
Secure Fast Evaluation of Iterative Methods:
With an Application to Secure PageRank

Daniele Cozzo1 ID , Nigel P. Smart1,2 ID , and Younes Talibi Alaoui1 ID

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

daniele.cozzo@kuleuven.be, nigel.smart@kuleuven.be,

younes.talibialaoui@kuleuven.be

Abstract. Iterative methods are a standard technique in many areas of
scientific computing. The key idea is that a function is applied repeatedly
until the resulting sequence converges to the correct answer. When ap-
plying such methods in a secure computation methodology (for example
using MPC, FHE, or SGX) one either needs to perform enough steps to
ensure convergence irrespective of the input data, or one needs to perform
a convergence test within the algorithm, and this itself leads to a leakage
of data. Using the Banach Fixed Point theorem, and its extensions, we
show that this data-leakage can be quantified. We then apply this to
a secure (via MPC) implementation of the PageRank methodology. For
PageRank we show that allowing this small amount of data-leakage pro-
duces a much more efficient secure implementation, and that for many
underlying graphs this ‘leakage’ is already known to any attacker.

1 Introduction

Iterative methods are a standard technique in scientific computing; indeed a vast
array of the problems have traditionally been mapped to iterative methods. Ex-
amples include finding roots of systems of equations (e.g. the Newton-Raphson
method for polynomials in a single variable), finding eigenvalues and eigenvectors
of matrices (and hence performing tasks such as Principal Component Analy-
sis), or of finding solutions to ordinary and partial differential equations. Indeed
the solution of many real world problems involve mapping the problem into a
mathematical formulation in which an iterative method can be applied.

Leakage From Iterative Methods: At its heart an iterative method involves a map
F :M−→M on a metric spaceM for which we want to compute a stationary
point, i.e. a value x ∈ M s.t. F (x) = x. That M is a metric space implies we
have a well defined distance metric d(x, y), and thus a well defined notion of
convergence. If M is a normed vector space with norm ‖ · ‖ then this induces
the distance d(x, y) = ‖x− y‖. The iterative method requires one to determine
a subset X ⊂ A containing the desired fixed point x, s.t. if we pick any starting
value x0 ∈ X, then the sequence xi+1 ← F (xi) will converge to x. In applying

https://orcid.org/0000-0001-5289-3769
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7947-9450

the iterative method often the most difficult task is the initial choice of the set
X.

However, when examined from the point of view of secure computation one
has an additional problem. Suppose the function F is itself secret, for example
F could be a polynomial of bounded degree whose coefficients are unknown
for which it is desired to compute a root, or F could be a matrix operator of
a given dimension for which an eigenvector is desired. Apart from the actual
computation of the iteration, in the secure domain we need to determine how
many iterations we need to perform. This is a problem irrespective of whether we
try to perform the secure computation with Multi-Party Computation (MPC),
Fully-Homomorphic Encryption (FHE) or using a form of Trusted Execution
Environment (TEE) such as Intel’s SGX platform.

When operating in the clear the iteration is performed until the difference
satisfies d(xi+1, xi) ≤ εabs, for some fixed tolerance εabs. We could perform such
a termination condition in the secure domain, but that would leak information.
Thus a tempting solution to this problem is simply to compute the sequence
(xi)

N
i=0 for a large enough N so that we do not need to leak any information.

Clearly, the latter solution is more expensive.

In this paper we examine this ‘when to terminate’ problem in generality,
and relate the information leakage to the classical Banach Fixed Point Theo-
rem (a.k.a. the Contraction Mapping Theorem) which was proved by Banach
in 1922. This restricts the function F : M −→ M to a function F : X −→ X
for a subset X ⊂ M for which the resulting function is a contraction (see be-
low for the definition). In particular the speed of convergence is related to the
Lipschitz constant of the underlying contraction mapping F : X −→ X. Thus
the information leakage is the single value giving the number of iterations until
convergence. This value itself encodes information about the function F and the
set X, as well as the starting position x0. We answer the question as to what
this information actually encodes, specifically with respect to the map F . By
quantifying the precise information leakage, the user of the secure computation
environment can determine whether this leakage is acceptable or not. In many
examples this leakage is indeed totally acceptable.

We focus on what information is leaked about the function F from the num-
ber of iterations. Clearly the number of iterations taken also leaks something
about the initial starting vector x0, in particular how close it is to the final
solution. For some applications of iterated methods this could itself leak infor-
mation about F , for example when using a Newton iteration to find a root of a
polynomial. Thus the number of iterations leaks information about F and the
initial starting point. For the power method to find the dominant eigenvalue one
can select x0 to be a random vector (as long as it has a non-zero component
in the direction of the corresponding eigenvector). Hence, for our application
to the power method the parties can select x0 at random, meaning even less
information is revealed about F via a single iteration. Of course if one applies
the method repeatedly with different random x0 values, then the contribution
from the starting value x0 can be averaged out. Hence, in what follows one needs

2

to bear in mind that we are considering the best possible case for an attacker.
In practice, for a single execution of an iterative method, the ability to extract
meaningful information about either x0 or F is limited.

The Power Method for Matrices: To illustrate this we then go on to discuss
one of the most famous applications of iterative methods; namely the power
method for matrices used to compute eigenvalues/eigenvectors. In this problem,
which forms the basis of many numerical computation problems, one is given
an m ×m complex valued matrix A ∈ Cm×m, and one is asked to compute an
eigenvalue/eigenvector, i.e. a solution to the equation A · x = λ · x. If we order
the eigenvalues of A as |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λm| then the iteration

xi+1 ←
A · xi
‖A · xi‖

will converge to an eigenvector x of A corresponding to the dominant eigenvalue
λ1, assuming the starting vector x0 is has a non-zero component in the direction
of eigenvector x.

The advantage of iterative methods for solving the eigenvector problem is
that they respect any sparseness of the underlying matrix A. In other words
memory is constant. In addition they scale well with the dimension, which the
traditional methods used for low dimension matrices do not. Iterative methods
are also data oblivious, i.e. apart from the termination test the algorithm requires
no data dependent branching or memory access operations.

It is a classical result, found in almost all undergraduate mathematics courses,
that the speed of convergence of the power method iteration is related to the
quotient λ2/λ1, called the spectral gap. Thus, revealing the number of iterations
required in order to satisfy ‖xi+1 − xi‖ ≤ εabs reveals something about the
quantity |λ2|/|λ1|. For large dimensional matrices A revealing this quantity is a
small price to pay for the performance improvement of the computation. Note,
the number of iterations does not leak the exact value of λ2, as the exact number
of iterations depends on all eigenvalues and the initial starting position. However,
the dominant term is dependent on λ2. Whether revealing something about λ2
reveals something adversarially interesting about the original input matrix A
depends upon the problem one is solving, i.e. from where A originates.

PageRank: PageRank is originally an algorithm devised by Brin and Page, in
order to give ‘importance’ rankings to web-pages [28], which formed the basis
of the original Google search algorithm. The algorithm models the Internet as
a directed graph G in which the m nodes are web-pages. A node i has an edge
towards node j, if web-page i contains a hyper-link to web-page j. The PageR-
ank algorithm aims to simulate a random surfer performing a random walk on
the graph of such web-pages. The output of the algorithm is a probability dis-
tribution π over the set of all web pages (i.e. all elements are in the range [0, 1]
and we have ‖π‖1 = 1). The vector π is known as the PageRank vector. The
PageRank vector represents the probabilities of our random surfer ending up on

3

a specific web-page. Those probabilities serve as a ranking to web-pages, that is
further used to sort the results that will be displayed for a user after a search
request. The idea being that a page which the random surfer is more likely to
land on is more likely to be important/useful than one which they are less likely
to land on.

To run PageRank we first compute the adjacency matrix A of the graph G
of the m web-pages. This matrix contains zeros except in entry ai,j when page
i has a link to page j, in which case we place a one. We then transform A into
a row-stochastic matrix P . To do this we replace each value of one in P by the
value of one over the Hamming weight of the corresponding row in A. Thus pi,j
equals the probability of a surfer on page i clicking one of the outgoing links
with uniform probability.

However, the matrix P has some issues. In particular there are rows which
are all zero, which correspond to webpages which have no outgoing links. In
the graph such pages are called ‘dangling nodes’. The fix for this problem is to
add to P a matrix D = d · vT , where d(i) = 1 if node i is a dangling node,
and v represents a probability distribution, called the personalization vector. In
‘traditional’ PageRank the personalization vector is set as v with v(i) = 1/m.
This models the idea that once the random surfer reaches a dangling web-page,
he then jumps to a completely random page on the Internet. However, this is
purely a choice and other vectors could be selected. For example users might
be more likely to jump to Facebook or Google in an Internet application. The
resulting matrix Q = P +D is then a row-stochastic matrix.

However, this is yet to model a realistic random surfer, as it supposes that
the surfer will be restricted to the links contained in non-dangling web-pages he
passes through during the random walk, but we know this not to be true. To
take this into account, PageRank has a parameter λ ∈ [0, 1] called the damping
factor, which (in classical PageRank) represents the probability that a user does
not click on a link on a web-page while moving to the next one, but instead jumps
to a random one following the probabilities contained in the personalization
vector v. From this we define the matrix E = e ·vT, where e denotes the all one
m-dimensional column vector, and then compute the final PageRank matrix as

M = ((1− λ) ·Q + λ · E)
T
. (1)

The value λ is usually selected to be between 0.1 and 0.2, for reasons we will
explain later.

Clearly, by construction, M is a column stochastic matrix, and since it is
stochastic the right eigenvalues of M satisfy λ1 = 1 ≥ |λ2| ≥ . . . ≥ |λm| ≥ 0.
The solution to the PageRank problem is the eigenvector corresponding to the
dominant eigenvalue; i.e. the solution to the problem M ·π = π. Thus PageRank
is an example of a problem which can be solved via iterative methods. Indeed,
iterative methods are preferred since the matrix M is very large.

Note, there is a whole line of work within graph theory which is dedicated
to the relationship between the spectra of adjacency matrices and the structure
of the underlying graphs [1, 2, 32]. However, this is only applicable in the case

4

of undirected graphs. For directed graphs underlying PageRank, it is known
[12, 21, 22] that if the eigenvalues of Q are given by {1, λ′2, . . . , λ′n} then the
eigenvalues of M are given by {1, (1− λ) · λ′2, . . . , (1− λ) · λ′n}. This generalized
a result in [16] which showed that if the Markov chain underlying the stochastic
matrix Q has at least two irreducible closed subsets then λ′2 = 1. Thus assuming
the underlying directed graph has two irreducible closed subsets, then we already
know that the second eigenvalue of the PageRank matrix is equal to 1−λ. Thus
for this specific application of the power method to the PageRank matrix leaking
a function of the second eigenvalue λ2 reveals no more information than one
already knows.

Why a Secure PageRank?: Graph analysis techniques are nowadays a crucial
tool for financial institutions, serving as a means to identify fraudulent bank ac-
counts, or fraudulent or suspicious transactions (such as transactions related to
money laundering). See [24] for a discussion on secure computation technologies
applied to financial intelligence sharing, or [15] for a specific example of secure
graph analysis for financial stress testing. These techniques help to extract fea-
tures from a large amount of data, consisting of, for example, money movements
between bank accounts. Leading to accounts being investigated if anomalies are
detected. One of the techniques proposed is the PageRank algorithm, which
turns out to be well suited for the financial context.

PageRank can be used in different ways in this direction. One way [27] con-
sists of modeling the bank accounts and transactions taking place between them
as a directed graph, where nodes consist of bank accounts, and an edge is set
from bank account i to bank account j if i has sent to j a transaction, and then
running a random biased walk to extract the PageRank vector, where the ran-
dom walker bias his walk towards acknowledged fraudulent accounts. The bias
is introduced by making the personalisation vector zero on all accounts which
were not known to be fraudulent, with the same for the starting vector.

Doing this will help determine the bank accounts that are important from
the point of view of fraud. See also [35] for similar ideas in the context of social
security fraud. In another method explained, in [26], the use of PageRank is to
reduce false positive rates in traditional fraud scoring

In order to obtain reliable results with PageRank, we need many financial
institutions to collaborate. In fact, each financial institution Ik can locally only
build its own transaction graph Gk, modeling transactions in which the sender
or the receiver is a bank account from the set Bk of the bank accounts that Ik
manages. While this will cover the full activity of transfers within Bk, data will
be missing (for example) from regarding bank accounts that receive transactions
from accounts in Bk but which are not in Bk. Such extended transaction graphs
are crucial in applications in which one is trying to locate money laundering.
Thus the more financial institutions that combine their graphs, the more accurate
the results of PageRank will be in detecting fraud; this is explained in more detail
in [11].

However, financial institutions are not willing, or able for regulatory reasons,
to simply share this information among each other. Therefore, they need to

5

engage in a protocol, where they can perform the computation (the PageRank
algorithm) on their respective inputs (Gk), and the only information revealed
out of this computation is the output (the rankings of the bank accounts).

Another use case where one would take use of a secure implementation of
PageRank is the analysis of social networks. That is, similarly to the Web and to
transactions among institutions, social networks such as YouTube, Twitter and
Facebook etc, can be modeled as graphs [17] where nodes are users’ accounts.
Running PageRank within one network on the publicly available data is already
deemed to be useful, where PageRank can be used to evaluate the reputation of
users [14]. However, addressing a more complicated problem such as understand-
ing the flow of photos or news stories etc across interconnected networks may
require the owners of these social networks to engage in a secure computation
of PageRank in order to provide the relevant data.

PageRank and MPC: As already remarked the convergence of fixed point meth-
ods is an issue in any secure computation paradigm in relation to the number
of steps needed to determine convergence. There has already been some work in
looking at MPC as a means of securely evaluating the PageRank algorithm [30],
due to the above mentioned applications in fraud detection.

MPC protocols can be divided into two big families with respect to the level
of security they can offer; protocols providing passive security, and protocols
providing active security. In a passively secure MPC protocol, the adversary is
assumed to be honest, but curious. That is, the parties are assumed to follow
the exact description of the protocol, however they can use the information they
see in order to infer information about inputs of the other parties. In an actively
secure MPC protocol, the adversary can deviate from the protocol, and yet the
privacy of the parties’ inputs must be still maintained.

In [30] the authors presented a passively secure MPC protocol for PageRank
in the context of fraud detection for bank account transactions. The authors
are able to obtain a very fast and scalable protocol due to the fact that they
assume all banks with relevant accounts participate in the protocol. In particular
each bank locally holds their view of the transaction graph, i.e. the movements
between accounts which they have sight of. This enables the protocol to be
efficiently implemented using partially homomorphic encryption. Note, the work
in [30] could be improved using our analysis of termination conditions for the
power method.

Roughly speaking in [30], party Ik is in charge of updating the rankings of the
nodes of Bk in iteration i, using the encryptions it received of the rankings of the
other nodes after iterations i− 1, by taking use of the fact that the encryption
scheme is partially homomorphic and the needed data to update the ranking is
held in clear by Ik. Thus only linear operations are needed to be performed.

Apart from being passively secure, the protocol crucially relied on each part
of the graph being held in the clear to at least one party. In many situations this
may not be feasible. Indeed the protocol is unsuitable for use in a secure out-
sourcing scenario for precisely this reason. For an outsourcing based approach to

6

be secure, the financial institutions need to provide all their data encrypted, and
therefore a partially homomorphic encryption scheme will no longer be sufficient.

To cope with these limitations we provide a ‘pure’ MPC implementation of
the PageRank power iteration. In other words a method in which parts of the
graph are hidden from all parties. The protocol will benefit from our early termi-
nation procedure. Furthermore, since we are employing general MPC techniques
that guarantee active security, the resulting implementation will be inherently
actively secure.

Our solution does not require from all the institutions to participate in the
computation, but only a subset of them or third parties, which the institutions
agree upon. Thus we distinguish here between three different entities, the finan-
cial institutions {I1, . . . , Iu}, the computing servers S = {S1, . . . , Sv} with v = 2
or v = 3, and the bank accounts {b1, . . . , bm} that the institutions manage. The
institutions do not need to trust all the servers in S, but they do need to trust at
least one party for the case where v = 2, and at least two parties not to collude
for the case of v = 3.

Even though we are unable to cope with the size of graphs reported on in [30],
we feel our solution can be applied in other situations where one has a different
trade off. In the course of which we provide an optimization to the secure dot-
product computation over fixed point numbers at the heart of PageRank which
is similar to that introduced in [25]; this results in a number of N ·m2 secure
additions, N · (m2 + m) secure multiplications and N · m truncations, where
N is the number of the iterations performed. From this it is clear that the
computations are mainly algebraic therefore motivating our using of arithmetic
modulo p to represent secret shared numbers. Indeed linear secret sharing seems
to have an advantage over garbling techniques even for the case of two servers,
due to that adding and multiplying large numbers many times is expensive with
such techniques.

2 Preliminaries

In many applications, such as ours of securely evaluating the PageRank algo-
rithm, we require to work with approximations to real numbers. One could try
to emulate precise IEEE floating point arithmetic, but this is rather expensive.
Thus we need to somehow ‘encode’ the real numbers within the arithmetic of
Fp. A common way of doing this is to use a form of fixed point arithmetic,
introduced in [6].

To represent a real number e we approximate it as a fixed point number e,
where

e = e · 2−f .

The value f is a fixed public value that defines the precise position of the fixed
point, i.e. 2−f is the smallest unit we can represent and the increment between
two successive values. The value e is an integer in the range [−2k−1, . . . , 2k−1],
for some public parameter k. The value k determines the total number of binary
points of data we can represent, thus the biggest value we can represent is 2k−1−f .

7

To hold a secret version of this approximation e to the real number e we
simply secret share the integer e above as an element in Fp. In particular this
means that we must have p > 2k; and indeed to perform arithmetic we will
require an even larger value of p as we shall later see. We write 〈 e 〉 to represent
the sharing of a fixed point value e, and the mod-p value we actually store we
shall denote as 〈e〉.

If 〈h〉 is a shared integer in the range [−2k−1−f , . . . , 2k−1−f] then we can ob-
tain the shared fixed point representation 〈 g 〉 of the same value h by computing
〈g〉 = 〈h〉 · 2f (and therefore g = g · 2−f = h), which is a linear operation. Fixed
point shared values can also be added by simply adding the underlying shared
integer representation.

Multiplying fixed point numbers 〈 e 〉 and 〈 g 〉 is however a little more
complex. We first multiply the underlying shared integer representations 〈e〉 and
〈g〉, to obtain the value 〈h〉 ← 〈e〉 · 〈g〉 and then we shift and truncate 〈h〉 by f
bits, see Figure 1. The value h will be an integer in the range [−22·k−2, . . . , 22·k−2]
thus to avoid wrap-around modulo p we will require 22·k−2 < p.

Fixed Point Multiply

Input: 〈 e 〉, 〈 g 〉, Output: 〈 h 〉 = 〈 e 〉 · 〈 g 〉.
- 〈v〉 ← 〈e〉 · 〈g〉.
- 〈h〉 ← TruncPr(〈v〉, 2 · k, f).

Figure 1. Algorithm to Multiply Two Shared Fixed Point Values

The truncation by f -bits is done using a technique from [6]. The algorithm
TruncPr(〈x〉, t, o) takes a shared integer value 〈x〉 where x ∈ [−2t−1, . . . , 2t−1],
a value o ∈ [1, . . . , t − 1] and outputs the value 〈y〉 where y = bx/2oc + u for
an (essentially random) unknown bit u ∈ {0, 1}. This probabilistic truncation
algorithm turns out to be more efficient in MPC than a method which avoids
the random bit u. The method works by opening the value 〈a + r〉 for some
blinding value r ∈ [0, . . . , 2t+κ] where κ is a statistical security parameter, and
then computing the result from the clear value c = a+r. In particular we require,
to avoid overflows modulo p, that 2t+κ < p. To ensure correctness of the entire
procedure we hence require that 2 · k + κ < log2 p.

Another computation we will be performing on secret shared fixed-point val-
ues is comparison. The protocols implementing comparison that we will be using
are also taken from [6], where it is also performed using truncation. That is, com-
parison is based on the observation that if a < 0, then ba/2k−1c = −1 and if
a ≥ 0 then ba/2k−1c = 0. Therefore, we can compute the sign of a secret shared
value 〈 a 〉 by truncating it by k − 1 bits.

However, truncation here uses a deterministic sub-routine Trunc unlike the
sub-routine TruncPr, as we need to round to the correct integer here. While
Trunc does not add any extra conditions to the requirements on the parameters
for correctness, it is relatively expensive compared to TruncPr. However, we will

8

be performing orders of magnitude more TruncPr’s than Trunc operations and
so, whilst it is more expensive, the effect of Trunc on the final runtime of the
overall algorithm can be ignored.

3 Banach Fixed Point Theorem and the Power Method

Suppose we have a function F :M−→M on a complete metric space M with
distance d(x, y). The function F we will compute securely, and then repeat the
application, thus producing a sequence of values

xi+1 ← F (xi),

for some starting value x0. We assume, for the moment, that this sequence tends
to a value xi −→ x which is a fixed point of the function F , i.e. F (x) = x. Our
goal is to securely compute a value xN such that d(xN , x) ≤ εabs; indeed it may
be that we keep the final value xN secure and do not release it to the computing
parties. But as we are computing this in the secure domain, we have two options:

1. We pick a large value of N , irrespective of the specific value of F and x0.
2. At each iteration we reveal to the parties the value d(xi, xi−1), or whether
d(xi, xi−1) ≤ εabs and terminate the iteration if this is less than some given
tolerance εabs. Let N = i denote the first instance when this happens.

Clearly the second methodology, irrespective of the underlying secure computa-
tion technology (be it MPC, FHE or TEE) potentially reveals more information
than the first. The question is; how much? The answer to this question is pro-
vided by the Banach Fixed Point Theorem.

To ensure the sequence (xi) converges we need to make some assumptions
about the starting point x0 and the map F . We first need to restrict the do-
main/codomain M to a complete subset X ⊂ M on which F is a contraction
mapping.

Definition 3.1. A map F : X −→ X is said to be a contraction mapping on X
if there exists a constant q ∈ [0, 1) such that, for all x, y ∈ X,

d(F (x), F (y)) ≤ q · d(x, y).

The constant q is called the Lipschitz constant for F and X, it depends on both
F and (sometimes) the set X. The following theorem is classical, and proved by
Banach in 1922,

Theorem 3.1 (Banach Fixed Point Theorem). Let (X, d) be a non-empty
complete metric space and let F : X −→ X be a function. If F is a contraction
mapping, with constant q, then there is a unique fixed point x ∈ X, i.e. F (x) = x.
If we pick x0 ∈ X and define the sequence xi+1 = F (xi) for i ≥ 0, then xi −→ x
as i −→∞.

9

The speed of convergence is itself controlled by the value q; in particular we have

d(x, xi) ≤
qi

1− q
· d(x1, x0), d(x, xi+1) ≤ q

1− q
· d(xi+1, xi),

d(x, xi+1) ≤ q · d(x, xi), d(x, xi+1) ≤ qi · d(x, x0).

Thus in our second secure computation strategy above if we terminated at
step N when d(xN , xN−1) ≤ εabs then we have that

d(x, xN) ≤ q

1− q
· εabs.

We examine this within the context of the power method, which is the stan-
dard example application of the above theorem. Here we aim to find the eigenvec-
tor corresponding to the dominant eigenvalue λ1 for A ∈ Cm×m, i.e. the solution
to A · x = λ1 · x. The iteration is given by

xi+1 ←
A · xi
‖A · xi‖

=
Ai · x0

‖Ai · x0‖

for some vector norm ‖ · ‖. The norm ensures that xi+1 has norm one. We select
x0 to also have norm one at random, thus we have a mapping F from vectors of
norm one to vectors of norm one.

We make the simplifying assumption (for exposition) that A has distinct
eigenvalues λ1, . . . , λm with corresponding eigenvectors v1, . . . ,vm, with |λi| >
|λj | for j > i, and define F via

F (x) =
A · x
‖A · x‖1

. (2)

For concreteness in the above we chose the 1-norm, as in the following we will be
treating stochastic matrices and vectors. Normalizing the eigenvectors so that
‖vi‖ = 1, we can write

x0 = c1 · v1 + · · ·+ cm · vm.

Assuming c1 6= 0 the iteration xi = F (xi−1) will converge to the eigenvector
corresponding to the dominant eigenvalue since

Ai · x0 = c1 · λi1 ·

(
v1 +

c2
c1

(
λ2
λ1

)i
· v2 + · · ·+ cm

c1

(
λm
λ1

)i
· vm

)
. (3)

Thus the speed of convergence is predominantly determined by the value |λ2|/|λ1|,
with the precise number of iterations depending on all of the eigenvalues and
the distance between the starting position x0 and the final solution.

We would like to iterate until the difference between two successive iterations
xN−1 and xN is sufficiently close. In other words we will terminate when

‖xN − xN−1‖22 ≤ ε2abs

10

holds for the first time, for some constant εabs. Note, in our experiments we later
also use termination using the relative error

‖xN − xN−1‖22 ≤ ε2rel · ‖xN‖22,

for some other constant εrel, as (for large dimension m) the entries in the solu-
tion to PageRank behave like 1/m for a graph with many links, and thus the
relative error allows us to deal with increasing m, without needing to adjust
εabs accordingly. Note, for our termination condition we would prefer to use, for
computational reasons, the square of the 2-norm, (as performing square roots is
expensive in an MPC system).

We make the simplifying assumption that we select our starting set X so that
the map is indeed a contraction mapping for the 2-norm with Lipschitz constant
q = |λ2|/|λ1|3. With the above simplifying assumption, and for this value of N ,
we have

‖v1 − xN‖2 ≤
q

1− q
· ‖xN − xN−1‖2 ≤

q

1− q
· εabs =

λ2 · εabs
λ1 − λ2

.

So the bigger the difference between λ2 and λ1, the smaller the error between
where we terminate and the correct solution.

For the iteration before we reach this value of N we have

εabs < ‖xN−1 − xN−2‖2
≤ ‖v1 − xN−1‖2 + ‖v1 − xN−2‖2

≤
(
qN−1

1− q
+
qN−2

1− q

)
· ‖x1 − x0‖2

≤ qN−2 · (q + 1)

1− q
· (‖x1‖2 + ‖x0‖2)

=
2 · qN−2 · (q + 1)

1− q
.

Thus revealing N reveals information about q, and thus information about the
spectral gap |λ2|/|λ1|. In the context of a given application some information
about the eigenvalues may have already leaked as part of the problem statement.
For example in the PageRank algorithm we already know that λ1 = 1 and that
λ2 is (1− λ) times the second eigenvalue of the original stochastic matrix Q. As
already remarked, when the underlying graph contains at least two irreducible
closed subsets (which holds in practice for the internet graph) we already know
that λ2 is exactly equal to 1− λ.

In conclusion if the mapping is indeed a contraction mapping for the metric
used to determine when to terminate an iterative method, then the number of

3 This is not quite true, but is true if we modify the metric used to measure con-
vergence. But then the metric depends on the final answer, which is perfect for
theoretical considerations, but useless in practice. See Appendix A for more details.

11

iterations leaked by performing this test leaks information about the Lipschitz
constant and the distance between the starting value and the fixed point. For
all mappings for which the power method converges one can find a metric for
which it is a contraction mapping, but this metric may not be applicable for use
in an algorithm as a convergence test.

For the power method applied to matrices it is known that the speed of
convergence is related to the value q = |λ2|/|λ1|. For some matrices and sets
X this does indeed define a contraction mapping, but not for all. Making the
simplifying assumption, for exposition, that the power method is defined from
a contraction mapping with this Lipschitz constant, one can from N derive
information about q.

Note that whether this is an acceptable leakage or not depends on the appli-
cation in hand, i.e., from where the map F originates. It is worth recalling that
the speed of convergence of an iterative method does not leak the value of q, but
only provides some information about its distribution, which may be considered
as a minor leakage in many cases, or even no leakage at all, such as the case of
PageRank over the internet graph.

4 Stability of PageRank

Being a numerical algorithm we need to worry about the stability of the PageR-
ank algorithm. However, as we are computing in the secure domain we not only
need to worry about the traditional stability of the algorithm, but we also need
to worry about stability caused by the representation of the floating point num-
bers within the secure computation system. In this section we address these two
issues (normal numerical stability and stability within the MPC system).

4.1 Traditional Stability of PageRank

As the value of m is large in applications of PageRank solving for π analytically
or via high-school linear algebra is not feasible. Thus in practice the only method
one can use to solve the PageRank problem is to apply the power method.

Applying the power method on our matrix M requires that we compute in
iteration i

xi = (1− λ) ·QT · xi−1 + λ · v

Note that here we used the fact that M (from equation (1)) is stochastic, and
the initial vector x0 is a probability distribution. Thus all xi will be probability
distributions, which implies that ‖xi‖1 = 1 (this explains why xi−1 is dropped
from the term λ ·v above; since λ ·ET ·xi−1 = λv · eT ·xi−1 = λ ·v). Besides, it
also implies that we do not need to normalize xi throughout the computation.
See Method 1 in Figure 2 for PageRank in the clear when we iterate over a fixed
number N of iterations.

The problem though with the power method is that it could be unstable, i.e.
floating point errors in the computation could affect the final outcome. In [7] the

12

Three Variants of PageRank

Input: λ, v, x0, εabs/εrel,Q,N . For the secure variantsQ and v may be represented
in secret shared form.

Output: The PageRank vector π of M from equation (1)

Method 1: Using Standard Floating Point (in clear)

1. C ← (1− λ) ·QT.
2. For i in 1, . . . , N

(a) xi ← C · xi−1 + λ · v
3. π ← xN

Method 2: Using Fixed Point Arithmetic (in MPC or in the clear)

1. 〈 C 〉 ← (1− λ) · 〈 Q 〉T.
2. For i in 1, . . . , N

(a) For l in 1, . . . ,m

i. 〈 y(l)i 〉 ← dot-product(〈 cl 〉, 〈 xi−1 〉)
ii. 〈 x(l)i 〉 ← 〈 y

(l)
i 〉+ λ · 〈 v(l) 〉

3. 〈 π 〉 ← (〈 xN 〉)

Method 3: Using Fixed Point Arithmetic and Loop Truncation (in MPC or in the
clear)

1. 〈 C 〉 ← (1− λ) · 〈 Q 〉T.
2. For l in 1, . . . , N

(a) For l in 1, . . . ,m

i. Parties compute 〈 y(l)i 〉 ← dot-product(〈 cl 〉, 〈 xi−1 〉)
ii. 〈 x(l)i 〉 ← 〈 y

(l)
i 〉+ λ · 〈 v(l) 〉.

(b) 〈g〉 ← (‖〈 xi−1 〉 − 〈 xi 〉‖22 < ε2rel · ‖〈 xi−1 〉‖22 if using relative error) or
〈g〉 ← (‖〈 xi−1 〉 − 〈 xi 〉‖22 < ε2abs if using absolute error).

(c) Open 〈g〉
(d) If g = 1 then break.

3. 〈 π 〉 ← (〈 xi 〉) and Open π to all parties.

Figure 2. Our Various PageRank Algorithms

13

authors proved that solving the PageRank problem is equivalent to solving the
matrix equation R ·y = v, where R = I− (1−λ) ·PT and then normalizing y to
obtain π via π = y/‖y‖1. The authors of [7] also bound the condition number
of R (with respect to the 1-norm)

κ(R) ≤ ‖R−1‖1 · ‖R‖1 ≤
2− λ
λ

,

where ‖R‖1 = max1≤j≤m
∑m
i=1 |ri,j |. A similar result is given in [19] for the case

when the diagonal entries of Q are all null.
The condition number explains how numerical errors in data can propagate

after doing computation on it to errors in the result of this computation. Thus
as λ approaches zero any algorithm to solve the PageRank problem will likely
become unstable; this explains the traditional choice of 0.1 ≤ λ ≤ 0.2.

4.2 Stability due to Approximate Computations

MPC systems based on linear secret sharing usually work on values defined in a
finite field Fp of large prime characteristic, e.g. a prime p of size 128 bits. A data
item x secret shared among the parties is denoted as 〈x〉. Calculation is then
performed by expressing the computation in terms of additions, multiplications,
and openings over Fp. Linear operations on shared values is essentially for free,
whereas multiplications typically require some pre-processed data and commu-
nication. We extend the notation of secret shared values to vectors of shared
values 〈x〉 and matrices of shared values 〈A〉.

In our application to PageRank we will need to compute mainly dot-products
between vectors of fixed point values, i.e.

〈 x 〉T · 〈 y 〉 =

m∑
j=1

〈 x(j) 〉 · 〈 y(i) 〉.

The dot-product is one of the problems which have been previously studied in
the MPC literature; see [4] for over the integers, [29] and [25] for over fixed point
values, and [18] for over floating point values. For fixed point values recall that
addition is cheap, but multiplication is expensive. Indeed the most expensive
part of multiplication is the truncation step. In [29], authors used the two-party
ABY framework [10], which allows to do conversions between linear secret shar-
ing and garbled circuit. Their strategy consisted of converting to garbled circuit
after each multiplication between fixed point numbers, in order to perform the
truncation as garbled circuits are well suited for this latter operation. As well
as being focused on the two-party passively secure case, this method introduces
to the computation the cost of converting to-and-from the secret shared form.
In [25], authors proposed a passively secure protocol for fixed point multiplica-
tions, for a setting of three-parties assuming an honest majority, and showed
how we can use an optimization to perform the dot-product. The core idea of
this optimization consists of performing the truncation step only after that all

14

the necessary additions have been calculated. Authors also proposed an actively
secure protocol under the same setting for matrix by matrix products. The pro-
tocol works by pre-processing matrix triples (U, V,W), s.t. W = U · V , using
the fixed point multiplication protocol of [25], and use a generalization of [13] to
perform matrix by matrix product using the pre-processed matrix triples.

In contrast our work is focused on the many party, actively secure. We per-
form all computation with linear secret sharing, however, we introduce a similar
optimization to [25] into the procedure for executing a dot-product. This opti-
mization is given in Figure 3 and we refer to the algorithm as dot-product(〈 x 〉, 〈 y 〉).

Optimized Dot-Product

Input: 〈 x 〉, 〈 y 〉, Output: 〈 z 〉 =
∑m

j=1〈 x(j) 〉·〈 y(j) 〉 = dot-product(〈 x 〉, 〈 y 〉).
- 〈s〉 ← 0.
- For j ∈ [1, . . . ,m] do

- 〈s〉 ← 〈s〉+ 〈x(j)〉 · 〈y(j)〉.
- 〈z〉 ← TruncPr(〈s〉, 2 · k, f).

Figure 3. Optimized Dot-Product of Vectors of Shared Fixed Point Values

The method works as [25] by delaying the necessary truncation until all
additions have been performed. Since truncation is the expensive part of the
procedure, this basically produces a 1/m performance improvement. Ignoring
the fact that our truncation procedure can be incorrect by a single bit (which
occurs for normal fixed point multiplications in any case), we need to ensure
that the output of this procedure is correct. Indeed, as we apply TruncPr less,
we will introduce less errors in the truncation procedure overall.

The correctness depends to some extent on our precise application. In the
PageRank algorithm using fixed point approximations (Method 2 in Figure 2)
we apply dot-product on vectors 〈 c 〉 and 〈 x 〉 such that each entry in 〈 c 〉 is
a positive value bounded by 1 − λ, and each entry in 〈 x 〉 is a positive value
bounded by one. Thus we can assume that the integers representing the fixed
point values satisfy 0 ≤ c(j), x(j) ≤ 2f , and in fact we have ‖c‖∞ ≤ 2f and
‖x‖1 ≤ 2f . We then find a bound on s as

s =

m∑
j=1

c(j) · x(j) ≤ ‖c‖∞ · ‖x‖1 ≤ 22·f .

This means that the intermediate sum value s, as an integer, will be at most
22·f , thus (since k > f) the application of TruncPr, using second parameter
of 2 · k, will be correct assuming we can deal with the expansion needed in
TruncPr due to the statistical security parameter κ. Thus, we additionally require
2 · k + κ < log2 p, Hence, we require exactly the same correctness requirement
as we have for standard multiplication.

The only remaining parameter which needs to be set for our fixed point
representation is the value k. It is easily seen that all vectors in the algorithm

15

consist of positive values less than one. Indeed the only place we utilize values
outside the range [0, . . . , 1] is in computing the 2-norms (which we will do in
Method 3 to be discussed later), where we utilize values in the range [−1, . . . , 1].
To cope with these negative values we set k = f + 1.

Using fixed point representation, instead of floating point representation,
hence does not affect the stability of PageRank, as long as the precision chosen
is big enough to handle the computation taking place. However, for an expander
graph we would expect the final PageRank vector π to be uniform, and thus have
entries of the form 1/m in each coordinate. Thus we need to cope with an output
which might have entries all close to 1/m. To cope with this possibility in fixed
point representation we need to make f a function of m. In particular we set f =
30 + log2m so that entries which are around 1/m can have around nine decimal
digits of ‘interesting’ data. We can show that this strategy of setting f works
through the following experiment, which compares the two first methodologies
presented in Figure 2. We think of operations on values 〈 x 〉 as being (for
the time being) not on secret shared values but on fixed point values with the
above representation, i.e. on x alone. Take a random graph Gm,l of size m and
number of links l, and run one hundred iterations of PageRank using floating
point representation to obtain x100, and then run one hundred iterations on the
same graph using the fixed point representation (in the clear) to obtain z100.

We generated graphs for various values of with m between 100 and 10000,
and for number of links l = i ·m for i = 2, . . . , 40. For each (m, l) considered we

generated a set of T = 100 graphs Sm,l = {Gm,lk for k ∈ {1, . . . , T}} using the
NetworkX package of python3. We then computed for each set the maximum
error observed

emmax = max
G∈{Sm,2∪...∪Sm,40}

eG,

where

eG = ‖z100 − x100‖∞ = max
j∈{1,...,m}

∣∣∣z(j)100 − x
(j)
100

∣∣∣.
with the results given in Table 1. As expected, the error induced by using fixed
point representation is negligible, thanks to how we chose f for the experiments.

m 100 500 1000 5000 10000

emmax 1.1e-10 4.2e-11 1.5e-11 5.7e-12 2.3e-12

Table 1. Max error observed for the PageRank vector between fixed point and floating
point representations (i.e. comparing Method 1 to Method 2 in Figure 2).

5 Effect of Early Termination of PageRank

If we examine Method 3 of Figure 2 we now terminate the main loop when
the error meets a given condition. We use the square of the 2-norm for the

16

terminating conditions as this will be easier to implement securely in our MPC
system; since there is no need for costly absolute values as with the 1-norm and
no need for costly square roots as with the non-squared 2-norm.

We define two conditions, one defined by an absolute error

‖〈 xi−1 〉 − 〈 xi 〉‖22 < ε2abs.

and one defined by a relative error

‖〈 xi−1 〉 − 〈 xi 〉‖22 < ε2rel · ‖〈 xi−1 〉‖22

Note, that since ‖xi‖1 = 1 the relative error implies the absolute error bound in
the case when εrel = εabs. However, we will be choosing εrel 6= εabs in such a way
that

ε2abs < ε2rel · ‖〈 xi−1 〉‖22.

This should enable using the relative error to produce almost as accurate a
solution, but with fewer iterations.4

Recall the speed of the convergence of the power method follows a geometric
distribution with ratio |λ2/λ1|. Namely if λ2 is close to λ1 then the method
converges slowly. As we are dealing with stochastic matrices we already know
that λ1 = 1, i.e. for a given dimension m, thus the number of iterations needed is
proportional to |λ2|. As remarked earlier, for graphs with at least two irreducible
closed subsets one has |λ2| = 1−λ [16]. Recall a closed subset S is one in which if
x ∈ S and y can be reached from x, then y is also in S. A closed set is irreducible
if it contains no proper closed subset, i.e. there is a path between each pair of
elements in S.

For the traditional PageRank case, i.e. the application to the internet graph,
the underlying graph does indeed have at least two irreducible closed subsets [5].
In addition experimentally it has been shown that the power method produces
the correct value π (assuming no floating point errors accumulate) for iteration
values between 50 and 100 [23].

For graphs generated uniformly at random (called random graphs from now
on) |λ2| is not necessarily as big as 1− λ (recall λ is between 0.1 and 0.2 and in
the case of the original PageRank algorithm λ = 0.15). Therefore one may need
fewer iterations to ensure convergence. By inserting the abort-test into Method
3 we potentially improve the performance of PageRank, but at the same time
we leak the number of iterations needed to achieve our level of convergence.
See below for experimental validation of this for random graphs. As explained
in Section 3 the number of iterations N leaked, for the absolute error variant,
implies information is leaked about the second eigenvalue λ2 and x0.

However, for transaction graphs for bank accounts, one cannot tell whether
there are at least two irreducible subsets. In [33], authors studied the topology

4 In practice it is easy to choose εabs and εrel satisfying the above. Observe that the
‖ • ‖2 norm on the hypercube given by equation ‖x‖1 = 1 attains its minimum 1

m

at the points
(
± 1

m
, . . . ,± 1

m

)
. Therefore it suffices to choose any εabs < εrel such that

ε2abs < ε2rel · 1
m

. This way the choice of the errors will be independent of the sequence.

17

of the daily graphs, of the interbanks payments transferred between a set of
participants (commercial banks) of the Fedwire Funds Service, corresponding to
the first quarter of 2004. The structure of the underlying graph observed shows
that the degree distribution corresponds to a scale free graph, and from the
results they obtained, one can conclude that over at least 50% of the days, there
exist at least two irreducible subsets.

For our second set of experiments we generated graphs according to the sim-
ulator of transaction graphs from [34]; in what follows we call these banking
graphs. This simulator generates scale free graphs, in particular, following the
Barabasi-Albert model, with a tweak over the strength of the preferential at-
tachment. The resulting graphs as the experiments will show, do not contain
two closed subsets.

To choose the tolerance εabs/εrel, one needs to consider how small the com-
ponents of x are, as it may occur that ‖xi − xi−1‖22 triggers the abort due to
the fact that the components of xi and xi−1 are small (if the tolerance was not
chosen to be small enough) while there could be still room for convergence. As
explained earlier if the vector π was uniform then we would expect each coor-
dinate to be 1/m, thus for absolute errors it makes sense to have the tolerance
depend on m; just as we made f depend on m in the previous section. An alter-
native approach, which we examine, is to instead look at relative errors instead
of the absolute errors, in which case the effect of small values in π is already ac-
counted for by taking relative errors. Thus we always set εrel = 2−10 irrespective
of m, i.e. we want our two final iterations to be within 0.1 percent of each other.
For the absolute error we set εabs = 2−f/2, and thus we terminate when the
‖〈 xi−1 〉 − 〈 xi 〉‖22 is identically equal to zero in our fixed point representation.

To verify that the early termination indeed provides an efficiency improve-
ment, and does not affect the overall accuracy of the output compared to non-
termination, we compared Method 1 against Method 3 using the same type of
experiments, in the clear, as performed in Section 4; for both random and our
simulated banking graphs. We computed the average number of iterations N
needed to obtain the required termination condition (when we set εabs and εrel
as above), and compared the result with the values which would have been ob-
tained in the clear. The accuracy was measured according to the metric emmax

from the previous section, the results being given in Table 2.

From the results of these experiments, it is clear that one does not need to
run many iterations before obtaining convergence, for both the cases of random
graphs and banking graphs. In particular, for a randomly generated graph, we
can see that the more links within the graph, the fewer iterations are needed
to reach convergence. We can also see that the banking graphs take longer time
to process compared to the random graphs the more links we have. Besides,
the experiments show that using the absolute error to test convergence, requires
running more iterations to obtain convergence than using the relative error. This
is due to the fact that the epsilon chosen εabs, implies that convergence is only
obtained when ‖〈 xi−1 〉− 〈 xi 〉‖22 is equal to zero as explained earlier, while for
the case of the relative error, convergence can happen without necessarily having

18

Number of Links
Random Graphs Banking Graphs

m Error 2 ·m 5 ·m 10 ·m 20 ·m 40 ·m 2 ·m 5 ·m 10 ·m 20 ·m 40 ·m
100 abs N 21 13 9 7 5 16 12 11 9 11

emmax 3.1e-6 6.3e-7 1.8e-7 7.3e-8 6.5e-8 6.8e-6 7.2e-6 4.2e-6 5.4e-7 3.3e-7
100 rel N 15 9 6 5 4 11 8 7 6 7

emmax 3.2e-4 1.5e-5 7.6e-6 5.3e-6 5.1e-7 4.5e-4 4.1e-4 2.8e-4 3.6e-5 2.0e-5

500 abs N 21 13 9 7 5 15 11 9 9 13
emmax 3.3e-6 4.3e-7 2.9e-7 5.1e-8 4.8e-8 1.5e-6 9.9e-7 8.3e-7 1.0e-6 2.8e-7

500 rel N 15 9 6 5 4 10 8 7 7 9
emmax 2.9e-4 1.6e-5 3.0e-6 4.9e-7 2.1e-7 3.9e-5 2.8e-5 1.5e-5 1.7e-5 1.2e-5

1000 abs N 21 13 9 7 6 17 12 10 10 15
emmax 4.5e-6 3.6e-7 5.2e-8 8.6e-9 3.4e-9 2.6e-6 2.4e-6 3.3e-7 6.7e-8 8.3e-8

1000 rel N 15 9 6 5 4 11 8 7 7 10
emmax 1.5e-4 9.7e-6 1.0e-6 2.3e-7 1.4e-7 1.8e-4 1.6e-4 1.4e-5 7.2e-6 1.0e-5

5000 abs N 21 12 8 7 5 15 11 10 10 15
emmax 3.9e-6 9.8e-8 3.3e-8 5.1e-9 3.4e-9 2.7e-6 2.7e-7 1.5e-7 3.8e-7 1.0e-7

5000 rel N 14 9 6 5 4 10 8 7 7 10
emmax 9.1e-5 6.2e-7 1.9e-7 8.9e-8 7.8e-8 7.0e-5 6.9e-6 4.5e-6 6.8e-6 6.9e-6

10000 abs N 21 12 8 6 5 16 12 10 10 16
emmax 3.8e-6 8.5e-8 1.2e-8 5.3e-9 3.1e-9 8.1e-7 1.5e-7 5.0e-8 8.5e-8 2.4e-8

10000 rel N 14 9 6 5 4 11 8 7 7 10
emmax 4.5e-5 4.9e-7 1.8e-7 3.7e-8 2.1e-8 5.6e-5 5.0e-6 2.9e-6 2.7e-6 6.4e-6

Table 2. Iterations needed for convergence and accuracy of the result for the PageRank
algorithm using Method 3 on random and banking graphs with absolute and relative
errors, with respect to the number of nodes and links in the graphs tested.

it. As for the difference between the PageRank vector obtained after convergence,
and the PageRank vector obtained after one hundred iterations, we can see that
for both cases of using the absolute error and the relative error, the difference
is very small. Besides, we can also see that this difference is slightly bigger for
the case of the relative error. This would imply that considering a termination
condition for the PageRank algorithm, either with an absolute error or a relative
error set as specified in this section, would produce a fairly close PageRank vector
to the one produced after running one hundred iteration.

6 A multiparty actively-secure protocol for the PageRank
algorithm

Recall our motivating application of using PageRank for financial fraud detec-
tion. We discussed earlier how the more institutions which are involved the better
the analysis will be. This means that the methodology of [30] which requires all
financial institutions which contribute data to be involved in the protocol may
not scale to the large number of institutions required in a cross-border analysis
of money laundering. Thus we look at a methodology in which a large num-
ber of financial institutions {I1, . . . , Iu} wish to apply PageRank over the bank
accounts they maintain. They will do this by securely distributing their data
to a smaller set of computing servers S = {S1, . . . , Sv}, with v = 2 or v = 3.
Our solution will allow us to arbitrarily scale u, but it results in us not being

19

able to deal with such a large matrix, i.e. number of accounts, as the prior work
did [30], due to the fact that the whole matrix for our case is being secret shared,
for reasons described in the introduction. It is interesting none-the-less to see
the difference in performance between the two approaches.

The first stage of our algorithm is for each institution Ik to secret share
its component of the PageRank matrix to the servers in S. This is simply a
data-entry phase which we ignore in our analysis. Thus we start by assuming
that the parties in S hold a secret sharing of the initial matrix 〈 Q 〉 and the
personalisation vector 〈 v 〉.

Our experiments are performed using Scale-Mamba [3], which is an MPC
framework that utilizes the above secret sharing based methodology and in ad-
dition already has a number of built in routines for dealing with the above fixed
point representation. Scale-Mamba is an actively secure framework with abort,
which means that it offers the strong security guarantee that if an adversary
deviates from the protocol then it is detected with overwhelming probability.

The system works in an offline-online manner. In particular in the function in-
dependent offline phase pre-processed data is generated, such as so-called Beaver
triples (random triples shared values 〈a〉, 〈b〉, and 〈c〉 s.t. c = a · b) and random
bits (shared values 〈b〉 s.t. b ∈ {0, 1}). In the online phase the actual computation
takes place, during this phase the pre-processed random data is consumed. The
main metric for measuring cost in the online phase is the number of rounds of
communication required by an operation. Whilst the online phase is relatively
fast, the offline phase can be an order of 10 to 100 times slower.

To summarize the cost of the different operations we need in terms of pre-

processed data, we present Table 3; where h(k) is the function
∑dlog2(k)e
i=1 g(i),

for g(i) = f(i)−2 ·
(
f(i−1)

2 mod 2
)
−1 and f(i+ 1) = f(i)

2 +
(
f(i)
2 mod 2

)
and

f(0) = 2·k (see [3] for details about the function h). Note that while we provided
the rounds of communication required by each operation we need, these can be
merged if many operations can be performed in parallel.

Operation Open 〈a〉 · 〈b〉 〈 a 〉 · 〈 b 〉 〈 a 〉 < 〈 b 〉 TruncPr(〈a〉, k, f) Trunc(〈a〉, k, f)

No. Triples 0 1 1 h(k) 0 h(k)
No. Bits 0 0 2 · k + κ k + κ k + κ k + κ
Rounds 1 1 2 dlog2 ke+ 1 1 dlog2(k)e+ 1

Table 3. Costs of Basic Scale-Mamba Operations over Integers

A key parameter of an MPC system is the number of parties in the system,
and the number of ‘bad’ players which can be tolerated. Scale-Mamba supports
various options for these access structures. Each one coming with different ad-
vantages and disadvantages. To illustrate our protocol we focus on two cases:

20

1. Two party protocol with one active corruption. Here the Scale-Mamba system
makes use of the SPDZ protocol [8]. The offline phase is roughly 180 times
slower than the online phase, but the online phase is very fast.

2. Three party protocol with one active corruption. Here we utilize a secret
sharing scheme based on Shamir sharing [31]. In this case Scale-Mamba im-
plements the protocol of [20] to obtain a fast online phase, at the expense of
having an offline phase which is roughly 4 times slower.

We implemented PageRank within the Scale-Mamba system and then run various
experiments, with different transaction graphs to see how performance behaved.
We varied the value of m to range from around m = 100 to m = 10000. We fixed
the initialization vector x0 and the personalization vector v to be the vectors
with 1/m in each entry, although modifying our code to deal with secret shared
value v is trivial. Finally we fixed λ to be 0.15 in the PageRank algorithm itself,
modeling the damping factor that the institutions would use, but of course the
institutions can choose any value they wish prior to executing PageRank. For
our approximation of floating point by fixed point numbers considered earlier
we used f = 30 + log2m, k = f + 1, κ = 40, and a modulus of 2 · k + κ bits.

The most expensive part (by a large margin) of the entire procedure is the
execution of Step 2a in Method 3 of Figure 2. For single execution of this step we
present our runtimes in Table 4, in addition to the amount of data sent per party.
Our experiments were run on Intel i-9900 CPU based machines with 128GB of
RAM, connected by a local network with a ping time around 0.048 milliseconds,
connected with a switch of bandwidth 1 Gb. We notice that the case of the two
parties is slightly faster than the case of three parties.

m 100 500 1000 5000 10000

Two parties 0.03 0.40 2.11 55.23 231.61

Three parties 0.03 0.61 2.42 60.82 245.34

Data sent 1.56 14.50 45.19 1305.93 5014.23

Table 4. Average online runtimes in seconds for Step 2a in Method 3 of Figure 2 for
one iteration of the PageRank algorithm for two players and three players with respect
to the number of nodes m, as well as the size of data sent by each player in MB.

Thus we have the expected time for execution of a single iteration of the
PageRank algorithm. To obtain the final runtime we need to multiply this by the
expected number of iterations, from Table 2, to obtain Table 5. Here we can see
the effect of the terminating condition on the runtime. Without our terminating
condition we would need to run for a large number (say 100) of iterations, which
is costly. By terminating after a suitable convergence has been reached we save
a lot of time, but we leak some information. However, as we have explained the
information leaked is essentially only information about the spectral gap; which
may be considered a minor leakage depending on the application.

21

Runtimes
100 Random Graphs Banking Graphs

m Setting iteration abs rel abs rel

100 Two parties 3 0.6 0.4 0.5 0.3
100 Three parties 3 0.6 0.4 0.5 0.3

500 Two parties 40 8.4 6.0 6.0 4.0
500 Three parties 61 12.8 9.1 9.1 6.1

1000 Two parties 210 44.1 31.5 35.7 23.1
1000 Three parties 242 50.8 36.3 41.1 26.6

5000 Two parties 5500 1161.3 774.2 829.5 553.0
5000 Three parties 6070 1274.7 849.8 910.5 607.0

10000 Two parties 23100 4855.2 3236.8 3699.2 2543.2
10000 Three parties 24530 5151.3 3434.2 3924.8 2698.3

Table 5. Average runtimes in seconds for the PageRank algorithm of Figure 2 for
Method 2, as well as Method 3 with absolute and relative errors on random and banking
graphs, for two parties and three parties with respect to the number of nodes m.

Acknowledgments

The authors would like to thank Dragoş Rotaru and Titouan Tanguy, for sug-
gestions in relation to this paper, and Frederik Vercauteren for the helpul dis-
cussions in the early stages of this work. This work was supported in part by
CyberSecurity Research Flanders with reference number VR20192203, by ERC
Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pa-
cific (SSC Pacific) under contract No. FA8750-19-C-0502, and by the FWO under
an Odysseus project GOH9718N. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ERC, DARPA, the US Government or the
FWO. The U.S. Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright annotation therein.

References

1. Alon, N., Milman, V.: Lambda1, isoperimetric inequalities for graphs, and super-
concentrators. Journal of Combinatorial Theory, Series B 38(1), 73 – 88 (1985),
http://www.sciencedirect.com/science/article/pii/0095895685900929

2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (Jun 1986)
3. Aly, A., Cong, K., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl, P., Smart,

N.P., Tanguy, T., Wood, T.: SCALE and MAMBA v1.9: Documentation (2020),
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. Cryptology ePrint Archive, Report 2008/289 (2008),
http://eprint.iacr.org/2008/289

5. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web (2000)

6. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (Jan 2010)

22

http://www.sciencedirect.com/science/article/pii/0095895685900929
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
http://eprint.iacr.org/2008/289

7. Corso, G.M.D., Gulli, A., Romani, F.: Fast PageRank computation via a sparse
linear system (extended abstract). In: Leonardi, S. (ed.) Algorithms and Models for
the Web-Graph: Third International Workshop, WAW 2004, Rome, Italy, October
16, 2004, Proceeedings. Lecture Notes in Computer Science, vol. 3243, pp. 118–130.
Springer (2004), https://doi.org/10.1007/978-3-540-30216-2_10

8. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

9. Daskalakis, C., Tzamos, C., Zampetakis, M.: A converse to Banach’s Fixed Point
Theorem and its CLS completeness. CoRR abs/1702.07339 (2017), http://arxiv.
org/abs/1702.07339

10. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015. The Internet Society (Feb
2015)

11. Dikland, T.: Added value of combining transaction graphs on fraud detection using
the PageRank algorithm. Internship Report, TNO and TU Delft (2018)

12. Elden, L.: A note on the eigenvalues of the Google matrix (2004), http://arxiv.
org/abs/math/0401177

13. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron, J.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–255.
Springer, Heidelberg (Apr / May 2017)

14. Han, Y., Kim, L., Cha, J.: Evaluation of user reputation on youtube. In: Ozok,
A.A., Zaphiris, P. (eds.) Online Communities and Social Computing, Third In-
ternational Conference, OCSC 2009, Held as Part of HCI International 2009,
San Diego, CA, USA, July 19-24, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5621, pp. 346–353. Springer (2009), https://doi.org/10.1007/
978-3-642-02774-1_38

15. Hastings, M., Falk, B.H., Tsoukalas, G.: Privacing preserving network analytics
(2020), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3680000

16. Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Technical
Report 2003-20, Stanford InfoLab (2003), http://ilpubs.stanford.edu:8090/

582/

17. Huynh, T.D.: Extension of PageRank and application to social networks. (Exten-
sion de PageRank et application aux réseaux sociaux). Ph.D. thesis, Pierre and
Marie Curie University, Paris, France (2015), https://tel.archives-ouvertes.
fr/tel-01187929

18. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite
collision analysis. Cryptology ePrint Archive, Report 2013/850 (2013), http://

eprint.iacr.org/2013/850

19. Kamvar, S., Haveliwala, T.: The condition number of the PageRank problem. Tech-
nical Report 2003-36, Stanford InfoLab (June 2003), http://ilpubs.stanford.
edu:8090/597/

20. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp.
181–199. Springer, Heidelberg (Sep 2018)

21. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Technical report, Depart-
ment of Mathematics, N. Carolina State University (2003)

22. Langville, A.N., Meyer, C.D.: Fiddling with PageRank. Technical report, Depart-
ment of Mathematics, N. Carolina State University (2003)

23

https://doi.org/10.1007/978-3-540-30216-2_10
http://arxiv.org/abs/1702.07339
http://arxiv.org/abs/1702.07339
http://arxiv.org/abs/math/0401177
http://arxiv.org/abs/math/0401177
https://doi.org/10.1007/978-3-642-02774-1_38
https://doi.org/10.1007/978-3-642-02774-1_38
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3680000
http://ilpubs.stanford.edu:8090/582/
http://ilpubs.stanford.edu:8090/582/
https://tel.archives-ouvertes.fr/tel-01187929
https://tel.archives-ouvertes.fr/tel-01187929
http://eprint.iacr.org/2013/850
http://eprint.iacr.org/2013/850
http://ilpubs.stanford.edu:8090/597/
http://ilpubs.stanford.edu:8090/597/

23. Langville, A.N., Meyer, C.D.: Survey: Deeper inside PageRank. Internet Math.
1(3), 335–380 (2003), https://doi.org/10.1080/15427951.2004.10129091

24. Maxwell, N.: Innovation and discussion paper: Case studies of the use of privacy
preserving analysis to tackle financial crime. Tech. rep., Royal United Services In-
stitute (2020), https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_

innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_

preserving_analysis.pdf

25. Mohassel, P., Rindal, P.: ABY3: A mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 35–52.
ACM Press (Oct 2018)

26. Molloy, I., Chari, S., Finkler, U., Wiggerman, M., Jonker, C., Habeck, T., Park, Y.,
Jordens, F., van Schaik, R.: Graph analytics for real-time scoring of cross-channel
transactional fraud. In: Grossklags, J., Preneel, B. (eds.) Financial Cryptogra-
phy and Data Security - 20th International Conference, FC 2016, Christ Church,
Barbados, February 22-26, 2016, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 9603, pp. 22–40. Springer (2016), https://doi.org/10.1007/
978-3-662-54970-4_2

27. Moreau, A.: How to perform fraud detection with per-
sonalized PageRank. Blog: https://www.sicara.ai/blog/

2019-01-09-fraud-detection-personalized-page-rank (9 January 2019)
28. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:

Bringing order to the Web. In: Proceedings of the 7th International World Wide
Web Conference. pp. 161–172 (1998)

29. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A hybrid secure computation framework for machine learning
applications. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.)
ASIACCS 18. pp. 707–721. ACM Press (Apr 2018)

30. Sangers, A., van Heesch, M., Attema, T., Veugen, T., Wiggerman, M., Veldsink,
J., Bloemen, O., Worm, D.: Secure multiparty PageRank algorithm for collab-
orative fraud detection. In: Goldberg, I., Moore, T. (eds.) Financial Cryptogra-
phy and Data Security - 23rd International Conference, FC 2019, Frigate Bay,
St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 11598, pp. 605–623. Springer (2019), https:

//doi.org/10.1007/978-3-030-32101-7_35

31. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979)

32. Simić, S.K., Andelić, M., da Fonseca, C.M., Živković, D.: Notes on the
second largest eigenvalue of a graph. Linear Algebra and its Applications
465, 262 – 274 (2015), http://www.sciencedirect.com/science/article/pii/

S002437951400617X

33. Soramaki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topol-
ogy of interbank payment flows. Physica A: Statistical Mechanics and its Ap-
plications 379(1), 317 – 333 (2007), http://www.sciencedirect.com/science/

article/pii/S0378437106013124

34. Soramaki, K., Cook, S.: Sinkrank: An algorithm for identifying systemically impor-
tant banks in payment systems. Economics: The Open-Access, Open-Assessment
E-Journal 7 (06 2013)

35. Vlasselaer, V.V., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B.: GOTCHA!
Network-based fraud detection for social security fraud. Manag. Sci. 63(9), 3090–
3110 (2017), https://doi.org/10.1287/mnsc.2016.2489

24

https://doi.org/10.1080/15427951.2004.10129091
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://doi.org/10.1007/978-3-662-54970-4_2
https://doi.org/10.1007/978-3-662-54970-4_2
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://doi.org/10.1007/978-3-030-32101-7_35
https://doi.org/10.1007/978-3-030-32101-7_35
http://www.sciencedirect.com/science/article/pii/S002437951400617X
http://www.sciencedirect.com/science/article/pii/S002437951400617X
http://www.sciencedirect.com/science/article/pii/S0378437106013124
http://www.sciencedirect.com/science/article/pii/S0378437106013124
https://doi.org/10.1287/mnsc.2016.2489

A Converses to Banach’s Fixed Point Theorem

To understand the convergence of fixed point iterations of contraction mappings
more precisely, we need to appeal to so-called converse to Banach’s Theorem.
These are results which show that if an iterative method converges for some set
X on a metric space with metric d, then there is a (potentially different) metric
d′ for which the map is a contraction mapping for any Lipschitz constant q. In
particular in [9] the following converse theorem is proved

Theorem A.1 (Theorem 1 of [9]). Let (X, d) be a complete, proper metric
space and F : X −→ X be continuous with respect to d such that F has a unique
fixed point x∗, and the iteration xi ← F (xi−1) converges to x∗ with respect to d,
and there exists an open neighbourhood U of x∗ such that F (n)(U) −→ {x∗} as
n −→∞.

Then, for all q ∈ (0, 1) and ε > 0, there is a metric dq,ε which is topologically
equivalent to d, such that (X, dc,ε) is a complete metric space and

1. ∀x, y ∈ X : dq,ε(f(x), f(y)) ≤ q · dq,ε(x.y).
2. ∀x, y ∈ X : dq,ε(x, y) ≤ ε implies that

min{ dq,ε(x∗, x), dq,ε(x
∗, y), dq,ε(x, y) } ≤ 2 · ε.

The second property here is used to bound the number of iterations needed in
terms of the constants q, ε and the distance d(x0, x

∗).
The authors of [9] illustate this in terms of the power method for matrices.

Indeed in [9][Proposition 1] it is shown that if we restrict to real matrices A
(with eigenvalues |λ1| > |λ2| ≥ . . . ≥ |λm|) then there is a metric d(x,y) on Rm
such that the mapping, for any vector norm ‖ · ‖,

F (x) =
A · x
‖A · x‖

is a contraction mapping with

d(F (x), F (y)) ≤ |λ2|
|λ1|
· d(x,y)

for all x,y ∈ Rm. The metric being

d(x,y) =
∥∥∥ x

xT · v1
− y

yT · v1

∥∥∥
2
.

Thus there is a metric for which the Lipschitz constant is q = |λ2|/|λ1|. In
addition for any x0 ∈ Rn which has a nonzero component in the direction of v1,
we have that after

N∗ =
log(d(x0,v1)/ε)

log(|λ1|/|λ2|)
steps we have ‖xN∗ − v1‖2 ≤ d(xN∗ ,v1) ≤ ε. This allows us to upperbound
the number of iterations needed for a given level of convergence. However, the
metic is not suitable to use within the algorithm to determine the first eigen-
value/eigenvector as it depends on the value of the first eigenvector itself.

25

	Secure Fast Evaluation of Iterative Methods: With an Application to Secure PageRank
	Introduction
	Preliminaries
	Banach Fixed Point Theorem and the Power Method
	Stability of PageRank
	Traditional Stability of PageRank
	Stability due to Approximate Computations

	Effect of Early Termination of PageRank
	A multiparty actively-secure protocol for the PageRank algorithm
	Converses to Banach's Fixed Point Theorem

