
Composition with Knowledge Assumptions

Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss

The University of Edinburgh and IOHK
papers@tkerber.org akiayias@ed.ac.uk mkohlwei@ed.ac.uk

Abstract. Zero-knowledge succinct non-interactive arguments (zk-
SNARKs) rely on knowledge assumptions for their security. Meanwhile,
as the complexity and scale of cryptographic systems continues to grow,
the composition of secure protocols is of vital importance. The current
gold standards of composable security, the Universal Composability
and Constructive Cryptography frameworks cannot capture knowledge
assumptions, as their core proofs of composition prohibit white-box
extraction. In this paper, we present a formal model allowing the com-
position of knowledge assumptions. Despite showing impossibility for
the general case, we demonstrate the model’s usefulness when limiting
knowledge assumptions to few instances of protocols at a time. We
finish by providing the first instance of a simultaneously succinct and
composable zk-SNARK, by using existing results within our framework.

1 Introduction

Knowledge assumptions, a class of non-falsifiable assumptions, are often used in
cases where both succinctness and extractability are required. Perhaps the most
notable modern usage is in zk-SNARKs [30, 19, 21, 20, 27, 13, 18], which typically
rely on either a knowledge-of-exponent assumption [14], the Algebraic Group
Model (AGM) [17], or the even stronger Generic Group Model (GGM) [31].

The idea of utilising additional assumptions for extraction extends outside
of what it traditionally considered a “knowledge assumption” to extractable
functions, notably extractable one-way functions [9, 10], and extractable hash
functions [3]. Arguably, one of the main benefits of the random oracle model, one
of the most common “non-standard” assumptions, is to provide extractability.

The typical statement of these assumptions is that for every adversary there
exists a corresponding extractor, such that when both are given the same inputs
and randomness, the extractor can provide meaningful information about how
the output of the adversary was created. In the Algebraic Group Model, for
instance, the extractor will show how to represent the adversaries output as
powers of input group elements, and in extractable hash functions it will provide
a preimage to the output hash.

This is formalised as a security game, which is then assumed to hold axiomat-
ically. The existence of the extractor may be used in a security proof to demon-
strate the existence of a preimage. At the same time, a one-wayness property can
be asserted, with this differing subtly from extraction in that an adversary to

mailto:papers@tkerber.org
mailto:akiayias@ed.ac.uk
mailto:mkohlwei@ed.ac.uk

one-wayness does not have access to the input and randomness to extract from.
This methodology has seen success in proving the security of various interesting
primitives, such as non-malleable codes [24], and SNARKs.

Proving these primitives’ security under composition would typically involve
using one of a number of off-the-shelf compositional frameworks, such as Uni-
versal Composability [8] or Constructive Cryptography [28], specifying an ideal
behaviour for the primitive, and constructing a simulator which coerces the ideal
behaviour to mimic that of the actual protocol. This simulator will naturally need
to make use of the extraction properties, often to infer the exact ideal intent be-
hind adversarial actions. It is in this that the conflict between extraction and
compositional frameworks arises: As the extraction is white-box, the simulator
requires the input of its counter-party – the environment, or distinguisher, of
the simulation experiment. This cannot be allowed however, as it would give the
simulator access to all information in the system1, not just that of the adversary.

This conflict has been observed before in the literature, for instance in [25].
Often, the remedy is to extend the original protocol with additional components
to enable the simulator to extract “black-box”, i.e. without the original inputs.
For example, the Fischlin transform [16] uses multiple queries to a random oracle
to bypass the inability to extract from the commitment phase of an underlying
Sigma protocol, which would allow using the simpler Fiat-Shamir transform [15]
instead. C∅C∅ [25] extends zk-SNARKs with an encryption of the witness, and a
proof of correctness of this encryption to a public key the simulator can control.

A theme of these approaches is that succinctness is usually lost – size being
limited by the information-theoretic reality of black-box extraction. Thus C∅C∅
proofs are longer than their witnesses, and UC-secure commitments [11] are
longer than the message domain.

This limitation can often be bypassed by using a local random oracle, as
this does permit extraction. Restricting the model to allow the adversary to
perform only specific computations on knowledge-implying objects, could be one
way to generalise this approach. Just as a random oracle functionality would
abstract over extractable hash functions, a generic group functionality would
abstract over knowledge of exponent type assumptions. This would constitute
a far stronger assumption however, running counter to recent developments to
relax assumptions, such as the Algebraic Group Model [17], which aim for a
more faithful representation of knowledge assumptions.

Our contribution. Instead we follow the Algebraic Group Model approach but
explore its consequences for composition. Our contributions are two-fold:

First, we define the concept of knowledge-respecting distinguishing environ-
ments, which we will call distinguishers, to be consistent with the terminology
of Constructive Cryptography. We use the Constructive Cryptography frame-
work [28] as an orientation point for this work, due to its relative simplicity

1 Recall that the simulator is the ideal-world adversary, and should by definition not
have access to secrets the distinguisher holds.

2

compared to the many moving parts of UC [8], making it easier to re-establish
composition after making sweeping changes to the model, as we do in this paper.

Similar to an algebraic algorithm, distinguishers in our model need to explain
how they computed each knowledge-implying object they output. We show how
to extend a compositional framework by giving the simulator access to these
explanations.

Our second contribution investigates under which conditions it is reasonable
to assume knowledge-respecting distinguishers. To this end, we define stronger
versions of knowledge assumptions that depend on auxiliary and knowledge-
implying inputs. These assumptions suffice to extend a distinguisher with an
extractor providing said explanations.

Within this setting we are able to establish not only an impossibility re-
sult on full general composition, but more interestingly a positive result on the
composition of systems relying on different knowledge assumptions. Intuitively:
You can use a knowledge assumption only once, or you need to ensure the var-
ious uses do not interfere with each other (specifically, the simulators of both
invocations cannot provide any advantage due to extraction, as shown in the ex-
ample in Section 5). This result has the immediate effect of enabling the usage
of primitives relying on knowledge assumptions in larger protocols – provided
the underlying assumption is not used in multiple composing proofs.

2 Modelling Knowledge Assumptions

We formally define knowledge assumptions over a type of knowledge-implying
objects X. When an object of the type X is produced, the assumption states
that whoever produced it must know a corresponding witness of the typeW . The
knowledge of exponent assumption is an example of this, where X corresponds
to pairs of group elements, andW is an exponent. A relation R ⊆ X×W defines
which witnesses are valid for which knowledge-implying objects.

In the case of the knowledge of exponent assumption, it roughly states that
given a generator, and a random power s of the generator, the only way to
produce a pair of group elements, where one is the sth power of the other, is
to exponentiate the original pair, and in so doing implying knowledge of this
exponent. There is one extra item needed: The initial exponent s needs to be
sampled randomly. Indeed, this is true for any knowledge assumption: The all-
quantification over potential distinguishers implies the existence of distinguishers
which “know” objects in X without knowing their corresponding witness. To
avoid this pre-knowledge, we assume X itself is randomly selected at the start of
the protocol. For this purpose, we will assume a distribution init, which given a
source of public randomness (such as a global common random string), produces
public parameters pp, which parameterise the knowledge assumption. In the case
of knowledge of exponent, this needs to sample an exponent s, and output the
pair (g, gs). For this particular setup, public randomness is insufficient.

Beyond this, users do not operate in isolation: If Alice produces the pair
(gx, gxs), knowing x and transmits this to Bob, he can produce (gxy, gxys) with-

3

out knowing xy. This does not mean that the knowledge assumption does not
hold, however it is more complex than one might originally imagine: One party
can use knowledge-implying objects from another user as (part of) their own wit-
nesses. Crucially this needs to be limited to objects the user actually received:
Bob cannot produce (gsy, gs2y) for instance, as he never received (gs, gs2), and
does not know s. This setting also lends itself more to some interpretations of
knowledge assumptions than others. For instance, the classical knowledge-of-
exponent assumption [14] does not allow linear combinations of inputs, while
the t-knowledge-of-exponent assumption [22] does. When used composably, the
latter is more “natural”, in much the same way that IND-CCA definitions of
encryption fit better into compositional frameworks than IND-CPA ones, due to
them already accounting for part of the composable interaction.

Definition 1 (Knowledge Assumption). A knowledge assumption K is de-
fined by a tuple (init, X,W,R) consisting of:
1. init, a private-coin distribution to sample public parameters pp from, which

the others are parameterised by.
2. Xpp, the set of all objects which imply knowledge.
3. Wpp, the set of witnesses, where ∀x ∈ Xpp : (input, x) ∈Wpp.
4. Rpp : (I ⊆ Xpp) → (Y ⊆ (Xpp ×Wpp)), the relation new knowledge must

satisfy, parameterised by input objects, where

∀x, y ∈ Xpp, I ⊆ Xpp : (x, (input, y)) ∈ Rpp(I) ⇐⇒ x = y ∧ x ∈ I.

Furthermore, Rpp must be monotonically increasing:

∀I ⊆ J ⊆ Xpp : Rpp(I) ⊆ Rpp(J).

The inclusion of (input, x) in Wpp and Rpp for all x ∈ Xpp ensures that parties
are permitted to know objects they have received as inputs, without needing
to know corresponding witnesses. Importantly, this is possible only for inputs,
and not for other objects. For each knowledge assumption K, the assumption
it describes is in a setting of computational security, with a security parameter
λ. Broadly, the assumption states that, for a restricted class of “K-respecting”
adversaries, it is possible to compute witnesses for each adversarial output, given
the same inputs.

Assumption 1 (K-Knowledge) The assumption corresponding to the tuple
K = (init, X,W,R) is associated with a set of probabilistic polynomial time (PPT)
algorithms, RespK. We will say an algorithm is K-respecting if it is in RespK. This
set should contain all adversaries and protocols of interest. The K-knowledge as-
sumption itself is then that, for all A ∈ RespK, there exists a PPT extractor X ,
such that:

Pr

pp r←− init;
∃I ⊆ Xpp, aux ∈ {0, 1}∗ :
Game 1(Ar′ ,Xr′ , pp, I, aux)

 ≤ negl(λ),

where Ar′ and Xr′ are A and X supplied with the same random coins r′ (as
such, they behave deterministically within Game 1).

4

While it is trivial to construct adversaries which are not K-respecting by en-
coding knowledge-implying objects within the auxiliary input, these trivial cases
are isomorphic to an adversary which is K-respecting, and which receives such
encoded objects directly. We therefore limit ourselves to considering adversaries
which communicate through the “proper” channel, rather than covertly. In this
way, we also bypass existing impossibility results employing obfuscation [6]: We
exclude by assumption adversaries which would use obfuscation.

Game 1 (Knowledge Extraction) The adversary Ar wins the knowledge ex-
traction game if and only if it outputs a series of objects in Xpp, for which the
extractor Xr fails to output the corresponding witness:

let ~x← Ar(I, aux), ~w ← Xr(I, aux) in ~x ∈ X∗pp ∧
|~x|∨
i=1

(xi, wi) /∈ Rpp(I).

Crucial for composition are the existential quantifications, which combined state
that we assume extraction for all of the following:

– Algorithms in RespK – Input objects I – Auxiliary inputs aux

This makes knowledge assumptions following Assumption 1 stronger than their
typical property-based definitions. It is also non-standard as a result, as it re-
lies on quantifiers within a probability experiment. While the adversarial win
condition is well-defined, it is not necessarily computable. Nevertheless, quan-
tifications are required for their usage in composable proofs.

2.1 Examples of Knowledge Assumptions

To motivate this definition, we demonstrate that it can be applied to various
commonly used knowledge assumptions, including the knowledge of exponent
assumption, the Algebraic Group Model and variants, and even to random ora-
cles. We detail our flavour of the AGM here, and leave the details of the others to
Appendix E. Witnesses naturally seem to form a restricted expression language
describing how to construct a knowledge-implying object. A more natural way to
express the relation R is often an evaluation function over witnesses, returning
a knowledge-implying object.

The Algebraic Group Model. Assuming a distribution groupSetup providing a
group G and a generator g, we can recreate the Algebraic Group Model [17] as
a knowledge assumption fitting Definition 1:

KAGM := (init, X,W,R)
init := groupSetup
X := G

W := { (op, a, b) | a, b ∈W } ∪
{ (input, i) | i ∈ X } ∪
{ generator }

5

eval(I, w) :=

eval(g) ◦ eval(h) if w = (op, g, h)
i if w = (input, i) ∧ i ∈ I
g if w = generator

(x,w) ∈ R(I) ⇐⇒ x = eval(I, w)

3 Typed Networks of Random Systems

While it is not our goal to pioneer a new composable security framework, ex-
isting frameworks do not quite fit the needs of this paper. Notably, Universal
Composability [8] has many moving parts, such as session IDs, control functions
and different tapes which make the core issues harder to grasp. Constructive
Cryptography [28] does not have a well-established notion of globality and fixes
the number of interfaces available, which makes the transformations we will later
perform more tricky.

Furthermore, the analysis of knowledge assumptions benefits from a clear
type system imposed on messages being passed – knowing which parts of mes-
sages encode objects of interest to knowledge assumptions (and which do not)
makes the analysis more straightforward. Due to both of these reasons, we con-
struct a compositional framework sharing many similarities with Constructive
Cryptography, however using graphs (networks) of typed random systems as the
basic unit instead of random systems themselves. Crucially, when we establish
composition within this framework, we do so with respect to sets of valid dis-
tinguishers. This will allow us to permit only distinguishers which respect the
knowledge assumption.

Our definitions can embed existing security proofs in Constructive Cryptog-
raphy, and due to the close relation between composable frameworks, likely also
those in other frameworks, such as UC. In particular, our results directly imply
that primitives proven using knowledge assumptions under this framework can
be directly used in place of hybrids in systems proven in Constructive Cryptog-
raphy.

3.1 Type Definition

We introduce a rudimentary type system for messages passed through the net-
work. It consists of a unit type 1, empty type 0, sum and product types τ1 +
τ2/τ1 × τ2, and the Kleene star τ∗. This type system was chosen to be minimal
while still:

1. Allowing existing protocols to be fit within it. As most of cryptography
operates on arbitrary length strings, (1+1)∗, or finite mathematical objects,
1 + . . .+ 1, these can be embedded in the type system.

2. Allowing new types to be embedded in larger message spaces. The inclusion
of sum types enables optional inclusion, while product types enables inclusion
of multiple instances of a type alongside auxiliary information.

6

We stress that this type system may be (and will!) extended, and that a richer
system may make sense in practice. Types follow the grammar

τ ≡ 0 | 1 | τ1 + τ2 | τ1 × τ2 | τ∗,

and the corresponding expression language follows the grammar

E ≡ > | inj1(E) | inj2(E) | (E1, E2) | ε | E1 :: E2.

We will also use 2 to represent 1 + 1, and 0 and 1 for inj1(>) and inj2(>)
respectively. Formally, the typing rules are:

` > : 1
` x : τ1

` inj1(x) : τ1 + τ2

` x : τ2

` inj2(x) : τ1 + τ2

` x : τ1 ` y : τ2

` (x, y) : τ1 × τ2
` ε : τ∗

` x : τ ` ~x : τ∗

` x :: ~x : τ∗

Note that there is no means to construct the empty type 0.

Knowledge assumptions. We expand this basic type system by allowing objects
to be annotated with a knowledge assumption. Specifically, given a knowledge
assumption K = (init, X,W,R), where init returns pp : τ , and for all pp in the
domain of init, both Xpp and Wpp are valid types, there are two additional types
present:

1. The type of knowledge-implying objects in K: [Kpp] (equivalent to Xpp)
2. The type of witnessed objects in K with respect to an input set of knowledge
I: ∀I ⊆ Xpp : 〈Kpp, I〉 (equivalent to Xpp ×Wpp)

Formally then, we define K types through the grammar

τ ≡ 0 | 1 | τ1 + τ2 | τ1 × τ2 | τ∗ | [Kpp] | 〈Kpp, I〉,

with the corresponding expression grammer being

E ≡ > | inj1(E) | inj2(E) | (E1, E2) | ε | E1 :: E2 | [E]Kpp | 〈E〉IKpp
.

Crucially, the types of messages may depend on prior interactions. This is
particularly obvious with the set of input knowledge I, which will be defined as
the set of all previously received x : [Kpp], however it also applies to pp itself,
which may be provided from another component of the system. This allows
for the secure sampling of public parameters, or delegating this to a common
reference string (CRS). The typing rules are extended with the following two
rules, where Xpp and Wpp are type variable:

` x : Xpp ` w : Wpp (x,w) ∈ Rpp(I)
` 〈x,w〉IKpp

: 〈Kpp, I〉
` x : Xpp

` [x]Kpp : [Kpp]

7

3.2 Random Systems

We use the same basic building-block as Constructive Cryptography [28]: Ran-
dom systems [29]. We briefly recap this notion:

Definition 2. An (X ,Y)-random system F is an infinite sequence of conditional
probability distributions PF

Yi|XiY i−1 for i ≥ 1, where X and Y distribute over X
and Y respectively.

Specifically, random systems produce outputs in the domain Y when given
an input in X , and are stateful – their behaviour can depend on prior inputs
and outputs. [28] itself works with random systems based on an automaton with
internal state; such an automaton can then also be constrained to a reasonable
notion of feasibility, such as being limited to a polynomial number of execution
steps with respect to some security parameter.

We will not go into depth on modelling computation security, as it is not the
primary focus of this paper, however we will assume the existence of a feasibility
notion of this type. We follow the approach of [26], and consider random systems
as equivalence classes over probabilistic systems. We make a minor tweak to the
setting of [28] as well, and use random-access machines instead of automata2, to
enable the use of super-polynomial parameters as laid out in Appendix E.

3.3 Typed Networks

We will consider networks of random systems (which can be considered as la-
belled graphs) as our basic object to define composition over.

Definition 3 (Cryptographic Networks). A typed cryptographic network is
a set of nodes N , satisfying the following conditions:

1. Each node n ∈ N is a tuple n = (In, On, τn, Rn, An) representing:
– In a set of available input interfaces.
– On a set of available output interfaces.
– τn : In ∪On → T , a mapping from interfaces to their types.
– Rn, a

(∑
i∈In

τn(i),
∑
o∈On

τn(o)
)
random system.

(see Appendix F for a detailed description of sums over types)
– An ⊆ In ∪On, the subset of interfaces which behave adversarially.

2. Both input and output interfaces are unique within the network:

∀a, b ∈ N : a 6= b =⇒ Ia ∩ Ib = ∅ ∧Oa ∩Ob = ∅.

3. Matching input and output interfaces define directed channels in the implied
network graph. Therefore, where a, b ∈ N, i ∈ Oa ∩ Ib:

2 Specifically, we assume each of the following to be of time complexity Θ(1): 1. re-
ceiving and sending messages of any length, 2. (de)constructing sum and product
types, 3. accessing a given index in a bit string for reading or writing, 4. copying
objects of any size, which is assumed to be done through copy-on-write references.

8

– The interface types match: τa(i) = τb(i).
– The edges have a consistent adversariality: i ∈ Aa ⇐⇒ i ∈ Ab.

We denote the set of all valid cryptographic networks by ∗.

This corresponds to a directed network graph whose vertices are nodes, and
whose edges connect output interfaces to their corresponding input interface.

Composing multiple such networks is a straightforward operation, achieved
through set union. While the resulting network is not necessarily valid, as it
may lead to uniqueness of interfaces being violated, it can be used to construct
any valid network out of its components. We also make use of a disjoint union,
A] B, by which we mean the union of A and B, while asserting that A and B
are disjoint. Due to the frequency of its use, we will allow omitting the disjoint
union operator, that is, we write AB to denote A]B.

Definition 4 (Unbound Interfaces). In a typed cryptographic network N ,
the sets of unbound input and output interfaces, written I(N) and O(N), re-
spectively, are defined as the set of all tuples (i, τ) for which there exists a ∈ N
and i ∈ Ia (resp. i ∈ Oa), where for all b ∈ N , i /∈ Ob (resp. i /∈ Ib), with τ
being defined as its type, τa(i). Furthermore, IOH(N) is defined as the unbound
honest interfaces: all (i, ·) ∈ I(N) ∪ O(N), where i is honest, that is, where
∀a ∈ N : i /∈ Aa.

We can define a straightforward token-passing execution mechanism over
typed cryptographic networks, which demonstrates how each network behaves as
a single random system3. We primarily operate with networks instead of reducing
them to a single random system to preserve their structure: It allows easily
applying knowledge assumptions to each part, and enables sharing components
in parallel composition, a requirement for globality.

Definition 5 (Execution). A typed cryptographic network N , together with
an ordering of I(N) and O(N) defines a random system through token-passing
execution, with the input and output domains

∑
(·,τ)∈I(N) τ/

∑
(·,τ)∈O(N) τ , re-

spectively. Execution is defined through a stateful passing of messages – any input
to N will be targeted to some (i, ·) ∈ I(N). The input is provided to the random
system Ra, for which i ∈ Ia. Its output will be associated with an o ∈ Oa. If there
exists a b ∈ N such that o ∈ Ib, it is forwarded to Rb, continuing in a loop until
no such node exists. At this point, the output is associated with (o, ·) ∈ O(N)
(note that, if O(N) = ∅, the corresponding random system cannot be defined, as
it has an empty output domain), and is encoded to the appropriate part of the
output domain.

Appendix A goes into more detail on the semantics, formally describing the
functions exec(N, i, x) and execState(N, i, x,Σ). In order to help with preventing
interface clashes, we introduce a renaming operation.
3 Termination is an issue here, in so far as the network may loop infinitely using
message passing. We consider a non-terminating network to return the symbol ⊥,
although this might render the output uncomputable.

9

Definition 6 (Renaming). For a cryptographic network N , renaming inter-
faces a1, . . . , an to b1, . . . , bn, is denoted by:

N [a1/b1, . . . , an/bn] := { m ∈ N | m[a1/b1, . . . , an/bn] } .

Where, for m = (Im, Om, τm, ·, Am), m[a1/b1, . . . , an/bn] is defined by replacing
each occurrence of ai in the sets Im, Om and Am with the corresponding bi, as
well as changing the domain of τm to accept bi instead of ai, with the same effect.

To ensure renaming does not introduce unexpected effects, we leave it unde-
fined when any of the output names bi are present in the network N , and are
not themselves renamed (i.e. no aj exists such that aj = bi). Likewise, we pro-
hibit renaming where multiple output names are equal. For a set of cryptographic
networks, the same notation denotes renaming on each of its elements.

When talking about valid distinguishers, these are sets of cryptographic networks
closed under internal renaming.

Definition 7 (Distinguisher Set). A set of distinguishers D ⊆ ∗ is any subset
of ∗ which is closed under internal renaming: For any D ∈ D, ~n = a1/b1, . . . ,
an/bn, where no ai or bi are in I(D) or O(D), D[~n] ∈ ∗ =⇒ D[~n] ∈ D.

Composition is also defined for distinguisher sets. Given a set of networks
D and a network A, DA is defined as the closure under internal renaming of
{ DA | D ∈ D : DA ∈ ∗ }. Observe that ∗ is closed under composition, and there-
fore ∗A ⊆ ∗ for any A ∈ ∗. Renaming for distinguisher sets is defined similarly,
allowing distinguisher sets to give special meaning to some external interfaces,
but not to internal ones.

3.4 Observational Indistinguishability
Now that we have established the semantics of cryptographic networks, we can
reason about their observational indistinguishability, defined through the statis-
tical distances of their induced random systems combined with arbitrary distin-
guishers. The indistinguishability experiment is visualised in Figure 1.

Definition 8 (Observational Indistinguishability). Two cryptographic net-
works A and B are observationally indistinguishable with advantage ε with re-
spect to the set of valid distinguishers D, written A ε,D∼ B, if and only if:
– Their unbound inputs and outputs match: I(A) = I(B) ∧O(A) = O(B).
– For any network D ∈ D for which DA and DB are both in ∗, with I(DA) =
I(DB) = (·,1) and O(DA) = O(DB) = (·,2), the statistical distance
δD(A,B) is at most ε, where

δD(A,B) := sup
D∈D

∆D(A,B)

∆D(A,B) := |Pr(DA = 1)− Pr(DB = 1)|.

To simplify some corner cases, where ∀D ∈ D : DA /∈ ∗ ∨ DB /∈ ∗, we
consider δD(A,B) to be 0 – in other words, we consider undefined behaviours
indistinguishable.

10

The D term is omitted if it is clear from the context.

A

D ∈ D

≈
D ∈ D

B

Fig. 1. A visual representation of an example A D∼ B experiment, with solid lines
representing honest interfaces, and dashed representing adversarial interfaces.

Observe that observational indistinguishability claims can be weakened:

A
ε,D1∼ B ∧D2 ⊆ D1 =⇒ A

ε,D2∼ B (1)

Lemma 1 (Observational Renaming). Observational indistinguishability is
closed under interface renaming:

∀A,B ∈ ∗,D ⊆ ∗, ε, ~n : A[~n], B[~n] ∈ ∗ ∧A ε,D∼ B =⇒ A[~n] ε,D[~n]∼ B[~n]

Proof. By precondition, we know that I(A) = I(B) ∧ O(A) = O(B), that
δD(A,B) ≤ ε, and that D is closed under renaming. As renaming is restricted
by definition to not create any new connections, I(A[~n]) = I(A)[~n] = I(B)[~n] =
I(B[~n]), and likewise for O. As D remains unchanged, it remains to show that
supD∈D |Pr(DA[~n] = 1)− Pr(DB[~n] = 1)| ≤ ε.

Consider how, for D ∈ D, (DA)[~n] and (DB)[~n], are related to D′(A[~n])
and D′(B[~n]). If (DA)[~n] is well-defined, then for D′ = D[~n], then (DA)[~n] =
D′(A[~n). Moreover, for any D′ ∈ D, there exists some internal renaming ~m
such that (D′[~m]A)[~n] and (D′[~m]B)[~n] are well-defined, as the renaming ~m
can remove the potential name clashes introduced by ~n. As D is closed under
renaming, it is therefore sufficient to show that supD∈D |Pr((DA)[~n] = 1) −
Pr((DB)[~n] = 1)| ≤ ε. As the execution semantics of (DA)[~n] and (DB)[~n] does
not use interface names, this is equivalent to supD∈D |Pr(DA = 1)− Pr(DB =
1)| = δD(A,B) ≤ ε. ut

Lemma 2 (Observational Equivalence). Observational indistinguishability
is an equivalence relation: It is transitive4 (Equation 2), reflexive (Equation 3),

4 Technically, due to the error terms, the relation is not transitive, but obeys a triangle
inequality, and as a result it is also not an equivalence relation. We view this as a
weak transitivity instead, as in practice, for negligible error terms, it behaves as
such.

11

and symmetric (Equation 4). For all A,B,C ∈ ∗,D ⊆ ∗, ε1, ε2 ∈ R:

A
ε1,D∼ B ∧B ε2,D∼ C =⇒ A

ε1+ε2,D∼ C (2)

A
0,D∼ A (3)

A
ε1,D∼ B ⇐⇒ B

ε1,D∼ A (4)

Proof. We prove each part independently, given the well-known fact that statis-
tical distance forms a pseudo-metric [28].

Transitivity. The equality of the input and output interfaces can be established
by the transitivity of equality. The statistical distance is established through
the triangle equality. Specifically, for all D ∈ D, ∆D(A,C) ≤ ∆D(A,B) +
∆D(B,C) ≤ ε1 + ε2. The only case where this is not immediate is if DB /∈ ∗,
which occurs in the case of an internal interface name collision – resolvable with
renaming and use of Lemma 1. ut

Reflexivity. By the reflexivity of equality for input and output interfaces, and
δD(A,A) = 0 being established for pseudo-metrics. ut

Symmetry. By the symmetry of equality, and pseudo-metrics. ut

Lemma 3 (Observational Subgraph Substitution). Observational indis-
tinguishability is closed under subgraph substitution.

∀A,B,C ∈ ∗,D ⊆ ∗, ε ∈ R : A ε,DC∼ B ⇐⇒ CA
ε,D∼ CB

Proof. The equality of outgoing interfaces is trivially preserved under substitu-
tion, as the outgoing interfaces of A and B are the same by assumption.

We know that ∀D ∈ DC : ∆D(A,B) ≤ ε. Suppose there existed a distin-
guisher D ∈ D such that ∆D(CA,CB) ≥ ε. Then, we can define D′ ∈ DC as
DC, redrawing the boundary between distinguisher and network. By definition,
D′ ∈ DC, allowing us to conclude ∃D′ ∈ DC : ∆D′(A,B) ≥ ε, arriving at a
contradiction. The proof runs analogously in the opposite direction. ut

Corollary 1. For D = ∗, observational indistinguishability has the following,
simpler statement for closure under subgraph substitution:

∀A,B,C ∈ ∗, ε : A ε,∗∼ B =⇒ CA
ε,∗∼ CB

3.5 Composably Secure Construction of Networks

(Composable) simulation-based security proofs are then proofs that there exists
an extension to one network connecting only on adversarial interfaces, such that
it is observationally indistinguishable to another. We visualise and provide an
example of construction in Figure 2.

12

Definition 9 (Network Construction). A network A ∈ ∗ constructs another
network B ∈ ∗ with respect to a distinguisher class D with simulator α ∈ ∗ and

error ε ∈ R, written A
ε,α,D

B, if and only if A ε,D∼ αB and α and B have
disjoint honest interfaces: IOH(α) ∩ IOH(B) = ∅. The D term may be omitted
when it is clear from the context, the α term may be omitted when it is of no
interest, and the ε term may be omitted when it is negligible.

A

D ∈ D

≈
αD ∈ D

B

Fig. 2. A visual representation of the A α,D
B experiment.

As with observational indistinguishability, network construction statements
can be arbitrarily weakened. Furthermore, it is directly implied by indistin-
guishability:

A
ε,α,D1

B ∧D2 ⊆ D1 =⇒ A
ε,α,D2

B (5)

A
ε,D∼ B =⇒ A

ε,∅,D
B (6)

Theorem 1 (Generalised Composition). Network construction is compos-
able, in that is satisfies transitivity (Equation 7), subgraph substitutability
(Equation 8), and renameability (Equation 9). For all A,B,C, α, β ∈ ∗,D ⊆
∗, ε1, ε2 ∈ R, ~n:

A
ε1,α,D

B ∧B ε2,β,Dα
C ∧ αβC ∈ ∗ =⇒ A

ε1+ε2,αβ,D
C (7)

A
ε1,α,DC

B ∧ IOH(C) ∩ IOH(αB) = ∅ =⇒ CA
ε1,α,D

CB (8)

A[~n], α[~n]B[~n] ∈ ∗ ∧A ε1,α,D
B =⇒ A[~n] ε1,α[~n],D[~n]

B[~n] (9)

Proof. We will prove each of the three properties separately.

Transitivity. By assumption, we know that A ε1,D∼ αB and B
ε2,Dα∼ βC. By

Lemma 3, we can conclude that αB ε2,D∼ αβC. By transitivity (Lemma 2), we
conclude that A ε1+ε2,D∼ αβC.

Observe that β and C, as well as α and B have disjoint honest interfaces by
assumption. As B ε2,D∼ βC, they have the same public-facing interfaces. As αβC

13

is well-defined, and as α and B have disjoint honest interfaces, so does α and
βC. From each of α, β, and C’s honest interfaces being disjoint, we conclude
that so are αβ and C’s. ut

Closure under subgraph substitution. By assumption, we know A
ε1,DC∼ αB. By

Lemma 3, we can conclude that CA ε1,D∼ CαB. As composition is a disjoint
union, it is commutative, and therefore CαB = αCB. The interface disjointness
requirement is satisfied by the precondition. ut

Closure under renaming. By assumption, we know A
ε1,D∼ αB. By Lemma 1,

we conclude that A[~n] ε1,D[~n]∼ (αB)[~n] = α[~n]B[~n]. As α[~n]B[~n] ∈ ∗, both α[~n]
and B[~n] are in ∗. As the honesty of edges remains unaffected by subgraph
substitution, name collisions are not introduced, the disjointness requirement
is also satisfied. Combined, this implies network construction in the renamed
setting. ut

From the generalised composition theorem, which notably relies on modi-
fying the distinguisher set (e.g. from D to Dα in Equation 7), we can infer
operations similar to sequential and parallel composition in Constructive Cryp-
tography, given D = ∗. For any D, identity also holds, due to the identity of
indistinguishability, and indistinguishability lifting to construction.

Corollary 2 (Traditional Composition). For D = ∗, honest network
construction has the following, simpler statements for universal transi-
tivity (Equation 10) and universal closure under subgraph substitu-
tion (Equation 11). Identity (Equation 12) holds regardless of D. For all
A,B,C, α, β ∈ ∗, ε1, ε2 ∈ R,D ⊆ ∗:

A
ε1,α,∗

B ∧B ε2,β,∗
C ∧ αβC ∈ ∗ =⇒ A

ε1+ε2,αβ,∗
C (10)

A
ε1,α,∗

B ∧ IH(C) ∩ IH(αB) = ∅ =⇒ CA
ε1,α,∗

CB (11)

A
0,∅,D

A (12)

4 The Limited Composition of K-Networks

Having established a composition system which allows restricting the domain of
permissible distinguishers, and having formalised the general notion of knowl-
edge assumptions, we can now establish the main contribution of this paper:
Permitting extraction from knowledge assumptions within a composable setting.

We use a similar idea to that of “algebraic adversaries” in the Algebraic
Group Model [17], requiring random systems to output not only knowledge-
implying objects, but also their corresponding witness. We then add new nodes
to the network which gather all data extracted in this way in a central repository
of knowledge for each knowledge assumption. Crucially, while the distinguisher

14

supplies witnesses for all knowledge-implying objects it outputs, it is not capable
of retrieving witnesses from other parts of the system.

Simulators are provided with read access to this repository, allowing the
simulator to extract the knowledge it requires, but not any more about the be-
haviour of honest parties. The composition of constructions using knowledge
assumptions is proven, provided the parts being composed do not both utilise
the same knowledge assumption. In such a case, Theorem 1 provides a fall-back
for what needs to be proven, namely that the simulator of one system does not
permit distinguishing in the other system. At a technical level, modifications to
Definition 3 are needed to allow types to depend on previously transmitted val-
ues. We note these formally in Appendix C, however suggest reading this section
without it first. This section serves as a detailed proof sketch, with Appendix C
addressing some of the subtleties.

4.1 Knowledge Respecting Systems

The Algebraic Group Model [17] popularised the idea of “algebraic” adversaries,
which must adhere to outputting group elements through a representation de-
scribing how they may be constructed from input group elements. Security proofs
in the AGM assume that all adversaries are algebraic, and therefore the rep-
resentation of group elements can be directly accessed in the reduction – by
assumption it is provided by the adversary itself.

While this is equivalent to an extractor-based approach, for composition we
will follow a similar “algebraic” approach. The premise is that for any random
system R outputting (among other things) knowledge-implying objects in K, it
is possible to construct an equivalent random system K(R), which outputs the
corresponding witnesses as well, provided each step of the random system is
governed by a K-respecting algorithm.

Recall that a random system is an infinite sequence of probability distribu-
tions. As this is not in itself useful for applying Definition 1, we instead inter-
pret them as an equivalence class over stateful, interactive, and probabilistic
algorithms [26], with associated input and output types. For any such typed
algorithm A and knowledge assumption Kpp, A can be separated into A1 and
A2, where A1 outputs only a series of [Xpp] values, and A2 all the remaining
information, such that A’s output can be trivially reconstructed by inserting
the [Xpp] values of A1 into the gaps in A2’s outputs. Likewise, inputs can be
split into the ~I and aux inputs used in Game 1. Given this, we can define when a
random system is K-respecting. Each such system has a corresponding “K-lifted”
system, which behaves “algebraically”, in that it also output witnesses.

Definition 10 (K-Respecting Systems). A typed random system R is said
to be K-respecting (or R ∈ RespSysK), if and only if its equivalence class of
stateful probabilistic algorithms contains a stateful algorithm A that when split
as described in Subsection 4.1 into A1 and A2, satisfies A1 ∈ RespK. For a set
~K, RespSys~K :=

⋂
K∈~K RespSysK.

15

Definition 11 (~K-Lifted Systems). A typed random system R induces a set of
~K-lifted random systems. This is defined by replacing, for any K = (·, X,W,R) ∈
~K, any (part of) an output from R with type [Kpp] with (a part of) the output with
type 〈Kpp, IKpp〉, where IKpp is constructed as the set of all prior inputs to R of
type [Kpp]. The output (part) 〈x,w〉IKpp

Kpp
of the lifted system must be such that the

equivalent output (part) on the unlifted system is [x]Kpp , and (x,w) ∈ RKpp(IKpp)
with overwhelming probability.

Theorem 2 (~K-Lifting is Possible). For random systems R ∈ RespSys~K, at
least one ~K-lifting of R, denoted ~K(R), exists.

Proof. Split R into algorithms AK for each K ∈ ~K, and A∗ for the remaining
computation, such that each AK outputs only [K], and A∗ outputs no such values,
as described above. Then, by Assumption 1, there exist corresponding extractors
XK for each K ∈ ~K, such that given the same inputs XK outputs witnesses to the
knowledge-implying objects output by AK.

Replace AK with A′K, which runs both AK and XK, and outputs 〈x,w〉K,
where [x]K is the output of AK, and w is the output of XK. When reassembled
into a random system, this modification satisfies Definition 11. ut

4.2 Lifting Networks for Knowledge Extraction

The set of ~K-respecting random systems RespSys~K, along with the transformation
~K(R) for any R ∈ RespSys~K, provides a means of lifting individual random
systems. Applied to networks, it is clear something more is necessary – the
lifting does not preserve the types of output interfaces, and to permit these to
match again some additional changes need to be made to the networks. Looking
forward, the lifted systems will interact with a separate, universal node repo,
which stores witnesses for the simulator to access.

We extend the notion of ~K-respecting to apply to networks, a network is
~K-respecting if and only if all vertices in it are also ~K-respecting (we will use
RespNet~K as the corresponding set of ~K-respecting networks5). In lifting networks
in this set, not only is each individual node lifted, but all outgoing connections
are connected to a new node, which we name Charon, which acts as a relay;
re-erasing witnesses, while also informing a central repository of knowledge (out-
side of this network) of any witnesses it processes. We take the name from the
ferryman of the dead in ancient Greek mythology, who in our case demands his
toll in knowledge rather than coins. For any ~K-respecting network N , we define
the lifting ~K(N) as follows:

Definition 12 (Network Lifting). The network lifting ~K(N) for any crypto-
graphic network N ∈ RespNet~K is defined to compose as expected. In particular,
5 This set also forbids interface name clashes with repo, ensuring this can be safely
inserted, and is a subset of ∗.

16

if there exists ~K′, N ′ : N = ~K′(N ′), then ~K(N) is defined as (~K ∪ ~K′)(N ′). Oth-
erwise6, ~K(N) is defined as consisting of nodes n′ for each node n ∈ N , where
Rn′ = ~K(Rn), and each output interface is renamed to a unique7 new interface
name. For each output interface now named x, and previously named y in N ,
~K(N) contains a new node Charon(~K, adv), where adv denotes if the interface
is adversarial, connected to free interfaces on the knowledge repository repo
and the public parameters for each knowledge assumption. Note that repo is
not part of the lifted network itself, which allows disjoint networks to remain
disjoint when lifted.

We specify the node Charon in full detail in Appendix B, along with the
node repo(K), which collects witnesses from Charon, and provides adversarial
access to them. repo allows for some variation. For instance, it could:

1. Return the set of all witnesses.
2. Return at most one witness.
3. Abort when no witness is available.
4. For recursive witnesses (such as those used in the AGM and KEA assump-

tions), consolidate the witness into a maximal one, by recursively resolving
(input, i) terms.

We focus on 1., as it is the simplest. The set of valid ~K-distinguishers D~K is
defined with respect to repo, where we assume the choice of variation is made
separately for each knowledge assumption. Informally, it ensures that all parts
of the distinguisher are ~K-lifted, and the distinguisher collects all witnesses in
a central knowledge repository repo, but does not retrieve witnesses from this,
effectively only providing access to the simulator.

Definition 13 (~K-Distinguishers). The set of valid ~K-distinguishers D~K, for
any set of knowledge assumptions ~K, is defined as the closure under internal
renaming of ~K(N) ∪

⋃
K∈~K

repo(K)

∣∣∣∣∣∣ N ∈ RespNet~K

 .

Note that as N ∈ RespNet~K, it cannot directly connect to any of the repo nodes.

As the number of repo and public parameter interfaces may differ between
the real and ideal world, we must normalise them before establishing indistin-
guishability. To do so, we wrap both worlds to contain an additional node, which
we name ⊥, which consumes all remaining interfaces, depending on the number
already used. Formally, this is defined in Appendix B.3.

6 Note that this is well-founded recursion, due to the base-case of ~K = ∅, and as the
order in which knowledge assumptions are added does not affect Charon or repo.

7 Where we assume uniqueness, this is assumed globally: In ~K(A)~K(B), the uniquely
selected interface names should not clash, therefore being the same as ~K(AB).

17

Given these definitions, existing indistinguishability and construction results
between ~K-respecting networks can be lifted to equivalent results between the
lifted networks, with respect to ~K-distinguishers:

Lemma 4 (Indistinguishability Lifting). If A1A2
ε,D~K1∼ B1B2, where for

i ∈ {1, 2}, Ai, Bi ∈ RespNet~K2
, ~K1 ∩ ~K2 = ∅, and ~K := ~K1 ∪ ~K2, then:

A1A2
ε,D~K1∼ B1B2 =⇒ A1~K2(A2)

ε,D~K∼ B1~K2(B2).

Lemma 5 (Construction Lifting). For A1,2, B1,2, α1,2 ∈ RespNet~K2
and

~K1, ~K2 where ~K1 ∩ ~K2 = ∅, and ~K := ~K1 ∪ ~K2:

A1A2
ε,α1α2,D~K1 B1B2 =⇒ A1~K2(A2)

ε,α1~K2(α2),D~K B1~K2(B2).

We visualise the construction experiment against a knowledge-respecting dis-
tinguisher set DK in Figure 3. This may be contrasted with Figure 2, which does
not have repo(K), and does not allow the simulator to extract.

A

D ∈ DK

K ⊥

≈

α

D ∈ DK

B

K ⊥

Fig. 3. A visual representation of the A α,DK B experiment. The small points denote
Charon(K) nodes, while K denotes the repo(K) node. Public parameters have been
omitted. Note that outside of D Charon nodes are permitted, but not required.

Lemma 6 (D~K Closure). D~K is closed under sequential composition with lifted
(with respect to ~K) networks in RespNet~K: ∀R ∈ RespNet~K : D~K

~K(R) ⊆ D~K

Proof. Follows immediately from RespNet~K being closed under set union, and
Definition 13 stating that any ~K-lifted network has a corresponding distinguisher
in D~K. ut

As stricter set of knowledge assumptions corresponds to a smaller set of
permissible distinguishers, indistinguishability and construction results can be
transferred to larger sets of knowledge assumptions. A proof without knowledge
assumptions is clearly ideal – it still holds, regardless which knowledge assump-
tions are added.

18

Lemma 7 (Knowledge Weakening). In addition to weakening with respect
to a subset of distinguishers being possible, weakening is also possible for dis-
tinguishers with a greater set of knowledge assumptions. For all A,B,C, α ∈
∗, ~K1, ~K2, where ~K1 ⊆ ~K2:

A
ε,D~K1

C
∼ B =⇒ A

ε,D~K2
C

∼ B (13)

A
ε,α,D~K1

C

B =⇒ A
ε,α,D~K2

C

B (14)

4.3 A Restricted Composition Theorem

The rules established in Theorem 1 still hold, and it is clear why a simplification
as in Corollary 2 is not possible – it assumes that the distinguisher set D is
closed under sequential composition with simulators and networks, which is not
the case for D~K.

Theorem 1 already provides a sufficient condition for what needs to be proven
to enable this composition, however we can go a step further: While D~K is not
closed under sequential composition with arbitrary networks, it is closed under
sequential composition with knowledge-lifted networks. We can use this fact to
establish a simplified composition theorem when composing with a ~K-lifted proof
or network component. We observe that this implies composition with proofs
which do not utilise knowledge assumptions, as they are isomorphic to ~K = ∅.
In particular, Constructive Cryptography proofs directly imply construction in
the context of this paper as well, and can therefore be composed with protocols
utilising our framework freely.

Theorem 3 (Knowledge Composition). When composing proofs against
~K1 or ~K2 distinguishers, where ~K1 ∩ ~K2 = ∅, and ~K := ~K1 ∪ ~K2, the fol-
lowing simplified composition rules of transitivity (Equation 15) and sub-
graph substitution (Equation 16) apply. For all A,B, α ∈ RespNet~K2

, F ∈
RespNet~K, C,D,E, β, γ ∈ ∗, ε, ε1, ε2.

A
ε1,α,D~K1 B
∧

B
ε2,β,D~K2 C

 ∧ αβC ∈ ∗ =⇒ A
ε1+ε2,~K2(α)β,D~K C (15)

D
ε,γ,D~K E ∧ IOH(F) ∩ IOH(γE) = ∅ =⇒ ~K(F)D

ε,γ,D~K ~K(F)E (16)

4.4 Reusing Knowledge Assumptions

Theorem 3 and its supporting lemmas prominently require disjoint sets of knowl-
edge assumptions. The primary reason for this lies in the definition of ~K using
the union of the knowledge assumptions ~K1 and ~K2 – all statements could also be

19

made using a disjoint union here instead. If knowledge assumptions were not dis-
joint, this would place an unreasonable constraint on the distinguisher however:
It would prevent it from copying information from one instance of a knowledge
assumption to another instance of the same knowledge assumption, something
any adversary is clearly capable of doing.

Equality for knowledge assumptions is not really well defined, and indeed
knowledge assumptions may be related. The disjointness requirement is there-
fore more a statement of intent than an actual constraint, and we stress the
importance of it for reasonably constraining the distinguisher set here: If the
distinguisher is constrained with respect to two instances of knowledge assump-
tions which are related, it may not be permitted to copy from one two to another
for instance, an artificial and unreasonable constraint.

Care must be taken that knowledge stemming from one knowledge assump-
tion does not give an advantage in another. In many – but not all – cases this
is easy to establish, for instance, we conjecture that multiple instances with the
AGM with independently sampled groups are sufficiently independent. If this
care is not taken, the union of two knowledge assumptions may be greater than
the sum of its parts, as using both together prevents the distinguisher from ex-
ploiting structural relationships between the two, something a real adversary
may do.

5 zk-SNARKs with an Updateable Reference String

To demonstrate the usefulness of this framework, we will showcase an example
of how it can lift existing results to composability. For brevity, we sketch the
approach instead of providing it in full detail. Specifically, we sketch how Groth’s
zk-SNARK [19], due to being simulation extractable [1], can be used to construct
an ideal NIZK. Our methodology applies to any SNARK scheme which permits
proof simulation and extraction through the AGM. Further, we sketch how,
when used for a SNARK requiring an updateable reference string, a round-robin
protocol to produce the reference string can be used to instantiate the NIZK
from only the CRS providing the AGM parameters.

Our approach for NIZKs is similar to C∅C∅ [25], with the difference that no
additional transformation is necessary to extract witnesses, as these are provided
through KbAGM-lifting and the simulator’s ability to extract from the knowledge
assumption. The round-robin update follows [23] for its composable treatment
updateable reference strings, simplified to a setting with fixes participants.

Once our proof sketch is complete, we also give a clear example of why
universal composition is not possible with knowledge assumptions: Specifically,
we construct a complementary ideal network and simulator which clearly violates
the zero-knowledge properties of the NIZK, and allows distinguishing the real
and ideal worlds. We stress that this is only possible due to it extracting from
the same knowledge assumption.

20

5.1 Construction

Our construction is in two parts, each consisting of a real and ideal world. We
describe and illustrate the set-up and behaviour here, leaving a more formal de-
scription of the exact behaviour to Appendix D. Throughout the construction,
we assume a set of n parties, identified by an element in Zn. We assume static
corruption with at least one honest party – specifically we assume a set of adver-
saries A ⊂ Zn, and a corresponding set of honest parties H := Zn \A. These sets
cannot be used in the protocols themselves, but are known to the distinguisher
and non-protocol nodes (that is, they can be used to define ideal behaviour).

SNARKs. The highest level ideal world consists of a proof-malleable NIZK node
(nizk, see Appendix D.2), following the design of C∅C∅ [25]. In the corresponding
real-world, we use a zk-SNARK scheme S = (S, T, P,Prove,Verify,SimProve,Xw)
satisfying the standard properties of correctness, soundness, and zero-knowledge
in the random oracle model with SRS. Here S, T , and P , are the structure
function, trapdoor domain, and permissible permutations8 of the structured ref-
erence strings, as given in [23]. SimProve should take as inputs only the witness
x and trapdoor τ ∈ T . In addition, S should be simulation extractable with
respect to the AGM – after any arbitrary interaction, Xw should be able to pro-
duce the witness for any valid statement/proof pair, with the sole exception that
the proof was generated with SimProve. Such white-box simulation extractabil-
ity has been under-studied for zk-SNARKs, although it has been established for
Groth’s zk-SNARK [1], and is plausible to hold in the AGM for most SNARKs.
For this reason, we rely on Groth’s zk-SNARK to concretely instantiate this
example, although we conjecture it applies to other SNARKs – and indeed part
of the result can only apply to other SNARKs.

In the real world an adversarially biased (updateable) structured reference
string (srs, see Appendix D.3), parameterised for the SNARK’s reference string,
is available. Further, for each honest party j ∈ H, an instance of the SNARK
protocol node (snark-node(j), see Appendix D.3) is available, which connects
to the corresponding party’s srs interface, and runs the SNARK’s Prove and
Verify algorithms when queried. In both worlds, the KbAGM public parameters
are provided by a node G (see Appendix D.1). Finally, the SNARK’s Prove and
Verify algorithms make use of a random oracle, which is available in the real
world, providing query interfaces to all parties (we do not treat the random
oracle as a knowledge assumption in this example).

The ideal-world therefore consists of {nizk,G} (and the simulator, which will
be introduced in the security analysis), and the real-world consists of snark]
{srs,ro,G}, where snark := { snark-node(j) | j ∈ H }. The topology of
both worlds is sketched in Figure 4.

8 This can also capture non-updateable reference strings, when parameterised with
the set of permissible permutations P = {id}. Notably this allows us to capture
Groth’s zk-SNARK, while not excluding updateable zk-SNARKs such as Plonk [18]
and Sonic [27].

21

BSRS

BΠ

BΠ BΠ

RO
NIZK

Fig. 4. The SNARK to NIZK topologies. snark-node is represented by Π, and the
public parameter node G is omitted for clarity.

Round-robin SRS. If the reference string used in the SNARK scheme S is also
updateable in the sense of [23], we can construct the SRS itself through a round-
robin update protocol. We assume therefore that S is additionally parameterised
by algorithms ProveUpd and VerifyUpd allowing the proving and verification
of update proofs, the permutation lifting † which maps permutations in P to
permutations over the structure, and the algorithms Sρ and Xp used by the
simulator to simulate update proofs and extract permutations from updates
respectively. A notable difference again with respect to the extraction is that
it should be with respect to the AGM, rather than with respect to a NIZK as
presented in [23].

The ideal world in this part matches part of the SNARK real world previously,
consisting of the pair of nodes {srs,G}. The real-world consists of a node pro-
viding synchronous, authenticated broadcast (bcast, see Appendix D.4), and
for each honest party j ∈ H, a round-robin protocol node (rr-node(j), see
Appendix D.4).

The srs node requires each honest party to request initialisation, which in
the round-robin node is mapped to a) reconstructing the current SRS, and b)
broadcasting a randomly sampled update to it. As the real-world has no means
of identifying honest parties, it requires all parties to broadcast a valid update
before the reference string can be used. The adversary has access to the broadcast
directly for corrupted parties to produce these updates.

The ideal-world therefore consists of {srs,G} (and simulator), and the real-
world consists of rr-setup] {bcast,G}, where rr-setup := { rr-node(j) |
j ∈ H }. The topology of both worlds is sketched in Figure 5.

BC

RR

RR RR
SRS

Fig. 5. The round-robin setup to SRS topologies. bcast and rr-node are abbreviated
to bc and rr respectively, and the public parameter node G is omitted for clarity.

22

5.2 Security Analysis

This example is interesting for two reasons: Firstly, it provides a concrete way
to realise a composable NIZK, and secondly it showcases (when the second op-
tional stage of realising the SRS is used) special-case composition between two
constructions using the same knowledge assumption, and what this requires of
the corresponding simulators, as both simulators extract from repo(KbAGM).

The two simulators, α for the simulator between snark and nizk, and β
for the simulator between rr-setup and srs, are specified in full detail in
Appendix D.5, although we sketch the most important aspects here. Notably, α
needs to extract the witnesses from adversarial SNARK proofs, and β needs to
extract the underlying trapdoor permutation from adversarial updates.

Round-robin SRS. The simulator β for the round-robin SRS setup emulates the
broadcast node bcast towards the adversary, and when notified of an honest
party’s initialisation, does one of two things: For the first honest party, it queries
the honest SRS part from srs, and simulates the corresponding update proof
using the simulator Sρ, as it knows the full trapdoor to use for this. For subse-
quent honest updates, it simply simulates the update protocol. In either case,
the update is internally recorded to emulate the corresponding broadcast.

When an adversarial broadcast is received, the update is verified against the
current SRS. If it succeeds, it is updated, and the corresponding permutation is
extracted from the update proof (using KbAGM), and recorded. Specifically, the
extractor Xp, given oracle access to repo(KbAGM), extracts the permutation from
any update proof ρ. Observe that a) such a permutation exists by the nature
of the verification of update proofs, and b) the only group elements which the
simulator cannot extract from are those in the honest SRS component produced
by the srs node.

Given this, the adversary cannot create a valid update for which the per-
mutation is not extractable, unless it reuses (part of) the honest update. This
would directly require inverting its structure before re-applying (part of) it again
however, or the adversary extracting the permutation itself. In either case, this
amounts to breaking a discrete logarithm for SNARKs we considered, which we
assume computationally infeasible.

Theorem 4 (Round-Robin uSRS). Given the computational hardness of the
structure function S, as well as computational hardness to extract a trapdoor
permutation p from an update proof ρ:

K(rr-setup)] {G} β,DK {srs,G}

Proof (sketch). The simulated broadcast network the adversary has access to
behaves identically between the real protocol and the simulated one, due to
identical execution, except for the first honest update. This is distributed uni-
formly randomly in the space of possible permutations in both cases.

As the simulator reproduces a permutation which applies precisely all up-
dates after the first honest one, and the first honest update is distributed the

23

same in both worlds, the permutation the simulator applies to the honest trap-
door causes it to be distributed as in the real protocol. Further, both worlds
abort if and only if the reference string is queried prior to full initialisation in
both worlds. By the reasoning above and the hardness assumptions, extraction
of adversarial updates always succeeds, and as a result the simulated update
proof also succeeds. ut

SNARK. The SNARK simulator α both faithfully simulates the srs node, cre-
ates simulated proofs for honest proving queries, and extracts witnesses using Xw
(which is given access to repo(KbAGM)) from adversarial proofs when requested
by the nizk node. Finally, if the simulator fails to extract a witness when asked
for one for a valid proof, it requests a maul. The SNARK simulator can co-exist
with the SRS simulator provided above, provided that the SRS update proofs
cannot be interpreted as NIZK proofs (with the trapdoor permutation as a wit-
ness) themselves, or transformed into ones. In practice, this is not the case, as the
AGM allows only for very specific transformations of group elements, and map-
ping update proofs to a corresponding NIZK would involve first solving DLOG
before re-encoding the witness as a polynomial in most SNARKs.

Theorem 5 (SNARK Protocols Construct NIZKs). For any secure
SNARK scheme S:

K(snark)] {srs,K(ro),G} α,DK {nizk,G}. (17)

Additionally, if S is updateable (and therefore β is well-defined), and update
proofs cannot be transformed into NIZK proofs with the trapdoor permutation as
a witness:

K(snark)] {srs,K(ro),G} α,DKβ {nizk,G}. (18)

Proof (sketch). All honestly generated proofs will verify in both worlds, by defi-
nition in the ideal world, and by the correctness of the SNARK in the real world.
Further, the proofs themselves are indistinguishable, by the zero-knowledge prop-
erty of the SNARK.

Adversarial proofs which fail to verify will also be rejected in the ideal world,
as the simulator will refuse to provide a witness, causing them to be rejected.
As per the above, the extractor Xw is able to (using repo(KbAGM)) extract
the witnesses for any adversarial proof which does verify, except for cases of
malleability. As S is only (at most) proof-malleable, the simulator can, and
does, account for this by attempting to create a mauled proof when extraction
fails.

The simulator provides the ideal-world simulation of the srs node, which is
emulated faithfully except that the simulator has access to the trapdoor. As a
result, this part of the system cannot be used to distinguish. We conclude that
Equation 17 holds.

For Equation 18, it remains to be shown that α and β do not interfere: In
particular, that neither prevents the other from extracting where they need to,

24

and that neither reveal information due to their extractions which would provide
the distinguisher a non-negligible advantage. As β only interacts with the SRS,
and this is not changed once all users have submitted their contribution, and α
requires the SRS to be fully initialised before it is used, α will not prevent β
from extracting – it does nothing while β is run.

Knowledge of the group elements exchanged during the update phase also
does not assist the distinguisher in constructing a witness for any statement, as
it can simulate them locally by running the honest update process. Therefore α
can still fully extract in all cases.

Finally, due to the strict temporal order, β can, by definition, not assist the
distinguisher in extracting any additional differences between snark and α (and
the srs part is emulated faithfully, preventing it there). Likewise, α cannot assist
the distinguisher in extracting anything meaningful from β, as this would imply
a NIZK witness containing the permutation of an honest update. As these are
sampled locally, and the corresponding update proofs cannot be transformed
into NIZK proofs, α cannot be leveraged to extract them. ut

Corollary 3. For an updateable SNARK scheme S whose update proofs cannot
be transformed into NIZK proofs with the trapdoor permutation as a witness:

K(snark] rr-setup)] {K(ro),G} βα,DK {nizk,G}

The topology for the composed statement arises naturally from the topologies
of its parts, as shown in Figure 6.

BC

Π

Π Π

RO

RR RR

RR NIZK

Fig. 6. The combined full example topology, arising from the composition of prior
components, again with G omitted for clarity.

Proof. From Theorem 4 and Theorem 3 Equation 16, we can conclude that

K(snark] rr-setup)] {K(ro),G} β,DK
K(snark)] {srs,K(ro),G}. The

corollary then follows from Theorem 5 and Theorem 3 Equation 18 Equation 15.
ut

25

5.3 The Impossibility of General Composition

The two parts of Theorem 3 are limited when compared to Corollary 2 in two
separate, but related ways: The closure under subgraph substitution requires the
added node to be a ~K-wrapped node, and transitivity requires the two composing
proofs to use separate knowledge assumptions.

We will demonstrate that the nicer results from Corollary 2 are not achievable
with respect to knowledge-respecting distinguishers, by means of a small counter-
example for both situations.

Theorem 6 (Subgraph Substitution is Limited). Subgraph substitution
with knowledge assumptions does not universally preserve secure construction.
∃A,B,C, α ∈ ∗, ε ∈ R, ~K:

A
ε,α,D~K B 6=⇒ CA

ε,α,D~K CB

Proof (sketch). Let A be the Groth-16 real world, and B be the NIZK ideal
world respectively, with α being their simulator, and ~K being {KbAGM}. Let C
be a node which receives elements in Xpp, queries repo(KbAGM), and returns the
witness to the distinguisher.

Then the following distinguisher can trivially distinguish the two worlds: a)
Make any honest proving query. b) Request extraction. c) Output whether or
not extraction succeeded. ut

Theorem 7 (Transitivity is Limited). Construction with knowledge assump-
tions is not universally transitive. ∃A,B,C, α, β ∈ ∗, ε1, ε2 ∈ R,D~K:

A
ε1,α,D~K B ∧B

ε2,β,D~K C 6=⇒ A
ε1+ε2,αβ,D~K C

Proof (sketch). Let B be the Groth-16 real world, and C be the NIZK ideal
world respectively, with β being their simulator, and ~K being {KbAGM}. Let A
be Groth-16 with additional interfaces for each party to reveal any witnesses of
broadcast proofs, which are shared through an additional broadcast channel. Let
α reproduce this functionality by extracting witnesses from the provided proofs.

Then a distinguisher which makes an honest proof and extracts it will receive
the witness in the real and hybrid world, but not in the ideal world, where the
knowledge extraction of the proof will fail, as it is simulated by β. It is therefore
possible to distinguish, and transitivity does not hold. ut

6 Conclusion

In this paper, we have for the first time demonstrated the composability of
a white-box extractable zk-SNARK, without any transformations or modifica-
tions applied, and not compromising on succinctness. This result has immediate
applications in the many systems which use zk-SNARKs and non-interactive

26

zero-knowledge, reducing the gap between the theory and practice of compos-
able systems relying on SNARKs. Our results are sufficiently general to hope for
similar benefits when applied to other primitives utilising knowledge assump-
tions.

We nonetheless leave a number of pressing issues to future work: In many
cases knowledge assumptions are reused. For instance many different protocols
rely on the same groups, with the BLS12-381 and BN-254 curves being de-facto
standards for zk-SNARK computation due to their direct use in major software
implementations [2, 4]. To what degree this reuse it harmful, if at all, is a question
of immediate interest and concern. This is compounded by a recent interest
in recursive zk-SNARKs, such as Halo [5] – a natural compositional definition
of which would construct a zk-SNARK from itself repeatedly. We hope that
this work paves the way for a proper compositional treatment of such recursive
constructions.

The foundations of knowledge assumptions also require further fleshing out to
match reality more fully. It is clear that some knowledge assumptions are related,
for instance the knowledge of exponent assumption is implied by the AGM. More
interestingly, non-interactive zero-knowledge can itself be seen as a knowledge
assumption – knowledge of a valid proof implying knowledge of the witness.
Exploring the formal relationship between different knowledge assumptions and
expanding the model to fit these (for instance, by permitting public parameters
to be adversarially influenced) may give valuable insight into the nature of these
assumptions.

7 Acknowledgements

The second and third author were partially supported by the EU Horizon 2020
project PRIVILEDGE #780477.

Bibliography

[1] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. An-
other look at extraction and randomization of Groth’s zk-SNARK. Cryptol-
ogy ePrint Archive, Report 2020/811, 2020. https://eprint.iacr.org/
2020/811.

[2] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Shaul Kfir, Eran
Tromer, Madars Virza, Howard Wu, and Contributers. libsnark: a C++
library for zkSNARK proofs. https://github.com/scipr-lab/libsnark,
2017.

[3] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Shafi Goldwasser, editor, ITCS 2012, pages 326–
349. ACM, January 2012.

[4] Sean Bowe. bellman. https://github.com/zkcrypto/bellman, 2018.

27

https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2020/811
https://github.com/scipr-lab/libsnark
https://github.com/zkcrypto/bellman

[5] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composi-
tion without a trusted setup. Cryptology ePrint Archive, Report 2019/1021,
2019. https://eprint.iacr.org/2019/1021.

[6] Elette Boyle and Rafael Pass. Limits of extractability assumptions with
distributional auxiliary input. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 236–261. Springer,
Heidelberg, November / December 2015.

[7] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and
Gregory Neven. The wonderful world of global random oracles. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May
2018.

[8] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[9] Ran Canetti and Ronny Ramzi Dakdouk. Extractable perfectly one-way
functions. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 449–460. Springer, Heidelberg,
July 2008.

[10] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable
functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 595–613. Springer, Heidelberg, March 2009.

[11] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40.
Springer, Heidelberg, August 2001.

[12] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security
with a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 2014, pages 597–608. ACM Press, November 2014.

[13] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zkSNARKs with uni-
versal and updatable SRS. Cryptology ePrint Archive, Report 2019/1047,
2019. https://eprint.iacr.org/2019/1047.

[14] Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992.

[15] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[16] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.

[17] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,

28

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1047

CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

[18] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[19] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[20] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

[21] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017.

[22] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-
knowledge protocols. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 408–423. Springer, Heidelberg, August 1998.

[23] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Mining for pri-
vacy: How to bootstrap a snarky blockchain. In FC 2021, March 2021. To
appear.

[24] Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis. Practical non-
malleable codes from l-more extractable hash functions. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 1317–1328. ACM Press, October
2016.

[25] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅C∅:
A framework for building composable zero-knowledge proofs. Cryptol-
ogy ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/
2015/1093.

[26] David Lanzenberger and Ueli Maurer. Coupling of random systems. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume
12552 of LNCS, pages 207–240. Springer, Heidelberg, November 2020.

[27] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM
Press, November 2019.

[28] Ueli Maurer. Constructive cryptography - A new paradigm for security
definitions and proofs. In Sebastian Mödersheim and Catuscia Palamidessi,
editors, TOSCA 2011, volume 6993 of LNCS, pages 33–56. Springer, 2011.

29

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093

[29] Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132.
Springer, Heidelberg, April / May 2002.

[30] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

[31] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

A Specification of Network Execution

We define network execution formally through recursive sampling from the ran-
dom systems in a cryptographic network. Formally, execution takes three inputs:
A cryptographic network N , an interface i such that ∃τ : (i, τ) ∈ I(N), and an
input x : τ . Execution returns either an interface o such that ∃τ ′ : (o, τ ′) ∈ O(N),
and y : τ ′, or the symbol ⊥ to indicate non-termination. Execution may be ad-
ditionally made stateful by supplying a state Σ, which maps each node n ∈ N
to a pair (Xn, Yn), where Xn and Yn are lists of equal length, with items cor-
responding to inputs and outputs of Rn, respectively. The stateless execution is
defined as a special case of the stateful execution, with Σ mapping each node to
a pair of empty lists.

To handle inputs and outputs during execution, it is necessary to encode
inputs to the sum-types that the random systems expect, and to decode the
outputs of these sum-types. Formally, forming the sum itself requires a total
ordering of inputs and output interfaces. For execution we will require the exis-
tence of the following functions, which exist by virtue of this ordering: idx(i, n),
for i ∈ In returns the index of the interface i in the sum-type of inputs in Rn,
and int(j, n), for 1 ≤ j ≤ |On| ∧ j ∈ N returns the interface encoded to the jth
position of the sum-type of outputs in Rn. Further, we use inji(x) to mean that
x is used as a value at the ith position of either sum-type. We write f [x 7→ y] to
denote the function f ′ equal to f in all points except x, where f ′(x) = y.

function exec(N, i, x)
let (o, y, ·)← execState(N, i, x, ∀n ∈ N : n 7→ (ε, ε))
return (o, y)

function execState(N, i, x,Σ)
let n ∈ N be the node for which i ∈ In ∧ x : τn(i)
let (Xn, Yn)← Σ(n); i← |Xn|
let x′ ← injidx(i,n)(x)
let injj(y) r←− PRn

Yi|(Xn::x′)Yn

let o← int(j, n);Σ′ ← Σ[n 7→ ((Xn :: x′), (Yn :: injj(y)))]
if o ∈ O(N) then

return (o, y,Σ′)
else

30

return execState(N, o, y,Σ′)

B Charon and repo Nodes

In the specification of specific nodes, we will declare the interfaces involved,
which interfaces are inputs, outputs, and adversarial, and their associated types.
Often to return responses or reactivate, interfaces come in pairs on input and
output. In these cases we will write i/o for the input i and the output o for less
verbose notation. We write τpp,K for the type of the domain of init for K.

B.1 The Charon Node

Node Charon(~K, adv)

This node intercepts an outgoing message of ~K(R), and maps it to the correspond-
ing message R would have output, as well as sending the additional witnesses to
repo(K). adv indicates if this node should be adversarial or not. τ and τ ′ repre-
sent the arbitrary types of the interface in K(R) and R respectively, differing only
in that τ has instances of [K] replaced with 〈K, I〉.

Interfaces and their types:

Type Description
a/b τ/τ ′ The input and output messages
ppo,K/ppi,K τpp,K/1 Public parameters read interface (for all K ∈ ~K)
ki,K/ko,K Xpp ×Wpp/1 The knowledge output interface (for all K =

(·, X,W, ·) ∈ ~K, pp as received on ppo,K)

I = {a}∪{ ki,K | K ∈ ~K }, O = {b}∪{ ko,K | K ∈ ~K }, A = {a, b} if adv, ∅ otherwise

When receiving x on interface a:
Recursively replace all 〈x,w〉Kpp values in x with [x]Kpp where the corresponding
part of τ ′ does not have type 〈Kpp, ·〉. Record the list of such values in KK for
each K ∈ ~K.
for K ∈ ~K do

for 〈x,w〉Kpp ∈ KK do
output (x,w) on ki,K
require response > on ko,K

output x on b

B.2 The repo Node

31

Node repo(K)

This node stores all transmitted witnesses in the network, and permits adversarial
querying of statements, returning all appropriate witnesses. Where pp is used, it
is as received on the public parameter read interface ppo.

State variables and initialisation values:
Variable Description

K : (Xpp ×Wpp)∗ := ε List of acquired knowledge

Interfaces and their types:

Type Description
kji,K/k

j
o,K Xpp ×Wpp/1 Knowledge inputs

ppo,K/ppi,K τKpp/1 Public parameters
xjK/w

j
K Xpp/W

∗
pp Witness request

I = { kji,K, x
j
K | j ∈ N } ∪ {ppo,K}

O = { kjo,K, w
j
K | j ∈ N } ∪ {ppi,K}

A = { xjK, w
j
K | j ∈ N }

When receiving (x,w) on interface kji :
let K ← (x,w),K
output > on kjo

When receiving x on interface xj:
let w ← ε
for (x′, w′) in K do

if x = x′ then let w ← w′, w

output w on wj

B.3 The ⊥ Node

Node ⊥(~K,n)

This node does nothing, except connect to dangling ki,K/ko,K, xK/wK, and
ppo,K/ppi,K interfaces. n : ~K→ N3 represents the number of each interface not to
connect to, and we will denote (aK, bK, cK) := n(K).

Interfaces and their types:

Type Description
kjo,K/k

j
i,K 1/Xpp ×Wpp Knowledge repository inputs

ppo,K/ppi,K τKpp/1 Public parameters
wjK/x

j
K Xpp Witness requests

I = { kj+aK
o,K , w

j+bK
K , ppj+cK

o,K | j ∈ N }

32

O = { kj+aK
i,K , x

j+bK
K , ppj+cK

i,K | j ∈ N }
A = { xj+bK

K , w
j+bK
K j | j ∈ N }

When receiving any input:
abort

C Additional Details for Section 4

Section 4 simplified a number of it’s formal statements to be without renam-
ings, and without explicitly including the ⊥ node. This aids in understanding
the purpose and intuition behind the formalism, however for completeness this
section provides a fully formal treatment, as well as providing the proofs of the
lemmas and theorems in Section 4.

C.1 Basic Type Dependencies

Up to this point we have glossed over an inconsistency in the framework we
presented: It relies on types depending on sets of input knowledge and public
parameters, however types are statically defined, and set from initialisation.
To circumvent this, we extend the definition of cryptographic networks with a
limited support for type dependencies, just sufficient for the purposes of this
paper. To reason about the origin of public parameters, we first classify which
interfaces can be used as a basis for other types. We note that this definition and
that of the network where public parameters arise from are mutually recursive
– they are nevertheless presented separately for clarity.

Definition 14 (Public-read Interface). A countably infinite set A = {(i1, o1),
(i2, o2), . . .} is a public-read interface in a cryptographic network N if each of
the following conditions hold:

1. All interfaces names are valid: ∀j ∈ N : ∃n1, n2 ∈ N : ij ∈ In1 ∧ oj ∈ On2 .
2. The types of all input interfaces are 1.
3. The types of all output interfaces are equal.
4. Passing > to each input interface will:

(a) Cause the corresponding output interface to output a value matching all
others output by this this public-read interface in the past, independent
of which interface is queried.

(b) Not impact any subsequent execution (that is, not change the system
state).

An example of a common public-read interface is a common reference string,
provided it has an explicit setup step, that is, the CRS is not selected on the first
query. We make use of public-read interfaces by allowing them to parameterise
types of other interfaces in the system, for instance to be used as public pa-
rameters in knowledge assumption types. We are primarily interested in infinite

33

sets to ensure that arbitrarily many additional interfaces can be created, a fact
exploited to ensure the uniqueness of interface names in K-lifting.

These changes cumulate in a fairly minor change in the definition of cryp-
tographic networks and their execution, which does not affect the subsequent
proofs and definitions presented in Section 3.

Definition 15 (Simply Dependently Typed Cryptographic Networks).
A simply dependently typed cryptographic network N (over a set of knowledge
assumptions ~K) is defined as in Definition 3, with the following modifications:

1. Let R be a set of public read interfaces associated with N , and I be all
interfaces in N . Then there exists a partial order ≺ ⊂ R× (R] I) indicating
type dependencies.

2. If A,B ∈ R, and A ≺ B, then for all (·, o) ∈ B, A ≺ o.
3. Nodes depending on a public-read interface must have access to it: ∀n ∈

N, a ∈ In ∪On, A : A ≺ a =⇒ ∃(i, o) ∈ A : o ∈ In ∧ i ∈ On.
4. If (Xn, ·) = Σ(n) during execution, then InK is the set of all (parts of) mes-

sages of type [K] in Xn (and the current input x, if applicable).
5. For all n ∈ N, a ∈ In ∪ On, τn(a) returns a function taking the following

inputs:
– For each K ∈ ~K, InK.
– For all A ∈ R : A ≺ a, the output value of the public-read interface.

The output of this function is the type of this interface given a specific exe-
cution state (IK and public-read interface values).

6. Interface types match if their concrete type matches at all possible system
states, where type matching is relaxed to allow the output type to be a subset9
of the input type. In particular, note that I1 ⊆ I2 =⇒ 〈K, I1〉 ⊆ 〈K, I2〉.

Typically the easiest way to ensure that interfaces are matching in all possi-
ble states is to ensure they depend on the same public-read interface. The rest of
Section 3 can be established analogously for simply dependently typed crypto-
graphic networks, with the modification of using the above definition of interface
matching.

Definition 16 (Public parameters). A public-read interface A supplies the
public parameters for a knowledge assumption K = (init, . . .) if and only if its
output type is 1 + O, where O is the type of the codomain of init, with inj1(>)
indicating the public parameters are uninitialised, and the output value v satisfies
the following criteria:

1. Initially, v = inj1(>).
2. The value v changes at most once during any execution, and if it does, it is

distributed according to inj2(init).
9 Where subsets of types are constructed by 〈Kpp, I1〉 ⊆ 〈Kpp, I2〉 ⇐⇒ RKpp (I1) ⊆
RKpp (I2), and for all other defined naturally over all recursive types, for instance
τ∗ ⊆ τ ′∗ ⇐⇒ τ ⊆ τ ′.

34

We will largely use this implicitly – for pp being the value supplied by such
a public-read interface, we will write Xpp, Wpp, Rpp and Kpp as usual – for
pp = inj2(pp′), these are synonyms for Xpp′ , etc., while for pp = inj1(>), the
uninitialised state is captured by defining Xinj1(>) := Winj1(>) := Rinj1(>) := ∅.

C.2 Formal Restatements

We formally restate several of the definitions and lemmas from Section 4.

Definition 12 (Network Lifting). (restated) The network lifting ~K(N) for
any cryptographic network N ∈ RespNet~K is defined to add additional Charon
nodes to each output interface not already connected to, or part of, a Charon
node. For each non-Charon node n ∈ N , a corresponding node n′ ∈ ~K(N)
exists, with Rn′ = ~K(Rn), and types appropriately adjusted. For each output
interface of this node, if it is not already connected to a Charon node, a new
node Charon(~K, adv) is placed in ~K(N), with adv being the adversariality of
the output interface. The old output interface, and the Charon nodes input
interface is renamed to a unique name, and the Charon node’s output interface
is renamed to the old output interface’s name. For existing Charon(~K′, ·) nodes,
their parameter ~K′ is replaced with ~K′ ∪ ~K.

For all Charon nodes, the interfaces ko,K, ki,K, ppi,K, and ppo,K for all
K ∈ ~K are renamed, for a unique and minimal j, l ∈ N, to kjo,K, k

j
i,K, ppli,K, and

pplo,K respectively.
Where (ppli,K, pplo,K) are part of K’s public-read interface (which is renamed

to match). If this public interface is fully used, then for all n ∈ N, the renaming
[ppni,K/ppn+1

i,K , ppno,K/ppn+1
o,K] is applied to free the first of the infinite interfaces.

Definition 13 (~K-Distinguishers). (restated) The set of valid ~K-distinguishers
D~K, for any set of knowledge assumptions ~K, is defined as the closure under
internal renaming of ~K(N)[~n ∪

⋃
K∈~K

repo(K)[ppi,K/ppnK

i,K, ppo,K/ppnK

o,K]

∣∣∣∣∣∣ N ∈ RespNet~K

 ,

where nK ∈ N is the minimally selected such that (ppnK

i,K, ppnK

o,K) is a free public-
read interface for K, and ~n is a minimal renaming which enables this (for in-
stance, as given in Definition 12).

If the distinguisher consumes the first n knowledge-supplying repo interfaces
andm public-parameter interfaces, and the network A consumes the next a of the
former, b of the latter, and c of the knowledge-query interfaces, then ~K⊥(A,n),
where n encodes the connections used by the distinguisher, will use all countably
infinite interfaces through a new ⊥ instance. This normalises the connections
between multiple different resources.

35

Definition 17 (⊥-Lifting). The lifting ~K⊥(A,n) for any network A using aK
knowledge-supplying interfaces (for K), bK public-parameter interfaces (for K),
and cK knowledge-query interfaces (for K), and any n : ~K → N2 is defined as
A′ ∪ {⊥(~K,n′)}, where: A′ is A with all the above aK interfaces renamed to fall
between aD,K+1 and aD,K+aK, and likewise with bK, and cK to be between 1 and
cK. n′ is defined by n′(K) = (aD,K +aK, bD,K +bK, cK), with (aD,K, bD,K) = n(K).

We formally restate Lemma 4 using ⊥-lifting:

Lemma 4 (Indistinguishability Lifting). (restated) If A1A2
ε,D~K1∼ B1B2,

where for i ∈ {1, 2}, Ai, Bi ∈ RespNet~K2
, ~K1 ∩ ~K2 = ∅, and ~K := ~K1 ∪ ~K2, then

for all n : ~K2 → N2:

let A′ = ~K⊥2 (~K2(A2),n), B′ = ~K⊥2 (~K2(B2),n) in A1A
′ ε,D~K∼ B1B

′

Similarly, ⊥-lifting is applied to construction statements, however the ⊥-
lifting is applied also to the simulator, making it more complex. Where we wrote

A
ε,α,D

B in Section 4, the following is formally meant:

∀(n : ~K→ N2) : ∃B′, α′, ~n1, ~n2,n′ :

α′B′ = ~K⊥(αB,n) ∧

α′ = α[~n1] ∧B′ = B[~n2] ∪ {⊥(~K,n′)}∧

~K⊥(A,n)
ε,α′,D~K B′.

These modifications are necessary to ensure the renaming to use the first n
instances can be distributed across α and B.

Formally this requires restating Lemma 5, Lemma 7, and Theorem 3, however

we instead overload the notation of A
·,·,D~K B to mean the above when used

with a ~K-respecting distinguisher set, leaving the text of these statements the
same.

C.3 Proofs

Proof (of Lemma 4). Recall from Definition 8 that three conditions need to
be satisfied for indistinguishability: a) Unbound interfaces must match, b)
δD(A,B) ≤ ε, and c) the set of distinguishers must be closed under internal
renaming.

For any ~K, D~K is closed under internal renaming by definition. Furthermore,
as the interfaces of A1A2 and B1B2 match by precondition, and interfaces not
related directly to the knowledge assumption are preserved (with only their types
being modified equally), for this point we only need to consider the knowledge-
supplying, public parameter, and knowledge-querying interfaces, which will be
equal due to the definition of ⊥-lifting, and ~K2(·) using the same types.

36

It remains to show

sup
D∈D~K

∆D(A1~K
⊥
2 (~K2(A2),n), B1~K

⊥
2 (~K2(B2),n)) =

sup
D∈D~K

|Pr(DA1~K
⊥
2 (~K2(A2),n) = 1)− Pr(DB1~K

⊥
2 (~K2(B2),n) = 1)| ≤ ε.

Consider how the behaviour of DA1~K
⊥
2 (~K2(A1),n) and DB1~K

⊥
2 (~K2(B2),n) dif-

fers from D′A1A2 and D′B1B2 respectively, where D′ is D without repo(K)
(with any internal connections being replaced with a dummy repo with no
other purpose) for K ∈ ~K2, not exporting public-parameter interfaces. A2 lacks
Charon nodes which impart knowledge to D’s repo(K) nodes (for K ∈ ~K2).
However, as in DA1~K

⊥
2 (~K2(A2),n) these nodes do not reveal any information to

the distinguisher (as the distinguisher cannot connect to the knowledge export-
ing interfaces, and as A1 is ~K2-respecting), and neither reveals any information
to the network A1~K

⊥
2 (~K2(A2),n) (due to the ⊥-lifting forcing these to be a no-

op), this additional mechanism has no impact on the behaviour. As a result, the
output of D′A1A2 equals that of DA1~K

⊥
2 (~K2(A2),n). As D′ ∈ D~K1

, we have

|Pr(D′A1A2 = 1)− Pr(D′B1B2 = 1)| ≤ ε =⇒

|Pr(DA1~K
⊥
2 (~K2(A2),n) = 1)− Pr(DB1~K

⊥
2 (~K2(B2),n) = 1)| ≤ ε. ut

Proof (of Lemma 5). Recall from Definition 9 that network construction

A
ε,α,D

B has two separate conditions: α and B must have disjoint hon-
est unbound interfaces, and A ε,D∼ αB. From the precondition, we know that α′
and B′ (defined as above) have disjoint honest interfaces. Interface names do
not get changed through the ~K2 lifting, however new interfaces do get added.
There is no clash in these interfaces, due to the global uniqueness requirement
in the lifting. Furthermore, the ⊥-lifting will be the same for all K ∈ ~K1, and
normalise the interfaces available for K ∈ ~K2.
It remains to show:

A1~K2(A2)
ε,D~K∼ α1~K2(α2)B1~K2(B2),

which by Lemma 4 follows from A1A2
ε,D~K1∼ α1B1α2B2, which in turn holds as

part of the precondition. ut

Proof (of Theorem 3). The proof is done in parts.

Transitivity. By Lemma 6 and Equation 5:

B
ε2,β,D~K2 C =⇒ B

ε2,β,D~K2
~K2(α)

C.

37

By Lemma 5 and preconditions, ~K2(A)
ε1,~K2(α),D~K ~K2(B), and by Lemma 7

Equation 14, B
ε2,β,D~K

~K2(α)
C. Therefore:

A
ε1,~K2(α),D~K B

ε2,β,D~K
~K2(α)

C,

and by Theorem 1 Equation 7 (and αβC ∈ ∗ implying ~K2(α)βC ∈ ∗)

A
ε1+ε2,~K2(α)β,D~K C. ut

Subgraph substitution. By Lemma 6, D~K
~K(C) ⊆ D~K. Therefore, the precondition

can be weakened Equation 5 to A
ε,α,D~K

~K(C)
B. The rest follows by Theorem 1

Equation 8, and the honest networks intersection not being affected by the ~K-
lifting. ut

Proof (of Lemma 7). For Equation 13, it is sufficient to show that

sup
D∈D~K1

C
∆D(A,B) ≥ sup

D∈D~K2
C
∆D(A,B)

For this it is sufficient to show that every D ∈ D~K2
C has an equivalent D′ ∈

D~K1
C:

∀D ∈ D~K2
C : ∃D′ ∈ D~K1

C : DA = D′A ∧DB = D′B.

For each distinguisher D in D~K2
C, it consists of: a) C itself, b) repo(K) nodes

for every K ∈ ~K2, and c) ~K2(A) nodes for some A ∈ RespNet~K2
. For D′ in D~K1

the same applies, however with fewer repo(K) nodes, and a ~K1(A) wrapping for
A ∈ RespNet~K1

instead. As ~K1 ⊆ ~K2, RespNet~K1
⊇ RespNet~K2

, and it is there-
fore sufficient to show that the different wrapper, and lack of additional repo
nodes does not change the behaviour. This follows directly as the effect of the
additional wrapper in ~K2 \~K1 can be emulated without changing whether a node
is ~K1-respecting, and likewise repo nodes are trivially ~K1 respecting, as they
do not produce knowledge-implying objects themselves. It follows that for every
distinguisher D ∈ D~K2

we can construct a semantically identical distinguisher
D′ ∈ D~K1

.
Equation 14 follows directly from Equation 13 and Definition 9. ut

D Full Example Specification

The full specification of the nodes introduced in Section 5. Public-parameter
interfaces are omitted and should be assumed in every node except G.

D.1 KbAGM Parameters

38

Node G

This node provides the initialisation of KbAGM. We assume the domain of init is
τpp,KbAGM .

State variables and initialisation values:
Variable Description

pp : 1 + τpp,KbAGM := inj1(>) Public parameters

Interfaces and their types:

Type Description
initi/inito 1/1 Initialisation
ppji/ppjo 1/1 + τpp,KbAGM Public parameter queries

I = {initi} ∪ { ppji | j ∈ N }
O = {inito} ∪ { ppjo | j ∈ N }
A = ∅

When receiving > on interface initi:
let pp r←− inj2(init)
output > on inito

When receiving > on interface ppji :
output pp on ppjo

D.2 Ideal World

Node nizk

A proof-malleable NIZK for a relation R. Assumed are the following types: a) X
for statements, W for witnesses, Π for proofs.

State variables and initialisation values:
Variable Description

π : (X ×Π)∗ := ε Accepted proofs
π : (X ×Π)∗ := ε Rejected proofs

Interfaces and their types:

Type Description
proveji/provejo X ×W/1 +Π Proving
verifyji/verifyjo X ×Π/2 Verifying
mauli/maulo X ×Π/1 Proof malleability
wito/witi 1 +W/X ×Π Adversarial witness query
prfo/prfi Π/X Proof object selection

I = {mauli,wito, prfo} ∪ { proveji , verifyji | j ∈ H }

39

O = {maulo,witi, prfi} ∪ { provejo, verifyji | j ∈ H }
A = {mauli,maulo,witi,wito, prfo, prfi}

When receiving (x,w) on interface proveji :
if (x,w) /∈ R then

output inj1(>) on provejo
else

output x on prfi
require response π on prfo
assert (x, π) /∈ π
let π ← (x, π) :: π
output inj2(π) on provejo

When receiving (x, π) on interface verifyji :
if (x, π) /∈ (π ∪ π) then

output (x, π) on witi
require response r on wito
if ∃w : r = inj2(w) ∧ (x,w) ∈ R then

let π ← (x, π) :: π

if (x, π) ∈ π then
output 1 on verifyji

else
let π ← (x, π) :: π
output 0 on verifyji

When receiving (x, π) on interface mauli:
if ∃π′ : (x, π′) ∈ π ∧ (x, π) /∈ π then

let π ← (x, π) :: π

D.3 Hybrid World

Node snark-node(j)

The generic SNARK protocol relies on the corresponding Prove and Verify algo-
rithms from the underlying zk-SNARK scheme S, and access to the (optionally
adversarially biased) SRS. Each snark-node depends on the party ID j. As S
is in the random oracle model, an interface to query ro is available, which both
Prove and Verify have oracle access to.

Interfaces and their types:

Type Description
proveji/provejo X ×W/1 +Π Proving
verifyji/verifyjo X ×Π/2 Verifying
srsjo/srsji S/1 SRS query
rojo/roji 2λ/2∗ Random oracle query

I = { proveji , verifyji , srs
j
o }

40

O = { provejo, verifyji , srs
j
i }

A = ∅

When receiving (x,w) on interface proveji :
if (x,w) /∈ R then

output inj1(>) on provejo
else

output > on srsji
require response srs on srsjo
output Prove(srs, x, w) on provejo

When receiving (x, π) on interface verifyji :
output > on srsji
require response srs on srsjo
output Verify(srs, x, π) on verifyjo

Node srs

The srs node constructs a (adversarially biased) structured reference string. Mod-
elled after Fusrs from [23]. Assumed are the following types: a) T for trapdoors,
b) S for reference strings, c) P for permissible permutations over T .

State variables and initialisation values:
Variable Description

okj : 2 := 0 Initialisation status (j ∈ Zn)
tH : 1 + T := 0 Honest trapdoor
t : 1 + T := 0 Full trapdoor

Interfaces and their types:

Type Description
initji/initjo 1/1 SRS initialisation
ninitjo/ninitji 1/1 SRS initialisation notification
srsji/srs

j
o 1/S SRS query

hsrsi/hsrso 1/S Honest SRS component query
permo/permi P/1 Permutation query

I = {hsrsi, permo} ∪ { initji , ninitjo, srsji | j ∈ H }
O = {hsrso, permi} ∪ { initjo, ninitji , srs

j
o | j ∈ H }

A = {hsrsi, hsrso, permi, permo} ∪ { ninitjo, ninitji | j ∈ H }

When receiving > on interface initji :
if okj = 0 then

let okj ← 1
output > on ninitji
require response > on ninitjo

output > on initjo

41

When receiving > on interface hsrsi:
if tH = 0 then

let tH
r←− inj2(T)

assert ∃t′ : tH = inj2(t′)
output S(t′) on hsrso

When receiving > on interface srsji :
assert ∀k ∈ H : okk = 1
if tH = 0 then

let tH
r←− inj2(T)

assert ∃t′ : tH = inj2(t′)
if t = inj1(>) then

output > on permi

require response p on ko,K
let t← inj2(p(t′))

assert ∃t′ : t = inj2(t)
output S(t′) on srsjo

Node ro

The random oracle node records queries of arbitrary bit strings, and responds
either with an already recorded response, or a value sampled uniformly at random
from 2λ.

State variables and initialisation values:
Variable Description

H : (2∗ × 2λ)∗ := ε Recorded queries

Interfaces and their types:

Type Description
roji/ro

j
o 2∗/2λ Random oracle query

I = { roji | j ∈ Zn }
O = { rojo | j ∈ Zn }
A = ∅

When receiving x on interface roji :
let b← 0
for (x′, h) in H do

if x = x′ then
let b← 1
output h on rojo

if b = 0 then
let h r←− 2λ

let H ← (x, h), H
output h on rojo

42

D.4 Real World

Node rr-node(j)

The round-robin update node will, when called with init, read all other parties
updates from the broadcast node, apply them, and perform its own, broadcasting
this in turn. When called with srs, it will instead ensure at least one update of
each party is present, and perform all of these in sequence, returning the result.
Assumes is the type S for SRS, and Πupd for update proofs.

Interfaces and their types:

Type Description
initji/initjo 1/1 Initialisation
srsji/srs

j
o 1/S SRS query

bcastjo/bcastji 1/S ×Πupd Broadcast
readjo/readji (n× S ×Πupd)∗/1 Retrieval

I = {initji , srs
j
i , bcastjo, readjo}

O = {initjo, srsjo, bcastji , readji}
A = ∅

When receiving > on interface initji :
let (srs, done)← computeSrs(⊥)
if j /∈ done then

let p r←− P
let srs′ ← p†(srs)
let ρ← ProveUpd(srs, p)
output (srs′, ρ) on bcastji
require response > on bcastjo

output > on initjo
When receiving > on interface srsji :

let (srs, done)← computeSrs(>)
assert done = Zn
output srs on srsjo

Helper procedures:
procedure computeSrs(requireAll)

output > on readji
require response ~M on readji
let srs← S(τ0)
let done← ∅
for (k, srs′, ρ) in ~M do

if k /∈ done ∧ VerifyUpd(srs, ρ, srs′) then
let srs← srs′; done← done ∪ {k}

return (srs, done)

43

Node bcast

The broadcast node allows any party to send messages to all other parties, and
to retrieve all messages sent to them. The number of parties is assumed to be n.
The broadcast channel is defined for any message type τ , with additional public
parameter interfaces being implicit if this type depends on them.

State variables and initialisation values:
Variable Description

msgs : (n× τ)∗ := ε Message record

Interfaces and their types:

Type Description
bcastji/bcastjo τ/1 Broadcast
readji/readjo 1/(n× τ)∗ Retrieval

I = { bcastji , readji | j ∈ Zn }
O = { bcastjo, readjo | j ∈ Zn }
A = ∅

When receiving M on interface bcastji :
let msgs← (encode(j),M),msgs
output > on bcastjo

When receiving > on interface readji :
output reverse(msgs) on readjo

D.5 Simulators

Node α

The snark to nizk simulator. We make use of a simulated prover SimProve,
which while not described in [18], is typically implied by perfect zero-knowledge,
as well as the extractor Xw implied by [18, Lemma 4.7], which makes use of the
KbAGM knowledge extraction. Otherwise, the simulator mimics the srs node, albeit
retaining access to the full trapdoor. When SimProve and Verify require access to
the random oracle, it simulates the behaviour of ro using H. This simulated
behaviour is also exported on the corrupted parties ro interfaces.

State variables and initialisation values:
Variable Description

okj : 2 := inj1(>) Initialisation status (j ∈ H)
tH : 1 + T := inj1(>) Honest trapdoor
t : 1 + T := inj1(>) Full trapdoor
H : (2∗ × 2λ)∗ := ε Recorded queries

44

Interfaces and their types:

Type Description
maulo/mauli 1/X ×Π Proof malleability
witi/wito X ×Π/1 +W Adversarial witness query
prfi/prfo X/Π Proof object selection
initji/initjo 1/S SRS initialisation
ninitjo/ninitji 1/1 SRS initialisation notification
hsrsi/hsrso 1/S Honest SRS component query
permo/permi P/1 Permutation query
wKbAGM/xKbAGM W ∗pp/Xpp Knowledge extraction
roji/ro

j
o 2∗/2λ Random oracle query

I = {maulo,witi, prfi, hsrsi, permo, wKbAGM}∪{ initji , ninitjo | j ∈ H }∪{ roji | j ∈ A }
O = {mauli,wito, prfo, hsrso, permi, xKbAGM} ∪ { initjo, ninitji | j ∈ H } ∪ { rojo | j ∈
A }
A = {maulo,mauli,witi,wito, prfi, prfo, hsrsi, hsrso, permo, permi, wKbAGM , xKbAGM} ∪
{ ninitjo, niniji | j ∈ H }

When receiving (x, π) on interface witi:
let t′ ← ensureSrs
if Verify(S(t′), x, π) then

let w ← Xw(x, π)
if (x,w) ∈ Rpp then

output inj2(w) on wito
else

output (x, π) on mauli
require response > on maulo
output inj1(>) on wito

else
output inj1(>) on wito

When receiving x on interface prfi:
let t′ ← ensureSrs
assert ∃t′ : t = inj2(t′)
return SimProve(S(t′), t′, x)

When receiving > on interface initji :
let okj ← inj2(>)
output > on ninitji
require response > on ninitjo
output > on initjo

When receiving > on interface hsrsi:
if tH = inj1(>) then

let tH
r←− inj2(T)

assert ∃t′ : tH = inj2(t′)
output t′ on hsrso

When receiving x on interface roji :
let b← 0

45

for (x′, h) in H do
if x = x′ then

let b← 1
output h on rojo

if b = 0 then
let h r←− 2λ

let H ← (x, h), H
output h on rojo

Helper procedures:
procedure ensureSrs

assert ∀k ∈ H : okk = inj2(>)
if tH = inj1(>) then

let tH
r←− inj2(T)

assert ∃t′ : tH = inj2(t′)
if t = inj1(>) then

output > on permi

require response p on ko,K
let t← inj2(p(t′))

assert ∃t′ : t = inj2(t)
return t′

Node β

The rr-setup to srs simulator. For corrupted parties, their updates’ exponents
are extracted from the broadcast channel, and supplied as the permutation to
srs. The first honest party writing to the broadcast channel will be a permuta-
tion of the honest SRS, the rest randomly chosen permutations. We make use of
the proof simulation algorithm Sρ from [23], and additionally assume the exis-
tence of a white-box extractor algorithm Xp, which maps update proofs ρ to their
permutations, given access to KbAGM witness extraction.

State variables and initialisation values:
Variable Description

p : P := id The permutation to apply
srs : S := S(τ0) The current SRS

donej : 2 := inj1(>) For each party j ∈ Zn, if they have initialised
msgs : (n× S ×Πupd)∗ := ε Message record

46

Interfaces and their types:

Type Description
bcastji/bcastjo S ×Πupd/1 Broadcast
readji/readjo 1/(n× S ×Πupd)∗ Retrieval
ninitji/ninitjo 1/1 SRS initialisation notification
hsrso/hsrsi S/1 Honest SRS component query
permi/permo 1/P Permutation query
wKbAGM/xKbAGM W ∗pp/Xpp Knowledge extraction

I = {hsrso, permi, wKbAGM} ∪ { bcastji , readji | j ∈ A } ∪ { ninitji | j ∈ H }
O = {hsrsi, permo, xKbAGM} ∪ { bcastjo, readjo | j ∈ A } ∪ { ninitjo | j ∈ H }
A = {hsrso, hsrsi, permi, permo, wKbAGM , xKbAGM} ∪ { ninitji , ninitjo | j ∈ H }

When receiving (srs′, ρ) on interface bcastji :
if donej = inj1(>) ∧ VerifyUpd(srs, ρ, srs′) then

let srs← srs′
let donej ← inj2(>)
let p′ ← Xp(ρ)
let p← p′ ◦ p

let msgs← (encode(j), srs, ρ)
output > on bcastjo

When receiving > on interface readji :
output reverse(msgs) on readjo

When receiving > on interface ninitji :
if donej = inj1(>) then

let b← ∃k ∈ H : donek = vninj2(>)
let donej ← inj2(>)
let p′ r←− P
if ¬b then

output > on hsrsi
require response srs′ on hsrso
let ρ← Sρ(p(τ0), srs′′)
let p← id; srs← srs′′
let msgs← (encode(j), srs, ρ)

else
let srs′ ← p′†(srs)
let ρ← ProveUpd(srs, p)
let p← p′ ◦ p; srs← srs′
let msgs← (encode(j), srs, ρ)

output > on ninitjo
When receiving > on interface permi:

assert ∀k ∈ Zn : donek = inj2(>)
output p on permo

47

E Full Examples of Knowledge Assumptions

E.1 Knowledge of Exponent Assumption

The t-knowledge-of-exponent assumption [14, 22] depends on a (possibility pre-
selected) group G of order p, and generator g ∈ G. It selects a random exponent
s, and provides the pair (g, gs) as public parameters. Any pair of group elements
where the second is the sth power of the first must provide an exponent to match.

A curiosity of this knowledge assumption is that there is no simple member-
ship test to apply. As a result, we permit pairs not related in this way to be
members of Xpp, which do not require witnessing, capturing the possibility of
transmitting unrelated group elements.

KKEA := (init, X,W,R)

init := s
r←− F∗p; (g, gs)

X := G2

W := {base} ∪
{ (input, i) | i ∈ X } ∪
{ (exp, b, e) | b ∈W, e ∈ F∗p } ∪
{ (mul, b, c) | b, c ∈W } ∪
{ (free, g, h) | g, h ∈ G }

eval(I, w) :=

(g, gs) if w = base
i if w = (input, i) ∧ i ∈ I
(ae, be) if w = (exp, c, e) ∧ (a, b) = eval(I, c)
(a ◦ c, b ◦ d) if w = (mul, e, f) ∧ (a, b) = eval(I, e)

∧ (c, d) = eval(I, f)
(g, h) if w = (free, g, h) ∧ gs 6= h

(x,w) ∈ R(I) ⇐⇒ x = eval(I, w)

E.2 The Bilinear Algebraic Group Model with Random Sampling

Assuming a distribution groupSetup providing groups G1,G2,GT , a bilinear pair-
ing operation e : G1 ×G2 → GT , and generators g ∈ G1 and h ∈ G2, we define
the corresponding knowledge assumptions of a bilinear Algebraic Group Model
below. Random sampling of group elements in G1 and G2 is permitted by pro-
viding random permutations10 ~G1 of G1 and ~G2 of G2 as part of the public
parameters – we assume machines have random memory access, and can there-
fore easily query random elements in these vectors, but cannot search for specific
elements, due to the exponential size of the group. Note that this assumes public
parameter selection is free from computational feasibility constraints.

KbAGM := (init, X,W,R)

init := let (G1,G2,GT , e, g, h) r←− groupSetup; ~G1
r←− SG1 ; ~G2

r←− SG2

in (G1,G2,GT , e, g, h, ~G1, ~G2)
10 We write SX for the set of permutations of X, and the corresponding uniform dis-

tribution.

48

X := G1]G2]GT
W := { (op, a, b) | a, b ∈W } ∪

{ (pairing, a, b) | a, b ∈W } ∪
{ (input, i) | i ∈ X } ∪
{ (index, i, x) | x ∈ {1, 2}}, i ∈ Z|Gi| } ∪
{ (generator, x) | x ∈ {1, 2} }

eval(I, w) :=

eval(a) ◦ eval(b) if w = (op, a, b)
e(eval(a), eval(b)) if w = (pairing, a, b)
i if w = (input, i) ∧ i ∈ I
(~Gx)i if w = (index, i, x)
g if w = (generator, 1)
h if w = (generator, 2)

(x,w) ∈ R(I) ⇐⇒ x = eval(I, w)

Notably ◦ and e may be undefined – g ◦ h is not defined, for instance. In this
case eval is also not defined: eval(I, (op, g, h)) is undefined.

E.3 Random Oracles

Somewhat surprisingly, (global, non-programmable) random oracles can be seen
as a somewhat unique knowledge assumption, using a similar technique for ran-
domness as is used to sample random group elements above. Unlike the above,
the public parameters need to encode an infinite sequence of random values –
effectively publicly describing the entire random oracle. Again an assumption of
random access to these public parameters implies a limited number of possible
“queries” to this random oracle, with each query simply reading the nth random
value in the sequence, where n is a numerical encoding of the query.

In practice, this assumption has similarities to that of an extractable hash
function [24], and global random oracles [12, 7]. It fits the former in that for
every “hash” produced by an algorithm, an extractor must be able to output its
preimage, and the latter if this operation is viewed as a black-box query to a
global random oracle functionality.

KRO := (init, X,W,R)
init := ({0, 1}λ)∞

X := {0, 1}λ

W := { (input, i) | i ∈ X } ∪
{ (index, i) | i ∈ N }

eval(I, w) :=
{
i if w = (input, i) ∧ i ∈ I
ppi if w = (index, i, x)

(x,w) ∈ R(I) ⇐⇒ x = eval(I, w)

49

F Efficiently Indexable Sums and Products

In order to allow representing infinite randomness in public parameters, such
as for the random oracle, infinite products with efficient indexing are required.
We define the sum and product operator here to divide the domain into sets of
increasingly large powers of two, which can be arranged as a binary tree. The
final construction links these in a basic sequence, ensuring that any index i can
be accessed in Θ(log(i)) operations.∑

x∈X
f(x) := effAgg(X, f,+,0, 0)

∏
x∈X

f(x) := effAgg(X, f,×,1, 0)

effAgg(ε, ·, ·,τ, ·) := τ

effAgg(X,f,�,τ, i) := aggTree(take(2i, X), f, �, τ, i) �
effAgg(drop(2i, X), f, �, τ, i+ 1)

aggTree([x],f, ·, ·,0) := f(x)
aggTree(ε, ·, ·,τ, ·) := τ

aggTree(X,f,�,τ, i) := aggTree(take(2i−1, X), f, �, τ, i− 1) �
aggTree(drop(2i−1, X), f, �, τ, i− 1),

where take(i,X) returns the sequence containing only the first i elements of X
(or X itself, if |X| ≤ i), and drop(i,X) returns the sequence containing all other
elements of X, such that take(i,X) ‖ drop(i,X) = X, and � stands in for one of
+ and ×.

50

	Composition with Knowledge Assumptions

