
The Unique Chain Rule and its Applications⋆

Adithya Bhat1, Akhil Bandarupalli1, Saurabh Bagchi1, Aniket Kate1,2, and
Michael K. Reiter3

1 Purdue University, West Lafayette IN 47906, USA
{abhatk,abandaru,sbagchi,aniket}@purdue.edu

2 Supra
3 Duke University, Durham NC 27708, USA

michael.reiter@duke.edu

Abstract. Most existing Byzantine fault-tolerant State Machine Repli-
cation (SMR) protocols rely explicitly on either equivocation detection
or quorum certificate formations to ensure protocol safety. These mech-
anisms inherently require O(n2) communication overhead among n par-
ticipating servers. This work proposes the Unique Chain Rule (UCR),
a simple rule for hash chains where extending a block by including its
hash in the next block, is treated as a vote for the proposed block and its
ancestors. When a block obtains a vote from at least one correct server,
we can commit the block and its ancestors. While this idea was used
implicitly earlier in conjunction with equivocation detection or quorum
certificate generation, this work employs it explicitly to show safety.

We present three applications of UCR. We design Apollo, and Artemis:
two novel synchronous SMR protocols with linear best-case communi-
cation complexity using round-robin, and stable leaders, respectively as
the first two applications. Next, we employ UCR in a black-box fashion
toward making any SMR commits publicly verifiable, where clients will
no longer have to wait for 2f + 1 confirmations on every block, where κ
is a security parameter and f is the number of Byzantine faults toler-
ated by the protocol, but can instead collect a UCR proof consisting of
min(κ, f) + 1 extensions on a block. This results in faster syncing times
for clients as the publicly verifiable proofs can also be gossiped with every
new block extension confirming a new block.

1 Introduction

State Machine Replication (SMR) [37] is a fundamental distributed-computing
primitive that is receiving renewed attention due to its potential to support
blockchains. At its core, an SMR protocol coordinates a set of n servers running
a deterministic service so that they collectively implement the abstraction of a
single, correct server, even when a subset of servers turns malicious (or Byzan-
tine). Most SMR protocols [2–5,9,13,15–17,19,26,29,30,33,38–40,45] achieve this
coordination of forming a sequence/chain of blocks (of instructions/transactions)

⋆ An extended version is available at https://eprint.iacr.org/2021/180

https://eprint.iacr.org/2021/180

2 Bhat et al.

using a leader server that the other servers follow, with provisions to change this
leader in response to some faults or regularly by design.

In the standard (bounded) synchronous communication setting with the
worst-case network delay of ∆ for messages, publicly-verifiable Byzantine fault-
tolerant (BFT) SMR protocols can tolerate up to one-half Byzantine faults.4

Many synchronous SMR protocols [3, 4, 15, 17, 26, 38] achieve this resilience pri-
marily using the lack of equivocation in O(∆) time; here, confirming lack of
equivocation for a message (or a block) requires sending the message to all the
servers and then not hearing any complaints in 2∆ time. Other synchronous
protocols [17, 38] that avoid the above equivocation detection use the fact that
at most one message can obtain 3n/4 votes. Nevertheless, they still require cer-
tificates with O(n) signatures, and incur quadratic in n communication.

This work explores a significantly different approach towards SMR, which is
reminiscent of proof-of-work SMR systems [35, 43] such as Bitcoin. The Bitcoin
networks follow an informal rule that after observing six blocks of transactions
extending a block B, the block B is deemed as final; i.e., the probability of
the block B being rejected and replaced with another block by another correct
server is considered to be small enough. We observe that if we can ensure that
no alternate chain of blocks is possible in the permissioned SMR systems, i.e.,
the SMR chain we have is unique, then we can use the unique chain to commit
blocks. Subsequently, we ask the following question: How many blocks do we need
to observe before we are sure that a block B is final, in a permissioned network?
The answer turns out to be γ for a protocol if: (i) the γ blocks contain blocks
from at least one correct server, (ii) there is only one server that proposes a block
for a height, (iii) correct block proposals are always accepted, and (iv) we use a
tamper-resistant chain (e.g., hash-chain, where every block contains the hash of
the previous block). Based on these observations, we develop a consensus rule
called the Unique Chain Rule (UCR) (Section 3) and its three applications: two
novel SMR protocols: Apollo (Section 4) and Artemis (Section 5), and a protocol
to make any SMR publicly verifiable (Section 7).

At network speed with delay δ, our protocols commit a block every δ time,
with a constant5 per-block commit latency of (min(κ, f)+1)δ, and rely on∆ only
to detect crashed leader(s). Our protocols are the first synchronous SMR proto-
cols with certificate-free optimistically linear communication when the leader(s)
behave correctly. It also produces 2× more blocks as the time between two suc-
cessive produced blocks, i.e., block period is 1/2 of the state-of-the-art protocols
due to the lack of a round-trip communication to form quorum certificates. Our
protocols are efficient in terms of cryptography (see Table 1), making it a suitable
candidate for SMR in resource-restricted environments.

4 It is possible for SMR protocols to tolerate more than 1/2 faults. However, these
SMR protocols cannot safely convince any external observer of statements regarding
the latest state of the system due to the dishonest majority [34].

5 Many related works claim constant latency [2, 4]. The correct term should be
(min(κ, f)+1) as leader randomization is inherently assumed and for small f round-
robin protocols are sufficient.

The Unique Chain Rule and its Applications 3

Table 1: Comparison of the best case (i.e., all the servers are correct) and
worst case of Apollo with the related synchronous SMR works. Here κ̂ is
min(f, κ).

Protocol

Best Case Worst Case

Commit #Sign CC Block Latency #Sign CC

Latency Period

Dfinity [3, 27] 6∆+ 2δ O(n) O(n2) 2∆ O⋆(κ̂∆) O(κ̂n2) O(κ̂n3)

PiLi [17] 26δ O(n) O(n2) 2δ O(κ̂∆) O(κ̂n) O(κ̂n2)

Sync HS [4] 6δ O(n) O(n2) 2δ O(p⋆∆) +O(κ̂∆) O(κ̂n) O(κ̂n2)

Rot. SMR [6] 2∆+ 2δ O(n) O(n2) 2δ O(κ̂∆) O(κ̂n) O(κ̂n2)

Streamlet [15] 8∆+ 8δ O(n) O(n2) 2∆ O(κ̂∆) O(κ̂n) O(κ̂n2)

1−∆ SMR [5] 1∆+ 2δ O(n) O(n2) 2δ O(p⋆∆) +O(κ̂∆) O(κ̂n) O(κ̂n2)

OptSync [38] 2δ O(n) O(n2) 2δ O(p⋆∆) +O(κ̂∆) O(κ̂n) O(κ̂n2)

Apollo (κ̂+ 1)δ O(1) O(n) δ O(κ̂∆) O(κ̂n) O(κ̂n2)

Artemis (κ̂+ 2)δ O(1) O(n) 0 O(κ̂∆) O(κ̂n) O(κ̂n2)

Sign is the number of signature generated by all the servers per proposal/block.
The number of verification operations for each protocol is n times the signing
complexity as every signed message is verified by all the servers. CC stands for
Communication Complexity of the protocol. Block Period is defined as the time
between two successive block proposals. O⋆(g) denotes O(g) with high probability.
p⋆ denotes the number blocks proposed before the leader crashes. In
Sync-HotStuff [4] and OptSync [38], a leader is blamed only if p blocks are not
proposed in (2p+ 4)∆ time. If p′ blocks are proposed by time t, then the servers wait
for p⋆ = (2p′ + 4)∆− t time before blaming the leader.

4 Bhat et al.

UCR can be applied to make any SMR commit publicly verifiable, i.e., any
server that observes the SMR commit data can non-interactively confirm the
correctness of the commit. Such publicly verifiable commits can be leveraged
to efficiently disseminate the state and prove the state to the clients instead of
requesting 2f + 1 acknowledgments (of which at least f + 1 are guaranteed to
be from correct servers) from the servers for every block.

1.1 An Informal Exposition of Key ideas

Unique Chain Rule (UCR). As an example, consider a system of n servers
with up to f Byzantine servers, where the blocks proposed in every round are
from a round-robin among all the servers. Assume that the blocks use a hash-
chain, i.e., a block B proposed in round r includes the hash of its parent block
from the previous round r − 1. Implicitly, this proposer is voting for all the
blocks in rounds {r, . . . , 0}. In contrast to existing SMR protocols where quorum
certificates (i.e., a vector of signatures from more than 50% or 66.67% of the
servers) were built for every block of every round, we can use these implicit
votes to form certificates for blocks. A traditional certificate guaranteed that no
other block for the same height can get certified, while our implicit certificates
guarantee that no other chain with the same prefix can form, making the prefix
a unique chain. We present the resulting commit rule as the Unique Chain Rule
(UCR).
Apollo Protocol. Using UCR, we then develop an SMR protocol. We use
random leader selection to ensure that at least one leader is correct in any
sequence of κ + 1 rounds. We add a constraint that a server must extend a
block from the previous round unless it can obtain a certificate consisting of
n/2 + 1 signatures claiming Byzantine behavior. We use this to ensure that a
block proposed by a correct server cannot be skipped by Byzantine servers. Now,
if any server (including the client) observes a chain that is κ+ 1 long, it knows
that one of those servers is correct, and its block will never be skipped. Therefore,
the chain is unique and final; thus, it can be committed.

In the optimistic conditions, i.e., when the leader(s) is correct, Apollo pro-
tocol creates new blocks to increase the length of the chain and thus commit
blocks without equivocation detection. In this setting, it is sufficient for all the
servers to forward the latest block to the next leader. This gives us certificate-
free optimistic linearity and allows responsive commits, i.e., speeds independent
of ∆.

Round-robin protocols are efficient in distributing the system load across
all the participating servers and are also used to ensure chain quality, i.e., the
majority of the chain is from the correct servers. However, Byzantine servers can
slow the progress of the SMR by crashing and slowing down the pipeline.
Artemis Protocol. In order to overcome this, we present a stable leader-based
SMR protocol: Artemis protocol. In a nutshell, in Artemis protocol, there is a
dedicated leader server that creates blocks. The other servers run a modified
version of Apollo using the latest leader’s blocks. If the leader crashes, the pro-
tocol changes the view and elects a new leader. Since the latest block is used,

The Unique Chain Rule and its Applications 5

a slow proposer in the inner Apollo protocol may stall for some time, but when
the next correct server proposes, it will propose the latest block thus effectively
catching up with all the servers to the highest block.

Publicly Verifiable SMR. In several permissioned widely-deployed SMR im-
plementations, committed blocks or states are downloaded by clients by con-
necting to the servers and waiting for f + 1 acknowledgments for the block [7,
18,36,42]. This incurs a significant overhead on the servers for large numbers of
clients. If the chain is ℓ blocks long, the cost incurred by the servers is O(ℓf).

A typical approach to solving this is to add another step of quorum certificate
generation after committing in every round, and gossip this quorum certificate
to all the clients. This approach incurs O(1) signature generation overheads and
O(f) signature verification overheads for all the servers in the system. It also
incurs O(1), and O(f) certificate verification overheads respectively, with and
without the usage of threshold signatures, for the clients.

Using UCR, we can make the servers gossip a signed message after commit-
ting, in every round. On collecting any increasing sequence of κ+1 such signed
state messages, any client (without talking to the servers) can verify that the
state is correct leading to O(1) signature generation overhead, O(1) signature
verification overheads, for all the servers in the system, and O(κ) signature verifi-
cation overheads for the clients, irrespective of the usage of threshold signatures.
This application provides a trade-off to the publicly verifiable SMR problem with
fewer overheads on the servers and more overheads to the clients.

1.2 Related Work

Recently, several permissioned SMR protocols have emerged, in the standard
synchrony [4, 6, 15, 17, 38], weak synchrony [4, 26], partial synchrony [11, 16, 22,
23, 39, 40, 46], and asynchronous models [19, 29, 30, 33]6. Permissionless systems
such as Proof-of-Stake (PoS) blockchain protocols require a rotating leader based
SMR, where the leader is generally chosen randomly with probability of being
a leader for an epoch/round being directly proportional to the amount of stake
invested. Therefore, permissioned consensus protocols are of interest in this area.
We discuss the landscape of Proof-of-Work and Proof-of-Stake protocols.
PoW and PoS. In retrospect to this work, UCR can be viewed as being implicitly
applied in Proof-of-Work [35,43] and Proof-of-Stake [11,20] based systems, which
use the fact that votes on hash-chain or checkpoints in the directed acyclic hash
graph of blocks also serve as votes for prior checkpoints or blocks. In particular,
Casper [11] uses the fact that if a validator vote for two conflicting checkpoints
then its stake is slashed. Here, the conflicting checkpoint is implicitly determined
by checking two votes that differ in their ancestors.

In the next part of our literature review, we focus on works that are similar
to our work and use standard synchrony assumptions.
BFT-SMR Protocols. The applications of UCR in the literature have always been
in secondary roles as a helper mechanism to equivocation or quorum certificate

6 This list is not exhaustive.

6 Bhat et al.

based commit rules [2–4, 11, 19, 22, 29, 30, 33, 35, 38, 39]. For instance, the idea
of using a vote on a block in a hash-chain as votes for all its parents has been
used implicitly in [3,4,17,38]. In Sync-Hotstuff [4], Abraham et al. mention that
for a hash-chain “the voting step on a block also serves as a voting step for all
its ancestor blocks that have not been committed”. While several protocols [2–
4, 11, 19, 22, 29, 30, 33, 38, 39] use this for committing ancestors of a committed
block, none of them build an explicit protocol out of this observation. They use a
UCR-like idea whereby adding extra markers to vote messages for a block B, the
vote messages are used as endorsements (a vote) for that block and its ancestors,
and when an ancestor gets x endorsements it becomes x-strong. We dive deeper
into a few protocols to illustrate this.

Sync-HotStuff. Sync-HotStuff [4] proposes three protocols: (a) an SMR protocol
for standard synchrony, (b) an SMR protocol for mobile sluggish faults, and
(c) an SMR protocol with optimistic responsiveness in the mobile sluggish fault
model. They use the term mobile sluggish fault model to refer to weak synchrony.
All of their protocols use a fixed leader and run in views. In a view, the leader can
propose as many blocks as it wishes as soon as it has a certificate for the latest
block. This round-trip gives rise to the extra δ between two successive block
proposals. Since all of these steps occur in parallel, two consecutive proposals
are only delayed by 2δ.

OptSync. OptSync [38] is very similar to Sync-HotStuff, except servers can com-
mit synchronous or optimistically, simultaneously. If 2∆ passes after multicast-
ing a block, the commit is called a synchronous commit. If a block receives 3n/4
votes, then the servers commit the block, and this mode of commit is called a
responsive commit. They also present a responsive view-change protocol.

In contrast to both Sync-HotStuff and OptSync, Apollo and Artemis out-
put two and several, respectively, blocks for every block proposed, with a net
2× theoretical improvement in the throughput. Comparing block latencies with
OptSync, our protocols are slightly worse in the constants. However, our proto-
cols are linear in optimistic conditions. We treat OptSync as our baseline since
it has the lowest latency and block period.

PiLi. PiLi [17] proposes a blockchain (SMR) protocol. Rounds in PiLi are called
epochs. Every epoch consists of one propose and one vote step. Each epoch r lasts
for 5∆ as stated explicitly by Chan et al. [17], if the leader of epoch r+1 cannot
get a strongly notarized block (greater than 3n/4 votes) but only a notarized
block (greater than n/2 votes). This leads to a block period of 5∆ between
two successive proposals. However, the commit rule that is employed is: after
observing 13 consecutive notarized (certified with > f votes) blocks, commit the
prefix after removing the top 8 blocks. The commit rule also states that before
voting it must observe that there is no conflicting notarization for a block with
the same epoch number. This gives an additional 2∆ time before two successive
proposals. Since we now require 13 blocks to be notarized before committing
a block, we therefore must wait for 13 epochs, giving rise to the numbers in
Table 1.

The Unique Chain Rule and its Applications 7

1∆-SMR. 1∆-SMR [5] uses the term good-case latency to refer to optimistic
conditions when the leader is correct and the messages are delivered instantly,
i.e., δ ≈ 0. It explores the lowest commit latency achievable and shows a lower
bound of 1∆. It also presents an SMR protocol that has almost-optimal (1∆+
2δ) commit latency. However, it does not support optimistic responsiveness.
They show a Byzantine Broadcast protocol with the good-case latency of 1∆+
1δ if all the servers start at the same time (called as synchronized start), and
1∆ + 1.5δ otherwise. They use a black-box BA protocol at the end to finish
the protocol, and therefore, it is not clear how to use it as an SMR protocol
efficiently, besides running the Byzantine Broadcast repeatedly. All the above
synchronous SMR protocols have one thing in common: detect equivocation and
commit after ensuring that there is no equivocating blocks or proposals. Their
influence can be clearly observed in the quadratic communication and quadratic
signature verification complexity in Table 1.

Optimistically responsive synchronous protocols [4, 17, 38] support a mode
called optimistic responsiveness. In this mode, they assume > 3

4n servers along
with the leader(s) are correct and the network delivers messages for the correct
servers in O(δ), which allows the protocols to commit in O(δ).

Note on Optimistic Responsiveness Assumptions. The requirement for
optimistic responsiveness is from Sync-HotStuff [4] and OptSync [38]. They re-
quire the condition that the leader and any 3n/4 servers are correct. Our require-
ment for constant latency is that the view leader (if any) and the proposer set
(consisting of f+1 servers) is correct. Our requirement is incomparable (slightly
stronger) to the requirement from Sync-HotStuff and OptSync. PiLi [17] has the
strongest requirement that all the leaders (and thus all the servers) of an epoch
are correct for optimistic responsiveness.

We focus on another related work whose protocol flow is similar to our proto-
col in the communication pattern but have some significant differences. BChain.
BChain [22] is a partially synchronous SMR protocol where the servers are ar-
ranged in a chain and then the block is passed from the head to tail, and an
acknowledgment message in the reverse direction. This incurs O(n) communica-
tion over O(n) rounds to commit 1 block, and multiple blocks can be processed
in parallel under optimistic conditions. They use re-chaining and view-change
techniques if any server suspects any server of slowing the chain. With respect
to this, our protocols have constant latency and more efficient pipelining, leader
rotation, and view-change.

Our Apollo protocol produces two times the number of blocks produced by
the state-of-the-art synchronous SMR protocol OptSync [38] while having only
O(1) signature complexity. Our second Artemis protocol can produce and com-
mit as many blocks as the leader can sign, thus leading to a block period of
0. Unlike threshold signature-based protocols [2, 3, 25, 38, 46] our protocols can
achieve linear communication complexity without this assumption. This allows
our protocols to be used in the post-quantum settings where no threshold sig-
nature schemes are currently known.

8 Bhat et al.

Sanity Check with Bounds. Finally, we perform a sanity-check of our results
with the existing literature about lower and upper bounds in SMR. Shrestha
et al. [38, Theorem 1] show that if the optimistic commit latency is x when
tolerating more than n/3 Byzantine faults, then when n/2 − 1 servers crash
the commit latency must be 2∆ − x. We are subject to this bound, as in the
non-optimistic conditions, our commit latency is O(∆).

Abraham et al. [5] use the term good-case latency to denote the condition
when a fixed leader and < n/2 servers are Byzantine and the network delivers
messages in time 0 ≈ δ [5, Definition 1]. It is impossible to have a good-case
latency below ∆ [5, Theorem 3]. We are also subject to this bound, as there
exist adversarial strategies where our commit latencies are O(∆).
Strengthened-BFT. Strengthened-BFT [44] develop a protocol based on HotStuff.
In this protocol, the client chooses the number of faults x that it believes to
be corrupt in the system. The protocol guarantees that if a block is x-strong
committed, then no other block can be x′-strong committed, where x′ ≥ x in
the presence of t ≤ x Byzantine faults. They achieve this by adding endorsements
for every block B, which are either direct vote messages for B or indirect votes
for B by votes on B′ which extends B. Observe that this is similar to our
approach, however, they use it to achieve a client-belief diversity [32], in partially
synchronous settings, and using explicit vote messages for blocks, whereas we
build a new commit rule and use the extension itself as a vote to its parents
(thereby making the vote implicit). Their protocol gains linearity using threshold
signatures, and still uses certificates while we have linearity independent of the
threshold signature assumption.
Algorand. Algorand [24] is also a sublinear O(n log n) SMR protocol that assumes
strong synchrony, i.e., there exist periods (say 5% of the times) where the network
is synchronous. They use the idea of cryptographic sortition, i.e., use VRFs to
select a subcommittee (only the winners know that they won) of size c = log n
and these servers run a Byzantine agreement protocol among themselves. The
block period for this protocol is 2δ (1δ to declare to everyone that they were
elected, and another 1δ to broadcast the finalized block) along with the amount
of time required to finish the BA.

2 Preliminaries

Our system consists of a set N := {p1, . . . , pn} of n servers with f < n/2 Byzan-
tine servers with static corruptions7. A server is correct if it is never Byzantine.
Setup. We assume secure (n, n/2+1)-threshold digital signatures (e.g., BLS [8])
and denote signed messages from pi by ⟨·⟩pi

, and the aggregated threshold signa-
ture on the same message m as a (quorum) certificate C(m) similar to most other
SMR protocols (such as [4,16,17,27,38,46]). We assume that all the servers use

7 Our protocol is adaptively secure, but a different randomization protocol will be
needed. There is a trade-off between constant latency and increased signature com-
plexity using [12], or O(fδ) latency and constant signature complexity using round-
robin.

The Unique Chain Rule and its Applications 9

the same genesis block before starting the protocol which can be derived from a
Common Reference String (CRS) setup. We also use the CRS to randomize our
leaders as done by existing works [2–4].

We assume a fully connected standard (bounded) synchronous network which
assumes a public worst-case network delay ∆, i.e., if a correct server sends a mes-
sage to another correct server, then the message is received by the latter within
∆ time from when it was sent by the former. Similar to most recent synchronous
SMR protocols, we use two delays: ∆ and δ. ∆ refers to the synchrony bound,
i.e., the worst case network delay, and δ refers to the optimistic (actual/real)
network speed8. A multicast means a send-all operation where a server pi sends
a message to all servers N .
State Machine Replication—SMR. An SMR protocol (Definition 1) exe-
cutes transactions from clients using a state machine replicated across different
servers. Clients are nodes that can be the servers themselves. The SMR pro-
tocol is typically implemented by generating a linearizable log of transactions.
A secure SMR protocol guarantees two properties: safety, and liveness. Safety,
in a broad sense, ensures that the states of the servers must be consistent, i.e.,
no two correct servers output different states at any point. Liveness, in a broad
sense, argues that the system can never go into a deadlock.

Definition 1 (SMR [4]). Assume a system of n servers N := {p1, . . . , pn},
f of which are Byzantine. The SMR protocol implements a linearizable log of
transactions from clients with the following properties:

1. Safety. If two correct servers pi, pj ∈ N commit transaction tx and tx′,
respectively, at the same log height k, then tx = tx′.

2. Liveness. Each client transaction is eventually processed by the system.

Chains and Blocks. The servers agree on a chain C := {B0, . . . , Bℓ}, which
we define as a list of blocks9, where blocks contain client transactions. The
height of a block is the index in this list or the chain. A block at height k is
Bk. In particular, the first block B0 is the genesis block with height 0. A block
Bk := ⟨hk, cmds⟩L includes the hash of Bk−1 as hk = H(Bk−1) along with a list
of transactions cmds. Bk−1 and Bk share a parent-child relationship. hk is the
parent hash or pointer. Block Bk′ at height k′ < k is an ancestor of Bk as long
as they have valid parent hashes linking them.

The genesis block is always valid. The child Bk of a valid block Bk−1 is valid,
if hk is correct, and it satisfies other validity conditions imposed on cmds. A valid
chain C := {B0, . . . , Bℓ} is a list of valid blocks starting with the genesis block B0.
The chain size is the highest height of blocks in the chain, i.e., ℓ = height(C[−1]).
Tamper-resistance. Since the blocks in a chain are hash-linked, it is not pos-
sible to change a block in the chain without changing all the blocks after it. We
call this the tamper-resistance property of the chain (Lemma 2).

8 In practice, δ varies between pairs of servers, instances of time, and size of the
message. However, the analysis here assumes that a single δ value is the optimistic
delay time, a violation of which implies that we are not in the optimistic scenario.

9 We use the notation from Python.

10 Bhat et al.

3 Unique Chain Rule (UCR)

A quorum [31] is a subset of servers. In distributed protocols, we typically need
a certain number of acknowledgements on a message to ensure that the other
servers are in sync. We typically deal with f + 1 sized quorums in standard
synchrony (e.g., [2, 3, 5, 38]) or n − f quorums in non-synchronous10 networks
(e.g., [9,11,14–16,46]). In these quorums, the names of servers are not as impor-
tant, when compared to their count. A quorum certificate is a publicly verifiable
message consists of these specified number of signatures from a quorum, typically
instantiated with threshold signatures.

Synchronous SMR protocols [2, 4, 15, 17, 38] typically improve the fault tol-
erance from n > 3f to n > 2f by adding equivocation detection which involves
O(∆) waits due to the message delivery guarantees [15]. We observe that, in
a hash chain, equivocation is a chain fork (multiple valid chains), and resolv-
ing equivocations translates into a fork-resolution problem. If we want to avoid
equivocation detection, we need a mechanism to resolve chain forks.

For a system tolerating f Byzantine servers, f + 1 quorum certificate on a
block is insufficient to remove equivocation detection of the block. A Byzantine
proposer pL can propose two blocks B and B⋆. If two correct servers vote for
B and B⋆ respectively, without being aware of the existence of the other block,
then with the votes from the f Byzantine servers, both the blocks can obtain a
quorum certificate.

Unique Chains. Let γ be a parameter such that in any sequence of γ rounds,
there is at least one correct leader. Consider a protocol that uses round-robin
leaders who propose one block in every round using hash chains. Trivially, this
protocol has γ ← f+1. Consider that a server votes for a block by extending it in
its turn to propose, instead of the traditional approach of voting for every block
and building quorum certificates and detecting equivocation for them. Let chain
weight of a block be the number of unique servers extending a block. Finally,
if we can ensure that a correct proposer’s block for a round is always extended
by the correct servers, i.e., a Byzantine leader cannot propose a block without
extending the block from the previous round if the previous leader was correct,
then observe that when this chain weight exceeds γ for a block, no other valid
chain can be formed that does not extend this block. Intuitively, if this was not
true, then the Byzantine servers managed to overwrite a correct proposer’s block
thus leading to a contradiction.

We can ensure that a correct server’s block for a round is always extended
by the correct servers by changing the rejection condition: a valid block can
be rejected only if there are n/2 + 1 explicit complaints against it. By explicit
complaints, we mean n/2 + 1 signed (blame) messages for the round.

In the consensus literature so far, certificates consisted of signatures on a
particular message/block, and used O(1) such quorum certified blocks in the
commit rules. The examples include 3n/4 quorum with 1 certified block [4,17,38],

10 Non-synchronous includes partial synchrony, asynchronous networks, etc. that are
not standard synchrony.

The Unique Chain Rule and its Applications 11

2n/3 quorum with 3 blocks [14, 46], and n/2 + 1 quorum with 6, 13 blocks [15,
17]. However, we can look at the γ weighted chain suffix as equivalent to the
f + 1 quorum certificate for the prefix of the chain, thereby leading to implicit
certificates of size O(γ) = O(κ). Using this certificate, we can ensure that the
block, and thus the corresponding chain referenced by the block is unique, i.e., no
alternate chain can form by the protocol. Definition 2 specify the requirements
formally. In the rest of the paper, unless otherwise specified, we use γ ← f + 1.

Definition 2 (γ-UCR requirements). The requirements to apply γ-UCR in
a protocol: (1) the chains built are tamper-resistant, (2) blocks are proposed by
servers such that there is at least one correct server in any sequence of γ rounds,
and (3) a correct server’s blocks are always accepted by all the correct servers.

We state this formally in Theorem 1 as the Unique Chain Rule (UCR).

Theorem 1 (Unique Chain Rule). Consider a protocol for n servers toler-
ating f Byzantine faults, and satisfying Definition 2. Then, on observing a valid
chain C := {B0, . . . , Bℓ} of size ℓ (with ℓ > γ), commit the prefix chain C[: ℓ−γ].

4 Apollo Protocol

In this section, we present the Apollo protocol which uses UCR (Theorem 1) to
build a pipelined, linear SMR protocol for the standard synchrony model.
Proposer Set. We define a proposer set P consisting of all (or f+1) serversN . Let
R be a random number chosen in the setup. We use a well-known technique [15,
17] and use H(R, i) to randomly elect the leaders from P in every round. As
servers agree on misbehavior from leaders (by committing blocks that contain
proof of equivocation/no progress of leaders), we remove (or replace) the servers
from the proposer set. This allows us to eventually stabilize on a set of leaders
of size at least f + 1 (even if n ̸= 2f + 1) that are correct.

4.1 Overview

We give an overview of Apollo in Fig. 1 and the technical details in Fig. 2. The
protocol proceeds in rounds. p1 is the leader for the first round and performs
the Propose Step (Step 1 and blue lines) at time t = 0. It proposes a block B1

extending the genesis block since it is the first proposer, but generally the servers
extend the block proposed by the leader for the previous round. At time t = δ,
p2 proposes the next block B2 immediately after receiving the block B1. Note
that this gives us γ ← κ+ 1 except with negligible probability.

A Byzantine leader can try to slow down the protocol or may not send its
proposal to the next leader. To ensure that a correct leader is always able to
propose, all correct servers also forward the proposals of the current round to
the next leader (Step 2 and gray lines).

The Propose Step and the Relay Step follow each other with different leaders
drawn from P. Additionally, in every round, the correct servers commit blocks
after removing the top κ blocks from their local chains.

12 Bhat et al.

p1

p2

p3

p4

p5

p1 p1 p1 p1

p2 p2 p2 p2

p3 p3 p3 p3

p4 p4 p4 p4

p5 p5 p5 p5

Time

0 δ 2δ 3δ 4δ

Fig. 1: Overview of the Apollo Protocol in the optimistic case, when all the
leaders are correct. The blue messages are block proposals. The dotted lines are
relay messages. The proposer for round r + 1 can immediately propose as soon as it
receives the block for round r. Hence, Apollo has a block period of δ, as it does not
have to collect votes and certificates for the previous block unlike existing protocols.

Let Lr be the leader of round r. Let κ be the security parameter.

1. Propose. On receiving block Bk−1 for round r − 1, the leader Lr for round r
proposes a block Br := ⟨hk, cmds⟩L by multicasting ⟨propose, Bk⟩Lr

extending the
previous block Bk−1 from the previous leader.
2. Relay. On receiving a valid proposal for round r, forward it to the next leader
Lr+1, set timer blTimer(r + 1) to 4∆ and start counting down (refer Fig. 3). Cancel all
timers for lower rounds.
3. (Non-blocking) Commit. On receiving a valid chain of blocks C := {B0, . . . , Bℓ}
commit blocks C[: ℓ− κ] if ℓ > κ.

Fig. 2: Rounds in Apollo protocol.

4.2 Handling Faults

Next, we give an intuition of fault-handling in Apollo and present a concise
technical description in Fig. 3.
Block Equivocation. A leader can equivocate by sending different blocks to
different correct servers. Unlike existing synchronous SMR protocols [2,4], Apollo
does not need to detect equivocation to preserve safety or liveness.

Consider a leader Lr equivocating in round r. At least one of the blocks
reaches the next leader Lr+1 through the Relay step. It will immediately propose
the next block. In general, an equivocation is detected by correct servers in two
ways: (1) A correct server whose head of the chain is Bk′ obtains a block Bk from
some leader Lr with k′ < k and an unknown parent hash. It will immediately
request all the blocks Bk′ , . . . , Bk−1 until Bk connects to the server’s local chain.
If Lr cannot provide valid ancestors within 2∆, then the correct server blames Lr

by sending a blame message. A correct Lr can always respond to such queries and
therefore not get blamed by correct servers. When the parent block is received,
a correct server may realize equivocations due to conflicts with the local chain.
(2) A correct server gets two different blocks during the Relay Step (Step 2).

The Unique Chain Rule and its Applications 13

Let Lr and Lr+1 be the leaders of rounds r and r + 1 respectively.

1. Blames. The server pi always does the following:
– No-progress Blame. If blTimer(r) expires and no valid block was proposed by
leader Lr, then multicast ⟨r,NPBlame⟩i along with the latest known local block Bk for
round r − 1. Wait for a blame certificate C(r,NPBlame). Treat the blame certificate
as a virtual block for round r and continue with the Relay Step (Step 2) of Fig. 2.
Multicast the certificate C(r,NPBlame) to all the servers.
– Equivocation. If there exists two valid blocks B and B⋆ proposed by server
pj ∈ N in any round r⋆ for the first time, obtained directly or indirectly, multicast a
⟨r,EQBlame⟩ message and the two equivocating blocks B and B⋆ with signatures.

2. Remove Leader (Optional). On committing a block with blame certificates
⟨r,EQBlame⟩i or C(r,NPBlame), remove the leader from the proposer set P.

Fig. 3: Handling Byzantine behavior in Apollo protocol.

In both of these cases, the correct servers multicast the equivocations to all the
other servers if it detected it directly, or via forwarding the blame from others.
All the correct servers include the equivocation blame as a meta-transaction in
their future proposals until it is committed.

It is not secure to update the proposer set or punish the Byzantine server
on obtaining a blame certificates, until it is committed. This is because we do
not use timing guarantees, i.e., rely on ∆, to ensure that all correct servers have
detected and agreed on the equivocation. On committing a block containing
the blame certificates, we know that sufficient correct servers have extended
the block, thereby ensuring all the other correct servers will learn about the
Byzantine server.

Crashed Leader(s). Consider leaders Lr and Lr+1 for rounds r and r + 1
respectively. Let Lr not propose any block. Now, the correct servers could be
processing/waiting for blocks at different rounds ≤ r−1. The first correct server
to finish processing the block Bk for round r − 1, will wait for 4∆ time (we
will describe soon why to wait for 4∆) after relaying Bk before blaming Lr.
Upon timing out, a correct server cannot be sure if all the correct servers are
waiting for a proposal for round r, since our protocol can proceed at network
speed. Therefore, different correct servers could be waiting for blocks from rounds
r′ < r. This case can also occur if the Byzantine leaders send the proposals to
some correct servers, who will then be ahead in round number when compared
to the servers that did not receive the proposals.

In any case, a correct server on timeout for round r, sends the latest block
Bk to all the correct servers in order to synchronize all the correct servers up
to round r − 1. This multicast is not done during the steady state in order to
obtain the desired linearity in the steady state as this step has a communication
complexity of O(n2) when n− f servers time out. We know that within another
4∆ all servers will relay the proposal to Lr and then blame when it does not
respond. On collecting n/2+1 such blame messages, all the correct servers build
a virtual block for round r. Using threshold signatures, this block has O(1) size.

14 Bhat et al.

From this point, we continue with the relay (Step 2) of this virtual block to Lr+1

just as though we received a proposal with this virtual block from Lr.

Round-Relative Timers. Apollo uses round-relative timers, i.e., blame based
on the latest round. Earlier works [4, 38] use stable leaders and view-relative
timers, where in a view v, the condition for triggering a no-progress blame is to
not receive p blocks in (2p+4)∆ time. Assume that the first 1000 proposals are
made at network speed after which the leader crashes. In Sync-HotStuff [4] and
OptSync [38], the servers needlessly wait for 2004∆ before blaming the leader.
We overcome this, since our timers are always rooted at the last received block.

Why is 4∆ timeout sufficient? Say pi is the first server that enters round r
at time t. It relays the previous block to the current leader Lr which will reach
Lr by time t+∆. A correct leader Lr may not recognize this chain, and request
the full chain. This request will reach pi by time t + 2∆. A correct leader will
then immediately propose since it has a valid chain to extend. This proposal will
reach pi by time t + 4∆. Therefore, waiting for a total of 4∆ after relaying the
block is always sufficient for a correct server to propose, and thus ensure that a
correct leader is never blamed a correct server.

Security Analysis. We state the security theorems here without proofs and
defer the security analysis to Appendix B.

Theorem 2 (Apollo Safety). For any height k ≥ 0, if two correct servers
commit to blocks B and B⋆, then B = B⋆.

Theorem 3 (Apollo Liveness). Assuming standard synchrony, Apollo al-
ways makes progress, and commits blocks with a period of at most 12∆.

5 Artemis Protocol

Round-robin protocols working at the network speed can be slower than stable
leader protocols since a slow leader can slow the system, while a stable leader
may make faster progress as evidenced in practical implementations [28]. In this
section, we construct Artemis which uses a view leader that coordinates the
chain, and still allows applying UCR by running a Apollo sub-protocol on the
chain produced by the view leader.

Views. In stable-leader SMRs [4, 9, 14, 38, 38, 46], a view number v represents
a period with a stable leader Lv. A change in view number indicates a leader
change. In Artemis, a view number denotes a period with a fixed view leader.

Artemis uses two leaders: view leader Lv and round leader Lr. The view
leader Lv of view v creates blocks and builds a chain. The round leader Lr for
round r runs Apollo sub-protocol by creating proposals called votes containing
the hash of the latest block from the view leader.

The Unique Chain Rule and its Applications 15

B1 B2 B3 B4 B5 B6 B7 B8

V1 V2 V3 V4

Bi

Vi

Committed blocks Signed by Lv

Vote msg. V2 = ⟨vote, v, 2, H(B3)⟩2

Fig. 4: High-level overview of Artemis (n = 5). Vi are vote messages proposed by
servers pi. We apply UCR using the vote messages resulting in block commits (in blue).

Let Lv be the view leader for the view v.
View Leader. Lv creates blocks Bk := ⟨bk, H(Bk−1)⟩Lv

and multicasts the chain
of blocks to all the servers. The servers pi do the following in round r:

1. Update chain. On receiving valid blocks from Lv add them to the locally
stored chain. Set blameViewLeader← ∆.

2. Vote. If pi = Lr for the round r in view v, then it multicasts ⟨vote, v, r,H(Bk)⟩i
where Bk is the highest height block known to the server.

3. Relay. On receiving ⟨vote, v, r,H(Bk)⟩Lr
for a valid chain containing Bk, for-

ward the vote message to Lr+1 along with the latest known block Bk. Set
blTimer(r + 1) to 4∆ and cancel all timers for rounds r′ ≤ r.
(Non-blocking) Commit. On receiving a valid chain of votes C⋆ := {V0, . . . , Vℓ}
commit all ancestors of the block referred by the vote Vℓ−κ if ℓ > κ.

Fig. 5: Steady-state protocol for Artemis.

5.1 Steady-state protocol

An overview is presented in Fig. 4. The blocks B1 to B8 are signed by the
view leader Lv. The vote messages Vi = ⟨vote, v, r,H(B)⟩i are signed by pi.
Intuitively, we can visualize Artemis as using Lv to build a chain of blocks, and
simultaneously using Apollo on vote messages using round leaders Lr. The vote
messages form a tamper-resistant chain, and the round leaders are chosen akin
to Apollo.

The view leader Lv of view v collects transactions from the clients and creates
a chain of blocks. Like related works [4, 16, 17, 38, 46], we assume that there
are always sufficient transactions available11. Thus, every server must receive
p blocks in p∆ time from Lv. Due to the synchrony assumptions, if block Bk

is received at time t, then Bk+1 must be received within time t + ∆. This is
because Lv does not need any interaction to create blocks in the steady-state,

11 This assumption can be removed by slightly changing the blaming mechanism to not
blame if the local transaction buffer is empty and attempting to send transactions
to Lv on timeout first, and then blaming. An example of this implementation can
be found in Concord-BFT [25].

16 Bhat et al.

unlike related works [4,6,38,46] which requires every block to contain a quorum
certificate and thus requiring a round-trip of communication.

The round-leaders can be viewed as running Apollo sub-protocol. A vote is
a block for the Apollo sub-protocol. A series of vote messages for consecutive
rounds forms a vote chain. A vote at round r for block Bk is connected indirectly
to the vote at round r+1 for block Bk+1 via the hash pointers between Bk and
Bk+1 ensuring tamper-resistance.

A key difference between blocks in Apollo and in Artemis is that vote mes-
sages can produce and commit multiple blocks between each proposal. When
the view leader is correct, Byzantine servers do not affect the throughput of the
system, as the fast correct servers will collect more blocks while the Byzantine
servers slow the system down, and include the highest hash in its turn to send
the vote message. This will eventually result in committing a large volume of
transactions. In the example illustration in Fig. 4, the vote message V4 results
in the block B3 and its ancestors having κ + 1 = f + 1 = 3 children and hence
results in committing them.

Artemis retains the round-relative blaming property for the view leader from
Apollo which improves the worst-case performance of Artemis over the state-of-
the-art related works [38].

5.2 Handling Byzantine Behavior

Fig. 6 describes the protocol to handle Byzantine behavior in Artemis. We discuss
three states: (i) Lv is correct, (ii) Lv crashes, and (iii) Lv is Byzantine.
Case (i).When Lv is correct, the vote chain is exactly like Apollo except that the
blocks are detached from the proposals and come from Lv. A Byzantine server
cannot forge alternate blocks, and can thus only crash or send messages slowly.
In the former case, we simply blame the server and use a blame certificate as a
virtual block for round r. The latter case does not affect throughput as other
correct servers will keep downloading the chain and proposing them during their
turn to propose, thereby ensuring all the servers catch-up to the latest chain.
Case (ii). When Lv crashes at time t, the round-relative timer kicks in for all
correct servers by time t+∆. By time t+ 2∆, all the correct servers will blame
and by t+ 3∆ obtain C(Blame, Lv, v), and thus quit the view v. By time t+ 4∆
all the correct servers enter the view v + 1. The extra ∆ wait is used to ensure
that all servers stop processing vote messages in the view v.

In the new view v + 1, all the correct servers lock on to the highest block
known from the view v. From the safety properties of Apollo, we know that
if a correct server commits a block, then all possible chains must extend the
committed block. The servers then send their highest view v block to Lv+1. By
time t+ 5∆, Lv+1 receives all the chains, and by time t+ 7∆, Lv+1 has all the
chains and proposes the first block for the view v+1 which will reach all correct
servers by time t+8∆ well within the 5∆ timer for the first block from Lv+1 by
the other correct servers. We ensure that the second block in the view v+1 must
be certified, which guarantees that the chain selected by Lv+1 extends at least
one honest server’s locked block and has provided a convincing vote message

The Unique Chain Rule and its Applications 17

Let Lv and Lv+1 be the leaders for views v and v+1. The server pi does the following:

– Round Leader Equivocation. If two equivocating votes are observed from a
server pj directly or indirectly, then multicast ⟨Blame, j⟩i, the equivocating votes,
and the latest vote received.

– Slow Round Leader. If blTimer(r) expires for a round r, multicast ⟨Blame, Lr⟩i
and the latest vote message received.

– Blame Certificates for Round Leaders. On collecting n/2 + 1 blame messages
or a blame certificate for server pj , multicast the blame certificate and include it in
the next vote message. On committing a block with vote containing a blame
certificate, optionally remove pi from P.

– View Leader Equivocation. If two equivocating blocks are observed from Lv

directly or indirectly, then multicast ⟨Blame, Lv, v⟩i and the equivocating blocks.
Quit view v and stop processing messages in view v.

– Slow View Leader. If blameViewLeader expires, multicast ⟨Blame, Lv, v⟩i.

– Quit View. On receiving f + 1 ⟨Blame, Lv, v⟩ messages or C(Blame, Lv, v), quit
the view v if we haven’t quit already. Multicast C(Blame, Lv, v), and wait ∆ to
enter view v + 1.

– New View. Perform the following steps:
(i) Lock on to the block Blck referred by the highest vote in view v. Send the head
of the local chain and the highest vote to Lv+1 and wait for 5∆ for the first block
in view v + 1.
(ii) Lv+1 waits for 2∆ and requests missing blocks (if any), and then sends
⟨Bk, v + 1, Vr⟩Lv

where Bk is a block extending the highest block from view v, Vr

is the highest view v vote received. Collect f + 1 votes, and include
C(newView, v + 1, H(Bk)) in the next block.
(iii) For the first block in view v + 1 send ⟨newView, v + 1, H(Bk)⟩i if Bk extends
Blck block (equal to or longer than). Send ⟨newView, v + 1, H(Bk)⟩i to Lv+1 and
wait for 4∆. Ensure that the next block contains C(newView, v + 1, H(Bk−1)) and
continue the steady-state.

Fig. 6: Handling Byzantine faults in Artemis.

from view v. The latter guarantees that the highest committed block must be
extended in the new view v + 1.

Case (iii). If Lv is Byzantine and tries to equivocate (via vote message or directly
sending Bk and B⋆

k to different servers), it will be detected by all correct servers
within O(κ∆) and thus trigger view-change. This does not affect the safety as
at least one vote in the vote chain is from a correct server whose vote pins the
blocks at that height, akin to Apollo.

During the view-change, Byzantine servers may add votes with the help of
Lv and send them to only some correct servers. In the worst case, Byzantine
servers can add up to f more vote messages. This is not a concern, since all the
servers lock on to blocks that extends the highest known vote message. Thus,

18 Bhat et al.

any chain in the next view v + 1 is guaranteed to result in committing of the
highest committed block in view v.

Security Analysis. Using Theorem 4 and Theorem 5 we prove that Artemis
is a secure SMR protocol in standard synchrony. See Appendix C for proofs.

Theorem 4 (Artemis Safety). If two correct servers commit blocks Bk and
B⋆

k at height k, then Bk = B⋆
k.

Theorem 5 (Artemis Liveness). Assuming standard synchrony, Artemis al-
ways makes progress, and commits blocks with a period of at most O(κ∆).

6 Performance Evaluation

270 280 290 300 310 320 330 340
Response Rate (in Kops/s)

0

200

400

600

800

L
at

en
cy

(i
n

m
s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 7: General performance comparison of Opt Sync, Apollo and Artemis on c5
machines with n = 3 and p = 0 (parameters from Opt Sync [38]).

Implementation details. We implemented prototype versions of Apollo and
Artemis in Rust due to its strong memory safety and concurrency support. The
original Opt Sync implementation uses the HotStuff C++ codebase [28], but we
reimplemented it in Rust for a fair comparison. We employ several system-level
and engineering optimizations (see Appendix E.1) that significantly improve
the performance of round-robin protocols. The implementation for Apollo uses
round-robin to rotate the leaders, whereas our implementation of Artemis uses
random leaders using a hash function with a random seed.

We use two types of clients: normal clients, used in Sync HotStuff, Opt Sync,
and HotStuff, wait for f +1 acknowledgements from the server to be sure that it
is safe to commit a block. This is necessary for safety, as the block on its own does

The Unique Chain Rule and its Applications 19

0 20 40 60 80 100 120
Offered Load w (in Kops)

280

300

320

340

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 8: Response rate vs. offered load comparison between Opt Sync, Apollo and
Artemis on c5 machines with n = 3 and p = 0.

0 20 40 60 80 100 120
Offered Load w (in Kops)

0

200

400

600

800

L
at

en
cy

(i
n

m
s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 9: Latency vs. offered load comparison between Opt Sync, Apollo and Artemis
on c5 machines with n = 3 and p = 0.

20 Bhat et al.

not contain any information that guarantees safety. The UCR clients are specific
to UCR enabled protocols where the clients apply UCR n their local chain.
Therefore, in our protocols, the proposer simply forwards proposals to all its
connected clients, and the clients finalize blocks using UCR. For details regarding
the block structure, signature schemes, and setup, please refer Appendix E.1 and
the source code [1].

Similar to related works [4, 38, 46, 47], we use w to denote the offered load
(number of pending commands maintained by the client), b to denote the block/batch
size (number of transactions per block), and p to denote the payload (number
of additional bytes attached per transaction when responding to clients). We
launch one client and wait until 1,000,000 commands are committed. The client
initially sends w commands and records the time T . The client also records the
time when sending new transactions. When a block is committed, the client
measures the latency for the transactions in the block. When 1,000,000 trans-
actions are processed, the client reports the throughput as the total number of
transactions divided by the time taken since T , and the latency as the average
latency for all the transactions.

Setup. We used AWS c5.4x-large (c5) and t2.medium (t2) instances for our
experiments. The original work of Opt Sync [38] used the more powerful c5
machines, and we also use them to show parity of our implementation. We use
the relatively weaker t2 machines to argue the efficiency of our protocols. AWS
advertises 10 Gigabit networking for the c5 instances and “Low to moderate”
for the t2 instances. We use the term local to denote the experiments where all
the instances were deployed in a single datacenter (us-east2). We use the term
geo-distributed to denote the setup where the machines are spread equally across
the following clusters: (1) Ohio, (2) Tokyo, (3) N. Virginia, (4) N. California,
(5) Singapore, (6) Ireland, (7) Canada, and (8) Oregon, in that order. For in-
stance, when we say we launch n = 9 instances, 2 instances are launched in
Ohio, 1 instance in the rest of the clusters, and n + 1st instance which is the
client is instantiated in Tokyo. We run our experiments without any Byzantine
behaviour by nodes to focus on analyzing throughput and latency. In order to
reproduce the results, this order is important, as changing the order where the
nodes are located in the round-robin affects the throughputs and latencies.

6.1 Basic Performance

In this set of experiments, we show that our implementation of Opt Sync has
better performance for Opt Sync in the same environment (c5, same block size,
and payloads). We also use this opportunity to demonstrate how Apollo and
Artemis perform when equipped more powerful hardware and networks. We use
n = 3 nodes.

Block sizes. In Fig. 7, we show the performance of Opt Sync, Apollo and
Artemis for b = 400. We also performed experiments for b = 100 and b = 800,
but we defer them to Appendix D.1. We observe that Opt Sync has higher
response rates (throughput) when compared to Apollo and Artemis, and lower

The Unique Chain Rule and its Applications 21

latency than Apollo. The latency of Artemis is similar to the latency of Opt
Sync (Fig. 9) since the view leader will always make progress resulting in lower
wait times for the clients. Apollo and Artemis have 7% and 4% lower response
rates than Opt Sync, and Apollo has 300% worse latency at the worst point.

We also observe in Fig. 8 and Fig. 9 that the response rates and latencies
fluctuate due to the round-robin properties of UCR. In a round-robin protocol,
there are cases where p1 and p2 proposes, but p3 may process messages in the
wrong order resulting in slowdowns. A second source of fluctuation is the random
leader selection for Artemis, which may result in choosing slow nodes.

When running the same experiments in the local settings using the t2 ma-
chines, we observe that all three protocols have roughly the same response rates
(Fig. 25). But Fig. 26 shows that Apollo clearly has a higher latency than Opt
Sync, and Artemis has latencies close to Opt Sync. The increased latency of
Apollo is due to the slow round-robin processing of blocks from one node at a
time, as opposed to Artemis whose view leader will keep producing blocks even
if the round leaders are slow. We present more runs for 5 different block sizes in
the Appendix D.1.

100 150 200 250 300

Response Rate (in Kops/s)

0

100

200

300

400

500

L
at

en
cy

(i
n

m
s)

Artemis (p0)

Apollo (p0)

Opt Sync (p0)

Artemis (p128)

Apollo (p128)

Opt Sync (p128)

Artemis (p1024)

Apollo (p1024)

Opt Sync (p1024)

Fig. 10: General performance comparison of Opt Sync, Apollo and Artemis on c5
machines with n = 3 and b = 400 (parameters from Opt Sync [38]).

Payloads. Fig. 10 presents similar trends for various payloads. We present the
variation with the offered loads in Appendix D. The trends show that Apollo
has the best performance with increasing payloads (see p = 1024). This occurs
due to the round-robin nature as it can ensure an even load distribution for all
the nodes. Stable leader protocols like Opt Sync are stressed since the leaders

22 Bhat et al.

have to add payloads to every block, and thus reduces the response rates. In
Artemis, despite using UCR, the view leader’s TCP sockets are stressed as it
has to send large amounts of payloads as well handle large amounts of incoming
transactions, which slows down the system. At such large payloads, Apollo has
the best response rate and the lowest latency.

Running experiments on the t2 machines for n = 9 (Fig. 27 and Fig. 28), we
see a similar effect, where the performance of both Artemis and Opt Sync, with
Artemis performing worse, but Apollo has 500% more response rate than Opt
Sync, and 80% better latency than Opt Sync for p = 1024.

6.2 Geo-distributed performance

In this set of experiments, we evaluate performance in a geo-distributed setting.
Block sizes. We repeat the response rate vs. latency experiments from the

previous section but for n = 9 nodes in the geo-distributed setup over the 8
regions

2 4 6 8 10 12 14 16
Response Rate (in Kops/s)

0

10

20

30

40

50

60

O
ff

er
ed

L
oa

d
w

(i
n

K
op

s)

Artemis (b100)

Opt Sync (b100)

Apollo (b100)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b800)

Opt Sync (b800)

Apollo (b800)

Fig. 11: General performance comparison of Opt Sync, Apollo and Artemis on t2
machines in a geo-distributed setting with n = 9 and p = 0.

Fig. 11 presents the general comparison of performance between Opt Sync,
Apollo and Artemis. First, we observe that the latencies increase by several
orders for all the protocols due to the geo-distributed nature. We can clearly
observe that Artemis outperforms Opt Sync and Apollo in terms of both the
latency and the response rates. The short latencies are due to committing large
volumes faster, as opposed to Opt Sync which tries to commit every transaction
faster. For b = 800, Artemis performs 27% better than Opt Sync with latencies
similar to that of Opt Sync (see Fig. 29).

The Unique Chain Rule and its Applications 23

We can also see that the geo-distributed nature along with the increased n,
brings the performance of Apollo closer to that of Opt Sync with the response
rates being only 9% worse, and the latency being similar to Opt Sync.

6.3 Scalability

In this set of experiments, we evalute the scalability of our protocols with in-
creasing number of nodes n in the system. We fix the block size b = 400. We
use three offered load parameters 10, 000, 60, 000 and 100, 000 to simulate low,
medium and high offered load conditions.

10 20 30 40 50 60

Number of nodes (n)

6

8

10

12

14

16

18

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (w10.0)

Apollo (w10.0)

Opt Sync (w10.0)

Artemis (w60.0)

Apollo (w60.0)

Opt Sync (w60.0)

Artemis (w100.0)

Apollo (w100.0)

Opt Sync (w100.0)

Fig. 12: Response rate vs. n for the t2 machines in local setting. b = 400, p = 0.

Fig. 12 shows the scalability of response rates with increasing n. The response
rate of Opt Sync is linear due to the requirement of 3n/4 + 1 signtures, some
of which need to arrive from slower parts of the network. We observe that the
response rates of Artemis also deteriorates but is still much better than Opt
Sync by 16% for n = 65. The loss of response rates could be because the clients
are not able to saturate the system for increasing n or due to the leader random-
ization forcing the leaders to be selected from the farther regions of the network.
Interestingly, we observe that the performance of Apollo improves as n increases
upto n = 33, after which the performance drops but the response rates of Apollo
are still better than Opt Sync by 25%. The linearity and the improved block
period helps scalability.

Fig. 13 shows the scalability of latencies of our protocols. We observe that
the latency of Artemis and Apollo increases linearly due to the UCR, whereas

24 Bhat et al.

10 20 30 40 50 60

Number of nodes (n)

0

5

10

15

20

25

L
at

en
cy

(i
n

m
s)

Artemis (w10.0)

Apollo (w10.0)

Opt Sync (w10.0)

Artemis (w60.0)

Apollo (w60.0)

Opt Sync (w60.0)

Artemis (w100.0)

Apollo (w100.0)

Opt Sync (w100.0)

Fig. 13: Latency vs. n for the t2 machines in geo-distributed setting. b = 400, p = 0.

the latency of Opt Sync is almost stable. For n < 65, we observe that Artemis
and Apollo have better latencies than Opt Sync due to better block periods. At
n = 65, the latency of Apollo is 66% worse.

Summary. Based on our experiments, we observe that Apollo and Artemis
have improved response rates as compared to Opt Sync due to its faster block
production, and linear commit rule resulting in a faster commit. We also observe
that this increase in response rates can also sometimes improve the latency.
Finally, we show that the linear protocols Apollo and Artemis scale better than
the quadratic state-of-the-art SMR protocol Opt Sync.

7 Publicly Verifiable SMR

A publicly verifiable SMR allows the clients to verify the state of the SMR
protocol without having to contact the servers that run the protocol. Prominent
blockchain protocols [11,35,43] are naturally publicly verifiable as their commit
rules are properties of their chains12. However, not all protocols can use the
quorum certificates generated for agreement to convince the clients that it is the
accepted block. For instance, in Sync-HotStuff [4], multiple quorum certificates
could be generated for a round without the correct servers having heard them. By

12 In Proof-of-Stake protocols, the stake is defined by the chain, and thus the leaders
are publicly verifiable. However, the public verifiability of the chain depends on the
underlying SMR used in the protocol.

The Unique Chain Rule and its Applications 25

contacting a Byzantine server, a correct client can be convinced of an incorrect
state in this manner.

Permissioned protocols [4, 14, 38] can be made publicly verifiable (if not al-
ready) by building quorum certificates on the state for every height. The clients
can then verifiably obtain the state using the quorum certificate. For a chain of
length ℓ, this incurs a signature complexity of O(ℓf) for the SMR servers.

We can use UCR to design an improved protocol to ensure public verifia-
bility for any SMR. Intuitively, we can run Apollo (Fig. 1) protocol with the
SMR commits as input without the fault tolerance. The liveness property of the
underlying SMR automatically guarantees progress. This results in a signature
complexity for a chain of length ℓ to O(ℓ+ κ).

Consider any SMR protocol that implements Definition 1 with n servers
tolerating f faults. Then every log position r > 0 has some state Sr attached to
it. Committing blocks can be observed as agreement on Sr, and clients of SMR
protocols need Slatest, where, the latest means that a state that can only be up
to ∆ time old for synchronous systems.13

We present a simple UCR-based publicly verifiable SMR protocol in Fig. 14
that is agnostic to the underlying details of the SMR. In this new protocol, we
first chain the states together by including the hash of the parent state using
state tuples vr = ⟨H(Sr−1), Sr⟩ for the log position r. A designated server with
id i = H(R, r) mod n signs and sends this to all the active clients. We can also
use gossip networks to diffuse this message as done by Bitcoin [35].

A client that obtains any κ+ 1 such signed vj for j > i, and downloads the
chain, both of which can come from any external source, can be guaranteed that
Sr must be committed (see Lemma 1). Note that, unlike Apollo, here we do not
blame the server with id i if no vr are received. The protocol can still continue
because the hash chain and κ + 1 implicit votes guarantee that no other root
state Sr can get committed.

Servers. For every round r, if H(R, r) mod n = j, then the server pj gossips vr :=
⟨H(Sr−1), Sr⟩j (or some digest of Sr).

Clients. Any external client commits Sr if all the following are satisfied: (a) collects
valid (vr1 , vr2 , . . . , vrf), (b) r ≤ r1 < r2 < · · · < rκ+1, (c) obtains H(Sri), H(Sri−1)
for r1 ≤ i ≤ rκ+1, and (d) downloads Sr. Here, by valid we mean that all the messages
are correctly signed.

Fig. 14: Publicly verifiable SMR.

To ensure safety, we show in Lemma 1 that the commits made by any client
with access to information about the chain and vi must be the same as the state

13 We cannot discuss it in terms of block heights because any number of blocks might
be successfully committed within ∆ because of the responsiveness of our protocols.
For partially synchronous systems it is not possible to guarantee any form of the
latest state before GST.

26 Bhat et al.

committed by the correct servers in the underlying SMR protocol. We state the
security lemma here and defer the formal proof to Appendix A.

Lemma 1 (Commit Safety). If a correct client commits Sr using Fig. 14 for
round r, then all the correct SMR servers must have committed Sr.

8 Acknowledgements

We thank Ling Ren and Ittai Abraham for helpful feedback on the various appli-
cations of UCR, Kartik Nayak for discussions regarding the good-case latency,
Nibesh Shrestha for feedback on the draft, and Manish Nagaraj for early dis-
cussions. This work was supported in part by NIFA award number 2021-67021-
34252, the National Science Foundation (NSF) under grant CNS1846316, the
United States Department of Agriculture, and the Army Research Lab Contract
number W911NF-2020-221.

References

1. Libchatter-rs/examples at master · libdist-rs/libchatter-rs, https://github.com/
libdist-rs/libchatter-rs

2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous Byzantine
Agreement with Expected O(1) Rounds, Expected $$O(n2̂)$$ Communication,
and Optimal Resilience. In: Goldberg Ian, and Moore, T. (eds.) Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 11598 LNCS, pp. 320–334. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32101-
7 20, http://link.springer.com/10.1007/978-3-030-32101-7 20

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L.: Dfinity Consensus, Explored. IACR
Cryptology ePrint Archive 2018, 1153 (2018), https://eprint.iacr.org/2018/
1153

4. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: Sim-
ple and Practical Synchronous State Machine Replication. In: 2020 IEEE Sym-
posium on Security and Privacy (SP). vol. 2020-May, pp. 106–118. IEEE,
Oakland (May 2020). https://doi.org/10.1109/SP40000.2020.00044, https://

ieeexplore.ieee.org/document/9152792/
5. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case Latency of Byzan-

tine Broadcast. In: Proceedings of the 2021 ACM Symposium on Princi-
ples of Distributed Computing. pp. 331–341. ACM, New York, NY, USA
(Jul 2021). https://doi.org/10.1145/3465084.3467899, https://dl.acm.org/doi/
10.1145/3465084.3467899

6. Abraham, I., Nayak, K., Shrestha, N.: Optimal Good-Case Latency for Ro-
tating Leader Synchronous BFT. In: Bramas, Q., Gramoli, V., Milani, A.
(eds.) 25th International Conference on Principles of Distributed Systems
(OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 217, pp. 27:1–27:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.OPODIS.2021.27,
https://drops.dagstuhl.de/opus/volltexte/2022/15802

https://github.com/libdist-rs/libchatter-rs
https://github.com/libdist-rs/libchatter-rs
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1007/978-3-030-32101-7_20
http://link.springer.com/10.1007/978-3-030-32101-7_20
https://eprint.iacr.org/2018/1153
https://eprint.iacr.org/2018/1153
https://doi.org/10.1109/SP40000.2020.00044
https://ieeexplore.ieee.org/document/9152792/
https://ieeexplore.ieee.org/document/9152792/
https://doi.org/10.1145/3465084.3467899
https://dl.acm.org/doi/10.1145/3465084.3467899
https://dl.acm.org/doi/10.1145/3465084.3467899
https://doi.org/10.4230/LIPIcs.OPODIS.2021.27
https://drops.dagstuhl.de/opus/volltexte/2022/15802

The Unique Chain Rule and its Applications 27

7. Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z., Malkhi,
D., Naor, O., Perelman, D., Sonnino, A.: State machine replication in the li-
bra blockchain (2019), https://developers.diem.com/papers/diem-consensus-
state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf

8. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Jour-
nal of Cryptology 17(4), 297–319 (Sep 2004). https://doi.org/10.1007/s00145-004-
0314-9, https://doi.org/10.1007/s00145-004-0314-9

9. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on bft consensus (2019)

10. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus pp.
1–14 (Nov 2019), http://arxiv.org/abs/1807.04938

11. Buterin, V., Griffith, V.: Casper the friendly finality gadget (2019)

12. Cachin, C., Kursawe, K., Shoup, V.: Random Oracles in Constantinople: Practi-
cal Asynchronous Byzantine Agreement Using Cryptography. Journal of Cryptol-
ogy 18(3), 219–246 (Jul 2005). https://doi.org/10.1007/s00145-005-0318-0, http:
//link.springer.com/10.1007/s00145-005-0318-0

13. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

14. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proac-
tive recovery. ACM Transactions on Computer Systems 20(4), 398–461
(Nov 2002). https://doi.org/10.1145/571637.571640, https://doi.org/10.1145/
571637.571640

15. Chan, B.Y., Shi, E.: Streamlet: Textbook Streamlined Blockchains. In: Proceed-
ings of the 2nd ACM Conference on Advances in Financial Technologies. pp.
1–11. AFT ’20, Association for Computing Machinery, New York, NY, USA
(Oct 2020). https://doi.org/10.1145/3419614.3423256, https://doi.org/10.1145/
3419614.3423256

16. Chan, T.H.H., Pass, R., Shi, E.: Pala: A simple partially synchronous blockchain.
IACR Cryptol. ePrint Arch. 2018, 981 (2018)

17. Chan, T.H.H., Pass, R., Shi, E.: Pili: An extremely simple synchronous blockchain.
IACR Cryptol. ePrint Arch. 2018, 980 (2018)

18. github - vmware/concord-bft: concord byzantine fault tolerant state machine repli-
cation library 2021 (2021), https://github.com/vmware/concord-bft

19. Danezis, G., Kogias, E.K., Sonnino, A., Spiegelman, A.: Narwhal and Tusk:
A DAG-based Mempool and Efficient BFT Consensus, vol. 1. Association for
Computing Machinery (2021). https://doi.org/10.1145/3492321.3519594, http:

//arxiv.org/abs/2105.11827

20. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Lec-
ture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 10821
LNCS, pp. 66–98 (2018). https://doi.org/10.1007/978-3-319-78375-8 3,
https://link.springer.com/chapter/10.1007/978-3-319-78375-8 3

21. Determinant: Determinant/salticidae (2021), https://github.com/Determinant/
salticidae, https://github.com/Determinant/salticidae

22. Duan, S., Meling, H., Peisert, S., Zhang, H.: BChain: Byzantine Replication
with High Throughput and Embedded Reconfiguration. In: Aguilera, M.K., Quer-
zoni, L., Shapiro, M. (eds.) Principles of Distributed Systems. pp. 91–106. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-14472-6 7

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/s00145-005-0318-0
http://link.springer.com/10.1007/s00145-005-0318-0
http://link.springer.com/10.1007/s00145-005-0318-0
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3419614.3423256
https://doi.org/10.1145/3419614.3423256
https://doi.org/10.1145/3419614.3423256
https://github.com/vmware/concord-bft
https://doi.org/10.1145/3492321.3519594
http://arxiv.org/abs/2105.11827
http://arxiv.org/abs/2105.11827
https://doi.org/10.1007/978-3-319-78375-8_3
https://link.springer.com/chapter/10.1007/978-3-319-78375-8_3
https://github.com/Determinant/salticidae
https://github.com/Determinant/salticidae
https://doi.org/10.1007/978-3-319-14472-6_7

28 Bhat et al.

23. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback
(Jun 2021), http://arxiv.org/abs/2106.10362

24. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
Byzantine Agreements for Cryptocurrencies. In: SOSP 2017 - Proceedings of the
26th ACM Symposium on Operating Systems Principles. pp. 51–68. ACM, New
York (2017). https://doi.org/10.1145/3132747.3132757

25. Golan Gueta, G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M.,
Seredinschi, D.A., Tamir, O., Tomescu, A.: SBFT: A Scalable and Decentral-
ized Trust Infrastructure. In: 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). pp. 568–580. IEEE (Jun
2019). https://doi.org/10.1109/DSN.2019.00063, https://ieeexplore.ieee.org/
document/8809541/

26. Guo, Y., Pass, R., Shi, E.: Synchronous, with a Chance of Partition Tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp.
499–529. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

27. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system (2018)

28. Hot-Stuff: hot-stuff/libhotstuff (2021), https://github.com/hot-stuff/
libhotstuff

29. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All You Need
is DAG. In: Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing. pp. 165–175. ACM, New York, NY, USA
(Jul 2021). https://doi.org/10.1145/3465084.3467905, https://dl.acm.org/doi/
10.1145/3465084.3467905

30. Keidar, I., Naor, O., Shapiro, E.: Cordial Miners: Blocklace-Based
Ordering Consensus Protocols for Every Eventuality (Aug 2022).
https://doi.org/10.48550/arXiv.2205.09174, http://arxiv.org/abs/2205.09174

31. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems 4(3), 382–401 (Jul
1982). https://doi.org/10.1145/357172.357176, https://dl.acm.org/doi/10.1145/
357172.357176

32. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. p. 1041–1053. CCS ’19, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3319535.3354225, https:

//doi.org/10.1145/3319535.3354225

33. Malkhi, D., Szalachowski, P.: Maximal Extractable Value (MEV) Protection on a
DAG (Sep 2022), http://arxiv.org/abs/2208.00940

34. Momose, A., Ren, L.: Multi-Threshold Byzantine Fault Tolerance. In: Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1686–1699. CCS ’21, Association for Computing Machinery, New
York, NY, USA (Nov 2021). https://doi.org/10.1145/3460120.3484554, https:

//doi.org/10.1145/3460120.3484554

35. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep., Manubot
(2019)

36. ConsenSys/quorum (Sep 2021), https://github.com/ConsenSys/quorum, original-
date: 2016-11-14T05:42:57Z

http://arxiv.org/abs/2106.10362
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/DSN.2019.00063
https://ieeexplore.ieee.org/document/8809541/
https://ieeexplore.ieee.org/document/8809541/
https://doi.org/10.1007/978-3-030-26948-7_18
https://github.com/hot-stuff/libhotstuff
https://github.com/hot-stuff/libhotstuff
https://doi.org/10.1145/3465084.3467905
https://dl.acm.org/doi/10.1145/3465084.3467905
https://dl.acm.org/doi/10.1145/3465084.3467905
https://doi.org/10.48550/arXiv.2205.09174
http://arxiv.org/abs/2205.09174
https://doi.org/10.1145/357172.357176
https://dl.acm.org/doi/10.1145/357172.357176
https://dl.acm.org/doi/10.1145/357172.357176
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1145/3319535.3354225
http://arxiv.org/abs/2208.00940
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/3460120.3484554
https://github.com/ConsenSys/quorum

The Unique Chain Rule and its Applications 29

37. Schneider, F.B.: Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys 22(4), 299–319 (Dec
1990). https://doi.org/10.1145/98163.98167, https://dl.acm.org/doi/10.1145/
98163.98167

38. Shrestha, N., Abraham, I., Ren, L., Nayak, K.: On the Optimality of Optimistic
Responsiveness. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 839–857. ACM, New York, NY, USA
(Oct 2020). https://doi.org/10.1145/3372297.3417284, https://dl.acm.org/doi/
10.1145/3372297.3417284

39. Spiegelman, A., Giridharan, N., Sonnino, A., Kokoris-Kogias, L.: Bullshark:
DAG BFT Protocols Made Practical. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2705–
2718. CCS ’22, Association for Computing Machinery, New York, NY, USA
(Nov 2022). https://doi.org/10.1145/3548606.3559361, https://doi.org/10.1145/
3548606.3559361

40. Team, T.D.: The Internet Computer for Geeks (2022), https://eprint.iacr.org/
2022/087

41. team, T.: Build reliable network applications without compromising speed. (2021),
https://tokio.rs/, https://tokio.rs/

42. Tendermint: tendermint/tendermint: Tendermint core (bft consensus) in go,
https://github.com/tendermint/tendermint

43. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

44. Xiang, Z., Malkhi, D., Nayak, K., Ren, L.: Strengthened Fault Tolerance in
Byzantine Fault Tolerant Replication. In: 2021 IEEE 41st International Con-
ference on Distributed Computing Systems (ICDCS). pp. 205–215 (Jul 2021).
https://doi.org/10.1109/ICDCS51616.2021.00028

45. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347–356. ACM (2019)

46. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff:
BFT Consensus with Linearity and Responsiveness. In: Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing. pp. 347–
356. PODC ’19, Association for Computing Machinery, New York, NY, USA
(Jul 2019). https://doi.org/10.1145/3293611.3331591, https://doi.org/10.1145/
3293611.3331591

47. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consen-
sus without byzantine oligarchy. In: 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20). pp. 633–649. USENIX Association
(Nov 2020), https://www.usenix.org/conference/osdi20/presentation/zhang-
yunhao

48. Anonymized source code (2021), https://drive.google.com/file/d/1WNK1oit7oK7B58Plsa1pHbE-
I68Ll7Rf/view?usp=sharing

A Security Analysis

Lemma 2 (Tamper resistance of hash-chains). Let C := {B0, . . . , Bℓ}
and C⋆ := {B⋆

0 , . . . , B
⋆
ℓ } be two valid chains of size ℓ > 0. If Bℓ = B⋆

ℓ , then
Bℓ−1 = B⋆

ℓ−1, . . ., B0 = B⋆
0 , i.e., C = C⋆.

https://doi.org/10.1145/98163.98167
https://dl.acm.org/doi/10.1145/98163.98167
https://dl.acm.org/doi/10.1145/98163.98167
https://doi.org/10.1145/3372297.3417284
https://dl.acm.org/doi/10.1145/3372297.3417284
https://dl.acm.org/doi/10.1145/3372297.3417284
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://eprint.iacr.org/2022/087
https://eprint.iacr.org/2022/087
https://tokio.rs/
https://github.com/tendermint/tendermint
https://doi.org/10.1109/ICDCS51616.2021.00028
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao

30 Bhat et al.

Proof. Given a valid chain {B0, . . . , Bk−1, Bk, Bk+1, . . . , Bℓ} and for any k ≤ ℓ,
it is not possible (except with negligible probability) to obtain another valid
chain of blocks {B0, . . . , Bk−1, B

⋆
k , Bk+1, . . . , Bℓ} where Bk ̸= B⋆

k , since changing
a block naturally changes its hash thereby rendering all its direct and indirect
children invalid members of the tampered chain.

Proof of Theorem 1. We restate Theorem 1 here for convenience.

Theorem 1 (Unique Chain Rule). Consider a protocol for n servers toler-
ating f Byzantine faults, and satisfying Definition 2. Then, on observing a valid
chain C := {B0, . . . , Bℓ} of size ℓ (with ℓ > γ), commit the prefix chain C[: ℓ−γ].

Proof. Suppose for the sake of contradiction such a protocol outputs two chains
C := CP ||CS and C′ := C′P ||C′S where CP ∩C′P ̸= ∅. Since CP ∩C′P ̸= ∅ there exists
at least one block that differs in these two chains. Therefore, from Lemma 2
CS ̸= C′S , i.e., no block is the same.

However, both of these prefixes contain blocks from f+1 correct servers. Since
n = 2f + 1, either there exists two correct servers in CS and C′S that does not
extend the block proposed by the other server in C′S and CS respectively, leading
to a contradiction that there are only f Byzantine servers, or there is a common
block in CS where both of these correct servers extend each other’s blocks, which
leads to a contradiction with CS ̸= C′S or the violation of Lemma 2.

Proof of Lemma 1.

Lemma 1 (Commit Safety). If a correct client commits Sr using Fig. 14 for
round r, then all the correct SMR servers must have committed Sr.

Proof. If a correct client commits Sr, then Step (a), Step (b), and Step (c)
must be satisfied. From Step (c) we know that the chain from Sr1 to Srf+1

is
tamper resistant, and from Step (a) and Step (b) we know that at least one
correct server attests to the fact that one of

{
Sr, . . . , Srf+1

}
is committed. Since

they are tamper resistant, Sr must be committed by a correct server. From the
security of Definition 1, we know that if a correct server commits Sr then all the
other correct servers commit Sr.

B Security Analysis for Apollo

In this section, we prove safety and liveness of Apollo in standard synchrony.
The commit rule employed by Apollo from Theorem 1 guarantees that no two
conflicting blocks will be committed by any correct server. On a high-level, we
want the following important properties to ensure security: (i) Correct leaders
are always able to propose, and (ii) Correct proposals are always committed.

Definition 3 (Valid Proposal). A valid proposal for round r consists of a
block Bk extending the parent Bk−1 from round r′ < r, and contains blame
certificates C(r′′,NPBlame) for r′ < r′′ < r.

The Unique Chain Rule and its Applications 31

For the standard synchrony assumption, we add the following constraints to
chain validity (in addition to the definitions from Section 2):

Definition 4 (Valid Chain). A valid chain C := {B0, . . . , Bℓ} of size ℓ con-
sists of:

– A hash chain of blocks (from Section 2), i.e., for any 0 ≤ i < ℓ, Bi−1 is
the parent of Bi, or

– A block Bk extending the parent block Bj with valid blame certificates
C(i,NPBlame) or of the type C(i, ⟨r,EQBlame⟩) with equivocating blocks, as vir-
tual blocks for round i, where i ∈ (j, k), j ∈ [1, k), and k ∈ [1, ℓ].

Definition 4 defines a valid chain to be a chain consisting of valid blocks
including blame certificates serving as virtual blocks. The standard synchrony
allows this as the assumption dictates that in the lifetime of the protocol only f
servers can crash/equivocate. From the tamper resistance property (Lemma 2),
we are guaranteed that a Byzantine server cannot go back in time and replace
older proposals with virtual blocks, thus ensuring the protocol safety.

We first prove that a block proposed by a correct server will always be com-
mitted.

Theorem 6 (Correct Commit for Correct Leaders). For any round r ≥ 1,
if the leader Lr is correct and proposes a block Bk, then Bk will be committed
by all correct servers in round r + f + 1.

Proof. Safety. To understand why this is true, let us take a look at what a
Byzantine leader Lr+1 of round r+1 can do with Bk. The Byzantine leader can
decide to not extend the block. The only way to do this is to obtain n/2 + 1
blames against the correct leader.

Let us prove this by induction. The base case holds trivially for r = 0. Assume
it is true up to round r − 1. Let pi be the earliest correct server to reach round
r, either via a timeout from round r − 1 and obtaining a blame certificate, or
by obtaining a block Bk−1 for round r − 1. Let t be the global clock time at
this point. Before time t, all correct servers can be waiting for blocks for rounds
r′ < r. Now, pi forwards its block (virtual or real) for round r− 1 at time t. The
leader Lr being correct, will respond to all the servers with a block Bk for round
r by time t+4∆ (after requesting any unknown chain). Since the earliest correct
server does not timeout, no other correct server can timeout for Lr. Therefore,
the statement holds true for round r.

Liveness. A Byzantine leader Lr+1 can extend B using two proposals Bk+1

and B⋆
k+1. In this case, eventually some version of the chain with one of the two

proposals Bk+1 or B⋆
k+1, will be κ+1 long, when Lr+κ+1 proposes a block. This

ensures that B is committed.

Now, we prove the safety of the commit rule.

Proof of Theorem 2.

32 Bhat et al.

Theorem 2 (Apollo Safety). For any height k ≥ 0, if two correct servers
commit to blocks B and B⋆, then B = B⋆.

Proof. For k = 0, the proof is trivial since the genesis block B0 is agreed upon
by assumption.

Assume that two correct servers commit to two blocks Bk and B⋆
k with

B⋆
k ̸= B⋆

k for some height k. This implies that there exist two valid (refer Defini-
tion 4) chains

{
Bk, . . . , Bk+κ

}
and

{
B⋆

k , . . . , B
⋆
k+κ

}
. From the tamper resistance

property (Lemma 2), this implies that there are two proposals for all blocks start-
ing from height k to k+κ. This implies κ+1 servers equivocated or have blame
certificates. Since each leader is chosen randomly (with or without replacement),
the probability of all κ+1 leaders being Byzantine is negligible in κ. Therefore,
we cannot obtain two chains as described previously.

To prove liveness, from Theorem 6, we know that in one of the servers in
rounds k⋆ ∈ {k, . . . , k + κ} is correct, and therefore its block is eventually (by
round k⋆ + κ + 1) committed, thereby committing B. We prove it formally in
Theorem 3.

Proof of Theorem 3.

Theorem 3 (Apollo Liveness). Assuming standard synchrony, Apollo al-
ways makes progress, and commits blocks with a period of at most 12∆.

Proof. Let t be the current global clock time, at which time the first correct
server reaches round r. It enters round r by obtaining a blame certificate or a
block for round r − 1. In the worst case, due to the network delay or due to
Byzantine servers, a correct server will blame a crashed leader Lr for round r
at time t+ 4∆, followed by multicasting the block to all the servers. This block
and blame will reach all the correct servers by time t+ 5∆. At time t+ 7∆, all
the correct servers will enter round r if not already in round r.

Now all these correct servers multicast the block for round r − 1 to the
crashed leader Lr again and wait for 4∆ before sending a blame at time t+11∆.
This blame takes an additional ∆ time to reach all other correct servers by
time t + 12∆. At this point, we commit one block, because this virtual blame
certificate block extends the local chain of every correct server. Therefore, in
the worst case, it can take 12∆ for a block to be committed, but we will always
make progress.

The 12∆ wait only occurs f times in the lifetime of networks assuming stan-
dard synchrony. If all the servers are correct, but the network is slow, then we
always progress with a period of ∆.

Theorem 2 and Theorem 3 prove that Apollo is a secure SMR protocol under
the standard synchrony assumption.

The Unique Chain Rule and its Applications 33

C Security Analysis of Artemis

In this section, we prove the security of Artemis in standard synchrony. On a
high level, we want to guarantee the following to ensure safety and liveness:

(i) If two correct servers commit Bk and B⋆
k , for the same height k and view

v, then Bk = B⋆
k .

(ii) If two correct servers commit Bk and B⋆
k for the same height k but across

different views, then Bk = B⋆
k .

(iii) A correct view leader can always propose blocks and will never be blamed
by correct servers.

(iv) A correct round leader can always vote.

Lemma 3 (Safety within a view). If two servers commit blocks Bk and B⋆
k

at height k in the same view v, then Bk = B⋆
k.

Proof. The proof is analogous to the proof from Apollo except that the blocks
come from the view leader Lv. The proof still holds even if Lv equivocates, or
crashed but the view change has not occurred yet.

Lemma 4. During a view change from view v to view v + 1, a correct view
leader Lv+1 will not be blamed by any correct server.

Proof. Let Bk is the highest committed block by some correct server pi in view
v. This implies that there exist Vj through Vj+κ that resulted in committing
Bk. We know that at least one of these proposers are correct with non-negligible
probability and thus irreplaceable. Let T be the time at which the earliest server
pm enters view v + 1 by obtaining the blame certificate, multicasting it and
waiting for ∆. By time T + ∆, all correct servers will enter the view v + 1.
By the end of time T + ∆, all the correct servers will lock on to their highest
known chain, and send the highest vote message and the highest block to the
next leader Lv+1. By time T + 2∆+ 2∆ = T + 4∆ (additional 2∆ to download
the latest chain), Lv+1 obtains a chain and a vote message that is at least as
high as the highest among all the correct servers. The leader will now pick the
highest chain, and extend it to create the first block in view v + 1 which will
reach all the correct servers by time T + 5∆. Thus, no correct server will blame
Lv+1 because of the 5∆ timeout for the first block.

Since the new view leader Lv+1 is correct, and it extended the longest chain
and also send the longest vote which extends the lock of all the correct servers, all
the correct servers will send the message ⟨newView, v + 1, ·⟩ by time T +5∆+2∆
or T + 7∆ (the additional 2∆ for the correct servers (non-leaders) to download
the new chain). These messages will reach Lv+1 by time T + 8∆ at which point
the leader constructs the second block along with the certificate and multicasts
it which will reach all the correct servers by time T +9∆. Thus, no correct server
will blame Lv+1 because of a timeout for the second block.

Lemma 5 (Unique Extensibility across views). Let Bk be the highest block
committed by a correct server in a view v. Let v′ > v be any view that comes
after the view v. Then all valid chains in view v′ must extend Bk.

34 Bhat et al.

Proof. Consider v′ = v+1. A valid chain formed in view v+1, must have obtained
a certificate C(newView, v + 1, ·). This implies at least one correct server voted
to validate the new view which implies that Lv+1 produced a valid V ⋆ message
that extends the lock of this correct server. By the safety properties of Apollo,
V ⋆ must extend Bk since the fact that Bk was committed, implies that there is
a sequence of f +1 votes that extend Bk and thus V ⋆ must also extend Bk.

Lemma 6 (Safety across views). If two servers commit blocks Bk and B⋆
k

across views v and v′ > v, then Bk = B⋆
k.

Proof. Let pi and pj commit Bk and B⋆
k in view v and v′ respectively. From

Lemma 5, we know that all valid chains in view v′ must extend Bk which leads
to a contradiction. Therefore, B⋆

k = Bk must be true.

Finally, we prove the safety of Artemis.

Theorem 4 (Artemis Safety). If two correct servers commit blocks Bk and
B⋆

k at height k, then Bk = B⋆
k.

Proof. If two correct servers commit Bk and B⋆
k in the same view, then from

Lemma 3 Bk = B⋆
k . If two correct servers commit them in different views, then

from Lemma 6 Bk = B⋆
k holds.

The liveness proof involves liveness for the view-leader as well as the round
leaders.

Lemma 7 (Liveness for round leaders). If Lr is a correct round leader,
then Lr will always be able to propose blocks.

Proof. The liveness property for round leaders follows trivially from Apollo in
standard synchrony.

Lemma 8 (Liveness for view leader). If Lv is a correct view leader, then
Lv will always be able to propose blocks.

Proof. The proof follows trivially from Lemma 4.
Analogous to existing stable-leader based protocols [10,14,46], for theoretical

liveness, the view-leaders must be changed regularly such as after every 1000
rounds, or a mechanism to blame the view leader needs to implemented [25]
where the servers blame the view leader if a transaction from a client is not
included within a certain time bound.

Finally, we prove the liveness of Artemis. For completeness, we recall the
liveness theorem here.

Theorem 5 (Artemis Liveness). Assuming standard synchrony, Artemis al-
ways makes progress, and commits blocks with a period of at most O(κ∆).

Proof. The liveness proofs follow from Lemma 7 and Lemma 8. The O(κ∆) time
for the liveness parameter appears because in the worst case when κ consecutive
view leaders are bad, there will be no valid blocks produced for 9(κ + 1)∆
time.

The Unique Chain Rule and its Applications 35

D Experiments Addendum

D.1 Extended Basic Performance Experiments

160 180 200 220 240 260 280 300
Response Rate (in Kops/s)

0

200

400

600

L
at

en
cy

(i
n

m
s)

Artemis (b100) Opt Sync (b100) Apollo (b100)

Fig. 15: Response rate vs. latency comparison between Opt Sync, Apollo and Artemis
on c5 machines with n = 3 and b = 100.

0 20 40 60 80 100 120
Offered Load w (in Kops)

150

175

200

225

250

275

300

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b100) Opt Sync (b100) Apollo (b100)

Fig. 16: Response rate vs. offered load comparison between Opt Sync, Apollo and
Artemis on c5 machines with n = 3 and b = 100.

36 Bhat et al.

0 20 40 60 80 100 120
Offered Load w (in Kops)

150

175

200

225

250

275

300

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b100) Opt Sync (b100) Apollo (b100)

Fig. 17: Latency vs. offered load comparison between Opt Sync, Apollo and Artemis
on c5 machines with n = 3 and b = 100.

270 280 290 300 310 320 330 340
Response Rate (in Kops/s)

0

200

400

600

800

L
at

en
cy

(i
n

m
s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 18: Response rate vs. latency comparison between Opt Sync, Apollo and Artemis
on c5 machines with n = 3 and b = 800.

E Implementation Details and Optimizations

E.1 Implementation Details

We implement our protocols in Rust due to its strong memory safety and correct-
ness guarantees. We use the tokio runtime to drive our protocol. Our codebase is
inspired from the design in Diem [7] as well as HotStuff. Our codebase contains
implementations of Sync HotStuff, Opt Sync, Apollo and Artemis, along with
two types of clients for them. We implemented two variants of Sync HotStuff:

The Unique Chain Rule and its Applications 37

0 20 40 60 80 100 120
Offered Load w (in Kops)

280

300

320

340
R

es
p

on
se

R
at

e
(i

n
K

op
s/

s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 19: Response rate vs. offered load comparison between Opt Sync, Apollo and
Artemis on c5 machines with n = 3 and b = 800.

0 20 40 60 80 100 120
Offered Load w (in Kops)

280

300

320

340

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b800) Opt Sync (b800) Apollo (b800)

Fig. 20: Latency vs. offered load comparison between Opt Sync, Apollo and Artemis
on c5 machines with n = 3 and b = 800.

a stable leader and a round-robin variant. Analogous to the implementation in
HotStuff, we also treat a certificate as a compact vector of ED25519 signatures.
Our entire codebase consists of 10K lines of Rust code. The consensus modules
consist of about ≈ 800 lines of Rust code for Apollo, ≈ 1.2K lines for Sync Hot-
Stuff (for both variants), ≈ 800 lines for Artemis, and ≈ 635 lines for Opt Sync.
All the implementations include consensus code for the clients.

38 Bhat et al.

0 20 40 60 80 100 120

Offered Load w (in Kops)

0

100

200

300

400

500

L
at

en
cy

(i
n

m
s)

Artemis (p0)

Opt Sync (p0)

Apollo (p0)

Artemis (p128)

Opt Sync (p128)

Apollo (p128)

Artemis (p1024)

Opt Sync (p1024)

Apollo (p1024)

Fig. 21: Response rate vs. offered load of Opt Sync, Apollo and Artemis on c5
machines with n = 3 and b = 400 (parameters from Opt Sync [38]).

0 20 40 60 80 100 120

Offered Load w (in Kops)

100

150

200

250

300

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (p0)

Apollo (p0)

Opt Sync (p0)

Artemis (p128)

Apollo (p128)

Opt Sync (p128)

Artemis (p1024)

Apollo (p1024)

Opt Sync (p1024)

Fig. 22: Latency vs. offered load of Opt Sync, Apollo and Artemis on c5 machines
with n = 3 and b = 400 (parameters from Opt Sync [38]).

We choose to re-implement Sync HotStuff (stable leader and round-robin)
and Opt Sync instead of using the authors’ public implementation [28], for the
following reasons:

The Unique Chain Rule and its Applications 39

0 20 40 60 80 100 120 140
Offered Load w (in Kops)

0

2000

4000

6000
L

at
en

cy
(i

n
m

s)

Artemis (b100)

Opt Sync (b100)

Apollo (b100)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b800)

Opt Sync (b800)

Apollo (b800)

Artemis (b1600)

Opt Sync (b1600)

Apollo (b1600)

Artemis (b3200)

Opt Sync (b3200)

Apollo (b3200)

Fig. 23: Latency vs. offered load of Opt Sync, Apollo and Artemis on t2 machines
with n = 3 and p = 0 (parameters from Opt Sync [38]).

0 20 40 60 80 100 120 140
Offered Load w (in Kops)

30

40

50

60

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b100)

Opt Sync (b100)

Apollo (b100)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b800)

Opt Sync (b800)

Apollo (b800)

Artemis (b1600)

Opt Sync (b1600)

Apollo (b1600)

Artemis (b3200)

Opt Sync (b3200)

Apollo (b3200)

Fig. 24: Response rate vs. offered load of Opt Sync, Apollo and Artemis on t2
machines with n = 3 and p = 0 (parameters from Opt Sync [38]).

(1) The public implementation is adapted from the library for HotStuff [?,
28], a partially synchronous SMR protocol, yielding a more complex implemen-
tation than necessary. We rewrote protocols from scratch to build a cleaner
implementation.

(2) The public implementation is optimized for stable leaders, and updates
the transaction pool only on commit. Employing this policy, for Apollo and
Artemis is not optimal, as the nodes will only update the transaction pool after
f+1 blocks are proposed with the same transactions. Changing this policy in the
public implementation also requires a major re-write of their implementation.

(3) The underlying networking library salticidae [21] only allows multi-
casts and does not provide an interface to send point-to-point messages, which
we require for Apollo and Artemis. Therefore, we have to re-write the underlying
networking library as well.

(4) The clients for Apollo and Artemis are special, since they can apply
UCR on their own and decide finality. However, the client in Sync HotStuff and

40 Bhat et al.

0 20 40 60 80 100 120 140
Offered Load w (in Kops)

30

40

50

60

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b1600)

Opt Sync (b1600)

Apollo (b1600)

Artemis (b3200)

Opt Sync (b3200)

Apollo (b3200)

Fig. 25:Response rate (in Kops/s) vs. offered load (in Kops) for the t2 machines
in local setting. n = 9, p = 0.

0 20 40 60 80 100 120 140
Offered load (in Kops)

0

1

2

3

4

5

L
at

en
cy

(i
n

s)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b1600)

Opt Sync (b1600)

Apollo (b1600)

Artemis (b3200)

Opt Sync (b3200)

Apollo (b3200)

Fig. 26: Latency (in s) vs. offered load (in Kops) for the t2 machines in local
setting. n = 9, p = 0.

HotStuff uses f +1 acknowledgements over TLS connections as a mechanism to
ensure finality of the blocks.

(5) We created a general purpose synchronous networking library with a
networking module that is protocol agnostic, a consensus layer that is network
agnostic, and a crypto module that is instantiation agnostic, i.e., does not know
what the underlying digital signature scheme is. With the compile-time guaran-

The Unique Chain Rule and its Applications 41

0 20 40 60 80 100 120

Offered Load w (in Kops)

10

20

30

40

50

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (p0)

Apollo (p0)

Opt Sync (p0)

Artemis (p128)

Apollo (p128)

Opt Sync (p128)

Artemis (p1024)

Apollo (p1024)

Opt Sync (p1024)

Fig. 27:Response rate (in Kops/s) vs. offered load (in Kops) for the t2 machines
in local setting. n = 9, b = 400.

0 20 40 60 80 100 120

Offered Load w (in Kops)

10

20

30

40

50

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (p0)

Apollo (p0)

Opt Sync (p0)

Artemis (p128)

Apollo (p128)

Opt Sync (p128)

Artemis (p1024)

Apollo (p1024)

Opt Sync (p1024)

Fig. 28: Latency (in s) vs. offered load (in Kops) for the t2 machines in local
setting. n = 9, b = 400.

tees from Rust, our codebase is also guaranteed to be thread safe and memory-
leak free.

42 Bhat et al.

0 20 40 60 80 100 120
Offered Load w (in Kops)

0

10

20

30

40

50

60

L
at

en
cy

(i
n

s)

Artemis (b100)

Opt Sync (b100)

Apollo (b100)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b800)

Opt Sync (b800)

Apollo (b800)

Fig. 29: Latency vs. offered load for the t2 machines in the geo-distributed setting.
n = 9, p = 0.

0 20 40 60 80 100 120
Offered Load w (in Kops)

2.5

5.0

7.5

10.0

12.5

15.0

R
es

p
on

se
R

at
e

(i
n

K
op

s/
s)

Artemis (b100)

Opt Sync (b100)

Apollo (b100)

Artemis (b400)

Opt Sync (b400)

Apollo (b400)

Artemis (b800)

Opt Sync (b800)

Apollo (b800)

Fig. 30: Response rate vs. offered load for the t2 machines in local setting. n = 9,
p = 0.

(6) Our Rust codebase is of independent interest for implementing other
synchronous cryptographic/distributed system protocols.

The Unique Chain Rule and its Applications 43

E.2 Optimizations

We implement several optimizations to improve the performance [48]. In partic-
ular:

– Runtimes. We use tokio [41] as our asychronous scheduler. This allows us
to spawn as many non-blocking IO tasks as we want, and the scheduler will
schedule all available and executable tasks on CPUs.

– Tasks. Using Tokio, we spawn tasks that are responsible for communication
with a peer (a client or a protocol node). We add manager tasks that read
messages from any peer that has a message, and writes to these peers whenever
a message is ready to be written. With tokio, multiple messages can be written
to/read from sockets concurrently.

– Reactors. We implemented separate reactor/runtimes for the protocol net-
working module, the client networking module, and the consensus module. Hence,
these three modules work independently without blocking each other, and com-
municate with each other using message passing (via channels). Each reactor is
provisioned a fixed number of CPU cores to prevent starvation, since we have
clients that are constantly sending transactions, which will slow down the con-
sensus and receiving protocol messages.

– Channels. We observed that the implementation of a channel mattered to
the protocol. For example, Sync HotStuff and Opt Sync performed better with a
particular channel implementation (tokio channels), whereas Apollo and Artemis
performed better using futures channels. We used the channel implementation
that is most favorable to each protocol.

– Non-blocking proposal. Our implementations carefully spawn tasks, so that
a proposal is not blocked by long tasks. For instance, when including payloads
for transactions, we ship a committed transaction to a separate channel that
adds payload and communicates with all the connected peers. This way, the
consensus reactor can finish processing quickly and does not need to wait until
the committed block with the payload is sent to the client via the sockets.

– Porting optimizations. We implemented and ported most of the optimiza-
tions found in the existing public implementation of (Sync) HotStuff. For in-
stance, we used a request-response paradigm, where only hashes are used every-
where except during a block proposal. If the block is already present, this saves
significant network I/O as the node can query its local chain to get the block.
The voting step in Sync HotStuff and Opt Sync and the relay step in Apollo
uses this optimization.

– Lock-free. Our code design avoids using explicit locks such as Mutex,
Semaphore or Read-Write Locks, but instead uses message passing and is de-
signed to ensure that no two threads need to share data. However, for large
data such as proposals, blocks, and config files we use atomic reference counted
objects (called ARCs), which gives all threads a shared immutable reference
without having to copy the underlying object. We profiled the code to find ex-
pensive copy operations and replaced them with ARCs.

– Reduce network I/O. We reduce the number of fields sent over the network.
For instance, in a block, we have to compute the hash to check the validity of

44 Bhat et al.

the block, and so we do not send the hash of a block over the network, but we
fill it on getting a new block.

– Future messages re-ordering. For round-robin protocols, it is critical to
reorder messages by the round. Otherwise, the protocol logic can be complex.
However, this needs to be done carefully, otherwise it affects the liveness of the
implementation. We move messages into waiting and ready queues indexed by
rounds, and extract only messages relevant for the current round. This gives us
a trememdous boost in performance. Our codebase requests transactions and
blocks that are not known to it, and reordering messages helps significantly
reduce such requests.

Clients. We deploy a single client in the n+1th center if geo-dostributed. Our
implementation of the clients use a window parameter w called the work load
analogous to the public implementation for Sync HotStuff, Opt Sync and Hot-
Stuff; it always maintains w outstanding commands. As soon as some blocks are
committed, fresh commands are issued to maintain w outstanding commands.
Upon receiving a transaction, a node adds it to its pending transaction buffer.
The leader starts the proposal when sufficient transactions (sufficient to build a
block with b transactions) are received.

Transactions and payload. In our implementation, a transaction tx := (data, request)
consists of a vector of bytes data and request. data is a serialized 8-byte unsigned
integer serving as the transaction ID. The request field is the payload of the
transaction, containing data for the transaction such as data for a write request.
When responding to clients, the nodes attach p bytes as response. We use the
parameter p to denote payload, i.e., the size of the request and response attached
to the transaction.

Blocks and block sizes. In our implementation, we use a block format that
is common to all the implementations, and separate the protocol specific fields
into the proposal message. A block B contains a header with information such
as prev hash, height, and a signature by the proposer. The body contains t⃗x,
a vector containing the hashes of the transactions included in the block. When
communicating with clients, an additional payload data structure is attached to
the blocks. We denote by the parameter block size b, the number of transactions
included in a block.

	The Unique Chain Rule and its Applications

