
Efficient Adaptively-Secure IB-KEMs and VRFs via Near-Collision
Resistance*

Tibor Jager1, Rafael Kurek1 and David Niehues2

1Bergische Universität Wuppertal, Wuppertal, Germany
tibor.jager@uni-wuppertal.de, rafael.kurek@rub.de

2Paderborn University, Paderborn, Germany, david.niehues@upb.de

February 13, 2021

Abstract

We construct more efficient cryptosystems with provable security against adaptive attacks, based on
simple and natural hardness assumptions in the standard model. Concretely, we describe:

• An adaptively-secure variant of the efficient, selectively-secure LWE-based identity-based encryp-
tion (IBE) scheme of Agrawal, Boneh, and Boyen (EUROCRYPT 2010). In comparison to the
previously most efficient such scheme by Yamada (CRYPTO 2017) we achieve smaller lattice
parameters and shorter public keys of size O(log λ), where λ is the security parameter.

• Adaptively-secure variants of two efficient selectively-secure pairing-based IBEs of Boneh and
Boyen (EUROCRYPT 2004). One is based on the DBDH assumption, has the same ciphertext size
as the corresponding BB04 scheme, and achieves full adaptive security with public parameters of
size only O(log λ). The other is based on a q-type assumption and has public key size O(λ), but
a ciphertext is only a single group element and the security reduction is quadratically tighter than
the corresponding scheme by Jager and Kurek (ASIACRYPT 2018).

• A very efficient adaptively-secure verifiable random function where proofs, public keys, and secret
keys have size O(log λ).

As a technical contribution we introduce blockwise partitioning, which leverages the assumption that a
cryptographic hash function is weak near-collision resistant to prove full adaptive security of cryptosys-
tems.

1 Introduction

A very fundamental question in cryptography is to which extent idealizations like the random oracle
model [BR93] are necessary to obtain practical constructions of cryptosystems. By advancing our tech-
niques to prove security of schemes, we may eventually be able to obtain standard-model schemes that are
about as efficient as corresponding schemes with security proofs in the ROM. From a practical perspective,
it would be preferable to have security guarantees that are not based on an uninstantiable model [CGH98].

*This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre On-
The-Fly Computing (GZ: SFB 901/3) under the project number 160364472. Supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, grant agreement 802823.

1

From a theoretical perspective, it allows us to understand when a random oracle is necessary, and when
not. For some primitives it is known that a programmable random oracle is indeed inherently necessary
[Nie02, FLR+10, HMS12, FF13]. But for many others, including those considered in this paper, there are
no such impossibility results.

In the context of identity-based encryption the established standard security notion [BF01] considers an
adversary which is able to choose the identities for which it requests secret keys or a challenge ciphertext
adaptively in the security experiment. This yields much stronger security guarantees than so-called selective
security definitions [BB04a], where the adversary has to announce the “target identity” associated with a
challenge ciphertext at the beginning of the security experiment, even before seeing the public parameters.

“Selective” security is much easier to achieve and therefore yields more efficient constructions. The ran-
dom oracle model is then a useful tool to generically convert a selectively-secure scheme into an adaptively-
secure one. This has negligible performance overhead, and thus yields an efficient and adaptively-secure
construction. This generic construction is based on the fact that a random oracle is “programmable”, which
essentially means that it is possible to adaptively modify the mapping of function inputs to outputs in a way
that is convenient for the security proof. While this is very useful to achieve efficient and adaptively-secure
constructions, it is often considered a particularly unnatural property of the random oracle model, due to the
fact that no fixed function can be as freely adaptively programmed as a random oracle.

There exist techniques to achieve adaptive security in the standard model by realizing certain properties
of a random oracle with a concrete construction (i. e., in the standard model). This includes admissible hash
functions [BB04b], programmable hash functions [Wat05, HK08, HJK11, FHPS13, CFN15], and extremely
lossy functions [Zha16]. However, these typically yield significantly less efficient constructions and are
therefore less interesting for practical applications than corresponding constructions in the random oracle
model.

A recent, quite different approach that addresses this issue is to use truncation collision resistance [JK18]
of a cryptographic hash function to achieve adaptive security. In contrast to the aforementioned approaches,
this does not introduce a new “algebraic” construction of a hash function. Instead, their idea is to for-
mulate a concrete hardness assumption that on the one hand is “weak enough” to appear reasonable for
standard cryptographic hash functions, such as SHA-3, but which at the same time is “strong enough” to
be used to achieve adaptive security. It is shown that this indeed yields very efficient and adaptively-secure
constructions, such as identity-based encryption with a single group element overhead and digital signa-
tures that consist of a single group element. Notably, truncation collision resistance is also achieved by a
non-programmable random oracle, even though this security notions is considered as a (non-standard, but
seemingly reasonable) security notion for standard-model cryptographic hash functions. However, the main
disadvantages of the constructions in [JK18] are that very strong computational hardness assumptions (so-
called q-type assumptions with very large q) are required, and that the reductions are extremely non-tight.

1.1 Our contributions.

We introduce blockwise partitioning as a new approach to leverage the assumption that a cryptographic
hash function is weak near-collision resistant. We will show that our technique yields more efficient and
tighter constructions of identity-based encryption, based on lattices and on pairings, and a highly efficient
new verifiable random function. We give a more detailed comparison between blockwise partitioning based
on weak near-collision resistance and the results from [JK18] in Section 2.

Near-collision resistance. We informally say that a hash functions is weak near-collision resistant if the
generic birthday attack is the fastest algorithm to find collisions on a fixed subset of the output bits. We for-

2

Schemes

|mpk|
of
Zn×mq

matr.

|usk|, |ct|
of

Zmq vec.

LWE
param

1/α

Reduction
Cost

Remarks

[CHKP10] O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)‡

[ABB10b]+[Boy10] O(λ) O(1) Õ(n5.5) O(ε2/qQ)

[Yam16] O(λ1/µ)† O(1) nω(1) O(εµ+1/kQµ)†

[ZCZ16] O(logQ) O(1) Õ(Q2n6.5) O(ε/kQ2) Q-bounded

[AFL16]∗ O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)

[BL16] O(λ) O(1) superpoly(n) O(λ)

[KY16] O(λ1/µ)† O(1) O(n2.5+2µ)† O((λµ−1εµ/Qµ)µ+1)† Ring-based

[Yam17a] + FMAH § O(log3 λ) O(1) Õ(n11) O(εν+1/Qν)‡

[Yam17a] + FAFF § O(log2 λ) O(1) poly(λ) O(ε2/k2Q)
Expensive
offline phase

Sec. 3 O(log λ) O(1) Õ(n6) O(ε2/t2)

Table 1: Comparison of Adaptively Secure IBEs based on LWE in the standard model
We compare adaptively secure IBE schemes under the LWE assumption that do not use random oracles. We
measure the size of ct and usk in the number of Zmq vectors and the size of mpk in the number of Zn×mq

matrices. Q, ε and t, respectively, denote the number of queries, the advantage against the security of the
respective IBE, and the runtime of an adversary. We measure the reduction cost by the advantage of the
algorithm solving the LWE problem that is constructed from the adversary against the IBE scheme. All
reduction costs were computed using the technique of Bellare and Ristenpart [BR09].

† The constant µ ∈ N can be chosen arbitrarily. However, the reduction cost degrades exponentially in
µ and hence it should be chosen rather small.

‡ ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of an underlying
error correcting code. ν can be chosen arbitrarily close to one by choosing c closer to 1/2 [Gol08].
However, this comes with larger public keys as shown in [JN19].

∗ The authors also propose an additional scheme that we do not include, because it relies on much
stronger complexity assumptions.

§ Yamada [Yam17a] provides two instantiations of his IBE, one based on a modified admissible hash
function (FMAH) and one based on affine functions (FAFF). When Yamada’s scheme is used with the
second instantiation, the key generation and encryption need to compute the description of a branching
program that computes the division. This makes the construction less efficient.

3

mally introduce weak-near collision resistance in Definition 1. It can be seen as a new variant of truncation
collision resistance [JK18], which essentially captures the same intuition and therefore can be considered
equally reasonable.

Near-collision resistance has been studied in several previous works, such as [BC04, BCJ+05, PS14].
The Handbook of Applied Cryptography [MvOV96, Remark 9.22] lists near-collision resistance as a de-
sired property of hash functions and a potential certificational property. Moreover, the sponge construction
for hash functions, which SHA-3 is based on, has been shown to be indifferentiable from a random or-
acle [BDPV08] in a slightly idealized model, which immediately implies near-collision resistance of the
sponge construction in this model. Since weak near-collision resistance is an even weaker property, we view
it as a natural property of cryptographic hash functions.

Lattice-based IB-KEM. We apply our approach to construct a lattice-based IB-KEM with constant size
ciphertexts and public keys of size O(log λ). This scheme has efficiency close to existing selectively-
secure ones, which makes progress towards answering an open problem posed in Peikert’s survey on lat-
tice cryptography [Pei15] on the existence of adaptively-secure schemes whose efficiency is comparable to
selectively-secure ones.

Our construction uses similar techniques to [DM14, Alp15], who were only able to obtain digital sig-
nature schemes, due to the fact that their approach is based on “confined guessing” [BHJ+15], which is
incompatible with standard security models for identity-based KEMs. We resolve this by implementing a
similar technique with near-collision resistant hash functions. Our IB-KEM is based on the IBE scheme
of Yamada [Yam17a] and is currently the most efficient one with only O(log λ) many matrices in the
public parameters and only very small constant factors in the Landau symbol. Compared to Yamada’s
scheme [Yam17a], our scheme enjoys smaller LWE parameters and a smaller master public key. Compared
to the scheme of Zhang et al. [ZCZ16], which to the best of our knowledge is the only other scheme with
a master public key of size O(log λ), our scheme has a smaller concrete key size and, most importantly,
much better LWE parameters. Furthermore, the scheme by Zhang et al. is based on cover-free sets and thus
requires the number of queries to be known a priori. We compare our scheme with previous schemes in
Table 1, which is based on the respective table by Yamada [Yam17a].

Pairing-based IB-KEM. We also construct two new variants of the pairing-based identity-based encryp-
tion schemes of Boneh and Boyen [BB04a] and Waters [Wat05]. In comparison to [BB04a] we achieve
adaptive security instead of selective security. In comparison to [Wat05] we have public parameters of size
O(log λ) instead of O(λ). Security is based on the same algebraic complexity assumption as the original
schemes plus weak near-collision resistance. The security analysis is also much simpler than in [Wat05] or
the simplified proof by Bellare and Ristenpart [BR09] and does not require an “artificial abort” [Wat05].
To our best knowledge, this is the first adaptively-secure IBE scheme where ciphertexts consist only of two
elements of a prime order algebraic group with logarithmic-size public parameters. The scheme also gives
rise to an adaptively-secure (EUF-CMA) CDH-based digital signature scheme with logarithmic-size keys.
See Table 2.

We also describe a new adaptively-secure variant of a scheme by Boneh and Boyen [BB04a] based
on a q-type assumption where a ciphertext consists only of a single group element. In comparison to the
corresponding construction from [JK18], the q of the required q-type assumption is reduced quadratically,
while the tightness of the reduction is improved quadratically, too. This scheme also gives rise to a signature
scheme with adaptive security in the standard model, where a signature is only a single element from a
prime-order group, which achieves the same quadratic improvement over a construction from [JK18].

4

Scheme |mpk| |usk| |ct| Security Assumption ROM Security Loss
[BF01] 2 1 1 adap. DBDH Yes O(qkey)
[Wat05] O(λ) 2 2 adap. DBDH No O(t2 + (λ · qkey · ε−1)2)
[Wat09] 13 9 10 adap. DLIN+DBDH No O(qkey)
[Lew12] 25 6 6 adap. DLIN No O(qkey)

[CLL+13] 9 4 4 adap. SXDH No O(qkey)
[AHY15] O(λ) 8 8 adap. DLIN No O(log(λ))

Sec. 4.1 O(log λ) 2 2 adap. DBDH No O(t2A/εA)

[BB04a] 4 2 2 selec. qDBDHI No O(1)
[Gen06] 3 2 3 adap. qABDHE No 1 +O(q2

key)/tA
[JK18] O(λ) 1 1 adap. qDBDHI No O(t7A/ε

4
A)

Sec. 4.2 O(λ) 1 1 adap. qDBDHI No O(t3A/ε
2
A)

Table 2: Comparison of IB-KEMs based on pairings with prime order groups and short ciphertexts. |mpk|
is the number of group elements in public keys (descriptions of groups and hash functions not included),
λ the security parameter. All public keys include at least one element from the target group of the pairing,
except for [BF01]. |usk| and |ct| are the respective numbers of group elements in the user secret keys
and ciphertexts when viewed as a KEM. “adap.” means adaptive IND-ID-CPA security as defined below,
“selec.” is selective security in the sense of [BB04a]. The security loss is defined as the value L that satisfies
tB/εB = L · tA/εA, where tA,εA and tB,εB are the respective running time and advantage of the adversary
and reduction and we ignored negligible terms in the security loss. qkey is the number of identity key queries.

Pairing-based VRF. As our last contribution, we construct a new VRF based on the q-DBDHI assumption
by using blockwise partitioning and techniques of Yamada’s VRF [Yam17a]. Our VRF is the first to achieve
both small public keys and small proofs at the same time. Furthermore, the size of the keys and proofs is not
only asymptotically small but also concretely: for λ = 128, public keys of our VRF consist of only 10 group
elements and proofs of only 9 group elements. This is very close to the proof-size of Kohl’s VRF [Koh19],
which achieves proofs of size ω(1) but has larger public keys. Other constructions, like [Yam17a, Kat17]
that also achieve (poly-)logarithmic size public keys and/or proofs suffer from large constant factors, even
under very optimistic assumptions as shown by Jager and Niehues [JN19]. Furthermore, unlike other VRF
constructions, we do not need the artificial abort technique [Wat05] or balancing [BR09, Jag15], leading to
a simpler reduction. We compare our construction with previous constructions in Table 3, which is based on
the respective table by Kohl [Koh19].

2 Blockwise Partitioning via Near-Collision Resistance

2.1 High-level approach.

Confined guessing [BHJ+13, BHJ+15] is a semi-generic technique to construct efficient and adaptively-
secure digital signature schemes. It has been used for instance in [DM14, Alp15]. Unfortunately, it is only
applicable to signatures, but neither to identity-based schemes such as identity-based key encapsulation
mechanisms (IB-KEMs), nor to verifiable random functions (VRFs). The reason is essentially that this
approach achieves only non-adaptive security, which is sufficient for signatures (as adaptive security can

5

Schemes |vk| |π| Assumption Security loss
[HW10] O(λ) O(λ) O(λ ·Q)-DDHE O(λQ/ε)

[BMR10] O(λ) O(λ) O(λ)-DDH O(λ)
[Jag15] O(λ) O(λ) O(log(Q/ε))-DDH O(Qν/εν+1)

[HJ16] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)

[Yam17a] Sec. 6.1 ω(λ log2 λ)† ω(log2 λ)† Õ(λ)-DDH O(Qν/εν+1)

[Yam17a] Sec. 6.2 ω(log2 λ)† ω(
√
λ log2 λ)† Õ(λ)-DDH O(Qν/εν+1)

[Yam17b] App. C. ω(log2 λ)† poly(λ) poly(λ)-DDH O(λ2Q/ε2)
[Kat17] Sec. 5.1 ω(log2 λ)† ω(λ log2 λ)† ω(log2 λ)†-DDH O(Qν/εν+1)

[Kat17] Sec. 5.3 ω(
√
λ log λ)† ω(log λ)† ω(log2 λ)†-DDH O(Qν/εν+1)

[Ros18] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)

[Koh19] ω(λ log λ)† ω(log λ)† DLIN O(|π| log(λ)Q2/ν/ε3)

[Koh19] ω(λ2+2η) ω(1)† DLIN O(|π| log(λ)Q2+2/ν/ε3)
[JN19] O(λ) O(λ) O(t2/ε)-DDH O(t3/ε2)

Sec. 5 O(log λ) O(log λ) O(t2/ε)-DDH O(t2/ε2)

Table 3: Comparison of Adaptively Secure VRFs in the standard model
We compare adaptively secure VRF schemes in the standard model. We measure the size of vk and π in the
number of the respective group. Q, ε and t respectively denote the number of queries an adversary makes,
the adversaries advantage against the security of the respective VRF and the adversaries runtime. Most of
the constructions use an error correcting codeC : {0, 1}λ → {0, 1}n with constant relative minimal distance
c ≤ 1/2, where n,ν > 1 can be chosen arbitrarily close to 1 by choosing c arbitrarily close to 1/2 [Gol08,
Appendix E.1]. However, this leads to larger n and by that to larger public keys and/or proofs as shown
in [JN19].

† Note that these terms only hold for “λ large enough” and therefore, key and proof sizes might have to
be adapted with larger constants in order to guarantee adequate security.

6

then be easily achieved generically), but not for IB-KEMs or VRFs.
We propose blockwise partitioning as a new semi-generic technique, and show how it can be used to

construct efficient IB-KEMs and VRFs with adaptive security. It is based on the near-collision resistance
of a cryptographic hash function and similar in spirit to the closely related notion of truncation collision
resistance [JK18].

High-level perspective. In order to sketch the main idea, consider IB-KEMs as an example. Our approach
is to let the reduction guess n′ = O(log λ) many bits of H(id∗), where λ is the security parameter, H is
a cryptographic hash function and id∗ is the challenge identity chosen by the adversary. Using standard
techniques from selectively-secure constructions, we prove security with a reduction which is successful if
the n′ bits of H(id∗) are guessed correctly, while the hash of every identity for which the adversary requests
a secret key for differs in at least one of the n′ bits.

For this approach to yield a reduction with non-negligible loss, we have to choose n′ such that it fulfills
the following two conflicting goals:

1. n′ has to be small enough, such that the probability of guessing n′ bits of H(id∗) correctly is non-
negligible

2. n′ has to be large enough to ensure that it is unlikely, relative to the adversary’s advantage, to make a
query id whose hash also matches on the n′ guessed bits (“near-collision-resistance”)

Following [JK18] (which in turn is inspired by [BHJ+13, BHJ+15]), we balance these two goals by choosing
n′ depending on the runtime and advantage of the adversary. This approach thus yields an ideal choice of n′

for each adversary. However, [JK18] were not able to use this ideal value of n′ directly, since they required
to set n′ to a power of two (or they would require larger public parameters of sizeO(λ) instead ofO(log λ)).
Increasing n′ to a factor of almost two (in the worst case) incurs an additional quadratic security loss and
also may requires a stronger q-type assumption with quadratically larger q.

We address this issue by viewing the output of the hash function as the concatenation of blocks of
exponentially growing length, i.e. the first bit is the first block, bits two and three are the second block, bits
four to seven are the third block, and so on. Our reduction then uses the ideal choice for n′ and guesses the
bits in the blocks whose lengths sum up to exactly n′. This more fine-grained guessing yields constructions
with tighter security from weaker assumptions. It also reduces the required output length of the hash function
from 4(λ+ 1) bits in [JK18] to only 2λ+ 3 bits. Note that this is essentially optimal for a collision-resistant
hash function. In particular, for many practical construction one would probably use a collision resistant
hash function, anyway, to map long identities to short strings. We compare our techniques to the ones of
[JK18] in more detail after formally introducing blockwise partitioning.

In the remainder of this section we will describe the framework and assumptions for blockwise parti-
tioning, give some more technical intuition, and state and prove a technical lemma that will be useful to use
blockwise partitioning as modular as possible in security proofs.

2.1.1 Blockwise partitioning.

Let H : {0, 1}∗ → {0, 1}n be a hash function. We will assume in the sequel that n =
∑`

i=0 2i for
simplicity and ease of exposition. One can generalize this to arbitrary n, but this would make the notation
rather cumbersome without providing additional insight or clarity. Then we can view the output space
{0, 1}n of the hash function as a direct product of sets of exponentially-increasing size

{0, 1}n = {0, 1}20 × · · · × {0, 1}2` .

7

For a hash function H we define functions H0, . . . ,H` such that

Hi : {0, 1}∗ → {0, 1}2i and H(x) = H0(x)|| · · · ||H`(x).

One can consider each Hi(x) as one “block” of H(x). Note that blocks have exponentially increasing size
and there are blog nc+ 1 blocks in total.

Using blockwise partitioning. Let t = t(λ) be a polynomial and let ε = ε(λ) be a non-negligible function
such that ε > 0 and t/ε < 2λ for all λ. Think of t and ε as (approximations of) the running time and
advantage of an adversary in a security experiment. We define an integer n′ depending on (t, ε) as

n′ := dlog(4t · (2t− 1)/ε)e (1)

Note that if n ≥ 2λ+ 3, then we have 0 ≤ n′ ≤ n as we show in Lemma 1 below.
The value n′ uniquely determines an index set I = {i1, . . . , iω} ⊆ {0, . . . , `} such that n′ =

∑
i∈I 2i,

where ` := blog nc. The key point in defining n′ as in Equation (1) is that it provides the following two
properties simultaneously:

Guessing a from polynomially-bounded range. In order to enable a reduction from adaptive to selective
security, we will later have to “predict” a certain hash values H(x∗). Think of x∗ as the challenge
identity in an IB-KEM security experiment, or the message from the forgery in a signature security
experiment. Blockwise partitioning enables this as follows.

Consider the following probabilistic algorithm BPSmp, which takes as input λ, t, and ε, computes n′

as in Equation (1), chooses Ki
$← {0, 1}2i uniformly random for i ∈ I and defines Ki = ⊥ for all

i 6∈ I. Then it outputs
(K0, . . . ,K`)

$← BPSmp(1λ, t, ε).

The joint range of all hash functions Hi with i ∈ I is {0, 1}2i1 × · · · × {0, 1}2
i|I| , which has size

2n
′

= 2
∑
i∈I 2i .

Hence, we have that
Pr [Hi(x

∗) = Ki for all i ∈ I] = 2−n
′
.

Note that 2n
′

is polynomially bounded, due to the definition of n′ in Equation (1).

Upper bound on the collision probability. In Lemma 1 below we will show that near-collision resistance
ofH guarantees that the probability that an adversary running in time t outputs any two values x 6= x′

such that

Hi(x) = Hi(x
′) for all i ∈ I (2)

is at most ε/2. Think of x and x′ as values chosen adaptively by an adversary in a security experiment.
In the context of IB-KEMs this would be chosen identities, in context of digital signatures chosen
messages, for instance. Note that we do not argue that there is a negligible collision probability. This
is not possible, because we consider a polynomially-bounded space, where an adversary will always
be able to find collisions with non-negligible probability. However, we can guarantee that there will
be no collision with probability at least ε/2. This means that an adversary that runs in some time t
and has some advantage ε will sufficiently often be successful without finding a collision.

8

n′-wNCRHA

(J , st) $← A1(n′)
H

$← H
(X(1), . . . , X(Q+1))

$← A2(H, st)
If |J | = n′ and ∃x 6= y ∈ {X(1), . . . , X(Q+1)} with H(x)[i] = H(y)[i] for all i ∈ J :

return 1, else 0

Figure 1: The security experiment for weak near-collision resistance, executed with a family of hash
functionsH and adversaryA = (A1,A2), whereA1 outputs an index set J ⊆ [n] andH ⊆ {h : {0, 1}∗ →
{0, 1}n}. We restrict A1 to only output index sets J with |J | = n′. Note that H(x)[i] denotes the i-th bit
of H(x).

Hence, similar to confined guessing [BHJ+13, BHJ+15] and truncation collision resistance [JK18], block-
wise partitioning enables us to guess challenge identities from a polynomially bounded space. At the same
time, it ensures that the space is large enough such that collisions are sufficiently unlikely, such that any ad-
versary breaking a considered cryptosystem with some advantage ε must “sufficiently often” be successful
without finding a collision.

Blockwise partitioning via near-collision resistance. We will now give a formal definition of weak near-
collision resistance and then provide a technical lemma, which will be useful for security proofs based on
blockwise partitioning of hash function outputs. Note that weak near-collision resistance is only required
for the security of our constructions and we hence only require this property in the respective theorems and
not in the constructions themselves.

Definition 1 (Weak near-collision resistance). Let H = {H : {0, 1}∗ → {0, 1}n} be a family of hash
functions. For n′ ∈ {1, . . . , n}, we say that an adversary A = (A1,A2) breaks the weak n′-near-collision
resistance ofH, if it runs in time tA and it holds that

Pr
[
n′-wNCRHA = 1

]
≥ tA(tA − 1)/2n

′+1,

where n′-wNCR is the experiment defined in Figure 1 and the probability is over the randomness of A and
choosing H . We say that H is weak near-collision resistant, if there exists no adversary A breaking the
weak n′-near-collision resistance ofH for any n′ ∈ {1, . . . , n}.

The following lemma will be useful to apply blockwise partitioning in security proofs.

Lemma 1. Let H : {0, 1}∗ → {0, 1}n be a hash function, t be a polynomial, and let ε be a non-negligible
function such that ε > 0 and t/ε < 2λ for all λ. Let n′ := dlog(4t · (2t− 1)/ε)e as in Equation (1) and
define set I such that n′ =

∑
i∈I 2i. Let A be an algorithm that outputs (X(1), . . . , X(Q), X∗) and runs in

time t and let
(K0, . . . ,K`)

$← BPSmp(1λ, t, ε),

where BPSmp is the algorithm described above.

1. Let coll be the event that there exists x, x′ ∈ {X(1), . . . , X(Q), X∗} such that

Hi(x) = Hi(x
′) for all i ∈ I. (3)

9

Let badChal be the event that there exists i ∈ I such that Pr [Hi(X
∗) 6= Ki]. If H is drawn uniformly

at random from a family of weak near-collision resistant hash functions in the sense of Definition 1,
then we have

(ε− Pr [coll]) · Pr [¬badChal] ≥ ε2/(32t2 − 16t).

Moreover, coll and badChal are independent of each other.

2. Let badEval be the event that there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗ such that Hi(x) = Ki

for all i ∈ I. Then we have
badEval =⇒ coll∨ badChal.

PROOF. The proof uses the following inequalities and identities from [JK18, JN19].

n′ ∈ {1, . . . , 2k + 3}, 2t(2t− 1)

2n′
≤ ε

2
and

1

2n′
≥ ε

16t2 − 8t
(4)

The proof for these inequalities is given in Section A for completeness. We start to prove Property 1 by
showing Pr[coll] < ε/2. Assume an algorithmA running in time tA that outputs (X(1), . . . , X(Q), X∗) such
that there exist x, x′ ∈ {X(1), . . . , X(Q), X∗} such that Equation (3) holds with probability at least ε/2. By
the definition of I and the functions Hi, this yields that H(x) and H(x′) agree on at least n′ positions.
We construct an algorithm B = (B1,B2) that uses A to break the weak n′-near-collision resistance of H.
Note that the choice of I is independent of H ∈ H. B1 therefore just encodes K = (K0, . . . ,K`) to
J ⊆ {1, . . . , n} with |J | = n′. B2 simply relays A’s output (X(1), . . . , X(Q), X∗). The runtime tB of B is
at most 2tA, since B does nothing more than executing A and relaying its outputs. Therefore, we get

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2n′
≥ tB(tB − 1)

2n′+1
,

where the second inequality follows from Equation (4). This contradicts the weak near-collision resistance
ofH. Next, we determine Pr [¬badChal]. We have that the events coll and badChal are independent of each
other because (K0, . . . ,K`) is chosen independently from (X(1), . . . , X(Q), X∗). Moreover, each Ki with

i ∈ I is chosen uniformly at random from {0, 1}22
i

and thus we have

Pr [¬badChal] = Pr [Hi(X
∗) = Ki for all i ∈ I] =

1

2
∑
i∈I 2i

= 2−n
′
,

where the last equation follows by definition of n′. To prove Property 1, we then calculate

(εA − Pr[coll])2−n
′ ≥

(
εA −

εA
2

) εA
16t2A − 8tA

=
ε2
A

32t2A − 16tA
,

where the first inequality follows from Equation (4). Finally, to show Property 2, we explain that if badEval
occurs, then either badChal or coll must occur. This is because if there exists x ∈ {X(1), . . . , X(Q)} with
x 6= X∗ and Hi(x) = Ki for all i ∈ I, then we have either that also Hi(X

∗) = Ki for all i ∈ I and then
coll occurs or we have that there exists an index i ∈ I such that Hi(X

∗) 6= Ki and then badChal occurs.
This concludes the proof.

Near-collision resistance and the non-programmable random oracle model. Near-collision resistance
holds unconditionally in the non-programmable random oracle model [FLR+10]. Hence, all our results can
also be viewed as a generic technique to obtain adaptively-secure cryptosystems in the non-programmable
random oracle model without any additional assumptions. In this sense, our paper is in line with recent
works that aim to avoid programmability, such as [FHJ20].

10

Comparison to ELFs. Extremely lossy functions (ELFs), which were introduced by Zhandry in [Zha16],
are hash functions that allow the reductions to choose the hash function’s image size depending on the ad-
versary, such that a function with a small image size is indistinguishable from an injective hash function.
Blockwise partitioning uses the weak near-collision resistance of standard hash functions in a similar man-
ner, by selecting the blocks depending on the adversary’s runtime and advantage. Hence, ELFs have the
potential to enable constructions similar to the ones we present. However, the known construction based on
exponential hardness of the DDH problem relies on public key techniques and thus is less efficient then a
standard hash functions. Blockwise partitioning can also be seen as an approach towards resolving the open
problem of constructing ELFs from symmetric-key primitives. While we syntactically do not construct an
ELF, the way blockwise partitioning is used in a proof is very similar.

Comparison to confined guessing and truncation collision resistance. Note that the index set I defined
above may contain multiple indices. This is a major difference of our approach to confined guessing and
truncation collision resistance, where always only single blocks are guessed.

The advantage of being able to guess multiple blocks is that we are now able to define n′ in a much more
fine-grained way, as any integer between 0 and n. In contrast, [BHJ+13, BHJ+15] and [JK18] were only
able to pick values n′ of exponentially increasing size, such that n′ = 22j for some j, which is the reason
why our reductions can improve tightness and the strength of the required assumptions quadratically.

However, we cannot replace the approach of [BHJ+13, BHJ+15] and [JK18] with blockwise partitioning
in a black-box manner. Instead, we have to provide a new security analysis for cryptosystems, and show that
there are reductions which are compatible with guessing multiple blocks.

3 Lattice-based IB-KEM

We describe how blockwise partitioning can be applied in the context of lattice based cryptography, using
an Identity-Based Key-Encapsulation-Mechanism (IB-KEM) based on LWE as example. We build our IB-
KEM from Yamada’s IBE [Yam17a], for which we describe how blockwise partitioning can be embedded
into lattice trapdoors by describing “compatible algorithms” for blockwise partitioning in the lattice context.
The notion is inspired by [Yam17a] and we use it as a generic building block to instantiate the IB-KEM. The
instantiation then has ciphertexts and secret keys consisting of a constant number of matrices and vectors and
public keys consisting of only O(log(λ)) many matrices and vectors. Furthermore, we are able to achieve
better LWE-parameters. We start by providing preliminaries on lattices, define compatible algorithms and
our instantiation of them based on blockwise partitioning before finally presenting the construction.

3.1 Preliminaries on Lattices

For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Zm with parameter σ > 0.
Further, for q, n ∈ Z, u ∈ Zmq and A ∈ Zn×mq , the m-dimensional integer lattices Λ⊥p (A) and Λu

p (A) are
defined as follows

Λ⊥q (A) := {e ∈ Zm : Ae = 0 mod q}, Λu
q (A) := {e ∈ Zm : Ae = u mod q}.

Throughout the section we will always assume n = Θ(λ). In particular, any function negligible in n is
therefore also negligible in λ. Moreover, we denote the `2-norm by ‖·‖2 and the infinity norm by ‖ · ‖∞.
Namely, that is ‖A‖∞ = max

1≤i≤n
1≤j≤m

|ai,j |. Then the following lemma holds.

11

Lemma 2 ([Reg05]). We have Pr
[
‖x‖2 > σ

√
m : x

$← DZm,σ

]
≤ 2−2m.

The learning with errors (LWE) problem was defined by Regev [Reg05].

Definition 2 ([Reg05]). For integers n = n(λ),m = m(λ), a prime integer q = q(n) > 2, a real number
α ∈ (0, 1), and a PPT algorithm A, an advantage for the learning with errors problem dLWEn,m,q,α of A is
defined as

Adv
dLWEn,m,q,α
A (λ) :=

∣∣Pr
[
A(A, sTA + xT) = 1

]
− Pr

[
A(A,wT + xT) = 1

]∣∣ ,
where A

$← Zn×mq , s
$← Znq ,x

$← DZm,αq,w
$← Zmq . We say that the dLWEn,m,q,α assumption holds if

Adv
dLWEn,m,q,α
A (λ) is negligible in λ for all PPTs A.

Regev also showed that solving dLWEn,m,q,α for αq ≥ 2
√
n is (quantumly) at least as hard as solving

GapSVPγ and SIVPγ on arbitrary n-dimensional lattices for some γ = Õ(n/α) [Reg05]. Later on, partial
dequantization of Regev’s reduction was achieved [Pei09, BLP+13]. Furthermore, Katsumata and Yamada
introduced the following lemma that allows to rerandomize LWE instances.

Lemma 3 (Lemma 1 in [KY16]). Let q,m,m′ be positive integers and r a positive real satisfying r >
max{ω(

√
log(m)), ω(

√
log(m′))}. Let b ∈ Zmq be arbitrary and x

$← DZm,r. Then for any V ∈ Zm×m′

and positive real s > ‖V‖2, there exists a PPT algorithm ReRand(V,b + x, r, s) that outputs b′ such that
bTV + x′

T ∈ Zm′×1
q , where x′ is distributed statistically close to DZm′ ,2rs.

Trapdoors. We use two types of trapdoors, trapdoors using a short basis for the lattice and “gadget”-based
trapdoors. We start by introducing the former.

Following [BV16], we let n,m,m′, q ∈ N and consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q ,
we let A−1

σ (V) denote the random variable whose distribution is a Gaussian Dm′
Zm,σ conditioned on A ·

A−1
σ (V) = V. A σ-trapdoor for A is a procedure that can sample from the distribution A−1

σ (V) in time
poly(n,m,m′, log(q)) for any V ∈ Zn,×m

′
q . Note that we slightly overload notation and denote a σ-trapdoor

for A by A−1
σ .

Lemma 4. The following properties have been established [GPV08, ABB10a, ABB10b, CHKP10, BLP+13].

1. There exists an efficient algorithm GenTrap(1n, 1m, q) that, for some m = O(n log(q)), outputs(
A,A−1

σ0

)
such that A ∈ Zn×mq is 2−n-close to a uniformly random matrix and we have σ0 =

ω(
√
n log q logm).

2. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.

3. Given A−1
σ , one can obtain [A | B]−1

σ for any B.

4. For A−1
σ and u ∈ Znq , it holds Pr

[∥∥A−1
σ

∥∥
2
>
√
m · σ

]
= negl(λ).

We will also use a second type of trapdoors known as “gadget”-based trapdoors introduced by Miccian-
cio and Peikert [MP12].

Lemma 5 (Theorem 1 from [MP12]). Let m ≥ n dlog(q)e, then there is a fixed “gadget” matrix G ∈
Zn×mq , such that G has full rank and there is an efficient algorithm G−1 that on input a matrix U ∈ Zn×mq

outputs V ∈ {0, 1}m×m such that GV = U. Note that we slightly abuse notation here by writing G−1

even though G−1 is not the inverse of G but an efficient algorithm.

12

These trapdoors have some further useful properties described below.

Lemma 6 (Section 3.4 in [MP12]). Let A ∈ Zn×mq ,R ∈ Zm×mq and H ∈ Zn×nq an invertible matrix, then
we can efficiently sample from [A|AR + HG]−1

σ for σ = m · ‖R‖∞ · ω(
√

log(m)).

When using the trapdoors, we will need that (A,AR + HG) is negligibly close to (A,A′) for random
matrices A and A′. This can be guaranteed by the leftover hash lemma.

Lemma 7 (Leftover hash lemma [Reg05, ABB10a]). Let m ≥ (n+ 1)(log(q) + ω(log(n)), then for R $←
{−1, 1}m×m, A,A′ $← Zn×mq it holds that the statistical difference between the distributions (A,AR) and
(A,A′) is negligible in n.

3.2 Compatible Algorithms

Our construction is based on dLWEn,m+1,q,α. The construction follows Yamada’s construction of a lattice
IBE [Yam17a] and requires “compatible algorithms” to be instantiated. We first define properties required
from these compatible algorithms and provide our instantiation of them based on blockwise partitioning in
the next section.

Defining compatible algorithms Let G ∈ Zn×mq be the gadget matrix as introduced in [MP12, Theorem
1]. That is, G is a full rank matrix for which there is an efficient algorithm G−1 that on input U ∈ Zn×mq

outputs a matrix V ∈ {−1, 1}m×m such that GV = U. We provide a formal definition of G in Section 3.1.
We then say that the algorithms Encode,PubEval and TrapEval are compatible with blockwise partitioning if
they combine the vanishing trapdoors technique from [ABB10a, Boy10] with blockwise partitioning. That
is, that Encode encodes (K0, . . . ,K`)

$← BPSmp(1λ, t(λ), ε(λ)) into matrices B, (Bi)0≤i≤` and trapdoors
R, (R)0≤i≤`
such that PubEval(H, id,B, (Bi)0≤i≤`) computes Bid with

Bid =

{
ARid + HidG if Hi(id) = Ki for all i ∈ I
ARid otherwise,

where Rid is a matrix of small maximum norm that can be computed from the trapdoors using TrapEval and
Hid is a invertible matrix that depends on id. Note that we denote the infinity norm of a matrix R by ‖R‖∞.

Given these properties, the reduction can generate user secret keys for all identities id with Hi(id) 6= Ki

for some i ∈ I by using a gadget trapdoor described in Section 3.1. At the same time, if id∗ is such
that Hi(id∗) = Ki for all i ∈ I, then the reduction can extract a solution to its LWE instance using the
adversary. By this, compatible algorithms allow us to apply blockwise partitioning in the context of lattices.
We formally define these conditions as follows.

Definition 3. We say that the algorithms (Encode,PubEval,TrapEval) are δ-compatible with blockwise
partitioning using a family of hash functions H, if they are efficient and for all λ ∈ N, t = t(λ) = poly(λ)
and ε = ε(λ) non-negligible in λ with t(λ)/ε(λ) ≤ 2λ, they satisfy the following properties:

• For some matrix A ∈ Zn×mq , (Ki)0≤i≤`
$← BPSmp(1λ, t(λ), ε(λ)) it holds that ((B,R),

(Bi,Ri)0≤i≤`) = Encode(A, (Ki)0≤i≤`) with B,Bi ∈ Zn×mq and R,Ri ∈ {−1, 1}m×m for all
1 ≤ i ≤ `.

13

• For H ∈ H, id ∈ {0, 1}∗ and (B, (Bi)0≤i≤`) with Bi ∈ Zn×mq for all 0 ≤ i ≤ ` it holds that
PubEval(H, id,B, (Bi)0≤i≤`) = Bid ∈ Zn×mq .

• For H ∈ H,A ∈ Zn×mq , Ri ∈ Zm×mq for all 0 ≤ i ≤ `, and all id ∈ {0, 1}∗ it holds that
TrapEval(H, id,R, (Ri)0≤i≤`) = Rid ∈ Zm×m.

We require that for all id ∈ {0, 1}∗,A ∈ Zn×mq and H ∈ H it holds that

PubEval(H, id, (Bi)0≤i≤`)

{
ARid if Hi(id) = Ki for all i ∈ I
ARid + HidG otherwise

for some invertible matrix Hid ∈ Zn×nq and that

‖Rid‖∞ ≤ δ,

where (Ki)0≤i≤` is sampled as (Ki)0≤i≤`
$← BPSmp(1λ, t, ε) and we have that Encode(A, (Ki)0≤i≤`) =

((B,R), (Bi,Ri)0≤i≤`). Further Rid is computed as Rid = TrapEval(H, id,R, (Ri)0≤i≤`). Finally, we re-
quire, that for A,A′ $← Zn×mq and all 0 ≤ i ≤ ` the distributions (A,A′) and (A,Bi) and the distributions
(A,A′) and (A,B) have only negligible statistical difference in λ.

3.3 Instantiating Compatible Algorithms from Blockwise Partitioning

In this section we describe the main technical novelty of our lattice based construction: how blockwise
partitioning can be applied in the context of lattices. We first discuss how a hash function output Hi(X)
is encoded as a matrix using the full-rank-difference encoding from Agrawal et al. [ABB10a] and adapt
it to our needs. We then proceed to describe compatible algorithms using this encoding that fulfill all
requirements of Definition 3 and can thus be used to instantiate our IB-KEM.

Encoding identities as full rank difference matrices. In our construction, we will first hash each id ∈
{0, 1}∗ with a weak near-collision resistant hash function H $← H and then encode each Hi(id) as an in-
vertible matrix as described by Agrawal et al. [ABB10a]. In the following, we define the full rank difference
encoding function of [ABB10a] and show how it can be adopted to fit blockwise partitioning. Informally,
for a binary string a ∈ {0, 1}2i , meaning a is a potential output of Hi, we pad a with zeros to be of length
n by first padding it

∑i−1
j=0 2j zeros in the front and with

∑`
j=i+1 2j zeros in the end. We then canonically

interpret it as a vector in Znq and encode it with the full-rank difference encoding of [ABB10a]. We formalize
this process in the following definition.

Definition 4. Let f(Z) be an irreducible polynomial of degree n in Znq [Z] and for a ∈ Znq , let ga(Z) :=∑n−1
k=0 ak+1Zk ∈ Znq [Z]. Then the function FRD(a) : Znq → Zn×nq from [ABB10a] is defined as

FRD(a) :=

coeffs(ga mod f)
coeffs(Z · ga mod f)
coeffs(Z2 · ga mod f)
...
coeffs(Zn−1 · ga mod f)

 ∈ Zn×nq ,

where coeffs denotes the coefficients of a polynomial in Znq [Z]. For all 0 ≤ i ≤ ` we define FRDi :

{0, 1}2i → Zn×nq to be the function that behaves as follows.

14

1. For an input (a1, . . . , a2i) ∈ {0, 1}2
i
, FRDi lets offseti :=

∑i−1
j=0 2j and sets bT := [b1, . . . , bn] ∈ Znq ,

where

bk :=

{
ak−offseti if offseti < k ≤ offseti + 2i

0 otherwise

for all 1 ≤ k ≤ n.

2. It then outputs FRDi(a) := FRD(b).

Agrawal et al. [ABB10a] prove some properties of FRD that immediately imply the following properties
of FRDi.

Lemma 8 (Section 5 in [ABB10a]). Let FRDi : {0, 1}2i → Zn×nq be as defined in Definition 4, then the
following holds:

1. FRDi is injective.

2. There is an additive group G ⊂ Zn×nq such that each H ∈ G\{0} is invertible and the range of FRDi

is a subset of G for all 1 ≤ i ≤ `.

We refer to [ABB10a, Section 5] for the proofs of the underlying facts used in Lemma 8. Our definition
of FRDi serves some further purposes that allows us to use it in conjunction with blockwise partitioning.
We detail these properties in the following lemma.

Lemma 9. Let BPSmp be as defined in Section 2 and let t ∈ N, ε ∈ (0, 1] with t/ε < 2λ. Then for
(K0, . . . ,K`)

$← BPSmp(1λ, t, ε), I = {i : Ki 6= ⊥} ⊆ {0, . . . , `} and X ∈ {0, 1}∗ it holds that

−

(∑
i∈I

FRDi(Ki)

)
+

(∑
i∈I

FRDi(Hi(X))

)
= 0⇔ Ki = Hi(X) for all i ∈ I.

PROOF. First, we observe that if Hi(X) = Ki for all i ∈ I, then it holds that

−

(∑
i∈I

FRDi(Ki)

)
+

(∑
i∈I

FRDi(Hi(X))

)
= −

(∑
i∈I

FRDi(Ki)

)
+

(∑
i∈I

FRDi(Ki)

)
= 0,

which proves the first direction of the equivalence. We prove the second direction by contradiction. Infor-
mally, we do so by observing that the first row of HX consists of the differences between Ki and Hi(X)
over Zq for all i ∈ I. Hence, H = 0 implies Hi(X) = Ki for all i ∈ I, which contradiction the original
assumption. We proceed by formalizing this proof by contradiction as follows.

Assume that there exists an i∗ ∈ I such that Hi∗(X) 6= Ki and HX := −
(∑

i∈I FRDi(Ki)
)

+(∑
i∈I FRDi(Hi(X))

)
= 0 at the same time. Now for i ∈ I, 1 ≤ j ≤ n we denote the j-th element of the

first row of FRDi(Hi(X)) by bi,j ∈ Zq. Analogously, we denote the j-th element of the first row of HX by
hj ∈ Zq. We now make the following observations that follow immediately from the definition of FRDi in
Definition 4.

1. For all i ∈ I and for all j ∈ {1, . . . , n} \ {offseti + 1, . . . , offseti + 2i} we have bi,j = 0.

2. It holds (bi,offseti+1, . . . , bi,offseti+2i) = Hi(X) and (hoffseti+1, . . . , hoffseti+2i) = Ki for all i ∈ I,
where offseti is as defined in Definition 4.

15

Combining the two observations yields that for all i ∈ I and offseti + 1 ≤ j ≤ offseti + 2i it holds that
[hoffseti+1, . . . , hoffseti+2i]

T = Hi(X) − Ki, where we interpret Hi(X) and Ki as vectors in Z2i
q . Recall

that by our assumption above, it holds that HX = 0 and hence Hi∗(X)−Ki∗ = 0, if interpreted as vectors
in Z2i

q . This however contradicts Hi∗(X) 6= Ki, which proves the lemma.

Next, we describe the algorithms (Encode,PubEval,TrapEval) and how they use FRDi. Afterwards,
we prove that the algorithms are compatible and can thus be used in our IB-KEM. The algorithms behave as
follows:

Encode(A,K0, . . . ,K`): The algorithm samples R,Ri
$← {−1, 1}m×m for all 0 ≤ i ≤ ` and sets

Bi :=

{
ARi + G if Ki 6= ⊥
ARi if Ki = ⊥

and B := AR−
(∑

i∈I FRDi(Ki)G
)
. It then outputs the matrices ((B,R), (Bi,Ri)0≤i≤`).

PubEval(H, id,B, (Bi)0,≤i≤`): The algorithm computes Hi := FRDi(Hi(id)) for all 0 ≤ i ≤ ` and sets
B′i := BiG

−1(HiG). It then outputs Bid := B +
∑`

i=0 B
′
i.

TrapEval(H, id,R, (Ri)0≤i≤`): The algorithm computes Hi := FRDi(Hi(id)) for all 0 ≤ i ≤ ` and sets
R′i := RiG

−1(HiG). It then outputs Rid := R +
∑`

i=0 R
′
i.

Lemma 10. The algorithms (Encode,PubEval,TrapEval) above are δ = 1 + (` + 1)m-compatible with
blockwise partitioning using the family of weak near-collision resistant hash functions H described in Sec-
tion 2.

PROOF. We first observe that the algorithms described above fulfill the syntactical requirements. We next
show that

PubEval(H, id, (Bi)0≤i≤`)

{
ARid if Hi(id) = Ki for all i ∈ I
ARid + HidG otherwise

for some invertible matrix Hid ∈ Zn×nq . For Hi := FRDi(Hi(id)) and Bi = ARi + xiHG, where
xi = 1 if i ∈ I and 0 otherwise, we observe that B′i = BiG

−1(HiG) = ARiG
−1(HiG) + xi ·HiG =

AR′i + xiHiG, where R′i is as defined by TrapEval. We then have that

Bid = B +
∑̀
i=0

B′i = AR−

(∑
i∈I

FRDi(Ki)G

)
+

(∑̀
i=0

AR′i + xiHiG

)

= A

(
R +

∑̀
i=0

R′i

)
−

(∑
i∈I

FRDi(Ki)G

)
+

(∑
i∈I

FRDi(Hi(id))G

)
= ARid −HidG,

where Rid is as in the description of TrapEval and Hid = −
(∑

i∈I FRDi(Ki)
)

+
(∑

i∈IHi

)
. Observe

that Hid = 0 is equivalent to Ki = Hi(id) for all i ∈ I by Lemma 9. Furthermore, we have by Lemma 8
that if Hid 6= 0, then Hid is invertible. We proceed by proving the upper bound on ‖Rid‖∞. First, observe

16

‖R′i‖∞ = ‖RiG
−1(HiG)‖∞ ≤ m since Ri,G

−1(HiG) ∈ {−1, 1}m×m and therefore their product
R′i ∈ Zm×mq can not contain any element of absolute value larger than m. We then have

‖Rid‖∞ =

∥∥∥∥∥R +
∑̀
i=0

R′i

∥∥∥∥∥
∞

≤ ‖R‖∞ +
∑̀
i=0

‖R′i‖∞ ≤ 1 + (`+ 1)m = δ,

where the last inequality follows from R ∈ {−1, 1}m×m and ‖R′i‖∞ ≤ m. Finally, we have that for
A,A′

$← Zn×mq it holds that for all 0 ≤ i ≤ ` the distributions (A,A′) and (A,Bi) have only negligible
statistical difference by Lemma 7. The same holds for the distributions (A,A′) and (A,B).

3.4 Lattice-Based Identity-Based Key-Encapsulation-Mechanism

After we introduced our building blocks, we now describe our IB-KEM based on the IBE from CRYPTO’17
by Yamada [Yam17a]. To do so, we first formally define IB-KEMs and their security and the describe the
construction.

Definition 5. An IB-KEM consists of the following four PPT algorithms:

• (mpk,msk)
$← Setup(1λ) takes as input the security parameter and outputs the public parameters

mpk and the master secret key msk.

• uskid
$← KeyGen(msk, id) returns the user secret key uskid for identity id ∈ {0, 1}∗.

• (ct,K)
$← Encap(mpk, id) returns a tuple (ct,K), where ct is ciphertext encapsulating K with re-

spect to identity id.

• K = Decap(uskid, ct, id) returns the decapsulated key K or an error symbol ⊥.

For correctness we require that for all λ ∈ N, all pairs (mpk,msk) generated by Setup(1λ), all identities
id ∈ {0, 1}∗, all (K, ct) output by Encap(mpk, id) and all uskid generated by KeyGen(msk, id):

Pr[Decap(uskid, ct, id) = K] ≥ 1− negl(λ).

We use the standard IND-CPA-security notion for IB-KEMs from [BFMS08].

Definition 6. Consider an adversary A with access (via oracle queries) to the procedures defined Figure 2.
We say that A is legitimate, if A never queries KeyGen(msk, id∗), where id∗ is the output of A1. We define
the advantage of A in breaking the IND-ID-CPA security of IBKEM Π as

AdvIND-ID-CPA
A (λ) :=

∣∣Pr[IND-ID-CPAΠ
A(λ) = 1]− 1/2

∣∣
We include the running time of the security experiment into the running time tA of A. This will later allow
us to simplify our security analysis and the statement of theorems.

17

IND-ID-CPAΠ
A(λ)

b
$← {0, 1}

(mpk,msk)
$← Setup(1λ)

(id∗, st)← AKeyGen(mpk,msk,·)
1 (1k,mpk)

K0
$← K; (ct,K1)

$← Encap(mpk, id∗)
b′ ← AKeyGen(mpk,msk,·)

2 (st, ct,Kb)
If (b′ == b) return 1, else 0

Figure 2: The security experiment for IB-KEMs, executed with scheme Π =
(Setup,KeyGen,Encap,Decap) and adversary A = (A1,A2). The oracle KeyGen(msk, id) returns
uskid

$← KeyGen(msk, id) with the restriction that A is not allowed to query oracle KeyGen(msk, ·) for the
target identity id∗.

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash functions, let ` =
blog(n)c. Further, let DZm,σ be the Gaussian distribution over Zm with parameter σ > 0. Moreover,
let GenTrap(1n, 1m, q) be an algorithm that outputs a matrix A ∈ Zn×mq that is indistinguishable from a
random matrix and a trapdoor A−1

σ0 for σ0 = ω(n log q logm). Note that for arbitrary m′ ≥ m, u ∈ Znq
and B ∈ Zn×(m′−m)

q , the trapdoor A−1
σ0 allows to sample vectors v ∈ Zm′q from DZm′ ,σ conditioned on

[A | B]v = u for σ′ > σ0. We denote this as sampling from [A | B]−1
σ (u) as formalized in Section 3.1.

We now construct our IB-KEM scheme Π = (Setup,KeyGen,Encap,Decap) similar to [Yam17a] and
based on LWE as follows.

Setup. Setup(1λ) chooses parameters n,m, q, `, σ, α and α′ as specified in Remark 1, where q is a prime.
It runs (A,A−1

σ0)
$← GenTrap(1n, 1m, q) such that A ∈ Zn×mq and σ0 = ω(

√
n log(q) log(m)) and

then samples u $← Znq . Finally, it samples H $← H and B, (Bi)0,≤i≤`,C
$← Zm×mq and then outputs

mpk = (H,A,B, (Bi)0≤i≤`,C,u)and msk := A−1
σ0 .

Key Generation. The algorithm KeyGen receives (mpk,msk, id) as input and then computes the matrix
Bid := PubEval(H, id,B, (Bi)0≤i≤`) such that B ∈ Zm×mq . It then computes [A | C + Bid]−1

σ from

A−1
σ0 and samples e $← [A | C + Bid]−1

σ (u). It then outputs uskid := e ∈ Z2m.

Encapsulation. The Encap algorithm receives an identity id ∈ {0, 1}∗ and mpk as input. It computes
Bid := PubEval(H, id,B, (Bi)0≤i≤`) such that Bid ∈ Zm×mq . It then samples s

$← Znq , x0
$←

DZm,αq,x1,x2
$← DZm,α′q and K $← {0, 1} and computes

c0 = sTu + x0 +K · dq/2e ∈ Zq, cT
1 = sT[A | C + Bid] + [xT

1 | xT
2] ∈ Z2m

q .

It then returns (ct = (c0, c1),K).

Decapsulation. In order to decapsulate a ciphertext ct = (c0, c1), the algorithm Decap receives the user
secret key uskid = e and computesw = c0−cT

1 ·e ∈ Zq. It then returnsK := 1 if |w−dq/2e | < dq/4e
and K := 0 otherwise.

18

Error term. We deduce the error term as Yamada in [Yam17b]. We have

w = c0 − cT
1 · e = K · dq/2e+ x0 −

[
xT

1 | xT
2

]
· e,

where x0 −
[
xT

1 | xT
2

]
· e is the error term. Assuming α′ ≥ α, the error term is then bounded as follows∣∣∣x0 −

[
xT

1 | xT
2

]
e
∣∣∣ ≤ |x0|+

∣∣∣[xT
1 | xT

2

]
· e
∣∣∣

≤ |x0|+
∥∥∥[xT

1 | xT
2

]∥∥∥
2
· ‖e‖2

≤ αq
√
m+ (α′

√
2m) · σ

√
2m

= O(α′σmq)

with overwhelming probability, where the first inequality follows from the triangle inequality, the second
one follows from the Cauchy-Schwartz inequality, and the third follows from Lemma 4 Item 4 and Lemma 2.
This implies the correctness of the scheme.

Remark 1. We select the parameters as described by Yamada (only in the full version [Yam17b]) with the
additional constraint of n to be large enough to allow for blockwise partitioning. That is, we require

• that n′ as chosen in Lemma 1 is at most n, that is n ≥ 2λ+ 3 as explained in Section 2,

• ` = blog(n)c in order to use blockwise partitioning.

• the error is term is less than q/5 with overwhelming probability, that is q > Ω(α′σmq),

• that GenTrap can operate, that is m > 6n dlog qe,

• that the leftover hash lemma (Lemma 7) can be applied, meaning m ≥ (n+ 1) log(q) + ω(log(n)),

• σ has to be large enough such that the distribution of private keys in the actual scheme and in the
reduction is the same, that is σ > σ0 = ω(

√
n log(q) log(m)) and σ > m(1 + δ)ω(

√
log(m)),

• that the ReRand algorithm can operate in the reduction, that is α′/2α >
√

2 · m(δ + 1) and αq >
ω(
√

log(m)) by Lemma 3.

• that the worst to average case reduction works, that is αq > 2
√

2n.

To satisfy the above requirements, we set the parameters as follows:

n = 2λ+ 3, m = O(n log(q)), q = n7/2 · δ2ω(log7/2(n))

σ = m · δ · ω(
√

log(m)) αq = 3
√
n, α′q = 5

√
n ·m · δ

Note that our compatible algorithms have δ = 1 + (` + 1)m compared to δ′ = m3O(log2(λ))(O(λ) + 1)
for Yamada’s compatible algorithms for the modified admissible hash function and δ′′ = poly(λ) for his
partitioning based on affine functions. This allows us to use much smaller q and σ.

19

3.5 Security of the IB-KEM

Our construction is secure when used in conjunction with the compatible algorithms we describe below in
Section 3.3 under the dLWEn,m+1,q,α assumption.

Theorem 1. If Π := (Setup,KeyGen,Encap,Decap) from above is instantiated with a family H of weak
near-collision resistant hash functions in the sense of Definition 1, then for any legitimate attacker A that
breaks the IND-ID-CPA security of Π in time tA with advantage εA := AdvΠ

A(λ), there exists an algorithm
B that, given (sufficiently close approximations of) tA and εA, breaks the dLWEn,m+1,q,α assumption in
time tB ≈ tA and with

Adv
dLWEn,m+1,q,α

B (λ) ≥ ε2
A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

The proof of Theorem 1 mostly follows the proof from [Yam17b]. We provide it here for completeness.

PROOF. We prove Theorem 1 with a sequence of games argument [Sho04]. We denote with Gi the event
that Game i outputs 1 and with Ei := Pr

[
1

$← Gi

]
− 1/2 the advantage of A in Game i. The first half of

the proof closely follows the proofs by Jager, Kurek and Niehues [JK18, JN19]. The second half follows the
proof by Yamada [Yam17b] (fullversion).

Game 0. This is the original IND-ID-CPA security experiment. We therefore have

Pr [E0] = Pr
[
IND-ID-CPAQ,AΠ (λ) = 1

]
.

Game 1. This game is identical to Game 0, except that the challenger runs K̄ = (K0, . . . ,K`)
$←

BPSmp(tA, εA) from Lemma 1. Furthermore, it defines I := {i : Ki 6= ⊥}. Let Q be the set of all
queries that the adversary makes to KeyGen(mpk,msk, ·), and let Q∗ := Q ∪ {id∗}, where id∗ is the chal-
lenge query. Additionally, the challenger raises event coll, aborts and outputs a random bit if there exist
id, id′ ∈ Q such that id 6= id′, butHi(id) = Hi(id′) for all i ∈ I. Since coll is defined exactly as in Lemma 1
we have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll] .

Game 2. In this game, the challenger raises event badChal, which occurs if there exists an index i ∈ I
such that Hi(id∗) 6= Ki and it raises event badEval if there exists id ∈ Q such that Hi(id) = Ki for all
i ∈ I. If either badChal or badEval occur, it aborts and outputs a random bit. By Property 2 of Lemma 1
we have badEval =⇒ coll∨ badChal and by Property 1 we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥
ε2
A

32t2A − 16tA
.

From here on the proof closely follows Yamada’s proof [Yam17b].

20

Game 3. In this game we change the way B, (Bi)0≤i≤` and C are chosen. The challenger computes
((B,R), (Bi,Ri)0≤i≤`)

$← Encode(A, (Ki)0≤i≤`). The challenger then samples RC
$← {−1, 1}m×m and

sets C := [A | ARC]. Everything else remains as in Game 2. By Lemma 7 and the properties of Encode
guaranteed by Definition 3, we have that the distributions

(A,C,B, (Bi)0≤i≤`) and (A,C′,B′, (B′i)0≤i≤`)

only have negligible statistical difference, where C′,B′, (B′i)0≤i≤`
$← Zm×mq . We therefore have

E3 ≥ E2 − negl(λ).

We define Rid := TrapEval(H, id,R, (Ri)0≤i≤`) before proceeding to the next game. Note that we have

‖RC + Rid‖∞ ≤ ‖RC‖∞ + ‖Rid‖∞ ≤ 1 + δ, (5)

where the last inequality follows from RC ∈ {−1, 1}m×m and that Encode is δ compatible with blockwise
partitioning as specified in Definition 3. It also follows that

C + Bid =

{
A(RC + Rid) if Ki = Hi(id) for all i ∈ I
A(RC + Rid) + HidG otherwise,

(6)

where Hid ∈ Zn×nq is invertible and Bid = PubEval(H, id,B, (Bi)0≤i≤`).

Game 4. In this game, we change the way the A is sampled. Now, the challenger picks A
$← Zn×mq

instead of generating it with a trapdoor. By Lemma 4 Item 1, this makes only a negligible difference.
For each key extraction query id the challenger now checks whether Hi(id) = Ki for all i ∈ I and if so
outputs a random bit. By the second property in Lemma 1, this does not affect the view of the adversary.
Otherwise, the challenger computes [A | C + Bid]−1

σ = [A | A(RC + Rid + HidG)]−1
σ from RC + Rid

for some invertible matrix Hid ∈ Zn×nq that is guaranteed to exist since (Encode,PubEval,TrapEval) fulfill
the requirements of Definition 3. Observe that Hid being invertible allows the reduction to answer the key
extraction query using the “gadget”-trapdoor instead of a trapdoor for A. The challenger then samples

e
$← [A | A(RC + Rid) + HidG]−1

σ (u),

and returns it to A. Note that since by Equation (5), the fact that Hid is invertible and σ > m(δ + 1) ·
ω(
√

log(m)), it follows from Lemma 4 and Lemma 6 that the changes above alter the view of the adversary
only negligibly. Thus, we have that

E4 ≥ E3 − negl(λ)

Game 5. In this game, we change the way the challenge ciphertext for the challenge identity id∗ is created.
As in the previous games, the challenger checks whether Ki = Hi(id∗) holds for all i ∈ I and if so outputs
a uniformly random bit and aborts. Otherwise, the challenger samples b, κ0, κ1

$← {0, 1}, s $← Znq , x0
$←

DZ,αq, x̄1
$← DZm,αq and sets w0 := sTu + x0 and wT

1 := sTA + x̄T
1 . Then, it computes Rid∗ using

TrapEval as before and sets the challenge ciphertext (c0, c1) ∈ Zq × Z2m
q as

c0 := w0 + κ1 · dq/2e , cT
1 := ReRand(w1, [Im | RC + Rid∗], αq, α

′/2α), (7)

21

where Im is the identity matrix with size m. It then outputs ((c0, cT), κb). Observe that this alters the view
of the adversary only negligibly by Lemma 3. More precisely, set V := [Im | RC + Rid∗],x := x̄1 and
bT := sTA. Invoking Lemma 3 then yields that the distribution of cT

1 as computed in Equation (7) above
has only a negligible statistical distance to

cT
1 = sTAT[Im | RC + Rid∗] + [xT

1 | xT
2]

= sT[A | ARC + ARid∗] + [xT
1 | xT

2]

= sT[A | C + Bid∗] + [xT
1 | xT

2],

where x1,x2
$← DZm,α′q. Note that the first equality holds because of Equation (6) and the last one because

C = ARC and Bid∗ = ARid∗ . We can apply Lemma 3 because

α′/(2α) >
√

2 ·m · (δ + 1) ≥
√

2m
√
m · ‖RC + Rid∗‖∞ ≥ ‖RC + Rid∗‖2 ,

where the second inequality follows from Equation (5) with id = id∗ and the third from the general inequality
between the two norms. We therefore conclude E5 ≥ E4 − negl(λ).

Game 6. In this game, we further change how the challenge ciphertext is created. The challenger first
picks v0

$← Zq,v1
$← Zmq , x0

$← DZ,αq and x1,x2
$← DZm,α′q and computes Rid∗ using TrapEval and

samples b, κ0, κ1
$← {0, 1}. It then sets the challenge ciphertext as in Equation (7) but with w0 := v0 + x0

and w1 := v1 + x̄1. We claim that E6 ≥ E5 − negl(λ) assuming dLWEn,m+1,q,α. We show this by
constructing an adversary B against dLWEn,m+1,q,α from an algorithm A distinguishing between Game 5
and Game 6 with a non-negligible advantage.

Given a dLWEn,m+1,q,α instance (A′,w′ = v′ + x̄) ∈ Zn×(m+1)
q × Zm+1

q , where x̄
$← DZm+1,αq. B’s

objective is to distinguish whether v′T = sTA′ for s $← Znq or v′ $← Zm+1
q . Let the first column of A′

be u ∈ Znq and let the last m columns of be A ∈ Zn×mq . Further, let the first coefficient of w′ be w0 and
the last m coefficients be w1. B then sets mpk as specified in Game 3. At any point in time, B aborts and
outputs a random bit if A makes a key extraction query for an identity id with Ki = Hi(id) for all i ∈ I or
if there exists an i ∈ I such that Ki 6= Hi(id∗) for the challenge identity id∗ submitted byA. Since B set up
mpk as described in Game 3 it can answer key extraction queries as described in Game 4 and in particular
without knowledge of a trapdoor for A. In order to answer A’s challenge, B samples b, κ0, κ1

$← {0, 1}
and generates the challenge ciphertext (c0, c

T
1) as in Equation (7) and outputs ((c0, c

T
1), κb) to A. Note that

the secret randomness used to generate w0 and w1 (namely, s and x̄) is not necessary for this computation.
When A outputs its guess b′, B checks whether b′ = b and if so outputs 1 and 0 otherwise.

One can easily verify that if (A′,w′) is a valid LWE sample with v′T = sTA′, the view of the adversary
corresponds to Game 5. If v′ $← Zm+1

q , the view of A corresponds to that of Game 6. It is clear that the

advantage of B is
(

Pr
[
1

$← G6

]
− Pr

[
1

$← G5

])
. We thus have E6 ≥ E5 − Adv

dLWEn,m+1,q,α

B (λ).

Game 7. We further randomize the challenge ciphertext in this game. The challenger now samples v0
$←

Zq,v1
$← Zmq , x0

$← DZ,αq and x1,x2
$← DZm,α′q and computes Rid∗ using TrapEval. Then the challenger

samples b, κ0, κ1
$← {0, 1} and sets the challenge ciphertext as

c0 := v0 + κ1 · dq/2e cT
1 :=

[
vT

1 | vT
1 (RC + Rid∗)

]
+
[
xT

1 | xT
2

]
.

22

Similarly to the change from Game 4 to Game 5, by setting V := [Im | RC + Rid∗],x := x̄1 and b := v1

(as in Game 6) and applying Lemma 3, it can be seen that this alters the view of the adversary only negligibly
and we therefore have E7 ≥ E6 − negl(λ).

Game 8. In this game, we change the challenge ciphertext to be a random vector in Zq × Z2m
q such that it

information theoretically contains no information about κ1 anymore. We therefore have E8 = 0. We hence
proceed to show that E8 ≥ E7 − negl(λ). Since both games only differ in the generation of the challenge
ciphertext, we focus on this part. First, observe that c0 is uniformly random in both games since we already
have v0

$← Zq in Game 7. It remains to show that c1 =
[
vT

1 | vT
1 (RC + Rid∗)

]
+
[
xT

1 | x2T
]

is negligibly
close to the uniform distribution over Z2m

q . First, observe that the following distributions are negligibly
close: (

A,ARC ,v
T
1 ,v

T
1 RC

)
≈
(
A,A′,vT

1 ,v
′T
1

)
≈
(
A,ARC ,v

T
1 ,v

′T
1

)
, (8)

here A,A′
$← Zn×mq ,RC

$← {−1, 1}m×m,v1,v
′T
1

$← Zmq . The first two distributions are negligibly close

by Lemma 7 for
[
AT | v1

]T ∈ Z(n+1)×m
q and RC . We can see that the second and the third distribution

are negligibly close by applying Lemma 7 for A and RC . Using this insight, we deduce that also the
distributions (

A,ARC , c
T
1 ,v

′T
1

)
≈
(
A,ARC ,v

T
1 + xT

1 ,v
′T
1 + vT

1 Rid∗ + xT
2

)
≈
(
A,ARC ,v

T
1 + xT

1 ,v
T
1 (RC + Rid∗ + xT

2)
)

are negligibly close, where A,A′
$← Zn×mq ,RC

$← {−1, 1}m×m,v1,v
′T
1

$← Zmq . The first and second
distribution are negligibly close because

1. x1,x2 are chosen independently at random from the other variables and

2. Rid∗ is computed from the trapdoors (Ri)0≤i≤`, which are also chosen independently at random from
the other variables.

The second and third distributions are negligibly close by Equation (8). This yields E8 ≥ E7 − negl(λ).

Analysis. From the above, it follows that

0 = E8 ≥ E6 − negl(λ) ≥ E5 − Adv
dLWEn,m+1,q,α

B (λ)− negl(λ)

≥ E2 − Adv
dLWEn,m+1,q,α

B (λ)− negl(λ)

≥
ε2
A

32t2A − 16tA
− Adv

dLWEn,m+1,q,α

B (λ)− negl(λ).

This is equivalent to

Adv
dLWEn,m+1,q,α

B (λ) ≥
ε2
A

32t2A − 16tA
− negl(λ),

which concludes the proof of Theorem 1.

23

4 IB-KEMs from Pairings

In this section, we show how to use blockwise partitioning to create two variants of the IB-KEMs of Boneh
and Boyen [BB04a] and Waters [Wat05], respectively. In comparison to [BB04a], we achieve adaptive se-
curity instead of selective security. Additionally, we get ciphertexts of only a single element. In comparison
to the corresponding construction from [JK18], the q of the required q-type assumption is reduced quadrat-
ically, while the tightness of the reduction is improved quadratically. In comparison to [Wat05], we have
public parameters of size O(log λ) instead of O(λ). The security analysis is also much simpler than in
[Wat05] or the simplified proof by Bellare and Ristenpart [BR09]. To our best knowledge, this is the first
adaptively-secure IBE scheme where ciphertexts consist only of two elements of a prime order algebraic
group with logarithmic-size public parameters. For a better understanding we instantiate both constructions
with symmetric pairings. However, asymmetric pairings work as well as it can be seen in [JK18].

Definition 7 (Definition 1 from [HJ16]). A Bilinear Group Generator is a probabilistic polynomial-time
algorithm GrpGen that takes as input a security parameter 1λ and outputs BG = (p,G,GT , ◦, ◦T , e, φ(1))

$←
GrpGen(1λ) such that the following requirements are satisfied.

1. p is a prime and log(p) ∈ Ω(λ)

2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps φ : Zp → G and
φT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security parameter) maps ◦ :
G×G→ G and ◦T : GT ×GT → GT , such that

a) (G, ◦) and (GT , ◦T) form algebraic groups,

b) φ is a group isomorphism from (Zp,+) to (G, ◦) and

c) φT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in the security parameter) bilinear map
e : G×G→ GT . We require that e is non-degenerate, that is,

x 6= 0⇒ e(φ(x), φ(x)) 6= φT (0).

Encoding elements of {0, 1}2λ+3 as Zp-elements. Furthermore, in order to simplify the notation and
description of the construction and its security analysis, we assume that elements of {0, 1}2λ+3 can be
injectively encoded as elements of Zp.

4.1 Compact IB-KEM from Decisional Bilinear Diffie-Hellman

In this section we describe a variant of the IBE scheme of Waters [Wat05], which has public parameters of
size O(log λ) instead of O(λ).

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash functions, let ` =
blog(2λ+ 3)c, and let GrpGen be a bilinear group generator. We construct IB-KEM scheme Π = (Setup,
KeyGen, allowbreakEncap,Decap) as follows.

24

Setup. Choose a group description BG $← GrpGen(1λ), a random hash function H $← H, random gen-
erators [1], [h] ∈ G, ` + 2 random group elements [u′], [u0], . . . , [u`], and x

$← Zp. Compute
e([1], [hx]) = [hx]T The master secret key is msk := [hx]. The public parameters are defined
as

mpk = ([1], [u′], [u0], . . . , [u`], [hx]T).

Key Generation. Let

[u(id)] := [u′]
∏̀
i=0

[ui]
Hi(id) =

[
u′ +

∑̀
i=0

uiHi(id)

]

To compute the private key for identity id, choose s $← Zp and compute and return

uskid = ([s], [hx] · [u(id)]s = [hx+ u(id)s])

Encapsulation. To encapsulate a key, choose r $← Zp and compute and return

ct := ([r], [u(id)]r = [u(id)r]) ∈ G2 and K := [hx]rT = [hxr]T

Decapsulation. To recover K from a ciphertext ct = ([r], [u(id)r]) and a matching user secret key ([s],
[hx+ u(id)s]), compute and output

e([hx+ u(id)s] , [r])

e([u(id)r], [s])
=

[hxr + u(id)sr]T
[u(id)sr]T

= [hxr]T

Security Analysis. The security of this construction is based on the Decisional Bilinear Diffie-Hellman
assumption, which is the same assumption as for schemes of [BB04a, Wat05]. In addition, we assume that
the hash function H is weak near-collision resistant.

Definition 8 (Decisional Bilinear Diffie-Hellman [BB04a]). The advantage of an adversaryA in solving the
Decisional Bilinear Diffie-Hellman Problem (DBDH) with respect to a Bilinear Group Generator GrpGen is

AdvDBDH
A,BG (λ) := |Pr [A ([α], [β], [γ], V0) = 1]− Pr [A ([α], [β], [γ], V1) = 1]| ,

where BG $← GrpGen(1λ), α, β, γ
$← Zp, V0 = [αβγ]T and V1

$← GT . We say that the DBDH assumption
holds with respect to GrpGen, if AdvDBDH

A (λ) is negligible for every PPT A.

Theorem 2. If Π is instantiated with a familyH of weak near-collision resistant hash functions in the sense
of Definition 1, then for any legitimate attackerA that breaks the IND-ID-CPA security of Π in time tA with
advantage εA := AdvΠ

A(λ), there exists an algorithm B that, given (sufficiently close approximations of) tA
and εA, breaks the DBDH assumption in time tB ≈ tA and with

AdvDBDH
B (λ) ≥ `

`+ 1
·

ε2
A

32t2A − 16tA
− negl(λ)

for some negligible term negl.

PROOF. Consider the following sequence of games, where we denote withGi the event that Game i outputs
1 and with Ei = Pr

[
1

$← Gi

]
− 1/2 the advantage of A in Game i.

25

Game 0. This is the original IND-ID-CPAΠ
A(λ) security experiment. By definition, we have

E0 = Pr[IND-ID-CPAΠ
A(λ) = 1]− 1/2 = εA

Game 1. In this game, we additionally run algorithm

(K0, . . . ,K`)
$← BPSmp(1λ, tA, εA)

at the beginning of the experiment, where algorithm BPSmp is from Lemma 1.
Furthermore, we define I := {i : Ki 6= ⊥}. Let Q be the set of all identities that the adversary queries

to KeyGen(mpk,msk, ·), and letQ∗ := Q∪{id∗}, where id∗ is the identity of the challenge ciphertext. We
raise event coll, abort the experiment, and output a random bit, if there exists i ∈ I and id, id′ ∈ Q∗ such
that id 6= id′, but Hi(id) = Hi(id′) for all i ∈ I. Note that coll is defined exactly as in Lemma 1 and that we
have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll] .

Game 2. We raise event badChal, output a random bit, and abort the game, if there exist i ∈ I such that
Ki 6= H(id∗). Note that badChal is defined exactly as in Lemma 1 and that we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥ ε2
A/(32t2A − 16tA)

where the last inequality is from Property 1 of Lemma 1.

Game 3. This game deviates from the security proofs of other constructions in this paper. We need to
deal with an event dlog, which is defined below, in order to apply blockwise partitioning to the Boneh-
Boyen/Waters scheme.

First of all, we modify the way how the experiment samples the group elements that determine the
function [u(id)]. The experiment first chooses a generator [α]

$← G and r′, r1, . . . , r`
$← Zp uniformly

random. Then it sets

[ui] :=

{
[αri] if Ki 6= ⊥
[ri] if Ki = ⊥

and [u′] :=

[
r′ −

∑
i∈I

αriKi

]
(9)

Note that the distribution of these values is still uniform, and therefore identical to Game 2. Game 3 now
raises event dlog and aborts, if there exists id ∈ Q such that∑

i∈I
αriKi =

∑
i∈I

αriHi(id) ⇐⇒
∑
i∈I

ri(Ki −Hi(id)) = 0 (10)

We claim that there exists an algorithm B1 that breaks the Decisional Bilinear Diffie-Hellman assump-
tion with success probability Pr [dlog] /|I|. B1 receives as input (BG, [r], [β], [γ], V). It will compute the
discrete logarithm r and use this to break the DBDH assumption.1

B1 picks j $← I at random and defines [rj] := [r]. Then it proceeds exactly like Game 3. If dlog occurs,
then Equation (10) holds. Due to Game 2 we can be certain that Ki = Hi(id∗) holds for all i ∈ I, and due

1We could alternatively reduce to the weaker discrete logarithm problem, but we will later reduce to DBDH anyway, so omitting
the additional definition saves trees.

26

to Game 1 we know that for any id ∈ Q there must be at least one i ∈ I such that Hi(id) 6= Hi(id∗). These
two together yield that for any id ∈ Q there must exist at least one i ∈ I such that Hi(id) 6= Ki.

Let id be the first identity for which Equation (10) holds. With probability at least 1/|I| we have j = i.
In this case B1 is able to compute

r = rj =

∑
i∈I\{j} ri(Ki −Hi(id))

Hj(id)−Kj

which immediately enables B1 to test whether V = e([β], [γ])r holds. With |I| ≤ ` we thus get

E3 ≥ E2 − AdvDBDH
B1 (λ)/`

Reduction. Now we are able to describe our final reduction B2 to the Decisional Bilinear Diffie-Hellman
assumption. B2 that receives (BG, [α], [β], [γ], V) and simulates the IND-ID-CPA experiment as follows.

Setup. B2 defines [x] := [α], [h] := [β], and uses [α] to compute [u′], [u0], . . . , [u`] exactly as in Game 3,
Equation (9). The master public parameters are defined as

mpk = ([1], [u′], [u0], . . . , [u`], e([α], [β]))

note that this this is a correctly distributed master public key. The secret key is implicitly defined as
[αβ].

Key Generation. In the sequel let us write

a(id) :=
∑
i∈I

ri(Hi(id)−Ki) and b(id) := r′ +
∑
i 6∈I

riHi(id)

such that we have [u(id)] = [αa(id) + b(id)].

B2 needs to compute a secret key of the form

[s], [αβ + u(id)s]

such that s is uniform over Zp. To this end, it picks s′ $← Zp and computes

[s] := [β]−1/a(id) · [s′]

which is correctly distributed and implicitly defines s := −β/a(id) + s′. Then it computes

[z] := [β]−b(id)/a(id) · [α]a(id)s′ · [b(id)s′]

= [αβ − αβ − βb(id)/a(id) + αa(id)s′ + b(id)s′]

= [αβ + (αa(id) + b(id))(−β/a(id) + s′)]

= [αβ + u(id)s]

Note here that we have a(id) 6= 0 for all id ∈ Q, as otherwise we raise event dlog and abort due to
Game 3, Equation (10). Then it returns ([s], [z]).

27

Encapsulation. Given a challenge identity id∗, B2 has to create a challenge ciphertext of the form

ct := ([r], [u(id∗)r])

B2 sets [r] := [γ], where [γ] is from the DBDH challenge. Note that we have a(id∗) = 0, as otherwise
we raise event guess and abort due to Game 2, and thus

[u(id∗)γ] = [b(id∗)γ] = [γ]b(id∗)

such that ct∗ = ([γ], [γ]b(id∗)) is a consistent ciphertext.

Finally, it sets K∗ := T and returns (ct∗,K∗).

Note that if T = [αβγ]T , then this is a correct key, since for any valid user key ([s], [hx+ u(id∗)s]) for the
challenge identity id∗ we have

e([αβ + u(id)s] , [γ])

e([u(id)γ], [s])
=

[αβγ + u(id)sγ]T
[u(id)sγ]T

= [αβγ]T

while if T is random, then so is K∗. Hence, B2 provides a perfect simulation of Game 3. It returns whatever
A returns, and thus we have that

AdvDBDH
B2 (λ) ≥ E3.

By collecting probability across all games, we get

AdvDBDH
B1 (λ)

`
+ AdvDBDH

B2 (λ) ≥
ε2
A

32t2A − 16tA
.

4.2 IB-KEM with Short Ciphertexts

In this section, we present a new IB-KEM that is adaptively secure and where the ciphertext consists of
only a single element. Compared to the only other construction with these properties ([JK18]), the q of
the required q-type assumption is reduced quadratically, while the tightness of the reduction is improved
quadratically, as well. Due to weak near-collision resistance, we are also able to reduce the output length
of the hash function to roughly half of the output length required in [JK18], which reduces computational
costs while guaranteeing the same level of security.

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash functions, let ` =
blog(2λ+ 3)c, and let GrpGen be a bilinear group generator. We construct the IB-KEM scheme Π =
(Setup,KeyGen,Encap,Decap) as follows.

Setup. Choose a group description BG $← GrpGen(1λ), a random hash function H $← H, a random gener-
ator [1] ∈ G1, and random elements x0, . . . , x` ∈ Z∗p. Define the master secret key msk as

msk = (x0, . . . , x`) ∈ Z`+1
p .

28

For i ∈ N and m ∈ N0 define bi(m) as the function that, on input of integer m, outputs the i-th bit of
the binary representation of m. For msk = (x0, . . . , x`) and m = 0, . . . , 2`+1 − 1 define

F (msk,m) :=
∏̀
i=0

x
bi(m)
i . (11)

The public parameters are defined as

mpk = ([F (msk, 0)], . . . , [F (msk, 2`+1 − 1]).

Key Generation. Let

u(id) =
∏̀
i=0

(Hi(id) + xi) ∈ Zp. (12)

Then the private key for identity id is computed as uskid = [1/u(id)].

Encapsulation. Observe that

u(id) =
∏̀
i=0

(Hi(id) + xi) = d0 +
2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id). Using H(id) and mpk first [u(id)] is
computed as

[u(id)] =

d0 +
2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

) = [d0] ·
2`−1∏
m=1

[F (msk,m)]dm .

Note that this does not require knowledge of x0, . . . , x` explicitly.

Finally, the ciphertext and key are computed as

(ct,K) = ([u(id)]r, e([1], [1])r) ∈ G1 ×GT .

for a uniformly random r
$← Zp.

Decapsulation. To recoverK from a ciphertext ct for identity id and a matching user secret key [1/(u(id))],
compute and output e(C, uskid).

Security Analysis. The security of this construction is based on the q-DBDHI assumption, which is the
same assumption as for the scheme of [BB04a]. In addition, we assume that the hash function H is weak
near-collision resistant.

Definition 9 (q-Decision Bilinear Diffie-Hellman Inversion Assumption [BB04a]). For a PPT algorithm A,
the advantage of A in solving the q-Decision Bilinear Diffie-Hellman Inversion Problem (q-DBDHI) with
respect to a Bilinear Group Generator GrpGen is

Advq-DBDHI
A (λ) :=

∣∣Pr
[
A
(
BG, [y], [yα], [yα2], . . . , [yαq], V0

)
= 1
]
−

Pr
[
A
(
BG, [y], [yα], [yα2], . . . , [yαq], V1

)
= 1
]∣∣ ,

29

where BG $← GrpGen(1λ), α
$← Z∗p, [y]

$← G, V0 = e([y], [y])1/α and V1
$← GT . The probability is over the

randomness of A,GrpGen and sampling α, g̃, h and V1. We say that the q-DBDHI assumption holds with
respect to GrpGen if Advq-DBDHI

A (λ) is negligible for every PPT A.

We start by defining the strength of the q-DBDHI assumption. That is, we set

q := 4λ+ 7 + j + 2
∑

i∈[blog(2λ+3)c]0
Ki 6=⊥

(
22i − 1

)
.

Using the following lemma, we immediately obtain q ≤ 4λ + 8 + blog(2λ+ 3)c + 32t2A/εA because
j ≤ blog(2λ+ 3)c+ 1.

Lemma 11. Let I = {i : Ki 6= ⊥} be as above, then

2 ·
∑

i∈[blog(2λ+3)c]0
i∈I

(
22i − 1

)
≤

32t2A
εA

.

The proof of Lemma 11 consists only of simple arithmetic and we therefore provide it in Appendix B.

Theorem 3. If Π is instantiated with a familyH of weak near-collision resistant hash functions in the sense
of Definition 1, then for any legitimate attacker A that breaks the IND-ID-CPA security of Π in time tA
with advantage εA := AdvΠ

A(λ), there exists an algorithm B that, given (sufficiently close approximations
of) tA and εA, breaks the q-DBDHI assumption with q ≤ 4λ + 9 + blog(2λ+ 3)c + 32t2A/εA in time
tB = O(32t2A/εA) and with

Advq-DBDHI
B (λ) ≥ ε2

A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

PROOF. Consider the following sequence of games. We denote withGi the event that Game i outputs 1 and
with Ei := Pr

[
1

$← Gi

]
− 1/2 the advantage of A in Game i.

Game 0. This is the original IND-ID-CPAΠ
A(λ) security experiment. By definition, we have

E0 = Pr[IND-ID-CPAAΠ(λ) = 1]− 1/2 = εA.

Game 1. This game is identical to Game 0, except that the challenger runs K̄ = (K0, . . . ,K`)
$←

BPSmp(tA, εA) from Lemma 1. Furthermore, it defines I := {i : Ki 6= ⊥}. Let Q be the set of all
queries that the adversary queries to KeyGen(mpk,msk, ·), and let Q∗ := Q ∪ {id∗}, where id∗ is the chal-
lenge query. Additionally, the challenger raises event coll, aborts and outputs a random bit if there exist
id, id′ ∈ Q such that id 6= id′, butHi(id) = Hi(id′) for all i ∈ I. Since coll is defined exactly as in Lemma 1
we have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll]

30

Game 2. In this game, the challenger raises event badChal which occurs if there exists an index i ∈ I
such that Hi(id∗) 6= Ki and it raises event badEval if there exists id ∈ Q such that Hi(id) = Ki for all
i ∈ I. If either badChal or badEval occur it aborts and outputs a random bit. By Property 2 of Lemma 1 we
have badEval =⇒ coll∨ badChal and by Property 1 we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥
ε2
A

32t2A − 16tA

Game 3. In this game, we change the way msk and mpk are generated by the challenger. It samples
α

$← Z∗p, x̃i
$← Z∗p and sets for all i = 0, . . . , blog(2λ+ 3)c

xi :=

{
x̃i · α−Ki if Ki 6= ⊥
x̃i otherwise.

If xi = 0 for any 0 ≤ i ≤ blog(2λ+ 3)c, then the challenger aborts and outputs a random bit. This happens
iff x̃iα = Ki. Since x̃iα is distributed uniformly at random in Z∗p, the probability that this happens for any
of the O(log λ) many xi is negligible and we therefore have E3 = E2 − negl(λ).

Game 4. In this game, the way the challenger chooses [1] is changed. Let j = |I| be the number of
non-wildcard positions in K̄. The challenger then first defines the polynomial Q(Z) ∈ Zp[Z] as

Q(Z) := Zj−1

blog(2λ+3)c∏
i=0
Ki 6=⊥

∏
−22

i
+1≤k≤22

i−1
k 6=0

(x̃iZ + k) . (13)

The challenger samples [y]
$← G1 and sets [1] := [y]Q(α). If [1] = 1G, which happens iff Q(α) ≡ 0 mod p,

the challenger outputs a random bit and aborts. It can be seen that the distribution of [1] changes only if
Q(α) ≡ 0 mod p. By Lemma 11, we have deg(Q) ≤ blog(2λ+ 3)c+ 8 + 32t2A/εA. Since α is uniformly
random in Z∗p, we have by the Schwartz-Zippel Lemma Pr [Q(α) = 0] ≤ deg(Q)

p−1 . Due to the fact that deg(Q)

is polynomial in λ and p ∈ 2Ω(λ) by the properties of GrpGen, we have E4 = E3 − negl(λ).
The previous steps now enable us to construct a an adversary B against the q-DBDHI that perfectly

simulates Game 4. B operates as follows.

Initialization of B. B runs K̄ = (K0, . . . ,K`)
$← BPSmp(tA, εA) at the beginning of the experiment and

by doing so it also determines the index set I := {i : Ki 6= ⊥} according to Lemma 1. Moreover, it receives
a q-DBDHI instance (BG, [y], [yα], . . . , [yαq], V), where q = 4λ + 6 + j + 2

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

(
22i − 1

)
,

where j = |I| is the number of non-wildcard positions in K̄, and where either V = e([y], [y]s)1/α or
V

$← GT . In order to define [1], B samples x̃i
$← Z∗p for all i = 0, . . . , blog(2λ+ 3)c. Then it computes

coefficients ϕ0, . . . ϕq−4λ−8 ∈ Zp such that

Q(Z) = Zj−1

blog(2λ+3)c∏
i=0
Ki 6=⊥

∏
−22

i
+1≤k≤22

i−1
k 6=0

(x̃iZ + k) =

q−4λ−8∑
k=0

ϕkZk.

31

Then B defines

[1] :=

q−8λ−8∏
k=0

[yαk]ϕk = [y

q−4λ−8∑
k=0

ϕkα
k] = [yQ(α].

If [1] = 1G, meaning Q(α) ≡ 0 mod p, B aborts and outputs a random bit. Then B proceeds with computing
[F (msk,m)] for m = 0, ..., 2`+1 − 1, where ` = blog(2λ+ 3)c and F (msk,m) =

∏`
i′=0 x

bi′ (m)
i′ as in

Equation (11). First B samples x̃i′ for i = 0, . . . , blog(2λ+ 3)c and then it (implicitly) sets

xi′ :=

{
x̃i′ · α−Ki′ if Ki 6= ⊥
x̃i′ otherwise

.

Then it computes ψm,0, . . . , ψm,q ∈ Zp for all m = 0, ..., 2`+1 − 1 such that

Q(α) ·
∏̀
i′=0

x
bi′ (m)
i′ =

q∑
k=0

ψm,kα
k.

Afterwards, it sets for all m = 0, . . . , 2`+1 − 1

[F (msk,m)] :=

q∏
k=0

[yαk]ψm,k = [yQ(α) ·
∏̀
i′=1

x
bi′ (m)
i′].

Finally B outputs mpk = ([F (msk, 0)], . . . , [F (msk, 2`+1 − 1], H) to A.
In order to respond to KeyGen queries and the challenge query for id∗, B defines a polynomial Pid(Z) ∈

Zp[Z], which will assume the role of u(id). Let xi′ = x̃i′ · Z −Ki′ if Ki 6= ⊥ and xi′ = x̃i′ else. Then

Pid(Z) :=

blog(2λ+3)c∏
i′=1

(xi′ +Hi′(id)) .

We require the following lemma by Yamada [Yam17a] to proceed with the description of B.

Lemma 12 (Lemma 6 in [Yam17a]). Let id ∈ {0, 1}∗ then there exist ζid ∈ Z∗p and Rid(Z) ∈ Zp[Z] such
that

Q(Z)

Pid(Z)
=

{
ζid
Z + Rid(Z) if Hi(id) = Ki for all i ∈ I

Rid(Z) else
.

The proof of Lemma 12 is identical to the proof of Lemma 7 in [Yam17a] and we provide it in Section
C for completeness.

Answering key queries. When B receives a key query for id ∈ {0, 1}∗ from A, it checks whether
Hi(id) = Ki for all i ∈ I and if so aborts and outputs a random bit. If there is an index i ∈ I such
that Hi(id) 6= Ki let Rid(Z) =

∑q
k=0 Zkρid,k ∈ Zp[Z] such that Rid(Z) = Q(Z)/Pid(Z), which is guaran-

teed to exist by Lemma 12. First B computes the coefficients ρid,k ∈ Zp for all k. Then it computes and
returns

[1/u(id)] :=

q∏
k=0

[yαk]ρid,k = [y

q∑
k=0

αkρid,k] = [yRid(α)] = [yQ(α)/Pid(α)].

32

Answering challenge. When B receives the challenge id∗ ∈ {0, 1}∗, it checks whether there exists i ∈ I
such that Hi(id) 6= Ki. If this is true then it aborts and outputs a random bit. Else, let ζ := ζid∗ ∈ Zp
and R(Z) := Rid∗(Z) =

∑q
k=0 Zkγk ∈ Zp[Z] such that Q(Z)/Pid∗(Z) = ζ/Z + R(Z) as guaranteed by

Lemma 12. B then computes coefficients γk ∈ Zp of R.
Using that Q(Z) =

∑q−4λ−8
k=0 ϕkZk it also computes

K̃ := V ζ·ϕ0e

(
[y],

q−4λ−8∏
k=1

[yαk−1]ζϕk

)
e

(
q∏

k=0

[yαk]γk ,

q−4λ−8∏
k=0

[yαk]ϕk

)
(14)

Afterwards it samples L $← Zp and computes and outputs

K := K̃L and ct := [1]L.

Finally, when A outputs its guess b′ to B, then B also outputs b′ as solution to the q-DBDHI instance.

Analysis of B. Recapping the construction of B, we observe that mpk and all answers of B are distributed
identically to the challenger’s interactions with A in Game 4. Analyzing B’s response to the challenge id∗,
we distinguish the following two cases depending on the q-DBDHI instance.
Let V = e([y], [y])1/α. Then we have for the first part of (14)

V ζ·ϕ0e

(
[y],

q−4λ−8∏
k=1

[yαk−1]ζϕk

)
= e([y], [y])ζ·ϕ0/αe

(
[y],

q−4λ−7∏
k=1

[yαk−1]ζϕk

)

= e

(
[y], [y

q−4λ−8∑
k=0

ζϕkα
k−1]

)
= e ([y], [y])ζQ(α)/α

and for the second part

e

(
q∏

k=0

[yαk]γk ,

q−4λ−8∏
k=0

[yαk]ϕk

)
= e ([yR(α)], [yQ(α)]) = e ([y], [y])R(α)Q(α) .

Together we have that

K̃ = e ([y], [y])ζ·Q(α)/α+R(α)·Q(α) = e ([y], [y])Q(α)2/Pid∗ (α) = e ([1], [1])1/Pid∗ (α) ,

where we use [yQ(α)] = [1] and Lemma 12 multiplied by Q(Z) on both sides.
Then if we implicitly set s := L/Pid∗(α) we have

K = K̃L = e ([1], [1])L/Pid∗ (α) = e ([1], [1])s and ct = [1]L = [1]Pid∗ (α)·s.

Since Pid∗(α) = u(id∗) we have that ct is a correct encapsulation of K.
In case that V $← GT we have that K̃L is uniformly random in GT . Thus K = K̃ and ct do not

match. Overall it can be seen that B simulates Game Game 4 perfectly. Plugging the game sequence and
the reduction together gives us the same result as in the proof of Theorem 4. That is

Advq-DBDHI
B (λ) ≥ ε2

A/(32t2A − 16tA)− negl(λ).

33

Running time of B. The running time tB of B consists of the running time tA of A plus the time required
to compute a valid public key mpk and the time to respond to oracle queries by A. For computing mpk and
these responses the most time consuming operations are exponentiation. Each computation needs at most q
exponentiations. By Lemma 11 we have q ≤ 4λ+ 8 + blog(2λ+ 3)c+ 32t2A/εA = O(t2A/εA) and thus

tB = tA +O(q) = O(t2A/εA).

This completes the proof.

5 Verifiable Random Functions from Pairings

In this section, we use blockwise partitioning in order to construct the first verifiable random function with-
out random oracles that has both, short proofs and short public keys. Compared to previous VRF construc-
tions that also achieve small proof sizes, like [Kat17, Koh19], we achieve much better concrete proof sizes
or much smaller public keys. Concretely, we achieve public keys consisting of only 10 group elements and
proofs consisting of only 9 group elements for λ = 128. We start by introducing preliminaries on VRFs and
then present our construction.

5.1 Preliminaries on VRFs

Syntax of VRFs. Formally, a VRF consists of algorithms (Gen,Eval,Vfy) with the following syntax.

• (vk, sk)
$← Gen(1λ) takes as input a security parameter λ and outputs a key pair (vk, sk). We say that

sk is the secret key and vk is the verification key.

• (Y, π)
$← Eval(sk, X) takes as input a secret key sk and X ∈ {0, 1}λ, and outputs a function value

Y ∈ Y , where Y is a finite set, and a proof π. We write Vsk(X) to denote the function value Y
computed by Eval on input (sk, X).

• Vfy(vk, X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ {0, 1}λ, Y ∈ Y , and proof π, and
outputs a bit.

RoRΘ
A(λ)

b
$← {0, 1}

(vk, sk)
$← Gen(1λ)

(X∗, st)← AEval(sk,·)
1 (1λ, vk)

(Y0, π)
$← Eval(sk, X∗); Y1

$← Y
b′ ← AEval(sk,·)

2 (Yb)
If (b′ == b) return 1, else 0

Figure 3: The real-or-random(RoR) experiment for VRFs, executed with scheme VRF = (Gen,Eval,Vfy)
and adversaryA = (A1,A2). The oracle Eval(sk, X) returns (Y, π) with the restriction thatA is not allowed
to query oracle Eval(sk, ·) for the challenge query X∗.

34

Definition 10. VRF := (Gen,Eval,Vfy) is a verifiable random function (VRF) if all of the following hold.

Correctness. For all (vk, sk)
$← Gen(1λ) and X ∈ {0, 1}λ holds: if (Y, π)

$← Eval(sk, X), then we have
Vfy(vk, X, Y, π) = 1. Algorithms Gen, Eval, Vfy are polynomial-time.

Pr

 (vk, sk)
$← Gen(1λ)

X ∈ {0, 1}λ

(Y, π)
$← Eval(sk, X)

: Vfy(vk, X, Y, π) = 1

 = 1

Unique provability. For all strings (vk, sk) (not necessarily generated by Gen) and all X ∈ {0, 1}∗, there
does not exist any tuple (Y0, π0, Y1, π1) such that Y0 6= Y1 and at the same time Vfy(vk, X, Y0, π0) =
Vfy(vk, X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries) to the procedures defined in
Figure 3. We say that A is legitimate, if A never queries Evaluate(X∗), where X∗ is the output of
A1. We define the advantage of A in breaking the pseudorandomness of VRF VRF as

AdvRoR
A (λ) :=

∣∣Pr
[
RoRVRFA (λ) = 1

]
− 1/2

∣∣
In order to fulfill the unique provability requirement of VRFs, we need that each group element has a
unique encoding. Otherwise two different encodings of the same group element could be accepted by the
Vfy algorithms and by that breaking the unique provability requirement. We therefore require the group
generator to be certified as defined by Hofheinz and Jager [HJ16].

Definition 11. We say that group generator GrpGen is certified, if there exist deterministic polynomial-time
(in the security parameter) algorithms GrpVfy and GrpElemVfy with the following properties.

Parameter Validation. Given the security parameter (in unary) and a string BG, which is not necessarily
generated by GrpGen, algorithm GrpVfy(1λ,BG) outputs 1 if and only if BG has the form

BG = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 7 are satisfied.

Recognition and Unique Representation of Elements of G. We also require that each element in G has a
unique representation, which can be efficiently recognized. That is, on input the security parameter (in
unary) and two strings BG and s, GrpElemVfy(1λ,BG, s) outputs 1 if and only if GrpVfy(1λ,BG) = 1
and it holds that s = φ(x) for some x ∈ Zp. Here φ : Zp → G denotes the fixed group isomorphism
contained in BG to specify the representation of elements of G.

5.2 A VRF with Short Proofs and Keys

The construction of the VRF roughly follows the construction of the IB-KEM. The major difference is that
including group elements in the proof of the VRF allows us to only include the group elements [xi] instead
of all possible combinations F (msk,m), as in the IB-KEM, in the public keys. Hence, the proofs and secret
keys of VRF construction consist of only blog(2λ+ 3)c + 1 many elements and the secret keys consist
of only blog(2λ+ 3)c + 2 group elements. Instead of viewing the VRF as a adaptation of our previous
IB-KEM in Section 4.2, it can also be viewed as an adaptation of Yamada’s VRF [Yam17a] to blockwise
partitioning and the description mostly follows Yamada’s VRF. Let Hλ = {H : {0, 1}∗ → {0, 1}2λ+3} be
a family of hash functions, let ` = blog(2λ+ 3)c, let GrpGen be a certified bilinear group generator, and let
VRF = (Gen,Eval,Vfy) be the following algorithms.

35

Key generation. Gen(1λ) chooses a group description BG $← GrpGen(1λ), a random hash function H $←
Hλ, a random generator [1]

$← G∗. Then it samples wi
$← Z∗p and sets Wi := [wi] for all i = 0, . . . , `

. It returns

vk := ([1],BG,W0, . . . ,W`, H) and sk := (w0, . . . , w`).

Evaluation. Eval(sk, X) computes for i = 0, . . . , `

Θi(X) :=
i∏

i′=0

(wi′ +Hi′(X)).

If there is an index 0 ≤ i ≤ ` such that Θi(X) ≡ 0 mod p it sets Y := 1GT and πi = 1G for all
i = 0, . . . , `. Otherwise, it computes

Y := e([1], [1])1/Θ`(X) and πi := g1/Θi(X)

for all i = 0, . . . , `. It outputs (Y, π = (π0, . . . , π`)).

Verification. Vfy(vk, X, Y, π) checks if the following conditions are met and outputs 0 if not, otherwise it
outputs 1.

1. We have that X ∈ {0, 1}∗.
2. vk has the form ([1],BG,W0, . . . ,W`, H) and sk = (w0, . . . , w`).
3. BG is a a certified encoding of a bilinear group: GrpVfy(1λ,BG) = 1. Further, all group

elements can be verified by running GrpElemVfy(1λ,BG, [1]) = 1,GrpElemVfy(1λ,BG, h) =
1, GrpElemVfy(1λ,BG,Wi) = 1 and also GrpElemVfy(1λ,BG, πi) = 1 for all 0 ≤ i ≤ `.

4. If there is an index ≤ i ≤ ` such that Wi · [Hi(X)] = 1G, then it holds that Y = 1GT and
πi = 1G for all i = 0, . . . , `.

5. If we have Wi · [Hi(X)] 6= 1G for all i = 0, . . . , `, then for all of these i it holds that e(πi,Wi ·
[Hi(X)]) = e([1], πi−1).

6. It holds that e(π`, [1]) = Y .

VRF as specified above is correct and fulfills the unique provability requirements as can be proven with
standard arguments. Also note that using a hash function does not affect unique provability because the hash
function deterministically maps each input to an output. Like the IB-KEM we present in Section 4.2, our
VRF is based on the q-DBDHI assumption. We set q := log(2λ + 3) + 2 + 2

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

(
22i − 1

)
which is at most log(2λ+ 3) + 2 + 32t−A2

εA
by Lemma 11.

Theorem 4. If VRF is instantiated with a family H = {H : {0, 1}∗ → {0, 1}2λ+3} of weak near-
collision resistant hash functions from Definition 1, then for any legitimate attacker A that breaks the
pseudorandomness of VRF in time tA with advantage εA := AdvRoR

A (λ), there exists an algorithm B
that, given (sufficiently close approximations of) tA and εA, breaks the q-DBDHI assumption with q ≤
blog(2λ+ 3)c+ 2 + 32t2A/εA in time tB = O(t2A/εA) and with

Advq-DBDHI
A (λ) ≥ ε2

A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

The proof of Theorem 4 follows basically the proof of Theorem 3. For a complete overview, we provide
it in Appendix D.

36

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer,
Heidelberg, May / June 2010. 4, 7, 3.2, 3.3, 3.3, 4, 3.3, 8, 3.3

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 98–115. Springer, Heidelberg, August 2010. 1.1, 4

[AFL16] Daniel Apon, Xiong Fan, and Feng-Hao Liu. Compact identity based encryption from LWE.
Cryptology ePrint Archive, Report 2016/125, 2016. http://eprint.iacr.org/2016/
125. 1.1

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A framework for identity-
based encryption with almost tight security. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 521–549. Springer, Heidelberg, Novem-
ber / December 2015. 1.1

[Alp15] Jacob Alperin-Sheriff. Short signatures with short public keys from homomorphic trapdoor
functions. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 236–255. Springer,
Heidelberg, March / April 2015. 1.1, 2.1

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238. Springer, Heidelberg, May 2004. 1, 1.1, 2, 4, 4.1, 8, 4.2, 9

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer,
Heidelberg, August 2004. 1

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer, Heidelberg, August 2004.
1.1

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William Jalby.
Collisions of SHA-0 and reduced SHA-1. In Ronald Cramer, editor, EUROCRYPT 2005, vol-
ume 3494 of LNCS, pages 36–57. Springer, Heidelberg, May 2005. 1.1

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferentiability
of the sponge construction. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of
LNCS, pages 181–197. Springer, Heidelberg, April 2008. 1.1

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001. 1, 1.1, 2

[BFMS08] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions
of identity-based and certificateless KEMs. Journal of Cryptology, 21(2):178–199, April 2008.
3.4

37

http://eprint.iacr.org/2016/125
http://eprint.iacr.org/2016/125

[BHJ+13] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, Jae Hong Seo, and Christoph
Striecks. Practical signatures from standard assumptions. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 461–485. Springer, Heidel-
berg, May 2013. 2.1, 2.1, 2.1.1, 2.1.1

[BHJ+15] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks. Confined
guessing: New signatures from standard assumptions. Journal of Cryptology, 28(1):176–208,
January 2015. 1.1, 2.1, 2.1, 2.1.1, 2.1.1

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature and id-based en-
cryption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 404–434. Springer, Heidelberg, December 2016. 1.1

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013. 3.1, 4

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseudorandom
functions with improved efficiency from the augmented cascade. In Ehab Al-Shaer, Ange-
los D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages 131–140. ACM Press,
October 2010. 1.1

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 499–517. Springer, Heidelberg, May 2010. 1.1, 3.2

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. 1

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 407–424. Springer, Heidelberg, April 2009. 1,
1.1, 1.1, 4

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unbounded attributes
and semi-adaptive security. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 363–384. Springer, Heidelberg, August 2016. 3.1

[CFN15] Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go private:
Constructions and applications to (homomorphic) signatures with shorter public keys. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 254–274. Springer, Heidelberg, August 2015. 1

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998. 1

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552. Springer, Heidelberg, May / June 2010. 1.1, 4

38

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter ibe and sig-
natures via asymmetric pairings. In Michel Abdalla and Tanja Lange, editors, Pairing-Based
Cryptography – Pairing 2012, pages 122–140, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg. 1.1

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the standard model.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 335–352. Springer, Heidelberg, August 2014. 1.1, 2.1

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case of
Schnorr signatures. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 444–460. Springer, Heidelberg, May 2013. 1

[FHJ20] Marc Fischlin, Patrick Harasser, and Christian Janson. Signatures from sequential-OR proofs.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 212–244. Springer, Heidelberg, May 2020. 2.1.1

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 513–530. Springer, Heidelberg, August
2013. 1

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and
Stefano Tessaro. Random oracles with(out) programmability. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 303–320. Springer, Heidelberg, December 2010.
1, 2.1.1

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464. Springer, Heidelberg,
May / June 2006. 1.1

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008. 1, 3

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008. 4

[HJ16] Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard assumptions. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages
336–362. Springer, Heidelberg, January 2016. 1.1, 7, 5.1

[HJK11] Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from weaker assumptions. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages
647–666. Springer, Heidelberg, December 2011. 1

[HK08] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Heidelberg,
August 2008. 1

39

[HMS12] Goichiro Hanaoka, Takahiro Matsuda, and Jacob C. N. Schuldt. On the impossibility of con-
structing efficient key encapsulation and programmable hash functions in prime order groups. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
812–831. Springer, Heidelberg, August 2012. 1

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input
spaces. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 656–672.
Springer, Heidelberg, May / June 2010. 1.1

[Jag15] Tibor Jager. Verifiable random functions from weaker assumptions. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 121–143. Springer,
Heidelberg, March 2015. 1.1, 1.1

[JK18] Tibor Jager and Rafael Kurek. Short digital signatures and ID-KEMs via truncation collision
resistance. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 221–250. Springer, Heidelberg, December 2018. 1, 1.1, 1.1, 1.1, 2.1,
2.1, 2.1.1, 2.1.1, 2.1.1, 3.5, 4, 4.2, A, D

[JN19] Tibor Jager and David Niehues. On the real-world instantiability of admissible hash functions
and efficient verifiable random functions. In Kenneth G. Paterson and Douglas Stebila, editors,
SAC 2019, volume 11959 of LNCS, pages 303–332. Springer, Heidelberg, August 2019. 1, 1.1,
1.1, 3, 2.1.1, 3.5, A, D

[Kat17] Shuichi Katsumata. On the untapped potential of encoding predicates by arithmetic circuits and
their applications. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III,
volume 10626 of LNCS, pages 95–125. Springer, Heidelberg, December 2017. 1.1, 1.1, 5

[Koh19] Lisa Kohl. Hunting and gathering - verifiable random functions from standard assumptions with
short proofs. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of
LNCS, pages 408–437. Springer, Heidelberg, April 2019. 1.1, 1.1, 5

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial functions: More
compact IBEs from ideal lattices and bilinear maps. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 682–712. Springer, Heidel-
berg, December 2016. 1.1, 3

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the
prime order setting. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 318–335. Springer, Heidelberg, April 2012. 1.1

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012. 3.1, 5, 6, 3.2

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 5th edition, 1996. 1.1

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 111–126. Springer, Heidelberg, August 2002. 1

40

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press,
May / June 2009. 3.1

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939,
2015. http://eprint.iacr.org/2015/939. 1.1

[PS14] Inna Polak and Adi Shamir. Using random error correcting codes in near-collision at-
tacks on generic hash-functions. In Willi Meier and Debdeep Mukhopadhyay, editors, IN-
DOCRYPT 2014, volume 8885 of LNCS, pages 219–236. Springer, Heidelberg, December
2014. 1.1

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005. 2, 3.1, 2, 3.1, 7

[Ros18] Razvan Rosie. Adaptive-secure VRFs with shorter keys from static assumptions. In Jan Ca-
menisch and Panos Papadimitratos, editors, CANS 18, volume 11124 of LNCS, pages 440–459.
Springer, Heidelberg, September / October 2018. 1.1

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/2004/332. 3.5, D

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May
2005. 1, 1.1, 1.1, 4, 4.1, 4.1

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636.
Springer, Heidelberg, August 2009. 1.1

[Yam16] Shota Yamada. Adaptively secure identity-based encryption from lattices with asymptoti-
cally shorter public parameters. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 32–62. Springer, Heidelberg, May 2016.
1.1

[Yam17a] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable random
functions via generalized partitioning techniques. In Jonathan Katz and Hovav Shacham, ed-
itors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 161–193. Springer, Heidelberg,
August 2017. 1.1, 1, 1.1, 1.1, 1.1, 3, 3.2, 3.4, 3.4, 4, 12, 4, 5.2, D

[Yam17b] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable random
functions via generalized partitioning techniques. Cryptology ePrint Archive, Report 2017/096,
2017. http://eprint.iacr.org/2017/096. 1.1, 3.4, 1, 3.5, 2

[ZCZ16] Jiang Zhang, Yu Chen, and Zhenfeng Zhang. Programmable hash functions from lattices: Short
signatures and IBEs with small key sizes. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 303–332. Springer, Heidelberg, August
2016. 1.1, 1.1

41

http://eprint.iacr.org/2015/939
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2017/096

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August
2016. 1, 2.1.1

A Proof of Identities and Inequalities from [JK18, JN19]

We start by proving n′ ∈ {1, . . . , 2λ+ 3}.

n′ = dlog(4t(2t− 1)/ε)e ≤
⌈
log
(

4 · 2λ(2t− 1)
)⌉

≤
⌈
log
(

8 · 2λt
)⌉
≤
⌈
log
(

2λ2λ+3
)⌉

= 2λ+ 3

Since 4t(2t− 1) = 8t2 − 4t > 1 for all t ∈ N and ε ∈ (0, 1], we have log(4t(2t− 1)/ε) > 0 and therefore
j ≥ 1.

We proceed to prove 2t(2t− 1)/2n
′ ≤ ε/2.

2t(2t− 1)

2n′
=

2t(2t− 1)

2dlog(4t(2t−1)/ε)e ≤
ε2t(2t− 1)

4t(2t− 1)
=
ε

2

Finally, we have
1

2n′
=

1

2dlog(4t(2t−1)/ε)e ≥
1

2
· ε

4t(2t− 1)
=

ε

16t2 − 8t
.

B Proof of Lemma 11

2 ·
∑

i∈[blog(2λ+3)c]0
Ki 6=⊥

(
2(2i) − 1

)
< 2 ·

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

2(2i) < 2 ·
∏

i∈[blog(2λ+3)c]0
Ki 6=⊥

2(2i) (15)

= 2 · 2

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥
(2i)

= 2`

= 2 · 2dlog(4tA(2tA−1)/εA)e ≤ 8tA(2tA − 1)

εA

≥ 2 ·
16t2A
εA

=
32t2A
εA

,

where Inequality (15) holds, because a+ b < ab for all a, b ≥ 2. This concludes the proof.

C Proof of Lemma 12

In order to decomposition PX(Z) and Q(Z), we define

tX :=

 n∏
i∈{0,...,blog(2λ+3)c}

Ki 6=⊥

(w̃i +Hi(X))

42

and polynomials SX,i(Z),Qi(Z) ∈ Zp[Z] for all i ∈ {0, . . . , blog(2λ+ 3)c} as

SX,i(Z) := w̃iZ−Ki +Hi(X) and Qi(Z) =
∏

−22
i
+1≤k≤22

i−1
k 6=0

(w̃iZ + k) ,

where we only define SX,i(Z) for i such that Ki 6= ⊥. Recall that we denote the number of non-wildcard
positions in K by j ∈ {1, . . . , blog(2λ+ 3)c + 1}. By the definitions of PX(Z) and Q(Z), we then have
that

PX(Z) = tX

j∏
i∈{0,...,blog(2λ+3)c}

i 6=⊥

SX,i(Z) and Q(Z) = Zj−1

blog(2λ+3)c∏
i=0

Qi(Z)

holds. Now let I := {i ∈ {0, . . . , j} : Ki 6= ⊥∧Hi(X) = Ki}. We first observe, that for all i ∈ I it
holds that SX,i(Z) = w̃iZ − Ki + Hi(X) = w̃iZ. Therefore, it follows from the definition of Q(Z) that
SX,i(Z) - Qi(Z) for all i ∈ I .

We first observe that Ki = Hi(X) if and only if |I| = j. Using the previous observation, it follows
that PX(Z) - Q(Z) but PX(Z) | Z · Q(Z) because PX(Z) = tXZj

∏j
i=1 w̃i by definition. This implies the

existence of a polynomial RX(Z) ∈ Zp[Z] and ζX ∈ Zp such that Q(Z) = ζX/Z + RX(Z).
We now consider the case that there exists i ∈ {0, . . . , blog(2λ+ 3)c} such that Ki 6= ⊥ and H(X)i 6=

Ki′ . Let L := −Ki + Hi(X) and note that L 6= 0 and −22i + 1 ≤ L ≤ 22i − 1. Furthermore, it holds
that SX,i(Z) = w̃iZ − Ki + Hi(X) = w̃iZ + L by the definition of SX,i(Z). In particular, it therefore
holds that SX,i′(Z) | Qi′(Z). We therefore also have that PX(Z) | Q(Z) and hence it exists a polynomial
RX(Z) ∈ Zp[Z] such that RX(Z) ∈ Zp[Z] = Q(Z)/PX(Z). This completes the proof Lemma 12.

D Proof of Theorem 4

PROOF. We prove Theorem 4 with a sequence of games argument [Sho04]. The first half of the proof
follows the proofs by Jager, Kurek and Niehues [JK18, JN19]. The second half follows the proof by Ya-
mada [Yam17a]. We denote with Gi the event that Game i outputs 1 and with Ei := Pr

[
1

$← Gi

]
− 1/2

the advantage of A in Game i.

Game 0. This is the original VRF security experiment. We therefore have

E0 = Pr
[
RoRVRFA (λ) = 1

]
− 1/2 = εA.

Game 1. This game is identical to Game 0, except that the challenger runs K̄ = (K0, . . . ,K`)
$←

BPSmp(tA, εA) from Lemma 1. Furthermore, it defines I := {i : Ki 6= ⊥}. Let Q be the set of all
queries that the adversary makes to Eval(sk, X(i)), and let Q∗ := Q ∪ {X∗}, where X∗ is the challenge
query. Additionally, the challenger raises event coll, aborts and outputs a random bit if there existX,X ′ ∈ Q
such that X 6= X ′, but Hi(X) = Hi(X

′) for all i ∈ I. Since coll is defined exactly as in Lemma 1 we have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll] .

43

Game 2. In this game, the challenger raises event badChal which occurs if there exists an index i ∈ I
such that Hi(X

∗) 6= Ki and it raises event badEval if there exists X ∈ Q such that Hi(X) = Ki for all
i ∈ I. If badChal or badEval occur it aborts and outputs a random bit. By Property 2 of Lemma 1 we have
badEval =⇒ coll∨ badChal and by Property 1 we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥
ε2
A

32t2A − 16tA

Game 3. In this game the challenger changes the way it generates vk . It samples α $← Z∗p, w̃i
$← Z∗p and

sets for all i = 0, . . . , blog(2λ+ 3)c

wi :=

{
w̃i · α−Ki if Ki 6= ⊥
w̃i otherwise.

If wi = 0 for any 0 ≤ i ≤ blog(2λ+ 3)c, then the challenger aborts and outputs a random bit. This happens
iff w̃iα = Ki. Since w̃iα is distributed uniformly at random in Z∗p, the probability that this happens for any
of the O(log λ) many wi is negligible and we therefore have E3 = E2 − negl(λ).

Game 4. In this game, we change the way the challenger chooses [1]. Let j = I| be the number of
non-wildcard positions in K̄. The challenger then first defines the polynomial Q(Z) ∈ Zp[Z] as

Q(Z) := Zj−1

blog(2λ+3)c∏
i=0
Ki 6=⊥

∏
−22

i
+1≤k≤22

i−1
k 6=0

(w̃iZ + k) . (16)

The challenger samples [y]
$← G1 and sets [1] := [y]Q(α). If [1] = 1G, which happens iff Q(α) ≡ 0 mod p,

the challenger outputs a random bit and aborts. It can be seen that the distribution of [1] changes only if
Q(α) ≡ 0 mod p. By Lemma 11 we have deg(Q) ≤ blog(2λ+ 3)c+ 2 + 32t2A/εA. Since α is uniformly
random in Z∗p, we have by the Schwartz-Zippel Lemma Pr [Q(α) = 0] ≤ deg(Q)

p−1 . Due to the fact that deg(Q)

is polynomial in λ and p ∈ 2Ω(λ) by the properties of GrpGen, we have E4 = E3 − negl(λ).
Now we are ready to construct B, which simulates Game 4 as follows.

Initialization. At the beginning of the experiment B runs K̄ = (K0, . . . ,K`)
$← BPSmp(tA, εA) and by

doing so it also determines the index set I = {i : Ki 6= ⊥} according to Lemma 1. Moreover, it receives a
q-DBDHI instance

(
BG, [y], [yα], [yα2], . . . , [yαq], V

)
, where q = j+

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

(
22i − 1

)
and j =

|I| ∈ {0, . . . , `} is the number of non-wildcard positions in K̄. Further we either have V = e([y], [y]s)1/α

or V $← GT . In order to define [1], B samples w̃i
$← Z∗p for all i = 0, . . . , blog(2λ+ 3)c. Then it computes

coefficients ϕ0, . . . ϕq−1 ∈ Zp

Q(Z) = Zj−1

blog(2λ+3)c∏
i=0
Ki 6=⊥

∏
−22

i
+1≤k≤22

i−1
k 6=0

(w̃iZ + k) =

q−1∑
k=0

ϕkZk,

44

where Q(Z) is as in Equation (16). Then B defines

[1] :=

q−1∏
k=0

[yαk]ϕk = [y

q−1∑
k=0

ϕkα
k] = [yQ(α)].

If [1] = 1G, meaning Q(α) ≡ 0 mod p, B aborts and outputs a random bit. B proceeds with computing vk.
First B samples w̃i for i = 0, . . . , blog(2λ+ 3)c and then it (implicitly) sets

wi :=

{
w̃i · α−Ki if Ki 6= ⊥
w̃i otherwise.

by computing ψi,0, . . . , ψi,q ∈ Zp for all i = 0, ..., blog(2λ+ 3)c such that

Q(α) · wi =

q∑
k=0

ψi,kα
k.

and setting

Wi :=

q∏
k=0

[yαk]ψi,k = [yQ(α) · wi] = [wi].

for all i = 0, . . . , blog(2λ+ 3)c. Finally, B gives vk := ([1],BG,W0, . . . ,Wblog(2λ+3)c, H) to A. In order
to respond to Eval queries and the challengeX∗, B defines polynomials PX,i(Z) ∈ Zp[Z] – these polynomial
will assume the role of the Θi’s in the construction – for all X ∈ {0, 1}∗ and i = 0, . . . , blog(2λ+ 3)c as

PX,i(Z) :=

{
PX,i−1(Z) (w̃iZ−Ki +Hi(X)) if Ki 6= ⊥
PX,i−1(Z) (w̃i + (Hi(X)) if Ki = ⊥

,

where PX,−1(Z) := 1. Furthermore, we define PX(Z) := PX,blog(2λ+3)c(Z). As in the proof of Theorem 3,
we require Lemma 12. We observe that Lemma 12 implies that for all 0 ≤ i ≤ blog(2λ+ 3)c it holds
that Q(Z)/PX,i(Z) = RX,i(Z) for some polynomial RX,i ∈ Zp[Z] if there exists i ∈ {0, . . . , `} such that
Hi(X) 6= Ki, because we have PX,i | PX(Z) by the definitions of PX(Z) and PX,i(Z).

Answering Eval queries. When B receives an Eval query X ∈ {0, 1}∗ from A, it checks whether
Hi(X) = Ki for all i ∈ I and if so aborts and outputs a random bit. If there is an index i ∈ I such that
Hi(X) 6= Ki, let RX,i(Z) ∈ Zp[Z] such that RX,i(Z) = Q(Z)/PX,i(Z) for all i = 0, . . . , blog(2λ+ 3)c.
Recall that such a polynomial RX,i(Z) is guaranteed to exist by Lemma 12. B then computes the coef-
ficients ρX,i,k ∈ Zp of the polynomials RX,i(Z) for all i = 0, . . . , blog(2λ+ 3)c, such that RX,i(Z) =∑q

k=0 ZkρX,i,k for all i = 0, . . . , blog(2λ+ 3)c. B then computes πi as

q∏
k=0

[yαk]ρX,i,k = [y

q∑
k=0

αkρX,i,k] = [yRX,i(α)] = [yQ(α)/PX,i(α)] = [1/PX,i(α)]

for all 0 ≤ i ≤ blog(2λ+ 3)c and Y := e(πblog(2λ+3)c, [1]) = e([1], [1])1/PX(α). It then returns the result
(Y, π0, . . . , πblog(2λ+3)c) to A.

45

Answering challenge. When B receives the challenge X∗ ∈ {0, 1}∗, it checks if there is an index i ∈ I
such that Hi(X

∗) 6= Ki and if so aborts and outputs a random bit. Otherwise, let ζ := ζX∗ ∈ Zp and
R(Z) := RX∗(Z) =

∑q
k=0 Zkγk ∈ Zp[Z] such that Q(Z)/PX∗(Z) = ζX∗/Z + RX∗(Z) as guaranteed by

Lemma 12. B then computes coefficients γk ∈ Zp of R. Using that Q(Z) =
∑q−1

k=0 ϕkZk, it also computes

Y = V ζ·ϕ0e

(
[y],

q−1∏
k=1

[yαk−1]ζϕk

)
e

(
q∏

k=0

[yαk]γk ,

q−1∏
k=0

[yαk]ϕk

)
(17)

and returns Y to A. Finally, when A outputs its guess b′ to B, then B also outputs b′ as solution to the
q-DBDHI instance.

Analysis of B. Recapping the construction of B, we observe that vk and all answers of B are distributed
identically to the challenger’s interactions with A in Game 4. Analyzing B’s response to the challenge X∗,
we distinguish the following two cases depending on the q-DBDHI instance.
Let V = e([y], [y])1/α. Then we have for the first part of (17)

V ζ·ϕ0e

(
[y],

q−1∏
k=1

[yαk−1]ζϕk

)
= e([y], [y])ζ·ϕ0/αe

(
[y],

q−1∏
k=1

[yαk−1]ζϕk

)

= e

(
[y],

[
yζ ·

(
ϕ0

α
+

q−1∑
k=1

ϕkα
k−1

)])
= e ([y], [y])ζQ(α)/α

and for the second part

e

(
q∏

k=0

[yαk]γk ,

q−1∏
k=0

[yαk]ϕk

)
= e ([yR(α)], [yQ(α)]) = e ([y], [y])R(α)Q(α) .

Together we have that

Y = e ([y], [y])ζ·Q(α)/α+R(α)·Q(α) = e ([y], [y])Q(α)2/PX∗ (α) = e ([1], [1])1/PX∗ (α)

= e ([1], [1])1/Θblog(2λ+3)c(X
∗)

where we use Lemma 12 multiplied by Q(Z) on both sides, [yQ(α)] = [1], and PX∗(α) = Θblog(2λ+3)c(X
∗)

.
In case that V $← GT we have that Y is uniformly random in GT .
We observe that Y is distributed exactly as if the challenger answers with the VRF output in Game 4 in the
first case and in the second case as if the challenger answers the challenge with a random element. Hence, B
perfectly simulates Game 4 towardsA and we have Advq-DBDHI

B (λ) = E4. We finish the proof of Theorem 4
by plugging together.

Advq-DBDHI
B (λ) = E4 ≥ ε2

A/(32t2A − 16tA)− negl(λ).

Running time of B. Furthermore, the running time tB of B consists of the running time tA of A plus
the time required to respond to evaluate queries by A. Where, for the latter part, the most time consuming
operations are the q exponentiations. Analogously to the proof of Theorem 3 we get

tB = O(t2A/εA),

which completes the proof of Theorem 4.

46

	Introduction
	Our contributions.

	Blockwise Partitioning via Near-Collision Resistance
	High-level approach.

	Lattice-based IB-KEM
	Preliminaries on Lattices
	Compatible Algorithms
	Instantiating Compatible Algorithms from Blockwise Partitioning
	Lattice-Based Identity-Based Key-Encapsulation-Mechanism
	Security of the IB-KEM

	IB-KEMs from Pairings
	Compact IB-KEM from Decisional Bilinear Diffie-Hellman
	IB-KEM with Short Ciphertexts

	Verifiable Random Functions from Pairings
	Preliminaries on VRFs
	A VRF with Short Proofs and Keys

	Proof of Identities and Inequalities from AC:JagKur18,SAC:JagNie19
	Proof of strengthQVRF
	Proof of lem:polyDivisibility
	Proof of thm:pseudorandomness-yam

