
Rotational-Linear Attack: A New Framework of
Cryptanalysis on ARX ciphers with Applications

to Chaskey

Yaqi Xu1,2, Baofeng Wu1,2, and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

{xuyaqi,wubaofeng,ddlin}@iie.ac.cn

Abstract. In this paper, we formulate a new framework of cryptanal-
ysis called rotational-linear attack on ARX ciphers. We firstly build an
efficient distinguisher for the cipher E consisted of the rotational attack
and the linear attack together with some intermediate variables. Then
a key recovery technique is introduced with which we can recover some
bits of the last whitening key in the related-key scenario. To decrease
data complexity of our attack, we also apply a new method, called bit
flipping, in the rotational cryptanalysis for the first time and the effective
partitioning technique to the key-recovery part.
Applying the new framework of attack to the MAC algorithm Chaskey,
we build a full-round distinguisher over it. Besides, we have recovered
21 bits of information of the key in the related-key scenario, for keys
belonging to a large weak-key class based on 6-round distinguisher. The
data complexity is 238.8 and the time complexity is 246.8. Before our work,
the rotational distinguisher can only be used to reveal key information
by checking weak-key conditions. This is the first time it is applied in
a last-rounds key-recovery attack. We build a 17-round rotational-linear
distinguisher for ChaCha permutation as an improvement compared to
single rotational cryptanalysis over it.

Keywords: Rotational-linear attack · ARX cipher · partitioning · key
recovery· Chaskey · ChaCha permutation.

1 Introduction

Symmetric cryptographic algorithms have significant security-relevant applica-
tions and play influential roles in modern cryptography. Among various kinds of
lightweight symmetric primitives, one class of design-structure called ARX has
been adopted frequently because of its efficient software and hardware perfor-
mance.

ARX ciphers. The ARX (Addition-Rotation-XOR) structure is an attrac-
tive candidate for designing lightweight cryptographic algorithms. In such a

2 Yaqi Xu, Baofeng Wu, and Dongdai Lin

structure, confusion and diffusion can be obtained with low consumption us-
ing three simple operations, namely, modular addition (⊞), rotation (≪) and
XOR (⊕). ARX-based designs are not only applied to stream-ciphers, but also
to the design of efficient block ciphers and message authentication codes (MAC).
There are some stream-ciphers, e.g., Salsa20 [5] and ChaCha [3]. Unlike SPN ci-
phers, whose nonlinear part consists of S-boxes, the nonlinear operation within
ARX ciphers is modular addition. The ARX-based lightweight symmetric prim-
itives can also serve as alternatives of the SPN structure which are used in the
design of many block ciphers such as the advanced encryption standard (AES).
Besides, message authentication code algorithms can also use ARX-designs to
achieve strong diffusion. For example, Chaskey [19] is an efficient MAC algo-
rithm which processes a message m and a secret key K to generate a tag τ for
micro controllers, using the ARX-design approach.

Due to their good confusion and diffusion properties, many classical crypt-
analysis methods on symmetric ciphers are not efficient enough for ARX ciphers.
For example, we generally cannot obtain differential [7] or linear [18] distinguish-
ers with high probabilities for long enough rounds. To improve attacks on ARX
ciphers, some combined cryptanalysis methods based on differential and lin-
ear attacks are often considered, such as the boomerang attack [20] and the
differential-linear attack [15].

Differential-linear cryptanalysis. Differential-linear cryptanaysis was in-
troduced by Langford and Hellman [15] for the first time. A cipher E is divided
into two sub-ciphers E1 and E2, i.e., E = E2 ◦E1. The two parts are assumed to
be independent. Then a differential distinguisher with probability p for E1 and
a linear distinguisher with correlation q for E2 are combined to a differential-
linear distinguisher with correlation pq2. The assumption that E1 and E2 are
independent may cause wrong estimates. To perform this attack, the cipher E is
often divided into three parts, a differential part, a linear part, and a connective
part. This attack has good performances in attacking ARX ciphers by carefully
arranging rounds for these three parts, especially the ARX ciphers based on
permutations like ChaCha [3] and Chaskey [14].

Last-rounds key recovery and partitioning technique. In the key re-
covery phase of an analysis of a symmetric cipher, Matsui’s Algorithm 2 is a
basic choice. It depends on a distinguisher on certain rounds of a cipher and a
partial decryption on last few rounds by guessing some bits of sub-keys. After
the partial decryption we can obtain the intermediate value to recover some
bits of the key by detecting whether the distinguisher is satisfied or not. For
ARX ciphers, applying partitioning technique is analogous to partial decryption
during key recovery. The partitioning technique is proposed in [6] to improve
linear cryptanalysis of ARX ciphers by finding a special relationship among two
inputs and output on a modular addition, avoiding the impact of the carry in-
formation after selecting a set of inputs. Partitioning technique has also been
applied to differential-linear attacks [16] to reduce the data complexity. In our
work, we will apply partitioning technique in the key-recovery part based on the
rotational-linear distinguisher.

Rotational-linear Attacks 3

Motivation of our work. Differential-linear attack is an important kind of
combined attack and has been widely applied to many symmetric ciphers. How-
ever, the existing attacks still have some drawbacks, for example, the differential
trail is limited by the connective part which increases the overall complexity
obviously. Rotational attack is a specific kind of cryptanalysis which was ap-
plied to ARX ciphers primarily. This kind of distinguisher sometimes can hold
with higher probability than the differential distinguisher for the same number
of rounds for some ARX ciphers. However, key-recovery is usually infeasible and
information of keys can only be revealed by checking certain weak-key condi-
tions before. There is no article achieving key-recovery beyond weak keys under
rotational distinguisher in prior of our work.

Motivated by the idea of differential-linear attack, we consider how to com-
bine rotational attack and linear attack in this paper, aiming to obtain more
efficient key recovery attacks on some ARX ciphers in addition to building a
new kind of distinguisher. We call this attack a rotational-linear attack.

Our contribution. We build the framework of rotational-linear cryptanaly-
sis and analyze the complexity to perform this attack. A cipher E to be attacked
is also divided into three parts: the rotational part, the linear part and the con-
nective part. Since the connectivity between rotational and linear part only ef-
fects the choice of input mask of linear part, which means it has no limit on the
rotational part, and we can obtain more efficient distinguishers under our frame-
work. We obtained a 12-round distinguisher for Chaskey with probability 2−60.38

in the related-key scenario, which is an improvement compared with the work
in [14]. Besides, we show how to take advantage of the partitioning technique to
recover partial bits of the key. In Table 1, we present different kinds of attacks ap-
plying to the MAC cipher Chaskey, including differential-linear attack with key
recovery, rotational attacks and our rotational-linear attacks with corresponding
data and time complexities. It turns out that the rotational-linear attack ex-
hibits advantages compared to other kinds of attacks. Rotational-linear attack
also gives guidelines when designing ARX ciphers, especially the key schedule.

Table 1. Review of different kinds of attacks applied to Chaskey.

Different kinds of attacks Rounds Time Data Ref.

Differential-linear attack with key recovery 7 267 248 [16]
Differential-linear attack with key recovery 7 251.21 240.21 [4]

Weak-key related-key rotational distinguishing attack 6 242 [14]
Weak-key related-key rotational attack,

forge a valid tag 12 286 [14]
Related-key rotational-linear distinguishing attack 12 260.38 This paper
Related-key rotational-linear key-recovery attack 7 246.8 238.8 This paper

Relationship with the work in [17]. Recently, Liu et al. proposed the
framework of rotational-XOR differential-linear (R-DL) attack in [17], which

4 Yaqi Xu, Baofeng Wu, and Dongdai Lin

degenerated to our rotational-linear attack when setting the rotational-XOR
differences to be 0. We have to point out that our work is a parallel and in-
dependent one with [17] rather than a follow-up of it. Actually, combining the
rotational/rotational-XOR distinguisher with the linear distinguisher is a natu-
ral idea, and the key problem lies in whether one can obtain successful attacks
for specific ciphers.

In [17] the authors paid main attention to distinguishing attacks on some
permutation based ciphers, while we are focused on key-recovery attacks in this
paper. In addition, our rotational-linear distinguisher is different with Liu et
al.’s. First, we add the connective part within the distinguisher experimentally.
The hamming weight of two output masks for the distinguisher in [17] is set to
1 with rotational relationship. Because of the connective part, we can choose
linear masks for the linear part without these limits in our work. Second, we use
a method, that is bit flipping, in the rotational cryptanalysis for the first time
to decrease the data complexity. Third, we combine the partitioning technique
to the key recovery whereas the rotational/rotational-XOR cryptanalysis only
applied to build distinguishers before our work. It is a natural problem to ex-
tended our key-recovery techniques to the R-DL framework, which will be left
as a further work.

Organization. The rest of this paper is organized as follows. We give some
relevant preliminaries in Sect. 2 and a review of the rotational attack in Sect.
3. The new framework of attack, i.e., the rotational-linear attack is presented
in Sect. 4. Precise processes of our attack on Chaskey are given in Sect. 5.
Conclusions are given in Sect. 6. Finally, an extended application of rotational-
linear cryptanalysis to ChaCha permutation is presented in Appendix A.

2 Preliminaries

2.1 Notations

We denote an n-bit vector by x = (x[n− 1], ..., x[1], x[0]), where x[i] denotes the
i-th bit of x. Let x[il, . . . , i1] denote ⊕l

j=1x[ij]. The i-th unit vector is denoted
by [i] ∈ Fn

2 . We denote the basic operations in ARX ciphers by ⊞ (modular
addition), ⊕ (XOR) and ≪ (rotation). A left rotation by the amount γ is
denoted by x ≪ γ. We also use x = (x0, x1, . . . , xl) to represent an n-bit vector
which splits into l m-bit sub-vectors, and the rotation of x is denoted by ←−x γ =
(x0 ≪ γ, x1 ≪ γ, . . . , xl ≪ γ). Let x, y be two n-bit vectors, ⟨x, y⟩ denotes the
inner product of x and y. Given a set S ⊆ Fn

2 and a Boolean function f : Fn
2 → F2,

we define the correlation of f by Corx∈S [f(x)] :=
1
|S|

∑
x∈S(−1)f(x).

2.2 Partitioning technique for modular additions

Partition is to find a special relationship between the two inputs and output of
a modular addition avoiding the impact of carry information after selecting a
set of the inputs. The following lemmas display the partitioning technique which

Rotational-linear Attacks 5

are applied in the key recovery. Assume there is a function F : F2m
2 → F2m

2 such
that F (a, b) = (s, b) where s = a⊞ b. The partition could be used after selecting
a set of the outputs as the following lemmas show from another point of view.

Lemma 1 ([4]). Let i ≥ 2, a, b ∈ Fm
2 , s = a ⊞ b and S1 := {(x1, x0) ∈

F2m
2 | x0[i−1] ̸= x1[i−1]}, S2 := {(x1, x0) ∈ F2m

2 | x0[i−1] = x1[i−1] and x0[i−
2] ̸= x1[i− 2]}. Then,

a[i] =

{
b[i]⊕ s[i]⊕ b[i− 1]⊕ 1 if (s, b) ∈ S1,
b[i]⊕ s[i]⊕ b[i− 2]⊕ 1 if (s, b) ∈ S2.

Lemma 2 ([4]). Let i ≥ 2, a, b ∈ Fm
2 , s = a ⊞ b and S3 := {(x1, x0) ∈

F2m
2 | x0[i−1] = x1[i−1]}, S4 := {(x1, x0) ∈ F2m

2 | x0[i−1] ̸= x1[i−1] and x0[i−
2] ̸= x1[i− 2]}. Then,

a[i]⊕ a[i− 1] =

{
b[i]⊕ s[i] if (s, b) ∈ S3,
b[i]⊕ s[i]⊕ b[i− 1]⊕ b[i− 2]⊕ 1 if (s, b) ∈ S4.

2.3 Description of Chaskey

Chaskey is a lightweight MAC algorithm for 32-bit micro-controllers using an
ARX structure in an Even-Mansour construction. A tag τ is extracted from the
last state K ′ ⊕ F (M ⊕ K). Chaskey splits a message m into l message blocks
m1,m2, . . . ,ml of 128 bits each (after padding if needed). It employs a 12-round
permutation π with 128-bit key K. If the message m is 128 bits, we can have
τ = π(m⊕K⊕K1)⊕K1. Here the subkeyK1 is generated from the master keyK.
If K[127] equals 0, then K1 = K ≪ 1⊕0128. If not, K1 = K ≪ 1⊕012010000111.
The permutation π is showed in Fig. 1.

v
r

0

v
r

1

v
r

2

v
r

3

⊞

⊞

⊞

⊞

≪ 8

≪ 5

≪ 16

⊕

⊕

w
r

0

w
r

1

w
r

2

w
r

3 ≪ 13

≪ 7

⊕

⊕

≪ 16 v
r+1

0

v
r+1

1

v
r+1

2

v
r+1

3

Fig. 1. The round function of Chaskey.

3 Rotational cryptanalysis

Rotational cryptanalysis, presented in [12] for the first time, takes advantage of
the high probability rotational relation propagated through the ARX operations

6 Yaqi Xu, Baofeng Wu, and Dongdai Lin

and was applied to the reduced version of Threefish. In [12] the authors presented
a method based on counting the number of additions in the scheme to get a
universal upper bound on the probability of the distinguisher. However, it was
showed in [13] that the rotational probabilities of ARX ciphers depends not only
on the number of additions but also on their positions. An explicit formula to
compute the rotational probability of chained modular additions is presented in
[13]. In this section, we present the translation of rotational relations through
different operations in ARX ciphers firstly.

Modular addition. The following proposition provides a general way to compute
the propagation of a rotational relation through a single modular addition.

Proposition 1 ([10]) For x, y ∈ Fm
2 and 0 < γ < m, we have

Pr[(x⊞ y) ≪ γ = (x ≪ γ)⊞ (y ≪ γ)] = (1 + 2γ−m + 2−γ + 2−m)/4.

The probability is maximized to 2−1.415 when m is large and γ = 1. However,
it was found in [13] this assumption is actually not true and the method to
compute the probability is presented by the following lemma.

Lemma 3 ([13]). Let a1, ..., al be m-bit vectors chosen at random and let γ be
a positive integer with 0 < γ < m. Then

Pr([(a1 ⊞ a2) ≪ γ = (a1 ≪ γ)⊞ (a2 ≪ γ)]∧
...

∧ [(a1 ⊞ · · ·⊞ al) ≪ γ = (a1 ≪ γ)⊞ · · ·⊞ (al ≪ γ)])

=
1

2ml

(
l + 2γ − 1

2γ − 1

)(
l + 2m−γ − 1

2m−γ − 1

)
.

XOR operation. Assume that x, y ∈ Fm
2 are random variables and c ∈ Fm

2 is a
constant. We can obtain the rotational relation (x⊕y) ≪ γ = (x ≪ γ)⊕ (y ≪
γ) with probability 1 and (x ≪ γ)⊕ c = (x⊕ c) ≪ γ if and only if c = c ≪ γ.

Rotation. For the rotation operation, we have Pr[(x ≪ a) ≪ γ = (x ≪ γ) ≪
a] = 1.

In the remaining part of this paper the rotational value γ will be set to 1 and
we denote x ≪ 1 by ←−x .For parallel applications of a cipher E, if the input pair
(x, x′) have the relation x′ =←−x , we say that (x, x′) is a rotational pair. The input
pairs together with the sub-key pairs (kr, k

′
r) XORed with intermediate values

should be rotational pairs when building the rotational distinguisher. Obviously
it is a kind of related-key attack. For this, we denote the transformation between
master keys K and K̃, such that their sub-key pairs (kr, k

′
r) are rotational pairs,

by K̃ = f(K).

Rotational-linear Attacks 7

4 Rotational-linear attacks on ARX ciphers

In this section, we will introduce the new framework of our attack combining
the rotational and linear attacks, called rotational-linear attack. An entire ci-
pher E is divided into two sub-ciphers E1 and E2 representing rotational and
linear parts respectively and the intermediate states are showed in Fig. 2. For
parallel applications of cipher E, we assume the input pairs are rotational pairs
(x,←−x). For two masks β1 and β0, we study correlation of linear approximations
Corx∈Fn

2
[⟨β1, E(x)⟩ ⊕ ⟨β0, E(←−x)⟩]. Making use of the distinguisher and the par-

tition technique mentioned in [4, 16], we can recover partial bits of the key for
last rounds.

←−xx

←−y y ←−αα

z0 z1
β0β1

E1E1

E2E2

Fig. 2. Basic rotational-linear distin-
guisher with linear trails for linear part
E2.

←−xx

y0 y1 ←−αα

z0 z1
β0β1

E1E1

E2E2

EcEc

Fig. 3. The structure of rotational-linear
distinguisher with a connective part Ec.

4.1 Correlation of linear approximations

After the rotational part E1, we denote the rotational probability by Prx∈Fn
2
[
←−−−
E1(x) =

E1(
←−x)] = p, and we need to compute the correlation Corx∈Fn

2
[⟨β1, E(x)⟩ ⊕

⟨β0, E(←−x)⟩]. First we assume that E1 is independent with E2. Given a mask α,

we have ⟨α,E1(x)⟩ = ⟨←−α ,E1(
←−x)⟩ if

←−−−
E1(x) = E1(

←−x) after the rotational part.
Then we need to find two linear trails for E2 with the input masks α and ←−α .
The correlation of linear trails for the parallel are q1 and q0 respectively.

Now we can compute the correlation of the distinguisher as follows:

Corx∈Fn
2
[⟨β1, E(x)⟩ ⊕ ⟨β0, E(←−x)⟩]

= Corx∈Fn
2
[⟨β1, E2 ◦ E1(x)⟩ ⊕ ⟨β0, E2 ◦ E1(

←−x)⟩]

= Cory∈Fn
2
[⟨β1, E2(y)⟩ ⊕ ⟨β0, E2(

←−y)⟩] · Prx∈Fn
2
[
←−−−
E1(x) = E1(

←−x)].

8 Yaqi Xu, Baofeng Wu, and Dongdai Lin

Assume ⟨β1, E2(y)⟩ ⊕ ⟨α, y⟩ and ⟨β0, E2(
←−y)⟩ ⊕ ⟨←−α ,←−y ⟩ are independent and

⟨α, y⟩ = ⟨←−α ,←−y ⟩. By the Piling-up lemma we have the correlation of the distin-
guisher is pq0q1. Assume the data complexity of the rotational part is Nr, which
is asymptotically O(p−2). By preparing Nr · δ(q0q1)−2 pairs of chosen plaintexts
(x,←−x), where δ ∈ N is a small constant, one can distinguish the cipher from a
pseudo random permutation.

4.2 The connective part

The assumption that E1 and E2 are independent might be a problem with wrong
estimates for the correlation of linear approximations. The wrong estimate under
differential-linear attacks has been testified in [2]. In rotational-linear cryptanal-
ysis we also add a connective part as a simple solution (showed in Fig. 3). The
correlation pc = Corx∈S [⟨α,Ec(x)⟩ ⊕ ⟨←−α ,Ec(

←−x)⟩] can be evaluated experimen-
tally where S denotes a set of random samples. Then the whole correlation of the
linear approximation of the distinguisher is computed as Corx∈Fn

2
[⟨β1, E(x)⟩ ⊕

⟨β0, E(←−x)⟩] = ppcq0q1.

4.3 Decrease the data complexity

Inspired by the work in [4], we want to construct many right pairs with proba-
bility (close to) 1 given a right pair satisfying rotational relationship. If we have
a chained addition operation s = a0 ⊞ a1 ⊞ a2 for a0, a1, a2 ∈ Fm

2 , we denote
the carry-bit vectors of a0 ⊞ a1 and (a0 ⊞ a1) ⊞ a2 by c1 and c2 respectively.
Note that (a0 ⊞ a1 ⊞ a2) ≪ 1 = (a0 ≪ 1) ⊞ (a1 ≪ 1) ⊞ (a2 ≪ 1) and
(a0 ⊞ a1) ≪ 1 = (a0 ≪ 1) ⊞ (a1 ≪ 1) if and only if the following conditions
are satisfied:

c2[m− 1] = 0, c1[m− 1] = 0,

a0[m− 1] + a1[m− 1] + a2[m− 1] < 2.
(1)

We flip a few bits of one input and assume it is a0 without loss of generality.
Write sr = ar0⊞a1⊞a2 where ar0 is the flipped input. If the conditions in (1) can
also be satisfied, then we obtain a new right pair for free. However, the conditions
for a cipher is more complicated. Let us denote R as the set consisting of right
data satisfying the rotational relation before and after an ARX permutation E1,

i.e., R = {x ∈ Fn
2 |
←−−−
E1(x) = E1(

←−x)}. We assume that R contains an affine
subspace A = a ⊕ U . Instead of choosing random plaintexts from Fn

2 , we could
generate a subset of x ∈ A to augment the correlation of the rotational-linear
distinguisher. Now we can generate right data for the rotational part E1 through
a statistical model presented in Algorithm 1.

The number of flipping-bit candidates, namely, |U| getting from Algorithm
1, are not only related to the structure of E1 but also to the number of rounds in
E1. The number of flipping-bit candidates needs to be sufficiently large to fulfill
the data complexity of the remaining part of the attack. If the number of rounds
in E1 is beyond our expect, we can split E1 into two parts E1 = E10 ◦E11 with
rotational probabilities p0 and p1 respectively. Then the rotational probability of

Rotational-linear Attacks 9

Algorithm 1 Find the candidates of flipping-bits

Input: Permutation E : Fn
2 → Fn

2 , a set S = {x | x ∈ Fn
2 } of N samples

Output: Probabilistic list of flipping-bit candidates U , threshold ρ.

1: Let r = 0 and tj = 0 for j ∈ {0, . . . , n− 1}
2: for i = 0 to N do
3: Pick one element x ∈ S, compute E(x) and E(←−x) respectively

4: if
←−−−
E(x) = E(←−x) then

5: r ← r + 1
6: for j ∈ {0, . . . , n− 1} do
7: Prepare x′ = x⊕ 2j , E(x′) and E(

←−
x′)

8: if
←−−−
E(x′) = E(

←−
x′) then

9: tj ← tj + 1

10: for j ∈ {0, . . . , n− 1} do
11: if tj/r > ρ then
12: Save j as a flipping-bit candidate

E1 is p = p0p1. After applying Algorithm 1 to E10, we can get a list of flipping-
bit candidates with average probability pa. If the result meets requirements for
the remaining part of our attack, we can decrease the data complexity Nr of E1

from O((p0p1)−2) to O(p−1
0 (pap1)

−2).

4.4 Key recovery

In this section, we present a method to recover part of the last whitening key k
based on a rotational-linear distinguisher. The rotational pair {(x,←−x) | x ∈ Fn

2}
are inputs for the cipher E. Using the rotational-linear distinguisher built in
Sect. 3 we have the correlation Corx∈Fn

2
[⟨β1, E(x)⟩⊕⟨β0, E(←−x)⟩] = q. The set of

input pairs for the linear part is denoted by D := {(y, ỹ) | y = Ec ◦ E1(x), ỹ =

Ec ◦ E1(
←−x) and E1(

←−x) =
←−−−
E1(x) for x ∈ Fn

2}. We denote the right pairs after
cipher E by Dout := {(z, z̃) | z = E2(y), z̃ = E2(ỹ) for (y, ỹ) ∈ D} as the input
pairs for F . In Matsui’s last rounds attack in [18] one gathers some bits of key
information with partial decryption of the last rounds.Because of the modular
addition operation, we need to do some changes for the key-recovery work.

On the basis of correlation of the linear approximation Cor(z,z̃)∈Dout
[⟨β1, z⟩⊕

⟨β0, z̃⟩], we split βι into βι
0, . . . , β

ι
l−1 for ι ∈ {0, 1} such that every βι

i is in the
form of one or two consecutive active bits defined as a partition point [4] and
the correlated linear approximation is Cor(z,z̃)∈Dout

[⟨β1
i , z⟩⊕ ⟨β0

j , z̃⟩] = qi,j . The
overall structure of key recovery is presented in Fig. 4. Applying the partition
technique [4, 16] to the outputs of F , we can generate several linear trails β1

i →
µ1
i,i1

and β0
j → µ0

j,j1
corresponding to special partition P with high correlations

denoted by ϵ1i,i1 and ϵ0j,j1 for i, j ∈ {0, . . . , l−1} and i1, j1 ∈ {0, . . . , s−1}. Then

10 Yaqi Xu, Baofeng Wu, and Dongdai Lin

E2 E2

F F

α0α1

β0

0
. . . β0

l−1
β1

0
. . . β1

l−1

⊕⊕

µ1

0,0
. . . µ1

0,s−1
. . . µ0

0,0
. . . µ0

0,s−1
. . .

k̃k

c̃c

Fig. 4. To recover partial key, output mask of E2, i.e., βι, is partitioned to partition
points βι

0, . . . , β
ι
l−1, ι ∈ {0, 1}. For every partition points we will find linear trails

βι
i → µι

i,j after partition, i ∈ {0, . . . , l − 1} and j ∈ {0, . . . , s− 1}.

we have

Cor (z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

[⟨µ1
i,i1 , k ⊕ c⟩ ⊕ ⟨µ0

j,j1 , k̃ ⊕ c̃⟩]

= Cor ((z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

[⟨β1
i , z⟩ ⊕ ⟨β0

j , z̃⟩] = qi,jϵ
1
i,i1ϵ

0
j,j1 .

Partitioning the outputs of F is equivalent to partitioning the set {(k ⊕ c, k̃ ⊕
c̃) | (z, z̃) ∈ Dout s.t. k ⊕ c = F (z), k̃ ⊕ c̃ = F (z̃)}. We denote P as the set of
bits relevant to partitioning technique. Moreover we represent k as kP ⊕ kµ ⊕ k′

where kP ∈ P, kµ is the set of bits related to the masks µ1 ⊕ µ0 while k′ is
the remaining bits we need to guess. The whole process of the key-recovery is
demonstrated in Algorithm 2.

Build the counter. Building a special counter is a significant speed-up in
the key-recovery under the framework of differential-linear attack [4]. For our
rotational-linear attack, we need to find the relations between active bits of β0

j

and k before building a valid counter to recover the partial bits of the key, that
is

Cor (z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

[⟨µ1
i,i1 , c⊕ k⟩ ⊕ ⟨µ0

j,j1 , c̃⊕ k̃⟩]

=
∑

(z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

(−1)⟨µ
1
i,i1

,c⟩⊕⟨µ0
j,j1

,c̃⟩⊕⟨µ1
i,i1

,k⟩⊕⟨f−1(µ0
j,j1

),k⟩

=(−1)⟨µ
1
i,i1

⊕f−1(µ0
j,j1

),k⟩
∑

(z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

(−1)⟨µ
1
i,i1

,c⟩⊕⟨µ0
j,j1

,c̃⟩.

Rotational-linear Attacks 11

Algorithm 2 Key recovery

Require: Cipher E, the set S of N plaintext-ciphertext pairs, threshold Θ, the set of
flipping-bits U
Ensure: List of key candidates for nP + dimW bits of k.

1: for (i, j) ∈ {0, ..., l − 1} × {0, ..., l − 1} do
2: for kP ∈ P do
3: νkP

i,j ← 0

4: for a ∈ S do

5: x
$←− U ⊕ a, (c, c̃)← (Ek(x), Ef(k)(x ≪ 1))

6: for (i, j) ∈ {0, ..., l − 1} × {0, ..., l − 1} do
7: for kP do
8: With (c⊕ kP , c̃⊕ f(kP)) get corresponding output masks µ1

i,i1 and µ0
j,j1

9: νkP
i,j ← νkP

i,j +
s−1∑
i1=0

s−1∑
j1=0

(−1)⟨µ
1
i,i1

,c⟩⊕⟨µ0
j,j1

,c̃⟩

10: for kP ∈ P do
11: Compute C(kP , kµ) using the Fast Walsh-Hadamard Transform
12: if C(kP , kµ) > Θ then
13: Save (kP , kµ) as a key candidate

The value of k only impacts the sign of the correlation of linear approximation.
Following the previous work we define an intermediate variable αi,j by

αi,j = (−1)sgn(ϵ
1
i,i1

ϵ0j,j1
qi,j)

∑
(z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P)

(−1)⟨µ
1
i,i1

,k⊕c⟩⊕⟨µ0
j,j1

,k̃⊕c̃⟩

= (−1)sgn(ϵ
1
i,i1

ϵ0j,j1
qi,j)

∑
(z,z̃)∈Dout s.t.

k⊕c∈P, k̃⊕c̃∈f(P) and k̃=f(k)

(−1)⟨µ
1
i,i1

,c⟩⊕⟨µ0
j,j1

,c̃⟩⊕⟨µ1
j,j1

,k⟩⊕⟨µ0
j,j1

,f(k)⟩

= (−1)⟨µ
1
i,i1

⊕f−1(µ0
j,j1

),kµ⟩

∣∣∣∣∣∣∣
∑

(z,z̃)∈Dout s.t.
c∈k⊕P, c̃∈f(k⊕P)

(−1)⟨µ
1
i,i1

,c⟩⊕⟨µ0
j,j1

,c̃⟩

∣∣∣∣∣∣∣ ,

where sgn(r) =

{
0 if r ≥ 0

1 if r < 0
. We define W = Span{µ1

i,i1
⊕ f−1(µ0

j,j1
) | i, j ∈

{0, . . . , l − 1} and i1, j1 ∈ {0, . . . , j − 1}} and

C(kP , kµ) :=
∑
µ∈W

(−1)⟨µ,kµ⟩
∑

(i,j) s.t.

µ1
i,i1

⊕f−1(µ0
j,j1

)=µ

νi,j .

We need to guess bits of k corresponding to active bits of output masks. Let
nP denote the number of elements in P. Then the number of bits we can get in
the key-recovery process is nP +dimW . The fast Walsh-Hadamard transform [8]
can be used during the key-recovery. Therefore, the whole running time of the
key-recovery decreases to 2nP (2N + dimW · 2dimW) [4].

12 Yaqi Xu, Baofeng Wu, and Dongdai Lin

4.5 A simple toy example

F⊞ ⊞

⊕ ⊕⊕ ⊕

β0

jβ1

i

γ0

jγ1

i kL kR k̃L k̃R

cL c̃L c̃RcR

Fig. 5. A toy example of key recovery where the key-recovery part F only contains a
modular addition.

In Fig. 5 there is a function F : F2m
2 → F2m

2 such that F (a, b) = (s, b)
where s = a⊞ b. The input masks for F are denoted by β1

i and β0
j . To simplify

the key-recovery process, we suppose k̃ = k ≪ 1 and the input masks for
F are (β1, β0) = ([i], [i + 1, i]) where β0 is the rotation of β1. If we denote

k = kL||kR = (kLm−1, . . . , k
L
0)||(kRm−1, . . . , k

R
0), then we have k̃ = k̃L||k̃R =

(kLm−2, . . . , k
L
0 , k

R
m−1)||(kRm−2, . . . , k

R
0 , k

L
m−1).

To apply the partitioning technique to find linear trails with high correlations,
we need to obtain the values kLi−1⊕ cL[i− 1]⊕kRi−1⊕ cR[i− 1], kLi−2⊕ cL[i− 2]⊕
kRi−2⊕ cR[i− 2], k̃Li ⊕ c̃L[i]⊕ k̃Ri ⊕ c̃R[i] and k̃Li−1⊕ c̃L[i− 1]⊕ k̃Ri−1⊕ c̃R[i− 1]. If
i ≥ 2, we only need to guess two bits kL[i−1]⊕kR[i−1] and kL[i−2]⊕kR[i−2]
before partitioning. Then we can find four trails, i.e.,

β1
0 = ([i], []), µ1

0 = ([i, i− 1], [i]), if (kL ⊕ cL, kR ⊕ cR) ∈ S1,
β1
1 = ([i], []), µ1

1 = ([i, i− 2], [i]), if (kL ⊕ cL, kR ⊕ cR) ∈ S2,

β0
0 = ([i+ 1, i], []), µ0

0 = ([i], [i]), if (k̃L ⊕ c̃L, k̃R ⊕ c̃R) ∈ S3,

β0
1 = ([i+ 1, i], []), µ0

1 = ([i, i− 1, i− 2], [i]), if (k̃L ⊕ c̃L, k̃R ⊕ c̃R) ∈ S4,

all with correlations 1 or −1. Then we obtain W = {(µ1
i ⊕ µ0

j) | i, j ∈ {0, 1}} =
{([], []), ([i − 1], []), ([i − 2], []), ([i − 1, i − 2], [])} and could recover four bits of
information of the key, namely, kL[i − 1], kL[i − 2], kL[i − 1] ⊕ kR[i − 1] and
kL[i− 2]⊕ kR[i− 2].

5 Application to Chaskey

5.1 Attack against 7-round Chaskey

The process of our key-recovery attack applying to Chaskey covers 7 rounds
splitting into four parts, including 2.5-round rotational part E1, 3-round con-
nective part Ec and 0.5-round linear part E2, with 1-round key-recovery part
F .

Rotational-linear Attacks 13

Rotational part. In this part, we need to calculate the rotational probability
of E1 using Lemma 3. For Chaskey, we need that the input pairs (m ⊕ K ⊕
K1, m̃⊕ K̃⊕ K̃1) have the relation m̃⊕ K̃⊕ K̃1 =

←−−−−−−−−−
m⊕K ⊕K1. For the chained

modular additions we use Lemma 3 to calculate the rotational probability and if
there are rotation or XOR operations between two modular additions we assume
that they are independent, as used in [14] applying rotational cryptanalysis to
Chaskey. For one chain of two modular additions a1 ⊞ a2 ⊞ a3 with block size
n = 32, the probability of rotation is 2−3.585.

Expected probability using Lemma 3 and the corresponding experimental
probability of the rotational attack applied to chained modular additions pre-
sented in [12] are very close to each other. So the rotational probability for our
E1 part is reliable and the expected probability of 2.5-round E1 is 2−17.17. We
split the rotational part E1 into E11 and E10, where the E10 part includes the
first 1.5 rounds and a modular addition (w1

1 ⊞w1
2). There are one modular addi-

tion and three double-addition so the rotational probability of E10 is 2−12.17. We
apply Algorithm 1 to the E10 part with a set of random samples S which has 232

elements. Then we collected 24 flipping bits with probability greater than 0.97
by experiments and the set of them is denoted by U from which we can generate
224 right pairs (a ⊕ u,

←−−−
a⊕ u) for u ∈ U and a known right pair (a,←−a). We can

obtain the average probability with flipping-bits presented in Table 2, that is,

Pr u∈U
x∈Fn2

[
←−−−−−−−
E10(x⊕ u) = E10(

←−−−
x⊕ u) | E10(

←−x) =
←−−−−
E10(x)] = 0.991.

This means if we have a right pair (x,←−x), we can generate another right
pair with probability 0.991 after E10. These flipping bits can satisfy the data
complexity for the later part and we can decrease the data complexity from
234.34 to 212.17+5×2 × (0.991)−2, that is 222.195.

Table 2. Candidates of flipping-bit applying Algorithm 1 to E10.

The vector to flip Index Probability

v00 0, 1, 2, 3, 4, 5 > 0.97
v01 0, 1, 2, 3 > 0.97
v02 0, 1, 2, 3, 4, 5, 6, 7, 8 > 0.97
v03 0, 1, 2, 3, 4 > 0.97

Middle part. After the rotational part E1, we have the rotational relation←−−−
E1(x) = E1(

←−x), then we set the connective part Ec covering three rounds of
Chaskey. We need to find input masks (α,←−α) such that ⟨α,Ec◦E1(x)⟩⊕⟨←−α ,Ec◦
E1(
←−x)⟩ has high correlation. On account of the limitation of computing capacity,

we only search the masks α in the form of [i]. We observed for α = ([], [], [11], []),
the correlation is Corx∈S [⟨α,Ec(x)⟩ ⊕ ⟨←−α ,Ec(

←−x)⟩] = 2−1.73. Assume that the
correlation obeys a normal distribution and the standard deviation of the normal

14 Yaqi Xu, Baofeng Wu, and Dongdai Lin

distribution is 212. Using a set S consisting 224 random samples to estimate is
enough.

Linear part and key recovery. Assume the input-mask pair for parallel E2

is (α,←−α) = (ω5
1 [11], ω

5
1 [12]). After E2 we have

β1 =ν60 [24]⊕ ν60 [11, 10]⊕ ω6
2 [0]⊕ ω6

3 [0],

β0 =ν60 [25, 24]⊕ ν60 [12]⊕ ω6
2 [1, 0]⊕ ω6

3 [1, 0],

with the experimental correlation 2−3.187 over the set S consisting of 226 random
samples of ω2. In the key-recovery part F , we need to partition the set of (c⊕K1)

and (c̃ ⊕ K̃1) to obtain the linear trails. Linear trails based on the partition
technique are relevant to two chained modular additions. So we adopt the method
in [4] and using the average of the absolute values of correlations of linear trails
covering F , i.e., 2−0.83. Since it is difficult to evaluate the correlation qi,j after
partition experimentally, we assume the correlations are equal for every partition,
i.e., qi,j = 2−4.745 for all i and j.

In E1 part the key K ⊕K1 and K̃ ⊕ K̃1 should satisfy K̃ ⊕ K̃1 =
←−−−−−
K ⊕K1.

We denote values of the keys by

K = ab∗0, fg∗1, kl∗2, pq∗3; K1 = b ∗0 f, g ∗1 k, l ∗2 p, (q ∗3 a)⊕ ⋆;

K̃ = b ∗0 a, g ∗1 f, l ∗2 k, q ∗3 p; K̃1 = ∗0ag, ∗1fl, ∗2kq, (∗3pb)⊕ ⋆,

where ∗i ∈ {0, 1}30 for i ∈ {0, 1, 2, 3} and ⋆ ∈ F32
2 denotes the vector 032 or

024||10000110 decided by the value of K[127] and K̃[127]. For the rotational

relation, we need to set a = b = 0 to let ⋆ = 032. However, to have K̃1 =
←−
K1, we

need to set a = b = f = g = k = l = p = q. Then we obtain the weak-key class
containing 2120 keys.

β1 is split to β1
0 = ν60 [24], β

1
1 = ν60 [11, 10] and β1

2 = ω6
2 [0] ⊕ ω6

3 [0]. β
0 is

split to β0
0 = ν60 [25, 24] , β

0
1 = ν60 [12] and β0

2 = ω6
2 [1, 0] ⊕ ω6

3 [1, 0]. After the
partition of outputs of F , presented in Table 3, we obtain linear trails βι

i →
µι
i for ι ∈ {0, 1} and i ∈ {0, 1, 2}. Because of the weak-key class, ki[31] =

ki[0] = k̃i[1] = k̃i[0] = 0 for i ∈ {0, 1, 2, 3}. Furthermore, the corresponding

partition to (c⊕K1) and (c̃⊕ K̃1) is decided by kP with kP1
= k1[15]⊕ k0[25]⊕

k0[30]||(k0 ⊕ k3)[30]||(k0 ⊕ k3)[26]||(k0 ⊕ k3)[25] and kP0
= k1[28] ⊕ k0[11] ⊕

k0[6]||(k0 ⊕ k3)[12]||(k0 ⊕ k3)[11]||(k0 ⊕ k3)[7]||(k0 ⊕ k3)[6].
From the set {(µ1

i,i1
⊕µ0

j,j1
) | i, j ∈ {0, . . . , l− 1} and i1, j1 ∈ {0, . . . , s− 1}},

we can see kµ consists k0[26]⊕ k0[25], k0[7]⊕ k0[6], k0[12]⊕ k0[11], k0[30], and
dim(W) = 4. Summing up the above analysis, we can recover 13 + 8, that is 21
bits of the master key K.

Data and time complexities and success probability. The way to recover
partial key bits is based on the correlation of linear approximations. Our method
to build the counter is same as [4], so we use the same proposition used in it

Rotational-linear Attacks 15

Table 3. The outputs of F corresponding to partitioning technique. That is for every
P in the table, we want to partition the set of ciphertexts to obtain the corresponding
subset of it will belong to the {p⊕ kP for ∀p ∈ P} after guessing partial bits of k.

input mask P sub-key

β1
1 p1[15]⊕ p0[25]⊕ p0[30]||(p0 ⊕ p3)[30]||(p0 ⊕ p3)[26]||(p0 ⊕ p3)[25]

kP1

β0
1 p̃1[16]⊕ p̃0[26]⊕ p̃0[31]||(p̃0 ⊕ p̃3)[31]||(p̃0 ⊕ p̃3)[27]||(p̃0 ⊕ p̃3)[26]

β1
0 p1[28]⊕ p0[11]⊕ p0[6]||(p0 ⊕ p3)[12]||(p0 ⊕ p3)[11]||(p0 ⊕ p3)[7]||(p0 ⊕ p3)[6]

kP0

β0
0 p̃1[29]⊕ p̃0[12]⊕ p̃0[7]||(p̃0 ⊕ p̃3)[13]||(p̃0 ⊕ p̃3)[12]||(p̃0 ⊕ p̃3)[8]||(p̃0 ⊕ p̃3)[7]

which is summarized in Appendix. B to analyze the data and time complexity.
The success probability is set to 0.978. Due to the E1 part we need to run Algo-
rithm 1 for Nr = 222.195 times to generate right pairs with expected probability
1
2 . The average correlation of connective part and linear part is 2−4.017. Use N

data samples with the threshold defined as Θ =
√
N∗ × Φ−1

(
1− 2−22.195

213

)
in

Algorithm 2 where N∗ is the data complexity corresponding to valid partitions.
We can compute that N = 4

3N
∗ = 214.652. The data complexity is 2Nr ·N =

222.195+14.652+1 = 238.85. The major parts impacting on the time complexity are
the ergodicity of key-guessing for kP , the collection of data samples and the
Walsh-Hadamard transform during the computation of C(kP , kµ). The running
time is estimated as Nr · 2nP (2N +dimW · 2dimW) = 222.195× 29× (2× 214.652+
4× 24) = 246.8.

5.2 Distinguisher and experimental result

Under rotational-linear cryptanalysis with Ec and E2 presented in Sect. 5.1, we
implement toy versions of Chaskey with 4 and 5 rounds to have an additional
experimental confirmation of the correctness of our framework and we build a
full-round distinguisher with correlation 2−60.38.

To lunch the experiment we use a set of random samples S = {x | x ∈ F128
2 }

as input pairs (x,←−x) and compute the correlation of ⟨β1, E(x)⟩ ⊕ ⟨β0, E(←−x)⟩
with linear masks β1 and β0 presented in Sect. 5.1. The 4-round distinguisher is
composed of 0.5-round E1, 3-round Ec and 0.5-round E2. There are two modular
additions in E1 with the rotational probability 2−2.83, Ec and E2 are presented
in Sect. 5.1 where the correlations are 2−1.73 and 2−2 respectively. So we can
obtain that the expected probability of the 4-round distinguisher is 2−6.56. And
the corresponding experimental probability is 2−6.4. The expected probability
and experimental probability for 5-round distinguisher are 2−13.74 and 2−12.1.

6 Conclusion

In this paper, we build a new framework of attack, called the rotational-linear
attack. As a new combination of different kinds of attacks, we establish the key-

16 Yaqi Xu, Baofeng Wu, and Dongdai Lin

recovery framework based on rotational cryptanalysis, which is mainly used in
distinguishing attacks before. We also present a valid way to reduce the data com-
plexity for the rotational part of our rotational-linear attack, called bit flipping.
Our method is applied to Chaskey successfully. We built a full-round distin-
guisher for Chaskey and recovered partial bits of key under related-key attack,
for keys belonging to a large weak-key class based on a 6-round distinguisher. It
should be noted that although related-key attacks exists for any Even-Mansour
ciphers [9], differentials of the whiting keys are considered before, while in our
attack keys are related in a rotational manner.

The simple requirement that a cipher is suitable to rotational-linear attacks is
that the rotational cryptanalysis can be applied to it. So rotational-linear attacks
can be applied to many ARX ciphers, like Threefish and BLAKE2 [1]. And we
hope that our framework of attack can be applied to other ARX ciphers to
understand the constructing of rotational and linear cryptanalysis better. There
still exist some possible improvements to our results. First, the connective part
between rotational and linear parts is a little different from the differential-linear
connectivity. Maybe one could construct a more exact connective part. Second,
multidimensional linear cryptanalysis [11] maybe a way to improve the linear
part of our attack.

References

1. Aumasson, J., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini,
R. (eds.) Applied Cryptography and Network Security - 11th International Con-
ference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7954, pp. 119–135. Springer (2013)

2. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: Dlct: A new tool for
differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryp-
tology – EUROCRYPT 2019. pp. 313–342. Springer International Publishing,
Cham (2019)

3. Barbero, S., Bellini, E., Makarim, R.H.: Rotational analysis of chacha permutation.
CoRR abs/2008.13406 (2020)

4. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with appli-
cations to arx ciphers. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryp-
tology – CRYPTO 2020. pp. 329–358. Springer International Publishing, Cham
(2020)

5. Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M.J.B., Billet,
O. (eds.) New Stream Cipher Designs - The eSTREAM Finalists, Lecture Notes
in Computer Science, vol. 4986, pp. 84–97. Springer (2008)

6. Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition op-
erations with applications to FEAL-8X. In: Joux, A., Youssef, A.M. (eds.) Selected
Areas in Cryptography - SAC 2014 - 21st International Conference, Montreal, QC,
Canada, August 14-15, 2014, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 8781, pp. 59–76. Springer (2014)

7. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th

Rotational-linear Attacks 17

Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp.
2–21. Springer (1990)

8. Carlet, C., Crama, Y., Hammer, P.L.: Boolean functions for cryptography and
error-correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cam-
bridge University Press (2010)

9. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) Advances in Cryptology – EUROCRYPT 2015. pp. 584–613. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

10. Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis, Ruhr
University Bochum (2005)

11. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis. J.
Cryptol. 32(1), 1–34 (2019)

12. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of arx. In: Hong, S., Iwata,
T. (eds.) Fast Software Encryption. pp. 333–346. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

13. Khovratovich, D., Nikolić, I., Pieprzyk, J., Soko lowski, P., Steinfeld, R.: Rotational
cryptanalysis of arx revisited. In: Leander, G. (ed.) Fast Software Encryption. pp.
519–536. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

14. Kraleva, L., Ashur, T., Rijmen, V.: Rotational cryptanalysis on mac algorithm
chaskey. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) Applied
Cryptography and Network Security. pp. 153–168. Springer International Publish-
ing, Cham (2020)

15. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.
(ed.) Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceed-
ings. Lecture Notes in Computer Science, vol. 839, pp. 17–25. Springer (1994).
https://doi.org/10.1007/3-540-48658-5 3

16. Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with
partitioning. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EURO-
CRYPT 2016. pp. 344–371. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

17. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspec-
tive: Practical distinguishers for round-reduced friet, xoodoo, and alzette. Cryp-
tology ePrint Archive, Report 2021/189 (2021), https://eprint.iacr.org/2021/189

18. Matsui, M.: Linear cryptanalysis method for des cipher. In: Helleseth, T. (ed.)
Advances in Cryptology — EUROCRYPT ’93. pp. 386–397. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1994)

19. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A.M. (eds.) Selected Areas in Cryptography - SAC 2014
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 8781, pp. 306–323.
Springer (2014)

20. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) Fast Software En-
cryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999,
Proceedings. Lecture Notes in Computer Science, vol. 1636, pp. 156–170. Springer
(1999)

18 Yaqi Xu, Baofeng Wu, and Dongdai Lin

A Application to ChaCha permutation

The stream cipher ChaCha is an improvement of Salsa20 [5]. Each round of

ChaCha uses 4 Quarter Round Functions, denoted by QR(v
(r)
a , v

(r)
b , v

(r)
c , v

(r)
d),

to permute the 4 × 4 state matrix, denoted by V (r). Every word v
(r)
i in V (r)

is 32 bits, i ∈ {0, . . . , 15}. For odd rounds, V (r+1) is calculated by selecting 4

columns, i.e., (v
(r)
0 , v

(r)
4 , v

(r)
8 , v

(r)
12), (v

(r)
1 , v

(r)
5 , v

(r)
9 , v

(r)
13), (v

(r)
2 , v

(r)
6 , v

(r)
10 , v

(r)
14) and

(v
(r)
3 , v

(r)
7 , v

(r)
11 , v

(r)
15) as the inputs for QR functions. For even rounds, V (r+1)

is computed by selecting 4 diagonals (v
(r)
0 , v

(r)
5 , v

(r)
10 , v

(r)
15), (v

(r)
1 , v

(r)
6 , v

(r)
11 , v

(r)
12),

(v
(r)
2 , v

(r)
7 , v

(r)
8 , v

(r)
13), (v

(r)
3 , v

(r)
4 , v

(r)
9 , v

(r)
14) as the inputs for QR functions. The

round function QR is presented in Fig. 6. In [3], the authors applied rotational

�

�

�

�

≪ 16

≪ 12

≪ 8

≪ 7

⊕

⊕

⊕

⊕

v(r)
a

v(r)
b

v(r)
c

v(r)
d

v(r+1)
a

v(r+1)
b

v(r+1)
c

v(r+1)
d

w(r)
a

w(r)
b

w(r)
c

w(r)
d

Fig. 6. The QR function of ChaCha.

cryptanalysis to the underlying permutation of ChaCha. They presented a rota-
tional distinguisher for 17-round ChaCha permutation with probability greater
than 2−488 whereas the probability of random permutation with same input size
is 2−511. It declares that the underlying permutation of ChaCha doesn’t behave
as a random permutation.

The extended application of rotational-linear cryptanalysis is presented as
follows. We build a rotational-linear distinguisher for 17-round ChaCha permu-
tation with 15-round rotational part E1, 1-round connective part Ec and 1-round
linear part E2. The lower bound for the probability of E1 is 2−430.2, given by [3].
The correlation of Ec is 2−2 with the masks α = ν1515 [0] and

←−α = ν1515 [1]. For lin-
ear part E2, the two output trails are β1 = (ν160 [16, 0]⊕ ν165 [7]⊕ ν1610 [0]⊕ ν1615 [24])
and β0 = (ν160 [17, 1, 0]⊕ ν165 [8]⊕ ν1610 [1]⊕ ν1615 [25]) with corresponding correlation
2−1. In conclusion, the correlation of rotational-linear distinguisher for 17-round
ChaCha permutation is greater than 2−433. Compared to rotational cryptanal-
ysis, the rotational-linear attack exhibits advantages.

B The proposition used when recovering partial key

Proposition 2 ([4]) After running Algorithm 1 for Nr times, the probability
that the correct key is among the key candidates is

psuccess ≥
1

2
Pr(C(kµ, kP) ≥ Θ) =

1

2

(
1− Φ

(
Θ −N · cor√

N

))
.

