarly, when the

environment asks a party for an output, the party may perform

some computation and call the outputs interface of a hybrid ideal

functionality (e.g., to see if a message has been delivered) before

returning the output to the environment.

The BACKDOORS interface follows these conventions closely.

The backdoor method allows the environment to retrieve leakage

that may be available for it to collect (e.g., the public part of a

party’s state, or a buffered message in an authenticated channel).

The step procedure allows the environment to pass control to any

module inside the protocol; this is important to make sure that the

environment always has full control of the liveness of the execution

model and can schedule the execution of the various processes at

will whenever there are several possible lines of execution.

UC emulation. The central notion to Universal Composability is

called UC-emulation, which is a relation between two protocols π1

7
Real-world settings using ideal functionalities as sub-components are called hybrid.

Protocol

\mathcal{F}Hybrid

Party 1 Party n

Environment

IO

IO

Ideal Functionality

Environment

IOBA
C
KD

O
O
R

BA
C
KD

O
O
RSI

M
U
LA

TO
R

Figure 9: Module restrictions. Arrows indicate ability to
make procedure calls via the interface specified as a label;
all other cross-boundary memory access is disallowed.

and π2: if π1 UC-emulates π2 with small advantage ϵ then π1 can

replace π2 in any context (within a complexity class).

Definition 5.1 (UC emulation). Protocol π1 UC emulates π2 under

complexity restrictions csim and cenv and advantage bound ϵ if

∃S ∈ τ π1,π2,csim
sim ,∀Z ∈ τ π1,π2,S,cenv

env ,

| Pr[Z(π1) :⊤] − Pr[Z(⟨π2 ∥ S(π2)⟩) :⊤] | ≤ ϵ

We write this as Advuccsim,cenv (π1,π2) ≤ ϵ .

The first probability term corresponds to the event that the envi-

ronment returns true in the real-world execution model described

above, i.e., in game UC_emul parameterized with ENV = Z and

P = π1. The second probability term corresponds to the equivalent

event in the ideal-world (or reference) execution model where, as

shown in Figure 9 (right), π2 is typically an ideal functionality;

this corresponds to game UC_emul parameterized with ENV = Z
and a protocol P that results from attaching S to the BACKDOORS
interface of π2. We denote this ideal-world P by ⟨π2 ∥ S(π2)⟩, cor-

responding to the EasyCrypt functor CompS also shown in Figure 8.

UC-emulation imposes that a simulator S is capable to fool any
environment by presenting a view that is fully consistent with the

real-world, while learning only what the BACKDOORS interface

of π2 allows. If such a simulator exists, then clearly π2 cannot be

worse than π1 in the information it reveals to the environment via

its BACKDOORS interface.
8
Our UC-emulation definition quanti-

fies over simulators and environments using types that give a full

characterization of their use of resources, including the ability to

access memory, number and types of procedure calls and intrinsic

computational costs. The memory access restrictions are depicted

in Figure 9, and they can be easily matched to the standard restric-

tions in the UC framework. Not shown are the cost restrictions,

8
The emulation notions in [15, 16] quantify over a restricted class of balanced environ-
ments. Intuitively, such environments must be fair to the simulator in that polynomial-

time execution in the size of its inputs is comparable to the execution time of the

real-world adversary. Without this restriction, the definition would require the exis-

tence of a simulator that uses much less resources than the real-world attacker, which

makes the definition too strong. Balanced environments guarantee that the resources

given to the simulator match those given to the real-world adversary; moreover, the

dummy adversary is formally explicit in the real-world to enable this resource ac-

counting. In our setting we deal with this issue differently: the EasyCrypt resource
model is concrete, which means that one can explicitly state in the security definition

which resources are used by the simulator and assess what this means in terms of

protocol security. We refer the interested reader to [15, Section 4.4] for a discussion

of quantitative UC definitions such as the one we adopt. For this reason, as we show

below, we also do not need to keep the dummy adversary explicitly in the real world.

9

which give explicit bounds for the resources used by various parts

of the execution model; these are crucial for obtaining, not only a

meaningful definition, but also for obtaining meaningful reductions

to computational assumptions, as will be seen below.

Let us examine the types of Z and S in more detail. We first

note that the definition of emulation is parametric in the resource

restrictions csim and cenv. Clearly the IO interface of π2 must match

the type of the IO interface of π1, which is consistent with the goal

that π1 can replace π2 in any context, and this is enforced by our

type system. This need not be the case for the BACKDOORS interface
and, in fact, if π2 is an ideal functionality, the BACKDOORS interface
in the ideal world is of a different nature altogether than the one in

the real world: it specifies leakage and adversarial control that are

unavoidable even when the functionality is executed by a trusted

third-party on behalf of the parties. The type of the simulator S

is given by τ π1,π2,csim
sim , which defines the type of modules that has

access to the BACKDOORS interface of π2, exposes the BACKDOORS
interface of π1 and is restricted memory-wise to exclude the mem-

ory of π2 and resource-wise by csim. Note that, if S could look inside
the ideal functionality, then it would know all the information that

is also given to the real-world protocol: a trivial simulator would

always exist and the definition would be meaningless because all

protocols would be secure. The type of the environment is given by

τ π1,π2,S,cenv
env , the type of modules that have oracle access to the IO
and BACKDOORS interfaces of π1, and are restricted memory-wise

to exclude the memories of π1, π2 and S, and resource-wise by cenv.
In this case, if the environment could look inside π1, π2 or S it could

directly detect with which world it is interacting, and no protocol

would be secure. For concreteness, the cost restriction on the type

of the environment imposed by cenv is of the form:

cenv := compl[intr : c1,π .inputs : c2,π .outputs : c3,

π .backdoor : c4,π .step : c5]

where type refinements can set ci to depend on the types of other

modules in the context.

Warm-up: Transitivity of UC emulation. It is easy to show that

UC-emulation is a transitive relation: if π1 UC-emulates π2 and this,

in turn, UC-emulates π3, then π1 UC-emulates π3. When stating

this lemma in EasyCrypt we move the existential quantifications

over the simulators in the hypotheses to global universal quantifica-

tions; this logically equivalent formulation allows us to refer to the

memory of these simulators when quantifying over all adversarial

environments in the consequence: we quantify only over those

that cannot look inside the simulators that are assumed to exist by

hypothesis, which is a natural (and necessary) restriction. In other

examples we use the same approach. The lemma is stated in Easy-
Crypt as follows (we adapt the Advuc,S·, · (·, ·) notation by indicating

the universally quantified simulator S in superscript).

Lemma 5.1 (Transitivity). For all ϵ1,2, ϵ2,3 ∈ R
+, all protocols

π1, π2 and π3 s.t. the IO interfaces of all three protocols are of the
same type, all cost restrictions csim(1,2), csim(2,3) and all simulators
S1,2 ∈ τ

π1,π2,csim(1,2)
sim , S2,3 ∈ τ

π2,π3,csim(2,3)
sim , we have that:

Adv
uc,S1,2

csim(1,2), ĉenv(1,2)
(π1, π2) ≤ ϵ1,2 ⇒ Adv

uc,S2,3

csim(2,3), ĉenv(2,3)
(π2, π3) ≤ ϵ2,3

⇒ Advucĉsim(1,3),cenv(1,3) (π1, π3) ≤ ϵ1,2 + ϵ2,3

where ĉsim(1,3) corresponds to the cost of sequentially composing S1,2

and S2,3, ĉenv(2,3) must allow for an adversarial environment that
results from converting a distinguisher between π1 and π3 in cenv(1,3)
and composing it with S1,2, and ĉenv(1,2) = cenv(1,3).

In the statement of the lemma we use notation ĉ to denote the

fact that these cost restrictions are fixed as a function of the costs

of other algorithms: intuitively, the cost of the environment in the

consequence is free and it constrains the costs of environments

in the hypotheses; then, if for some cost restrictions csim(1,2) and
csim(2,3) the hypotheses hold, these in turn fix the cost of the simula-

tor we give as a witness. This pattern is observable in the remaining

examples we give in this section.

From the proof, we get awitness simulatorS1,3 = SeqS(S2,3,S1,2)

that results from plugging together the two simulators implied by

the assumptions: intuitively, S2,3 is able to interact with π3 and

emulate the BACKDOORS of π2, and this is sufficient to enable S1,2

to emulate the BACKDOORS interface of π1, as required. Technically,

the proof shows first that one can break down S1,3 and put π2 in

the place of CompS(π3,S2,3). To show this, we aggregate S1,2 into

the environment to construct a new environment that would break

π2 if such a modification was noticeable, contradicting the second

hypothesis. The proof then follows by applying the first hypothesis.

Note that this proof strategy is visible in the resources used by

S1,3, since they are those required to run the composed module

SeqS(S2,3,S1,2). Moreover, the quantification over the resources of

the environments in the second hypothesis must accommodate an

environment that absorbs simulator S1,2 and runs it internally.

In Appendix A we give a more elaborate example of the proper-

ties of UC emulation definition, by showing that our formalization

inherits an important property from the general UC framework:

that including an explicit adversary in the real world that colludes

with an arbitrary environment to break the protocol leads to an

equivalent definition to the one we have, which assumes an (im-

plicit) dummy adversary that just follows the instructions of the

adversarial environment. Moreover, in our setting with concrete

costs, this is equivalent to our execution model where the dummy

adversary is implicit.

Universal Composability. The fundamental theorem of Universal

Composability is stated in our EasyCrypt formalization as follows.

Theorem 5.2 (Universal Composability). For all ϵρ , ϵπ ∈ R+,
all ideal functionalities f , F , all protocols ρ(f) and π , such that the
IO interfaces of π and f (resp. ρ and F) are of the same type, all cost

restrictions csim(ρ), csim(π), and all simulators Sρ ∈ τ
ρ(f),F,csim(ρ)
sim

and Sπ ∈ τ
π , f ,csim(π)
sim , we have:

Advuc,Sπcsim(π), ĉenv(π)
(π , f) ≤ ϵπ ⇒ Adv

uc,Sρ
csim(ρ), ĉenv(ρ)

(ρ(f), F) ≤ ϵρ

⇒ Advucĉsim,cenv
(ρ(π), F) ≤ ϵρ + ϵπ

where ĉenv(π) accommodates an environment that internally uses
cenv resources and additionally runs ρ, ĉsim corresponds to the cost of
composing Sπ and Sρ , ĉenv(ρ) allows for an adversarial environment
built by composing Sπ with an environment in cenv.

This theorem establishes that any protocol ρ(f) that UC-emulates

a functionality F when relying on an ideal sub-component f offers

the same level of security when it is instantiated with a protocol π

10

that UC-emulates f . The proof first shows that the simulator Sπ
that exists by hypothesis can be converted into a simulator that

justifies that ρ(π) UC-emulates ρ(f): intuitively this new simulator

uses Sπ when interacting with the backdoors of f and just passes

along the environment’s interactions with the backdoors of ρ. This
part of the proof combines any successful environmentZ against

the composed protocol into a successful environment that absorbs

ρ and breaks π . This justifies the cost restriction on cenv. Then,
we know by hypothesis that ρ(f) UC emulates F , and the result

follows by applying the transitivity lemma, which also explains the

remaining cost restrictions.

Example: Composing key exchange with encryption. We conclude

this section with an example of the use of our framework and

general lemmas stated above for concrete protocols. Consider the

code snippets in Figure 10. On the left we show the inner structure

of a two-party protocol formalization (Diffie-Hellman) when one

assumes an ideal sub-component (in this case a bi-directional ideal

authenticated channel F2Auth exposing IO interface Pi.REAL.IO).
The full real-world configuration is obtained by applying a functor

CompRF that composes this protocol with F2Auth and exposes the

backdoors of both DHKE and F2Auth in a combined BACKDOORS
interface. The IO interface to this real-world protocol is simply

the input/output interface for both parties; parties take as input a

role (initiator/responder) and the identities of parties involved in

the protocol (type unit pkg); they output a session key when the

protocol completes.

The Initiator code is shown in Figure 11. On initialization it sam-

ples its ephemeral key pair and resets the derived key. When the

environment provides input, which includes the identities of the

parties that will take part in the key exchange, the ephemeral public

key is transmitted via one of the ideal authenticated channels. The

party then returns control to the environment (note that delivering

a message to the authenticated channel does not pass control to

the authenticated channel). When the environment calls step, the
initiator checks the incoming ideal channel to see if it received

a message. At any point the environment can check the initiator

output using output. The backdoor interface provides no information,

since all communications go through the authenticated channels.

The responder code is symmetric.

In the middle code-snippet of Figure 10 we give an example ideal

functionality for a simple one-shot unidirectional authenticated

channel; one party provides input with the party identities and

the message to transmit (type msg pkg), and the other party can

obtain the message if it calls outputs with matching identities (type

unit pkg.) The attacker can use the backdoor procedure to observe

the state of the channel, including the transmitted message and

the party identities and it can use the step procedure to control

when the message is delivered (the unlock operator changes the

state so that, if a message is buffered, then it is made available at the

output procedure) to the receiving party (get_message is checking
for identity consistency, which models authentication).

The example starts with a proof that the Diffie-Hellman protocol

on the left of Figure 10 UC-emulates the ideal functionality for

key exchange shown on the right of Figure 10 in a hybrid-real

world where the parties have access to authenticated channels. The

FKE functionality runs internally a state machine that waits for

both parties to provide input, and allows an adversary/simulator

interacting with its BACKDOORS interface to control when the

different parties obtain a fresh shared secret key. This result is

stated as follows; note the accounting of resources spent by the

combined Diffie-Hellman attacker, making it explicit that the DDH

assumption must be valid for such an attacker.

Lemma 5.3 (Security of DHKE). Fix cddh ∈ R+ and let ϵDDH
be the maximum advantage of any DDH attacker against the group
over which we implement DHKE. Then, we have that

Advuccsim(DHKE),cenv(DHKE) (DHKE(F2Auth), FKE) ≤ ϵDDH

where csim(DHKE) is the cost of a concrete simulator SDHKE that just
samples random group elements as the protocol messages and mimics
the states of the real-world parties and F2Auth; cenv(DHKE)must be such
that cddh accommodates the cost of an adversary that runs internally
the entire UC emulation experiment (including the environment) and
interpolates between the real and ideal worlds, depending on the
external DDH challenge.

The second result shows that the ideal functionality for key ex-

change can be combinedwith one-time-pad encryption to transform

a one-shot authenticated channel into a one-shot secure channel

that also guarantees confidentiality. Formally:

Lemma 5.4 (Security of OTP). Fix any cenv(OTP). Then we have

Advuccsim(OTP),cenv(OTP) (OTP(FKE, FAuth), FSC) = 0

where csim(OTP) is the cost of a concrete simulator SOTP that just
samples a random string in place of the ciphertext and mimics the
states of the real-world parties, FKE and FAuth.

Here, FSC represents the secure channel ideal functionality, which

operates exactly as Fauth, but does not leak the transmitted mes-

sage; leakage includes only information on the state of the channel.

The protocol runs in a hybrid world where it has access to both

FKE and Fauth, uses the former to obtain a shared key between the

two parties, and then transmits the one-time-padded message using

Fauth. We apply our Universal Composability theorem to derive that

FKE can be replaced by the DHKE protocol, resulting in a protocol

that still UC-emulates the secure channel functionality. The final

theorem is stated as follows.

Theorem 5.5 (Security of OTP composed with DHKE). Fix
cddh ∈ R+ and let ϵDDH be the maximum advantage of any DDH
attacker against the group over which we implement DHKE. Then

Advuccsim,cenv (OTP(DHKE, FAuth), FSC) ≤ ϵDDH

where cenv is constrained so that cenv(DHKE) accommodates an en-
vironment that internally uses cenv resources and additionally runs
OTP, and csim corresponds to the cost of composing SOTP and SDHKE.

The crucial application of the complexity restrictions is visible in

the attacker against the DDH assumption, which now has a more

complex structure that results from the application of the composi-

tion theorem: for this application of composition to be meaningful,

it is crucial that the global environment is computationally bounded

(even though the OTP protocol is information-theoretically secure)

as a function of cddh, as otherwise the reduction to DDH would be

meaningless. Indeed, the class of DDH attackers must allow for the

11

module (DHKE : RHO) (F2Auth: Pi.REAL.IO) = {
module Initiator = { · · · }
module Responder = { · · · }

proc init() : unit = { Initiator.init(); Responder.init(); }

proc inputs(r : role, p : unit pkg) : unit = {
if (r = I) { Initiator.inputs(p); }
else { Responder.inputs(p); } }

proc outputs(r : role) : group option = { · · · }

proc step(r : role) : unit = { · · · }

proc backdoor(r : role) : unit option = {
var rr;
if (r = I) { rr← Initiator.backdoor(); }
else { rr← Responder.backdoor(); }
return rr; }}.

module FAuth : PROTOCOL = {
var st : state
proc init() : unit = { st← init_st; }

proc inputs(r : role, p : msg pkg) : unit = {
st← set_msg st r p;

}

proc outputs(r : role, p : unit pkg) : msg option = {
return get_msg st r p;

}

proc step() : unit = {
st← unblock st; }

proc backdoor() : leakage option = {
return leak st;

}}.

module FKE : PROTOCOL = {
var st : state

proc init() : unit = { k
$

←− gen; st← init k; }

proc inputs(r : role, p : unit pkg) : unit = {
st← party_start st r p; }

proc outputs(r : role) : key option = {
return party_output st r; }

proc step() : unit = { st← unblock st; }

proc backdoor() : leakage option = { return leak st; }}.

Figure 10: Examples of real-world (left) and ideal-world protocols (middle and right). Left: structure of a Diffie-Hellman pro-
tocol relying on FAuth for authenticated communication (one shot each way). Middle: ideal functionality for one-shot authen-
ticated channel FAuth. Right: ideal functionality for key exchange.

module Initiator = {

proc init() : unit = { st← IInit; _x
$

←− FDistr.dt; _X← g^_x; _K← None; }

proc inputs(_p : unit pkg) : unit = {
if (st = IInit) { p← _p; Auth.inputs(Left (I, (snd p, rcv p, _X))); st← ISent; }}

proc outputs() : group option = { return _K; }

proc step() : unit = {
if (st = ISent) {
_Y← Auth.outputs(Right (R, (rcv p, snd p, ())));
if (_Y , None) { _K← Some (oget (getr (oget _Y)) ^ _x); st← IDone; }

}}

proc backdoor() : unit option = { return None; }}.

Figure 11: Diffie-Hellman Initiator.

extra resources required to run a simulation of OTP protocol in the

reduction. Note also that the execution time of the global simulator

is given by SOTP and SDHKE, which are very efficient; hence the

UC emulation result has a small simulation overhead [16, 17].

For the proof we used an auxiliary lemma, which is a special-

ization of the Universal Composability theorem for the case where

the hybrid functionality is the parallel composition of two ideal

functionalities and we apply the Universal Composability theorem

to instantiate only one of them.

Our formalization vs EasyUC. Our Diffie-Hellman example is an

alternative formalization of the example given byCanetti, Stoughton

and Varia [19] for the EasyUC framework. We borrow it because, as

in [19], it is a good toy example with which to validate and demon-

strate our formalization. This example is also convenient to show

that the approach in this paper and EasyUC in effect complement

each other. An important design goal of EasyUC is to follow the UC

execution model as closely as possible; this allows a more direct

translation of protocols and ideal functionalities.

In contrast, our goal is to take advantage of the EasyCrypt ma-

chinery to reduce proof effort and development size: our devel-

opment (including complexity) takes 2300 lines of code and it

includes general UC theorems that can be reused in future work;

this compares to 18K lines of code for EasyUC.
9
The downside of

our approach is the impact in the way one specifies protocols and

ideal functionalities: message passing corresponds to procedure

calls, and these must adhere to the EasyCrypt tree-based procedure
call semantics. For example, we do not allow an execution envi-

ronment where a party communicates with an ideal functionality

arbitrarily without relying on the environment for scheduling; one

could of course formalize a message passing mechanism on top

of EasyCrypt as in [19] to allow for this, but this would then fall

out of the scope of our general composition theorems. Moreover,

it would lead to larger developments and increased proof effort,

which would defeat our original purpose.

In short, one can think of the EasyUC approach as a front-end

for cryptographers, and our approach as a convenient back-end

for conducting the machine-checked proofs. We leave it as an in-

teresting direction for future work to develop a sound translation

between these two approaches to modeling UC for a representative

class of protocols such as those considered in [18]. Another interest-

ing direction for future work is to identify UC security proofs that

cannot be naturally expressed using our approach to formalizing

UC and to investigate how it can be extended to deal with these

examples.

6 RELATEDWORK
Cost analysis. There is a very large body of work that uses pro-

gram logics for cost analysis of imperative programs. [28] uses

Hoare logic for proving upper bounds on execution time of de-

terministic programs. In the probabilistic setting, [24] uses a pre-

expectation calculus inspired from Kozen [25] and Morgan, McIver

and Seidel [27] to compute upper bounds on the expected cost of

probabilistic programs. In contrast, cryptography primarily consid-

ers worst-case execution times. In addition, there is a long line of

work on automating cost analysis, both for deterministic and for

probabilistic programs, see e.g. [1, 13, 21]. These techniques could

be helpful to alleviate users efforts, and connecting with tools that

support them is an important direction for future work.

9
The count excludes general purpose libraries, but we should note that the exact

numbers are not important, as the size of a development varies significantly with style

of coding and the use of automation.

12

Computer-aided cryptography. CryptoVerif [12] is an automated

tool for computational security proofs. CryptoVerif uses approxi-

mate equivalences to find (or check) cryptographic reductions, and

keeps track of the complexity of adversaries. Most other tools for

computational security proofs, including CertiCrypt [8], Founda-

tional Cryptography Framework [29], and CryptHOL [10], share

their foundations and overall approach with EasyCrypt. However,
these tools offer limited support for complexity reasoning and

they do not support the use of modules for defining cryptographic

schemes and notions. This is not a fundamental limitation, since

these tools are embedded in a general-purpose proof assistant. How-

ever, extending these tools to achieve similar effects as our type-

and-effect module system and program logic for complexity would

represent a significant endeavor.

Our module system is inspired from EasyCrypt [6, 9]. However,
the EasyCrypt module system lacks complexity restrictions, which

hampers the use of compositional approaches. Beyond EasyCrypt,
several other tools and approaches use structures similar to modules

for formalizing cryptographic schemes and their security. Compu-

tational Indistinguishability Logic (CIL) [5] rely on oracle systems,

which are very closely related to our modules. Interestingly, the

main judgment of CIL establishes the approximate equivalence of

two oracle systems, and is explicitly quantified by the resources of

an adversary. State-separating proofs [14] pursue similar goals, us-

ing a notion of package. Packages have the expressivity of modules,

but additionally support private functions. Our modules can emu-

late private functions using restrictions. At present, there is no tool

support for state-separating proofs. [30] introduces the notion of

interface, which is similar to module, for formalizing cryptography.

7 CONCLUSION
We have developed an extension of the EasyCrypt proof assistant to
support reasoning complexity claims. The extension captures reduc-

tionist statements that faithfully match the cryptographic literature

and supports compositional reasoning. As a main example, we have

shown how to formalize key results from Universal Composability,

a long-standing goal of computer-aided cryptography.

REFERENCES
[1] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, German

Puebla, D. Ramírez, G. Román, and Damiano Zanardini. 2009. Termination and

Cost Analysis with COSTA and its User Interfaces. Electr. Notes Theor. Comput.
Sci. 258, 1 (2009), 109–121.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie

Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub,

and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS Key

Management Service. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz

(Eds.). ACM, 63–78. https://doi.org/10.1145/3319535.3354228

[3] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François

Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,

and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-

dards: Indifferentiability of Sponge and Secure High-Assurance Implementations

of SHA-3. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,

1607–1622. https://doi.org/10.1145/3319535.3363211

[4] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno Blanchet, Cas

Cremers, Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography.

In 2021 2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,

Los Alamitos, CA, USA, 777–795. https://doi.org/10.1109/SP40001.2021.00008

[5] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, and Yassine Lakhnech. 2010.

Computational indistinguishability logic. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov

(Eds.). ACM, 375–386. https://doi.org/10.1145/1866307.1866350

[6] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt

Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial. In Foundations of
Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture
Notes in Computer Science), Alessandro Aldini, Javier López, and Fabio Martinelli

(Eds.), Vol. 8604. Springer, 146–166. https://doi.org/10.1007/978-3-319-10082-1_6

[7] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves

Strub. 2016. A Program Logic for Union Bounds. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy (LIPIcs), Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,

and Davide Sangiorgi (Eds.), Vol. 55. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 107:1–107:15. https://doi.org/10.4230/LIPIcs.ICALP.2016.107

[8] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal

certification of code-based cryptographic proofs. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C.

Pierce (Eds.). ACM, 90–101. https://doi.org/10.1145/1480881.1480894

[9] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.

2011. Computer-Aided Security Proofs for the Working Cryptographer. In Ad-
vances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings (Lecture Notes in Computer
Science), Phillip Rogaway (Ed.), Vol. 6841. Springer, 71–90. https://doi.org/10.

1007/978-3-642-22792-9_5

[10] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2020. CryptHOL:

Game-Based Proofs in Higher-Order Logic. J. Cryptology 33, 2 (2020), 494–566.

https://doi.org/10.1007/s00145-019-09341-z

[11] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Virginia, USA, Novem-
ber 3-5, 1993, Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,

and Victoria Ashby (Eds.). ACM, 62–73. https://doi.org/10.1145/168588.168596

[12] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security

Protocols. In 2006 IEEE Symposium on Security and Privacy (S&P 2006), 21-24
May 2006, Berkeley, California, USA. IEEE Computer Society, 140–154. https:

//doi.org/10.1109/SP.2006.1

[13] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen

Giesl. 2014. Alternating Runtime and Size Complexity Analysis of Integer Pro-

grams. In Tools and Alg. for the Constr. and Anal. of Systems - 20th Int. Conf.
(TACAS’14). 140–155.

[14] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and

Markulf Kohlweiss. 2018. State Separation for Code-Based Game-Playing Proofs.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part III (Lecture Notes in Computer
Science), Thomas Peyrin and Steven D. Galbraith (Eds.), Vol. 11274. Springer,

222–249. https://doi.org/10.1007/978-3-030-03332-3_9

[15] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067. (2000).

https://eprint.iacr.org/2000/067.

[16] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE Computer

Society, 136–145. https://doi.org/10.1109/SFCS.2001.959888

[17] Ran Canetti. 2001. Universally composable security: a new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. 136–145.

[18] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A Simpler Variant of Univer-

sally Composable Security for Standard Multiparty Computation. In Advances
in Cryptology – CRYPTO 2015, Rosario Gennaro and Matthew Robshaw (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 3–22.

[19] R. Canetti, A. Stoughton, and M. Varia. 2019. EasyUC: Using EasyCrypt to Mech-

anize Proofs of Universally Composable Security. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). 167–16716.

[20] The EasyCrypt development team. 2021. Source code of our EasyCrypt. (Sep-

tember 2021). https://github.com/EasyCrypt/easycrypt.

[21] Sumit Gulwani, Krishna K.Mehra, and Trishul Chilimbi. 2009. SPEED: Precise and

Efficient Static Estimation of Program Computational Complexity. In Proceedings
of the 36th Annual Symposium on Principles of Programming Languages (POPL
’09). 127–139.

[22] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-

Yves Strub. 2018. Computer-Aided Proofs for Multiparty Computation with

Active Security. In 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer Society, 119–131.

https://doi.org/10.1109/CSF.2018.00016

13

https://doi.org/10.1145/3319535.3354228
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1145/1866307.1866350
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/s00145-019-09341-z
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1007/978-3-030-03332-3_9
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://github.com/EasyCrypt/easycrypt
https://doi.org/10.1109/CSF.2018.00016

[23] Shai Halevi. 2005. A plausible approach to computer-aided cryptographic proofs.

IACR Cryptol. ePrint Arch. 2005 (2005), 181. http://eprint.iacr.org/2005/181

[24] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Fed-

erico Olmedo. 2016. Weakest Precondition Reasoning for Expected Run-Times of

Probabilistic Programs. In Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Peter Thiemann

(Ed.), Vol. 9632. Springer, 364–389. https://doi.org/10.1007/978-3-662-49498-1_15

[25] Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (1985), 162–178.
https://doi.org/10.1016/0022-0000(85)90012-1

[26] Kevin Liao, Matthew A. Hammer, and Andrew Miller. 2019. ILC: a calculus

for composable, computational cryptography. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen

Fisher (Eds.). ACM, 640–654. https://doi.org/10.1145/3314221.3314607

[27] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate

Transformers. ACM Trans. Program. Lang. Syst. 18, 3 (1996), 325–353. https:

//doi.org/10.1145/229542.229547

[28] Hanne Riis Nielson. 1987. A Hoare-Like Proof System for Analysing the

Computation Time of Programs. Sci. Comput. Program. 9, 2 (1987), 107–136.

https://doi.org/10.1016/0167-6423(87)90029-3

[29] Adam Petcher and Greg Morrisett. 2015. A Mechanized Proof of Security for

Searchable Symmetric Encryption. In IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, Cédric Fournet, Michael W.

Hicks, and Luca Viganò (Eds.). IEEE Computer Society, 481–494.

[30] Mike Rosulek. 2020. The Joy of Cryptography.
[31] Asankhaya Sharma, Shengyi Wang, Andreea Costea, Aquinas Hobor, and Wei-

Ngan Chin. 2015. Certified Reasoning with Infinity. In FM 2015: Formal Methods -
20th International Symposium, Oslo, Norway, June 24-26, 2015, Proceedings (Lecture
Notes in Computer Science), Nikolaj Bjørner and Frank S. de Boer (Eds.), Vol. 9109.

Springer, 496–513. https://doi.org/10.1007/978-3-319-19249-9_31

Appendix Outline. We quickly outline the structure of the appen-

dix. We show that the standard dummy adversary theorem holds

in our UC modeling in Appendix A. We present the type system

for our programming language and module system in Appendix B.

Then, we present the semantics of our module system. This module

semantics takes the form of a module resolution mechanism, which

describe how module expressions are evaluated, and is given in Ap-

pendix C. Appendix D proves that that our type system and module

resolution mechanism have the subject reduction property: essen-

tially, evaluating a module expression preserves its type. This is a

crucial property, as it proves that module restrictions are preserved

by the evaluation of a module using the module resolution mecha-

nism. Then, we define the semantics of our programming language

and of the cost judgment in Appendix E. Finally, we present the full

set of rules of our Hoare logic for cost and prove their soundness

in Appendix F.

A THE DUMMY ADVERSARY IN UC
The standard notion of UC emulation [15, 16] enriches the real-

world with an explicit adversary A representing an attacker that

has access to the real-world BACKDOORS interface and colludes

with the environment to break the protocol. In this case, the real-

and ideal- world execution models become structurally identical, in

that the environment interacts with the BACKDOORS interface via
adversarial entities in both worlds.

10
The order of the quantifiers in

the emulation definition is crucial for its compositional properties:

it requires that, for all adversaries A, there exists a simulator S

such that, for all environmentsZ, the real- and ideal- worlds are

indistinguishable. We now show that the same result holds in our

setting.

10
For this reason the simulator is often called an ideal world adversary; we do not adopt

this terminology here to avoid confusion.

module type ADV(B : BACKDOORS) = {
include NONDUMMY.BACKDOORS }.

module A_PROTOCOL(A : ADV, P : PROTOCOL)
: NONDUMMY.PROTOCOL = {

proc init() : unit = { P.init(); }
include P [inputs, outputs]
include A(P) [step,backdoor] }.

Figure 12: Real-world protocol with adversary.

Consider the functor in Figure 12, which extends any real-world

protocol with abstract adversary A (A in EasyCrypt notation) at
its BACKDOORS interface. The type ofA is parametric in the BACK-
DOORS offered by the protocol in our basic execution model, and

it fixes the type of the BACKDOORS interface in the extended exe-

cution model NONDUMMY.PROTOCOL. This means that when we

quantify over such adversaries, we quantify also over the potential

forms of environment-to-adversary information exchange. The fol-

lowing theorem shows that we do not lose generality by working

with an (implicit) dummy adversary in our execution model.

Theorem A.1 (Dummy Adversary). UC emulation is equivalent
to UC emulation with an explicit real-world adversary. More precisely:
• Emulation with an implicit dummy adversary implies emu-
lation with an explicit arbitrary adversary: For all ϵ ∈ R+,
all protocols π1 and π2 with IO interfaces of the same type,
all complexity restrictions csim, cenv and all simulators S ∈
τ π1,π2,csim
sim , we have

Advuc,Scsim,cenv (π1,π2) ≤ ϵ ⇒

∀A ∈ τadv,Advucĉsim,cenv (⟨π1 ∥ A(π1)⟩,π2) ≤ ϵ

where ĉsim allows for a simulator S′ that combines adversary
A and simulator S.
• Emulation with an implicit dummy adversary is implied by
emulation with an explicit arbitrary adversary: For all ϵ ∈ R+,
all protocols π1 and π2 with IO interfaces of the same type, all
complexity restrictions csim, cenv and all simulator memory
spacesM, we have

∀A ∈ τadv,Advuc,Mcsim,cenv (⟨π1 ∥ A(π1)⟩,π2) ≤ ϵ ⇒

Advuc,Mcsim,cenv (π1,π2) ≤ ϵ

where τadv accommodates the dummy adversary.

Our proof gives a simulator S′ for the first part of the theorem

that joins together simulator S and adversary A: intuitively the

new simulator uses the existing one to fool the (non-dummy) real-

world adversary into thinking it is interacting with the real-world

protocol and, in this way, it can offer the expected BACKDOORS
view generated byA to the environment. The resources used by S′

are those required to run the composition of S andA. The proof of

the second part of the theorem is more interesting: we construct an

explicit dummy adversary and use this to instantiate the hypothesis

and obtain a simulator for this adversary, which we then showmust

also work when the dummy adversary is only implicit: this second

step is an equivalence proof showing that, if the simulator matches

the explicit dummy adversary which just passes information along,

then it is also good when the environment is calling the protocols’

14

http://eprint.iacr.org/2005/181
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1016/0167-6423(87)90029-3
https://doi.org/10.1007/978-3-319-19249-9_31

BACKDOORS interface directly. The resulting simulator is therefore

guaranteed to belong to the same cost-annotated type over which

we quantify existentially in the hypothesis.

We note a technicality in the second part of the theorem: since

the hypothesis quantifies over adversaries before quantifying exis-

tentially over simulators, we cannot use the approach adopted in

the transitivity proof and in the first part of the theorem, where we

use global universal quantifications over hypothesized simulators.

Instead, we quantify globally over a memory space M, restrict

simulators in the hypothesis to only use M, and prevent other

algorithms to interfere with this memory space where appropriate

(we abuse notation by indicatingM in Advuc to denote this).

B TYPING RULES
To help the reader, we give a summary of all the syntactic categories

of our programming language and module system in Figure 13.

B.1 Program and Module Typing
We now present the core rules of our module type system, which

are summarized in Figure 14 and Figure 15. The rest of the rules are

postponed to Appendix B.2. For clarity of presentation, our module

type system requires module paths to always be long modules

paths, from the root of the program to the sub-module called (we

give a simple example in Figure 16). This allows to have a simpler

module resolution mechanism, by removing any scoping issues.

This is done without loss of generality: in practice, one can always

replace short module paths with long module paths when parsing

a program.

A typing environment Γ is a list of typing declarations. A typing

declaration, denoted δ , is either a variable, module, abstract module

or procedure declaration, with a type.

δ ::= var v : τ | module p = m : M | module x = absK : M

| proc p. f (®v : ®τ) → τr = body

K ::= open | param Γ ::= ϵ | Γ,δ

Note that module and procedure declarations can be rooted at an

arbitrary path p.
An abstract module declaration module x = absK : M states that

x is a module with signature M whose code is unknown. This is

used either for open code, or to represent a functor parameter at

typing time. Open modules and parameters are treated differently

by the type system: a memory restriction ignores the memory foot-

print of a functor parameter; and a complexity restriction restricts

the number of calls that can be made by parameters’ procedures.

Therefore, we annotate an abstract module with its kind, which

can be open or param. Finally, module and procedure declarations

come with the absolute path from the root of the program to the

parent module where the declaration is made (variable and abstract

modules are always declared at top-level).

For example, the entry (module p.x = m : M) means that there

is a sub-module m named x and with type M declared at path

p. As usual we require that typing environments do not contain

two declarations with the same path. This allows to see a typing

environment Γ as a partial function from variable names v , module

paths p or procedure paths p. f to (base, module, abstract modules

or procedure) values and their types, defined as follows:

Γ(v) = τ (if Γ = (Γ1; var v : τ ; Γ2))

Γ(p) = m : M (if Γ = (Γ1; module p = m : M; Γ2))

Γ(x) = absK x : M (if Γ = (Γ1; module x = absK : M; Γ2))

Γ(p.f) = proc f (®v : ®τ) → τr = body
(if Γ = (Γ1; proc p.f (®v : ®τ) → τr = body; Γ2))

and Γ(z) = undef otherwise. Also, we write Γ(z) undef when
Γ(z′) = undef. for any prefix z′ of z.11

Abstract modules. Abstract modules representing open code (i.e.

with kind open) are restricted to low-order signatures:

Ml ::= sig Sl restr θ end | func(x : sig Sl restr θ end) Ml

Sl ::= Dl1; . . . ;Dln Dl ::= proc f (®v : ®τ) → τr

Basically, we only allow module structures, or functors whose pa-

rameters are module structures. This restriction is motivated by

the fact that further generality is not necessary for cryptographic

proofs (adversaries and simulations usually return base values, not

procedures); and, more importantly, this restriction allows the ab-

stract call rule of our instrumented Hoare logic Abs presented in

Figure 6 to remain tractable.

For any Ml, we let procs(Ml) = { f1, . . . , fn } be the set of proce-
dure names declared inMl.

Typing module paths. The typing judgment Γ ⊢ p : M states that

the module path p refers to a module with type M. Its typing rules,

which are given in Figure 14, are standard, except for the functor

application typing rule FuncApp:

FuncApp

Γ ⊢ p : func(x : M′) M Γ ⊢ p′ : M′

Γ ⊢ p(p′) : M[x 7→ memΓ(p
′)]

A key point here is that we need to substitute x in the module

signature. The substitution function is standard (see Figure 20),

except for module restrictions, which are modified as follows:

• a memory restriction restricts the variables that a proce-

dure can access directly — however, memory accesses done

through functor parameters are purposely not restricted.

Hence, when we instantiate a functor parameter x by a mod-

ule path p′, we must add its memory footprint, which is

memΓ(p′). This is handled when substituting x in a memory

restriction:

λm[x 7→ memΓ(p
′)] = λm ⊔memΓ(p

′)

• a complexity restriction gives upper bounds on a procedure

execution time, and on the number of calls it can make to

its functors’ parameters. When we instantiate a functor, we

remove a functor parameter, and therefore remove the cor-

responding entries in the complexity restrictions.

compl[intr : k, y1 .f1 : k1, . . . , yl .fl : kl][x 7→ _] =

compl[intr : k, (y1 .f1 : k1)[x 7→ _], . . . , (yl .fl : kl)[x 7→ _]]

where (y.f : k)[x 7→ _] =

{
ϵ if y = x

y.f : k otherwise

11
Meaning that the (variable, module or procedure) path z is not declared by Γ, even

through a sub-module or functor application.

15

Expressions (distribution expressions are similar):

e ::= v ∈ V (variable)

| f (e1, . . . , en) (if f |n ∈ FE)

Statements:

s ::= abort (abort)

| skip (skip)

| s1; s2 (sequence)

| x ← e (assignment)

| x
$

←− d (sampling)

| x ← call F(®e) (procedure call)

| if e then s1 else s2 (conditional)

| while e do s (loop)

Procedure body:

body ::= { var (®v : ®τ); s; return e }

Module paths:

p ::= x (mod. ident.)

| p.x (mod. comp.)

| p(p) (func. app.)

Function paths:

F ::= p.f (proc. lookup)

Module expressions:

m ::= p (mod. path)

| struct st end (structure)

| func(x : M) m (functor)

Module structures:

st ::= d1; . . . ; dn (for any n ∈ N)

Module declarations:

d ::= proc f (®v : ®τ) → τr = body (proc.)

| module x = m (module)

Signature structures:

S ::= D1; . . . ;Dn (for any n ∈ N)

Module signature declarations:

D ::= proc f (®v : ®τ) → τr (procedure decl.)

| module x : M (mod. decl.)

Module signatures:

M ::= sig S restr θ end (restr. sig. struct.)

| func(x : M) M′ (functor)

Typing environment declarations:

δ ::= var v : τ (variable decl.)

| module p = m : M (module decl.)

| module x = absK : M (abs. mod.)

| proc p.f (®v : ®τ) → τr = body (proc. decl.)

Abstract module kind:

K ::= open (open module)

| param (module parameter)

Typing Environment:

Γ ::= ϵ | Γ, δ

Module restrictions:

θ ::= ϵ | θ, (f : λ)

λ ::= ⊤ | λm ∧ λc

Memory restrictions:

λm ::= +all mem\{v1, . . . , vl } (for any l ∈ N)

| {v1, . . . , vl } (for any l ∈ N)

Complexity restrictions:

λc ::= ⊤ | compl[intr : k, x1 .f1 : k1, . . . , xl .fl : kl]

(for any l, k, k1, . . . , kl ∈ N)

Low-order module signatures:

Ml ::= sig Sl restr θ end (restr. sig. struct.)

| func(x : sig Sl restr θ end) Ml (low-order func.)

Low-order signature structures:

Sl ::= Dl1; . . . ;Dln (for any n ∈ N)

Low-order module signature declarations:

Dl ::= proc f (®v : ®τ) → τr (procedure decl.)

Extended module expressions:

m̄ ::= m | absK x

Figure 13: Syntax of statements and modules.

Also, note that when substituting x into p in p.y, we do not

substitute the module component identifier y (essentially, only top-

level module names are substituted). Similarly, when we substitute

x into p in a module declaration (module y = m), we ignore y.

Other typing rules. The typing judgment for module expressions

Γ ⊢p m : M states that the module expression m, declared at path

p, has type M. Functor are typed by the Func rule. Note that the

functor body is typed in an extended typing environment, where

the module parameter x has been declared as an abstract module

with kind param.

The typing judgment for module structures Γ ⊢p,θ st : S is an-

notated by both the module path of the structure being typed, and

the module restriction θ that the structure must verify. Remark

that when we type a procedure using ProcDecl, we check that the

procedure f body satisfies the module restriction θ [f] by requiring
that the restriction checking judgment Γ ⊢ body▷θ [f] holds.

16

Module path typing Γ ⊢ p : M.

Name

Γ(p) = _ : M

Γ ⊢ p : M

Compnt

Γ ⊢ p : sig S1; module x : M; S2 restr θ end

Γ ⊢ p.x : M

FuncApp

Γ ⊢ p : func(x : M′) M Γ ⊢ p′ : M′

Γ ⊢ p(p′) : M[x 7→ memΓ(p′)]

Module expression typing Γ ⊢p m : M.

We omit the rules Γ ⊢ M to check that a module signature M is well-formed.
Alias

Γ ⊢ pa : M

Γ ⊢p pa : M

Struct

Γ ⊢p,θ st : S

Γ ⊢p struct st end : sig S restr θ end

Func

Γ ⊢ M0 Γ(x) undef
Γ, module x = absparam : M0 ⊢p(x) m : M

Γ ⊢p func(x : M0) m : func(x : M0) M

Sub

Γ ⊢p m : M0

⊢ M0 <: M

Γ ⊢p m : M

Module structure typing Γ ⊢p,θ st : S.

ProcDecl

body = { var (®vl : ®τl); s; return r }
®v, ®vl fresh in Γ Γf = Γ, var ®v : ®τ , var ®vl : ®τl
Γf ⊢ s Γf ⊢ r : τr Γ ⊢ body▷ θ [f]

Γ(p.f) undef Γ, proc p.f (®v : ®τ) → τr = body ⊢p,θ st : S

Γ ⊢p,θ (proc f (®v : ®τ) → τr = body; st) : (proc f (®v : ®τ) → τr ; S)

ModDecl

Γ ⊢p.x m : M Γ(p.x) undef Γ, module p.x = m : M ⊢p,θ st : S

Γ ⊢p,θ (module x = m; st) : (module x : M; S)

StructEmp

Γ ⊢p,θ ϵ : ϵ

Environments typing ⊢ E

EnvEmp

⊢ ϵ

EnvSeq

⊢ E E ⊢ δ

⊢ E, δ

EnvVar

E(v) undef

E ⊢ var v : τ

EnvMod

E ⊢x m : M E(x) undef

E ⊢ (module x = m : M)

EnvAbs

E ⊢ Ml E(x) undef

E ⊢ (module x = absK : M)

Figure 14: Core typing rules.

The rule RestrMemExt in Figure 15 is more general than the

RestrMem rule presented in the body, as it allows typing a memory

restriction in any typing environment Γ, not only in an environ-

ment E. Crucially, the complexity checking rule RestrCompl is not
extended to typing environment, because the cost Hoare judgment

E ⊢ {⊤} s {ψ | t} is not defined for typing environment.

Remark B.1. While we could probably extend RestrCompl to

allow typing in a typing environment Γ, this would complicate a lot

the soundness proof of our logic. Indeed, as it stands, we do not

need to show closure of Hoare logic derivations under substitution

of a module parameter x of type absparam :M by a concrete module

m of the same typeM (because an environment E cannot contain a

Restriction checking Γ ⊢ { var (®vl : ®τl); s; return e } ▷θ .

RestrCheck

Γ ⊢ body▷ λm
Γ ⊢ body▷ λc

Γ ⊢ body▷ λm ∧ λc

RestrMemExt

Γ ⊢ s▷ λm Γ ⊢ e ▷ λm

Γ ⊢ { _; s; return e } ▷ λm

RestrMemS

memΓ(s) ⊑ λm

Γ ⊢ s▷ λm

RestrMemE

vars(e) ⊑ λm

Γ ⊢ e ▷ λm

RestrComplTop

Γ ⊢ body▷⊤

RestrCompl

E ⊢ {⊤} s {ψ | t} ⊢ {ψ } r ≤ tr (t + tr · 1conc) ≤compl λc

E ⊢ { _; s; return r } ▷ λc

Notes: the relation ⊑ checks the inclusion of a memory restriction
into another, and is defined in Figure 18.
Also, memΓ(s) computes an over-approximation of a instruction’s
memory footprint, and is defined in Figure 19.

Figure 15: Restriction checking rules.

module A = {
module B = { · · · }

module C = {
module E = A.B (∗ Valid full path ∗)
module F = B (∗ Invalid path ∗)

}}

Figure 16: Example of valid and invalid paths.

module A = {
module B = { proc f () : unit = · · · }

module C = {
proc g () : unit = · · ·

proc h () : unit = {
A.B.f();
A.C.g();

}}}

Figure 17: Example of procedures typing.

declaration of an abstract module of kind param, only of open mod-

ules of kind open, which are never substituted, only instantiated).

Instead, we only need to show closure under such substitution for

typing judgment (not Hoare logic derivations), which makes the

proof simpler.

B.2 Additional Typing Rules
The memory restriction union ⊔, intersection ⊓ and the memory

restriction subset ⊑ operations are defined in Figure 18. In Figure 19,

we present our sub-typing rules, our typing rules for statements

and expressions, and the definition of the functionmemΓ(p) which
computes the memory footprint of p in Γ. Note that we need two

different rules to type function paths: T-Proc1 does a lookup of

the procedure as a component of an already typed module; and

T-Proc2 does a lookup of the procedure in the typing environment,

17

Memory restriction union ⊔

(+all mem\{v1, . . . ,vn }) ⊔ (+all mem\{v ′
1
, . . . ,v ′m }) = + all mem\({v1, . . . ,vn } ∩ {v

′
1
, . . . ,v ′m })

{v1, . . . ,vn } ⊔ {v
′
1
, . . . ,v ′m } = {v1, . . . ,vn } ∪ {v

′
1
, . . . ,v ′m }

(+all mem\{v1, . . . ,vn }) ⊔ {v
′
1
, . . . ,v ′m } = + all mem\({v1, . . . ,vn }\{v

′
1
, . . . ,v ′m })

Memory restriction intersection ⊓

(+all mem\{v1, . . . ,vn }) ⊓ (+all mem\{v ′
1
, . . . ,v ′m }) = + all mem\({v1, . . . ,vn } ∪ {v

′
1
, . . . ,v ′m })

{v1, . . . ,vn } ⊓ {v
′
1
, . . . ,v ′m } = {v1, . . . ,vn } ∩ {v

′
1
, . . . ,v ′m }

(+all mem\{v1, . . . ,vn }) ⊓ {v
′
1
, . . . ,v ′m } = {v ′

1
, . . . ,v ′m }\{v1, . . . ,vn }

Memory restriction subset ⊑

(+all mem\{v1, . . . ,vn }) ⊑ (+all mem\{v ′
1
, . . . ,v ′m }) = {v

′
1
, . . . ,v ′m }) ⊆ {v1, . . . ,vn })

{v1, . . . ,vn } ⊑ {v
′
1
, . . . ,v ′m } = {v1, . . . ,vn } ⊆ {v

′
1
, . . . ,v ′m }

(+all mem\{v1, . . . ,vn }) ⊑ {v
′
1
, . . . ,v ′m } = ⊥

{v1, . . . ,vn } ⊑ (+all mem\{v ′
1
, . . . ,v ′m }) = {v1, . . . ,vn } ∩ {v

′
1
, . . . ,v ′m }) = ∅

Figure 18: Memory restriction operations and type erasure functions.

in case the procedure is declared in one of the parent modules of

the current sub-module being typed (consequently, these modules

are not yet fully typed).

Example B.1. Consider the modules and procedures given in

Figure 17. When typing h, the typing environment contains one

module declaration and one procedure declaration:

Γ = (module A.B = _ : struct proc f() → unit end);

(proc A.C.g() → unit = . . .)

Here, the call to f in h is typed using the T-Proc1 rule, while the

call to g is typed using T-Proc2.

C MODULE RESOLUTION
Our module resolution mechanism, given in Figure 21, allows to

evaluate any module expression m in a typing environment Γ
(mostly, it takes care of functor applications). Essentially, this de-

fines the semantics of our module system, and will be used to give

the semantics of our programming language in Appendix E.

Extended module resolution. Because a module expression m is

evaluated in a typing environment Γ that can contain abstract mod-

ules (representing open code or functor parameters), the resolved

module resΓ(m) may not be a module expression according to the

syntactic category defined in Figure 13. We let extended module

expressions be the elements of the form:

m̄ ::= m | absK x

Note that it would not make much sense to extend the syntax of

module expressions to allow them to contain abstract modules, as

abstract modules of kind param are reserved to the type system;

and open modules must be introduced at the logical level (in the

ambient higher-order logic).

Module resolution. The resolution function resΓ(_) evaluates a
module path, in Γ, into a (resolved) extended module expression,

which can be a module structure, a functor, or an (potentially ap-

plied) abstract module. Mostly, resΓ(_) take care of functor applica-
tion through the rules:

resΓ(p(p
′)) = resΓ(m0[x 7→ p′]) (if resΓ(p) = func(x : M) m0)

resΓ(p(p
′)) = (absK x)(®p0, p′) (if resΓ(p) = (absK x)(®p0))

(the full definition is in Figure 21). In the concrete functor case, we

must substitute the module identifier x into a path p′ in a module

expression m0.

Example C.1. Consider a typing environment Γ, and the path

x.y(z)(v)(w), which must be read as (((x.y)(z))(v))(w). Then, assum-

ing that Γ(z) = absopen z, Γ(v) = mv, Γ(w) = absparam w and:

Γ(x) = struct module y = func(u : _) u end

where mv is some module expression, then resΓ(x.y(z)(v)(w)) =
(absopen z)(v,w).

We define the module procedure resolution function f-resΓ(m. f).
A resolved module procedure f-resE (m. f) is: i) either a concrete
procedure declaration (proc f (®v : ®τ) → τr = body); ii) or the
procedure component f of a resolved (potentially applied) abstract

module (absK x)(®p). f .

Soundness. Then, we need show that our module resolution

mechanism has the subject reduction property. Unfortunately, this

does not hold, because of sub-modules declarations, as shown in

the following example.

Example C.2. Consider a well-typed typing environment ⊢ Γ,
and a module path p where:

Γ ⊢ p : sig S1;module x : M; _ restr _ end

We are going to assume that some kind of subject reduction property

holds for p. More precisely, we assume that:

f-resΓ(p) = (struct st1;module x = m; _ end)
18

Module signature and structure sub-typing ⊢ M1 <: M2 and ⊢ S1 <: S2.

We omit the reflexivity and transitivity rules.
SubSig

⊢ S1 <: S2 ⊢ θ1 <: θ2

⊢ sig S1 restr θ1 end <: sig S2 restr θ2 end

SubFunc

⊢ M′
0
<: M0 ⊢ M <: M′

⊢ func(x : M0) M <: func(x : M′
0
) M′

SubStruct

∀i ∈ {1; . . . ;n}, ⊢ Di <: D′i
⊢ D1; . . . ; Dn <: D′

1
; . . . ; D′n

SubModDecl

⊢ M1 <: M2

⊢ module x : M1 <: module x : M2

Statements and function paths typing Γ ⊢ s and Γ ⊢ F : _.

T-Abort

Γ ⊢ abort

T-Skip

Γ ⊢ skip

T-Seq

Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ s1; s2

T-Assign

Γ ⊢ x : τ Γ ⊢ e : τ

Γ ⊢ x ← e

T-Rand

Γ ⊢ x : τ Γ ⊢ d : τ

Γ ⊢ x
$

←− d

T-Call

Γ ⊢ F : proc f (®v : ®τ) → τr Γ ⊢ x : τr Γ ⊢ ®e : ®τ

Γ ⊢ x ← call F(®e)

T-Proc1

Γ ⊢ p : sig (S1; proc f (®v : ®τ) → τr ; S2) restr θ end

Γ ⊢ p. f : (proc f (®v : ®τ) → τr)

T-Proc2

Γ(p. f) = (proc f (®v : ®τ) → τr = _)

Γ ⊢ p. f : (proc f (®v : ®τ) → τr)

T-If

Γ ⊢ e : bool Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ if e then s1 else s2

T-While

Γ ⊢ e : bool Γ ⊢ s

Γ ⊢ while e do s

Expressions typing Γ ⊢ e : τ .

ExprApp

type(f) = τ1 × · · · × τn → τ ∀i ∈ {1; . . . ;n}, Γ ⊢ ei : τi

Γ ⊢ f (e1, . . . , en) : τ

ExprVar

Γ(v) = τ

Γ ⊢ v : τ

Restriction entailment ⊢ θ <: θ ′.
We omit the transitivity and reflexivity rules for ⊢ θ <: θ ′.

⊑-Proc

∀f ∈ dom(θ ,θ ′), ⊢ θ [f] <: θ ′[f]

⊢ θ <: θ ′

⊑-Split

⊢ λm <: λm
′ ⊢ λc <: λc

′

⊢ λm ∧ λc <: λm
′ ∧ λc

′

⊑-Top

⊢ λ <: ⊤

⊑-Mem

λm ⊑ λm
′

⊢ λm <: λm
′

⊑-MemTop

⊢ λc <: ⊤

⊑-Compl

k ≤ k ′ ∀i,ki ≤ k ′i

⊢ compl[intr : k, x1. f1 : k1, . . . , xn . fn : kn] <: compl[intr : k ′, x1. f1 : k ′
1
, . . . , xn . fn : k ′n]

Memory restriction.

memΓ(abort) = ∅ memΓ(skip) = ∅

memΓ(x ← e) = {x} ⊔ vars(e) memΓ(x
$

←− d) = {x}
memΓ(s1; s2) = memΓ(s1) ⊔memΓ(s1) memΓ(while e do s) = vars(e) ⊔memΓ(s)

memΓ(if e then s1 else s2) = vars(e) ⊔memΓ(s1) ⊔memΓ(s1)

memΓ(x ← call p. f (®e)) = {x} ⊔memΓ(p. f) ⊔ vars(®e)

memΓ(p) = ⊔f ∈procsΓ(p) memΓ(p. f)

When f-resΓ(p. f) = (proc f (®v : ®τ) → τr = { var (®vl : ®τl); s; return r }):

memΓ(p. f) = (memΓ(s) ∪ vars(r))\{ ®v ; ®vl}

When f-resΓ(p. f) = (absK x)(®p0). f , K = open and Γ(x) = absK : func(_) sig _ restr θ end:

memΓ(p. f) = θ [f] ⊔memΓ(®p0)

When f-resΓ(p. f) = (absparam x)(®p0). f :

memΓ(p. f) = memΓ(®p0)

Figure 19: Additional typing rules and operations.

19

Substitution in module signatures and declarations

(func(y : M0)) M1[x 7→ λm] =

{
func(y : M0[x 7→ λm]) (M1[x 7→ λm]) when y , x

func(y : M0) M1 otherwise

(sig S restr θ end)[x 7→ λm] = sig (S[x 7→ λm]) restr (θ [x 7→ λm]) end

(D1; . . . ;Dn)[x 7→ λm] = D1[x 7→ λm]; . . . ;Dn [x 7→ λm]

proc f (®v : ®τ) → τr [x 7→ λm] = proc f (®v : ®τ) → τr
module y : M[x 7→ λm] = module y : (M[x 7→ λm])

Substitution in module restriction(
(f1 : λ1); . . . ; (fn : λn)

)
[x 7→ λm] = (f1 : λ1[x 7→ λm]); . . . ; (fn : λn [x 7→ λm])

(λ0

m ∧ λc)[x 7→ λm] = λ0

m[x 7→ λm] ∧ λc[x 7→ λm]

⊤[x 7→ λm] = ⊤

Substitution in memory restriction

λ0

m[x 7→ λm] = λ0

m ⊔ λm

Substitution in complexity restriction

compl[intr : k, y1 .f1 : k1, . . . , yl .fl : kl][x 7→ λm] = compl[intr : k, (y1 .f1 : k1)[x 7→ λm], . . . , (yl .fl : kl)[x 7→ λm]]

where (y.f : k)[x 7→ λm] =

{
ϵ if y = x

y.f : k otherwise

Substitution in module paths

y[x 7→ p] =
{

p if y = x
y otherwise

(p′.y)[x 7→ p] = (p′[x 7→ p]).y
(p′(p′′))[x 7→ p] = (p′[x 7→ p])(p′′[x 7→ p])

Substitution in module expressions

(func(y : M) m)[x 7→ p] = func(y : M) (m[x 7→ p]) (struct st end)[x 7→ p] = struct st[x 7→ p] end

Substitution in module structures, declarations and procedure body

(d1; . . . ; dn)[x 7→ p] = d1[x 7→ p]; . . . ; dn [x 7→ p] (proc f (®v : ®τ) → τr = body)[x 7→ p] = proc f (®v : ®τ) → τr = (body[x 7→ p])

(module y = m)[x 7→ p] = module y = (m[x 7→ p]) { var (®vl : ®τl); s; return e }[x 7→ p] = { var (®vl : ®τl); s[x 7→ p]; return e }

Substitution in statements

abort[x 7→ p] = abort skip[x 7→ p] = skip

x ← e[x 7→ p] = x ← e x
$

←− d [x 7→ p] = x
$

←− d

(s1; s2)[x 7→ p] = s1[x 7→ p]; s2[x 7→ p] x ← call p′.f (®e)[x 7→ p] = x ← call (p′[x 7→ p]).f (®e)

(if e then s1 else s2)[x 7→ p] = if e then s1[x 7→ p] else s2[x 7→ p] (while e do s)[x 7→ p] = while e do s[x 7→ p]

Figure 20: Substitution functions.

and that we have a derivation:

Γ ⊢p
struct st1;module x = m; _ end :

sig S1;module x : M; _ restr _ end

Then, we know that p.x resolves tom, i.e. f-resΓ(p) = m. But we do

not have:

Γ ⊢p.x m : M

The problem is that the sub-module m may use sub-modules de-

clared in st1. Consequently, it is not well-typed in Γ, but in an

extended typing environment, where the sub-module declarations

in st1 (which have types S1) have been added to Γ. For example, we

can have:

st1 = (module z = m0) m = z

Therefore, we cannot state a subject reduction property for the

module resolution function w.r.t. the typing judgment Γ ⊢p m : M.

Instead, we introduce another typing judgment, noted Γ ⊩ m :M,

which is similar to the typing judgment Γ ⊢p m : M of Figure 14,

but is used to type a module expression in an environment which

has already been typed, while Γ ⊢p m : M is used to type a module

declaration in an environment where some modules have not yet

been fully typed. We postpone its definition to Appendix D.1. Using

this alternative typing judgment notion, we can state the subject

reduction property we want (the proof is postponed to Appendix D).

Lemma C.1 (Subject reduction). If Γ ⊩ E and Γ ⊩ m : M then
Γ ⊩ resE (m) : M whenever resE (m) is well-defined.

D SUBJECT REDUCTION PROPERTY OF
MODULE RESOLUTION

The goal of this section is to prove that the module resolution mech-

anism of Figure 21 has the subject reduction property (Lemma C.1),

which we recall below:

20

Module path resolution resΓ(p) to module expression

resΓ(p) = resΓ(m̄) (if Γ(p) = m̄ : _)

resΓ(p.x) = resΓ(m)
(if resΓ(p) = struct st1;module x = m : M; st2 end)

resΓ(p(p
′)) = resΓ(m0[x 7→ p′]) (if resΓ(p) = func(x : M) m0)

resΓ(p(p
′)) = (absK x)(®p0, p′) (if resΓ(p) = (absK x)(®p0))

Module expression resolution resΓ(m̄)

resΓ(struct st end) = struct st end

resΓ(func(x : M) m) = func(x : M) m

resΓ((absK x)(®p)) = (absK x)(®p)

Module procedure resolution f-resΓ(m. f)
(note that this includes resolution for function paths f-resΓ(p. f))

f-resΓ(p. f) = (proc f (®v : ®τ) → τr = body)
(if Γ(p. f) = (proc f (®v : ®τ) → τr = body))

f-resΓ(m. f) = (proc f (®v : ®τ) → τr = body)
(if resΓ(m) = struct st1; proc f (®v : ®τ) → τr = body; st2 end)

f-resΓ(m. f) = (absK x)(®p). f (if resΓ(m) = (absK x)(®p))

Figure 21: Resolution functions for paths, module expres-
sions and module procedure.

Lemma (Subject reduction). If Γ ⊩ E and Γ ⊩ m : M then
Γ ⊩ resE (m) : M whenever resE (m) is well-defined.

Essentially, this lemma states that evaluating a module expres-

sion preserves its type. This is a crucial property that allows to

show that memory and complexity restrictions are preserved by

the evaluation of a module using the module resolution mechanism.

That is, the module expression resulting from the evaluation of

another module expression has the same memory footprint, and

satisfies the same complexity restrictions.

Proof outline. The proof is essentially the proof that simply typed

λ-calculus has the subject reduction properties, with some conse-

quent additional work to handle module restrictions.

The rest of this section is organized as follows: we define the

typing rules for Γ ⊩ m : M in Appendix D.1, and prove the link

between Γ ⊩ m : M and Γ ⊢p m : M; we present an alternative,

more computational, way of defining the module resolution proce-

dure in Appendix D.2; finally, we prove that the module resolution

procedure has the subject reduction property in Appendix D.3.

D.1 Typing in Typed Environments
During the resolution of a module expression m, we may have to

resolve applied module paths of the form p(p′). This is done by
first evaluating p into a functor or an abstract module, and then

performing the application. Consequently, we can have interme-

diate expressions of the form m(p). Similarly, when resolving a

module component access p.x, we first resolve p into a module

structure and then access its component x. This yields intermediate

expressions of the form m.x.

Module expression typing Γ ⊩ m̃ : M.

D-Alias

Γ ⊢ pa : M

Γ ⊩ pa : M

D-Struct

Γ ⊩θ st : S

Γ ⊩ struct st end : sig S restr θ end

D-Func

Γ ⊢ M0 Γ(x) undef Γ, module x = absparam : M0 ⊩ m : M

Γ ⊩ func(x : M0) m : func(x : M0) M

D-Sub

Γ ⊩ m̃ : M0 ⊢ M0 <: M

Γ ⊩ m̃ : M

D-AbsEmp

Γ ⊩ x : Ml

Γ ⊩ absK x : Ml

D-Abs

Γ ⊩ (absK x)(®p) : func(y : M′) M Γ ⊩ p′ : M′

Γ ⊩ (absK x)(®p, p′) : M[y 7→ memΓ(p′)]

D-Compnt

Γ ⊩ m̄ : sig S1; module x : M; S2 restr θ end

Γ ⊩ m̄.x : M

D-FuncApp

Γ ⊩ m̄ : func(x : M′) M Γ ⊢ p′ : M′

Γ ⊩ m̄(p′) : M[x 7→ memΓ(p′)]

Module structure typing Γ ⊩θ st : S.
D-ProcDecl

body = { var (®vl : ®τl); s; return r }
®v, ®vl fresh in Γ Γf = Γ, var ®v : ®τ , var ®vl : ®τl

Γf ⊢ s Γf ⊢ r : τr Γ ⊢ body▷ θ [f] Γ ⊩θ st : S

Γ ⊩θ (proc f (®v : ®τ) → τr = body; st) : (proc f (®v : ®τ) → τr ; S)

D-ModDecl

Γ ⊩ m : M Γ ⊩θ st : S

Γ ⊩θ (module x = m; st) : (module x : M; S)

D-StructEmp

Γ ⊩θ ϵ : ϵ

Environments typing Γ ⊩ E

D-EnvSeq

Γ ⊩ Γ1 Γ ⊩ Γ2

Γ ⊩ (Γ1; Γ2)

D-EnvEmp

Γ ⊩ ϵ

D-EnvVar

Γ(v) = (var v : τ)

Γ ⊩ (var v : τ)

D-EnvMod

Γ ⊩ m : M

Γ ⊩ (module x = m : M)

D-EnvAbs

Γ ⊢ Ml Γ(x) = absK x : Ml

Γ ⊩ (module x = absK : Ml)

Figure 22: Typing rules in typed environments.

Example D.1. We recall Example C.1 which we presented in

Section 3. We recall that Γ is a typing environment Γ such that:

Γ(x) = struct module y = func(u : _) u end Γ(z) = absopen z

Γ(v) = mv Γ(w) = absparam w

wheremv is some module expression. The resolution of the module

expression x.y(z)(v)(w) in Γ is as follows:

x.y(z)(v)(w)

⇒res. step

(
struct module y = func(u : _) u end

)
.y(z)(v)(w)

21

⇒res. step

(
func(u : _) u

)
(z)(v)(w)

⇒res. step z(v)(w)

⇒res. step (absopen z)(v)(w)

⇒res. step ((absopen z)(v))(w)

⇒res. step (absopen z)(v,w)

Therefore, to prove subject reduction for the module resolution

procedure, we consider an extended syntax for modules (and add

the corresponding typing rules).

Definition D.1. A partially resolved module expression m̃ is an

element of the form:

m̃ ::= m̄ | m̃(p) | m̃.x

It is enough to allow only top-level applications of module ex-

pressions to module paths and module component accesses.

We give the rules for typing in already typed environment in

Figure 22. Roughly, these rules are the module expression, module

structure and module environment typing rules given in Figure 14,

with the following changes:

• when typing a module declaration of a module structure, the

typing environment Γ is not extended with the inferred type,

as it must already be present in Γ. Consequently, we do not

need to keep track of the current path of the sub-module

expression being typed, which simplifies the rules.

• we added a rule for abstract modules, for the application of

a module expression to a module path, and for component

access. This allows to type the intermediate terms that appear

during the module resolution procedure.

• when typing an environment, the typing environment is not

extended with the inferred types.

Before going further, we give the definition of well-formed typing

environments. Essentially, a typing environment Γ is well-formed

if it contains no duplicate declarations, and it contains only well-

formed module signature.

Definition D.2. A typing environment Γ is well-formed iff:

• whenever Γ = (Γ0; Declz; Γ1) then (Γ0; Γ1)(z) undef, where:

Declz ∈
{
module z = m : M; var z : τ ; proc z(®v : ®τ) → τr

}
• whenever Γ = Γ0;module x = m:M; Γ1 thenM is well-formed

in Γ0, i.e. Γ0 ⊢ M.

It is straightforward to check that if Γ is well-typed, then Γ is

well-formed.

Proposition D.1. If ⊢ Γ then Γ is well-formed.

Proof. This is by induction over ⊢ Γ. □

We recall that given a module path p, Γ(p) returns the typing
declaration corresponding to p in Γ, if it exists. Note that this does
not descend in sub-module declarations to retrieve the type of p.
For example, assume that:

Γ =
(
module p = struct module y = m end:

(sig module y : M restr _ end)
)

then Γ(p) = _:(sigmodule y:Mrestr _ end), but Γ(p.y) is not defined.
We introduce a new notion of lookup in a typing environment,

Γ[p], which descends in sub-module declarations. It also descends

below functor definitions, in the case where the functor argument

is a module identifier. Continuing the example above, we have

Γ[p.y] = m : M. Formally:

Definition D.3. For every well-formed typing environment Γ and

module path p, we let:

Γ[p] = m : M (if Γ(p) = m : M)

Γ[p(x)] = m : M (if Γ[p] = func(x : M0) m : func(x : M0) M)

where the functor rule is module alpha-renaming. Moreover, if:

Γ[p] =
(
struct _; module x = m; _ end

)
:

(
sig (_; module x : M; _) restr _ end

)
then:

Γ[p.x] = m : M

The following proposition allows to replace a typing environ-

ment Γ0 by Γ1, as long as they coincide w.r.t. _[p] on every p such

that Γ0[p] is well-defined.

Proposition D.2. For every well-formed environments Γ0 and Γ1,
if Γ0[p] = Γ1[p] for every p such that Γ0[p] is well-defined, then for
any m and M, if Γ0 ⊩ m : M then Γ1 ⊩ m : M

Proof. This is immediate by induction over the typing deriva-

tions Γ0 ⊩ m : M. □

Example D.2. The following two typing environments Γ0 and Γ1

verify the proposition hypothesis:

Γ0 =
(
module p.x = m : M; module p.y = m′ : M′

)
and:

Γ1 =
(
module p =

(
struct module x = m;module y = m′ end

)
:

(
sig module x : M;module y : M′ restr _ end

))
We can strengthen the context.

Proposition D.3. For any well-formed environment Γ, if (Γ, Γ1)

is well-formed then Γ; Γ1 ⊩ m : M whenever Γ ⊩ m : M.

Proof. This is straightforward by induction over the typing

derivation Γ ⊩ m : M. □

We can replay a typing derivation if we have a finer type for a

module declaration in the context.

Proposition D.4. For any well-formed environment Γ, if

Γ,module p = m : M, Γ1 ⊩ m0 : M0

then for any ⊢ M′ <: M, we have

Γ,module p = m : M′, Γ1 ⊩ m0 : M0

Proof. We show this by induction over the typing derivation

Γ,module p : M, Γ1 ⊩ m : M0, by replacing any application of

the D-Alias typing rule on a path starting by p, i.e. of the form
p(p0, . . . , pn).p′, by an application of D-Alias on p, followed by

D-Sub and by the applications of D-FuncApp and D-Compnt to

replay the path typing derivation of Γ ⊢ p(p0, . . . , pn).p′ : M as a

module expression typing derivation of Γ ⊩ p(p0, . . . , pn).p′:M. □

22

Lemma D.5. For every well-formed typing environment Γ such
that Γ(p) undef:
• if Γ ⊢p m : M then there existsM′ well-formed in Γ such that
⊢ M′ <: M and:

Γ;module p = m : M′ ⊩ m : M′ (1)

• if Γ ⊢p,θ (d1, . . . , dn):(D1, . . . ,Dn) then there existsD′
1
, . . . ,D′n

well-formed such that ⊢ D′i <: Di for every i , and:

Γ;δ1, . . . ,δn ⊩θ (d1, . . . , dn) : (D1, . . . ,Dn)

where for every i :

δi = module p.x = m : M

if D′i = (module x : M) and di = (module x = m), and

δi = proc p. f (®v : ®τ) → τr = body

if di = (proc f (®v : ®τ) → τr = body).

Proof. The proof is by induction over the typing derivations in

hypothesis.

• the Alias and StructEmp cases are immediate. Note that we use

the hypothesis Γ(p) undef in the Alias case, to ensure that the

path lookup in Γ is still well-defined.

• we show the Struct case by applying the induction hypothesis,

and using Proposition D.2.

• for ModDecl we have st = (module x = m0; st0), and S =
(module x : M0; S0), and a derivation of the form:

ModDecl

Γ ⊢p.x m0 : M0

Γ(p.x) undef Γ,module p.x = m0 : M0 ⊢p,θ st0 : S0

Γ ⊢p,θ (module x = M0; st0) : (module x : M0; S0)

We know that st0 = (struct d1, . . . , dn end) and:

S0 = (sig D1, . . . ,Dn restr _ end)

By applying the induction hypothesis twice, we know that there

are derivations of:

Γ,module p.x = m0 : M′
0
⊩ m0 : M′

0
(2)

Γ,module p.x = m0 : M0, Γ
′′ ⊩θ (d1, . . . , dn) : (D′1, . . . ,D

′
n) (3)

where ⊢ M′
0
<: M0, and Γ′′ = (D′′

1
, . . . ,D′′n) where for every i ,

⊢ D′i <: Di and:

D′′i =

module p.y = m : M

(if D′i = (module y : M) and di = (module y = m))

proc p. f (®v : ®τ) → τr = body

(if di = (proc f (®v : ®τ) → τr = body))

By Proposition D.3, we deduce from Eq. (2) that there is a deriva-

tion of:

Γ,module p.x = m0 : M′
0
, Γ′′ ⊩ m0 : M′

0

By Proposition D.4, we deduce from Eq. (3) that there is a deriva-

tion of:

Γ,module p.x = m0 : M′
0
, Γ′′ ⊩θ (d1, . . . , dn) : (D′1, . . . ,D

′
n)

We conclude by applying the D-ModDecl typing rule.

• ProcDecl is similar to theModDecl case. We omit the details.

p →Γ m if Γ(p) = m : _

m.x →Γ m′ if m = struct st1;module x = m′; st2 end

m.x →Γ m′.x if m→Γ m′

m(p) →Γ m0[x 7→ p] if m = func(x : M) m0 and x is fresh in E

m̄(p) →Γ (absK x)(®p0, p) if m̄ = (absK x)(®p0)

m(p) →Γ m′(p) if m→Γ m′

Figure 23: The relation→Γ .

• for Sub, we have:

Sub

Γ ⊢p m : M0 ⊢ M0 <: M

Γ ⊢p m : M

By induction hypothesis, we have a derivation of Γ,module p :

M′
0
⊩ m :M′

0
where ⊢ M′

0
<:M0. Using the sub-typing transitivity

rule, we have that ⊢ M′
0
<: M. This concludes this case.

• for Func we havem = func(x :M0) m′ andM = func(x :M0) M′,
and the derivation:

Func

Γ ⊢ M0

Γ(x) undef Γ,module x = absparam : M0 ⊢p(x) m
′

: M′

Γ ⊢p func(x : M0) m′ : func(x : M0) M′

By induction hypothesis, we haveM′′ such that ⊢ M′′ <:M′ and:

Γ,module x = absparam : M0,module p(x) = m′ : M′′ ⊩ m′ : M′′

is derivable. We re-order the declarations in the context, to obtain

a derivation of:

Γ,module p(x) = m′ : M′′,module x = absparam : M0 ⊩ m′ : M′′

(note that the new typing environment is still well-formed). By

applying the D-Func rule, there is a derivation of:

Γ,module p(x) = m′ : M′′ ⊩ func(x : M0) m′ : func(x : M0) M′′

By Proposition D.2, there is a derivation of:

Γ,module p = (func(x : M0) m′) : (func(x : M0) M′′) ⊩

func(x : M0) m′ : func(x : M0) M′′ □

We extend sub-typing judgments to typing environments, by re-

quiring that ⊢ Γ0<:Γ1 whenever Γ0 and Γ1 are of the same length, and

any declaration in Γ0 is a sub-type of the corresponding declaration

in Γ1.

Lemma D.6. If ⊢ Γ then there exists ⊢ Γ′ <: Γ such that Γ′ ⊩ Γ.

Proof. We use Lemma D.5 to replace the EnvMod rules by

D-EnvMod rules. We omit the details. □

D.2 Module Resolution as a Rewrite Relation
We define in Figure 23 the relation→Γ on partially resolved module

expressions. This relation is exactly the evaluation strategy used

by the module resolution procedure defined in Figure 21.

We let m̄ ↓Γ be the normal form of m̄ w.r.t. the reflexive and

transitive closure of→Γ , if it exists.

We now state a property of→Γ in the case where Γ is an envi-
ronment, i.e. top-level module declarations are not module aliases.

23

PropositionD.7. The relation→Γ is deterministic on well-formed
module expression: for every well-formed m̃, if m̃→Γ m̃0 and m̃→Γ m̃1

then m̃0 = m̃1.
Moreover, for any well-formed E and m̃, if resE (m̃) is well-defined

then resE (m̃) = m̃ ↓E .

Proof. The fact that→Γ is deterministic is straightforward from

the definition of→Γ in Figure 23: indeed, we only need to observe

that well-formed module expressions cannot have two module

declarations with the same name.

Moreover, for any m̃1 and m̃2, if m̃1→Γm̃2 and m̃1 is well-formed

then so is m̃2. Hence if→Γ terminates on a well-formed m̃ then

m̃ ↓Γ exists.

Let E be a well-typed environment. We show the second point

by induction over the length of the computation of resE (m̃). In
the environment lookup case, we use the fact that E(p) is either a
module structure, functor or an abstract module, and is therefore

in→E -normal form. We omit the rest of the proof. □

D.3 Subject Reduction
Before proving that our system has the subject reduction property,

we state the following substitution lemmas.

Lemma D.8 (Substitution 1). We have the following substitution
properties:
• if ⊢ θ1 <: θ2 then ⊢ θ1[x 7→ λm] <: θ2[x 7→ λm].
• if ⊢ λ1 <: λ2 then ⊢ λ1[x 7→ λm] <: λ2[x 7→ λm].
• if ⊢ M0 <: M′

0
then ⊢ M0[x 7→ λm] <: M′

0
[x 7→ λm].

Proof. The properties above are shown by induction over their

respective typing derivation. □

Lemma D.9 (Substitution 2). For every:

Γ1; module x = absparam : M; Γ2

which is a well-formed typing environment, if:

Γ1; module x = absparam : M; Γ2 ⊢ e : τ

then:
Γ1; Γ2[x 7→ λm] ⊢ e : τ

Proof. The proof is immediate by induction over the typing

derivation, since module types in the typing environment are not

used when typing expressions. □

Proposition D.10. For any well-formed typing environment Γ, if
Γ ⊢ p : M and memΓ(p) = λm then:

memΓ(F[x 7→ p]) ⊆
(
memΓ,module x=absparam:M(F)

)
[x 7→ λm]

)
Lemma D.11 (Substitution 3). For every well-formed environ-

ment Γ of the form:

Γ1; module x = absparam : M; Γ2

for every module path p such that Γ1 ⊢ p : M, if memΓ1
(p) = λm then:

• if Γ ⊩ m : M0 then:

Γ1; Γ2[x 7→ λm] ⊩ m[x 7→ p] : M0[x 7→ λm]

• if Γ ⊢ { var (®vl : ®τl); s; return e } ▷ λ then:

Γ1; Γ2[x 7→ λm] ⊢ { var (®vl : ®τl); s[x 7→ p]; return e } ▷ λ[x 7→ λm]

Proof. We prove the two properties above simultaneously, by

induction over the corresponding typing derivations. The proof is

straightforward (we omit the details).

Note that we do not need to show closure under substitution of

module parameters in Hoare derivations, only in typing derivations

(see Remark B.1). □

Lemma D.12. If Γ ⊩ E and Γ ⊩ m : M then if m→Γ m′ then
Γ ⊩ m′ : M.

Proof. W.l.o.g., we assume that the typing derivations Γ ⊩ E
and Γ ⊩ m : M never apply the D-Sub typing rules twice in a row

(using the transitivity rule for sub-typing judgments). To simplify

derivations, we also assume that D-Sub is applied once between

each typing rule application (using the sub-typing reflexivity rule

if necessary).

We do a case analysis on the reduction m→Γ m′.

• if x→Γ E(x). We check that we must have a derivation of the

following form:

D-Sub

D-Alias

Γ(x) = _ : M0

Γ ⊩ x : M0 ⊢ M0 <: M

Γ ⊩ x : M

Using the fact that Γ ⊩ E, we know that E = (E0;module x =
m : M0;E1) and Γ ⊩ m : M0. We conclude by applying D-Sub.

• if m.x→Γ m′ where m = (struct st1;module x = m′; st2 end).
We check that we must have a derivation of the following form:

D-Sub

D-Compnt

Γ ⊩ m : sig S1; module x : M0; S2 restr θ end

Γ ⊩ m.x : M0 ⊢ M0 <: M

Γ ⊩ m.x : M

and:

D-Sub

D-Struct+ . . .

. . . Γ ⊩ m′ : M′ ⊢ M′ <: M′
0

Γ ⊩ m : sig S′
1
; module x : M′

0
; S′

2
restr θ ′ end

⊢ M′
0
<: M0 . . .

Γ ⊩ m : sig S1; module x : M0; S2 restr θ end

Hence we have a derivation of Γ ⊩ m′ : M′. We conclude by

sub-typing, using the fact that we can derive ⊢ M′ <: M.

• if m.x→Γ m′.x where m→Γ m′, we know that our derivation is

of the form:

D-Sub

D-Compnt

Γ ⊩ m : sig S1; module x : M0; S2 restr θ end

Γ ⊩ m.x : M0 ⊢ M0 <: M

Γ ⊩ m.x : M

By induction hypothesis, we have a derivation of:

Γ ⊩ m′ : sig S1; module x : M0; S2 restr θ end

We conclude immediately using D-Compnt and D-Sub.

• the case where m(p) →Γ m′(p) with m→Γ m′ is the same.

• if m(p) →Γ m0[x 7→ p] where m = func(x : Mp) m0, we have a

derivation of the form:

D-Sub

D-FuncApp

Γ ⊩ m : func(x : M′p) M
′ Γ ⊢ p : M′p

Γ ⊩ m(p) : M′[x 7→ λm] ⊢ M′[x 7→ λm] <: M

Γ ⊩ m(p) : M

24

where λm = memΓ(p′). Since m = func(x : Mp) m0, we must

have a derivation of the form:

D-Sub

D-Func

Γ ⊢ Mp Γ(x) undef
Γ,module x = absparam : Mp ⊩ m0 : M′′

Γ ⊩ func(x : Mp) m0 : func(x : Mp) M′′

⊢ M′p <: Mp ⊢ M′′ <: M′

Γ ⊩ func(x : Mp) m0 : func(x : M′p) M
′

Since Γ ⊢ p : M′p and ⊢ M′p <: Mp, we know that we have a

derivation of Γ ⊢ p : Mp. Since:

Γ,module x = absparam : Mp ⊩ m0 : M′′

is derivable, we apply Lemma D.11 to get a derivation of:

Γ ⊩ m0[x 7→ p] : M′′[x 7→ λm]

Using Lemma D.8, we know that since ⊢ M′′ <: M′, we have a
derivation of:

Γ ⊩ m0[x 7→ p] : M′[x 7→ λm]

• the case where m̄(p) →Γ (absK x)(®p0, p) and m̄ = (absK x)(®p0) is

immediate. □

We recall and prove Lemma C.1:

Lemma (Subject Reduction). If Γ ⊩ E and Γ ⊩ m : M then
Γ ⊩ resE (m) : M whenever resE (m) is well-defined.

Proof. From Proposition D.7, we know that resE (m) = m ↓E .
From Lemma D.12, we know that the type of the module expression

is preserved. This concludes this proof. □

E INSTRUMENTED SEMANTICS
We now define the denotational semantics of our programming

language and cost judgments. We quickly introduce the main as-

pects of our semantics below, before defining it formally in the rest

of the section. We use this semantics to state and prove our main

soundness theorem in Appendix F.

Program semantics. The semantics JsKE,ρν of our language de-

pends on the initial memory ν , the environment E, and on the

interpretation ρ of E’s abstract modules. Essentially, JsKE,ρν is a

discrete distribution overM × N, where the integer component is

the cost of evaluating s in (E, ρ), starting from the memory ν . Then,
the E-cost of an instruction s under memory ν and interpretation

of E’s abstract modules ρ, denoted by costE,ρν (s) ∈ N ∪ {+∞}, is
the maximum execution cost in any final memory, defined as:

costE,ρν (s) = inf

{
c ′ | Pr

(
(_, c) ← JsKE,ρν ; c ≤ c ′

)
= 1

}
Judgments semantics. Basically, the judgment E ⊢ {ϕ} s {ψ | t}

states that: i) the memory ν obtained after executing s in an initial

memory ν ∈ ϕ must satisfyψ ; ii) the complexity of the instruction s
is upper-bounded by the complexity of the concrete code in s, plus
the sum over all abstract oracles A. f of the number of calls to A. f
times the intrinsic complexity of A. f . Formally:

costE,ρν (s) ≤ t[conc] +
∑

A∈abs(E)
f ∈procs(E(A))

t[A. f] · complE,ρA.f

where complE,ρA.f is the intrinsic complexity of the procedure A. f ,
i.e. its complexity excluding calls to A’s functor parameters.

Outline of this Section. We present the semantics of our pro-

grams in Appendix E.1. Then, we define the semantics of our cost

judgments. This requires two additional complexity measures: the

number of calls a program execution makes to some abstract proce-

dure, and the intrinsic cost of a program execution (i.e. the cost of

the program without the cost of parameters calls). These additional

complexity measures are defined in Appendix E.2. Finally, we give

the semantics of our cost judgment in Appendix E.3.

E.1 Semantics
For any setA, we denote byD(A) the set of discrete sub-distributions
overA— i.e. the set of function µ : A→ [0, 1] with discrete support

s.t. µ is summable and |µ | =
∑
x µ(x) ≤ 1. For x ∈ A, the Dirac

distribution at x is written 1Ax or 1x whenA is clear from the context.

If µ ∈ D(A) and µ ′ ∈ A → D(B), the expected distribution of

µ ′ ∈ D(B) when ranging over µ, written Ex∼µ [µ
′(x)] or Eµ [µ

′], is

defined as Eµ [µ
′] = b ∈ B 7→

∑
a∈A µ(a) µ

′(a)(b). For µ ′ ∈ D(A)

and f : A→ B, the marginal of µ ′ w.r.t. f , written f #(µ ′) ∈ D(B),
is defined as f #(µ ′) = b 7→

∑
a∈A |f (a)=b µ

′(a). We write π #

1
(resp.

π #

2
) for resp. the first and second marginal — i.e. when f is resp. the

first and second projection. For any base type τ ∈ B, we assume an

interpretation domain Vτ . We let V be the set of all possible values

∪τ ∈BVτ . A memory ν ∈ M is a function from V to V . We write

ν [x] for ν (x). For ν ∈ M and v ∈ V , we write ν [x ← v] for the
memory that maps x to v and y to ν [y] for y , x .

Expressions semantics. For any operator f ∈ FE with type τ1 ×

· · ·×τn → τ , we assume given its semantics Lf M : Vτ1
×· · ·×Vτn 7→

Vτ , and the cost of its evaluation cE(f , ·) : Vτ1
× · · · ×Vτn 7→ N. The

semantics LeMν :M → V of a well-typed expression e in a memory

ν is defined inductively by:

LeMν =

{
ν (x) if e = x ∈ V

Lf M(Le1Mν , . . . , LenMν) if e = f (e1, . . . , e1)

And the cost of the evaluation of a well-typed expression cE(e, ·) :

M 7→ N is defined by:

cE(e,ν) =
1 if e = x ∈ V

cf +
∑

1≤i≤n cE(ei ,ν) if e = f (e1, . . . , en)
and cf = cE(f , Le1Mν , . . . , LenMν)

For technical reasons, we assume that there exists one operator

with a non-zero cost.
12

For any distribution operator d ∈ FD with type τ1×· · ·×τn → τ ,
we assume given its semantics LdM : Vτ1

× · · · × Vτn 7→ D(Vτ), and

the cost of its evaluation cD(d, ·) : Vτ1
× · · · × Vτn 7→ N. We define

similarly LdMν :M → D(V) and cD(d, ·) :M 7→ N.

Environment and E-pre-interpretation. To give the semantics of

a program in an environment E, we need an interpretation of E’s

abstract modules. A E-pre-interpretation is a function ρ from E’s

abstract modules to module expressions, with the correct types,

12
Some of our lemmas do not hold if all programs have a cost of zero.

25

JskipKE,ρν = 1
(ν,0)

JabortKE,ρν = 0

Js1; s2K
E,ρ
ν = E

(ν ′,c ′)∼Js1K
E,ρ
ν
[Js2K

E,ρ
ν ′ ⊕ c

′]

Jx ← eKE,ρν = 1
(ν [x←LeMν],cE(e,ν))

Jx
$

←− dKE,ρν = Ev∼LdMν [1(ν [x←v],cD(d,ν))
]

Jif e then s1 else s2K
E,ρ
ν =

Js1K

E,ρ
ν ⊕ cE(e,ν) if LeMν , 0

Js2K
E,ρ
ν ⊕ cE(e,ν) otherwise

Jwhile e do sKE,ρν = lim

n 7→∞
Jloope,sn KE,ρν

where loope,sn+1
= if e then (s; loope,sn) else skip

and loope,s
0
= if e then abort else skip

Moreover, if f-resE (m. f) = proc f (®v : ®τ) → τr = { _; s; return r }:

Jx ← call m. f (®e)KE,ρν =

let ν0 = ν [®v ← L®e Mν] in
E
(ν ′,c ′)∼JsKE,ρν

0

[1ν ′[x←Lr Mν ′],c ′+cE(®e,ν)+cE(r,ν ′)
]

And if f-resE (m. f) = (absopen x)(®p). f :

Jx ← call m. f (®e)KE,ρν = Jx ← call ρ(x)(®p). f (®e)KE,ρν

Figure 24: (E, ρ)-denotational semantics J_KE,ρν .

except for complexity restrictions. We will specify what it means for

a module expression to verify a complexity restriction later, after

having defined the semantics of our language.

Definition E.1. Let erasecompl(M) be the module signature M
where every complexity restriction λc has been erased, by replacing

it by ⊤. Then ρ is a E-pre-interpretation if and only if for every

x such that E = E1;module x = absopen : Ml; E2, we have E1 ⊢ϵ
ρ(x) : erasecompl(Ml).

Note that we type ρ(x) in E1, which lets the interpretation of x
use any module or abstract module declared before x in E.

Programs semantics. If µ ∈ D(M ×N) and n ∈ N, we write µ ⊕ n
for the distribution f #(µ) where f : (m, c) 7→ (m, c + n). Let E be a

well-typed environment, and s be a well-typed instruction in E, i.e.

such that E ⊢ s. The E-denotational semantics of an instruction s
under the memory ν and E-pre-interpretation ρ, written JsKE,ρν ∈

D(M × N), is defined in Figure 24.

We give the semantics for an extended syntax, which allows

procedure calls to be of the form x ← call m. f (®e) where m is a

module expression. Note that this subsumes the syntax of state-

ments, since a module expression m can be a module path p. This
allows to concisely define the semantics of a call to an abstract

procedure (absopen x)(®p). f as the semantics of a call to ρ(x)(®p). f .

y.дJskipKE,ρν = 1
(ν,0)

y.дJabortKE,ρν = 0

y.дJs1; s2K
E,ρ
ν = E

(ν ′,c ′)∼y.дJs1K
E,ρ
ν
[y.дJs2K

E,ρ
ν ′ ⊕ c

′]

y.дJx ← eKE,ρν = 1
(ν [x←LeMν],0)

y.дJx
$

←− dKE,ρν = Ev∼LdMν [1(ν [x←v],0)]

y.дJx ← call m. f (®e)KE,ρν = let ν0 = ν [®v ← L®e Mν] in
E
(ν ′,c ′)∼y.дJsKE,ρν

0

[1
(ν ′[x←Lr Mν ′],c ′)

]

(if f-resE (m. f) = proc f (®v : ®τ) → τr = { _; s; return r })

y.дJx ← call m. f (®e)KE,ρν = y.дJx ← call ρ(x)(®p). f (®e)KE,ρν ⊕ 1

(if f-resE (m. f) = (absopen x)(®p). f and x. f = y.д)

y.дJx ← call m. f (®e)KE,ρν = y.дJx ← call ρ(x)(®p). f (®e)KE,ρν
(if f-resE (m. f) = (absopen x)(®p). f and x. f , y.д)

y.дJif e then s1 else s2K
E,ρ
ν =

y.дJs1K

E,ρ
ν ⊕ 0 if LeMν , 0

y.дJs2K
E,ρ
ν ⊕ 0 otherwise

y.дJwhile e do sKE,ρν = lim

n 7→∞
y.дJloope,sn KE,ρν

Figure 25: Function call counting semantics y.дJ_KE,ρν .

The E-cost of an instruction s under memory ν and E-pre-

interpretation ρ, denoted by costE,ρν (s) ∈ N ∪ {+∞}, is defined as:

costE,ρν (s) = sup(supp(π #

2
(JsKE,ρν)))

where supp is the support of a distribution (this definition is equiv-

alent to the one given in Section 4.3).

E.2 Instrumented Semantics
We present two other instrumented semantics:

y.дJsKE,ρν counts

the number of times s calls an abstract procedure y.д; and iJsKE,ρν
measures the intrinsic cost of an instruction (i.e. without counting

the cost of function calls in a functor parameters).

Function call counting. The function call counting semantics

y.дJsKE,ρν , given in in Figure 25, evaluates the instruction s under
the memory ν and E-pre-interpretation ρ, counting the number of

calls to the abstract procedure y.д.
The maximum number of calls of an instruction s or module

procedure m. f to y.д in (E, ρ) is:

#callsE,ρy.д,ν (s) = sup(supp(π #

2
(y.дJsKE,ρν))) (in memory ν)

#callsE,ρy.д (s) = max

ν ∈M
(#callsE,ρy.д,ν (s)) (in any memory)

26

#callsE,ρy.д (m. f) =
#callsE,ρy.д (s) when f-resE (m. f) =

(proc f (®v : ®τ) → τr = { _; s; _ })

#callsE,ρy.д (ρ(x)(®p). f)ν when f-resE (m. f) =
(absx open)(®p). f

Note that when f-resE (m. f) = (proc f (®v : ®τ) → τr = { _; s; _ }),
we ignore the return expression, since expression cannot contain

procedure calls (only operator applications).

Intrinsic cost. The (E, ρ)-denotational semantics of an instruction

s with intrinsic cost under memory ν and parameters ®x, written
iJsKE,ρ,®xν is the cost of the execution of s under ν in ρ, without
counting the costs of function calls to the parameters ®x. Formally,

iJ_KE,ρ,®xν is defined exactly like J_KE,ρ,®xν in Figure 24, except for

the concrete procedure call case, which is replaced by:

iJx ← call m. f (®e)KE,ρ,®xν =E(ν ′,c ′)∼iJx←call ρ(x)(®p).f (®e)KE,ρ,®xν
[(ν ′, cE(®e,ν))] if z ∈ ®x

iJx ← call ρ(x)(®p). f (®e)KE,ρ,®xν if z < ®x

where f-resE (m. f) = (absopen z)(®p). f .
Remark that both semantics coincide on their first component.

Indeed, for any E-pre-interpretation ρ:

∀ν s. π #

1
(JsKE,ρν) = π #

1
(iJsKE,ρ,®xν)

The (E, ρ)-intrinsic cost i-costE,ρ,®xν (_) ∈ N∪{+∞} of an instruction

s is:

i-costE,ρ,®xν (s) = sup(supp(π #

2
(iJsKE,ρ,®xν)))

The intrinsic cost of a procedure m. f , with parameters ®x, is:

• If f-resE (m. f) = (proc f (®v : ®τ) → τr = { _; s; return r })
then:

i-costE,ρ,®xν (m. f) = i-costE,ρ,®xν (s) + cE(r ,ν)

• If f-resE (m. f) = (absopen x)(®p). f then:

i-costE,ρ,®xν (m. f) = i-costE,ρ,®xν (ρ(x)(®p). f)

And the intrinsic cost in any memory of an instruction s or a module

procedure m. f is:

i-costE,ρ,®z(s) = max

ν ∈M
i-costE,ρ,®zν (s)

i-costE,ρ,®z(m. f) = max

ν ∈M
i-costE,ρ,®zν (m. f)

Interpretations. We now define when a pre-interpretation is an

interpretation.

Definition E.2. Let E be an well-typed environment. A E-pre-

interpretation ρ is an E-interpretation if for every module identifier

x such that E = E1;module x = absopen : Ml; E2 where:

Ml = func(®z : ®M) sig Sl restr θ end

and for every procedure f ∈ procs(S), for every valuation ®m of

the functor’s parameters such that, for every 1 ≤ i ≤ |®z|, if we let

zi = ®z[i], mi = ®m[i] andMi = ®M[i] = sig _ restr λic ∧ _ end,
13

if:

E ⊢ (module zi = mi : erasecompl(Mi))

and

∀д ∈ procs(Mi), costEν (mi .д) ≤ λ
i
c

(with the convention that j ≤ ⊤ for any integer j) then the execution
of f in any memory verifies the complexity restriction in θ [f].

Formally, let E ′ = E;module ®z = absopen : ®M and ρ ′ = ρ, (®z : ®m),
and:

θ [f] = _ ∧ λc = compl[intr : k, y1. f1 : k1, . . . , yl . fl : kl]

Then for every 1 ≤ j ≤ l ,

#callsE
′,ρ′

yj .fj
(x(®z). f) ≤ kj and i-costE

′,ρ′,®z(x(®z). f) ≤ k

Intrinsic cost of a functor. Finally, the (E, ρ)-intrinsic complexity
of a functor procedure x. f , denoted by complE,ρx.f ∈ N∪{+∞}, is the

maximal intrinsic cost of x. f ’s body over all possible memories and

instantiation of x’s functor parameters. Let E(x) = absopen (func(®z :

®M) sig _ end) and E ′ = (E;module ®z = absopen : ®M). Also, let I be

the set E ′-interpretation ρ ′ extending ρ. Then:

complE,ρx.f = sup

ρ′∈I
i-costE

′,ρ′,®z(x(®z). f)

E.3 Soundness of our Proof System
We now have all the tools to define the semantics of our expression

and program cost judgments.

Definition E.3. the judgment ⊢ {ϕ} e ≤ te stands for:

∀ν ∈ ϕ, cE(e,ν) ≤ te

Definition E.4. The judgment E ⊢ {ϕ} s {ψ | t} means that for

any E-interpretation ρ and ν ∈ ϕ:

supp(π #

1
(JsKE,ρν)) ⊆ ψ ∧

costE,ρν (s) ≤ t[conc] +
∑

A∈abs(E)
f ∈procs(E(A))

t[A. f] · complE,ρA.f

Basically, the complexity of the instruction s is upper-bounded
by the complexity of the concrete code in s, plus the sum over all

abstract oracles A. f of the number of calls to A. f times the intrinsic

complexity of A. f .

F HOARE LOGIC FOR COST
We present the full set of rules of our Hoare logic for cost and prove

their soundness.

Hoare logic rules. Our Hoare logic for cost comprises the ba-

sic rules in Figure 26, the abstract call rule in Figure 6, and the

instantiation rule in Figure 27.

The basic rules in Figure 26 are essentially Hoare logic rules with

some additional components to handle the cost aspects of the logic.

Some examples of basic rules: the If rule handles the conditional

program construct, and has already been presented in Section 4.2;

13
Indeed, sinceMl is a low-order signature,Mi must be a module structure signature.

27

Skip

E ⊢ {ϕ } skip {ϕ | 0}

Weak

E ⊢ {ϕ′ } s {ψ ′ | t ′ }
ϕ ⇒ ϕ′ ψ ′ ⇒ ψ t ′ ≤ t

E ⊢ {ϕ } s {ψ | t }

False

E ⊢ {⊥} s {ψ | t }

Assign

⊢ {ϕ } e ≤ te
E ⊢ {ϕ ∧ψ [x ← e]} x ← e {ψ | te }

Rand

⊢ {ϕ0 } d ≤ t
ϕ = (ϕ0 ∧ ∀v ∈ dom(d).ψ [x ← v])

E ⊢ {ϕ } x
$

←− d {ψ | t }

Seq

E ⊢ {ϕ } s1 {ϕ′ | t1 }

E ⊢ {ϕ′ } s2 {ψ | t2 }

E ⊢ {ϕ } s1; s2 {ψ | t1 + t2 }

If

E ⊢ {ϕ ∧ e } s1 {ψ | t }
E ⊢ {ϕ ∧ ¬e } s2 {ψ | t } ⊢ {ϕ } e ≤ te
E ⊢ {ϕ } if e then s1 else s2 {ψ | t + te }

While

I ∧ e ⇒ c ≤ N ∀k, E ⊢ {I ∧ e ∧ c = k } s {I ∧ k < c | t (k)}
∀k ≤ N , ⊢ {I ∧ e ∧ c = k } e ≤ te (k) ⊢ {I ∧ ¬e } e ≤ te (N + 1)

E ⊢ {I ∧ 0 ≤ c } while e do s {I ∧ ¬e |
∑N
i=0

t (i) +
∑N+1

i=0
te (i)}

Call

argsE (F) = ®v ⊢ {ϕ[®v ← ®e]} ®e ≤ te
E ⊢ {ϕ } F {ψ [x ← ret] | t }

E ⊢ {ϕ[®v ← ®e]} x ← call F(®e) {ψ | te + t }
Conc

f-resE (F) = (proc f (®v : ®τ) → τr = { _; s; return r })
E ⊢ {ϕ } s {ψ [ret← r] | t } ⊢ {ψ } r ≤ tret

E ⊢ {ϕ } F {ψ | t + tret }

Convention: ret cannot appear in programs (i.e. ret < V).

Figure 26: Basic rules for cost judgment.
Instantiation

Ml = func(®y : ®M) sig Sl restr θ end
E ⊢x m : erasecompl(Ml) ®z fresh in E

∀f ∈ procs(Sl), (E, module ®z : absopen ®M ⊢ {⊤} m(®z).f {⊤ | tf })
∀f ∈ procs(Sl), tf ≤compl θ [f]

E, module x = absopen : Ml ⊢ {ϕ } s {ψ | ts }

E, module x = m : Ml ⊢ {ϕ } s {ψ | Tins }

where:

Tins =
{
G 7→ ts [G] +

∑
f ∈procs(Sl) ts [x.f] · tf [G]

}
tf ≤compl θ [f] = ∀z0 ∈ ®z, ∀д ∈ procs(®M[zo]), tf [z0 .д] ≤ θ [f][z0 .д] ∧

tf [conc] +
∑

A∈abs(E)
h∈procsE (A)

tf [A.h] · intrE (A.h) ≤ θ [f][intr]

Conventions: intrE (A.h) is the intr field in the complexity restriction of

the abstract module procedure A.h in E.

Figure 27: Instantiation rule for cost judgment.

the assignment rule Assign lets the user provide a dedicated pre-

condition ϕ used to upper-bound the cost of evaluating e14; and the
weakening rule Weak is the standard Hoare logic weakening rule,

with an additional premise t ′ ≤ t .
We already presented the abstract call rule in Figure 6. We now

focus on the instantiation rule.

14
If the rule forced to take ϕ = ψ [x ← e], then it would not be complete, as prior

information on the value on x (e.g. coming from a previous assignment to x) is erased,
which may prevent us from proving a precise upper-bound on ⊢ {ϕ } e ≤ te .

Instantiation rule. The Instantiation rule, given in Figure 27,

allows to instantiate an abstract module x by a concrete module m.

Assume that we can upper-bound the cost of a statement s by ts ,
when x is abstract:

E,module x = absopen : Ml ⊢ {ϕ} s {ψ | ts }

Then we can instantiate x by a concrete module m as long as m
complies with the module signature Ml, which is checked through

two conditions.

First, we check that m has the correct module type, except for

complexity restrictions, through the premiseE ⊢x m:erasecompl(Ml)

Then, we check that m satisfies the complexity restriction θ in

Ml, by requiring that for any procedure f of x:

E,module ®z : absopen ®M ⊢ {⊤} m(®z). f {⊤ | tf }

where tf must respect θ [f], which is guaranteed by tf ≤compl θ [f],
which does two checks:

• first, it ensures that the number of calls to any functor pa-

rameter z0 of x done by m. f is upper-bounded by θ [f][z0].

• then, it verifies that the bound of x’s intrinsic cost θ [f][intr]
upper-bounds the cost of the execution of m. f , excluding
functor parameter calls, through the condition:

tf [conc] +
∑

A∈abs(E)
h∈procsE (A)

tf [A.h] · intrE (A.h) ≤ θ [f][intr]

where intrE (A.h) is the upper-bound on A.h intrinsic cost declared

in E.15 In other words, the concrete execution time tf [conc] of
x. f , plus the abstract execution time of x. f (excluding functor

parameters, already accounted for), must be bounded by θ [f][intr].
The final cost Tins (in Figure 27) is the sum of the cost ts of s

(which excludes the cost of x’s procedures), plus the sum, for any

procedure f of x, of the number of times s called x. f (which is

ts [x. f]), times the cost of x. f (which is tf).

Soundness. We now prove the soundness of our Hoare logic rules.

We recall Theorem 4.1.

Theorem. The proof rules in Figures 6, 26 and 27 are sound.

We focus on the two most complicated rules of our system, Abs

(Section F.1) and Instantiation (Section F.2). The soundness of

the remaining rules is straightforward to show (we omit the proof).

First, some notation. We extend the program semantics J_KE,ρν

to function paths, by letting JFKE,ρν be the execution of F’s body
without the procedure’s arguments evaluation phase:

JFKE,ρν =E
(ν ′,c ′)∼JsKE,ρν

[1ν ′[x←Lr Mν ′],c ′+cE(r,ν ′)
]

(if f-resE (F) = (proc f (®v : ®τ) → τr = { _; s; return r }))

JFKE,ρν =Jρ(x)(®p). f KE,ρν (if f-resE (F) = (absopen x)(®p). f)

The cost of F is defined as expected, by taking the maximum over

all memories of the support of the second marginal of JFKE,ρν :

costE,ρν (F) = sup(supp(π #

2
(JFKE,ρν)))

15
If A.h declares no intrinsic bound in E, then intrE (A.h) is undefined (hence A.h

execution time can be arbitrarily large), and the Instantiation rule cannot be applied.

28

Finally, cost judgment E ⊢ {ϕ} F {ψ | t} on function path have the

same semantics than cost judgment on statements, i.e. for every

well-typed environment E, for every E-interpretation ρ and ν ∈ ϕ:

supp(π #

1
(JFKE,ρν)) ⊆ ψ ∧

costE,ρν (F) ≤ t[conc] +
∑

A∈abs(E)
f ∈procs(E(A))

t[A. f] · complE,ρA.f (4)

F.1 Abstract Call Rule Soundness
We now prove that the abstract call rule Abs in Figure 6 is sound.

First, remark that since the ruleAbs uses a different upper-bound

tH.д(k) on the cost of the k-th call to the oracle H.д, and since the

fact that we are in the k-th call is characterized by the invariant I ,
we must prove both properties (the invariant on the memories, and

the upper-bound on the complexity of the call) simultaneously. The

proofs is by induction on the size in E of the procedure ρ(x). f called,
where procedure calls are inlined. Formally, for every environment

E and E-pre-interpretation ρ, we define:

#sizeEρ (abort) = 1

#sizeEρ (skip) = 1

#sizeEρ (s1; s2) = 1 + #sizeEρ (s1) + #sizeEρ (s2)

#sizeEρ (x ← e) = 1 = 1

#sizeEρ (x
$

←− d) = 1 = 1

#sizeEρ (x ← call F(®e)) = 1 + #sizeEρ (s)
(if f-resE (F) = proc f _ = { _; s; _ })

#sizeEρ (x ← call F(®e)) = 1 + #sizeEρ (x ← call ρ(x)(®p). f (®e))
(if f-resE (F) = (absopen x)(®p). f)

#sizeEρ (if e then s1 else s2) = 1 + #sizeEρ (s1) + #sizeEρ (s2)

#sizeEρ (while e do s) = 1 + #sizeEρ (s)

Note that we do not care about the size of the expressions appearing

in the statement.

We now define and prove our (generalized) induction property,

which we need to prove the soundness of Abs after.

Lemma F.1. Let I a formula, E a well-typed environment, ρ an
E-interpretation and ®x be functor parameters with module types
absopen ®M which are module structure signatures (i.e. not functors).

For every statement s well-typed in E with additional functor
parameters absparam ®x : ®M, and satisfying a memory restriction λsm:

Γ ⊢ s Γ ⊢ s▷ λsm where Γ = E,module ®x = absparam : ®M

Then for every valuation ®p of the parameters ®x well-typed in E (i.e.
E ⊢ ®p : ®M), if we let E ′ = E,module ®x = absopen : ®M, and ®O be an
enumeration of the parameters ®x’s procedures, i.e. of:{

y.h | y ∈ ®x ∧ h ∈ procs(®M[y])
}

Then if:

• the memory of the statement s is independent of I , except for
calls to the parameters ®x, i.e.:

λsm ∩ FV(I) = ∅

• for every parameters’ procedure H.д ∈ procsΓ(®x), the k-th call
toH.д (whenH is instantiated by ®p[H]) preserves the invariant
and has a cost upper-bounded by tH.д[k] (for k ≤ λc[H.д]):

∀®k ≤ λc[®O], ®k[H.д] < λc[H.д] →
E ⊢ {I ®k} ®p[H]. f {I (®k + 1H.д) | tH.д(®k[H.д])} (5)

• the number of calls from s to the parameters’ procedure is
upper-bounded by λc[®O] − ®k (for memory satisfying the in-
variant I ®k):

∀®k ≤ λc[®O], ∀ν ∈ I ®k, ∀H.д ∈ procsE (®x),
#callsE

′,ρ′

H.д,ν (s) ≤ λc[H.д] −
®k[H.д] (6)

For every H.д ∈ procsE (®x) and j < λc[H.д], we define:

call-costE,ρH.д (j) = tH.д(j)[conc]+
∑

A∈abs(E)
f ∈procsE (A)

tH.д(j)[A. f]·complE,ρA.f

Let ρ ′ = ρ, (®x : ®p). We have that for every ®k ≤ λc[®O] and ν ∈ I ®k :

supp(π #

1
(JsKE

′,ρ′
ν)) ⊆ I (®k + #callsE

′,ρ′

®O,ν
(s)) (7)

and:

costE
′,ρ′

ν (s) ≤ i-costE
′,ρ′,®x

ν (s) +

∑
H.д∈procsE (®x)

®k[H.д]+#callsE
′,ρ′

H.д,ν (s)−1∑
j=®k [H.д]

call-costE,ρH.д (j) (8)

That is, the cost of s executed in E ′, ρ ′ and memory ν (satisfy-

ing the invariant I ®k) is upper-bounded by the intrinsic cost of s
with functors parameters ®x, of the sum over functor parameters’

procedures H.д ∈ procsE (®x) of the sum over all calls to H.д (which

ranges from
®k[H.д] to #callsE

′,ρ′

H.д,ν (s) -1) of the concrete cost of (the
j-th call to) H.д (upper-bounded by tH.д(j)[conc]), plus the sum,

over all abstract procedures A. f (in the original environment E), of

the number of times the j-th call to H.д called A. f (upper-bounded

by tH.д(j)[A. f]) times the maximal cost of A. f (which is complE,ρA.f).

Proof. We prove this induction over #sizeEρ (s). We do a case

analysis on s:

• if s is abort or skip, this is immediate.

• if s = s1; s2. Let
®k ≤ λc[®O] and ν ∈ I ®k . We know that:

supp(π #

1
(Js1; s2K

E′,ρ′
ν)) =

⋃
ν ′∈supp(π #

1
(Js1K

E′,ρ′
ν))

supp(π #

1
(Js2K

E′,ρ′

ν ′))

Let
®k1 = ®k + #callsE

′,ρ′

®O,ν
(s1). By induction hypothesis applied

on s1,

supp(π #

1
(Js1K

E′,ρ′
ν)) ⊆ I ®k1 (9)

Let ν ′ ∈ supp(π #

1
(Js1K

E′,ρ′
ν)), we know that

®k1 ≤ λc[®O].
Hence, by induction hypothesis on s2, we deduce that:

supp(π #

1
(Js2K

E′,ρ′

ν ′)) ⊆ I ®k2

29

where
®k2(ν
′) = ®k + #callsE

′,ρ′

®O,ν
(s1) + #callsE

′,ρ′

®O,ν ′
(s2). Since:

#callsE
′,ρ′

®O,ν
(s1) + #callsE

′,ρ′

®O,ν ′
(s2) ≤ #callsE

′,ρ′

®O,ν
(s1; s2) (10)

we deduce:

supp(π #

1
(Js2K

E′,ρ′

ν ′)) ⊆ I (®k + #callsE
′,ρ′

®O,ν
(s1; s2))

which concludes the proofs of the first point. It remains to

prove that the complexity of s1; s2 is upper-bounded by the

wanted quantity. First, we have:

costE
′,ρ′

ν (s1; s2) =

costE
′,ρ′

ν (s1) + max

ν ′∈supp(π #

1
(Js1K

E′,ρ′
ν))

costE
′,ρ′

ν ′ (s2)

By applying the induction hypothesis on s1 and s2 with,

respectively,
®k and

®k1, we get:

costE
′,ρ′

ν (s1) ≤

i-costE
′,ρ′,®x

ν (s1) +
∑

H.д∈procsE (®x)

®k1[H.д]−1∑
j=®k [H.д]

call-costE,ρH.д (j)

and:

costE
′,ρ′

ν ′ (s2) ≤

i-costE
′,ρ′,®x

ν ′ (s2) +
∑

H.д∈procsE (®x)

®k2(ν ′)[H.д]−1∑
j=®k1[H.д]

call-costE,ρH.д (j)

Since i-costE
′,ρ′

ν (s1; s2) is equal to:

i-costE
′,ρ′

ν (s1) + max

ν ′∈supp(π #

1
(Js1K

E′,ρ′
ν))

i-costE
′,ρ′

ν ′ (s2)

and using Equ. (10), we deduce that:

costE
′,ρ′

ν (s1) + cost
E′,ρ′

ν ′ (s2) ≤

i-costE
′,ρ′

ν (s1; s2) +
∑

H.д∈procsE (®x)

®k [H.д]+#callsE
′,ρ′

®O,ν
(s1;s2)−1∑

j=®k [H.д]

call-costE,ρH.д (j)

We conclude by taking the max over ν ′ and using Equ. 9.

• if s = x ← e . Let ®k ≤ λc[®O] and ν ∈ I ®k . Since memΓ(s) ∩
FV(I) = ∅, we know that x < FV(I). Hence the invariant is
preserved, i.e.:

∀ν ′ ∈ supp(π #

1
(JsKE

′,ρ′
ν))), ν ′ ∈ I ®k

Since #callsE
′,ρ′

®O,ν
(s) = 0, this proves the first point. Moreover:

costE
′,ρ′

ν (x ← e) = i-costE
′,ρ′,®x

ν (x ← e)

which concludes the proof.

• the random assignmentx
$

←− d , conditional if e then s1 else s2

and while loop while e do s cases are similar. We omit the

details.

• if s = x ← call F(®e) and f-resE (F) = (proc f (®v : ®τ) → τr =
{ var (®vl : ®τl); s′; return e }), then we proceed as in the

previous case, applying the induction hypothesis on s′. First,
we remark that s′ is smaller than s, since:

#sizeEρ (s
′) < #sizeEρ (x ← call F(®e))

It only remains to check that the induction hypothesis’s hy-

potheses hold. The last two hypotheses are straightforward

to show. It only remains to prove that Γ ⊢ s′ ▷ λsm is derivable.

Since Γ ⊢ s▷ λsm, we know that memΓ(s) ⊆ λsm, where:

memΓ(s) = {x} ⊔memΓ(s
′) ⊔ vars(®e)

Which concludes this case.

• idem if s = x ← call F(®e) and f-resE (F) = (absopen H)(_). f
with H < ®x.
• if s = x ← call F(®e) and f-resE (F) = (absopen H)(®p′).д
with H ∈ ®x, then we use the hypothesis that procedures of

the interpretation of the modules parameters ®x preserves

the invariant. First, since ®x have types ®M and ®M are module

structure signatures, we know that ®p′ is empty (from the fact

that s is well-typed in Γ). Hence f-resE (F) = absopen H.д.

Let
®k ≤ λc[®O] and ν ∈ I ®k . First, using the hypothesis in

Eq. (6), we know that:

®k[H.д] + #callsE
′,ρ′

H.д,ν (x ← call F(®e)) ≤ λc[H.д]

Hence
®k[H.д] < λc[H.д]. By applying Equ. (5) on H.д, we

know that:

E ⊢ {I ®k} ®p[H].д {I (®k + 1H.д) | tH.д(k)} (11)

Since ρ is an E-interpretation, and since ®x have type ®Mwhere

®M are module structure signatures, we can check that ρ ′ is an
E ′-interpretation. Hence, from Equ. (11) and the semantics

of the cost judgment given in Equ. (4) we get that:

supp(π #

1
(J®p[H].дKE,ρν)) ⊆ I (®k + 1H.д) (12)

and:

costE,ρν (®p[H].д)

≤ tH.д(®k[H.д])[conc]

+
∑

A∈abs(E)
f ∈procsE (A)

tH.д(®k[H.д])[A. f] · complE,ρA.f

≤ call-costE,ρH.д (
®k[H.д]) (13)

Observe that since ρ ′ = ρ, (®x : ®p), we have:

Jx ← call F(®e)KE
′,ρ′

ν = Jx ← call ®p[H].д(®e)KE
′,ρ′

ν

Hence Equ. (7) follows directly from Equ. (12). It remains to

show Equ. (8). First, note that:

costE
′,ρ′

ν (x ← call F(®e)) =

i-costE
′,ρ′,®x

ν (x ← call F(®e)) + costE
′,ρ′

ν (®p[H].д)

30

Since ®p is well-typed in E, we know that costE
′,ρ′

ν (®p[H].д) =
costE,ρν (®p[H].д). Hence:

costE
′,ρ′

ν (x ← call F(®e)) =

i-costE
′,ρ′,®x

ν (x ← call F(®e)) + costE,ρν (®p[H].д)

We conclude the proof of Equ. (8) using the inequality above

and Equ. (13). □

Lemma F.2. The rule Abs given in Figure 6 is sound.

Proof. We just apply Lemma F.1 on ρ(x). f . The first two hy-

potheses of the lemma hold thanks to the premises of the Abs rule,

and using the fact our module system has the subject reduction

property (Lemma C.1). The third hypothesis follows from the fact

that ρ is an E-interpretation. □

F.2 Instantiation Rule Soundness
We prove the following technical lemma, which allows to extend an

E-interpretation ρ into an (E,module x = absopen:Ml)-interpretation

ρ ′ = ρ, (x 7→ m). This is possible whenever:
i) m has type erasecompl(Ml);

ii) and we can show that m verifies Ml’s complexity restriction

by proving that:

∀f ∈ procs(Ml), E,module ®x = absopen: ®M ⊢ {⊤}m(®x). f {⊤ | tf }

where ®x are Ml’s functor parameters, and ®M their types.

Lemma F.3. Let E be a well-typed environment,Ml be low-order
module signature s.t.:

Ml = func(®x : ®M) sig _ restr θ end

and m be a module expression s.t. E ⊢x m : erasecompl(Ml). Let Ea =
E,module x = absopen :Ml and ρ be an E-interpretation. If, for every
f ∈ procs(Ml), we have:

E,module ®x = absopen : ®M ⊢ {⊤} m(®x). f {⊤ | tf } ∧

tf ≤compl θ [f] (14)

then ρa = ρ, (x 7→ m) is an Ea -interpretation. Moreover, for any
f ∈ procs(Ml):

complEa,ρax.f ≤ tf [conc] +
∑

A∈abs(E)
h∈procsE (A)

tf [A.h] · complE,ρA.h (15)

Proof. Let ®m be an evaluation of x’s parameters s.t. for every

1 ≤ i ≤ |®x|, if we let xi = ®x[i], mi = ®m[i] and Mi = ®M[i] =
sig _ restr λic ∧ _ end:

E ⊢ (module xi = mi : erasecompl(Mi))

and:

∀д ∈ procs(Mi), costEν (mi .д) ≤ λ
i
c

Let E ′a = Ea ;module ®x = absopen : ®M and ρ ′a = ρa , (®x : ®m). Also, let
y ∈ ®x andд ∈ procs(®M[y]). To prove that ρa is an Ea -interpretation,

we only need to prove that:

#callsE
′
a,ρ
′
a

y.д (x(®x). f) ≤ θ [f][y.д] (16)

and that:

i-costE
′
a,ρ
′
a,®x(x(®x). f) ≤ θ [f][intr] (17)

Restriction to module structures. First, note that w.l.o.g. we can
assume that ®m are all module structure (i.e. of the form struct _ end).
Basically, we show that we can build another interpretation ρ ′′a
extending ρa which satisfies the same hypotheses than ρ ′a , and
such that for every z ∈ ®x, ρ ′′a (z) is a module structure such that, for

every д ∈ procs(®M[z]):

#callsE
′
a,ρ
′
a

z.д (x(®x). f) = #callsE
′
a,ρ
′′
a

z.д (x(®x). f)

and:

i-costE
′
a,ρ
′
a,®x(x(®x). f) = i-costE

′
a,ρ
′′
a,®x(x(®x). f)

Indeed, assume that there exists some y ∈ ®x such that ®m[y] is not a
module structure in ρ ′a . If ®m[y] is a module path p in ρ ′a , then we

resolve it in E, ρ (which is always possible, since ®m[y] is well-typed
in E and ρ is an E-interpretation) until we get a module structure

struct st end, and replace y by struct st end in ρ ′′a . Finally, ®m[y]
cannot be a functor (by typing hypothesis) in ρ ′a . We repeat the

steps above until (ρ ′a)[®x] are all module structures.

Proof of Equ. (16). Since ρ ′a (x) = m and m is well-typed in E,

and since the module expressions ®m are well-typed in E, we can

removed x from the environment and the interpretation while keep-

ing the semantics unchanged. That is, we have:

#callsE
′
a,ρ
′
a

y.д (x(®x). f) = #callsE
′,ρ′

y.д (m(®x). f) (18)

where:

E ′ = E;module ®x = absopen : ®M and ρ ′ = ρ, (®x : ®m)

Since E is well-typed, and ®m have types ®M in E, and since ®M is

not a functor type, we can check that E ′ is well-typed, and ρ ′ is an
E ′-interpretation. Using Equ. (14), we get:

∀ν , costE′,ρ′ν (m(®x). f) ≤ tf [conc]+
∑

A∈abs(E′)
h∈procsE′ (A)

tf [A.h]·complE
′,ρ′

A.h (19)

Let N > 0 be an non-zero positive integer. We are going to change

the interpretation of y in ρ ′ by adding some code doing nothing

and taking time N . Let sty be such that ρ ′(y) = struct sty end. By
typing hypothesis, we know that sty is of the shape:

sty = st1; proc д(®v : ®τ) → τr = { var (®vl : ®τl); sд ; return eд }; st2

Then, we let stNy be the module structure:

st1; proc д(®v : ®τ) → τr = { var (®vl : ®τl); (tic
N

; sд); return eд }; st2

and let ρ ′N be the interpretation with the same domain as ρ ′ s.t.:

∀w ∈ dom(ρ ′), ρ ′N (w) =
{
ρ ′(w) if w , y

struct stNy end if w = y

Let ν be some arbitrary memory. Since ρ ′ is an E ′-interpretation,
then so is ρ ′N . Using Equ. (14), we get:

cost
E′,ρ′N
ν (m(®x). f) ≤ tf [conc] +

∑
A∈abs(E′)

h∈procsE′ (A)

tf [A.h] · compl
E′,ρ′N
A.h (20)

Moreover, we can easily check that:

#callsE
′,ρ′

y.д (m(®x). f) = #calls
E′,ρ′N
y.д (m(®x). f)

31

and:

cost
E′,ρ′N
ν (m(®x). f) = costE

′,ρ′
ν (m(®x). f) + N · #callsE

′,ρ′
y.д (m(®x). f)

From Equ. (20), we have:

costE
′,ρ′

ν (m(®x). f) + N · #callsE
′,ρ′

y.д (m(®x). f) ≤

tf [conc] +
∑

A∈abs(E′)
h∈procsE′ (A)

tf [A.h] · compl
E′,ρ′N
A.h

Using the inequality above, and Equ. (19), we have:

N · #callsE
′,ρ′

y.д (m(®x). f)

≤
∑

A∈abs(E′)
h∈procsE′ (A)

tf [A.h] · (compl
E′,ρ′N
A.h − complE

′,ρ′

A.h)

≤ tf [y.д] · (compl
E′,ρ′N
y.д − complE

′,ρ′
y.д)

(Since ∀z , y, ρ ′N (z) = ρ
′(z))

≤ tf [y.д] · N

We deduce that #callsE
′,ρ′

y.д (m(®x). f) ≤ tf [y.д]. From Equ. (14), we

get that:

#callsE
′,ρ′

y.д (m(®x). f) ≤ θ [f][y.д]

This, together with Equ. (18), proves Equ. (16)

Finally, to prove that Equ. (17) and Equ. 15 hold we do the exactly

the same reasoning, this time by adding to the interpretation of x
some code doing nothing and taking time N . □

We also prove the following weakening lemma for the intrinsic

complexity of a procedure.

Lemma F.4. For every well-typed environment E, if:

E = E1; E2 where E1 = E0;module x = absopen : Ml

and E2 contains onlymodule declarations. Then for every f ∈ procs(Ml)

and E-interpretation ρ, we have complE,ρx.f = complE1,ρ1

x.f where ρ1

is the restriction of ρ to E1’s abstract modules.

Proof sketch. AssumeMl = (func(®x : ®M) sig _ end). Let E ′ =
(E,module ®x = absopen : ®M) and E ′

1
= (E1,module ®x = absopen : ®M),

we prove that complE,ρx.f ≤ complE1,ρ1

x.f and complE,ρx.f ≥ complE1,ρ1

x.f .

The latter inequality is straightforward to show, since any E ′
1
-

interpretation ρ1 can be extended into an E ′-interpretation ρ that

leaves the intrinsic cost of x unchanged, i.e. such that for any ν :

i-costE
′,ρ′,®x

ν (x(®x). f) = i-cost
E′

1
,ρ′

1
,®x

ν (x(®x). f)

To prove the former inequality, we show that any E ′-interpretation

ρ can be transformed into anE ′
1
-interpretation ρ ′ such that Equ. (F.2)

holds, by inlining all modules of E2 in ρ. We omit the details. □

Lemma F.5. The rule Instantiation given in Figure 27 is sound.

Proof. We consider an instance of the rule Instantiation. We

want to prove that:

E,module x = m : Ml ⊢ {ϕ} s {ψ | Tins}

Let Ec = (E,module x = m :Ml) and Ea = (E,module x = absopen :

Ml). We know that:

Ml = func(®y : ®M) sig Sl restr θ end E ⊢x m : erasecompl(Ml)

Let ρ be an Ec -interpretation and ν ∈ ϕ, we need to show that for

every memory ν :

supp(π #

1
(JsKEc ,ρν)) ⊆ ψ (21)

costEc ,ρν (s) ≤ Tins[conc] +
∑

A∈abs(Ec)
д∈procsEc (A)

Tins[A.д] · complEc ,ρA.д (22)

We know thatMl = func(®y : ®M) sig Sl restr θ end and:

Ea ⊢ {ϕ} s {ψ | ts } (23)

Using Lemma F.3, we know that ρa = ρ, (x 7→ m) is an Ea -

interpretation. Hence, using Equ. (23), we deduce that:

supp(π #

1
(JsKEa,ρaν)) ⊆ ψ (24)

costEa,ρaν (s) ≤ ts [conc] +
∑

A∈abs(Ea)
д∈procsEa (A)

ts [A.д] · complEa,ρaA.д (25)

Using the fact that ρa (x) = m, we can check (by induction over

#sizeρa
Ea
(s)) that:

JsKEa,ρaν = JsKEc ,ρν and costEa,ρaν (s) = costEc ,ρν (s)

From the left equality above and Equ. (24), we know that Equ. (21)

holds. It remains to prove Equ. (22).

From the right equality above and Equ. (25):

costEc ,ρν (s) ≤ ts [conc] +
∑

A∈abs(Ea)
д∈procsEa (A)

ts [A.д] · complEa,ρaA.д

≤ ts [conc] +
∑

f ∈procs(Sl)

ts [x. f] · complEa,ρax.f

+
∑

A∈abs(Ec)
д∈procsEc (A)

ts [A.д] · complEa,ρaA.д

We replace complEa,ρaA.д by complEc ,ρA.д for every A ∈ abs(Ec) and
д ∈ procsEc (A) using Lemma F.4:

costEc ,ρν (s) ≤ ts [conc] +
∑

f ∈procs(Sl)

ts [x. f] · complEa,ρax.f

+
∑

A∈abs(Ec)
д∈procsEc (A)

ts [A.д] · complEc ,ρA.д (26)

Using Lemma F.3, we upper-bound complEa,ρax.f for every f ∈

procs(Sl):

complEa,ρax.f ≤ tf [conc] +
∑

A∈abs(E)
д∈procsE (A)

tf [A.д] · complE,ρA.д

32

We check that the quantities above are identical when evaluated in

Ec , hence:

complEa,ρax.f ≤ tf [conc] +
∑

A∈abs(Ec)
д∈procsEc (A)

tf [A.д] · complEc ,ρA.д

Hence, re-organizing the terms in the sum in Equ. (26):

costEc ,ρν (s) ≤ ts [conc] +
∑

f ∈procs(Sl)

ts [x. f] · tf [conc] +∑
A∈abs(Ec)д∈procsEc (A)

(
ts [A.д] +

∑
f ∈procs(Sl)

ts [x. f] · tf [A.д]
)
· complEc ,ρA.д

Which, by definition of Tins, is exactly Equ. (22). □

33

	Abstract
	1 Introduction
	2 Warm up example: PKE from a one-way trapdoor permutation
	3 Enriched Easycrypt Module System
	3.1 Syntax of Programs and Modules
	3.2 Module Signatures and Restrictions
	3.3 Typing Enriched Module Restrictions

	4 Complexity Reasoning in Easycrypt
	4.1 Cost Judgment
	4.2 Hoare Logic for Cost Judgment
	4.3 Soundness

	5 Example: Universal Composability
	5.1 Mechanized Formalization in EasyCrypt

	6 Related work
	7 Conclusion
	References
	A The dummy adversary in UC
	B Typing Rules
	B.1 Program and Module Typing
	B.2 Additional Typing Rules

	C Module Resolution
	D Subject Reduction Property of Module Resolution
	D.1 Typing in Typed Environments
	D.2 Module Resolution as a Rewrite Relation
	D.3 Subject Reduction

	E Instrumented Semantics
	E.1 Semantics
	E.2 Instrumented Semantics
	E.3 Soundness of our Proof System

	F Hoare Logic for Cost
	F.1 Abstract Call Rule Soundness
	F.2 Instantiation Rule Soundness

