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Abstract. Agreement protocols for partially synchronous or asynchronous networks tolerate fewer
than one-third Byzantine faults. If parties are equipped with trusted hardware that prevents equivo-
cation, then fault tolerance can be improved to fewer than one-half Byzantine faults, but typically at
the cost of increased communication complexity. In this work, we present results that use small trusted
hardware without worsening communication complexity assuming the adversary controls a fraction of
the network that is less than one-half. Our results include a version of HotStuff that retains linear
communication complexity in each view and a version of the VABA protocol with quadratic communi-
cation, both leveraging trusted hardware to tolerate a minority of corruptions. Our results use expander
graphs to achieve efficient communication in a manner that may be of independent interest.

1 Introduction

Byzantine fault tolerant (BFT) consensus is an important problem in distributed computing. It has received
revived interest as the foundation of decentralized ledgers or blockchains. The goal of BFT consensus is for
a set of parties to agree on a value (or a sequence of values) even if a fraction of the parties are Byzantine
(malicious). To rule out trivial solutions, these protocols additionally need to satisfy a validity constraint
which, depending on the setting, is a function of the input of a designated party or all parties or external
clients.

The number of faults tolerated by a BFT protocol depends on the network assumptions between parties,
the use of cryptography, and other assumptions. In particular, it is known that to maintain safety when the
system is asynchronous, without additional assumptions, one cannot tolerate one-third or more Byzantine
faults [19]. However, tolerating less than one-third Byzantine faults may not be enough for some applications.
There are two known approaches to increase this fault threshold. The first approach is to give up safety in
asynchrony. One can tolerate less than one-half Byzantine faults by assuming synchrony (any message sent
by an honest party reaches its destination within a bounded network delay) and some method to limit the
ability of the adversary to simulate honest parties (for example assuming a PKI or proof-of-work) [20, 26, 4,
12, 18, 36, 29]. Protocols using synchrony increase the fault threshold by detecting equivocations (assuming
signatures) and making deductions based on absence of messages from other parties (e.g., [41, 4]). The second
approach lets the adversary delay messages but limits its ability to corrupt by assuming the existence of a
trusted hardware. The adversary cannot tamper with this hardware even if it fully controls the node. At a
high-level, the hardware provides non-equivocation guarantees, essentially transforming Byzantine failures
to omission failures and hence improving the fault tolerance threshold to one-half (e.g., [19, 15, 25, 51]) in
partial synchrony and asynchrony.

In this work, we focus on the use of small trusted hardware primitives to tolerate a minority Byzantine
corruption and stay safe in asynchrony. Realizations of such primitives include TPMs [1] and YubiKey [47],
and at a high level, they provide us with the abstraction of an “append-only log”. Compared to trusted
hardware instantiations such as Intel SGX [17], which are capable of computing arbitrary functions in a
trusted manner, small trusted hardware primitives only allow operations such as appending to a (logical)
log and attesting to the log contents, and they typically only have O(1) registers as storage. The use of
small trusted hardware has several advantages: (1) a smaller trusted computing base is likely to have fewer
security vulnerabilities [39, 50, 53]; (2) much more widespread availability; (3) the ability for many different



manufacturers to produce such devices. A noticeable drawback of small trusted hardware is that it cannot,
for example, sign a threshold-signature or even a multi-signature [30, 15].

In this work, we investigate the asymptotic communication complexity of protocols tolerating a minority
corruption assuming a small trusted hardware in asynchronous or partially synchronous networks. We mea-
sure communication complexity as the (expected) number of words that all honest parties send and receive.
Given some ε > 0 we define a minority corruption adversary as having control of at most t ≤ ( 1

2−ε)n parties.
The study of trusted hardware to boost fault tolerance has been studied in the past by works such

as A2M [15] and TrInc [30]. Those works improve the fault tolerance of PBFT [10] using small trusted
hardware primitives. However, this comes at the expense of an O(n3) communication complexity per view
for consensus among n parties. On the other hand, in the standard setting, recently, we have seen considerable
progress in improving communication complexity of consensus protocols. In particular, HotStuff [54] achieves
linear communication complexity per view under partial synchrony and VABA [5] achieves the optimal
O(n2) communication complexity under asynchrony. A natural question is whether similar results hold
under a minority corruption assuming trusted hardware. In this work, we answer these questions affirmatively
although for a corruption threshold t ≤ ( 1

2 − ε)n for an arbitrarily small ε. Our work leaves open addressing
the communication complexity with trusted hardware and optimal resilience. In the following, we describe
our results and the key techniques used to achieve these results.

1.1 HotStuff-M: HotStuff with Minority Corruption

Our first result improves HotStuff to tolerate a t ≤ ( 1
2 − ε)n corruption while still retaining its linear

communication complexity per view. In particular, we show the following result:

Theorem 1 (HotStuff-M, Informal). For any ε > 0, there exists a primary-backup based BFT consensus
protocol with O(n) communication complexity per view, consisting of n parties each of which has access to a
small trusted hardware and t ≤ ( 1

2 − ε)n parties are Byzantine.

HotStuff is a primary-backup protocol that progresses in a sequence of views, each having a designated
leader (primary) and consisting of a sequence of phases. HotStuff routes all messages (votes) through the
leader independent of whether the communication is within the view or across views, while keeping the
message size O(1) for a total of O(n) communication per view. To achieve this, HotStuff crucially relies on
threshold signatures to aggregate votes of individual parties into an O(1)-sized message; these signatures
act as a proof for parties in subsequent phases/views to determine whether they should vote in that phase.
Within a view, HotStuff maintains safety due to the fact that if a leader has a threshold signature for a given
proposal, a majority of the honest parties voted for that proposal. By quorum intersection, and the fact
that an honest party votes only once in a given phase, a conflicting proposal cannot have a valid threshold
signature.

We improve the resilience of HotStuff from one-third to 1
2−ε while keeping a total of O(n) communication

per view using small trusted hardware in a partially synchronous network. In the minority corruption model,
the presence of a threshold signature on a proposal no longer implies that a majority of the honest parties
voted for that proposal, and is therefore insufficient for safety against a Byzantine adversary. The key property
that we need from the hardware is its ability to maintain an append-only log that can be used to provide a
non-equivocation property, i.e., if the hardware produces a signed attestation at a given position in the log,
then the party cannot produce a valid signed attestation for a different value at the same position. Thus,
intuitively, if n

2 + 1 parties attest to a value at a position, then no other value can have n
2 + 1 attestations.

However, while a party’s attestation from its trusted hardware is sufficient for safety, receiving such proofs
from O(n) parties produces an O(n)-sized proof sent to the leader of the view. Since the leader uses this
proof in a subsequent round, and these proofs cannot be compressed as they are not threshold signatures,
this will grow the communication complexity to O(n2) per view.

Instead of sending the attestations directly to the leader, our solution relies on diffusing the attestations to
a constant number of parties, called its neighbors. A party votes if it receives attestations from a threshold of
its neighbors. This vote can be a threshold signature share, which can eventually be combined by the leader
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to an O(1)-sized voting proof. Why does this work? We connect parties to each other using a constant-
degree expander graph. Informally, to send a (non-attested) vote, a party just needs to verify that a constant
fraction of its neighbors have attested. The specific construction of our expander guarantees that if a small
εn-sized fraction of honest parties have voted for a proposal, then a majority of the parties have attested
to that proposal. Thus, if a leader receives votes from t + εn = n

2 parties, at least εn are honest, and they
can vet attestations from a majority of parties; this guarantees safety within a view. To ensure liveness,
the expander graph is also parameterized such that if all honest parties attest, more than n

2 parties vote.
We note that expander graphs have been used in consensus protocols before [28, ?,?], although only in the
context of synchronous protocols and exploiting a different set of expander properties.

The above arguments do not suffice for safety across views. The key mechanism that ensures safety across
views in HotStuff is that if an honest party commits a value v in a given view, they received a threshold
signature on v from the previous phase of this view, indicating that a majority of the honest parties ”locked”
on v in this view. These locked parties will not vote for a different value in later views, and a v′ 6= v will never
gain a threshold signature in a subsequent view (and will therefore not be committed by an honest party). In
the minority corruption model, while our trusted hardware disallows appending different values at the same
position (equivocation), we cannot enforce the conditions under which a Byzantine party appends a value
to their log. We also cannot enforce that a Byzantine party presents the latest state of its log as necessary.
This can potentially result in a safety or liveness violation; e.g., even if a party “locked” on v in a given
view by attesting to v, it can present a state that does not involve this attestation. In the original HotStuff
protocol, an honest leader waits to hear the value from the highest view in which parties have stored a value
during the second phase of that view for liveness. Since, in the minority corruption model, a leader cannot
wait to hear from a majority of the honest parties, it must rely on Byzantine parties to present the correct
state of their logs. Of course, this could be fixed by requiring a party to always present the entire contents
of the log in its trusted hardware, but the communication complexity would grow (unbounded) with the
number of views. Instead, we use a combination of techniques including: multiple logs, one for each phase of
the protocol (O(1) total); tying log positions to view numbers; and using one attestation to present the end
state of all logs. We elaborate on these techniques in Section 4 when we describe the protocol.

1.2 VABA-M: Validated Asynchronous Byzantine Agreement with Minority Corruption

Our second result improves the VABA protocol of Abraham et al. [5] to tolerate minority corruption while
retaining its O(n2) communication complexity. We show the following result:

Theorem 2 (VABA-M, informal). For any ε > 0, there exists a validated asynchronous Byzantine Agree-
ment protocol with O(n2) communication complexity consisting of n parties each of which has access to a
small trusted hardware such that t ≤ (1/2− ε)n parties are Byzantine.

The VABA protocol adapts HotStuff to an asynchronous network and incurs O(n2) communication
complexity. At a high level, the protocol progresses in a sequence of views. In each view, in parallel, each
party attempts to drive progress by acting as a leader in a “proposal promotion”. After n − t proposal
promotions have completed, the parties elect one leader uniformly at random, and adopt the progress from
the leader’s proposal promotion instance during the view-change step. Depending on whether the leader
completed its proposal promotion, parties may decide at the end of the view or repeat the process in another
view.

At first sight, it appears that the ideas used for HotStuff-M should directly follow. However, there are
two key challenges in augmenting VABA to tolerate a minority corruption, both of which are related to the
amount of storage in the small trusted hardware.

First, in HotStuff-M, only O(1) logs were used. For each log, the latest state can be maintained in the
hardware, and attestations of previous positions can be stored externally by a party. With an asynchronous
protocol, since there are n proposal promotion instances, a straightforward translation requires O(n) number
of logs. When reduced to O(1) logs, each log needs to maintain O(n) amount information on the hardware.
The challenge though is that (i) in an asynchronous protocol, messages arrive in an arbitrary order across
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proposal promotion instances, and (ii) the hardware can only append to a log. This makes it hard to use
any mapping between a position on the log and a proposal promotion instance. Our solution crucially relies
on the fact that all parties have the same neighbors across proposal promotion instances, and thus, even if
values from proposal promotion instances are appended arbitrarily, they can perform the necessary validation
across all instances in a non-blackbox manner.

Second, the view-change step requires every party to share the “progress” from the elected leader’s
proposal promotion instance to all parties. However, due to the concern described earlier, only a parties’
neighbors can validate whether it used the trusted hardware correctly. To make matters worse, a party or
its neighbors can be Byzantine. Fortunately, since parties are connected using an expander graph, we can
bound the number of honest and Byzantine parties with a majority of Byzantine neighbors. By a careful
analysis, we can ensure the delivery of the latest state of leader’s proposal promotion instance to all parties.
We describe our solution in detail in Section 5.

2 Model and Preliminaries

We consider n parties pi, . . . , pn connected by a reliable, authenticated all-to-all network, where up to t ≤
(1/2 − ε)n parties may be corrupted by an adversary for ε > 0. The corrupted parties are Byzantine and
may behave arbitrarily. All the correct (honest) parties follow the protocol specification. Depending on our
construction, we consider either an asynchronous network, where a message sent by one correct party to
another arrives eventually but with arbitrary delay, or a partially synchronous network, where after an
unknown period of time called Global Stabilization Time (GST), every message will arrive within a known
bounded delay. We solve the validated Byzantine Agreement problem:

Definition 1 (Validated Byzantine Agreement). A protocol solves validated Byzantine agreement among
n parties tolerating a maximum of t faults if it satisfies the following properties:

(Agreement/Safety) If any two honest parties output values v and v′, then v = v′.
(Validity) If an honest party outputs v, then v is an externally valid value, i.e., ext-valid(v) = true.
(Termination/Liveness under asynchrony) If all honest parties start with an externally valid value
and all messages sent by the honest parties eventually arrive, then all honest parties will output a value.
(Termination/Liveness under partial synchrony) If all honest parties start with an externally valid
value, then after GST, all honest parties will output a value within a bounded time.

Following Cachin et al. [9], the definition has an external validity property. Such a property can be useful
in the context of state machine replication (SMR) where ext-valid(v) captures validity of a command sent
by a client. We assume that each party has access to a small trusted hardware (described in Section 2.2).
In addition, for communication efficiency, some of the messages are sent by the parties through an expander
graph. We describe the properties needed from the expander graph in Section 2.3. We measure communication
complexity as the number of words that all honest parties send and receive; each word is O(κ) bits long
where κ is a security parameter. We also assume all the messages sent by parties are signed using a threshold
signature scheme described in Section 2.4.

2.1 Small Trusted Hardware

In this section, we introduce the abstraction of a small trusted hardware with O(1) storage. As described in
the introduction, the motivation behind the minimality is to allow for the existence of multiple hardware
units by different vendors. However, at the same time, the hardware provides a non-equivocation capability.
Such hardware units have been considered in prior works such as A2M [15], TrInc [30], etc. While the exact
interface for the trusted hardware in these works differ, their capabilities are similar and supported by
existing hardware modules such as Trusted Platform Modules (TPMs) and YubiKey [47, 1]. Without loss of
generality, we assume the existence of a functionality similar to that of A2M [15].

Hardware state and interfaces. The trusted hardware provides a party with a set of append-only logs
(denoted log) that can only be modified by the party’s trusted hardware component. The functionality is
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shown in Figure 1. Each log within a single party’s trusted component has its own identifier (denoted id)
and includes a counter (denoted cid) that starts from 0 and is incremented for each entry that is appended
to the log. The trusted hardware guarantees that the party cannot modify the information stored in any
position of the log. We use the notation 〈·〉Kpriv to denote that an attestation is signed using the private
key of the trusted hardware component. To differentiate between a signature from a hardware device and a
signature from the party holding it, we always refer to the former signature as an attestation.

2.2 Small Trusted Hardware Abstraction

Algorithm 1 Trusted Hardware Functionality.

1: (Kpub,Kpriv): public-private key pair associated with the hardware device
2: C: monotonic counter representing the number of logs maintained by the hardware
3: log: list of logs indexed by id; each log is an array indexed by sequence number
4: cid: monotonic counter representing the length of log indexed by id
5:
6: function CreateLog()
7: Increment C, initialize empty log with id := C, cid := 0; return id
8:
9: function Append(id, cnew, x)

10: if id ≤ C:
11: if cnew = ⊥: Increment cid, log[id][cid] := x;
12: if cnew > cid: set cid := cnew, log[id][cid] := x;
13: return Lookup(id, cid)
14:
15: function Lookup(id, s)
16: if id ≤ C and s ≤ cid: return 〈lookup, id, s, log[id][s]〉Kpriv
17:
18: function End(id, z)
19: if id ≤ C: return 〈end, id, cid, log[id][cid], z〉Kpriv
20:
21: function Counters(z)
22: return 〈head,

⋃
id<C

{(id, cid)}, z〉Kpriv

The hardware provides us with the following four functions. The Append(id, cnew, x) interface is used to
append the value x to the log identified by id. If cnew = ⊥, the functionality increments the counter of the
log and inserts x into the position of the log. Otherwise, it appends to position cnew if cnew is strictly higher
than the current log position. The Lookup(id, s) and End(id, z) interfaces are used to obtain an attestation
of log with identifier id for the value stored at position s and the last position respectively. Finally, the
trusted hardware provides us with a Counters(z) interface which returns the counter value of each log
at the point when it is called. The nonce z is used to ensure freshness of an attestation. In our use of the
trusted hardware interface later, we simply omit mentions of the nonce when it’s not used. To simplify the
description, we imagine that the hardware stores the entire set of O(1) logs. In reality, the hardware only
needs to maintain the end state of a log; a party can always store the attestations at different positions
separately.

If party pi calls Append(q,⊥, x), then it should receive 〈lookup, q, s, x〉Kpriv in response, for some log
position s. pi can forward this response—or another copy, obtained by invoking lookup(q, s)—to another
party pj to prove that pi added value x to its log q at position s. Since the hardware interface only allows
appending to the log, pj can be assured that no other value can be attested at position s of log q. The use
of the End(q, z) function is similar, with the addition that pj passes a random nonce z to pi that will be
included in the attestation to prove that it is fresh.
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2.3 Expander Graphs

Expander graphs are sparse graphs with a high degree of connectivity between groups of nodes. We call a
node connected to a node pi as its neighbor and denote the set of neighbors of pi by ρ(i). We describe the
expander graph properties we need in this section and prove them in Appendix A.

Definition 2. An (n, α, β)-expander graph, denoted Gn,α,β, where 0 < β < 1 and α < β, is a graph with n
vertices such that every set of αn vertices has at least βn unique neighbors.

Lemma 1. There exists a d-regular graph Gn,ε,(1− εc ) for sufficiently large n and positive constants 0 < ε < 1
2

and c > 2 such that:

1. For any set S of ( 1
2 + ε)n nodes, there exists a set Q of more than n

2 nodes, Q ⊆ S, and every node in
Q has at least ( 1

2 + ε
2 )d neighbors in S.

2. For any partition of its nodes into blocks T and Q where |T | = ( 1
2 − 2ε)n and |Q| = ( 1

2 + 2ε)n, there
exists a set T ′ ⊆ T , |T ′| > ( 1

2 − 3ε)n, such that each node in T ′ has at least ( 1
2 + ε

2 )d neighbors in Q
3. For any set S of ( 1

2 + 2ε)n nodes, there exists a set Q of more than ( 1
2 + ε)n nodes, Q ⊆ S, and every

node in Q has at least ( 1
2 + ε

2 )d neighbors in S
4. For any set S of εn nodes, and any sets {Si}i∈S where Si ⊂ ρ(i) and |Si| = ( 1

2 + ε
2 )d, the set U =

⋃
i∈S Si

satisfies |U | > n
2 .

2.4 Threshold sigantures

In addition to (and separate from) the signatures generated by hardware modules, we make use of a k out
of l threshold signature scheme [45] for k = n

2 + 1 and l = n, i.e., n2 + 1 parties must participate in order to
create a valid threshold signature. We use the following interface:
– threshold-signi(m): produces signature share produced by pi on message m.
– share-validate(m, sj , pkj): validate signature share sj produced by pj on m.
– threshold-combine(m,S): combine a set S of signature shares from distinct parties for message m to an
O(1)-sized signature where |S| ≥ k and share-validate(m, sj , pkj) = true,∀sj ∈ S.

– threshold-verify(m,σ): returns true if σ was a result of computing threshold-combine(m,S) where |S| ≥ k
and share-validate(m, sj , pkj) = true,∀sj ∈ S.

3 (n
2

+ 1)-Provable-Broadcast

In this section, we present a core broadcast primitive that will enable protocols to tolerate up to (1
2 − ε)n

Byzantine faults for any 0 < ε < 1
2 when every party is equipped with a trusted hardware component as

described in Section 2.2. In subsequent sections, we will show how (n2 + 1)-Provable-Broadcast along with
trusted hardware can be used to increase the fault tolerance of protocols to minority faults without worsening
their communication complexity.

(n2 + 1)-Provable-Broadcast. This primitive is a generalization of (t + 1)-provable broadcast introduced
by Abraham et al. [5]. Informally, in this broadcast, a designated sender sends a message m = (v, σin)
consisting of a value v and a proof σin to all parties. If the message satisfies a certain predicate denoted
by the validation function validate(), parties deliver the message. Finally, the sender delivers a proof σout
indicating that n

2 + 1 parties have delivered the broadcasted message. The primitive provides the following
guarantees:

– Integrity. An honest party (acting as a participant) delivers at most one message m for a given broadcast
instance id.

– Validity. If an honest party delivers a message m for instance id, then validate(id, (m,σm)) = true, where
σm is the proof of validity for m.
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– Provability. If a sender can produce two valid proofs σout and σ′out such that they are valid proofs for
the delivery of m and m′ respectively in instance id, then m = m′, and there exist n/2 + 1 parties who
cannot deliver a value m′ such that m′ 6= m in instance id.

– Termination. If the sender is honest, no honest party invokes abandon(id), all messages among honest
parties arrive, and validate(id, (m,σin)) = true for all honest parties, then (i) eventually all honest parties
deliver m, and (ii) the sender delivers m with a valid proof σout.

The requirements described above have minor differences from Abraham et al. [5]. In particular, we
modify the threshold from t+ 1 to n

2 + 1 and require the provability property to have n
2 + 1 parties to not

be able to deliver a different message.

Our goal is to tolerate ( 1
2 − ε)n Byzantine parties with linear communication complexity and ensure the

size of σout to be O(1). The O(1)-sized proof allows us to use the primitive in a cascading manner while still
maintaining linear communication complexity. To achieve these guarantees, we make use of two components:
trusted hardware modules and expander graphs. Each party has access to a trusted hardware module as
described in Section 2.2. Parties are connected in a d-regular expander graph Gn,ε,(1− εc )n for a constant d,

0 < ε < 1
2 , and c > 2 that satisfies the properties in Lemma 1; the expander graph is used to communicate

messages with constant communication complexity per party with its neighbors. We denote the neighbors of
party pi in the expander graph by ρ(i).

Intuition. In the presence of a trusted hardware, any party receiving a valid message from the sender can
attest to this message using the Append() call to their trusted hardware in a specified log and sequence
number. Sending this attestation back to the sender guarantees both provability as well as termination
against a corruption threshold of < 1/2. For provability, if delivery for every honest party requires attesting
at a specific position in a log as a proof, then receiving n

2 +1 attestations from a set of parties P is a sufficient
proof to state that parties in P cannot deliver a different message. For termination, if the sender is honest
and eventually the sender’s messages arrives at honest parties, then all honest parties will attest to this
message in the correct log and sequence number and deliver m; the attestations sent back to the sender will
allow it to deliver m with a proof σout consisting of all the attestations it received. However, the proof σout
is not O(1) words. Observe that the attestations from the small trusted hardware from a linear number of
parties provide us with O(n) signatures. Thus, the challenge is to ensure that the proof σout remains O(1)
without relying on the hardware to generate threshold signatures.

Our key idea is to verify the existence of n
2 + 1 attestations by spreading this work evenly among the

parties. We aim for two seemly opposing goals: On the one hand, each party needs to check just a constant
number of attestations to be locally satisfied. On the other hand, if a majority of parties say they are locally
satisfied then, even if t of them are lying then it is still the case that there were n

2 +1 attestations. We obtain
this through the magic of expander graphs. Every party communicates their attestation with their neighbors
in the network. The expansion properties of the graph ensure that receiving correct information from a small
fraction of honest parties, specifically εn, suffices to learn the state about a majority of the parties in the
network. In particular, on receiving some vote messages (containing a threshold signature share) from n

2 + 1
parties (see lines 4–7 in Algorithm 2), out of which at least εn parties are honest, the sender can learn that
a majority of parties (not necessarily honest) have attested to a message m in the log and sequence number
corresponding to the instance, and thus cannot deliver a different message with a valid attestation. To ensure
that the proof σout is O(1) words, the sender can simply combine the threshold signature shares sent in the
vote messages of each of the n

2 + 1 parties that vote.
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Algorithm 2 (n2 + 1)-PB-Initiate instance id (sender s)

1: procedure (n
2

+ 1)-PB-Initiate (id, (v, σin))
2: S := {}
3: send “id, send, (v, σin)” to all parties
4: while |S| ≤ n

2

5: upon receiving “id, vote, ξj” from pj for the first time do
6: if share-validate(v, ξj , pkj) = true
7: S := S ∪ {ξj}
8: qc := threshold-combine(S)
9: σout.id := id, σout.val := v, σout.qcσin := σin.qc, σout.qc := qc

10: deliver σout

Algorithms 2 and 3 present the pseudocode for (n2 + 1)-Provable-Broadcast. We assume a setup phase
during which each party creates the necessary logs for the protocol using the CreateLog interface. Fur-
ther, we assume, for an instance of (n2 + 1)-Provable-Broadcast, that every party appends to, and expects
attestations from, the log in the trusted hardware module of each node with the same logId and in the same
position, seqNo, within the log.

Protocol. Each instance of this protocol is identified by an id and a designated sender s. The sender receives
two inputs (v, σin); v is the value to be sent and σin is a proof to be validated by other parties using the
validate() function. The sender sends the message “id, send, (v, σin)” to all parties (Algorithm 2 line 3).

Algorithm 3 (n2 + 1)-PB-Respond instance id (party pi)

1: procedure (n
2

+ 1)-PB-Respond (id, validate, validateNeighbor)
2: stop := false
3: upon receiving “id, send, (v, σin)” from s do
4: (σi, valid) := validate(id, (v, σin))
5: if valid:
6: (attlogId, atthead) := createAttestations(id, (v, σin))
7: send “id, send, ((attlogId, atthead), σi)” to all parties in ρ(i)
8: wait for id, send, ((attlogId,j , atthead,j), σj)

from ( 1
2

+ ε
2
)d parties pj in ρ(i) s.t.

validateNeighbor(id, pj , (v, σin), (attlogId,j , atthead,j), σj) = true
9: ξi := threshold-signi(id, (v, σin.qc))

10: send ”id, vote, ξi” to s
11: stop := true
12:
13: upon abandon(id) do
14: stop := true
15:
16: procedure createAttestations(id, (v, σin))
17: logId := log(id), seqNo := seq(id) . parse id
18: attlogId := Append(logId, seqNo, (v, σin))
19: deliver ((v, σin), (attlogId))
20: return (attlogId,Counters())

On receiving the message from the sender, pi invokes validate(id, (v, σin)) (Algorithm 3 line 4). The
validate() function is used to check that the sender’s proposal is valid and that it satisfies any predicates
on pi’s state as necessary for the higher level protocol. Thus, the interface allows each party to optionally
provide some additional data/state that can be used for validation. If validate() is successful (valid = true), it
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returns a proof, σi, as proof that pi can provide to other parties to prove that its call to validate(id, (v, σin))
returned true. Upon successful validation, pi then delivers the sender’s proposal by appending it to the
the log in its trusted hardware component using the createAttestations() method (Algorithm 3 lines 6, 16-
20). In this method, pi determines the log logId and the sequence seqNo in the log to be used using the
log(id) and seq(id) functions. pi then appends (v, σin) to log logId at sequence number seqNo in its trusted
hardware component. It sends the attestation (along with a Counters attestation, for reasons explained in
Section 4) to all its neighbors ρ(i) in the expander graph, as proof that it has delivered (v, σin). On receiving
messages from a majority of its neighbors (specifically ( 1

2 + ε
2 )d neighbors) that satisfy validateNeighbor()

(Algorithm 3 line 8), a party sends a vote message with threshold-signi((v, σin)) to the sender (line 10). The
validateNeighbor() function allows an invoking party to perform validation on the messages sent by their
neighbors as proof of delivery; in the above instance, we can assume that it only validates that the attestation
attlogId,j is correct, i.e. that it is from the log logId, signed by the sender’s trusted hardware component, and
that the value was appended in the correct sequence number. In Section 4, we show how the proof output
from validate() as well as the atthead attestation are used as well.

On collecting threshold-signi((v, σin)) from a majority of replicas, the sender combines the signature
shares to generate σout and delivers σout (Algorithm 2 lines 8-10).

Here are the key ideas that ensure provability and termination.
1. Any set of εn nodes, each of which receives an attestation from at least ( 1

2 + ε
2 )d of its

neighbors, collectively receives attestations from at least n
2 + 1 unique parties. This property

has been shown in Lemma 1 and it guarantees provability since if a sender receives vote messages from a
majority of parties, at least εn of them are honest and they will ensure that at least n

2 + 1 parties have
attested to (v, σin) in the correct log and sequence number. Thus, they cannot deliver a message other
than v with a valid proof of attestation. Also, by the same argument, another value v′ 6= v cannot receive
a sufficient number of attestations, causing another set of εn honest parties to send a vote message for v′;
this is because at least n

2 + 1 parties need to attest to (v′, ∗), and two majority sets will intersect in at
least one node.

2. For any set of (1/2 + ε)n nodes S, at least (n2 + 1) nodes in S each have at least ( 1
2 + ε

2 )d
neighbors in S. This property has been shown in Lemma 1 and it guarantees termination since if an
honest sender sends a valid (v, σin) to all (1/2 + ε)n honest parties, then at least n

2 + 1 honest parties will
send vote messages, sufficient to generate the proof σout.

3.1 Security Proofs

Lemma 2 (Provability). In (n2 + 1)-PB-Initiate, if the sender delivers two valid proofs σout and σ′out
corresponding to values (v, σin) and (v′, σ′in) respectively, then (i) v = v′, and (ii) at least n

2 +1 parties satisfy
the criteria in the validate() function, and the parties have created attestations in createAttestations() such
that they satisfy validateNeighbor().

Proof. Since σout contains a threshold signature for (v, σin) signed by at least n
2 +1 parties, at least n

2 +1−t >
εn honest parties pi must have sent messages “id, vote, ξi” to the sender. Thus, each such pi must have
received at least ( 1

2 + ε
2 )d messages “id, send, ((attlogId, atthead,j), σj)” from parties pj such that the

attestations (attlogId, atthead,j) along with σj satisfy the criteria in the validateNeighbor() function. Thus,
(attlogId, atthead,j) were created by running createAttestations(id, (v, σin)) and σj proves that (v, σin) is
valid for pj ’s state based on the conditions in validate(id, (v, σin)). By Lemma 1, any εn set of parties each
receiving attestations from ( 1

2 + ε
2 )d neighbors, should collectively receive attestations from at least n

2 + 1
parties such that they satisfy validateNeighbor(). This completes part (ii) of the proof. For part (i), observe
that any two quorums of size n

2 +1 will always intersect at one party, and due to the use of trusted hardware,
this party cannot attest to two different values v and v′ such that v 6= v′ for the same log and sequence
number. This completes part (i) of the proof.

Lemma 3 (Termination). If the sender is honest, no honest party invokes abandon(id), all messages
among honest parties arrive, and validate(id, (v, σin)) = true for all honest parties, then (i) eventually all
honest parties deliver v, and (ii) the sender delivers v with a valid proof σout.
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Proof. Observe that the sender’s message will eventually arrive at all (1/2 + ε)n honest parties if no party
invokes abandon(). Since the message sent by the sender is valid for all honest parties, all honest parties will
invoke createAttestations() and deliver the sender’s message along with a valid attestation as the proof. They
then send their attestations to all their neighbors. By Lemma 20, at least n

2 + 1 of the honest parties H will
each receive attestations from at least ( 1

2 + ε
2 )d of their neighbors that satisfy validateNeighbor() without

any participation from any Byzantine parties. Each party in H will send a vote message with a threshold
signature share to the sender, who can combine them into (v, σout).

Theorem 3. The (n2 + 1)-Provable Broadcast algorithm in Algorithms 2 and 3 satisfies Integrity, Validity,
Provability, and Termination. Moreover, the protocol has linear communication complexity with an O(1)-sized
proof.

Proof. Integrity is satisfied deterministically by the algorithm. All the messages from the sender to the
parties and vice-versa involve messages with O(1) words. All the communication between parties through the
expander graph consists of O(1) sized messages to a constant d number of neighbors. Thus the communication
complexity is linear. Also, the proof delivered by the sender is a threshold signature of O(1) size.

An honest party only sends a signature share to s for a value v if v is externally valid as per the validate()
function. Therefore, as long as the threshold for the threshold signature is greater than the number of
Byzantine parties in the network, only an externally valid message can obtain a valid threshold signature,
satisfying validity.

Provability and Termination property have been shown in Lemmas 2 and 3.

4 HotStuff-M: HotStuff with Minority Corruption

In this section, we present HotStuff-M, a version of the HotStuff [54] protocol that tolerates minority Byzan-
tine corruption under partial synchrony assuming a minimal trusted hardware at each party. Similar to
HotStuff, the protocol has a linear communication complexity per view. For simplicity, we show the con-
struction of a single-shot version of HotStuff, though the ideas directly extend to the state machine replication
setting.

4.1 Overview of Basic HotStuff

We start with an overview of the Basic HotStuff protocol [54] tolerating n = 3t+ 1. The protocol proceeds
in a sequence of consecutive views where each view has a unique leader. Each view of HotStuff progresses as
follows:
- Promote. The leader proposes a promote message containing a proposal v along with the σhighKey from

the highest view known to it and sends it to all parties. On receiving a promote message containing a
value v in a view e and a σhighKey, a party sends a vote for v if it is safe to vote based on a locking
mechanism (explained later). It sends this vote to the leader.

- Key. The leader collects 2t + 1 votes to form a threshold signature σkey in view e. The leader sends the
σkey for view e to all parties. On receiving a σkey in view e containing message v, a party updates its
highest σkey to (v, e) and sends lock to the leader.

- Lock. The leader collects 2t+ 1 such votes to form a threshold signature σlock, and sends it to all parties.
On receiving σlock in view e containing message v from the leader, a party locks on (v, e) and sends
commit message to the leader.

- Commit. The leader collects 2t+ 1 such votes to form a threshold signature σcommit and sends it to all
parties. On receiving σcommit from the leader, parties output the value v.
Once a party locks on a given value v, it only votes for the value v in subsequent views. The only scenario

in which it votes for a value v′ 6= v is when it observes a σhighKey from a higher view in a promote message.
At the end of a view, every party sends its highest σkey to the leader of the next view. The next view leader
collects 2t+ 1 such values and picks the highest σkey as σhighKey. The safety and liveness of HotStuff follows
from the following:
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Uniqueness within a view. Since parties only vote once in each phase, a σcommit can be formed for only
one value.

Safety and liveness across views. Safety across views is ensured using locks and the voting rule for a
promote message. Whenever a party outputs a value, at least 2t+1 other replicas are locked on the value in
the view. A party only votes for the value it is locked on. The only scenario in which it votes for a conflicting
value v′ is if the leader includes a σkey for v′ from a higher view in a promote message. This indicates that
at least 2t+ 1 replicas are not locked on v in a higher view, and hence it should be safe to vote for it. The
latter constraint of voting for v′ is not necessary for safety, but only for liveness of the protocol.

Phase validate(id, (v, σin)) validateNeighbor(id, (v, σin), (attlogId,j , attheads,j), σj)

promote

cond: ext-valid(v) = true,
σin.val = σlock.val or
view(σin) > view(σlock)
proof: σi := attlock

(σin.val = σlock.val or view(σin) > view(σlock)), and lock log in attheads,j is at
view(σlock), and progress log in attheads,j is at e− 1, and attlogId,j is a valid
attestation from HWj for value v in the promote log and sequence number e

key
cond: view(σin) = e and
phase(σin) = promote
proof: σi := ⊥

progress log in attheads,j is at e− 1, and key log in attheads,j is at e, and
attlogId,j is a valid attestation from HWj for value v in the key log and sequence
number e

lock
cond: view(σin) = e and
phase(σin) = key
proof: σi := ⊥

progress log in attheads,j is at e− 1, and lock log in attheads,j is at e, and
attlogId,j is a valid attestation from HWj for value v in the lock log and
sequence number e

Table 1. Validation functions passed to provable broadcast in different phases of view e. We assume end
attestations attlock (containing σlock) is invoked during validate() call as needed. Also note that (attlogId,i, attheads,i)
are sent by every party to their neighbor as a part of provable broadcast and generated in the invocation of
createAttestations(id, (v, σin)).

4.2 HotStuff-M: Towards Minority Corruption

The arguments for safety and liveness of HotStuff crucially rely on having fewer than one-third Byzantine
faults. Otherwise, Byzantine parties could create multiple σkey, σlock, σcommit by partitioning the honest
parties. Similarly, across views, Byzantine parties could send an incorrect (stale) σkey to the leader, as well
as vote for a message in the promote phase without respecting the locking condition, leading to both safety
and liveness concerns.

Our goal is to increase the corruption threshold from one-third to a minority while still retaining the linear
communication complexity. The trusted hardware provides a non-equivocation guarantee, i.e., it ensures that
once a value v has been appended to a position in a specified log, no other value can be appended at that
position in that log. Moreover, the hardware provides an attestation, i.e., verifiable proof of the existence of
value v at that position of the specified log. However, a party can still send a stale attestation to another
party. For instance, during a view-change, a party can send an attestation to a key from an old view, possibly
leading to a liveness violation. It can also potentially participate in a previous view even after quitting the
current view. Similarly, a party can potentially append conflicting information at two different positions of
the log and provide attestations to these different positions to different parties.

A potential way to fix the above concerns is to always send an attestation of all positions in the log
whenever sending a message. The receiving party can validate that the log has been correctly constructed,
e.g., non-existence of conflicting information on the log, and absence of a quit-view message on the log.
However, this solution makes the communication complexity proportional to the number of views for each
message.

Our approach and protocol. Our approach uses multiple logs in the trusted hardware, one for each
phase that consists of an instance of (n2 + 1)-Provable-Broadcast, as well as a log to keep track of the
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Algorithm 4 HotStuff-M: HotStuff with Minority Corruption (for party pi).

1: for e := 1, 2, 3, . . . do
2: as a leader . new-view phase
3: wait for a set M of ≥ n

2
+ 1 new-view messages s.t. the attestations on progress and key

4: logs are valid, sequence numbers in attprogress and atthighQC match those in the Counters attestation
for the

5: respective logs, and counter value of progress log in the Counters attestation is e− 1
6: For each m ∈M , let σmhighKey denote the highest key QC from party pm
7: σhighKey := (arg max

m∈M
{view(σmhighKey)}) . view(σmhighKey) is the view in which σmhighKey was formed

8: if σhighKey = ⊥ then proposal := client’s command else proposal := σhighKey.val

9: as a party . new-view phase
10: go to this line if no progress happens during the “wait” step in any phase
11: attprogress := 〈lookup, progress, e, e〉 := Append(progress, e, e)
12: atthighQC := 〈end,key, seqNoHighQC, highKeyQC〉 := End(key)
13: send “((e,new-view), send, (attprogress, atthighQC ,Counters()))” to leader of view e+ 1

14: as a leader
15: σkey := (n

2
+ 1)-PB-Initiate((e, promote), (proposal, σhighKey)) . promote phase

16: σlock := (n
2

+ 1)-PB-Initiate((e,key), (proposal, σkey)) . key phase
17: σcommit := (n

2
+ 1)-PB-Initiate((e, lock), (proposal, σlock)) . lock phase

18: send “((e,commit), send, σcommit)” . commit phase

19: as a party, invoke the following in parallel
20: (n

2
+ 1)-PB-Respond((e, promote), validate(), validateNeighbor()) . promote phase

21: (n
2

+ 1)-PB-Respond((e,key), validate(), validateNeighbor()) . key phase
22: (n

2
+ 1)-PB-Respond((e, lock), validate(), validateNeighbor()) . lock phase

23: wait for “((e,commit), send, σcommit)” from the leader of view e . commit phase
24: if σcommit is a valid signature from view e and from phase commit then commit σcommit.val

view a party is in. For each log, the data appended to position j corresponds to the message sent by the
party in view j. Thus, if a party votes for a value v in view e in the key phase of the protocol, it calls
Append(key, e, (v, ∗)) to the key log at position e (∗ denotes some additional information). However, a
disadvantage of using multiple logs is the absence of relative ordering between them. This allows a Byzantine
adversary to participate in a previous view by showing a stale state of a log or send a stale σlock while
voting in the promote phase. We leverage the Counters() call on the hardware to address this concern; it
provides the end state of all of the logs at once, thus allowing the receiving party to validate the freshness of
the state. Although the functionality provided by the Counters attestation can be achieved using a nonce
with the same communication complexity, we use Counters for the simplicity of the description.

Our protocol is presented in Algorithm 4 and Table 1. The parties proceed in a sequence of views. We
assume that the parties know the leader in a given view. Let e denote the current view of the protocol. At the
end of the previous view, each party invokes an Append(progress, e−1, e−1) (line 11) to obtain attestation
attprogress. In addition, it obtains an end attestation atthighQC for its keyQC (line 12). The party sends this
information together with the Counters() attestation to the leader in a new-view message (line 13).

The leader of view e waits for a valid new-view message from a majority of parties. Here, the message
is considered valid if (i) the attestations are valid (i.e. signed by the trusted hardware component of the
sending party), (ii) the sending party has quit view e−1, i.e., the counter value of the progress log is equal
to e − 1, and (iii) the sequence number on atthighQC and attprogress matches the ones in the Counters
attestation (lines 3-5). This ensures that even if the sending party is Byzantine, the atthighQC is fresh and
the party can no longer act in the previous view (due to the current counter value of its progress log and
the conditions in validateNeighbor()). The leader picks the keyQC from the highest view as σhighKey and
proposes the value in the certificate. Otherwise, it proposes any client command.

Our modular construction allows us to present the next three phases promote, key, and lock as
invocations of (n2 + 1)-Provable-Broadcast (lines 15-17 and 20-22). As described in the previous section, if
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the leader successfully receives a σkey (respectively σlock and σcommit), it guarantees that ≥ n
2 + 1 parties

have attested to the proposed value in their promote log (respectively key log and lock log) in the position
corresponding to view e. However, in each provable broadcast phase, a party should vote for the leader’s
proposal only if it is safe to do so depending on the party’s state. We use the validate() and validateNeighbor()
interface to specify these constraints (described in Table 1). Recall that the former is used to validate the
leader’s proposal and provide a proof that the leader’s proposal satisfies validate() for this party, while the
latter is used by a neighbor in the expander graph to verify correct behavior.

In the promote phase, a party votes for a leader’s message only if it is locked on the same value as the
proposal or if σhighKey in the leader’s proposal is from a higher view than the party’s lock, σlock. The party
sends an attestation to its lock as proof for the neighbor to verify. The expander graph neighbor verifies the
correctness of the computation in addition to ensuring that the attestations received are valid and fresh (using
the counter values in attheads,j and comparing them to the sequence numbers in the other attestations). In
the key, lock, and commit phases, the parties check if σkey, σlock, and σcommit, respectively, are from the
same view and the proofs were formed in the correct phases. The expander graph neighbors verify validity
of attestations and freshness (to ensure they have not quit the view). Finally, the leader sends a commit
message along with σcommit as proof of commit. Each of the parties can then commit σcommit.val.

We present a view synchronization protocol in Appendix B; the protocol is a generalization of the expected
linear communication complexity protocol of [38] to withstand minority corruption.

Communication complexity. From Theorem 3, an instance of provable broadcast in each of the three
phases (promote, key, and lock) incurs linear communication complexity. To change views, each party
sends a constant number of attestations to the leader in a single message. In both the new-view phase
and the commit phase, the leader sends a single, constant-sized message to all the parties. Therefore, the
HotStuff with Minority Corruption protocol incurs O(n) communication complexity per view.

4.3 Security Proofs

Lemma 4. At the end of a view e, (i) if a party receives a σcommit on value v, then ≥ n
2 +1 parties appended

value v at position e in their lock logs prior to appending a value at position e in their progress logs, and
(ii) if a party receives a σlock on value v, then ≥ n

2 + 1 parties appended value v at position e in their key
logs prior to appending a value at position e in their progress logs.

Proof. This lemma follows from Lemma 2 and the criteria for validateNeighbor() in Table 1.

Lemma 5. Suppose the earliest view in which a value v is committed by an honest party is e. For all views
> e, a valid σkey for a value v′ 6= v does not exist.

Proof. Suppose for contradiction that v has been committed by an honest party in view e and a σkey for
v′ 6= v exists in view e′ > e. Let e∗ be the earliest view in which a σkey for a value v∗ is formed such that
v∗ 6= v and e∗ > e. It follows that e∗ ≤ e′. Since there is a σkey for v∗ in e∗, by Lemma 2, a set Q of at least
n
2 + 1 parties have sent messages with attestations (attj , attheads,j), σj that satisfy validateNeighbor(). Since
v was committed in view e, there exists a set P of at least n

2 + 1 parties who have inserted v into their lock
log. The two sets P and Q should intersect at least one party p.

We now show a contradiction w.r.t. party p’s log and its attestation satisfying validateNeighbor(). Since
view e∗ is the first view where a higher σkey was formed for a different value, the end state of lock in view
e∗ must be for value v. Thus, the predicate view(σin) > view(σlock) in the promote phase is not satisfied.
Moreover, in view e∗, the proposed value v∗ 6= v for our setup. Thus, the condition σin.val = σlock.val in
promote phase is not satisfied either. Additionally, since a party presents the state of their progress log
through the attheads,j attestation, they always present the state of their logs after the end of view e∗−1 ≥ e.
Thus, for party p, validateNeighbor() cannot be satisfied. Consequently, σkey in view e∗ cannot be formed
for value v′, a contradiction.

Theorem 4 (Safety). Two honest parties pi and pj cannot commit to values v and v′ such that v′ 6= v.
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Proof. Let e be the view in which v is committed and e′ be the view in which v′ is committed s.t. v 6= v′. By
Lemma 2, e 6= e′. Suppose, without loss of generality, e > e′. By Lemma 5, no σkey can be formed in view
> e for value 6= v′. Also, honest parties only vote for a σlock in the lock phase in view e′ if it was generated
in view e′. Thus, a σcommit cannot be formed in view e′.

Theorem 5 (Liveness). After GST, there exists a bounded time such that when an honest leader is elected
in view e and all honest parties remain in view e for that time, then a value will be committed by all honest
parties.

Proof. View e is a view after GST where the leader is honest. Suppose σ∗lock is the σlock stored in a party’s
lock log from the highest view e∗ for a value v. By Lemma 4, at least n

2 + 1 parties must have the σ∗key for
value v stored in their lock logs at position e∗ prior to creating the Counters() attestation to report their
highest σlock in e. Since the leader waits for n

2 + 1 valid σkey messages during a view change, it will obtain
σkey from a view ≥ e∗. Let σ′key be the highest valid σkey received by the leader. The leader will propose
(σ′key.val, σ

′
key) in the promote phase. Since e∗ is the highest view for which a party has a lock, it must

be the case that for each honest party, either view(σ′key) > than the locked view of the party or that v is
the value that the party is locked on (Lemma 2). Since e is after GST, all messages will arrive within the
bounded delay ∆, and thus for each of the three phases, the termination property for provable broadcast
from Lemma 3 should be satisfied. Thus, all honest parties will commit.

5 VABA-M: Validated Asynchronous Byzantine Agreement with Minority
Corruption

In this section, we describe VABA-M, an asynchronous protocol that tolerates minority Byzantine corruption
assuming a small trusted hardware at each party. Our goal is to achieve the optimal quadratic communication
complexity for Byzantine agreement. We improve the resilience of the VABA protocol from PODC’19 [5],
which originally tolerated < n/3 Byzantine faults using O(n2) communication to tolerate ≤ (1/2 − 2ε)n
corruption while retaining the O(n2) communication complexity.

5.1 Overview of the VABA Protocol

At a high level, the VABA protocol [5] consists of three stages:
- Leader nomination. In this stage, each of the n parties run n parallel HotStuff-like instances, called

proposal promotions, where party i acts as the leader within instance i.
- Leader election. After the completion of the leader nomination phase as a result of the completion of
n−t parties’ proposal promotions, parties run a leader election protocol using a threshold coin primitive [9]
to elect the leader of this view uniformly at random. At the end of the view, parties adopt the “progress”
from the leader’s proposal promotion instance, and discard information from other instances.

- View-change. Parties broadcast their updated state from the leader’s proposal promotion instance and/or
output values and update their cross-view variables as appropriate.
Since proposal promotion is similar to a HotStuff view, the guarantees provided by the leader nomination

stage are the same as that of a HotStuff view. The leader election phase elects a unique leader at random
– this stage guarantees (i) with ≥ 2/3 probability, a leader whose proposal promotion completed is elected,
and (ii) an adaptive adversary cannot stall progress (since a leader is elected in hindsight). Finally, in
the view-change phase, every party broadcasts the “quorum certificates” from the elected leader’s proposal
promotion instance to all other parties. Since the protocol uses > 2n/3-sized quorums, if a party is locked
(resp. committed) on a given value in a view, there are > 2n/3 parties who hold a key (resp. lock), out of
which > n/3 are guaranteed to be honest parties. If a party waits for > 2n/3 view-change messages, due
to a simple quorum intersection argument, it will receive a key (resp. lock) from at least one of the parties.
This ensures no conflicting value can be proposed in subsequent views, thus ensuring safety.

On the other hand, liveness is guaranteed when a party who has completed its proposal promotion
instance is chosen as the leader. Since a leader is chosen after the leader nomination stage, a party who has
completed proposal promotion is elected with probability > 2/3.
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5.2 VABA-M: Asynchronous Byzantine Agreement with Minority Corruption: Intuition

At first sight, converting the VABA protocol to tolerate minority corruption using trusted hardware seems
straightforward. Since proposal promotion instances are similar to the computations within a HotStuff view,
the techniques we used in the previous section should carry over to the leader nomination phase in a straight-
forward manner. The threshold coin primitive in the VABA protocol can still be used to elect a leader under
a minority corruption. Finally, the view-change stage is similar to that of HotStuff; the only difference is that
parties are now sending their updated state (keys, locks, and commits) to all other parties instead of just
the leader. However, this can still be performed with quadratic communication complexity. Thus, techniques
similar to that in a HotStuff-M view-change can directly be used here to improve the fault tolerance.

On a closer look, the above arguments are flawed. The key concern is related to the amount of storage
required in the hardware unit. Running n parallel proposal promotion instances, as is, requires the hardware
to store a factor n more information. For a small trusted hardware, this is unreasonable. This limitation
affects both the proposal promotion stage as well as the view-change stage. Thus, we resort to different
techniques to address these concerns.

Using O(1) trusted storage during proposal promotion. HotStuff-M used multiple logs, one for each
phase of (n2 + 1)-Provable-Broadcast, as well as one to maintain the progress of the party across views. In
each log, position j corresponded to information in view j. In contrast, since our proposed asynchronous
protocol has n parallel proposal promotion instances, if we still use only one log for each phase, we need
n different positions to store information about a single view. Moreover, we cannot use fixed log positions
for each instance within a view, e.g., storing information of instance k for view e at position ne + k. This
is because the logs can only be appended to, and thus, before inserting a value for instance k, we need to
append values for k′ < k. Due to asynchrony and since some parties may be faulty, a party may never be
able to distinguish between a delayed message for instance k′ and a faulty leader of instance k′ not sending a
message. In summary, we cannot rely on such a mapping to store information about view j for some proposal
instance. In fact, due to the asynchrony in the network, no such deterministic mapping may be possible.

We solve this concern by allowing every party to store information about a view e in n consecutive
positions, say ne to (n + 1)e − 1. However, among these positions, the information can be stored in an
arbitrary order. We crucially rely on the observation that all parties communicate using the same expander
graph for all proposal promotion instances. Thus, independent of the order in which a party pi appends to its
log, it always sends all of this O(n)-sized information to the same set of neighbors ρ(i) across all instances.
Thus, if a party uses the hardware correctly and uses the positions consecutively, its neighbor will eventually
receive attestations corresponding to all previous positions. Thus, a neighbor can always validate that no
two log positions are used for the same proposal promotion instance. Further, once a party appends a value
to a trusted hardware log, the interface immediately returns an attestation that the party can store locally.
Therefore, the hardware does not need to maintain more than a small, constant amount of storage.

Using O(1) trusted storage during view-change. The parties engage in a leader election stage after
n − t proposal promotion instances are completed in the leader nomination stage. If a leader pk is elected,
then subsequently, in a view-change phase parties only need to learn information about proposal promotion
instance k. In particular, parties need to learn the status of the highest keys, locks, and commits from this
view. For simplicity of description, we will assume that parties only share their locks, but the same arguments
work for keys and commits too. In HotStuff-M, to learn the status of the highest lock that they hold, parties
share the end status of their lock logs with all other parties. HotStuff-M used the Counters() attestation
in conjunction with a progress log to guarantee a fresh state of attestations after a party has quit the view.

Recall that during the proposal promotion stage we use the logs in an arbitrary order among different
instances. Since not all parties have access to every parties’ state of logs, the solution used in HotStuff-M does
not work unless each party shares the last n attestations for each of the logs (thus worsening communication
complexity). If all n attestations are not shared, a Byzantine party can use logs incorrectly and share
conflicting information with other parties, e.g., stating that it does not hold a lock from this view while it
did.
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We observe that for every party pi, their neighbors already do have information about exactly how the
logs were used by pi. If the neighbors could confirm the correctness of information sent by a party, perhaps we
can detect incorrect information shared by Byzantine parties. However, again, one or more of its neighbors
could be Byzantine. Fortunately, since parties are connected through an expander graph, we can use the
expander properties to bound the amount of incorrect information shared during the view change stage.

In particular, from Lemma 1, and assuming we tolerate t ≤ (1/2 − 2ε)n we can show the following
properties hold in the graph.

1. The number of honest parties in the network with fewer than ( 1
2 + ε

2 )d honest neighbors is less than εn.
2. The number of Byzantine parties in the network with fewer than ( 1

2 + ε
2 )d honest neighbors is less than

εn.
3. The number of honest parties in the network with at least ( 1

2 + ε
2 )d honest neighbors is greater than

n
2 + εn.

Thus, if we consider a valid view-change message as consisting of an attlock (containing σlock) and signa-
tures from ≥ ( 1

2 + ε
2 )d neighbors attesting to the correctness of the attestation, then at most εn Byzantine

parties can send stale information (they cannot send arbitrarily incorrect information since the attestation
contains σlock) that is considered as valid. There can also be at most εn honest parties’ messages that can
be blocked or incorrectly flagged as incorrect by their majority Byzantine neighbors. However, every party
will either not receive this message or can detect that the messages are invalid. Moreover, we know that if
some party holds a σcommit of a view, based on the arguments we made in Section 3, at least n

2 + 1 parties
must have created attestations in their lock logs. Thus, there can be at most n

2 − 1 parties who do not hold
a lock from this view.

The above discussion suggests that there are at most n
2 + εn− 1 valid messages (honest parties who did

not lock and Byzantine parties with majority Byzantine neighbors) from parties that does not consist of
the highest lock in this view. Thus, if we wait for > n

2 + εn − 1 valid messages, every honest party should
receive the highest lock. Since there are ≥ n

2 + 2εn honest parties and fewer than εn have < ( 1
2 + ε

2 )d
honest neighbors, every honest party should receive sufficiently many valid messages required to complete
the view-change process while still receiving the highest lock.

Phase validate(((j, e), phase), (v, σin)) validateNeighbor(id, (v, σin), (attj ,⊥),⊥)

promote

cond: ext-valid(v) = true,
threshold-verify((((L(view(σin)),
view(σin)), promote), (v, σin.qcσin)),
σin.qc) = true, and view(σin)
≥ LOCK

attj is a valid attestation from HWj for value v in the
promote log and in a position between en and (e(n+ 1)− 1),
and all attestations for positions corresponding to view e in pj ’s
promote log up to the position of attj have been seen and are
not for the same proposal promotion instance

key,
lock,
commit

cond: threshold-verify((((j, view),
phase′), (v, σin.qcσin)), σin.qc) =
true, where phase′ is the phase
before phase

attj is a valid attestation from HWj for value v in the log
corresponding to this phase and in a position between en and
(e(n+ 1)−1), and all attestations for positions corresponding to
view e in pj ’s log for this phase up to the position of attj have
been seen and are not for the same proposal promotion instance

Table 2. Validation functions passed to provable broadcast in different phases of view e in VABA-M.

5.3 Protocol Description

The pseudocode for the top-level protocol has been described in Algorithm 5 and Algorithms 6-7 are used as
sub-protocols. Algorithm 8 overrides the createAttestations method presented in Algorithm 3. The protocol
progresses in a sequence of views. Algorithm 5 describes the three stages of the protocol within a view: leader
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Algorithm 5 VABA-M: VABA with Minority Corruption (for party pi).

1: LOCK := 0, KEY := (v, σin) := (vi,⊥), L := [], Dkey := Dcommit := Dlock := [], vcCount := 0, doneCount := 0
2: for view e := 1, 2, 3, . . . do
3: for k = 1, . . . , n do . Leader nomination phase
4: Proposal-Promotion((k, e), validate(), validateNeighbor())

5: σout := Proposal-Promotion((i, e),KEY ) as s . Start a proposal promotion instance as s
6: wait for Proposal-Promotion((i, e),KEY ) instance as s to return or skip = true
7: if skip = false then
8: send “e,finished-proposal-promotion, (v, σout)” to all

9: wait until skip = true
10: for k := 1, . . . , n do
11: abandon((k, e))

12: L[e]← elect(e) . Leader election phase
13: initiate sendAndGatherVCProofs(e, L[e], Dkey, Dlock, Dcommit) . View-change phase
14: wait until vcCount= n− t− εn+ 1
15: skip:= false, skipShares := {}, Dkey := Dcommit := Dlock := [], vcCount := 0, doneCount := 0

16:
17: upon receiving “e,finished-proposal-promotion, ((ve,j , σcommit,e,j), σout,e,j)” from pj for the first time do
18: if threshold-verify((((j, e),commit), (ve,j , σcommit,e,j)), σout,e,j) = true then
19: doneCount := doneCount+ 1
20: if doneCount ≥ n− t then
21: for logId ∈ {promote,key, lock,commit} do
22: let seqNo be the current counter value of the log corresponding to logId
23: seqNo := seqNo+ 1
24: while seqNo < (e ∗ (n+ 1)) do
25: attendLog := Append(logId, seqNo,⊥)
26: send “e, fill-log, attendLog” to pj ∈ ρ(i)

27: ξ := threshold-signi((skip, e))
28: send “e, skip-share, ξ” to all

29: upon receiving “e, skip-share, ξj” from pj do
30: if share-validate((skip, e), ξj , pkj) = true then
31: skipShares := skipShares ∪ ξj
32: if |skipShares| ≥ n

2
+ 1 then

33: σskip := threshold-combine((skip, e), skipShares)
34: send “e, skip, σskip” to all

35: upon receiving “e, skip, σskip” do
36: if threshold-verify((skip, e), σskip) = true then
37: skip := true

38: if “skip” message was not yet sent then
39: send “e, skip, σskip” to all

40: upon receiving “e, view-change, attkey,j , attlock,j , attcommit,j ,Mj” from pj s.t. |Mj | = ( 1
2

+ ε
2
)d, all parties

with messages in Mj are in ρ(j), attestations in Mj are valid, attkey,j , attlock,j , attcommit,j are either ⊥ or valid
attestations, and consistent with attestations in Mj

41: let σkey, σlock, and σcommit be the values stored in attkey,j , attlock,j , and attcommit,j respectively (or ⊥)
42: if threshold-verify((((L[e], e), phase′), (v, σphase.qcσin)), (σphase.qc)) = true, where phase′ is the phase before

phase for each σphase then
43: if attcommit,j 6= ⊥ then
44: decide σcommit.val, where σcommit is the value in attcommit,j

45: if attlock,j 6= ⊥ then LOCK := view(σlock), where σlock is the value in attlock,j

46: if attkey,j 6= ⊥ then KEY := (v, σin) := (σkey.val, σkey), where σkey is the value in attkey,j

47: vcCount := vcCount+ 1
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Algorithm 6 Proposal-Promotion

1: procedure Proposal-Promotion(id, (v, σin)) //(for sender S)
2: σkey := (n

2
+ 1)-PB-Initiate((id, promote), (v, σin)) . promote phase

3: σlock := (n
2

+ 1)-PB-Initiate((id,key), (v, σkey)) . key phase
4: σcommit := (n

2
+ 1)-PB-Initiate((id, lock), (v, σlock)) . lock phase

5: σout := (n
2

+ 1)-PB-Initiate((id,commit), (v, σcommit)) . commit phase
6: return σout
7:
8: procedure Proposal-Promotion(id, validate(), validateNeighbor()) //(for party pi)
9: Invoke the following in parallel

10: (n
2

+ 1)-PB-Respond((id, promote), validate(), validateNeighbor()) . promote phase
11: (n

2
+ 1)-PB-Respond((id,key), validate(), validateNeighbor())) . key phase

12: (n
2

+ 1)-PB-Respond((id, lock), validate(), validateNeighbor()) . lock phase
13: (n

2
+ 1)-PB-Respond((id,commit), validate(), validateNeighbor()) . commit phase

14:
15: upon abandon(id) do
16: for phase ∈ {promote,key, lock,commit} do
17: abandon((id, phase))

Algorithm 7 sendAndGatherVCProofs (for party pi)

1: procedure sendAndGatherVCProofs(e, L,Dkey, Dcommit, Dlock)
2: send “e, request-vc-ack”
3: upon receiving set M of ( 1

2
+ ε

2
)d messages “e, ack-vc, (attkey, attlock, attcommit)” s.t. attkey = Dkey[L],

attlock = Dlock[L], and attcommit = Dcommit[L]
4: send “e, view-change,Dkey[L], Dcommit[L], Dlock[L],M” to all

5: upon receiving “e, request-vc-ack” from pj ∈ ρ(i)
6: upon receiving all attestions from pj ’s key, lock, and commit logs for sequence numbers en
7: to e(n+ 1)− 1 in fill-log messages or send messages
8: if all attestations for positions corresponding to this view in the key, lock, and commit log
9: are valid or ⊥ and each non-null attestation is for a distinct proposal promotion then

10: send “e, ack-vc, (attkey, attlock, attcommit)” to pj , where the attestations are the attestations
11: received from pi for L and the corresponding phases (or ⊥ where none was received)

Algorithm 8 createAttestations (for party pi)

1: procedure createAttestations(((j, e), phase), (v, σin))
2: logId := phase
3: attlogId := Append(logId,⊥, (j, (v, σin)))
4: if phase ∈ {key, lock,commit} then
5: Dphase[j] := attlogId

6: return (attlogId,⊥)
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nomination (3-11), leader election (12), and view-change (13-15). Since the leader election stage uses a simple
threshold-coin primitive similar to that in the VABA protocol, we abstract it out and do not describe it in
detail.

Leader nomination stage. The leader nomination stage (lines 3-11 in Algorithm 5) starts with Proposal-Promotion,
which consists of four sequential stages of provable broadcast (described in Algorithm 6), similar to that in
HotStuff-M. There are n instances that are run in parallel and each party acts as a leader in one of them.
The inputs to the instances are values corresponding to the highest key held by the leader, or any externally
valid value if the party acting as the leader does not hold a key. The parties use the validation functions
described in Table 2. In particular, the validateNeighbor() function ensures that in a span of n consecutive
positions between en and e(n + 1) − 1 for view e, a proposal promotion instance uses only one position
and all positions before it are used by other instances. If a party completes its own instance, it sends a
finished-proposal-promotion message containing the value and a proof of commit to all parties. Otherwise, it
waits until n− t proposal promotion instances have completed. From a party’s perspective, if n− t instances
have completed, i.e., it has received as many finished-proposal-promotion messages for this view), it appends
⊥ to all its logs at all remaining positions for this view. Recall that in each log, every view has n slots
dedicated to it, and they can be used in an arbitrary order during the provable broadcast calls in different
proposal promotion instances. This step, thus, fills the remaining positions with ⊥s and shares it with all
neighboring parties ρ(i) (Algorithm 5 lines 24-26).

At the end, each party sends a threshold signature with threshold n
2 + 1 to indicate the end of the leader

nomination stage (lines 27-28). Once a party receives n
2 + 1 signature shares, it can combine and send the

combined signature to all parties (lines 29-39). Such a proof allows parties to abandon all provable broadcast
instances (lines 10-11 in Algorithm 5).

View-change stage. Once a leader k := L[e] has been elected (line 12), parties initiate the view-change
process. Since each parties’ usage of logs is only known to its neighbors, it first collects confirmations from
its neighbors on its state. Specifically, it sends a request to its neighbors to acknowledge the attestations sent
for the proposal promotion of L[e] (Algorithm 7, line 2). A neighbor, on receiving these requests, waits for
all attestations corresponding to the view (Algorithm 2, lines 5-6). If all of the attestations in all of the logs
are valid, i.e., each attestation is individually correct and is used for a distinct proposal promotion instance
in each log, then the party sends a signed ack-vc message containing attestations from all logs corresponding
to proposal promotion instance k (lines 9-11). On receiving ( 1

2 + ε
2 )d signed messages from their neighbors,

parties send their attestations along with the signed proofs to all parties (Algorithm 7, lines 3-4).

Each party then waits for n− t−εn+1 valid view-change messages (Algorithm 5, line 14). A view-change
message sent by a party pj is valid if it includes at least ( 1

2 + ε
2 )d messages from parties in ρ(j) containing

the same set of attestations, attkey, attlock, and attcommit are included in pj ’s message (line40). In addition,
for each σphase for phase ∈ {key, lock,commit} that a party receives in view-change messages, it checks
that σphase.qc is a valid threshold signature resulting from the previous phase of the proposal promotion of
L[e] in the current view. If all the checks go through, a party delivers the value proposed by the L[e] and,
updates their KEY and LOCK accordingly (lines 42-46).

Communication complexity. The leader nomination phase consists of n concurrent proposal promotion
instances, each of which incurs O(n) communication complexity due to the linear communication complexity
of (n2 + 1)-Provable-Broadcast (Theorem 3). Then, prior to the leader election phase, each party sends
a constant number of constant-sized messages to each of the other parties. The elect function incurs
O(n2) communication complexity. In the view-change phase, each party sends a constant number of
constant-sized messages to each of the other parties. Lastly, the protocol requires constant rounds in
expectation (Lemma 7).
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5.4 Security Proofs

Lemma 6. For phase phase of proposal promotion in view e, if pi obtains σout
such that threshold-verify((((i, e), phase), (v, σin.qc)), σout.qc) = true and σ′out such that
threshold-verify((((i, e), phase), (v′, σ′in.qc)), σout.qc) = true, then v = v′.

Proof. This follows from the provability property of (n2 + 1)-Provable-Broadcast described in Lemma 2.

Lemma 7 (Uniqueness for proposal promotion within a view). For a given

view e, if pi can deliver σphaseout from the (n2 + 1)-Provable-Broadcast of phase phase ∈
{promote,key, lock,commit} in their proposal promotion, and another proof σphase

′

out from phase phase′ ∈
{promote,key, lock,commit} such that threshold-verify(((i, e), phase), (v, σphasein .qc)), σphaseout .qc) = true

and threshold-verify((((i, e), phase′), (v′, σphase
′

in .qc)), σphase
′

out .qc) = true, then v = v′.

Proof. If phase = phase′, the lemma follows from Lemma 6. If phase′ is the phase immediately after phase,
this follows from Lemma 6 and the fact that in the validate() function, an honest party only votes for a

proposal (v, σphase
′

in ) if threshold-verify((((i, e)), phase), (v, σphase
′

in .qcσin)), σphase
′

in .qc) = true (Table 2), which

can only be the case if σphase
′

in is the output of the phase phase of view e, and therefore by Lemma 6, v′ = v.
Finally, if phase′ is two or more phases after phase (e.g. phase is promote and phase′ is commit), then
the same argument holds transitively.

Lemma 8. For phase ∈ {key, lock,commit}, if pj has a valid proof σphaseout output from the phase phase
of their proposal promotion in view e, then at least n

2 + 1 parties have inserted (j, (v, σ′)) into their logs
corresponding to phase, where σ′ is the output of the previous phase of this proposal promotion, in a
position ne ≤ seqNo < n(e+ 1)− 1, and they have not placed (j, (v′, σ′′)) into a position seqNo′ in their log
such that ne ≤ seqNo′ < seqNo.

Proof. We will prove the lemma for phase = commit but the same argument holds for the remaining cases. If
pj has a valid proof σcommit

out in view e, then n
2 +1−t ≥ εn honest parties must have voted in the commit phase.

By Lemma 2, the εn honest parties have received attestations from at least n
2 +1 parties, pk. Each such atte-

sation attk received from their neighbor satisfies validateNeighbor(((j, e),commit), (v, σcommit), (attk,⊥),⊥)
= true, where (v, σcommit) is the proposal sent by pj at the beginning of the commit phase of the proposal
promotion and the output of the lock phase of pj ’s proposal promotion. The validateNeighbor() method
Table 2 checks that none of the values appended to pk’s commit log in positions corresponding to view e
prior to the sequence number in attk are for the same party’s proposal promotion.

Lemma 9. If a party sends a view-change message containing attphase for phase ∈
key, lock,commit such that threshold-verify((((L[e], e), phase−), (v, σphase.qcσin

)), σphase.qc) =
true, and another party sends a view-change message containing att′phase such that,

threshold-verify((((L, e), phase−), (v′, σphase.qcσin)), σ′phase.qc) = true, where phase− is the phase be-
fore phase, v′ = v.

Proof. This proof follows from Lemma 6.

Lemma 10. If an honest party has committed v during the view-change phase of view e, then all honest
parties set LOCK = e by the end of view e.

Proof. If an honest party has committed v, then it received a valid proof, σcommit,
for the completion of the lock phase of the L[e]’s proposal promotion such that
threshold-verify((((L[e], e), lock), (v, σcommit.qcσin

)), σcommit.qc) = true. This implies that there is a
valid σlock output from the key phase of L[e]’s proposal promotion. It follows from Lemma 8 that a set S
of at least n

2 + 1 parties have inserted (L[e], (v, σlock)) into their lock logs in a valid position corresponding
to view view, such that it does not conflict with any of the values appended before it for this view, and
produced an attestation, att, proving it such that validateNeighbor((((L[e], e), lock), (v, σlock), (att,⊥),⊥)
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= true. At most n
2 − 1 parties in the network do not have such an attestation in their logs, and we refer

to this set as Y . In order to prove the lemma, we can assume that all the parties in Y are honest. Within
S, there are at most four different categories of parties. The first category is Byzantine parties without
( 1
2 + ε

2 )d honest neighbors, of which there are fewer than εn (Lemma 1). By Lemma 9, these parties can
only lie by producing a proof showing that they did not append anything for L[e] in their lock logs for this
view. We refer to the parties in this set as T1. A second set of parties in S is the set T2 of Byzantine parties
with at least ( 1

2 + ε
2 )d honest neighbors. These parties may never send a view change message, and there

are t− |T1| of these parties in S. The third set of parties in S is the set G1 of fewer than εn honest parties
(Lemma 1) without ( 1

2 + ε
2 )d honest neighbors, and they may never get a sufficient view change proof from

their neighbors in order to send a view change message that will be accepted by honest parties. The final
set of parties in S is the set G2 of more than εn+ 1 honest parties who each have at least ( 1

2 + ε
2 )d honest

neighbors, and are therefore able to obtain a view change proof by calling sendAndGatherVCProofs() and
send out valid view change messages to all the parties. During view change, each honest party waits for
n − t − εn + 1 valid view change messages. The party can receive n

2 − 1 messages from the set of honest
parties in Y that aren’t aware of the σlock from L[e]’s proposal promotion and fewer than εn messages from
Byzantine parties in T1 who successfully lie. The remaining view change messages, of which there are at
least 2, that a party receives must be from a party that has σlock and cannot lie about it. This can be from
a party in G2. Even if no Byzantine party sends a view change message, there are more than n

2 + εn honest
parties in the network in the sets Y and G2 that are able to get valid view change proofs to send view
change messages, and all parties hear about σlock through parties in G2. Therefore, all honest parties find
out about σlock and update LOCK.

Lemma 11. If an honest party has set LOCK = e at the end of the view e, then all honest parties have
set KEY := (v, σkey) at the end of view e where σkey is the output of the promote phase of the proposal
promotion of L[e].

Proof. This proof proceeds in the same manner as that of Lemma 10.

Theorem 6 (Safety). If an honest party commits v in view e, and another honest party commits v′ in view
e′ ≥ e, then v′ = v.

Proof. By Lemma 7, only a single value v can receive σcommit within a view. Hence, if e′ = e, v′ = v.
Suppose that an honest party has committed v in view e and another honest party commits v′ in e′, where

e′ > e and v′ 6= v. Since v was committed in view e, all parties must have LOCK = e and KEY = (v, σkey)
for v after view e. If an honest party has committed v′ in view e′ > e, a valid σ′key must have been formed
on a value other than v in a view > e. Let e∗ be the first view in which a σkey is formed on a value v∗ 6= v.
By the conditions in the validate() function, an honest party only votes for (v∗, σ∗in) if view(σ∗in) ≥ LOCK.
Every honest party has LOCK at least equal to e, so view(σ∗in) should be greater than e. So, suppose σ∗in
was created in view e∗∗ such that e < e∗∗ < e∗. However, this contradicts the fact that e∗ was the first view
where a σkey was created for a value other than v. Therefore, the lemma holds.

Lemma 12. If all honest parties start view e with externally valid values, for all views e′ > e, all values
proposed by honest parties are externally valid.

Proof. If e = 1, the lemma is trivially true. Consider a view e′ > e. Each honest party proposes the
value v in their KEY along with the proof of its validity σin. If an honest party set their KEY =
(v, σin) upon receiving a view-change message containing it in view e′′, it must be the case that
threshold-verify(((L[e′′], e′′),promote), (v, σkey.qcσin

), (σkey.qc)) = true. In order for this to be the case,
an honest party must have voted for (v, σpromote). An honest party will only do so if ext-valid(v) = true.
Therefore, the lemma holds.

Lemma 13. If in view e, pi, the leader of Proposal-Promotion instance (i, e), is honest, no honest party in-
vokes abandon((i, e)) , and all messages sent by honest parties arrive, then the Proposal-Promotion completes
and pi receives a proof, σout, of its completion.
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Proof. Assuming that all honest parties start with externally valid values, by Lemma 12, the values proposed
by all honest parties in view e are externally valid. Further, by Lemma 11, all honest parties have KEY equal
to (v, σkey) from a view at least as high as that of the highest LOCK held by an honest party. Since pi is
honest, it must be the case that threshold-verify((((L[view(σin)], view(σin)),promote), (v, σin.qcσin

)), σin.qc)
= true (otherwise they wouldn’t have adopted it to their KEY ). In the promote phase, pi proposes (v, σin).
Since ext-valid(v) = true, threshold-verify((((L[view(σin)], view(σin)),promote), (v, σin.qcσin)), σin.qc) =
true, and view(σin) ≥ LOCK for all honest parties, every honest party will append (i, (v, σin)) to
their promote logs and send the attestation to their neighbors. Since all messages sent by hon-
est parties arrive, and by the termination property of (n2 + 1)-Provable-Broadcast(Lemma 2), at least
n
2 + 1 honest parties receive a sufficient number of attestations, att, from their neighbors such that
validateNeighbor(((i, e),promote), (v, σin), (att,⊥),⊥) = true and send vote messages with threshold sig-
nature shares to pi. pi combines the threshold signature shares into a proof, σkey. The arguments for the
rest of the phases of pi’s proposal promotion follow from Lemma 3, the conditions laid out in Table 2, and
the fact that no honest party abandons the proposal promotion.

Lemma 14. If in view e, all messages sent by honest parties arrive and no honest party invokes abandon()
on the proposal promotion of an honest party, then eventually skip = true for all honest parties.

Proof. By Lemma 13 the proposal promotions of all honest parties complete, and there-
fore all honest parties pj send messages “e,finished-proposal-promotion, (v, σout)” such that
threshold-verify((((j, e),commit), (v, σout.qcσin

)), σout.qc) = true. Eventually all honest parties get
doneCount = n− t and send request-skip messages with threshold signature shares. Therefore, some honest
party gets at least n

2 + 1 skipShares and sends out a proof, σskip, to all parties. Then every honest party
gets σskip such that threshold-verify((skip, e), σskip) = true, and sets skip = true.

Lemma 15. If one honest party sets skip = true, every honest party sets skip = true.

Proof. An honest party sets skip = true upon receiving a valid threshold signature σskip. Upon setting
skip = true, they forward σskip to the rest of the network. Therefore, all honest parties eventually set
skip = true.

Lemma 16. If all honest parties start view e, and all messages sent by honest parties arrive, then view e
completes.

Proof. If an honest party has set skip = true in view e, then by Lemma 14, all honest parties set skip = true.
If no honest party has set skip = true, then no honest party ever invokes abandon(), and by Lemma 14, all
honest parties eventually set skip = true. Then, all honest parties participate in the leader election phase and
elect L[e]. Every honest party then initiates sendAndGatherVCProofs(). By Lemma 1, at least n

2 + ε(n) + 1
honest parties have at least ( 1

2 + ε
2 )d honest neighbors, and therefore at least n

2 + ε(n) + 1 valid view-change
messages are sent to all parties. All honest parties get vcCount= n

2 − t− ε(n) + 1 and move on to the next
view.

Lemma 17. If the proposal promotion of the elected leader of view e has completed in view e, then all honest
parties decide by the end of view e.

Proof. Let pl = L[e] and v be the value proposed in pl’s proposal promotion. If pl’s proposal promotion
completed in view e, they have a proof, σout, output from the commit phase of their proposal promotion.
By Lemma 8, this means that at least n

2 + 1 parties have inserted (l, (v, σcommit)) into a position in their
commit logs corresponding to view e, such that it does not conflict with any of the values appended before
it, where σcommit is the output of the lock phase of pl’s proposal promotion in this view. Using the same
argument as that in Lemma 10, we can show that all honest parties receive σcommit. The rest of the lemma
follows from this and the fact that honest parties commit after receiving the valid σcommit from the leader’s
proposal promotion.

Lemma 18. If an honest party invokes elect(e), then n
2 +2εn Proposal-Promotion instances have completed.
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Proof. An honest party invokes elect(e) after setting skip = true. They only set skip = true upon receiving
σskip, proof that n

2 + 1 parties sent skip-share messages with threshold signatures. This means that at least
one honest party must have sent a skip-share message. An honest party only does this after doneCount ≥
n− t, where doneCount is the number of finished-proposal-promotion messages they have received from
parties with valid proofs of completion.

Theorem 7 (Liveness). If all honest parties start with externally valid values, with probability > 1
2 , all

honest parties decide in a given view.

Proof. By Lemma 14, all honest parties eventually set skip = true. Upon setting skip = true, every honest
party invokes elect(e). By Lemma 18, n

2 + 2εn proposal promotions must have completed. The probability
that the party that is elected as the leader is one of the ones whose proposal promotions completed is
n−t
n > 1

2 . By Lemma 17, if the elected leader’s proposal promotion completed, all honest parties decide in
view e.

6 Related Work

Trusted hardware and consensus. Trusted hardware can be classified into two categories depending on
the computations it can provide. The more powerful class is capable of running arbitrary specified code in
a trusted execution environment (TEE). The protected execution state is encrypted by the trusted module
and written to a specified memory range that only the trusted module can access while the code is running
(e.g. Intel SGX [17], Flicker [34], Aegis [46], XOM [31], and Bastion [11]). They have been used to provide
confidentiality [17, 46, 31, 11, ?] as well as to improve resilience and performance in the context of consensus
protocols [7, 23, 44, 8, 2, 32]. However, the trusted computing bases of such platforms tend to grow as they
increase in their generality, up to an including extensive libraries and OS components (e.g., [48]). Conse-
quently, these platforms can present a large attack surface, giving way to attacks from outside the TEE
(e.g., [13]).

Our work focuses on using small trusted hardware with a fixed, limited functionality (e.g., YubiKeys [47]).
There have been several works using such a hardware to improve the performance of BFT protocols [25, 51,
52, 15, 30, 40, 3]. Notable works include A2M [15] and TrInc [30]. Chun et al. [15] show how, by introducing
append-only (A2M) logs in the trusted hardware component of all processors in a network, the fault tolerance
of BFT protocols can be increased to minority faults. They show an implementation of PBFT that withstands
minority faults using A2M logs. However, simply applying their approach to a BFT protocol can increase
the communication complexity by at least a factor of n due to the communication pattern of the protocol.
In TrInc [30], Levin et al. show how A2M logs can be implemented with a small trusted monotonic counter,
a key, and a small amount of trusted storage.

Expander graphs and consensus. Expander graphs have been used in the context of consensus protocols
in works in the past [28, 27, 35]. Chlebus et al. [14] present an algorithm that solves consensus in the crash fault
setting such that the per-process communication complexity is polylogarithmic in the number of processors.
King and Saia’s protocol for leader election withstands a one-third Byzantine adversary in synchrony using
expanders to achieve polylogarithmic per-process communication complexity. They extend this work to
obtain o(n2) total bits of communication against an adaptive adversary. Recently, Momose and Ren [35]
used expanders to solve Byzantine agreement against a minority corruption. Their work uses expanders to
detect equivocation under synchrony. One could also consider the use of random sampling to be a randomized
method to obtain the properties of expanders [21, 42, 22].

Non-equivocation. Over the past two decades, there has been various work in the space of non-equivocation
[15, 16, 43, 6, 33]. Clement et al. [16] defined non-equivocation as when a process sends different messages to
different processes during a single round of the protocol when, by the protocol, it should have sent the same
message to the other processes. They then proceed to study the power of non-equivocation, showing that
non-equivocation alone is not sufficient to increase the threshold of Byzantine processes in a network when
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trying to reach agreement. It is necessary to also have digital signatures, or another form of transferable au-
thentication, to increase the resiliency of the network. Ruffing et al. [43] present non-equivocation contracts,
which reveal the Bitcoin credentials of an equivocating party in order to penalize equivocation. Backes et
al. [6] show how to use non-equivocation to improve the resilience of asynchronous MPC to match that of
synchronous MPC, which tolerates minority corruption. Our work expands on these works by showing how
non-equivocation implemented by the use of trusted hardware can be combined with expander graph tech-
niques to increase the fault tolerance of BFT protocols without increasing the communication complexity.
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40. Vincent Rahli, Francisco Rocha, Marcus Völp, and Paulo Esteves-Verissimo. Deconstructing minbft for security

and verifiability. Grand Region Security and Reliability Day.
41. Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. Practical synchronous byzantine consensus. arXiv

preprint arXiv:1704.02397, 2017.
42. Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for cryptocurrencies. Avail-

able [online].[Accessed: 4-12-2018], 2018.
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A Proofs for Expander Graph Lemmas

Lemma 19. For every constant 0 < α < β < 1 and sufficiently large n, there exists a d-regular graph that
is an (n, α, β)-expander.

Proof. For this proof, we will show a randomized way to construct a d-regular graph Gn,α,β . Then, we will
show that with high probability, it satisfies the lemma.

Let Γ (V,G) refer to the set of neighbors of the vertices V in a graph G. Consider a random degree-d
graph G constructed by taking the union of d random perfect matchings (assume that n is even; if n is
odd, we can add a dummy node or assign a vertex to two neighbors). In order to ensure that each vertex
has degree exactly d, one can construct each of the perfect matchings in the following way. Create the first
perfect matching by taking one vertex at a time and matching it to a random unmatched vertex in the
graph, repeating until all vertices have been matched. Repeat this process for d perfect matchings without
replacement, so that for the kth perfect matching, each vertex is matched to a random vertex from the set
of vertices that it hasn’t been matched to in a previous perfect matching.

Consider a perfect matching P , a set of αn nodes, S, and a set of βn nodes, T . Now, consider the matching
of the first set of αn nodes, S, in the first perfect matching (the perfect matching that results in a graph
with degree 1). The probability that the first vertex that is matched is matched to a vertex in T is βn

n . Since
α < β, and we match without replacement, the probability of choosing a match in T for the ith node in S
after all of the previous matchings of nodes in S have been to nodes in T can only be less than this quantity.
Since it is possible that S ⊂ T , and nodes in S are matched to each other, we only multiply this quantity
αn
2 times. We are therefore able to obtain the following upper bound for the probability that in each perfect

matching P , for any set of αn nodes S, and any set of βn nodes T , Γ (S, P ) ⊆ T :

Pr[Γ (S, P ) ⊆ T ] ≤ (
βn

n
)
αn
2 = β

αn
2 (1)

Using this, the probability that any set of αn vertices does not expand to more than βn other vertices, i.e.
|Γ (S,G)|≤ βn for any set S, is bounded above by:(

n

αn

)(
n

βn

)
β
αnd
2 (2)

≤ (
e

α
)αn(

e

β
)βnβ

αnd
2 (3)
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≤ [eα+β((
1

α
)α(

1

β
)β)β

αd
2 ]n (4)

For a sufficiently large constant d, the above probability is exponentially small, which means that with
high probability, a graph randomly chosen with the above procedure is an (n, α, β)-expander. Thus, Gn,α,β
exists.

Lemma 20. There exists an expander graph Gn,ε,β with degree d, 0 < ε < 1
2 , ε < β < 1, such that for any

set S of ( 1
2 + ε)n nodes, there exists a set Q of more than n

2 nodes, Q ⊆ S, and every node in Q has at least
( 1
2 + ε

2 )d neighbors in S.

Proof. From Lemma 19, we know that a Gn,ε,β-expander exists. For the rest of the proof, we show that with
high probability an expander graph with sufficiently high degree constructed using the randomized procedure
outlined in the proof for Lemma 19 satisfies the lemma.

Consider a set T of ( 1
2 − ε)n nodes in our expander graph G. Let S be the set of nodes in G that are not

in T . If we show that with high probability, it is not the case that εn nodes in S have more than ( 1
2 −

ε
2 )d

neighbors in T , then there must be a set of nodes Q of size greater than n
2 in S that satisfies the lemma.

Therefore, using the same technique as that in the proof for Lemma 19, we first bound the probability that
for a given set of nodes R of size εn in a perfect matching P , all nodes in R have neighbors in a set T of size
( 1
2 − ε)n, where R and T are pairwise disjoint.

Pr[Γ (R,P ) ⊆ T ] ≤ (
( 1
2 − ε)n
n

)εn = (
1

2
− ε)εn (5)

Then the probability that there does not exist a set Q of more than n
2 nodes that satisfies the statement

in the lemma is bounded by: (
n

εn

)(
(1− ε)n
( 1
2 − ε)n

)
(
1

2
− ε)εnd( 1

2−
ε
2 ) (6)

≤ [(
e

ε
)ε(
e(1− ε)
( 1
2 − ε)

)(
1
2−ε)(

1

2
− ε)εd( 1

2−
ε
2 )]n (7)

≤ [e(
1

ε
)ε(

1− ε
1
2 − ε

)(
1
2−ε)(

1

2
− ε)εd( 1

2−
ε
2 )]n (8)

Again, for sufficiently large d, the above probability is exponentially small. Thus, with high probability the
lemma holds.

Lemma 21. There exists an expander graph Gn,ε,β with degree d, 0 < ε < 1
2 , ε < β < 1 such that for any

partition of its nodes into blocks T and Q where |T | = ( 1
2 − 2ε)n and |Q| = ( 1

2 + 2ε)n, there exists a set
T ′ ⊆ T , |T ′| > ( 1

2 − 3ε)n, such that each node in T ′ has at least ( 1
2 + ε

2 )d neighbors in Q.

Proof. From Lemma 19, we know that a Gn,ε,β-expander exists. For the rest of the proof, we show that with
high probability an expander graph with sufficiently high degree constructed using the randomized procedure
outlined in the proof for Lemma 19 satisfies the lemma.

Consider a set T of ( 1
2 − 2ε)n nodes in our expander graph G. Let R be be a set of nodes in T of size εn.

Using the same technique as that in the proof for Lemma 19, we first bound the probability that in a given
perfect matching P , all nodes in R have neighbors in T .

Pr[Γ (R,P ) ⊆ T ] ≤ (
( 1
2 − 2ε)n

n
)
εn
2 = (

1

2
− 2ε)

εn
2 (9)

Then the probability that εn nodes in T have more than ( 1
2 −

ε
2 )d neighbors in T is bounded by:(

n

( 1
2 − 2ε)n

)(
( 1
2 − 2ε)n

εn

)
(
1

2
− 2ε)

εnd
2 ( 1

2−
ε
2 ) (10)
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≤ [(
e
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2 − 2ε

)
1
2−2ε(

e( 1
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2
− 2ε)
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ε
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1

1
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1
2 − 2ε

ε
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1

2
− 2ε)

εd
2 ( 1

2−
ε
2 )]n (12)

Again, for sufficiently large d, the above probability is exponentially small. Thus, with high probability the
lemma holds.

Lemma 22. There exists an expander graph Gn,ε,β with degree d, 0 < ε < 1
2 , ε < β < 1, such that for any

set S of ( 1
2 + 2ε)n nodes, there exists a set Q of more than ( 1

2 + ε)n nodes, Q ⊆ S, and every node in Q has
at least ( 1

2 + ε
2 )d neighbors in S.

Proof. This lemma follows directly from Lemma 20, as any graph that violates this property also violates
the property in Lemma 20.

The following lemma and theorem can be found in any resources on expander graphs, such as Hoory et
al. [24].

Lemma 23 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph and let S, T ⊆ V . Then,

||E(S, T )| − d|S||T |
n
| ≤ λ(G) · d

√
|S|(1− |S|/n)|T |(1− |T |/n) (13)

where |E(S, T )| is the number of edges between the two sets (counting edges contained in the intersection of
S and T twice) and λ(G) is the second largest eigenvalue of the adjacency matrix of G.

Theorem 8 (Theorem 4.12 of Vadhan [49], restated). For any constant d ∈ N , a random d-regular
n-vertex graph satisfies λ(G) ≤ 2

√
d− 1/d+O(1) with probability 1−O(1) where λ(G) is the second largest

eigenvalue of the adjacency matrix of G and both O(1) terms vanish as n approaches ∞ (and d is held
constant).

Lemma 24. For all sufficiently large integers n and positive constants ε and β such that 0 < ε < β < 1
there exists an d-regular expander Gn,ε,β such that for any set S of εn nodes and any set T of ( 1

2 + ε
c )n

nodes, where c > 2, the number of edges with one vertex in S and one vertex in T is less than ( 1
2 + ε

2 )εdn.

Proof. By Lemma 19, we know that a random d-regular expander Gn,ε,β exists for a sufficiently large constant
d. By the Expander Mixing Lemma [24], we know that for any two sets of vertices S and T where |S| = εn
and |T | = ( 1

2 + ε
c )n, the number of edges between the vertices in S and those in T , E(S, T ), in a d-regular

expander graph G is upper bounded by:

E(S, T ) ≤ λd

√
εn(1− ε)

(
1

2
+
ε

c

)
n

(
1

2
− ε

c

)
+
εdn

2
+
ε2dn

c
(14)

In order to satisfy the lemma, we need:

E(S, T ) ≤ λ

√
(εn− ε2n)

(
1

2
+
ε

c

)(n
2
− εn

c

)
<
ε2n

2
− ε2n

c
(15)

Since G is a random d-regular expander graph, we can upper bound λ(G) using [49, Theorem 4.12]:

λ ≤ 2
√
d− 1

d
+O(1) <

ε2

2 −
ε2

c√
ε
4 −

ε2

4 −
ε3

c2 + ε4

c2

(16)

With some simplification, and as the O(1) term goes to 0 as n goes to infinity, we get:

d >
ε

( ε
2

2 −
ε2

c )2
(17)

Which is satisfied by sufficiently large constant d.
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Proof of Lemma 1

Proof. By Lemma 24, we know that there exists an expander Gn,ε,(1− εc ) with sufficiently large constant

degree d, such that every set T of ( 1
2 + ε

c )n nodes has fewer than ( 1
2 + ε

2 )εdn edges to S. Further, by Lemmas
20, 21, 22, we know that there is a randomized construction for a d-regular expander for sufficiently high
degree d that satisfies properties 1-3 with high probability. We deterministically choose a graph that satisfies
these properties. For property 4, consider an arbitrary set S of εn nodes in the graph. Suppose that we create
a set U ′ consisting of ( 1

2 + ε
2 )d neighbors of each node in the set S such that |U ′| ≤ n

2 . If we consider the
multiset of (1

2 + ε
2 )d neighbors of each node in S, the size of the multiset is (1

2 + ε
2 )εdn. By the construction of

our expander, every set of εn nodes expands to more than (1− ε
c )n nodes. Refer to the set of (1− ε

c )n nodes
that S expands to as Y . It follows that within Y , there must be a set T of ( 1

2 + ε
c )n nodes that contains U ′

such that there are more than ( 1
2 + ε

2 )εdn edges with one vertex in S and one in T . We have arrived at a
contradiction, as this violates that the graph satisfies the property in Lemma 24. Therefore the lemma holds.

B View synchronization.

In this section, we describe protocols for view synchronization to ensure that honest parties are in the same
view for a sufficiently long time. Informally, the view synchronization property states that there should be
an infinite number of views e with honest leaders such that every honest party is in view e for at least δ time,
where δ is a parameter indicating the desired length of a view. There are a few different ways to achieve view
synchronization, each with tradeoffs. One such implementation uses the view doubling method as described
in PBFT [10]. One way to implement view doubling is such that there is a predefined ordering of the parties,
and each view maps deterministically to one party as a leader. After every n views, the protocol cycles back
through the list of parties in order. At the beginning of the protocol, each party starts with the same timeout
interval δ. In each view, they time out only after δ time and then double the value of δ prior to beginning
the next view. We refer the reader to [37] for a proof that this implementation results in a synchronous view
after GST. Since no messages are exchanged in view doubling, its application for view synchronization does
not increase the communication complexity of the underlying protocol. Thus, such a protocol should directly
work to synchronize views in our protocol too. However, it does have the disadvantage that it does not allow
the protocol to proceed at the speed of the network. Further, the view timeout can grow unbounded.

Another proposal is to define a set time interval δ for a view if we assume clocks to be incrementing at
the same speed and that all parties start the protocol at the same time. Starting from the first view, a party
always proceeds to the next view after δ time. This protocol does not result in unbounded growth of the
length of each view. Since this protocol does not increase communication complexity, it can be used with
our protocol too. However, like the view doubling proposal, this protocol is not responsive.

Expected linear communication complexity, constant latency view synchronization [38]. Naor
et al. [38] present a view synchronization protocol that achieves expected linear communication complexity
and expected constant latency against a Byzantine adversary that corrupts fewer than 1

3 of the parties in
the network. It also allows the protocol to proceed at the speed of the network under optimistic conditions.
In this section, we present a brief overview of the solution presented in [38]. We then present our modified
version of the view synchronization protocol with the same expected communication complexity and latency
against a Byzantine adversary that controls a minority of the parties in the network.

The protocol presented in [38] assumes a network of n parties such that t < n
3 parties are corrupted by a

static oblivious Byzantine adversary. The protocol uses PKI to verify the sender of a message and assumes
a shared source of randomness. Since the adversary is oblivious, it does not know the randomness prior to
corrupting parties. For each view, every party that queries the shared source of randomness receives the same
random sequence of t+1 parties such that the k-th party in the sequence is the k-th relay for that view. The
sequence of relays for a given view is selected uniformly at random from the set of parties without replacement.
Finally, the protocol uses a threshold signature scheme to create constant-sized threshold signatures with
two different thresholds: t+ 1 and 2t+ 1.
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The protocol uses two higher level functions: propose-view(e) and wish-to-advance(). When a party times
out of a view of the higher level protocol, it invokes wish-to-advance(), which signals the beginning of the
view synchronization protocol for the subsequent view. Upon receiving the propose-view(e) signal from the
view synchronization protocol, a party begins execution of view e. There are three message types: wish,
move, and finalize.

We now describe the execution of the view synchronization protocol from the perspective of a party. In
the subsequent paragraph, we describe the execution from the perspective of a relay. When a party begins
the execution of the view synchronization protocol for view e, it obtains the sequence R of t + 1 relays
for this view from the shared source of randomness. The party then iterates through the list of relays in
order, attempting to obtain a σwish,e, a threshold signature indicating that at least t + 1 parties invoked
wish-to-advance() in view e−1. During this time, the party maintains a count variable, attempted [e], which
it uses to keep track of the relays it has tried to obtain a σwish,e from for view e and that is initialized to 1.
Upon entering the execution of the view synchronization protocol for view e after invoking wish-to-advance()
in view e − 1, a party sends a message “wish, e, 1” to the 1st relay in the sequence, R[1]. Note that this
message actually contains a threshold signature share on the contents of the message, however for simplicity
we write the message this way. Upon waiting 2∆ and not receiving a σwish,e from R[1], where ∆ corresponds
to the message delay of the network, a party increments its attempted[e] counter and sends a message “wish,
e, attempted[e]” to the second relay, R[2], in the sequence. The party continues timing out and trying the
next relay in the sequence until they receive a σwish,e from a relay. Note that there is guaranteed to be at least
one honest relay in R. Upon receiving a σwish,e from relay r in the sequence, a party sends a message “move,
e, i” to relay r (even if it did not yet invoke wish-to-advance() from view e − 1), where i is the sequence
number of relay r in R. Upon waiting 2∆ and not receiving a σmove,e from relay r, and if attempted[e] < t+1,
the party picks up from where it left off sending wish by incrementing attempted[e] and sending “wish, e,
attempted[e]” to relay R[attempted[e]]. Upon receiving σmove,e from relay r′ in the sequence, a party enters
view e and sends finalize to relay r′. 2∆ after sending finalize to relay r′ and not receiving σfinalize,e, and
if attempted[e] < t+ 1, the party picks up where it left off sending wish, increments attempted[e] and sends
“wish, e, attempted [e]” to relay R[attempted[e]]. Upon receiving finalize, a party stops this execution of
the view synchronization protocol.

As the i-th relay of view e, a party pr acts as follows. When it receives t + 1 “wish, e, i” messages,
relay pr combines them into a threshold signature σwish,e and sends it to all the parties in the network.
Upon receiving 2t + 1 “move, e, i” (or “finalize, e, i”) messages, the party combines them into a σmove,e
(or σfinalize,e) and sends the threshold signature to all parties in the network. Note that the threshold
signatures are on the message type, view, and relay number. This means that each relay must collect their
own threshold signature, so Byzantine relays cannot arbitrarily participate in the protocol.

We briefly discuss three properties guaranteed by the synchronizer for correctness and liveness: validity,
stabilization, and progress. Validity states that an honest party should only move to a new view e if some
honest party requested to move to this view. This property is trivially guaranteed by the fact that the σwish
threshold is t+ 1. Stabilization and progress are two properties that ensure liveness. Stabilization ensures,
for any time T , the stabilization of at least t + 1 honest parties to the same maximum view e at, or after,
T . In addition, if the first relay for view e is honest, and the time T when the first honest party to request
to move to view e is T ≥ GST, then all the honest parties enter view e within a constant amount of time
from T . This property ensures that there are always a sufficient number of honest parties in the highest view
to request to move to the subsequent view. The protocol guarantees this property before GST, and after
GST if the first relay for view e is not honest, because an honest party only stops sending wish messages to
relays once it receives a σfinalize,e from a relay, ensuring that eventually an honest relay receives a sufficient
number of wish messages to broadcast a σwish,e. Once the first honest party receives a σfinalize,e, at least
t + 1 honest parties must have received a σmove,e and moved to the new view. After GST if the first relay
for view e is honest, since an honest party moved to view e, it must have received a σmove,e at time T , and
the first relay in the sequence must have received at least t + 1 wish from honest parties and broadcasted
a σwish,e by time T + ∆. By time T + 3∆, the first relay receives a sufficient number of move messages
to broadcast a σmove,e, and all relays enter the view by time T + 4∆. Finally, progress states that for a
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given time T , if a set H of t + 1 honest parties call wish-to-advance() while in the maximum view of any
honest party at T , e, by time T0 (and no honest parties do so in a view greater than e), then there is at least
one honest party in view e + 1 from some time T1 onward. Further, if T0 ≥ GST, and the first relay in the
sequence for view e + 1 is correct, then all honest parties enter view e + 1 a constant amount of time after
T0. Clearly, by validity, no honest party moves to view e+ 2 or higher, so the parties in H must be in view e
or e+ 1. The proof of this property then follows from the fact that an honest party only stops sending wish
messages to relays for view e+ 1 after it receives σfinalize,e+1. After GST, and if the first relay for view e+ 1
is honest, the proof follows from the fact that this relay receives at least t+ 1 wish messages by time T +∆,
and by time T + 4∆, all correct processes receive a σmove,e+1 from this relay and move to view e+ 1.

With the properties of validity, stabilization, and progress, [38] goes on to prove that by defining the
leader of a view as the first relay for that view, since relays are chosen randomly, there are an infinite
number of synchronized views with honest leaders after GST. The proof that this protocol achieves expected
linear communication complexity and constant latency relies on the fact that there are an expected constant
number of bad relays (≤ 3

2 ) before reaching a good relay in a relay sequence. They show that there is a
constant amount of time in expectation between each stabilized view (and until the first stabilized view)
after GST. In addition, the random selection of relays ensures that each party communicates with a constant
number of relays in expectation for each run of view synchronization after GST. We refer the reader to [38]
for the detailed proofs.

Generalizing Naor-Keidar view synchronization to our setting. We now describe our modified
version of the view synchronization protocol. Compared to [38], we allow t ≤ ( 1

2 − ε)n parties in the network
to be corrupted. We can therefore no longer use a threshold signature size for σmove and σfinalize that ensures
t+1 honest parties have contributed to their creation. However, we can still gain the properties that we need
through the use of the expander graph, and with the assumption of synchrony after GST. Observe that after
GST, the expander graph that connects all the parties in the network gives us additional properties. Our
expander graph has the property that the neighbor set of any set of εn honest parties contains more than
n
2 honest parties (this follows from the fact that we use an Gn,ε,(1− εc ) expander where c > 2, and at most

t ≤ ( 1
2 − ε)n parties are Byzantine). This means that, after synchrony, if εn honest parties send a message to

their neighbors at time T , more than n
2 honest parties receive the message by time t + ∆. So, although we

cannot use a threshold signature size that includes a majority of the honest parties, if our threshold signatures
include at least εn honest parties, we can ensure that if εn honest parties move to a new view, they can
send the σmove they received to more than n

2 honest parties through the expander graph, so that a majority
of the honest parties move to the new view within a constant amount of time. By setting δ accordingly,
we achieve view synchronization with expected constant latency. Since our expander has constant degree,
the communication complexity also remains linear in expectation. Note that this protocol does not require
the use of trusted hardware at all, so we are able to create the threshold signatures outside of the trusted
hardware. Thus, this is a strict generalization of [38]. We present the pseudocode in Algorithm 9. In the
pseudocode, we use relay(e, k) to refer to a call to the shared source of randomness to return the process
that is the relay for view e, sequence number k. For the sake of simplicity, we define an attempted [] array
to keep track of number of attempted relays for a given view, however in practice, a single counter can be
used. The parts of the protocol that differ from the original protocol are in blue.

We now present the intuition for how our modified view synchronization protocol achieves the properties
of validity, stability, and progress. As in the original protocol, validity is trivially guaranteed by the t + 1
threshold for σwish. For stabilization, prior to GST and after GST if the leader of view e is not honest, if
an honest party receives σfinalize,e, then εn honest parties received σmove,e and sent it to their neighbors,
meaning that at least n

2 + 1 honest parties receive it and move to view e. If no correct process recieves
σfinalize,e, the at least εn honest parties that contributed to the σmove,e received by the first honest party
to move to view e sent σwish,e to their neighbors. Therefore, at least n

2 + 1 honest parties commence the
view synchronization protocol for view e, and eventually some honest relay receives t + 1 wish messages
and completes the rest of the stages of the view synchronization protocol for view e. Therefore, all honest
parties eventually move to view e. If relay(e, 1) is honest, and the first party to move to view e does so at
time T0 ≥ GST, εn honest parties received σwish,e by time T0 and sent it to their neighbors, who receive it
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Algorithm 9 Expected Linear Communication and Constant Latency View Synchronizer for Minority
Corruption (party pi)

1: curr:= 1
2: next round := 1
3: ∀i ∈ N : attempted[i] := 1
4: finalized := true
5:
6: // as a party:
7: on wish-to-advance():
8: if curr < next view: then return
9: next view:= curr +1

10: send “wish, next view, 1” to relay(next view, 1)
11:
12: upon receiving the first “σwish,e, e, k” with a valid σwish,e:
13: if e < next view then return
14: if e > next view then next view:=e, send “wish, e, 1” to relay(e, 1)
15: send “σwish,e, e, k” to all parties in ρ(i)
16: send “move, e, k” to relay(e, k)
17:
18: upon receiving the first “σmove,e, e, k” with a valid σmove,e:
19: if e < curr then return
20: if e > curr then //enter view e
21: curr := e, finalized := false
22: send “move, e, 1” to relay(e, 1)
23: propose-view(e)
24: send “σmove,e, e, k” to all parties in ρ(i)
25: send “finalize, e, k” to relay(e, k)
26:
27: upon receiving the first “σfinalize,e, e, k” with a valid σfinalize,e from relay(e, k):
28: if e =curr then finalized := true
29:
30: on sending wish or move and not receiving matching σwish,e or σmove,e in 2∆ time:
31: if attempted [next view ] < t+ 1 then
32: attempted [next view ]:=attempted [next view ]+1
33: send “wish, next view, attempted [next view ]” to relay(next view, attempted [next view ])
34: on sending finalize and not receiving matching σfinalize,e within 2∆ time:
35: if finalized = false and attempted [curr ]< t+ 1 then
36: attempted [curr]:=attempted [curr ] +1
37: send “wish, curr, attempted[curr]” to relay(curr, attempted[curr])
38:
39: // as relay(e, k):
40: upon receiving a set M of valid threshold signature shares in “wish, e, k” messages from t+ 1 unique parties:
41: σwish,e :=threshold-combine(M, e, k)
42: send “σwish,e, e, k” to all parties
43: upon receiving a set M of valid threshold signature shares in “move, e, k” messages from n

2
+ 1 unique parties:

44: σmove,e :=threshold-combine(M, e, k)
45: send “σmove,e, e, k” to all parties
46: upon receiving a set M of valid threshold signature shares in “finalize, e, k” messages from n

2
+1 unique parties:

47: σfinalize,e :=threshold-combine(M, e, k)
48: send “σfinalize,e, e, k” to all parties
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by time T0 +∆. Since every party sends wish to each relay in order, relay(e, 1) receives t+ 1 wish messages
by T + 2∆ and sends σwish,e to all parties. By T + 3∆, all honest parties receive this σwish,e and send move
to relay(e, 1), who then broadcasts the σmove,e. Therefore, all honest parties enter view e by time T + 5∆.

For progress before GST and when the first relay for a view e+ 1 is not honest, let T0 be the time by at
which at least t+1 honest parties call wish-to-advance() in view e and not in a view greater than e. Again, by
validity, no honest party enters view e+ 2 or greater. If an honest party receives σfinalize,e+1 for view e+ 1,
then at least εn honest parties received σmove,e+1 and sent it to their neighbors, so at least n/2 + 1 honest
parties move to view e+ 1. If no party receives σfinalize,e+1, the honest parties that called wish-to-advance()
continue to send wish to the relays in order. Eventually, an honest relay receives a sufficient number of wish
messages to create a σwish,e+1 and completes the stages of the protocol. In the case that relay(e + 1, 1) is
honest and T0 ≥ GST, relay(e+ 1, 1) sends σwish,e+1 to all honest parties by time T0 +∆, who receive it by
time T0 + 2∆ and send move to relay(e+ 1, 1). Then, by time T0 + 4∆ all honest parties receive σmove,e+1

and move to view e+ 1.
By defining the leader of a given view to be the first relay for that view as in the original protocol, using

the same idea as in [38], one can prove that with a time out value of η + δ, where η = 5∆, the new protocol
also ensures an infinite number of synchronized views after GST (for an infinite run of the protocol). This
modified protocol achieves expected linear communication complexity, as the communication through the
expander graph only adds a constant number of additional constant-sized messages per message sent by a
party in the original protocol. As in the original model, there are an expected constant number of Byzantine
relays (≤ 2) until there is an honest relay for any given sequence of relays. The proofs therefore follow from
that of the original protocol presented in [38].

Note that we did not address the assumption of a source of randomness. For our model, we can assume
that all the parties agree on a common seed s prior to the beginning of the protocol. This is sufficient since
we assume a static, oblivious adversary. For each view e, the randomness rande is calculated using a hash
function rande = h(rande−1||e), and rand1 is calculated as rand1 = h(s||1).
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