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Abstract—While many anonymous communication (AC) pro-
tocols have been proposed to provide anonymity over the
internet, scaling to a large number of users while remaining
provably secure is challenging. We tackle this challenge by
proposing a new scaling technique to improve the scalabil-
ity/anonymity of AC protocols that distributes the computa-
tional load over many nodes without completely disconnecting
the paths different messages take through the network. We
demonstrate that our scaling technique is useful and practical
through a core sample anonymous broadcast protocol, Streams,
that offers provable security guarantees and scales for a million
messages. The scaling technique ensures that each node in
the system does the computation-heavy public key operation
only for a tiny fraction of the total messages routed through
the Streams network while maximizing the mixing/shuffling in
every round. Our experimental results show that Streams can
scale well even if the system has a load of one million messages
at any point in time, with a latency of 16 seconds while offering
provable “one-in-a-billion” unlinkability, and can be lever-
aged for applications such as anonymous microblogging and
network-level anonymity for blockchains. We also illustrate by
examples that our scaling technique can be useful to other AC
protocols to improve their scalability and privacy, and can be
interesting to protocol developers.

1. Introduction

Anonymous communication (AC) protocols [1]–[11]
have been on an eternal quest to be scalable in terms of
computation and communication overhead while providing
strong anonymity properties. AC protocols need to ensure
that messages cannot be traced from source to sink, i.e., from
sender to recipient. A mixing network or mixnet confuses
curious observers and compromised protocol parties by rout-
ing each message through multiple parties and “mixing” it
with other messages along the way. This mixing property
naturally occurs in mixnets with network topologies where
messages meet in an honest protocol node or mixnode.

However, a mixnode has to perform public-key cryp-
tographic processing associated with layered encryption,

and the scalability of those mixnets is bottlenecked by
the computation capacity of the weakest node. Mixnets
that attempt to distribute the processing load over several
parties in order to (horizontally) scale for a large number of
messages, naturally cause a network topology where not all
messages meet each other easily. Such protocols compensate
for the shortcoming in the network topology in two ways:
either they route a message through more nodes, leading to
high latency; or they send noise messages between nodes
to create the appearance that two messages could have
met, leading to high communication overhead. All existing
mixnets in the literature that attempt to achieve scalability
by distributing computation over multiple parties, either
fail to provide provably strong mixing guarantees (such
as sender anonymity or relationship anonymity) [1], [9] or
unnecessarily amplify the latency or bandwidth overhead
[4], [10], [11].

We close that gap by introducing a simple and efficient
scaling technique with provably strong mixing guarantees,
without introducing additional noise messages or amplifying
the latency too much. Our method separates duties: heavy
cryptographic public-key operations are performed by a
large number of parties (in practice hundreds to thousands),
ensuring some kind of unlinkability of the packets, while
the mixing is performed in a computation-light manner by
an ever changing selection of very few nodes (in practice 1
to 5), which we call the “funnels” for that round. With this
construction, a large number of protocol parties perform the
required (public-key) cryptographic computations for them
before sending the processed messages to their next desti-
nation over secure channels (TLS). This way, our scaling
technique distributes computation over an arbitrarily large
set of parties while preserving almost the same degree of
link saturation and the chance for messages to meet. This
kind of funnel topology combined with a secure channel is a
minor change to an AC protocol, but it seems to have eluded
prior work and offers significant advantages for scalability.
The simplicity of the construction enables us to prove strong
anonymity properties with less noise messages and latency
overhead than comparable provable AC protocols [10], [11].

We demonstrate the applicability of our scaling method



on a simple anonymous broadcast protocol, Streams, for
which we prove a strong mixing property. Streams might be
of independent interest for applications such as blockchain
access privacy and anonymous microblogging, as it scales to
a million messages and achieves practical end-to-end latency
with strong mixing against honest-but-curious global attack-
ers; these attackers can have strong background knowledge
and access to honest-but-curious nodes and clients.

With a prototype implementation with one funnel node
we demonstrate that Streams can scale to a million messages
with an end-to-end latency of 16 seconds for each message
for a message size of 512 bytes. Our proofs formally show
that mixing occurs in the presence of a global passive
adversary that (passively) compromises a fraction of the
protocol parties. For a fraction of 10% compromised nodes
in the system, Streams offers provable security of δ ≤ 2−30.1

We find our scaling method for distributing computation
over many parties to be not only relevant to Streams but
also encouraging for protocol designers interested in scaling
up other AC protocols. As three representative examples,
we consider the prominent Loopix [9], Karaoke [4], and
Vuvuzela [12] protocols, and describe how our method of
divide and funnel can enhance their mixing properties.

2. Existing Mixnet Protocols and (Lack of)
Provable Guarantees

Most mixnet-based anonymous communication (AC)
protocols, that can scale to a large number of users, do so
by splitting the traffic over multiple paths [1], [4], [9], [10],
[13]–[17]. However, that also decreases the chance of two
messages mixing with each other on a given hop — either
those protocol need to increase the latency overhead almost
linearly to maintain the same level of security [10], [17], or
compensate with additional bandwidth overhead (by adding
cover traffic) [4], [9], [13]–[15] or settle for a weaker level
of anonymity [1], [9], [16]. With our scaling strategy, we
aim to achieve a balance among those worlds: maximize the
chance of mixing for two messages while not increasing the
latency overhead linearly or introduce additional bandwidth
overhead, and scale for a million messages in the system. To
further motivate the requirement of a scaling technique with
strong security guarantees, we discuss the tradeoffs provided
by existing mixnet-based protocols below.

The recently proposed AC protocol Loopix [9] combines
a stratified mix network architecture with exponentially
distributed delays to achieve a flexible mixing protocol that
does not require fixed rounds; and scales for many users by
employing multiple paths. Loopix offers tuneable parame-
ters that balances latency overhead and the required traffic
volume to offer protection against traffic analyses, without
providing a formal proof on the degree of anonymity/mixing

1. The δ ≤ 2−30 characterizes the traffic leakage; the cryptographic
primitives offer the same guarantees as in the literature. To put the order
of magnitude of traffic leakage into perspective, attackers have to wait for
users to send messages to make novel traffic-observations. Hence, the traffic
leakage amplification is far less than for cryptographic primitives.

for any given parameter set. It is not clear whether Loopix
offers strong pairwise unlinkability for interesting latency
numbers. In Section 9, we discuss how Loopix could im-
prove their degree of mixing while scaling up by utilizing
our scaling approach.

In Vuvuzela [12] each node processes all messages in
the system, and hence, is limited by the processing power
of each node, leading to a large latency (around 37 seconds
with one million messages, with a chain of only 3 nodes).
Our technique specifically circumvents such bottlenecks.

Karaoke [4] and Stadium [13] can scale to millions of
users by allowing multiple paths. To achieve link saturation,
they leverage a number of noise messages in Θ(|servers|2),
which yields a property similar to relationship anonymity.
Additionally, by requiring the clients to send dummy mes-
sages whenever they don’t have a real message to send, they
allow the clients to hide when they are sending messages.
However, these protocols only satisfy differential privacy
(DP) guarantees. Differentially private AC protocols allow
an attacker to develop a strong suspicion about who sent
a message, which we strive to avoid in Streams. In Ap-
pendix A.2, we discuss how group privacy artifacts and
millions of users render (ε, δ)-DP guarantees unsuited for
providing strong anonymity guarantees, unless ε and δ are
very small. In Section 9, we discuss how to scale up Karaoke
with our approach without this explosion of noise messages.

Against passive attackers, Karaoke does not only claim
to provide DP guarantees but statistical indistinguishability
(negligible δ for ε = 0). The proof outline of Karaoke is,
however, inaccurate; we show a counter-example in Ap-
pendix A.1. As Karaoke uses the same flawed argument
to prove their DP guarantees, the soundness of their DP
guarantees is not clear either.

Atom’s [10] horizontal scaling technique also can handle
a million short messages (up to 160 bytes) with strong mix-
ing guarantees within a reasonable amount of time (around
28 minutes). However, our scaling technique allows our
example protocol Streams to offer a significantly shorter end
to end latency in the order of a few seconds. To demonstrate
the effectiveness of our technique, we compare Streams with
Atom and other protocols in Table 1, in terms of the number
of communication hops required to achieve the security
guarantees they aim for.

Ando et al. [17] propose a butterfly topology to achieve
scalability and prove a mixing property. Butterfly networks
are extremely effective in shuffling messages in the absence
of compromised parties, but are not resistant in their pres-
ence. Even individual compromised nodes can jeopardize
the mixing properties of the network. To overcome this
challenge, Ando et al. propose to use Ω(log2(η)) many
rounds for the security parameter η in order to provide
mixing in the presence of passively compromised nodes. As
Streams funnels messages through single nodes it can resist
passively compromised nodes with just O(log(η)) rounds.

Kwon et al. [15] propose XRD that can achieve un-
observability with O(logK) rounds of latency, where K is
the total number of nodes in the system. For K ∈ poly(η),
their latency is polylogarithmic in the security parameter η.



However, each user is required to send
√
2K messages per

real message.
Recently, Langowski et al. [16] proposed Trellis, an

anonymous broadcast protocol that follows the footsteps of
cMix [18] to decouple expensive system setup from the
broadcast stage. However, similar to cMix, unless they run
the expensive system setup after every broadcast round,
messages from the same user are linkable with each other
on the last mixnode layer.

Most protocols require all clients to actively participate
in the protocol to avoid leakage from user behaviour (e.g.,
if Bob is not active when a message is sent, Bob could
not have been the sender); and Streams is no exception
to that. However, many protocols (e.g., Vuvuzela, Stadium,
Karaoke, XRD, Trellis) require all the clients to send mes-
sages in batches to help their mixing process, and/or to
add strategic noise messages to the batches. This kind of
synchronization among millions of clients is very difficult
to achieve in a real world scenario. Our scaling technique
does not require the help of noise messages from the servers
to achieve mixing. Moreover, we disentangle the mixing
property from user behavior. Hence, we only require the
servers to have synchronized clocks but not the clients to use
a synchronized usage pattern. We explain in Section 4.1 how
our mixing property combined with such restricted client
behavior directly implies the traditional anonymity notions
achieved by the above protocols. Not requiring the messages
to be processed in batches is a design advantage in itself.

3. Problem Overview And Design Roadmap

System Model. We consider a typical mix network based ar-
chitecture [9], [10] allowing users to send messages anony-
mously using an overlay network of mix nodes. A set S
of users communicate to a set R of recipients through
a set I of intermediate nodes (or just ‘nodes’). In real
life, the same user can act as sender as well as recipient,
however, we consider the sender role and recipient role as
two separate logical entities. Each sender is denoted by
ui where i ∈ {1, . . . ,N} and |S| = N. Similarly, each
recipient is denoted by Ri where i ∈ {1, . . . ,N′} and
|R| = N′. We summarize the system parameters in Figure 1.
Our main objective is to demonstrate our scaling technique
by designing an end-to-end provably secure and scalable
AC protocol. Similar to provably-secure mix-net systems
such as [4], [10], [12], [13], [15], [16], [18], our protocol
uses a round-based communication model and synchronized
clocks. In Section 7.1 we extend our results to loosely
synchronized clocks.

3.1. Attacker Model and Security Goals

We consider global network level adversaries that can
also statically compromise all except two clients and up to
c out of K = |I| nodes. We formally prove mixing properties
against passive attackers and consider passive corruptions:
the compromised protocol parties still follow the protocol

ℓ Maximum latency allowed for a message
L Minimum required latency of a message
I Set of all nodes
Ih Set of all honest nodes
K Total number of nodes |I|
c Number of compromised nodes |I − Ih|
O An onion packet
η The security parameter
δ the adversarial advantage

$← [b, c] Draw uniformly at random from [b, c]

Figure 1: Protocol and system parameters

specifications, however the adversary has access to all the
internal states of a compromised party. In Appendix B we
discuss the necessary adaptations for the protocol against
active adversaries based on existing techniques.

Our scaling technique improves the core building block
for anonymous communication. To precisely characterize
the security notion that we consider, we utilize a property
that we call pairwise unlinkability: the attacker shall not
be able to figure out which of two messages entering a
system at a similar time corresponds to which of the two
same messages leaving the system at a later point. However,
an adversary can additionally leverage differences in user
behavior (e.g, if Alice is active only at a specific time of
the day) to guess who might have sent a message. Even a
trusted-third-party anonymizer can not defend against such
leakage. Some AC protocols [4], [9], [10], [13] defend
against that by restricting/enforcing how the protocol clients
can behave. We consider that problem to be orthogonal and
focus on the “mixing” problem. Our notion of pairwise un-
linkability suitably captures that notion of mixing. It is also
closely related to other prominent anonymity notions — in
Section 4.1 we relate it to notions like sender anonymity [19]
(which of two potential senders has sent a specific message?)
and relationship anonymity [19] (who is in communication
with who?).

As with other works on anonymous communication [3],
[4], [6], [10], [13], [18], [20]–[22], our formal security
analysis does not consider an adversary whose sole purpose
is to launch denial-of-service (DoS) attacks. Any technique
that can be deployed for other protocols against attacks like
targeted flooding to degrade the performance of a node can
be deployed in our system as well. However, we incorporate
integrity protections in our sample protocol Streams using
the standard cryptographic methods [23], and deploy coun-
termeasures against DoS-anonymity attacks (loop messages)
from the literature [9]. Additionally, in Sections 5.2 and 7.2
we discuss techniques to defend against some DoS attacks
relevant to our scaling technique. We also leave the detailed
analyses of fingerprinting of web-browsing and other side-
channels that might arise in specific application scenarios
for future work.



TABLE 1: Different tradeoffs offered by Streams compared to other protocols that can handle a total system load of one million messages.
In our comparisons we consider the trap variant of Atom [10], since the NIZK (non-interactive zero knowledge) variant is significantly
slower. Atom* denotes the estimated values for Atom to achieve δ < 2−30 with 10% corrupted nodes. For XRD [15], K denotes the
total number of servers in their system. GPA refers to global passive adversaries.

Protocol Anonymity property
against GPA Security #hops Latency (seconds) Additional noise Defense against

active attacks

Atom [10] sender anonymity δ ≤ 2−64 320 1680 none trap messages +
anytrust server group

Atom* sender anonymity δ ≤ 2−30 120 630 none trap messages +
anytrust server group

XRD [15] sender anonymity δ ≤ 2−64 22 128
√
2K per message NIZK

Karaoke [4] relationship anonymity DP 14 6 25000 by each server server noise
+ bloom filter

Loopix [9] sender anonymity unknown ≥ 3 tunable tunable loop messages

Streams (ours) pairwise unlinkability δ ≤ 2−30 32 16 none loop messages

3.2. A Layman’s Protocol With Provable Security

The ideal functionality presented in anonymity trilemma
work [24] provides an important insight: mixnets can
achieve strongest degree of mixing by keeping all the mes-
sages together in every round. Following that insight, let
us first consider a round-based mixnet protocol that routes
all the messages in the system via a common path, which
achieves full node saturation and hence a strong degree
of mixing: every message in a given round, except the
messages that need to be delivered in that round, goes to the
same node. The clients agree on the common path based on a
randomness beacon; 2 for a given round r if the randomness
beacon returns the string {xr, xr+1, . . . , xr+ℓ}, any packet
constructed at round r will be onion encrypted for the path
of nodes {xr, . . . , xr+d, R} for a delay d ≤ ℓ and recipient
R intended by the client. If ℓ is polylogarithmic in the
security parameter η, this protocol achieves provable mixing
guarantees, however, the scalability is limited by the number
of packets a node can process in a round.

3.3. Our Scaling Technique

Setup assumptions. We assume that each pair of nodes
in the system maintain a persistent SSL/TLS session be-
tween them. Additionally, we leverage the Sphinx packet
format [23] that provides end-to-end encryption for all mes-
sages and ensures that a node does not learn the path length
and its own relay position on the path of a packet.

Scaling Technique (Divide and Funnel). We propose to
separate duties such that, instead of one node processing all
the onion packets in a round, many nodes come together to
share the processing load, while the messages can “mix” in
one node. Each round is separated into a compute phase,
where the task of onion decryption to prohibit linking is
distributed over all nodes, and a funnel phase, where a

2. The system could use a round-robin scheduling for funnel nodes;
we choose to use randomness beacons instead so that an attacker cannot
strategically compromise funnel nodes.

randomly chosen node collects and mixes all the messages.3
The compute phase does not have a fixed time span. Imme-
diately after processing, each compute node forwards the
packet to the next funnel node. The funnel node uses the full
time of each round. At the end of the round, the funnel node
forwards the shuffled packets to the respective subsequent
compute nodes based on the next node information in the
Sphinx packet header. Figure 2 illustrates these compute and
funnel phases.

We assume an authenticated and encrypted channel (us-
ing persistent TLS connections) between each pair of nodes.
Therefore, even a global network level adversary cannot see
the content of a packet passed between two nodes unless
one of them is compromised; however the adversary can
observe that a packet is passed between them.

The separation into funnel or compute node is concep-
tual: the same node can act as a funnel node or a compute
node in different rounds. The funnel node in a round is
picked using the value emitted by the randomness beacon.
The client picks the compute nodes {x1, . . . , xd} uniformly
at random (with replacement) from all available nodes for
each hop of an onion packet independent of any other packet
or any other hop of the same packet, and constructs the
onion packet for the path {x1, . . . , xd}. The client decides
the delay d by picking a number from [ ℓ2 , ℓ−1] following a
distribution D. In general D can be any discrete probability
distribution; however, in a typical setting we assume D to
be uniform in [ ℓ2 , ℓ− 1]. 4

Funnel nodes act as mix nodes. All messages meet in the
same funnel nodes as their paths are coordinated by the
randomness beacon: A node acts as a funnel node in a round
if the output of the beacon in that round matches its own id.
The funnel node is a bottleneck of the system in terms of

3. To simplify the explanation, we describe the protocol with one funnel
per round. In Section 5.2, we discuss how the protocol can be extended
for more than one funnel per round, and the corresponding tradeoffs.

4. Such a variable delay is not required to prove the pairwise unlink-
ability property. However, with a fixed delay for all messages, the actual
anonymity set of a message would be limited to the messages sent in the
same round. We avoid that by using such a randomized delay, for the
purpose of designing an end-to-end protocol.
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Figure 2: Divide and funnel routing strategy in Streams: in each round messages fan out in the compute phase to all available
nodes to distribute the computation-heavy task, then they are funneled through a small number of nodes in the funnel phase
to achieve better mixing. When Alice sends an onion packet in round x with onion layers for nodes {5, 1, 2}, the packet
also goes through the funnel nodes {3, 1} respectively, however onion decryption happens only on the compute nodes.

network bandwidth; however, it does not perform any heavy
cryptographic computations, allowing the system to scale up
to the full bandwidth capabilities.
Compute nodes act similar to onion routers [1], [25]: in
every round a compute node peels an onion-layer for each
packet and immediately forwards them to the designated
funnel node. The pseudocode representations of the proto-
cols run by honest clients and nodes are presented in Fig. 3.

If two messages are processed by some honest compute
nodes (not necessarily same) in round r, and then both of
them go through the same honest funnel node in round r+
1, the two messages achieve “mixing” even if the whole
network before and after is compromised. In Figure 4, we
pictorially show the possible cases when two messages can
mix (or not).

Clients in Streams do not need to be synchronized:
clients choose the path of compute nodes for their messages
and then send them to the first such compute node. Clients
need not be aware of the succession of funnel nodes or any
round times.

4. Security Definition And Background

Anonymity properties, such as sender anonymity or re-
lationship anonymity, depend heavily on the behavior of

clients and their choices for the overall message latency:
Even if the protocol in question implements a trusted third
party it cannot hide which clients are sending messages
at which time; moreover, if Alice and Bob send messages
at different times, but the overall latency of each of those
messages is drawn from the same (independent) distribution,
then the recipients of said messages as well as a passive
observer can learn information about the potential sender
simply by analyzing the timing.

To avoid dealing with these client-dependent and distri-
bution dependent aspects of anonymity we here focus on the
degree of mixing provided by AC protocols. We formalize
the question if the adversary could distinguish whether or
not two messages, that spent at least a given amount of
shared time in the protocol, could have been swapped along
the way. This property is close to message swapping prop-
erties from the literature, such as tail indistinguishability by
Kuhn et al. [26] and unlinkability by Kate et al. [27]. We
assume an honest-but-curious global network level attacker
that can eavesdrop on a fraction of the nodes (statically
chosen), and has strong background knowledge about the
behavior of the clients, formally the attacker controls all
but two users.

The Pairwise Unlinkability game GΠ,A,c,t
PU (1η) for pro-



Client Protocol:
SendMessage(msg):

d← DelayDistribution (ℓ/2, ℓ− 1)

p := {x1, . . . , xd}
$←− Id;

Construct onion packet O with path p and content
(R,msg) /∗ R is the intended recipient for msg. ∗/
Send (⊥,O) to x1.

Node Protocol:
Qf , Qc := queues to store incoming messages.
nodeID := the unique ID in [0,K− 1]

IncomingMessage (next hop x, onion packet O):
if x =⊥ then ADD O to Qc

else ADD {x,O} to Qf

end if

NewRound (round number r):
/∗ Compute phase in round r. ∗/
/∗ All nodes act as compute nodes in compute phases.∗/
funnel := Query the randomness beacon
tempQ := Dequeue all the elements from Qc

while tempQ is not empty do
O := dequeue an element from tempQ
{x,O′} := Remove one onion layer from O
if x ∈ R then deliver O′ to x
else Forward the pair {x,O′} to funnel over TLS
end if

if nodeID = funnel then
/∗ funnel phase in round r. ∗/
Wait for all the messages for round r from all nodes
tempQ := Dequeue all elements from Qf and shuffle
while tempQ is not empty do
{x,O} := dequeue the first element from tempQ
Forward (⊥, O) to node x over TLS

Figure 3: Protocol design of Streams with divide-and-funnel
scaling technique, where each round has compute and funnel
phases — in the compute phase the task of onion decryption
to prohibit linking is distributed over all nodes, and in the
funnel phase all the messages are collected and mixed by a
single randomly chosen funnel node.

tocol Π against adversary A can be described as follows:
• The challenger Ch provides the adversary A with the

description of Π (that includes the description of the
sets S, R, and I).

• A statically corrupts all recipients in R, all senders in
S except from a pair u0, u1, and a subset of I denoted
by Icorr, such that |Icorr| ≤ c (i.e., no more than c nodes
are corrupted).

• Ch and A engage in an execution of Π where Ch acts
on behalf of u0, u1 and the honest nodes, while A
controls the corrupted parties and monitors the network
traffic as a global passive adversary.

• At any time t′, A sends a pair of challenge messages
(u0,m0, ts,0, tf,0, R0) and (u1,m1, ts,1, tf,1, R1) to Ch
where u is the sender of the message, m the content,

A

B

C

D

Message from Alice
Message from Bob     

round r

(a) Messages from Alice and
Bob mix with each other in
a round when they both pass
through honest compute nodes
and then an honest funnel node.

A

B

C

D

round r

(b) Messages from Alice and
Bob do not mix in a round if the
funnel node is not honest even
though they pass through honest
compute nodes.

A

B

C

D

round r

(c) Messages from Alice and
Bob do not mix with each other
in a round if none of them
passes through honest compute
nodes in the same round.

A

B

C

D

round r

(d) Messages from Alice and
Bob do not mix with each other
in a round if both of them do
not pass through honest com-
pute nodes in the same round.

Figure 4: Cases where two messages mix (or not).

ts the time the message enters the system, tf the time
the message leaves the system, and R the receiver of
the message, with min (tf,0, tf,1)−max (ts,0, ts,1) ≥ t
and t′ < min (ts,0, ts,1).

• In turn, Ch chooses a random bit b ∈ {0, 1} and
initiates the challenge transmissions according to the
following cases:
– If b = 0, Π transmits the messages

(u0,m0, ts,0, tf,0, R0) and (u1,m1, ts,1, tf,1, R1).
– If b = 1, Π transmits the messages

(u1,m0, ts,1, tf,0, R0) and (u0,m1, ts,0, tf,1, R1).
• A can terminate the game any time by outputting a bit
b∗, as a guess for the challenge bit b.

• The game returns 1 if and only if b∗ = b (i.e., A guesses
correctly), otherwise the game returns 0.

Definition 1 (Pairwise unlinkability). A protocol Π pro-
vides pairwise unlinkability of messages over time t and
c compromise up to probability δ for 0 ≤ δ < 1 if, for all
probabilistic polynomial time (PPT) adversaries A passively
and statically compromising at most c nodes, the following
holds:

Pr
[
GΠ,A,c,t
PU (1η) = 1

]
− Pr

[
GΠ,A,c,t
PU (1η) = 0

]
≤ δ(η).

Informally, we say that the two messages are shuffled from
the adversary’s point of view if a protocol achieves pairwise



unlinkability, which means that the messages are shuffled
almost as good as a trusted-third-party anonymizer could
shuffle them. We say that a protocol achieves strong pairwise
unlinkability if δ is negligible in a security parameter η.
Ideally, we want our protocol to achieve strong pairwise
unlinkability. We discuss below how pairwise unlinkability
relates to sender anonymity and relationship anonymity.

4.1. Pairwise Unlinkability and Anonymity

Pairwise unlinkability is closely related to well-known
anonymity notions like sender anonymity and relationship
anonymity, while avoids the leakage from client behaviour.
We informally explain their relationship below, and refer to
Appendix D for a more formal argument.
Sender anonymity. The common anonymity notion sender
anonymity states that the recipient of a message cannot
distinguish whether the message originated in one sender
over another sender, even for a pair of potential senders
of the adversary’s choice. This closely resembles pairwise
unlinkability with one key difference: sender anonymity
typically talks about a single challenge message, not about
a pair of messages. To bridge the gap between sender ano-
nymity and pairwise unlinkability we can require a degree
of bandwidth overhead, such as ensuring that all senders
communicate regularly or send dummy messages. However,
even if dummy messages are sent, an adversary might still
deduce the challenge sender from timings alone.

If, say, the adversary observes Alice sending a message
in round t and Bob sending a message in round t + 2,
the arrival time of the challenge message together with the
distribution of the latency might tell the adversary who of
them is more likely to have sent the challenge message. In
the simplest example, for a constant latency, the adversary
could immediately exclude one of them from being the
challenge sender. This apparent attack is independent of
how a protocol achieves anonymity and even applies if the
messages are kept in a trusted third party for the same
amount of time. However, if a protocol follows batch pro-
cessing (i.e., all the messages are sent in the same round as
in Karaoke and Atom), pairwise unlinkability immediately
implies sender anonymity.
Relationship anonymity. A similar notion states that if
two senders send one message each to two receivers, a
third party is unable to determine which sender talks to
which receiver significantly better than purely guessing.
Loopix [9] calls this property Sender-Receiver Third-party
Unlinkability. Given that the two messages in question are
sent in the same round and that both senders choose the
latencies from the same distribution, pairwise unlinkability
immediately implies this anonymity property.

5. Formal Protocol Description

We use a hybrid world UC model [28] to present our
scaling technique with our core protocol Streams– where
the protocol has access to some additional ideal (hybrid)

Rounds := {false, . . . , false} // Array length K+ N+ N′

Round := 0; PartiesIncremented := 0
QUEUE = a queue where the incoming messages are stored

QueryRound() from A or FCRF or party i:
return {Round,Rounds}

RequestRound() from party i:
return Rounds[i]

NextRound() from party i:
if Rounds[i] = true then

return “invalid action”
else

Rounds[i]← true; PartiesIncremented += 1
if PartiesIncremented = K+ N+ N′ then

Round += 1; PartiesIncremented← 0
Reset Rounds[j] := false ∀j : 0 ≤ j < K+ N+ N′

Forward all elements of QUEUE to A; empty QUEUE

Upon receiving msg (P, Pnext, O, round) from Streams
if round = Round then

ADD (P, Pnext, O,Round) to QUEUE

Figure 5: Round Functionality Fround

functionalities that is available to the protocol as well as
the adversary. A protocol party (an honest user or node)
or the adversary can access such a functionality through an
incorruptible ITI F that provides certain ideal guarantees,
e.g., clock time, key registration etc. More specifically, our
formalization uses four such functionalities: a round-based
communication functionality Fround, a globally available
randomness beacon FCRF , a key registration functional-
ity FRKR, and a secure channel functionality FSCS . The
environment E can access those ideal functionalities either
through the protocol parties or through the adversary.

Round Functionality Fround. We introduce a hybrid func-
tionality Fround (see Figure 5) to enforce rounds on the
protocol parties. We ensure that the environment E activates
the honest parties in every round. Fround ensure, though,
that the environment E cannot activate a protocol party
multiple times in the same round by keeping track of the
Rounds[i] flag for each party i (including both clients and
nodes). Additionally, it ensures that all the network packets
intended to send for a given round is not send before or after
that round to an honest protocol party. As a consequence,
the environment can stop the entire protocol at anytime.
As then no messages would be delivered anymore, stopping
the entire execution does not leak any information to the
environment.

Randomness Beacon Functionality FCRF . We assume that
each protocol party (including the adversary) has access to
an incorruptible randomness beacon. In particular, future
values of this beacon are not known to the adversary. We
model this beacon with the ideal functionality FCRF (see
Fig. 6) that outputs each time a ℓ-long substring of an infinite



crf = an infinitely long random string.

GetFunnels(ℓ):
rnd, ← QueryRound()
return {crf[rnd] mod K, . . . , crf[rnd+ ℓ− 1] mod K}

Figure 6: Randomness Beacon Functionality FCRF

random string beacon. Using that ℓ-length string a protocol
party can derive the next ℓ funnel nodes.

Secure Channel Functionality FSCS . We also use the
secure communications sessions functionality FSCS from
the work of Gajek et al. [29, Figure 4]. They show that FSCS
abstracts the TLS [30] protocol. It is crucial to note here
that all the protocol parties in our model work in rounds,
and therefore, FSCS as well forwards all the messages to
the Fround functionality instead of the environment; the
Fround functionality in turn forwards those messages to the
environment when the round ends.

Packet format. We use an improved version [31] of the
Sphinx packet design [23] to ensure that all messages are
end-to-end encrypted; we call them “onion packets”. The
Sphinx packet design guarantees that an intermediate node,
just by looking at a packet, does not learn anything other
than the next node on the path — it hides the path length and
the position of the node on the path. The security properties
of the packet design is already incorporated in the onion
routing subprotocol Πsub that we use from the work of Kuhn
et al. [26].

Key registration functionality. Practical realizations of
onion encryption functionality and secure channel func-
tionality in turn assume the availability of a public key
infrastructure (PKI) to all the users and nodes — which is no
different from any other mixnet-based design. We consider
the key registration functionality FRKR that realizes such
PKI setups, and handles all cryptographic operations. FRKR
is solely used by the subprotocols Πsub and FSCS , which
are treated in a black-box manner throughout this section.
For completeness, we provide a description of Πsub, FSCS
and FRKR in Appendix E.

5.1. The Core Protocol

Our protocol has two kinds of parties — clients and
nodes. So we define our protocol in two parts as well —
clients and nodes. Additionally, the protocol parties as well
as the adversary have access to the hybrid functionalities as
described above.

Each round is then separated into a compute phase,
where the task of onion decryption to prohibit linking is
distributed over all nodes, and a funnel phase, where a
randomly chosen node collects and mixes all the messages.
In UC-realization of our protocol, we split those two phases
into two separate rounds, to avoid having two sequential
communications within a single round. Therefore, one single

QUEUE = a FIFO queue.

SendMessage(msg, R) from party i

r ← QueryRound()
if round ̸= r then

reject packet and exit
ADD (msg, R) to QUEUE

Upon new round from E:
boolean flag := RequestRound() //defined in Fround

if flag ̸= true then
return “invalid action”

if round mod 2 = 0 // compute round then
while QUEUE is not empty do

m := (msg,R)← dequeue QUEUE;
d← DelayDistribution

(
ℓ
2
, ℓ− 1

)
p := {x1, . . . , xd}

$←− Id;
call Process new onion(self,m, d, p) from ΠT

NextRound()

Upon receiving a message m from Πsub:
Output “Message m received” to E

Figure 7: Client Protocol Design Πclient as described in
Section 5.1.

ΠT :Process new onion(self,msg, d+ 1, p)

Call Process new onion(self,msg, d+ 1, p) from
Πsub.
Intercept the network packet packet and send it to Πrer .

ΠT : Forward Onion(O)

Call Forward Onion(O) in the subprotocol Πsub.
Intercept the network packet packet and send it to Πrer .

Πrer: Upon a packet packet

, funnel← GetFunnels(2) // Select next funnel node
Send packet over FSCS to funnel.

Figure 8: ΠT and Πrer for the core Streams protocol (with
single funnel every round).

round of our original protocol maps to two rounds in the UC-
version. In the compute round, each compute node processes
the packets with them and forwards them to the designated
funnel node, then in the funnel round, the funnel node
shuffles all the messages received in the last round, and
forwards them to the respective subsequent compute nodes.

The funnel nodes are picked using the string emitted
by the randomness beacon FCRF . Each client picks the
compute nodes uniformly at random (with replacement)
from all available nodes for each hop of an onion packet
independent of any other packet or any other hop of the same
packet. All the packets in every even round go to the next
designated funnel node. Then in the next (odd) round, the
funnel node shuffles all the received packets and forwards
them (without any cryptographic operation) to the compute



INPUT QUEUE = queue to store incoming messages
OUTPUT QUEUE = queue to store outgoing messages
nodeID := a unique ID in [0,K− 1]

Upon input message (onion packet O):

ADD O to INPUT QUEUE

Upon new round from E:
boolean flag := RequestRound() //defined in Fround

if flag ̸= true then
return “invalid action”

funnels := GetFunnels(1)
if round mod 2 = 1 AND nodeID ∈ funnels then

Πfunnel
else if round mod 2 = 0 then

Πworker
swap INPUT QUEUE and OUTPUT QUEUE.
NextRound()

Πfunnel:
Shuffle OUTPUT QUEUE
while OUTPUT QUEUE is not empty do

O ← dequeue first element from OUTPUT QUEUE
Forward O to FSCS

Πworker:
while OUTPUT QUEUE is not empty do

O ← dequeue first element from OUTPUT QUEUE
call ΠT : Forward Onion(O)

Figure 9: Node Protocol Design as described in Section 5.1.
The design remains the same with multiple funnels per
round (as described in Section 5.2), except the set funnels
contains multiple elements. The corresponding statements
are colored with teal.

nodes based on the next node information in the Sphinx
packet header. Then, again in the even round, the compute
node removes one layer of the onion packet, and forwards
the packet immediately to the next designated funnel node.

The packets are onion encrypted only for the compute
nodes, not for the funnel nodes. Additionally, we assume
authenticated and encrypted channel between each pair of
nodes which is realized by the FSCS functionality. The
pseudocode representations of the protocols run by each
honest client and each honest node are presented in Fig. 7
and Fig. 9 respectively.

We aim for anonymous broadcast to the network. There-
fore, in our protocol Streams, messages from our last node
are sent to the environment instead of delivering them to an
explicit receiver. The delivery of messages occurs through
the environment which controls the network functionality.

5.2. Multiple Funnel Nodes Per Round: Perfor-
mance vs. Resiliency Tradeoff

Having a single funnel in Streams inherently creates
single points of failure: if a malicious node is chosen as

ρ := number of funnels per round.

GetFunnels(ℓ):
round,← QueryRound()
return

(
{crf[round ·ρ] mod K, . . . , crf[round ·ρ+ρ− 1]

mod K}, . . . , {crf[(round+ ℓ− 1)ρ] mod K, . . . ,
crf[(round+ ℓ− 1)ρ+ ρ− 1] mod K}

)
Πrer: Upon a packet packet

, funnels← GetFunnels(2)
nextFunnel = H(packet, funnels) mod ρ // H is a
cryptographic hash function
Send packet over FSCS to funnels[nextFunnel].

Figure 10: Modifications for Streams with multiple funnel
nodes per round.

funnel it can perform denial-of-service (DoS) attacks by
dropping packets. Arguably this is not a new concern for
anonymous communication protocols — corrupted mixn-
odes in existing mixnet designs can drop all packets passing
through them, and those protocols use additional integrity
measure to defend agianst them. However, funneling every
packet through the same node gives this node the power
to disrupt the entire stream of packets and makes the
node a prime target for external DoS attackers. Our scaling
methodology can be extended to several funnel nodes at a
time, which presents a trade-off between performance and
robustness against such DoS attacks. We additionally refer
to Appendix B for the heuristic mechanisms that would
allow detecting and defending against such active attacks;
and would deter a funnel from launching such a disruption.

Instead of a single funnel node per round, the packets
are distributed among ρ funnel nodes, each of which is still
chosen based on the randomness beacon. We suggest that ρ
remains a small number (between 2 and 5) chosen based on
the desired level of robustness. Compute nodes can distribute
packets among the h funnel nodes based on a deterministic
function applied to the packet digest and the randomness
beacon, e.g., a hash function with the (encrypted) packet
content and the beacon’s current randomness as inputs.

The pseudocode representation of the client (c.f. Fig. 7)
and the node (c.f. Fig. 9) remains mostly same as the
core protocol (with single funnel) with minor modifications
which we present in Fig. 10.

6. Security Analysis

Here we analyze the security of the core protocol against
a global passive adversary that can passively compromise
(the compromised parties still follow the protocol) a portion
of the nodes. We use existing techniques from the literature
to provide integrity measures against active adversaries and
discuss them in Appendix B.



6.1. Key Proof Ideas

The key idea is that two messages get shuffled if they
go through an honest funnel node right after going through
honest compute nodes (c.f. Figure 4). It is not necessary that
they pass through the same honest compute node, however,
they need to pass through some honest compute nodes in
the same round just before passing through an honest funnel
node. If the messages stay in the system long enough (L is
sufficiently high), with high probability such a sequence will
occur at least once.
Single Funnel Per Round. Let a be the probability of
a randomly picked node being honest; a = K−c

K . Since
both the funnel node and each compute node are picked
uniformly at random (with replacement, and independent
of all other nodes), the probability that the funnel node
or compute node chosen in any round is compromised is
c
K = (1 − a), and the probability that it is honest is a.
Therefore, the probability that the two messages mix in for
a given pair of compute nodes in round r and funnel node
in round (r + 1) is a3, and the probability that they don’t
mix in this pair of rounds is (1−a3). If two messages both
stay in the system for L rounds, the probability that they
don’t mix is at most δ <

(
1− a3

)L
.

Multiple Funnels Per Round. When there are ρ funnel
nodes per round, we need to consider the probability that the
two messages might not go through the same funnel node
in a round. For any given round, the probability that the
pair of messages meet in the same funnel node is 1

ρ . Given
that they have met on a funnel node in a given round, the
probability of that specific funnel node being compromised
is still c

K = (1−a); and the probability that it is honest is a.
Overall, the probability that the two packets mix in a given
round is bounded by Y = 1

ρ × a3. The probability that they
do not mix is at most δ ≤ (1− a3

ρ )
L.

6.2. Proof Roadmap

For proving security, we first prove that an intermediary
representation, a UC ideal functionality FStreams (defined in
Figure 11), of Streams that does not rely on cryptographic
operations but on shared memory. This ideal functionality
FStreams is carefully crafted such that all attacks on Streams
can be mounted on FStreams as well, against a wide range
of attacker capabilities. In a second step, we prove pairwise
unlinkability for the faithfully abstracted ideal functionality,
which in turn implies pairwise unlinkability for Streams.
Here we present the main security theorems and their im-
plications, and refer an interested reader to Appendix C for
the detailed proofs.

We can say that, at the expense of latency, our ideal func-
tionality provides pairwise unlinkability — if two messages
stay together in FStreams for a sufficiently long time (poly-
logarithmic in the security parameter), they get shuffled.

Theorem 1 (Pairwise unlinkability of FStreams). Given a
constant integer ρ, if the amount of compromised nodes

inputBuffer [] array of queues to store messages for nodes
crf = an infinitely long random string
queue = a hashmap
round := 0; newRound[] := {false,false, . . . };
partyCount := 0

Upon new round from E for party P :
if newRound(P ) = true then

return “invalid action”
set newRound(P ) := true ; partyCount+ = 1
if round is odd (funnel round) AND P is a client then

(m, t)← dequeue inputBuffer [P ]

d← DelayDistribution( ℓ
2
, ℓ− 1); {x1, . . . , xd}

$←− Id

if !∃x ∈ {x1, . . . , xd} such that x ∈ Ih then
Send (m,x1, . . . , xd) to S

else
let xa := the first honest party on the path
{P, x1, . . . , xd}
Generate a random message q
Send (q, x1, . . . , xa) to S
store (q, xa,m, xa+1, . . . , xd) in queue(round+ a)

if round is even (compute round) AND
partyCount = N+ K then

SendInformation()
NextRound(P )

Upon input message (m, t) from E for party P :
if round ̸= t then

reject packet and exit
Add (m, t) in inputBuffer [P ]

Upon receiving a message m for party P :
Output m to E

Figure 11: Ideal functionality FStreams

SendInformation()

, funnels← GetFunnels(2)
y = H(packet, funnels) mod ρ
for each (q, xa,m, xa+1, . . . , xd) ∈ queue(round) do

Remove (q, xa,m, xa+1, . . . , xd) from queue(round)
link := (q, y)
if y ∈ Ih then

link := (⊥, y)
xϕ := next honest node on the path {xa+1, . . . , xd}
if there is no such xϕ then

Add (link,m, xa+1, . . . , xd) in a temporary queue Q
else

generate a random message q′

Add (link, q′, xa+1, . . . , xϕ) in Q
Add (q′, xϕ,m, xϕ+1, . . . , xd) to queue(round+ϕ−
a)

Shuffle the elements of Q and send them to S

Figure 12: Leakage from the ideal functionality FStreams



is a constant fraction c
K < 1, FStreams provides pairwise

unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ < γL/2 with γ = 1−
(
K−c
K

)3
ρ

.

an ideal functionality F is realized by a protocol Π if all
attacks (within the execution model) that can be mounted
on Π can be translated to attacks on Π, for a wide range
of attacker capabilities. An ideal functionality, like FStreams,
can abstract away from cryptographic details while faith-
fully modeling all weaknesses of the protocol. Our protocol
Streams UC-realizes the ideal functionality FStreams.

Theorem 2. For any subprotocol Πsub in the FRKR-
hybrid model that UC realizes Fsub, the anonymity protocol
Streams from Section 5.2 using the subprotocol Πsub in
the FCRF , FRKR, FSCS , Fround-hybrid model UC-realizes
FStreams in the Fround-hybrid model.

From the work by Kuhn et al. [26] we know that the
Sphinx version [31] we use in our protocol UC realizes
Fsub under a PKI setup (realized by the hybrid functionality
FRKR), and we can state the following lemma.

Lemma 1. Sphinx packet format from [31] UC realizes Fsub
in the FRKR hybrid model.

As a corollary to Theorem 2, Theorem 1, and Lemma 1
we can state the following for our protocol Streams.

Theorem 3 (Security of Streams). In the FRKR-hybrid
model, given a constant integer ρ and a constant fraction
c
K < 1, Streams provides pairwise unlinkability of messages
over L rounds up to probability δ as in Definition 1, where

δ < γL/2 and γ = 1−
(
K−c
K

)3
ρ

.

As a corollary to the above theorem, we can state the
following about the core protocol from Section 5.1 for ρ = 1
(single funnel per round).

Theorem 4 (Security of Streams core). In the FRKR-hybrid
model, given a constant fraction c

K < 1, Streams from
Section 5.1 provides pairwise unlinkability of messages over
L rounds up to probability δ as in Definition 1, where
δ < γL/2 where γ = 1−

(
K−c
K

)3
.

In Theorems 3 and 4, for all L ∈ ω(log η) for a security
parameter η the δ is negligible, and all pair of messages
that stays together in the protocol for at least L rounds,
get shuffled with overwhelming probability. Recall that L
rounds of the protocol in the UC-framework translates to
L = L/2 rounds (considering the compute phase and the
funnel phase as a single round) in the original protocol.

6.3. Analysis

Here we first analyze Theorem 4 to evaluate the simple
case of introducing single funnel node per round, and then
we evaluate the impact of introducing multiple funnel by
analyzing Theorem 3.

In Theorem 4, γ = 1 − (K−c
K )3 is conceptually the

proportion of compute node and funnel node pairs in a round
where the two messages cannot mix. Figure 13a plots the
relationship between γ and the fraction c

K of compromised
parties. If we want to have the same level of concrete
security as without compute and funnel nodes, we need to
increase latency, or with similar latency the protocol can
only be resilient against lesser fraction of compromised
nodes. However, one advantage of this construction is that
the cost or overhead does not increase linearly with the
number of clients, or more importantly, does not even de-
pend on the number of clients. In Fig. 13b, we compare
the latency overhead needed for our protocol (with compute
and funnel separation) to achieve a given level of security
with the scenario where the compute and funnel separation
is not required (refer to Theorem 8 for security of our
layman’s protocol). For c

K ≤ 0.2 the number of rounds
only doubles with the separation of duties to achieve the
same level of security. Even though the compute and funnel
method provides scalability at the cost of security, δ still de-
creases exponentially with latency. We show the relationship
between them in Fig. 13c.
Impact of Multiple Funnels. We plot the trade-off between
performance and the choice of ρ (up to ρ = 4) in Fig. 14,
with a security goal of δ < 2−30 and the system handles
one million packets per round. As we show in Fig. 14,
the latency needs to increase with the number of funnel
nodes per round, to process the same total number of mes-
sages (1 million) and to achieve the same level of security
(δ ≤ 2−30). Note that the funnel nodes are only restricted
by bandwidth availability, but not processing power in our
system: it takes less than 120 milliseconds to process one
million messages by a single funnel node, c.f. Figure 15c.
Therefore, we can decrease the duration of each round
with the number of funnel nodes ρ (to process one million
messages per round) For example: for ρ = 4, the average
processing time for each funnel is around 30 milliseconds;
an overall round duration of 250 milliseconds still leaves
more than 200 milliseconds for communication delay and
loose synchronization.

7. Resiliency Improvements

7.1. Resiliency for Loose Synchronization

So far we assumed that all protocol parties are per-
fectly synchronized (c.f. Section 5). As maintaining such
a synchronization continuously can be challenging, we here
discuss relaxing that assumption by allowing each protocol
party to follow their own local clock.

We assume that the maximum difference between the
local clocks of any two nodes is bounded by µ milliseconds.
The clients do not need to keep track of rounds and can
send messages to the system whenever they want. A client
sends an onion packet to the first compute node on the onion
path. The compute node, based on its local clock, decides
which funnel node to forward the packets to. As long as
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Figure 13: Effective security after introducing compute and funnel phases
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Figure 14: Performance vs. Resiliency against single point of failure (ρ = #funnels per round) for Streams. Note that the
round size decreases with ρ for the same number of messages in the system, since the funnels are only restricted by available
bandwidth, not by their processing power.

µ is lower than a few hundred milliseconds, we can add µ
to duration of our rounds to handle the synchronization gap
among the nodes. We can still have a reference global clock
which the nodes can synchronize their local clocks with
from time-to-time. We only need equivocation protection
from that global clock — Streams does not depend on that
clock for anonymity.

However, suppose some nodes (at most 10% for exam-
ple) differ by more than few hundred milliseconds from
the reference global clock. Such compute nodes can send
packets to wrong funnel nodes. If a node receives an onion
packet that it is not supposed to receive, the node just
forwards the packet to the correct compute node (according
to the onion packet header) at the end of the round. Thus, the
protocol still functions properly, although the latency needs
to be increased based on the amount of such unsynchronized
(and compromised) nodes to guarantee the same degree of
mixing. With this modified approach, a node does not have
to derive in which round to act as a funnel node. For all the
onion packets (according to the onion headers) if it is the
intended compute node, it acts as a compute node; for all
the rest of the packets it acts as a funnel node and forwards

them to the next corresponding compute nodes at the end
of the round.

Note that the messages that are transmitted by out-of-
sync nodes in a round might not mix with other messages.
However, it does not impact the mixing of the rest of the
messages. In the FRKR-hybrid model, we can model the
out-of-sync nodes as compromised parties. If there are at
most ψ out-of-sync nodes, and c additional compromised
nodes, as a corollary to Theorem 3 we can state:

Theorem 5. In the FRKR-hybrid model, given a constant
integer ρ, a constant fraction c

K , and another constant
fraction ψ

K such that c
K + ψ

K < 1 Streams provides pairwise
unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ < γL/2 and γ = 1−

(
K−c−ψ

K

)3

ρ
.

For simplicity, the above theorem overapproximates the
states for synchronization: either the nodes and in-sync, or
they are out-of-sync. A thorough security proof with variable
network delays and variable level of synchronization is left
for future work.

Note that other protocol with round based communica-



tion models [4], [10], [12], [13], [15], [16], [18] also face
similar synchronization challenges. However, because of our
loose synchronization, Streams is slightly more resilient to
such challenges compared to other protocols.

7.2. DoS Attacks Against Funnel Nodes

Although our formal security analysis does not consider
DoS attacks by external parties, our design of having few
funnel nodes per round introduces such possibilities. If a
powerful adversary is able to redirect the DoS attack to the
next funnel node within a span of one round, and can keep
doing that, the adversary will be able to block the system.

To defend against such attacks, we utilize the fact that
each pair of nodes have a persistent TLS connection between
them. If a funnel node is under attack, when the compute
nodes send packets to the funnel they will not receive any
TCP/IP acknowledgments for the dropped packets. In our
defense strategy, whenever the compute nodes detect such
an attack against the funnel nodes, the compute nodes will
shuffle the packets they locally have and directly forward
them to the next compute nodes at the end of the round.
This will compromise anonymity but provide availability for
the system when the funnel nodes are under attack.

If we assume that the adversary has a limited capacity to
perform DoS attacks on the funnel nodes, we can consider
that only up to ι funnel nodes will be under attack; and
the compute nodes will forward to the next compute nodes
the messages that are supposed to go to those funnel nodes.
Those messages will not have a chance to mix with other
messages. If a strong adversary can attack all funnel nodes
in succession, Streams will effectively be the same Karaoke,
but without the noise messages.

Even though, any protocol can be susceptible to external
DoS attacks, this attack against funnel nodes is amplified
in Streams compared to other protocol when an adaptive
adversary can quickly redirect their attack to new nodes in
every round, because of the small number of funnel nodes.
However, if the adversary cannot adapt quickly to redirect
the attack, the use of randomness beacons alleviates this
problem, since the funnels nodes for the next round are not
predictable in the current round. Against a static adversary
or slowly adaptive adversary, the funnel nodes in Streams
are as vulnerable as the compute nodes.

8. Implementation and Evaluation

8.1. Implementation Details

We evaluate our scaling technique by individually evalu-
ating the performance of compute and funnel nodes and then
evaluating Streams, using a proof-of-concept implementa-
tion in Go language (v1.15).5 The implementation uses the
standard crypto library in Go, and elliptic curve P25519
from NaCl library to implement cryptographic and sphinx

5. The source code is available at: https://github.com/dedas111/protocolX

packet operations. We take all measurements by repeating
an experiment 10 times and taking an average of those. We
make the following system considerations.
Synchronization. For the prototype implementation we con-
sider a global clock that every protocol party (clients and
nodes) follows. For real deployments, the global clock can
be replaced with local clocks in combination with the idea
of loose synchronization technique described in Section 7.1.
About Rounds. In our implementation we choose one
second as the duration for each round. This decision is
influenced by our scalability goal of processing one mil-
lion messages every round. We show in Section 8.3 that
the round duration determines how many messages can be
processed in a round.
Random Shuffle. We implement the Fisher–Yates shuf-
fle [32] to achieve in-memory shuffle of n elements with
Θ(n) computational complexity. This algorithm requires a
continual source of randomness — each funnel node uses a
locally stored random number table for that purpose.

8.2. Processing Capacity of Compute Nodes

We first evaluate how many onion packets can be pro-
cessed by a single compute node in a given amount of time,
which also reflects how a naive protocol can scale without
the divide and funnel technique. To that end, we run a
standalone compute node on an AWS t3.2xlarge instance (8
virtual processors), and measure the time spent to process
different number of onion packets. Each sphinx packet is
constructed with 512 bytes of plaintext and 16 layers of
onion encryption. In Figure 15a, we plot a graph between
number of onion packets given to a compute node vs. time
taken to process those packets. This demonstrates that a
compute node (or nodes in a protocol without funnel com-
pute separation) cannot process more than 30000 packets in
one second.

8.3. Processing Capacity of Funnel Nodes

We evaluate how our funnel nodes can scale for different
numbers (200K, 400K, . . . , 1M) of onion packets in the
system even with slow compute nodes. As the number of
compute nodes is expandable, funnel nodes dictate the round
duration. We measure for funnels how much time is taken
by the TLS layer to process different number of packets and
how much time is taken to run the shuffle algorithm.
Experimental Setup. To evaluate the perfor-
mance/scalability of funnel node, we run a standalone
funnel node on an AWS t3.2xlarge instance (8 virtual
processors), and send varying number of onion packets
to that node to measure the time taken for the following
two operations: (i) computation time on the TLS layers
to process different number of packets; (ii) run the
Fisher–Yates shuffle for those packets. Each sphinx packet
is constructed with 512 bytes of plaintext and 16 layers of
onion encryption, however we do not decrypt any packets
during this experiment since we run a standalone funnel.

https://github.com/dedas111/protocolX
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(a) number of packets (Tin) sent to a com-
pute node per round (x-axis) vs. time taken
in milliseconds (y-axis) for the compute
node to process those packets.
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(b) Number of packets (Tin) sent to a funnel
node (x-axis) vs. the time in milliseconds
(y-axis) to run Fisher Yates shuffle for the
given number of packets.
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(c) number of packets (Tin) sent to a fun-
nel node via TLS connections (x-axis) vs.
the time in milliseconds (y-axis) to process
those packets (by the TLS layer).
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(d) number of packets (Tin) sent to a funnel
node per round vs. the resources consumed
in terms of the maximum memory usage and
the amount of data received.
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(e) number of packets (Tin) sent to a funnel
node via TLS connections (x-axis) vs. the
time in milliseconds (y-axis) to receive them
through network connection.
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(f) end-to-end latency plotting number of
packets (Tin) sent to the protocol (x-axis)
vs. the time in milliseconds (y-axis) to de-
liver the slowest packet for a limit of ℓ hops.

Figure 15: Scalability of Streams and performance of subcomponents

Results. We plot our findings in Figure 15b and Fig. 15c.
All the measurements are average of 10 runs approximated
to the nearest integer. Since we achieve in-memory shuffle
using Fisher–Yates algorithm, the observed shuffle time is
only around 10 ms even for a million packets (cf. Fig. 15b),
even though shuffle algorithm runs in a single thread.

The TLS layer processing of 1M packets takes around
112 milliseconds (compared to 1 second round duration,
cf. Fig. 15b). The overhead mainly involves AES encryp-
tion/decryption for TLS. These experiments show that the
funnel is not restricted by computation.
Memory and Network Overhead. We also measure the
memory usage of the process and the throughput require-
ments (amount of data received by the funnel node over
the network) for varying number of packets — we plot
them in Fig. 15d. We observe that for 1M packets the
memory utilization by the server process remains below
3GB; however, the network throughput requirement can
become a bottleneck (receives a total of 2.1GB in messages).
If we choose round duration to be 1 second, to handle 1M
packets the responsible funnel node requires a burst network
capacity of around 17 Gbps.

We additionally demonstrate the practicality of our sys-
tem by running the following experiment: We run a funnel
node on an AWS EC2 c5.18xlarge instance that supports
25 Gbps [33]. We use such a powerful instance only to
fulfil the network requirements, we have already shown that
funnels are not restricted by computation overhead. Now
we send varying number of sphinx packets from another

AWS instance such that the next hop is also the sender
machine. Then we measure the round-trip time for those
packets. If the round-trip-times for all packets are between
1 second to 2 seconds, that means all the packets were
received and processed by the funnel within a single round.
We plot our results in Fig. 15e, which shows that 1 second
round duration is adequate for even 1M total messages in
the system — which is more than 30x higher than what a
compute node can process.

Many service providers [34], [35] support up to 40 Gbps
network speed. Streams nodes do not continuously need a
high network capacity, a high burst capacity and a moderate
average capacity suffices. If the system needs to support
more than 1M messages per round, the servers can set up
Multipath-TCP [36], [37] to fulfill the GBps requirement.

8.4. Scalability for Streams

To demonstrate that Streams can scale to 1M messages,
we deploy our prototype of the core protocol of Streams
(single funnel) using AWS instances distributed over us-east
and eu-central regions, we choose EC2 c5.18xlarge instances
to satisfy the bandwidth requirement. Then we send varying
number of messages in batches and measure how much time
it takes for the whole batch to be delivered to the recipients.
We simulate sender and recipient by a single AWS EC2
c5.18xlarge instance. In the same batch, we choose same
latency (rounds) for every message in the batch for each of
execution. We choose the round duration to be 1 second.



If the delay (from the time the first message is sent by
the sender to the time the last message is received by the
recipient) for a batch is chosen to be X rounds, we expect all
the messages to be delivered within X+1 seconds6, otherwise
the funnel nodes are not able to process all the messages
within the given round duration.7

Results. In Fig. 15f we plot the end-to-end latency of
batches of different sizes for chosen delays (number of
rounds), the measurements are average of 10 individual
instances. In the figure we observe that, when the delay
is chosen to be 8 rounds (for example), even for a total
number of messages of around 1.1M in a batch, the the
total delay does not exceed 9 seconds. It shows that our
scaling technique and our protocol can easily scale for 1M
messages.
End-to-end Latency. From Fig. 13b we know the number
of rounds required for Streams to achieve δ ≤ 2−30 is 16
— that makes the end-to-end latency 16 seconds for the
round duration of 1 second (to scale for 1M messages).
Atom is closely related to Streams in terms of security guar-
antees provided and its scalability. However, Atom requires
around 28 minutes for their recommended parameters. On
the other hand, Atom provides stronger security guarantees
(δ < 2−64) than Streams. We estimate the end-to-end latency
of Atom (in their trap message scenario with no churn) from
their measurements [10], for δ ≤ 2−30 and c

K = 10%; the
estimated end-to-end latency is around 630 seconds — still
an order of magnitude higher than that of Streams. The setup
requirements of Atom are slightly different from Streams:
Atom requires computationally powerful nodes for a large
number of computation-heavy cryptographic operations, but
can tolerate some nodes with low bandwidth availability.
The computation becomes the bottleneck for Atom with
larger messages (they use 160 byte messages in their eval-
uation), whereas our funnel nodes are mainly restricted by
bandwidth requirement.

9. Application Considerations

Other protocols can make use of our scaling technique
of splitting the mixing and computing responsibilities to im-
prove their scalability/privacy properties.Below we describe
how our scaling technique can be used to improve some
example protocols other than Streams:
Loopix [9]. Loopix employs multiple paths to scale for
many users, which in turn reduces the chance of two
messages mixing with each other. Instead Loopix can split
the responsibilities in the following way: the randomized
delay and mixing of messages happens at a funnel node,
while the onion decryption happens at a compute node.
This separation of duties would not introduce fixed-length
rounds to Loopix, thus allowing Loopix to keep the desired

6. The total end-to-end latency includes some delay for the packet to be
delivered from the last node to the client.

7. In our experiments we send messages in a batch and wait for the batch
to complete to easily account for the messages, the design of Streams does
not require that.

asynchronous model. To keep a comparable level of security
as well as the overall structure of the protocol, the paths cho-
sen by clients now include both funnel nodes and compute
nodes. In exchange, the separation of duties could drastically
reduce the requirement to expand the number parallel paths
for Loopix, and hence, could guarantee better mixing.
Karaoke [4]. Since Karaoke already works in rounds, it
is easier to adopt our scaling technique. Depending on the
number of messages that have to be processed per round,
the nodes would choose one or more funnel nodes after
the compute phase (e.g., one funnel node per million of
messages). If the number of users in the system exceeds
several million, the messages can be randomly distributed
among a few funnel nodes, e.g., by using a hash function
with the message and the random number from the ran-
domness beacon as input. In that case, each honest funnel
node will achieve shuffling for the subset of messages it
receives. As this subset would be randomly chosen, over log-
many rounds pairwise shuffling will occur. As a result, this
separation of duties increases the chance of mixing, and it
reduces the number of parallel paths. Reducing the number
of in parallel paths in turn further improves the required
number of round until messages mix, i.e., until mixing can
be proven. Additionally, our scaling method will reduce the
required number of messages drastically to achieve the same
level of link saturation — the noise requirement will reduce
from Θ(|servers|2) to Θ(|funnels|2).
Vuvuzela [12]. Vuvuzela employs a single chain of nodes
and can directly enjoy the benefits of efficient scaling using
our technique. The extension is very similar to how Streams
employs the scaling technique in this paper: each Vuvuzela
node is replaced with a funnel node and many compute
nodes. By employing many compute nodes, Vuvuzela can
significantly reduce the time required to process packets
in a round, and thus reduce the end-to-end latency by a
significant factor, or scale for more number of users with
similar end-to-end latency.

9.1. Application Scenarios of Streams

Our performance analysis clearly demonstrates that
Streams can scale well with a large number of users. Beyond
the traditional mixnet applications such as anonymous e-
mailing, we find Streams useful for applications such as
network-level anonymity for publishing blockchain transac-
tions [38], and anonymous microblogging.

10. Conclusion

In this paper we introduced a scaling technique for AC
protocols that horizontally scale (public-key) cryptographic
computations while still allowing messages to meet and mix.
Our experiments demonstrate that the funnel node is 30x
more efficient than a compute node, which clearly demon-
strate usefulness of the proposed divide-and-funnel strategy
across applications. We demonstrated the applicability of
the technique with the protocol Streams by scaling it for



a million messages while keeping the end-to-end latency
as low as 16 seconds, and guaranteeing good pairwise
unlinkability of messages with 10% compromised nodes in
the system. An added advantage over other round-based
protocols like Karaoke, XRD, or Atom is that Streams
(and our scaling technique in general) does not require the
users to be synchronized with rounds. Our scaling technique
can be leveraged by other protocol designers (demonstrated
through the examples of Loopix, Vuvuzela, and Karaoke) to
improve scalability and mixing guarantees through network
link saturation.
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Appendix A.
Additional Details

A.1. Incompleteness in the Security Analysis of
Karaoke

Against passive attackers, Karaoke claims statistical in-
distinguishability (i.e., negligible δ for ε = 0). 8 Unfor-
tunately, the proof outline of Karaoke is inaccurate. The
proof outline identifies bad events and bounds the prob-
ability of these events to happen (e.g., with probability
of at most 10−14). Then it claims that the views of the
adversary conditioned on this bad event not happening are
indistinguishable. We found a counterexample that satisfies
the condition of those bad events not happening but shows
two such conditional views are not identically distributed.
Therefore, it is not clear how indistinguishability can hold
for Karaoke.

More specifically, we found that the argument of Theo-
rem 3 in their paper [4] is inaccurate; we can observe that
from the following counterexample:

Alice

A

Bob

B

C D

A

B

C
D

Figure 16: Alice sends message A which meets with noise
messages C and D at layer 1, and then diverge from them
to the yellow path. Message B meets with noise messages
C and D at layer 2, and diverge from them at layer 5.

Counter-example. Consider a scenario (depicted in Fig. 16)
where Alice and Bob send messages A and B respectively.
Here, C and D are noise messages. One run in which this
observation can occur is if Alice sent A and her message
went on the yellow path before meeting C and D again
at layer 5, while Bob sent B and his message went on

8. Against active adversaries, Karaoke claims to still provide differential
privacy guarantees.
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the purple path. As per theorem 3 in the security analysis
(Section 5) of Karaoke: no bad event occurred, so the proof
sketch of Karaoke would indicate that the adversary cannot
make an educated guess as to whether Alice or Bob might
be the sender of A.9

This observation, however, can also occur for different
choices of paths for Alice’s, Bob’s, and the noise messages
C and D. If we compute the probability for this observation
to occur if Alice sends A and Bob sends B and compute
the probability of this observation to occur if Alice sends
B and Bob sends A, we can see that these probabilities are
not equal and not indistinguishable.

Consider that Alice and Bob, as well as the senders of
noise messages C and D will choose either the upper or
the lower node in each layer with probability 1/2 indepen-
dent of all other choices they and others make. However,
conditioned on the adversary’s observation of the traffic
pattern, Alice’s message could have taken the yellow path
with probability 1

3 , and C or D could have taken the yellow
path with probability 2

3 . Given that Alice’s message has
taken the yellow path, the probability that Alice sends A
is 1. If we consider the case that C or D has taken the
yellow path: given that C or D has taken that path, the
probability that Alice sends A is 1

2 , and the probability
that Bob sends A is also 1

2 . Overall, conditioned on the
observation of the adversary of the specific traffic pattern,
the probability that Alice sends A is

(
1
3 × 1 + 2

3 × 1
2

)
= 2

3 ;
whereas, the probability that Bob sends A is 1

3 .
From the adversary’s point of view (after observing the

traffic), this observation is more likely if Alice sent A and
Bob B, so an adversary guessing that would have a non-
negligible advantage in case this observation occurs. There
are many similar cases where an exploitable bias exists and
a proof following Karaoke’s approach would need to take
them all into consideration. The proof of Theorem 3 in
the Karaoke paper does not consider this effect from the
observation of the traffic. Therefore, their security analysis
against global passive adversaries is inaccurate.

A.2. Differential Privacy Unsuited for AC Protocols

Differential Privacy quickly deteriorates in multi-
challenge scenarios (also called group privacy), which char-
acterizes that a single person’s communication behavior
influences more than a single message, as can happen if
a person simultaneously uses more than one connection. If
a user influences k messages and the protocols satisfies ϵ-
DP, the group privacy theorem tells us that for this user
kϵ-DP holds. For a typical epsilon value of 1, a user that
influences only 20 messages at once would only achieve
20-DP (ϵ = 20), which results in very weak anonymity
guarantees.

Additionally, Approximate Differential Privacy also
quantifies the probability δ for the ϵ guarantees to break.

9. In our example in Figure 16, the noise messages do not originate
in Layer 1, while in Karaoke the routers produce such noise messages.
The same counterexample would hold, if the top router would generate the
noise messages C and D.

Karaoke and Stadium use Approximate Differential Privacy,
which is particularly unsuited for massively deployed anony-
mous communication as it allows for a failure probability δ
that is typically around 10−5. If the guarantees can fail with
probability 10−5 and the protocol is used by 106 users, the
probability that the guarantees fail for at least one person
could be up to 1− (1−10−5)10

6

= 0.9999546023 ∼ 100%.

Appendix B.
Defense Against Active Attackers

Resiliency of anonymous communication against active
attacks is well studied in the literature [39], [40]. We lever-
age existing techniques to protect packet integrity and to
prevent a total loss of anonymity due to packet dropping for
Streams. Concretely, we use the same strategy as Loopix [9]
to defend against active attacks. Our protocol already makes
use of the Sphinx [23] packet format, which comes with
confidentiality (including padding) and message integrity,
and allows for defense against replay attacks and tagging
attacks (see below). Additionally, following Loopix, we
incorporate messages (called loop messages) that users send
to themselves to detect and combat packet drops by an active
adversary. We consider the following relevant attacks:
(n-1) Attacks [41]. In such attacks, the adversary blocks all
but one target message to a node in order to follow the target
message. If the adversary decides to drop messages from an
honest user Alice, Alice will likely not receive her own loop
messages back and she will know that the system is under
attack. Alice can then spread the word through some public
medium so that other users can stop using the system.

If Alice sends λ loop messages for every real mes-
sage, the adversary can drop a message from Alice with
a probability of λ

1+λ that Alice will detect the attack (since
loop messages are indistinguishable from real messages).
Therefore, if the adversary drops k messages from Alice,
Alice will detect the attack with probability 1 − ( 1

1+λ )
k.

As a result, the probability of detection increases drastically
with increasing k.

Note that we do not require any specific usage pattern
from the users to enable this defense, we only require that
they add λ additional messages per real message whenever
they are using the system. Additionally, λ can be any
constant number, however for our system we conservatively
choose λ = 1. 10

Replay Attacks. Replay attacks are detected and prevented
using the replay detection tag implemented in the Sphinx
packet header. This tag allows a node to verify if a packet
has already been seen or not; if the packet is a replay it
is dropped. In our system, compute nodes verify the replay
detection tag. Since the traffic from a compute node to a
funnel is protected by TLS, the funnel is protected from
replay attacks if the compute node is honest. If the compute

10. This value corresponds to roughly four loop messages per other mes-
sage when compared to Loopix; arguably Loopix’ randomized and strictly
controlled message sending patterns might confuse some adversaries – we
leave these considerations and the exact choice of λ to the system designers.



node is adversarial, the funnel anyway cannot ensure mixing
for the packets coming from that compute node. The next
honest compute node could then figure out whether a replay
attack occurs, using the replay detection tags.

Tagging Attacks. The Sphinx packet structure also defends
against tagging attacks — if the adversary tries to tag a
message, the Sphinx packet verification will fail and the
packet will be dropped. If a loop message is dropped, the
corresponding user will detect the attack.

Appendix C.
Security Analysis (extended)

C.1. More About The Ideal Functionality FStreams

The ideal functionality FStreams basically acts as as
trusted third party to whom users tell that they would like to
anonymously send a message. This trusted third party leaks
as much information as Streams would leak. Due to the
regular meeting points at funnel nodes and TLS protection,
FStreams does not need to leak which onion is sent from
which compute node to which compute node, as long as the
party that sends the onion and the next subsequent funnel
node are honest. Removing the very leakage of which onion
is sent to whom enables us to prove a strong shuffling
property for Theorem 1, pairwise unlinkability with over-
whelming probability (see Definition 1).

Formally, the ideal functionality FStreams provides API
calls for when clients want to send a message and they
react to network messages. Moreover, as we consider a
round-based protocol and the UC-framework is a sequential
activation framework (to simplify the analysis), we formally
need a “new round” API call.

The ideal functionality FStreams expects input messages
of the form (msg,R, t). As the protocol works in rounds,
FStreams stores the input messages in an input queue. Upon
the “new round”-command, each element from the input
queue is processed. When processing an input, the ideal
functionality FStreams checks which message only has com-
promised parties xi ̸∈ Ih on its path. For those cases, the
ideal functionality leaks the message to the simulator S.
Otherwise, FStreams provides a temporary identifier (in the
form of a random integer) to S in place of a message, along
with the segment of the path until the next honest compute
node. When the round corresponding to that compute node
comes, FStreams again provides a new temporary identifier
along with the next segment of path. When FStreams switches
the temporary identifiers, if the funnel node after the honest
compute node is not honest, it provides the mapping be-
tween the old and the new identifiers to allow S to link
between packets. Here we slightly over-approximate the
leakage by not distinguishing between honest and compro-
mised recipients, because in some protocol setting (anony-
mous broadcast) or anonymity notion (sender anonymity)
the adversary can anyway see the message in plaintext once
it comes out of the protocol.

C.2. Pairwise Unlinkability Proof for FStreams

Theorem 6 (Pairwise unlinkability of FStreams). Given a
constant integer ρ, if the amount of compromised nodes
is a constant fraction c

K < 1, FStreams provides pairwise
unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ < γL/2 with γ = 1−
(
K−c
K

)3
ρ

.

Proof. Recall that we assume that each node in a round
is chosen uniformly at random (funnel nodes by the ran-
domness beacon and compute nodes by the clients) with re-
placement and independent of choices made in other rounds.
Conceptually, a careful strategy where nodes are chosen by
avoiding repetition as much as possible can provide better
resilience against compromisation. For the ease of analysis,
we opt for independence.

If two messages remain in FStreams for L rounds, they are
shuffled if both of those two messages have honest compute
nodes on their path in some round r, and then an honest
node is picked as the common funnel node for both of them
in round r + 1. If that happens, a shuffled list of newly
generated temporary identifiers are given to S on behalf of
those messages. We depict this case in Figure 4 (a); the other
parts of the figure depict cases in which shuffling does not
occur.

Let a be the probability of a randomly picked node
being honest; a = K−c

K . Since both the funnel node and
each compute node are picked uniformly at random (with
replacement, and independent of all other nodes), the prob-
ability that the funnel node or compute node on the path of
a message in any round is compromised is c

K = (1 − a),
and the probability that it is honest is a.

Therefore, the probability that both the messages have
honest compute nodes in round r is a2. The probability that
they have the same funnel node in round (r+1) is 1

ρ . Given
that they have the same funnel node in round (r + 1), the
probability of that funnel node being compromised honest
is a. Therefore, the probability that they don’t mix in this
pair of rounds is γ =

(
1− a3

ρ

)
. If two messages both stay

in the system for L rounds, the probability that they don’t

mix is at most δ <
(
1− a3

ρ

)L
2

.

Note that, L rounds in the UC-framework version of
our protocol translates to L = L/2 rounds in the original
protocol. If L in the above theorem is polylogarithmic, δ
becomes negligible, which gives us the following corollary.

Corollary 1. Given a constant fraction c
K , in the presence

of any adversary S, if two arbitrary messages stay together
in the protocol FStreams for L ∈ ω(log η) rounds they are
shuffled with an overwhelming probability.

C.3. Abstraction Proof for Streams

Theorem 7. For any subprotocol Πsub in the FRKR-
hybrid model that UC realizes Fsub, the anonymity protocol



Streams from Section 5.2 using the subprotocol Πsub in
the FCRF , FRKR, FSCS , Fround-hybrid model UC-realizes
FStreams in the Fround-hybrid model.

Recall that formally Streams runs in the
FCRF ,FRKR,FSCS ,Fround hybrid model. Our ideal
functionality FStreams absorbs the hybrid functionalities
FCRF , FRKR and FSCS completely. However, we keep
the Fround functionality untouched. We stress that it makes
our result stronger that we cast our ideal functionality
in the Fround-hybrid model. It is straightforward to let
FStreams additionally absorb Fround.

Note that, the realization of the ideal functionalities
FRKR,FSCS ,FCRF in the UC-world translates to secure
public-key encryption scheme, secure TLS/SSL, and incor-
ruptible randomness beacon respectively in the real world.

Kuhn et al. [26] show that under standard cryptographic
assumptions there is a protocol Πsub in the FRKR-hybrid
model that UC realizes Fsub. The key idea is to utilize (in a
black-box reduction) the UC-realization proof of Πsub such
that in the proof the subprotocol’s ideal functionality Fsub
can be considered. This ideal functionality Fsub is used
to abstract away from any cryptographic operations. The
second key insight is that the attacker (and the simulator) can
perfectly predict how many onions are in the protocol and
when each party sends a message. So, only if the recipient
is compromised or a message is sent to a client (or the
input buffer is full) information is leaked from the protocol.
In those cases, the ideal functionality FStreams indeed leaks
information such that the simulator can faithfully (and in-
distinguishably) simulate the network traffic. We present the
full proof below.

Proof. We show the theorem via a series of game hops, start-
ing with the protocol Π and an arbitrary network adversary
A. With delta changes in each game, in the final game we
end up with the ideal functionality FStreams and a simulator
S. As FCRF does not send messages to the environment
and is not accessible to the environment, it can be easily
absorbed by the ideal functionalities. For brevity, we hence
neglect it in the subsequent argumentation.

Game 1. In this game, we consider the original protocol
Streams execution with the network attacker A and the
environment E . The protocol follows the code in Figure 7
and Fig. 9.

Now, we design a game and a protocol where the sub-
protocols associated with onion processing are replaced with
ideal functionality from [26].

Game 2. Instead of calling the protocol subroutines from
Πsub, our protocol Streams now calls the ideal functionality
Fsub from Kuhn et al. [26] (for completeness also in the
appendix Figure 17). Moreover, the attacker is replaced by
a variant of the simulator Ssub from Kuhn et al.

• The simulator S∗
sub behaves like the simulator Ssub

in the paper of Kuhn et al. [26] except that acts on one kind
of message differently to Ssub: if an FSCS instance sends a
message p := ("sent", Pi,Map, size), where "sent" is

a string, Pi is the sender of a packet, Map is the next funnel
in the protocol, size is the size of a packet. In that case, S∗

sub
sends the message p directly to Ad, which is running inside
Ssub. As Ad is stateless, these extra messages do not change
Ad’s behaviour.

The protocol Streams still follows the code in Figure 7
and Fig. 9, except that it called Fsub instead of Πsub.

Claim 1. There is a simulator Ssub such that Game 1 is
indistinguishable from Game 2.

Proof of Claim . Analogously to UC’s completeness the-
orem, it suffices to consider the dummy attacker Ad that
forwards all messages to the environment and only acts on
the environment’s orders.11 We replace Ad with a simulator
S∗
sub that almost behaves like the simulator Ssub in the paper

of Kuhn et al. [26], which internally runs Ad. S∗
sub, however,

has to also present an indistinguishable view for E ; hence,
it has to forward all FSCS notifications to the environment,
just as Ad would do.

Next, we show that Game 1 (running Πsub, FRKR,
and Ad) and Game 2 (running Fsub and S∗

sub) are indis-
tinguishable. We show that, if Game 1 is distinguishable
from Game 2, then Πsub does not UC realize Fsub, which
contradicts [26]. FRKR is faithfully simulated within Ssub;
hence, it behaves exactly the same in these two interactions.

Towards contradiction, assume that Game 1 is distin-
guishable from Game 2. Given an environment E that can
distinguish Game 1 from Game 2, we construct an environ-
ment Esub that can distinguish Πsub and FRKR interacting
with the dummy attacker Ad from Fsub interacting with
Ssub. Esub internally runs E . Esub has to ensure that E
believes that it is in Game 1 or Game 2, respectively. Hence,
Esub has to ensure that E gets the same messages as in
Game 1 and Game 2, respectively. So, we have to make
sure that E sees the same the funnel-protocol communication
and the notification messages from FSCS for each packet
that are handed through from Ad in Game 1. The funnel-
protocol communication can be achieved by Esub running
the funnel-protocol instances. In Game 1 and Game 2, the
FSCS notification messages are sent whenever a funnel or a
compute node instance communicates with Fround. Hence,
Esub has to ensure that E gets these notification messages at
the correct time, which can do as it internally runs FSCS .

• The environment Esub internally runs FSCS , Fround,
and E . Let Int1,sub be the interaction between Πsub and
FRKR from [26] and the dummy attacker Ad with an
environment (in our case Esub), and let Int2,sub be the inter-
action between Fsub and the simulator Ssub from [26]. As
Esub does not know whether it is interacting with Int1,sub
or Int2,sub, we describe its behavior agnostic to b = 1 or
b = 2 with Intb,sub.
– Upon receiving a message a party from Intb,sub (i.e.,

from a Πsub instance or Fsub), run Πclient and forward
the response to E .

11. For any other attacker A and each environment E , there is an
environment E ′ that internally emulates the interaction between E and A.
E ′ interacts with the dummy attacker Ad and produces the same view.



– Upon receiving a message over the network from Intb,sub
(i.e., from Ad or Ssub), forward the message to FSCS and
faithfully (as in Game 1) compute the interaction between
Fround, the funnel instances, and E .

– Upon receiving a message from E for the network at-
tacker, directly forward this message to the network at-
tacker in Intb,sub (i.e., to Ad or Ssub).
∗ Upon receiving a notification message from the inter-

nally emulated FSCS , forward it to E . (We stress that
S∗
sub is split into this interaction and the part that is

run in Intsub.)
For each b ∈ {1, 2}, we have to show that for E the
interaction within Esub, which in turn interacts with Intb,sub,
is indistinguishable from the interaction with Game b. For
b = 1, the interaction within Esub solely differs in the order
in which the notification message from FSCS arrives. As
these messages first reach Esub before reaching E , Esub
can successfully reverse the order again (see above) and
constructs a perfect view for E .

For b = 2, Esub internally emulates Game 1 (except for
Πsub). We show that for b = 2 nevertheless the view of E
when being emulated within Esub is indistinguishable from
the view when interacting in Game 2. Recall that the only
difference between Game 1 and Game 2 is that Πsub is
replaced by Fsub, and Ad is replaced by Ssub. As Fsub is
changed by Esub, it suffices to analyze whether the message
transcript to Ssub is indistinguishable for Ssub and whether
the transcript from Ssub (through Esub) is indistinguishable
for E .

Whenever by Int2,sub a message is sent by Ssub to Esub,
this messages first goes through the internally emulated
instances of the FSCS ,Fround, and Πfunnel protocols. These
protocols solely forward messages, and of these only FSCS
sends a notification to the network attacker Ad. In this case,
as defined above, Esub directly forwards the notification to
E ; this is exactly what would happen in Game 2. All other
messages are forwarded and, as in Game 2, potentially sent
to E . Hence, whenever in Game 2 a message is sent to E
also in Esub’s internal emulation (if b = 2) a message is sent
to E .

Next, we consider the case where for b = 2 a message
is sent by E (while being internally emulated by Esub) to
the network attacker, which would in Game 2 be S∗

sub. As
defined above, in this case, Esub sends the message directly
to the network attacker in Intb,sub. As b = 2, the network
attacker is Ssub. Hence, the message transcript (from Ssub’s
point of view) is exactly the same as in Game 2.

If Intsub is the interaction with Πsub, FRKR, and Ad,
Esub ensures that E has exactly the same view as in Game 1.
If Intsub is the interaction with Fsub and Ssub, Esub ensures
that E has exactly the same view as in Game 2. Hence, by
assumption, with the translation of Esub the submachine E
can distinguish the interaction with Πsub, FRKR, and Ad

from the interaction with Fsub and Ssub.
For any poly-bounded E , Esub acts as a poly-bounded

environment in the UC game. Yet, Kuhn et al. [26] proved
that there is no poly-bounded environment that can dis-

tinguish these two interactions, which is a contradiction.
Hence, Game 1 and Game 2 are indistinguishable.

⋄

Game 3. We replace Πworker, Πclient, FSCS , Fsub with the
ideal functionality FStreams. The simulator S∗

sub is replaced
by a simulator Sf . The simulator Sf internally runs S∗

sub
but translates the format of the output of FStreams to the
format output by Fsub. We stress that as we are in the hybrid
Fround-model, Fround remains in the ideal world as it was
in the previous games.

Claim 2. With the simulator Sf , Game 3 is indistinguish-
able from Game 2.

Proof of Claim . For the analysis, we divide the execution
in overlapping sub-sequences of the form compute node,
funnel, compute node (overlapping at the last funnel). For
those sub-sequences where the funnel is malicious or the
first compute node is malicious, FStreams has exactly the
same leakage as Fsub, except that the format of the leakage
is translated. If one of the funnels is honest and the first
compute nodes is honest, though, FStreams, in contrast to
Fsub, does not leak which compute node sends (the ideal
abstraction of) an onion to which other compute node. Next,
we argue that this leakage is also hidden in Game 2, as
FSCS and the funnels hide this information.

As the first compute node is honest, it does not leak
to the network attacker to whom the onion is sent. If the
first funnel is honest, it does not leak the link between the
two compute nodes to the network attacker. As FSCS only
notifies the network attacker that some messages was sent
and as the funnels shuffle the messages received by them in
a round, the network attacker does not learn by whom an
onion was sent. ⋄

Therefore, for simulator S our protocol Streams UC-
realizes the ideal functionality FStreams.

C.4. Pairwise Unlinkability for Layman’s Protocol

We also want to analyze the scenario where we do
not need to scale horizontally, i.e, protocol described in
Section 3.2 is sufficient (e.g., the nodes are as powerful
as network routers or the total number of users is less than
few thousands).

Theorem 8 (Pairwise unlinkability of the layman’s proto-
col). For any subprotocol Πsub in the FRKR-hybrid model
that UC realizes Fsub, given a constant fraction c

K < 1,
the layman’s protocol (using Πsub) described in Section 3.2
provides pairwise unlinkability of messages over L rounds
up to probability δ as in Definition 1, where δ <

(
c
K

)L
.

Proof Sketch. We skip the detailed proof as the proof
methodology is very similar to the proof with compute and
funnel nodes. The UC proof becomes much easier if we do
not have to distinguish between compute and funnel nodes.
There is one key difference for the combinatorial argument:



instead of the funnel node in the funnel round and the two
compute nodes in the immediate next compute round, there
is only one node and just one round.

Therefore, instead of representing each pair of rounds
with three coin tosses in the compute and funnel node sce-
nario, we have exactly one round with one coin toss for the
layman’s protocol with success probability a = c

K . Hence,
we can define an ideal functionality Fcore as described in
??, which shuffles the messages in the system whenever
they encounter an honest node on the path. To provide a
simulator for Fcore we can use the exact same simulator
Ssub as the one we use in the proof of Theorem 2, with
only one minor modification: Ssub directly forwards all the
network messages to the round functionality.

The probability of not finding an honest node in a path
of length L is upper bounded by δ ≤

(
c
K

)L
. Therefore, if

two arbitrary messages stay in the protocol for at least L
rounds, they are shuffled with probability at least 1− δ.

The above theorem also gives us an important insight
about how much security is degraded to achieve scalability
through our funnel and compute nodes. Note that the number
of rounds L in the theorem translates to L rounds in original
layman’s protocol described in Section 3.2 as well, (unlike
our Streams protocol) since there is no separate funnel and
compute phase.

Appendix D.
Pairwise Unlinkability and And Related Ano-
nymity Notions

Our notion of pairwise unlinkability is conceptually
closely related to tail indistinguishability by Kuhn et al. [26].
The main difference is that in their definition packets are
required to meet in a node that processes them cryptographi-
cally. Since our nodes in a path are split into compute nodes
and funnel nodes, our notion of pairwise unlinkability is
not tied to packets that are assumed to meet, but covers
all packets. In this sense pairwise unlinkability follows a
previous notion of unlinkability of Kate et al. [27], but
extends it with the explicit time when a message enters and
leaves the system.

D.1. Sender anonymity

The common anonymity notion sender anonymity states
that the recipient of a message cannot distinguish whether
the message originated in one sender over another sender,
even for a pair of potential senders of the adversary’s choice.
This closely resembles pairwise unlinkability with one key
difference: sender anonymity typically talks about a single
challenge message, not about a pair of messages. Below
we provide the game description and definition of sender
anonymity (which is an adaptation of the definition from
AnoA [42]).

The Sender Anonymity game GΠ,A,c
SA (1η) for protocol Π

against adversary A can be described as follows:

• The challenger Ch provides the adversary A with the
description of Π (that includes the description of the
sets S, R, and I).

• A statically corrupts all recipients in R, all senders in
S except from a pair u0, u1, and a subset of I denoted
by Icorr, such that |Icorr| ≤ c (i.e., no more than c nodes
are corrupted).

• Ch and A engage in an execution of Π where Ch acts
on behalf of u0, u1 and the honest nodes, while A
controls the corrupted parties and monitors the network
traffic as a global passive adversary.

• At any time t′, A sends the challenge pair
(u0,m0, ts,0, R0) and (u1, , , ) to Ch where u is the
sender of the message, m the content, ts the time the
message enters the system, and R the receiver of the
message.

• In turn, Ch chooses a random bit b ∈ {0, 1} and
initiates the challenge transmissions according to the
following cases:
– If b = 0, Π transmits the message (u0,m0, ts,0, R0).
– If b = 1, Π transmits the messages (u1,m0, ts,0, R0).

• A can terminate the game any time by outputting a bit
b∗, as a guess for the challenge bit b.

• The game returns 1 if and only if b∗ = b (i.e., A guesses
correctly), otherwise the game returns 0.

Definition 2 (Sender Anonymity). A protocol Π provides
sender anonymity of messages for c compromise up to
probability δ for 0 ≤ δ < 1 if, for all probabilistic poly-
nomial time (PPT) adversaries A passively and statically
compromising at most c nodes, the following holds:

Pr
[
GΠ,A,c,t
SA (1η) = 1

]
− Pr

[
GΠ,A,c,t
SA (1η) = 0

]
≤ δ(η).

If different clients can send messages at different times,
there is an inherent leakage that can break sender anonymity.
If, say, the adversary observes Alice sending a message in
round t and Bob sending a message in round t+2, the arrival
time of the challenge message together with the distribution
of the latency might tell the adversary who of them is
more likely to have sent the challenge message. In the
simplest example, for a constant latency, the adversary could
immediately exclude one of them from being the challenge
sender. Note that this apparent attack is independent of
how a protocol achieves anonymity and even applies if the
messages are kept in a trusted third party for the same
amount of time.

The definition of pairwise unlinkability aims to avoid
dealing with such client-dependent aspects of anonymity and
measures the core mixing property of the protocol. How-
ever, if a protocol follows batch processing (as in Karaoke
and Atom), pairwise unlinkability immediately translates to
sender anonymity — that relationship can be captured by
the following lemma.

Lemma 2. Let us assume for a protocol Π that all the
senders (including u1−b) send their messages at time ts,
and the messages can stay exactly t rounds in the protocol,
and are delivered to the designated recipients at time tf =



ts + t. If the protocol Π provides pairwise unlinkability of
messages over t rounds up to probability δ as in Definition 1,
it also provides sender anonymity up to probability δ as in
Definition 2.

Proof Sketch. We prove the above lemma by showing that,
if there exist an adversary ASA that wins the sender ano-
nymity game GΠ,A,c

SA (1η) against protocol Π, we can con-
struct an adversary APU that wins the pairwise unlinkability
game GΠ,A,c,t

PU (1η).
APU acts as the challenger for GΠ,A,c

SA against ASA. In the
game GΠ,A,c,t

PU , APU follows the exact same steps as ASA in
GΠ,A,c
SA , until ASA sends the challenge pairs. APU forwards

all the transcripts from GΠ,A,c,t
PU to ASA.

When ASA sends the challenge pair (u0,m0, ts, R0) and
(u1, , , ), APU uses the challenge pair (u0,m0, ts, tf , R0)
and (u1,m1, ts, tf , R1), where m1 is a randomly generated
message and m1 ̸= m0. Note that ts and tf are restricted
by the assumption of the lemma.

When ASA terminates GΠ,A,c
SA , APU also terminates

GΠ,A,c,t
PU . APU returns the same guess for b as ASA.

The view of ARA is translated as is from the view of
APU. Therefore, if ASA has guessed correctly, APU also
guesses correctly.

Note that the reverse direction is also true (sender ano-
nymity implies pairwise unlinkability when ts and tf are
same for all messages), and can be proven analogously.

D.2. Relationship anonymity

Relationship anonymity states that if two senders send
one message each to two receivers, a third party is unable to
determine which sender talks to which receiver significantly
better than purely guessing. Loopix [9] calls this property
Sender-Receiver Third-party Unlinkability. Given that the
two messages in question are sent in the same round and
that both senders choose a sufficiently large latency from
the same distribution, pairwise unlinkability immediately
implies this anonymity property. Below we provide the
game description and definition for relationship anonymity
adapted from AnoA [42].

The Relationship Anonymity game GΠ,A,c
RA (1η) for pro-

tocol Π against adversary A can be described as follows:
• The challenger Ch provides the adversary A with the

description of Π (that includes the description of the
sets S, R, and I).

• A statically corrupts all recipients in R except from a
pair R0, R1, all senders in S except from a pair u0, u1,
and a subset of I denoted by Icorr, such that |Icorr| ≤ c
(i.e., no more than c nodes are corrupted).

• Ch and A engage in an execution of Π where Ch acts
on behalf of u0, u1 and the honest nodes, while A
controls the corrupted parties and monitors the network
traffic as a global passive adversary.

• At any time t′, A sends a pair of challenge messages
(u0,m0, ts,0, R0) and (u1,m1, , R1) to Ch where u is
the sender of the message, m the content, ts the time

the message enters the system, and R the receiver of
the message.

• In turn, Ch chooses a random bit b ∈ {0, 1} and
initiates the challenge transmissions according to the
following cases:
– If b = 0, Π transmits the messages (u0,m0, ts,0, R0)

and (u1,m1, ts,0, R1).
– If b = 1, Π transmits the message (u0,m0, ts,0, R1)

and (u1,m1, ts,0, R0)

• A can terminate the game any time by outputting a bit
b∗, as a guess for the challenge bit b.

• The game returns 1 if and only if b∗ = b (i.e., A guesses
correctly), otherwise the game returns 0.

Definition 3 (Relationship Anonymity). A protocol Π pro-
vides relationship anonymity of messages for c compromise
up to probability δ for 0 ≤ δ < 1 if, for all probabilistic
polynomial time (PPT) adversaries A passively and stati-
cally compromising at most c nodes, the following holds:

Pr
[
GΠ,A,c,t
RA (1η) = 1

]
− Pr

[
GΠ,A,c,t
RA (1η) = 0

]
≤ δ(η).

Lemma 3. Let us assume for a protocol Π that all the
senders (including u1−b) send their messages at time ts, and
the messages can stay exactly t rounds in the protocol, and
are delivered to the designated recipients at time tf = ts+t.
If the protocol Π provides pairwise unlinkability of messages
over t rounds up to probability δ as in Definition 1, it also
provides relationship anonymity up to probability δ as in
Definition 3.

Proof Sketch. We prove the above lemma by showing that,
if there exist an adversary ARA that wins the relationship
anonymity game GΠ,A,c

RA (1η) against protocol Π, we can con-
struct an adversary APU that wins the pairwise unlinkability
game GΠ,A,c,t

PU (1η).
APU acts as the challenger for GΠ,A,c

RA against ARA. In
the game GΠ,A,c,t

PU , APU follows the exact same steps as ARA

in GΠ,A,c
SA , until ASA sends the challenge pairs.
When ARA sends the challenge pair (u0,m0, ts, R0)

and (u1,m1, , R1), APU uses the challenge pair
(u0,m0, ts, tf , R0) and (u1,m1, ts, tf , R1) for GΠ,A,c,t

PU .
Note that ts and tf are restricted by the assumption of the
lemma.

In GΠ,A,c
RA (1η), R0 and R1 are honest, and therefore,

do not reveal the contents of the messages they receive.
Accordingly, APU forwards all the transcripts from GΠ,A,c,t

PU
to ASA, except the contents of the messages received by R0

and R1. When ARA terminates GΠ,A,c
RA , APU also terminates

GΠ,A,c,t
PU . APU returns the same guess for b as ASA.

The view of ARA is directly translated from the view of
APU, except ARA cannot see the contents of the messages
received by R0 and R1. Therefore, if ARA has guessed
correctly, APU also guesses correctly.

Note that the reverse direction is not true — relationship
anonymity does not imply pairwise unlinkability when ts
and tf are same for all messages. Intuitively, the adver-
sary in the relationship anonymity game cannot observe



the message contents received by the honest recipients,
and therefore, has less insights compared to the pairwise
unlinkability and sender anonymity games.

D.3. Pairwise properties and more than two parties

Pairwise unlinkability for all pairs of messages is a
strong property that holds for all pairs of messages at the
same time. The property also naturally extends to more than
two messages. Practically, distinguishing between two cases
where more than two messages are different/swapped is
often easier than just distinguishing a single pair. Formally,
we can bound the advantage by increasing δ. Consider a
case where there are three messages (u0,m0, ts,0, tf,0, R0),
(u1,m1, ts,1, tf,1, R1), and (u2,m2, ts,2, tf,2, R2) with
min(tf0 , tf1 , tf2) − max(ts0 , ts1 , ts2) ≥ t. We know
that the adversary cannot distinguish this case from
(u1,m0, ts,0, tf,0, R0), (u0,m1, ts,1, tf,1, R1), and
(u2,m2, ts,2, tf,2, R2) with an advantage greater than
δ. Moreover, we know that the adversary cannot
distinguish that case from (u2,m0, ts,0, tf,0, R0),
(u0,m1, ts,1, tf,1, R1), and (u1,m2, ts,2, tf,2, R2) with
an advantage greater than δ. Thus, the adversary cannot
be able to distinguish the first and last of those cases
with advantage greater than 2 · δ. This argument extends
naturally to any larger set of messages that are being
swapped around simultaneously.

Appendix E.
Existing functionalities

E.1. Ideal Functionality for Onion Routing

We borrow the ideal functionality Fsub for onion routing
from the work of Kuhn et al. [26, Algorithm 1]. We present
the ideal functionality in Figure 17 for completeness. Kuhn
et al. [26, Appendix E] also presents a modified version of
Sphinx [43] that realizes the ideal functionality Fsub. We
use the same modified version of Sphinx as our Πsub in the
current work. We aim for anonymous broadcast to the net-
work. In our ideal functionality, messages from our last node
are sent to the environment instead of delivering them to an
explicit receiver. The delivery of messages occurs through
the environment which controls the network functionality.

E.2. Secure Communications Sessions

We use the ideal functionality Fscs from the work of
Gajek et al. [29, Figure 4] to realize secure communications
sessions. Their work shows that the TLS protocol [29,
Figure 5] UC-realizes the ideal functionality Fscs.

E.3. Randomness Beacons

We assume that each protocol party (including the ad-
versary) has access to an incorruptible randomness beacon.

In particular, future values of this beacon are not known to
the adversary.

A randomness beacon [44] emits a new random value at
intermittent intervals such that the emitted values are bias-
resistant, i.e., no entity can influence a future beacon value,
and unpredictable, i.e., no entity can predict future beacon
value. NIST’s Randomness Beacons project [45] and the
emerging Drand Organization [46] are two prominent ready
to use Internet-based instantiations of randomness beacon,
while several other protocols [47]–[51] and implementa-
tions [52]–[54] are also available.

To focus on the building blocks that we provide, we
abstract away from the cryptographic details of those con-
structions and assume such an ideal randomness beacon. It
outputs each time a ℓ-long substring of an infinite random
string beacon; using that ℓ-length string a protocol party
can derive the funnel nodes for the next ℓ rounds. Formally,
we only require the randomness beacon to be unpredictable
before the protocol starts, as our adversary can only stati-
cally compromise parties; the beacon, however, can also be
leveraged for resistance against dynamic corruption.



Data structure:
Bad: Set of Corrupted Nodes
L: List of Onions processed by adversarial nodes
Bi: List of Onions held by node Pi

// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment
// P = (Po1 , . . . , Pon): Onion path
// O = (sid, Ps, Pr,m, n,P, i): Onion = (session ID, sender, receiver, message, path length, path,

traveled distance)
// N: Maximal onion path length
On message Process_New_Onion(Pr,m, n,P) from Ps

// Ps creates and sends a new onion (either instructed by Z if honest or S if corrupted)
if |P| > N ; // selected path too long
then

Reject
else

sid←R session ID ; // pick random session ID
O ← (sid, Ps, Pr,m, n,P, 0) ; // create new onion
Output_Corrupt_Sender(Ps, sid, Pr,m, n,P, start)
Process_Next_Step(O)

Procedure Output_Corrupt_Sender(Ps, sid, Pr,m, n,P, temp)
// Give all information about onion to adversary if sender is corrupt
if Ps ∈ Bad then

Send “temp belongs to onion from Ps with sid, Pr,m, n,P” to S
Procedure Process_Next_Step(O = (sid, Ps, Pr,m, n,P, i))

// Router Poi just processed O that is now passed to router Poi+1

if Poj ∈ Bad for all j > i then
Send “Onion from Poi with message m for Pr routed through (Poi+1 , . . . , Pon)” to S
Output_Corrupt_Sender(Ps, sid, Pr,m, n,P, end)

else
// there exists an honest successor Poj

Poj ← Pok with smallest k such that Pok ̸∈ Bad temp←R temporary ID
Send “Onion temp from Poi routed through (Poi+1 , . . . , Poj−1) to Poj ” to S
Output_Corrupt_Sender(Ps, sid, Pr,m, n,P, temp)
Add (temp,O, j) to L

On message Deliver_Message(temp) from S
// Adversary S (controlling all links) delivers onion belonging to temp to next node
if (temp, , ) ∈ L then

Retrieve (temp,O = (sid, Ps, Pr,m, n,P, i), j) from L O ← (sid, Ps, Pr,m, n,P, j)
if j < n+ 1 then

temp′ ←R temporary ID;
Send “temp′ received” to Poj

Store (temp′, O) in Boj

else
if m ̸=⊥ then

Send “Message m received” to Pr

On message Forward_Onion(temp′) from Pi

// Pi is done processing onion with temp′ (either decided by Z if honest or S if corrupted)
if (temp′, ) ∈ Bi then

Retrieve (temp′, O) from Bi

Remove (temp′, O) from Bi

Process_Next_Step(O)

Figure 17: Ideal functionality Fsub for onion routing [26].
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