
GearBox: Optimal-size Shard Committees
by Leveraging the Safety-Liveness Dichotomy

Bernardo David∗1, Bernardo Magri†2, Christian Matt3,
Jesper Buus Nielsen‡4, and Daniel Tschudi3

1ITU Copenhagen, bernardo@bmdavid.com
2The University of Manchester, UK, bernardo.magri@manchester.ac.uk

3Concordium, Zurich, {cm, dt}@concordium.com
4Concordium Blockchain Research Center, Aarhus University, jbn@cs.au.dk

July 5, 2022

Abstract
Sharding is an emerging technique to overcome scalability issues on blockchain based

public ledgers. Without sharding, every node in the network has to listen to and process all
ledger protocol messages. The basic idea of sharding is to parallelize the ledger protocol:
the nodes are divided into smaller subsets that each take care of a fraction of the original
load by executing lighter instances of the ledger protocol, also called shards. The smaller the
shards, the higher the efficiency, as by increasing parallelism there is less overhead in the
shard consensus.

In this vein, we propose a novel approach that leverages the sharding safety-liveness
dichotomy. We separate the liveness and safety in shard consensus, allowing us to dynamically
tune shard parameters to achieve essentially optimal efficiency for the current corruption
ratio of the system. We start by sampling a relatively small shard (possibly with a small
honesty ratio), and we carefully trade-off safety for liveness in the consensus mechanism to
tolerate small honesty without losing safety. However, for a shard to be live, a higher honesty
ratio is required in the worst case. To detect liveness failures, we use a so-called control
chain that is always live and safe. Shards that are detected to be not live are resampled with
increased shard size and liveness tolerance until they are live, ensuring that all shards are
always safe and run with optimal efficiency. As a concrete example, considering a population
of 10K parties with at most 30% corruption and 60-bit security, previous designs required
over 5800 parties in each shard to guarantee security. Our design requires only 1713 parties
in the worst case with maximal corruption, and in the optimistic case works with only 35
parties without compromising security.

Moreover, in this highly concurrent execution setting, it is paramount to guarantee that
both the sharded ledger protocol and its sub protocols (i.e., the shards) are secure under
composition. To prove the security of our approach, we present ideal functionalities capturing
a sharded ledger as well as ideal functionalities capturing the control chain and individual
shard consensus, which needs adjustable liveness. We further formalize our protocols and
prove that they securely realize the sharded ledger functionality in the UC framework.

∗This work was supported by a grant from Concordium Foundation and by Independent Research Fund
Denmark grants number 9040-00399B (TrA2C) and number 9131-00075B (PUMA).

†Work partially done while the author was at the Concordium Blockchain Research Center, Aarhus University.
‡Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID

DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).

mailto:bernardo@bmdavid.com
mailto:bernardo.magri@manchester.ac.uk
mailto:cm@concordium.com
mailto:dt@concordium.com
mailto:jbn@cs.au.dk

Contents
1 Introduction 3

1.1 Our Contributions . 4
1.2 Technical Overview . 5
1.3 Related Work . 7

2 Preliminaries 8
2.1 Security Model . 8

3 Ledger Functionalities 9
3.1 (Sharded) Timed ledger . 9
3.2 Shards . 11

4 Committee Selection and Shard Consensus 13
4.1 Committee Selection . 13
4.2 Shard Consensus . 15
4.3 Determining the Committee Size . 19

5 Constructing a Sharded Ledger 21
5.1 Overview . 21
5.2 Data Repository . 22
5.3 The Sharded Ledger Protocol ΠBD-STL . 22
5.4 Extensions . 25
5.5 Inter-Shard Transactions and Communication . 26

6 Instantiations 27
6.1 Instantiation of Timed Ledger . 27
6.2 Instantiation of Shard Consensus and GearBox 27
6.3 Instantiation of Randomness Beacon . 28
6.4 Efficiency Analysis of Overall Protocol . 29

A Shard Safety-Liveness Dichotomies 30
A.1 Synchronous, Unauthenticated SSLD . 30
A.2 Synchronous, Authenticated SSLD . 31
A.3 Partially Synchronous, Authenticated SSLD . 33

B Implementing the Timed Ledger using a Nakamoto-Style Blockchain 33

C Tight Analytic Bound for Committee Sizes 35

D Python Code for Computing Minimal Committee Sizes 37

1 Introduction
Since the introduction of Bitcoin [Nak09], there has been an explosion of interest in blockchains,
both in research and practice. One of the biggest practical obstacles for the large-scale adoption
of public blockchain systems is the low throughput of transactions in systems such as Bitcoin.
As a solution to overcome this limited scalability, a method called sharding has been proposed.

The basic idea of sharding is to parallelize the execution by dividing the network into smaller
components, called shards. The smaller the shards are the higher the efficiency is, due to
increasing parallelism and less overhead in the shard consensus. However, the security of the
shards requires its size to be big, or analogously, small shards have lower security. For example,
assuming at most 30% corruption1 overall with a total of 10K parties, the minimal shard size
that guarantees at most 33% corruption with 60-bit security2 in a randomly selected shard is
5886, which hardly leads to a major improvement in efficiency. As we show in Section C, the
bounds are almost perfectly linear in the security parameter, so for 30-bit security the size would
have to be about 3000. Thus, to get to a shard size in the hundreds, unsatisfying security levels
would have to be adopted.

The security of a blockchain system consists of two main properties: (1) Liveness says
that the blockchain will eventually output new messages to all peers, and (2) Safety says that
the peers agree on the sequence of messages being output. The liveness threshold L and the
safety threshold S are the levels of corruption under which liveness and safety are guaranteed,
respectively. Existing sharding solutions [LNZ+16, ZMR18, KJG+18] need to guarantee security
of the shards (both liveness and safety) in the worst-case corruption scenario, thus forcing them
to consider equal bounds for liveness and safety, what severely constrains the size of shards. In
this work, we overcome this apparent barrier by leveraging the shard safety-liveness dichotomy
and choosing different safety and liveness bounds. We devise a protocol where shards are always
safe but can eventually lose liveness; when that happens the shards are respawned with adjusted
liveness and safety parameters. This allows for significantly smaller shards.

The shard safety-liveness dichotomy defines the possible tuples (L, S) of liveness and safety
thresholds for which a (shard) consensus protocol provides security. For partially synchronous
protocols, the safety-liveness dichotomy says that 2L + S < 100%. Hence in the case of S = L it
must be that L, S < 33%. For synchronous protocols the safety-liveness dichotomy says that
L + S < 100%, hence whenever S = L it must be that L, S < 50%. These dichotomies can be
derived from the following observations. For the synchronous dichotomy, we use the crucial fact
that external parties can post on and read from the shards. We observe that if a reader can be
convinced about the state of a shard while a subset of (relative) size L is crashed, then it means
that a subset of size 1− L can convince the reader. Thus if S = 1− L, this means that a reader
can be convinced after only talking to a set of potentially corrupt servers. For the partially
synchronous dichotomy we use the fact that if the unknown network delay is large enough, a
reader cannot distinguish a corrupt subset of (relative) size L from a slow and honest subset.
Moreover, if a subset of size L is crashed, a reader must by definition be able to make a decision.
Hence, a reader that makes a decision (say, on which message it saw on the shard first) should
be able do this without having heard from a fraction L of the honest parties. This means that
from the fraction L + S of the parties it heard, a fraction L or a fraction S might be corrupted.
The shard dichotomies discussed here follow from standard arguments, and for completeness we
provide formal proofs in Appendix A.

1In blockchains, the corruption bounds are typically weighted by some resource, e.g., computing power for
proof-of-work systems, or stake in proof-of-stake systems. To simplify the presentation, we ignore this weighting
in the introduction. We stress, however, that our results are not limited to this simplified setting and can indeed
be used in a weighted setting. See Section 4.1 for a further discussion.

2A security level of 60-bit means that security holds with probability at least 1 − 2−60.

3

1.1 Our Contributions

We present a novel sharding approach that leverages the safety-liveness dichotomy to get the
smallest possible shard committees without sacrificing safety. Our sharding design has security
against a fraction of t < 1/3 corrupt shard committee members in the partially synchronous
setting.3

The shards will, in the optimistic model, start to run with a low liveness threshold and a high
safety threshold, e.g., S = 89% and L = 5%. Being safe against up to 89% corruption allows for
sampling much smaller committees, however being live only against up to 5% corruption makes
it a lot more likely for a shard to deadlock. For this, we use an approach where an independent
ledger, that we call control-chain (CC), manages the shards by constantly monitoring them
for liveness. This is done by letting the shards post “heart beat” transactions on the CC. The
CC can then “take down” a deadlocked shard and spin up a new shard with a new random
committee and a higher liveness threshold (and a lower safety threshold), leading to bigger
shards. This can be iterated until a shard is found which gives liveness (and safety). On the
other hand, if no deadlocks are detected within a certain period, shards can be dynamically
scaled down, leading to optimal shard sizes for the current corruption ratio. Crucially, at no
point safety is compromised.

Our design has for each shard what we call a “gearbox” of consensus protocols: shards at the
top are larger (therefore slower) but have robust liveness, while shards at the bottom are small
(therefore faster) but have a lower liveness. The CC changes gear upwards in the gearbox when
deadlocks are detected switching to a larger shard, and can over time change gear downwards
when there is no signs of an attack. At the top of the gearbox the gear cannot change upwards,
so a deadlocked shard is just restarted with the same parameters and a new random committee.
The only requirement to get eventual liveness is that, when the top consensus algorithm is
instantiated with a random committee, it happens with constant probability that the corruption
threshold is low enough to get liveness. This approach allows us to select the best committee size
given the unknown actual corruption threshold, albeit at the cost of resampling the committee
until liveness is achieved.

Next, we describe two different ways to instantiate our framework.

Partially synchronous. One can run with a partially synchronous CC and partially syn-
chronous shards. At the bottom gear one could have L = 0% and S = 99%. For a population of
10K peers and assuming an overall corruption level of at most 30%, this would give a committee
size of 35 guaranteeing that safety is not violated except with probability 2−60. At the top gear
one could use a consensus protocol with L = 30% and S = 39%. This would give a committee
size of 1713 guaranteeing not more than 39% corruption (with 60-bit security). Note that we
sample from a ground population with corruption at most 30% and need a committee with
corruption at most 30% for liveness in the top gear. It is easy to see that we get at most
30% corruption with a constant probability, which gives eventual liveness. This already gives a
significant improvement over existing designs that require that liveness only fails with negligible
probability. Moreover, 30% corruption is a worst-case assumption and in typical executions,
there will be much less corruption. In the other extreme with 0 corruption, the shards will
already be live in the lowest gear with 35 parties. Even for more realistic 20% actual corruption,
207 parties per shard are sufficient to obtain a live shard with constant probability, dramatically
improving the state of the art. See Section 4.3 for more details on required committee sizes in
different settings.

3Although our techniques can be used to get security against a fraction of t < 1/2 corrupt committee members
in the synchronous setting, we focus on the more desirable (and challenging) partially synchronous case.

4

Mixed. One can run a synchronous CC tolerating 49% corruption, and at the bottom of
the gearbox we again start with a partially synchronous shard with L = 0% and S = 99%.
We run partially synchronous up until L = 25% and S = 49%. After that, we then switch
to a synchronous shard with S = L = 49% corruption. This allows a design tolerating 49%
overall corruption, but running partially synchronous small shards until 25% corruption. This is
interesting since partially synchronous protocols can achieve higher throughput in good network
conditions by avoiding waiting for the end of rounds, as synchronous protocols do.

In the rest of the paper we focus on the partially synchronous setting, and therefore we stick
with the 2L + S < 100% dichotomy. Thus we need less than 33% corruption in the ground
population to get safety and liveness of the CC.

Static vs. adaptive security. Protocols that rely on the honest majority of long living
committees for security clearly fail if an adaptive adversary can instantly corrupt at least half of
the committee. This is also true for our sharding protocol of Section 5. We point out that this is
not a weakness of our design but to the best of our knowledge applies to all sharding protocols
based on randomly chosen committees. While Free2Shard [RKTV22] tolerates fully adaptive
corruption, it assumes a different security model, and thus cannot directly be compared to our
protocol.

If we assume the adversary can adaptively corrupt parties, but only after some delay [MNT22],
one can obtain security by periodically resampling committees, see Section 5.4.

Cross-Shard communication. Cross-shard transactions have extensively been studied in the
literature [ZABZ+21, AKW19, WSNH19]. For our sharding approach, special care needs to be
taken since shards could lose liveness during a cross-shard transaction. We show in Section 5.5
on the example of Atomix [KJG+18], how existing protocols can be adapted to work in our
setting. The basic idea is to leverage the control chain to finalize messages on the shards. This
can be done without an additional overhead by including Merkle tree hashes of the relevant
transactions in the heartbeats that are regularly posted on the control chain. This ensures that
the amount of data posted on the control chain is independent of the number of cross-shard
transactions, and short Merkle proofs can be used to prove finality of transactions on shards
that holds even under restarting shards.

UC formalization. To prove the security of our approach, we formalize an ideal functionality
capturing a sharded ledger as well as functionalities capturing the consensus guarantees we
require from the control chain and from the shards, which need to have adjustable liveness in
our approach. We build on these functionalities to construct our sharded ledger protocol, which
we prove to UC-realize the sharded ledger functionality. To the best of our knowledge, ours is
the first sharded ledger protocol to achieve security under arbitrary composition, which is an
extremely important property in settings where a number of protocols are executed in parallel
(e.g., blockchains). Moreover, we introduce and model the concept of timed ledgers, which go
beyond guaranteeing that messages recorded on the ledger remain ordered in a certain way, also
allowing parties to obtain explicit timestamps for messages.

1.2 Technical Overview

The main building blocks of our sharding protocol are a Control Chain and Shard ledgers, which
we discuss below and describe in detail in Section 3.

5

Control chain. The control chain (CC) is used to orchestrate the sharding protocol, storing
shard management metadata. The CC is modeled as a timed ledger functionality that orders and
timestamps incoming messages. More formally, the control-chain is a totally-ordered broadcast
with persistency and a timestamp guarantee. The CC is executed by all parties but it only
stores metadata of size independent from the contents of the shards. We show in Section 6.1 and
Appendix B how one can realize a control chain using different existing blockchain protocols.

Shards. Shards are again modelled as a ledger functionality parameterized by the size of
the shard committee and an adversary structure for the liveness guarantee. This allows us to
instantiate shards with committees of different sizes and with different liveness guarantees. A
shard consensus protocol is only executed by a small shard committee. As we propose a general
approach to sharding, our shard functionality can be readily instantiated by standard blockchain
or permissioned consensus protocols. In Section 4.2, we show how to leverage specific properties
of our approach to achieve a particularly efficient instantiation of the shard functionality using a
simple BFT-style consensus protocol with a leader that proposes blocks. Our protocol does not
guarantee liveness if the leader is corrupted as we can always recover using the control-chain.
This comes at the price of possibly having to resample committees more often and is in contrast
to existing protocols, that come with complex mechanisms to resolve an unresponsive leader. To
minimize resamplings, one can also use existing protocols that include leader replacement, as
discussed in Section 4.2.

The protocol. The goal of our sharding protocol in Section 5 is to achieve a sharded ledger.
Essentially, the sharded ledger consists of multiple copies of the ledger type used as control-chain.
Our protocol starts by initializing all shards with the smallest possible committees, i.e., using
the smallest liveness threshold. The initialization (and later restarting) of shards is done by
posting a command on the CC. Once the shard committee responsible for that shard sees the
command on the CC, it starts executing that shard.

At the core of our sharding protocols are the heartbeats that allow to asses the liveness of
a shard. They are implemented by asking the shards to periodically post hashes of blocks on
the CC as a way to timestamp and “finalize” the blocks. A block is considered valid if it is
accompanied by a proof that at least one honest party agrees with it (e.g., signatures on the
block by a sufficiently large number of parties in the shard committee). Each time a valid block
is posted, a timeout is implicitly set. If the next valid block does not arrive before the timeout,
then the shard is considered deadlocked. The timestamp is used to uniquely determine whether
a shard made the time out.

If a shard is considered deadlocked, it is restarted with a fresh larger committee guaranteeing
a slightly larger liveness threshold, thus increasing the chance that it will have liveness. By
proceeding this way, the protocol ensures that a committee of close to optimal size is eventually
selected for each shard. In other words, the size of shards is dynamically adjusted to match the
actual corruption ratio in the network.

Note that such a sharded ledger can be trivially achieved (in UC) by simply instantiating
multiple copies of the control-chain. We therefore emphasize that our sharding protocol is
designed for the sake of efficiency. In the trivial solution every party needs to participate in each
ledger copy, while our solution allows to select small committees that maintain a shard each.
The selection of committees is discussed in Section 4.1.

6

1.3 Related Work

In the last few years, many shard-based blockchain protocols have been proposed by the scientific
community and by the industry in the form of whitepapers. Most of the proposals by the
industry, despite many containing nice ideas and innovations, follow an heuristic approach,
where no formal security guarantees are proposed or formally proven. Thus, in this section
we only discuss a few of the most well-known (peer-reviewed) sharding protocol proposals and
refer the interested reader to the survey of Wang et al. [WSNH19] that gives a nice overview of
the state-of-the-art in sharding protocols. Finally, we point out a common issue with all the
proposals that hinders their practical usage.

There exists other approaches, such as Prism [BKT+19] and OHIE [YNHS20], to overcome
blockchain scalability problems. While these two are orthogonal approaches and limited to
the proof-of-work setting, our work focuses on more generic sharding solutions. For a general
overview of blockchain scalability solutions, see [SC21].

Sharding protocols. To the best of our knowledge, Elastico [LNZ+16] is the first sharding
protocol proposed for public blockchains. The protocol is synchronous and runs in “epochs”; in
every epoch each party solves a PoW puzzle based on randomness obtained from the previous
epoch. The PoW’s least-significant bits are used to form the committees that will run each
shard and process the transactions. Even though the authors of [LNZ+16] advocate for a small
committee size per shard (around 100 parties), the probability of a shard being unsafe gets
very high, close to 97%, after only six epochs, as shown in [KJG+18]. This renders the protocol
completely insecure when used with small committees.

Building upon Elastico’s ideas, and improving it in many ways, OmniLedger [KJG+18] is a
sharding protocol that generates identities and assigns participants to shard committees using a
synchronous PoW independent identity-blockchain. However, like Elastico, OmniLedger can
only efficiently4 tolerate up to t < n/4 corruptions on the total number of parties in the system.
During each epoch, new randomness is generated for a leader election lottery. The protocol can
achieve low latency for the confirmation of transactions whenever t < n/8.

RapidChain [ZMR18] is a synchronous sharding protocol that tolerates up to n/3 corrupt
parties out of the total number of participants. The protocol is bootstrapped by a committee
election protocol that initially selects a reference committee of size m = O(log n). At the end of
every epoch, the reference committee is responsible for generating fresh randomness that will be
used to select the committees for all the shards at the end of the first epoch, and to reconfigure
the committees of existing shards in subsequent epochs.

Using an approach closely related to sharding, Monoxide [WW19] proposes a scale-out
blockchain that contains many independent chains (called zones) running in parallel that divides
the work-load of the entire system; communication, computation and storage is shared among
the different zones, making the burden of maintaining the entire system shared among the nodes
running each zone. When a “cross-zone” transaction happens, an eventual atomicity technique
is used in order to keep consistency among the different zones.

The work of Avarikioti et al. [AKW19] proposes a framework with security properties tailored
for sharded ledger protocols, building upon the Bitcoin backbone model of Garay et al. [GKL15].
More specifically, the authors propose the novel notions of consistency and scalability for sharded
ledgers that intuitively says that, cross-shard transactions must preserve safety and sharded
systems must gain some speed-up in comparison to a non-sharded system, respectively. Moreover,
the authors analyze many existing sharded ledger protocols in their model and prove if the
protocol satisfy the proposed definition or not. Unfortunately, the model proposed in [AKW19] is

4It can handle up to 33%, but with bad performance. See Footnote 2 in [KJG+18].

7

not composable, making it difficult to argue security of a sharded ledger protocol when combining
it with a larger system.

Common issues. A common factor in all the previously described sharding protocols is that,
for a robust security parameter, the size of the shard’s committee needs to be large in order to
guarantee the safety properties for each shard. In Section 4.3 we present some concrete numbers
for the smallest size of committees needed to guarantee different honesty levels considering
60-bits of security. For example, with a total population of 10000 parties and at most 30% overall
corruption, an honest supermajority (33% corruption) can only be guaranteed with 5886 parties
per committee. Considering only 2000 parties in the total population requires 1716 parties per
committee. And even reducing the assumption on the overall corruption to only 20% with 2000
parties in the total population still requires 540 parties in every shard.

Moreover, none of these previous works consider (or prove) security of sharding protocols
under composability. This is a major shortcoming since sharding protocols (and blockchains in
general) are mostly used as building blocks of larger systems (e.g., cryptocurrencies and smart
contracts), which requires them to retain their security under composability.

2 Preliminaries
We denote by P a party in the party set P . We denote by Honest ⊆ P the set of honest parties
during the protocol execution. We denote by H : {0, 1}∗ → {0, 1}κ a collision-resistant hash
function.

2.1 Security Model

Since our protocols make essential use of time, we need a notion of UC security for (partial)
synchronous protocols. We thus need to assume that parties have access to a reliable network
functionality with bounded delay ∆net, similar to the functionality F∆net

N-MC in [BMTZ17]. We
further need a notion of time and access to clocks [KMTZ13], and we assume an idealized
signature functionality [Can04, BH04]. To keep the presentation simple, we do not model all
these functionalities and refer to the cited papers for UC-related details.

Time. The functionality FClock essentially amounts to assuming perfectly synchronised discrete
clocks. We use time slot to denote the time period between two ticks of the clock FClock. We
use slot length to denote the length of time slots and we assume it to be fixed. In a slight
abuse of notation, we also sometimes call a time slot a tick. By tick r we mean the time slot
starting after the clock ticked r times. We assume time starts with a clock tick, so the first tick
is tick 1. The execution proceeds in a way such that if honest party Pi is in tick ri and honest
party Pj is in tick rj , then |ri − rj | ≤ 1. We assume that each party has enough computational
power to complete arbitrary polynomial time computations in each time slot. Note that the
previous simplification may not be a good model of reality, but by assuming a known upper
bound on the clock drift in “real life”, and designing our protocols such that a bounded number
of computation is required in each round, setting the slot length long enough, and assuming
an upper bound on the message delivery, then the model can clearly be realised. We stress
that our goal is to communicate our sharding mechanism, which we believe is best done in a
simple model. Implementing the protocol securely in practice is a highly non-trivial but largely
orthogonal task.

8

Network. The network F∆net
N-MC allows parties to multi-cast messages. The adversary determines

when messages are output at honest parties, but the delay can be at most ∆net ticks. The bound
∆net is not known to honest parties making this a partially synchronous communication model.

Static vs. adaptive adversaries. As discussed in the introduction, we consider the set
of corrupted parties to be static. We discuss possible extensions for adaptive corruptions in
Section 5.4.

3 Ledger Functionalities

3.1 (Sharded) Timed ledger

Timed ledger. A timed ledger F∆
BD-TL allows all parties to input messages, which will then

be totally ordered and provided with a timestamp. More formally, every party Pi can input
messages to the ledger, and retrieve a list TOi of already ordered messages together with their
timestamps. The ledger provides the following guarantees:

Persistence: For the lists of messages TOi and TOj seen by honest parties Pi and Pj , respec-
tively, TOi is a prefix of TOj or vice versa.

Liveness and bounded timestamps: For any message m input at time t by an honest party,
there is a time t′ ≤ t + ∆ such that by time t′ + ∆ the pair (m, t′) is in TOi for any honest
Pi. The maximal delay ∆ is fixed, but unknown to honest parties.

The timestamp property ensures that messages get timestamps on which the parties will
agree on. We call these timestamps the ledger arrival time. These are important in defining
precisely whether a message made it before a timeout. This is in particular important for a
party that views messages on the ledger long after they were added.

Moreover, the ledger arrival time may differ from the time the message was input (by an
honest party) or the time the message is delivered locally to an honest party. However, the
bounded delay property ensures that those differences in time are bounded by ∆ (similar to the
delay assumed in the underlying network). Formally, we define the functionality F∆

BD-TL as a
special case of a sharded timed ledger with a single shard, i.e., F∆

BD-TL := F∆,1
BD-STL. See below

for the definition of F∆,ν
BD-STL.

Realizing a timed ledger. The timed functionality can be implemented by a BFT consensus
such as HotStuff [YMR+19], Algorand [CM19] or Tendermint [Kwo14, Buc16], or by a Nakamoto-
style blockchain such as Bitcoin [Nak09]. In case a Nakamoto-style blockchain is used, combining
it with a finality layer, e.g., Casper the Friendly Finality Gadget [BG17] or Afgjort [DYMM+20],
is advisable to improve the finality time. See Section 6.1 and Appendix B for more details on
possible implementations of F∆

BD-TL.

Sharded timed ledger. A sharded timed ledger is simply a collection of multiple timed
ledgers running in parallel, where each individual ledger is refereed to as a shard. For simplicity,
we assume the number of shards ν is fixed. In practice, it is desirable to have the ability to start
new shards. This can be done easily with our techniques (similarly to how deadlocked shards
are restarted), but we omit this to simplify the modelling.

Every shard is identified by a shard identifier sid ∈ {1, . . . , ν}. Parties can send message to
different shards using the shard identifier. Furthermore, every party Pi can retrieve a totally
ordered list of messages in a shard sid, denoted by TOsid

i . Within each shard, the same

9

guarantees as described above for the timed ledgers apply. Using the timestamps on each shard,
parties can also merge the total orders of every shard to obtain a global total order. Inter-shard
communication can also be implemented on top of a sharded timed ledger as discussed in
Section 5.5.

Next, we formally define the F∆,ν
BD-STL functionality.

Functionality Sharded Timed Ledger F∆,ν
BD-STL

Initialization
1: for Pi ∈ P and all sid ∈ {1, . . . , ν} do
2: TOsid

i := () // Shard Total Order of shard sid for Pi

3: Sentsid := ∅ // Messages sent to Shard sid

Interface for party Pi ∈ P

Input: (Send, sid, m) // Assume (sid, m) is sent at most once per honest Pi.
1: Output (Pi, sid, m) to the adversary.
2: Add (Pi, m, tNow) to Sentsid.

Input: (Get, sid).
3: Output (Get, Pi) to the adversary. // Inform adversary.
4: Return TOsid

i .

Interface for adversary
Input: (Add, sid, m, t)
1: Append (m, t) to TOsid

i . // Unless it violates the below restrictions

At any time, F∆,ν
BD-STL automatically enforces these restrictions:

Persistence: If Pi and Pj are honest, then either TOsid
i is a prefix of TOsid

j or TOsid
j is a prefix of TOsid

i .
Liveness and bounded timestamps: For all messages (sid, m, t) ∈ Sentsid, there is a t′ ≤ t + ∆ such

that by time t′ + ∆, we have (m, t′) ∈ TOsid
i for all honest Pi.

Notes about model and UC. For the reader used to the formalization of a blockchain via a
chain of blocks and properties like common prefix, chain quality and chain growth as in [GKL17],
the formalization via FBD-STL might look overly simplified. That is meant as a feature. We only
formalize the features relevant for our sharding protocol and abstract away other details. This
simplifies the presentation and allows FBD-STL to be instantiated using many different consensus
protocols, as discussed in Section 6.1 and Appendix B.

Our formalization is also closer to a property-based definition than a typical UC definition.
We believe the functionality and its guarantees are easier to understand like this. Enforcing the
restrictions guaranteeing persistence and liveness is done by dropping Add commands violating
any restriction, and by executing extra Add commands when required to meet any restriction.
We omit a description of how exactly these enforcements are handled by the functionality since
it is irrelevant for our protocol.

Also note that whenever we write that the functionality outputs something to the adversary,
this is meant to leak to the adversary that the corresponding action has occurred. It it not
supposed to hand over the activation token to the adversary. Technically, this can be understood
as leaving the message in the functionality for the adversary and next time the adversary is
activated, it can query the functionality to fetch the message. We again omit the details from
the definition to simplify the presentation and focus on our main ideas rather than technicalities.

10

3.2 Shards

In essence, a shard is just a ledger. For our sharding protocol, however, we need to be explicit
about the fact that we want to instantiate shards of different sizes and that a shard may not be
live if it is instantiated with a committee that has a too high corruption ratio. Our sharding
protocol therefore does not use FBD-TL for the shards, but the functionality Fs,L,∆

Shard, which we
introduce next. The protocol then realizes FBD-STL by restarting deadlocked shards internally,
cf. Section 5.

The functionality Fs,L,∆
Shard is, in addition to the upper bound ∆ on the delay, parameterized

by the size s of the committee of parties that will be in charge of maintaining the shard, and
the set L representing the liveness adversary structure. Upon initialization, a committee C
of size s is sampled uniformly at random from all parties, and the resulting list is sent to all
parties. We represent the committee as a vector C = (P1, . . . , Ps) of parties, which allows giving
special roles to specific parties, e.g., using the first committee member P1 as a leader. We will
sometimes abuse notation and refer to C as a set. The adversary structure L means that the
shard functionality must maintain its liveness when the list (i1, . . . , it) of the indices of corrupted
parties Pi1 , . . . , Pit is in L.

The parties Pi ∈ C can interact with the shard functionality by sending transactions to the
shard through the Send command, and retrieve the ledger through the Get command. The
parties can also “close” the shard by issuing the Close command. Looking ahead, this is useful
when the sharded ledger protocol (Section 5.3) requests parties to shut down a shard in order to
start a new shard with different parameters and parties. Moreover, we allow all parties (including
external parties not in C) to verify that C is indeed the correct committee. Additionally, all
parties (including external ones) can request “finality proofs” from the functionality through
the GetFinProof command. This proof can then be verified by any party. Our functionality
offers two ways to verify such proofs: Using VerifyFinProof, one can verify a proof relative
to a message vector m⃗, i.e., it can verify that the messages in m⃗ are finalized in the ledger.
Alternatively, external parties can use VerifyFinLength to verify a proof relative to an
integer ℓ, i.e., to simply verify that at least ℓ messages have been finalized so far. The latter
allows to check liveness by ensuring a growing ℓ without needing to know the actual messages.

As the timed ledger, we model the guarantees of the ledger in the shards by letting the
adversary control how messages are added to the ledger and imposing some restrictions on the
adversary in the form of properties of the shard functionality. The persistence property is the
standard property that one expects from a ledger, i.e., intuitively all honest parties will maintain
ledgers that are prefixes of each other. We formalize this by considering a global FTO (finalized
total order) and guaranteeing that the ledgers of all honest parties are prefixes of FTO. The
liveness property is also standard and says that any message sent by an honest party will make
it into the ledger of all honest parties after at most ∆ time.5 What is special about liveness of
shards is that the property only needs to hold if the corrupted parties are in L.

The novel properties that we require for our shard functionality are called proof soundness
and censorship resilience. Proof soundness intuitively says that valid finality proofs can only be
produced for correct statements. Censorship resilience prevents an adversary from excluding
specific messages from the ledger, while including others. Note that liveness already guarantees
that all messages will be added to the ledger within time ∆. Censorship resilience is thus a
guarantee in case the ledger is not live. We formalize this as the guarantee that when a party is
sending a message for inclusion, it will be included at most two ledger updates later.6 In other

5Note that the delay ∆ is a parameter of the functionality, but it may not be known to the honest parties.
This is in particular the case when considering the partially synchronous model.

6When the ledger is realized using blocks, this means the block after the next block must include this message.
One could more generally also allow for larger delays than two blocks, but we here avoid the extra parameter.

11

words, either the message gets included, or the ledger stops completely. This is useful for our
sharding protocol, because we need to detect liveness failures and in that case restart the shard.
Censorship resilience now ensures that either the ledger is live, or it stops completely, which can
be detected from the outside (in contrast to some undetectable censorship).

We formally define the shard functionality next and in Section 4.2 we show a protocol that
UC-realizes this functionality.

Functionality Fs,L,∆
Shard

Interface for party Pi ∈ P

Input: (InitShard, sid) // Initialize shard with ID sid
1: Output (InitShard, Pi, sid) to the adversary.
2: /* Select shard committee of size s */
3: Upon receiving (InitShard, sid) (with the same sid) from all honest parties in P, sample a sequence C

uniformly among all sequences of length s from P
4: Set FTO = () and TOi := () for all Pi ∈ C
5: Send (sid, C) to all parties in P

Interface for party Pi ∈ C // After InitShard
Input: (Send, m)
1: Send (Send, Pi, m) to the adversary.

Input: Get
2: Send (Get, Pi) to the adversary.
3: return TOi

Input: Close
4: Send (Close, Pi) to the adversary.

Input: GetFinProof
5: Send (GetFinProof, Pi) to the adversary,

who immediately sends back a proof π such that no record (TOi, π, 0) has been stored.
6: Store the record (TOi, π, 1)
7: return (TOi, π)

Interface for adversary
Input: (Add, m⃗, i)
1: Append m⃗ to TOi.

Input: (AddFinal, m⃗)
2: Append m⃗ to FTO.

Public interface // Any (even “outside”) party can use this interface.
Input: (VerifyCommittee, sid, C)
1: If (sid, C) has been sent to all parties in P, return 1, otherwise, return 0.

Input: (VerifyFinProof, m⃗, π)
2: if record (m⃗, π, b) for some b ∈ {0, 1} exists then
3: return b
4: else
5: Send (VerifyFinProof, m⃗, π) to adversary, who immediately replies with b ∈ {0, 1}.
6: Store the record (m⃗, π, b).
7: return b

Input: (VerifyFinLength, ℓ, π) // Only verify length ℓ of message vector
8: if record (m⃗, π, b) for some m⃗ with |m⃗| = ℓ and b ∈ {0, 1} exists then
9: return b

12

10: else
11: Send (VerifyFinLength, ℓ, π) to the adversary.
12: Adversary immediately replies with b ∈ {0, 1} and m⃗ with |m⃗| = ℓ.
13: Store the record (m⃗, π, b).
14: return b

At any time, the functionality automatically enforces the following:
Let A ⊆ {1, . . . , s} be the indices of corrupted parties in C. We call the ledger live if A ∈ L. Call the ledger
weakly closed if some honest party input Close.
Persistence: For all Pi ∈ C \ A, TOi is a prefix of FTO.
Liveness: (If the ledger is live and not weakly closed) After a message m was input (via (Send, m)) by an

honest party for the first time,we have m ∈ TOi for all Pi ∈ C \ A at most ∆ time later.
Censorship Resilience: After a message m was input (via (Send, m)) by an honest party at time t and

TOi for a honest Pi was updated twice after time t + ∆, we have m ∈ TOi.
Proof Soundness: If (VerifyFinProof, m⃗, π) returns 1, then m⃗ is a prefix of FTO. If

(VerifyFinLength, ℓ, π) returns 1, then |FTO| ≥ ℓ.

4 Committee Selection and Shard Consensus

4.1 Committee Selection

In this section, we describe a committee-selection functionality, which is a core part of our
sharding solution. We then discuss how to realize that functionality given a randomness beacon
in permissionless blockchains. We further provide an analysis of the committee sizes needed for
that approach.

Committee selection ideal functionality. We first describe the functionality FP,U
ComSel,

which is parameterized by the set P of parties executing the committee selection, and a set U
of parties from which the committee gets selected. The functionality allows parties to request
uniformly distributed sequences over U of a given length. This corresponds to the committee
selection step in the shard functionality, see Section 3.2. As discussed there, we choose sequences
instead of subsets to be able to assign special roles to, e.g., the first committee member. The
functionality is formally defined as follows:

Functionality FP,U
ComSel

Interface for party Pi ∈ P

Input: (SelectCom, cid, s) // Select committee with ID cid of size s
1: Output (SelectCom, Pi, cid, s) to the adversary.
2: Upon receiving (SelectCom, cid, s) (with the same cid and s) from all honest parties in P, sample a

sequence C uniformly among all sequences of length s from U , and send (cid, C) to all parties in P.

Public interface // Any (even “outside”) party can use this interface.
Input: (VerifyCommittee, cid, C)
1: If (cid, C) has been sent to all parties in P, return 1, otherwise, return 0.

Selecting parties proportional to their resources. The functionality FP,U
ComSel selects

parties from a set U such that each party is selected as a committee member with equal
probability. However, in permissionless blockchain protocols, corruption thresholds are typically

13

expressed in terms of the amount of a restricted resource controlled by a party (e.g., the amount
of relative stake in proof-of-stake based blockchains or the amount of computational power
in proof-of-work based blockchains). Hence, it is necessary to map the parties executing the
underlying blockchain protocol into (virtual) parties in such a set U according to the resources
they control. In the setting of proof-of-stake based blockchains, such mapping can be achieved
by the techniques commonly known as “follow-the-satoshi” [KRDO17, CD17], “weighing by
stake” [DGKR18], and “cryptographic sortition” [DPS19, GHM+17, CM19]. In the setting of
Proof-of-Work based blockchains, committee selection has also been studied [PS17]. We can
thus assume that individual parties are mapped into users in the set U proportional to the
relevant resources they control, and refer the interested readers to the aforementioned results on
committee selection on blockchains.

Realizing FP,U
ComSel from a randomness beacon. Given access to a randomness beacon,

it is straightforward to realize FP,U
ComSel. Such a randomness beacon gives all parties access to

uniformly sampled randomness and allows parties to verify the randomness. A formal definition
is provided in [CD20], where it is also shown how this functionality can be efficiently UC-
realized both based on the DDH assumption (with UC zero knowledge as setup) or on the CDH
assumption (with a global random oracle as setup). Moreover the protocols proposed in [CD20]
require a public bulletin board that guarantees that posted messages become immutable and
accessible to all honest parties. Note that such a bulletin board can easily be realized by a
ledger FBD-TL. See Section 6.3 for more details on how to instantiate such a randomness beacon.

A straightforward way to realize FP,U
ComSel assuming a randomness beacon works as follows.

Given a committee size s, use randomness from the beacon to sample a uniformly random
sequence C from U with |C| = s. Note that since the beacons also provide the same randomness
to all parties, the parties agree on the selected committees. This also directly allows parties to
verify selected committees. It is easy to see that this realizes FP,U

ComSel.

Remark on our committee selection. Looking ahead, we always instantiate the committee
selection functionality FP,U

ComSel with the entire population U , i.e., every time FP,U
ComSel is executed

it returns a random party from the entire population U . Crucially, this means that it is possible
that the same party can be part of more than one shard at the same time. This greatly simplifies
our analysis and allows us to focus on the techniques to reduce the size of sharding committees.
We stress that for practical purposes a more complex committee selection should be used,
minimizing the number of shards a single party can be assigned to.

Alternative ways to realize committee selection. In the setting of Proof-of-Work based
blockchains, committee selection based on the Proof-of-Work mechanism itself (without ran-
domness beacons) has been constructed in [PS17]. In previous works on Proof-of-Stake based
blockchain consensus protocols [KRDO17, CD17, DGKR18, DPS19, GHM+17, CM19], a num-
ber of methods have been proposed for selecting committees in a publicly verifiable way using
randomness beacons. These methods can be classified in two main categories according to the
underlying randomness beacon: (1) uniformly random committee selection using randomness
beacons based on coin tossing with guaranteed output delivery [KRDO17, CD17]; and (2)
biased committee selection using randomness beacons based on verifiable random functions
[DGKR18, DPS19, GHM+17, CM19]. The simple protocol we have described above falls into
the first category. While the methods in category 2 allow an adversary to bias committee
selection in a way that is not possible in category 1, they have higher concrete efficiency. To keep
the presentation simple, our formalization and the derived bounds assume uniform committee
selection. However, our results can be extended to also work with biased committees.

14

4.2 Shard Consensus

In this section, we present a simple protocol using the committee selection functionality from
Section 4.1 to implement the shard functionality described in Section 3.2.

Our protocol is parameterized by the committee size s and the maximal number tL of corrupted
parties in the committee that can be tolerated without losing liveness. The parameter tL can be
any number in {0, . . . , ⌊ s−1

2 ⌋}. Based on the safety-liveness dichotomy, the protocol then sets
tS := s− 2tL − 1, where tS is the maximal number of corrupted committee members that can be
tolerated without breaking safety. For example, with s = 100, one can set tL = 33 to obtain
tS = 33, which are the classical bounds for partially synchronous Byzantine agreement. One can
also set tL = 0 to obtain tS = n− 1, i.e., if full honesty is required for liveness, all but one party
can be corrupted without breaking safety. Consequently, the protocol can only be instantiated
securely with committee sizes s that guarantee at most tS corruptions except with negligible
probability. See Section 4.3 for how to compute these minimal committee sizes.

The protocol idea is simple. Upon Initialization, the functionality FP,D
CT is invoked to obtain a

uniformly chosen committee of size s. The first member of the committee is designated a special
leader role we call “sequencer”. The sequencer periodically proposes a new block containing new
messages, which is then signed by the other parties. A block is considered final if at least s− tL
parties have signed it. This is the same basic idea underlying many BFT consensus algorithms
[CL99, YMR+19]. One difference is that our protocol also considers values of tL smaller than
the maximal ⌊ s−1

2 ⌋. Furthermore, typical BFT consensus protocols include (usually involved)
mechanisms for replacing a corrupted leader [CL99, YMR+19]. Since our sharding protocol
already has an external mechanism (using the control chain) to replace committees, we do not
need a leader replacement mechanism in our shard consensus, greatly simplifying it. This means
our shard will be live if at most tL parties are corrupted and the leader is honest. That is, our
protocol realizes Fs,L,∆

Shard for

L = {A ⊆ {1, . . . , s} | |A| ≤ tL ∧ 1 /∈ A}.

The “special features” of FShard are straightforward to achieve: Committee verification is
provided by the committee selection functionality. Finalization proofs are simply the signatures
from the committee members, which can be publicly verified. To guarantee censorship resilience,
every party sends a list of “old” messages that have not yet been included in the ledger together
with the signature on the proposed block. If the sequencer does not include these messages
in the next block, the party refuses to sign that block. Thus, if the sequencer tries to censor
a message the honest committee members want to have included, the shard will lose liveness,
and in the overall sharding protocol, the committee (including the malicious sequencer) will be
replaced.

Formal description of shard consensus. Let H : {0, 1}∗ → {0, 1}κ be a collision-resistant
hash function. For a vector m⃗, we recursively define H⃗ as

H⃗(m1) := H(m1),
H⃗(m1, . . . , mℓ+1) := H

(
H⃗(m1, . . . , mℓ) ||mℓ+1

)
.

In the protocol messages are added blockwise. A block B = (c, m⃗B, h, ℓ, σ⃗) consist of the
block counter c, the tuple of new messages m⃗B, hash h and length ℓ of the ledger after adding the
messages in B, and a set of signatures on the previous block. To sign a block B = (c, m⃗B, h, ℓ, σ⃗)
a party Pi actually signs the block header (c, H(m⃗B), h, ℓ, H(σ⃗)). Let m⃗ be the current ledger
state where B′ denotes the latest block (if it exists). A block B = (c, m⃗B, h, ℓ, σ⃗) is a valid
extension if

15

• ℓ = |(m⃗||m⃗B)| and h = H⃗(m⃗||m⃗B),

• c = 1 or σ⃗ is a set of valid signatures on the previous block from at least s− tL different
parties in C.

The protocol works as follows:

Protocol Πs,tLseq

Initialization
1: On input (InitShard, sid), forward (SelectCom, sid, s) to FP,U

ComSel
2: Let C be the committee returned from FP,U

ComSel
3: Send (sid, C) to all parties P ∈ P
4: Let the sequencer P ∗ be the first party in C
5: All parties Pi ∈ C initialize TOi to be the empty list.
6: Each party Pi ∈ C sets Mi,1 = ∅, ctrledger,i = 1, and ctrsign,i = 1.
7: The sequencer additionally sets ctrseq = 1.

Protocol for Sequencer P ∗

• For ctrseq = 1:
1: Collect all messages as sequence m⃗B ordered by arrival time.
2: Compute h = H⃗(m⃗B) and set ℓ = |m⃗B |.
3: Sign B = (ctrseq, m⃗B , h, ℓ, ⊥) (via the signature functionality)
4: Multicast signed B to parties in C and set ctrseq = ctrseq + 1.

• Once P ∗ has received s − tL valid signatures σ⃗ on the previous block B′ = (ctrseq − 1, m⃗′
B′ , h′, ℓ′, σ⃗′):

1: Collect all messages that have been sent with the s − tL signatures or have been otherwise received
by P ∗, but which have not been included in the ledger (i.e., are not in m⃗′ where H⃗(m⃗′) = h′).
Denote by m⃗B the sequence of those messages ordered by arrival time.

2: Compute h = H⃗(h′||m⃗B) and set ℓ = ℓ′ + |m⃗B |.
3: Sign B = (ctrseq, m⃗B , h, ℓ, σ⃗) (via the signature functionality).
4: Multicast signed B to parties in C and set ctrseq = ctrseq + 1.

Protocol for Pi ∈ C

• Once Pi has received signed B = (c, m⃗B , h, ℓ, σ⃗) from P ∗:
1: If the signature is invalid or B is invalid or ctrsign,i ̸= c abort.
2: If a signature by Pi is in σ⃗, but Mi,ctrsign,i is not in m⃗B abort.
3: Set Mi,ctrsign,i+1 to the set of messages Pi has received but have not been included in blocks (i.e.,

message not in m⃗ with H⃗(m⃗) = h).
4: Create signature σi on B (via the signature functionality).
5: Multicast signed (σi, Mi,ctrsign,i+1) to parties in C and set ctrsign,i = ctrsign,i + 1.

• Once Pi received s − tL valid signatures σ⃗ on block B = (c, m⃗B , h, ℓ, σ⃗):
1: If ctrledger,i < c store B in a buffer, repeat process once ctrledger,i = c.
2: If ctrledger,i > c abort.
3: Add all messages m⃗B to TOi, i.e., set TOi = TOi||m⃗B .
4: Locally store B with the signatures and set ctrledger,i = ctrledger,i + 1.

Interface for Pi ∈ C

• On input (Send, m), party Pi ∈ C multicasts the message m to all parties in C.
• On input Get, party Pi returns TOi.
• On input Close, party Pi stops participating in the protocol.
• On input GetFinProof, party Pi does the following:

1: If TOi is empty, set π = ⊥ and return (TOi, π).
2: Otherwise let B = (c, m⃗B , h, ℓ, σ⃗) be the block of the last messages added to TOi.
3: Set π = ((c, H(m⃗B), h, ℓ, H(σ⃗)), σ̂) where σ̂ is the set of collected signatures on B.
4: Return (TOi, π).

Public interface

16

• On input (VerifyCommittee, sid, C), forward the request to FP,U
ComSel and output the returned bit.

• On input (VerifyFinProof, m⃗, π), do the following:
1: If π = ⊥, return 1 if and only if m⃗ is empty.
2: Otherwise, let π = ((c, H(m⃗B), h, ℓ, H(σ⃗)), σ̂).
3: Check that σ̂ contains at least s − tL valid signatures on (c, H(m⃗B), h, ℓ, H(σ⃗)).
4: Check that H⃗(m⃗) = h and length(m⃗) = ℓ.
5: If all checks pass, return 1, otherwise return 0.

• On input (VerifyFinLength, ℓ̂, π), do the following:
1: If π = ⊥, return 1 if and only if ℓ̂ = 0.
2: Otherwise, let π = ((c, H(m⃗B), h, ℓ, H(σ⃗)), σ̂).
3: Check that σ̂ contains at least s − tL valid signatures on (c, H(m⃗B), h, ℓ, H(σ⃗)).
4: Check that ℓ̂ = ℓ.
5: If all checks pass, return 1, otherwise return 0.

Security analysis. We now prove that the protocol Πs,tLseq described above UC-realizes the
functionality FShard described in Section 3.2 for appropriate choices of s and tL.

Theorem 1. Let n = |P | be the total number of parties and let t be an upper bound on the
number of corrupted parties in P . Further let tS := s − 2tL − 1 and let FAILt,n

tS,s be the event
that a uniformly chosen committee of size s contains more than tS corrupt parties. Assume that
Pr
[
FAILt,n

t′,s

]
is negligible (cf. Section 4.3). Then, the protocol Πs,tLseq UC-realizes the functionality

Fs,L,∆
Shard for L = {A ⊆ {1, . . . , s} | |A| ≤ tL ∧ 1 /∈ A} and ∆ ≥ 5 ·∆net in the hybrid model with

access to hybrids for a reliable network with maximal delay ∆net, a signature functionality, and
a clock.

Proof. The simulator runs a simulation of the protocol Πs,tLseq for the honest parties. That is,
when FShard outputs (Send, Pi, m) for an honest Pi to the simulator, the simulator simulates
Pi distributing m to parties in C. If P ∗ is honest, the simulator further simulates the block
generation and sending of blocks from P ∗ as described in Πs,tLseq . Furthermore, signing of blocks
by honest parties is simulated as described in the protocol. Whenever an honest party Pi in
simulated protocol Πs,tLseq adds a message m to TOi, the simulator invokes the ideal functionality
with (Add, m, Pi). As soon as at least s − tL − |A| honest parties signed a block in the
simulation, where A is the set of corrupted parties, the simulator invokes (AddFinal, m) for
all messages m in that block. When FShard outputs (GetFinProof, Pi) for honest Pi to the
simulator, the simulator returns π as computed by Pi in protocol Πs,tLseq . When FShard outputs
(VerifyFinProof, m⃗, π) to the simulator, the simulator verifies the proof as described in Πs,tLseq .
When FShard outputs (VerifyFinLength, ℓ, π) to the simulator, the simulator verifies the
proof as described in Πs,tLseq .

As long as the simulator does not violate the constraints of persistence, liveness, censorship
resilience, or proof soundness described in FShard, the ideal world with the simulator and the
real world with the protocol execution are identical. Hence, it suffices to prove that the protocol
always respects these constraints.

Let A be the set of indices of corrupted parties in C. In the following, we assume |A| ≤ tS.
Note that by the assumption in the theorem statement, this is the case with overwhelming
probability.

Persistence: Let Pi be an honest party and assume TOi is at some point not a prefix of FTO.
Recall that messages are added to TOi only after Pi has collected at least s− tL signatures;
at least s− tL−|A| of these signatures must be from honest parties. Since after s− tL−|A|
honest signatures a message is also added to FTO in the simulation, then TOi cannot

17

contain messages that are not already in FTO. Therefore, TOi not being a prefix of FTO
implies that there is a position l0 in which TOi and FTO contain different messages. If
these messages come from blocks with the same counter, two different blocks with that
counter have been signed. Otherwise, there is a smaller counter for which blocks containing
a different number of messages have been signed. Let c0 be the smallest counter for which
two different blocks have been added to TOi and FTO. One of these blocks was signed by
at least s− tL parties (since it is in TOi), and the other one by at least s− tL − |A| honest
parties (because it is in FTO). Since |A| ≤ tS = s− 2tL − 1, there are at least

s− tL − |A| ≥ s− tL − (s− 2tL − 1) = tL + 1

honest parties who signed the block in FTO. Since (s− tL) + (tL + 1) > n, at least one of
these honest parties also signed the block in TOi. This is a contradiction because honest
parties never sign two blocks with the same counter.

Liveness: Assume P ∗ is honest and at least s− tL parties are honest. After an honest party
input (Send, m), the protocol sends m to P ∗, who receives it at most ∆net time later. As
it takes at most 2∆net to send out a block and receive signatures, P ∗ produces a new
block containing m at most 2∆net later and sends it to all honest parties. These honest
parties receive that message at most ∆net time later, sign it, and send their signatures to
all other honest parties. This again takes at most ∆net time. Since at least s− tL parties
are honest, all honest parties receive at least that many signatures on that block and thus
add it to their TOi. This in total takes at most 5∆net time.

Censorship Resilience: After an honest party input (Send, m) at time t, the message m
arrives at all honest parties in C within ∆net. If an honest party Pi adds a block to TOi

after t + 2∆net, the honest parties must have signed the block after time t + ∆net. If m
was not added until now, all honest parties will request that the sequencer adds m to the
next block. Since there are at most tS = s − 2tL − 1 corrupted parties and s − tL > tS
signatures are required to finalize a block, no block without m can be finalized anymore.
Hence, TOi must contain m after honest Pi adds the second block. The property follows
for ∆ ≥ 2∆net.

Proof soundness: First, consider the case (VerifyFinProof, m⃗, π). Toward contradiction,
assume that (VerifyFinProof, m⃗, π) returns 1, but m⃗ is not a prefix of FTO. In that
case, π contains a block header B and at least s− tL valid signatures on B. This means
that at least s− tL − |A| honest parties have signed B. Furthermore, B contains a hash h
such that h = H⃗(m⃗). By construction of the protocol, all these honest parties must have
previously signed blocks with smaller counters containing messages with consistent hashes.
Since messages are added to FTO once s− tL− |A| honest signatures exist, m⃗ can only not
be a prefix of FTO if different messages yield the same hashes. A standard reduction to the
collision-resistant property of the hash function H finally shows that any PPT adversary
that violates the soundness of the finality proof can efficiently find collisions on H.
Next, consider (VerifyFinLength, ℓ, π). Towards a contradiction, we assume that
(VerifyFinLength, ℓ, π) returns 1, but |FTO| < ℓ. In that case, π contains a block
header B and at least s− tL valid signatures on B. This means that at least s− tL − |A|
honest parties have signed B. Furthermore, B contains a hash h defining a messages vector
m⃗ and length ℓ. By construction of the protocol, all these honest parties have checked
that |m⃗| = ℓ. By the above argument m⃗ must also be a prefix of FTO, which contradicts
|FTO| < ℓ.

18

Leader replacement within the shard consensus. We have described a particularly simple
protocol without leader replacement since our sharding protocol detects corrupted leaders and
consequently resamples the committee. The advantage of this is that the shard consensus is
extremely simple and efficient with honest leaders. The downside is that in case of a corrupted
leader, the whole committee gets resampled, which may be less efficient than an optimized leader-
replacement mechanism of state-of-the-art BFT consensus protocols such as HotStuff [YMR+19].

Alternatively, one can also use a BFT consensus with builtin leader replacement in the shards.
In that case, one can realize Fs,L,∆

Shard for

L = {A ⊆ {1, . . . , s} | |A| ≤ tL}.

That is, the additional restriction of an honest leader is not needed and fewer committee
resamplings in the shard protocol may suffice to reach liveness.

These protocols are typically only specified for the special case tL = tS = ⌊ s−1
3 ⌋. It

is straightforward to generalize, e.g., HotStuff [YMR+19] to also work with smaller tL and
tS = s− 2tL − 1 by only accepting blocks that have been signed by at least s− tL committee
members. The “special features” of FShard can be achieved similarly as in our protocol described
above and liveness and safety follow can be proven analogously.

4.3 Determining the Committee Size

Our sharding protocol needs to find the smallest committee size smin that guarantees that
the ratio of corrupted parties in the selected committee is below some given threshold with
overwhelming probability. Consider a scenario with a total population of n parties P such that
at most t parties are corrupt, and a committee C with size s sampled uniformly at random
from P. We denote by FAILt,n

t′,s the event where the committee C contains more than t′ corrupt
parties. The probability of the event FAILt,n

t′,s happening can be expressed as the cumulative
hypergeometric probability mass function:

Pr
[
FAILt,n

t′,s

]
=

i=s∑
i=t′+1

(t
i

)(n−t
s−i

)(n
s

) .

Given a maximal admissible corruption ratio t′

s of the sampled committee C of size s one
can find the smallest size smin for which Pr

[
FAILt,n

t′,s

]
≤ 2−κ, for some security parameter κ. In

Appendix C, we derive an analytical bound on the required committee size. In Appendix D, we
provide Python code that computes the minimal committee size precisely.

Figure 1 shows the relation between the minimum committee sizes and the level of required
guaranteed honesty in the committees for different settings. As the graphs show, the required
committee size grows exponentially with the required honesty level. Hence, requiring a smaller
guaranteed honesty level than the usual 1/3 significantly improves performance.

Recall that our shard consensus from Section 4.2 can be instantiated with different liveness
and safety thresholds L and S, respectively, as long as S + 2L < 100%. Since we want our shards
to always be safe, we need to sample committees such that the corruption ratio in the committee
is at most S with probability at least 1− 2−κ for security parameter κ. Table 1 shows minimal
committee sizes for different safety thresholds in different settings.

Note that if the actual corruption ratio in the total population is close to the liveness threshold,
there is a good probability for the shard being live. That means if we assume an overall corruption
ratio of at most 30%, we never need to use liveness thresholds above 30%, corresponding to
safety thresholds of 39%. This already gives a significant performance improvement over prior
work, which needed a threshold of 1/3. In the optimistic case, where the actual corruption ratio
is below the worst case assumption of 30%, we can run with even smaller committees.

19

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70%101

102

103

104

Guaranteed honesty

C
om

m
itt

ee
siz

e

t = 30%, analytic bound
t = 30%, n = 10 000
t = 30%, n = 2000
t = 20%, analytic bound
t = 20%, n = 10 000
t = 20%, n = 2000

Figure 1: Required committee sizes (on a log scale) to guarantee different honesty levels in the
committee with probability 1− 2−60, assuming a total population of n ∈ {2000, 10 000} parties
with t ∈ {20%, 30%} corruption ratio.

Table 1: Minimum committee sizes for different liveness and safety thresholds such that S +2L <
100% with total populations n = 2000 and n = 10 000 with 20% and 30% corruption. Minima are
computed to guarantee safety except with probability 2−60. Values for n =∞ are the analytical
bounds from Lemma 1.

Liveness threshold: 0% 5% 10% 15% 20% 25% 30% 33.3333%
Safety threshold: 99% 89% 79% 69% 59% 49% 39% 33.3333%

n t Minimal committee size
∞ 30% 37 55 82 130 232 528 2264 16 037

10 000 30% 35 51 75 116 207 462 1713 5886
2000 30% 34 50 71 112 190 382 990 1716
∞ 20% 28 38 52 75 115 199 438 854

10 000 20% 26 34 47 67 104 178 385 717
2000 20% 26 34 46 66 99 164 326 540

our work state of the art

20

5 Constructing a Sharded Ledger

5.1 Overview

To realize F∆′,ν
BD-STL, we use a timed ledger F∆

BD-TL as a control chain. In order to keep the shards
live and monitor their liveness, the parties in P will follow instructions based on messages posted
on F∆

BD-TL. For the sake of simplicity, we model F∆
BD-TL as a local functionality. However, our

proof does not crucially rely on this modeling choice as it is not necessary for the simulator
to program F∆

BD-TL or interfere in its behavior in any way. Moreover, we use a repository
functionality FRepo to store finalized parts of a shard and previous shards’ states, which parties
can later obtain these data when reading from a shard or joining a shard committee. This use of
FRepo captures the fact that it is necessary for at least one party to always store the state of
each shard. See Section 5.2 for more details on FRepo.

In order to execute shards, we use a “gearbox” of shard functionalities Fs1,L,∆
Shard , . . . ,Fsℓ,L,∆

Shard
with increasing committee sizes s1 ≤ s2 ≤ · · · ≤ sℓ to handle shard consensus. In principle, each
shard could use its own gearbox, with a different progression of shard functionalities for each
shard (e.g., mixing different shard consensus protocols). Moreover, each shard could operate with
a different liveness structure L and a different delay ∆. However, for the sake of presentation
nothing is lost in using a gearbox with the same progression of shard functionalities with fixed
liveness structures and delay parameters for all shards. There is a statistical security parameter
κ, and a liveness guarantee γ > 0, e.g., γ = 1

2 . The gearbox has the following properties.

Always safe: For any committee size si, Fsi,L,∆
Shard is safe except with probability 2−κ.

Eventually live: Fsℓ,L,∆
Shard is live with probability at least γ.

We achieve safety and liveness at the same time by first running Fs1,L,∆
Shard for a random

committee. If it loses liveness we switch gears to Fs2,L,∆
Shard and so on. We start with Fs1,L,∆

Shard with
very poor liveness but a very small committee and consequently high efficiency. On the other
hand, Fsℓ,L,∆

Shard has strong liveness at the cost of efficiency. The other Fsi,L,∆
Shard act as intermediary

points on the liveness versus efficiency scale, so some of them might be realized by the same
consensus mechanism with the same parameters. For example, it may make sense to sample
committees of the same size several times to try to hit one with high honesty and hence liveness.
However, as long as we have the liveness and safety properties described above, we can adopt the
strategy of switching to the next functionality in our gear box every time we lose liveness. When
we hit Fsℓ,L,∆

Shard , we simply switch to a new instance of Fsℓ,L,∆
Shard with a fresh committee, which

guarantees that we will eventually get liveness since Fsℓ,L,∆
Shard is live with probability at least γ.

Optimistic committee sizes. As described above, the gearbox increases committee sizes
until the shard is live. We will now discuss how large committees need to be to get liveness. For
concreteness, we again consider a total population of 10K nodes with at most 30% corruption,
as in Section 4.1. Even though we consider a worst-case corruption of up to 30% in the total
population, in an optimistic scenario the system can have a lot less corruption. Note that the
corruption ratio in the sampled shard is close to the overall corruption ratio with high probability.
Thus, when the liveness threshold of the current gear is equal to the actual total corruption
threshold, there is a good probability that the shard is live. Since the gearbox ensures that
shards are always safe, one can think of shifting up as increasing the liveness threshold L and
adjusting the safety threshold S such that S + 2L < 100%. As soon as the liveness threshold
matches the unknown actual corruption ratio, the shard is live with good probability and the
gearbox stops switching up. This means the protocol automatically finds the optimal shard size

21

without knowing the actual corruption ratio. Note that even in the worst case with 30% overall
corruption, we only need L = 30% and S = 39%. Hence, we can sample a committee with a
guaranteed corruption of at most 39%, instead of the 33% required by solutions not leveraging
the safety-liveness dichotomy.

The numbers in Table 1 can thus be used to determine which committee sizes are required
to achieve liveness with good probability for a given actual corruption ratio. For example, in
the worst case with 30% overall corruption, liveness can be expected for liveness threshold 30%,
corresponding to 1713 committee members. With 20% actual corruption, we only need committees
of size 207.

5.2 Data Repository

A sharded blockchain ledger achieves its efficiency by avoiding requiring that all parties store the
full state of the ledger, only requiring each party to store the state of shard(s) it is responsible
for executing. However, parties must still be able to retrieve contents of shards they are not
executing, which is necessary for both reading the ledger and operating it (i.e., a party newly
assigned to a shard committee must be able to retrieve that shard’s past state). In practice, this
can be achieved by contacting “full nodes” who store the full state of the ledger, or by using a
dedicated data storage provider. We model this mechanism via an abstract notion of a public
data repository called FRepo. Any party can store an entry D under its hash H(D) and anyone
can retrieve a stored D using H(D). In real life some access control is needed to avoid denial of
service attacks by flooding the storage. Moreover, an adversary might delay the storage and
retrieval of entries. However, this is inconsequential to the main ideas that we want to present,
so we do not model these artifacts into FRepo for the sake of a clear presentation.

Functionality FRepo

Initialization
1: The list L of stored entries D is empty.

Interface for party Pi ∈ P

Input: (Send, D)
1: Append (H(D), D) to L, where H() is a hash function.
2: Output H(D).

Input: (Get, h).
3: if ∃D (h, D) ∈ L then
4: Output D for the first such entry.
5: else
6: Output ⊥.

5.3 The Sharded Ledger Protocol ΠBD-STL

In our protocol, parties in P continuously perform a number of maintenance actions in order to
detect the potential loss of liveness in shards and ensure that the next shard functionalities in
the gear boxes take over the operation of shards that lose liveness. These actions can be divided
as follows: (1) Shard Management, which are actions performed by all parties in P in order to
maintain all shards live; (2) Shard Operation, which are actions performed by the parties in the
committee responsible for operating a given shard. Members of a shard committee only execute
shard management commands related to their shard when these commands have been issued by
a majority of parties in P and appear in a finalized state of the control chain. Moreover, when

22

receiving inputs, the parties execute instructions that realize the interfaces in F∆′,ν
BD-STL. Notice

that F∆′,ν
BD-STL operates with a fixed number of shards and that start and stop operations are

only performed in order to restart shards that have lost liveness but not to add new shards or
remove existing shards. While this simplification is done for the sake of a clear exposition, we
remark that it is straightforward to generalize the protocol to allow for adding and removing
shards arbitrarily. Protocol ΠBD-STL works as follows.

Protocol ΠBD-STL

Parties in P interact with each other and with functionalities F∆
BD-TL, FRepo and the gearbox of functionalities

Fs1,L,∆
Shard , . . . , Fsℓ,L,∆

Shard . All parties in P execute the Shard Management steps continuously and execute Shard
Operation steps for a given shard when elected as a shard committee member. Each shard is identified
by sid and has a gear parameter h, indicating the current committee size Ch and functionality Fsh,L,∆

Shard
responsible for that shard, start time t, indicating when the shard execution with Fsh,L,∆

Shard started in terms
of F∆

BD-TL’s ledger time, and finalization timeout tTimeout.
Shard Management. When execution starts, parties Pi ∈ P execute the Init steps and then continuously
perform FinalizeCheck.

Init: Execute Start steps for all shards with parameters h = 1, t = 1, tTimeout = ∆init for all sid, where
∆init ∈ Z, ∆init > 0.

FinalizeCheck: Parties Pi ∈ P keep counters Lsid
last initially set to 0 for each shard identified by sid.

Parties Pi ∈ P continuously send (Get) to F∆
BD-TL, receiving TOi. For every shard identified by sid,

all Pi ∈ P perform the following steps to check that a shard has liveness:
1: For every message ((Finalize, sid, H, π, L), t) ∈ TOi check that that t < csid

T imeout and L > Lsid
last,

send (VerifyFinLength, L, π) to Fsh,L,∆
Shard , obtaining b, and check b = 1.

2: Let ((Finalize, sid, H, π, Lmax), t) ∈ TOi be the message with the maximum L for which the
checks of Step 1 succeeded. Set csid

T imeout = t + tTimeout and set Llast = Lmax.
3: If the checks did not succeed for any message ((Finalize, sid, H, π, L), t) ∈ TOi (i.e., the shard

has timed out), execute the Stop procedure for shard sid and, after the stop command from a
majority of parties in P appears in a future TOj finalized by F∆

BD-TL, execute the Start procedure
for shard sid with incremented parameters h + +, t′, tTimeout + +, where t′ is a future ledger time
w.r.t. F∆

BD-TL. If h > ℓ, set h = ℓ and use a new instance of Fsℓ,L,∆
Shard .

Start: All parties Pi ∈ P proceed as follows to start a shard identified by sid with parameters h, t, tTimeout:
1: Send (Send, (Start, sid, h, t, tTimeout)) to F∆

BD-TL, i.e., a command to start shard sid with Fsh,L,∆
Shard

at ledger time t w.r.t. F∆
BD-TL with finalization timeout tTimeout.

2: Send (InitShard, sid) to Fsh,L,∆
Shard .

3: Set a finalization timeout counter to csid
T imeout = t + tTimeout.

Stop: All parties Pi ∈ P send (Send, (Stop, sid)) to F∆
BD-TL, instructing parties to stop executing shard

sid.

Shard Operation. For every shard identified by sid, parties Pi ∈ P continuously send (Get) to F∆
BD-TL,

receiving TOi. A command for starting or stopping a shard is only considered valid if it has been posted to
F∆

BD-TL by a majority of the parties in P. Parties Pi ∈ P execute the following Shard Operation instructions
according to the messages in TOi and the ledger time:
Start Shard: When there is a command ((Start, sid, h, t, tTimeout), t′) ∈ TOi posted by a majority of the

parties in P, all Pi ∈ P wait for (sid, Csid) from Fsh,L,∆
Shard . If Pi ∈ Csid, it sets csid

T imeout = t + tTimeout
and responds to inputs (Send, sid, m) and (Get, sid).

Finalize: A system parameter ∆e is estimated in order to ensure that finalization messages are finalized
by F∆

BD-TL before the timeout. Every time a shard is restarted, ∆e is incremented by all parties. At
ledger time csid

T imeout − ∆e, parties Pi ∈ Csid for shard sid proceed as follows:
1: Send Get to Fsh,L,∆

Shard for shard sid, obtaining TOsid
i .

2: Send GetFinProof to Fsh,L,∆
Shard for shard sid, obtaining the corresponding finalization proof π.

3: Send (Send, TOi) to FRepo, receiving H(TOi). Notice that if a prefix of TOi has already been
stored in FRepo, only the new messages in TOi w.r.t. this prefix need to be sent to FRepo.

4: Send (Send, (Finalize, sid, H(TOi), π, |TOi|)) to F∆
BD-TL.

23

Stop Shard: When parties Pi ∈ Csid see a command ((Stop, sid), t) ∈ TOi from a majority of the parties
in P, they send Close to Fsh,L,∆

Shard and stop executing further shard operation instructions for shard
sid.

Interfaces from F∆′,ν
BD-STL for Parties Pi ∈ P.

On input (Send, sid, m): Pi proceeds as follows:
1: Send Get to F∆

BD-TL, receiving TOi.
2: Find the latest message ((Start, sid, h, t, tTimeout), t1) ∈ TOi posted by a majority of parties in

P. If there exists a message ((Stop, sid), t2) for t2 > t1 posted by a majority of parties in P,
repeat this step until a new message ((Start, sid, cid, Ch, t, tTimeout), t3) ∈ TOi for t3 > t2 posted
by a majority of parties in P appears.

3: If Pi ∈ Csid, when receiving m (as input or from another party), Pi sends (Send, m) to Fsh,L,∆
Shard

for shard sid. Otherwise, Send m to all parties in Csid (obtained from Fsh,L,∆
Shard for shard sid).

4: Continuously send (Get) to F∆
BD-TL, receiving TOi and checking that there is a mes-

sage ((Finalize, sid, H, π, L), t) ∈ TOi such that Fsh,L,∆
Shard returns 1 when queried with

(VerifyFinProof, m⃗, π), where m⃗ is in D obtained by sending (Get, H) to FRepo. If a message
((Stop, sid), t) appears before these checks succeed, Pi goes to Step 1 and waits for a new message
((Start, sid, h′, t′, t′

Timeout), t) ∈ TOi posted by a majority of parties in P.

On input (Get, sid): If Pi ∈ Csid (obtained from Fsh,L,∆
Shard for shard sid), Pi sends (Get) to F∆

BD-TL,
receiving TOi. Otherwise, Pi ignores the next steps. Pi determines TOsid

i by executing the following
instructions starting from the largest value of Lj for each ((Finalize, sid, Hj , πj , Lj), tj) ∈ TOi:
1: Send (VerifyFinLength, Lj , πJ) to Fsh,L,∆

Shard (where h is determined by the last valid message
((Start, sid, h, t, tTimeout), t′) ∈ TOi), obtaining b.

2: Send (Get, Hj) to FRepo to get Dj , and send (VerifyFinProof, Dj , πj) to Fsh,L,∆
Shard to get b′.

3: If b = 0 or b′ = 0, ignore the next step and proceed to the next message
((Finalize, sid, Hj+1, πj+1, Lj+1), tj+1) ∈ TOi with Lj+1 < Lj . Otherwise, Let D′ be the
new messages in Dj that are not contained in Dj−1. Append (D′, tj) to TOsid

i .
Notice that if a previous version of TOsid

i has already been computed, Pi only needs to perform these
steps for new messages ((Finalize, sid, Hj , πj , Lj), tj) ∈ TOi such that tj > t̂, where t̂ is the highest
ledger time registered in the previous version of TOsid

i . Finally, Pi outputs TOsid
i .

Theorem 2. Protocol ΠBD-STL described above UC-realizes functionality F∆′,ν
BD-STL in the (F∆

BD-TL,

FRepo,Fs1,L,∆
Shard , . . . ,Fsℓ,L,∆

Shard)-hybrid model in the partially synchronous model (i.e., where ∆, ∆′

are unknown but finite) with security against active static adversaries.

Proof. In order to prove this theorem, we construct a simulator S such that no PPT environment
Z can distinguish an ideal execution with S and F∆′,ν

BD-STL from a real execution of ΠBD-STL with
any adversary A. S executes ΠBD-STL with an internal copy of the adversary A, forwarding all
inputs from Z to A. S simulates functionalities F∆

BD-TL,FRepo,Fs1,L,∆
Shard , . . . ,Fsℓ,L,∆

Shard towards A
by following the exact instructions of these functionalities unless explicitly stated otherwise.
S executes the Shard Management and Shard Operations steps of ΠBD-STL with A exactly

as an honest party would. When simulating F∆
BD-TL and the functionality Fsh,L,∆

Shard corresponding
to each shard, S simulates adversarial commands (Add, ·) according to A’s behavior. This
ensures that shards are (re-)started and finalized w.r.t. to F∆

BD-TL as in a real world execution
of ΠBD-STL.

Upon receiving a message (Pi, sid, m) from F∆′,ν
BD-STL indicating that an honest party has sent

a message m to shard sid, S simulates the corresponding honest party sending m to shard sid
by following the steps of an honest party in ΠBD-STL. When m appears in the simulated FRepo
along with a valid finalization message in the simulated F∆

BD-TL (i.e., with a valid finalization
proof w.r.t. to the simulated Fsh,L,∆

Shard corresponding to shard sid), S sends (Add, sid, m, t) to
F∆′,ν

BD-STL, where t is the time when the finalization proof corresponding to m appeared in the
simulated F∆

BD-TL.

24

As the execution with A progresses, S checks whether new messages are finalized in the
simulated F∆

BD-TL. If these messages were not sent by S on behalf of a simulated honest
party, S adds them to F∆′,ν

BD-STL: When m appears in the simulated FRepo along with a valid
finalization message in the simulated F∆

BD-TL (i.e., with a valid finalization proof w.r.t. to the
simulatedFsh,L,∆

Shard corresponding to shard sid) such that m was not input by S (in which case S
took care of this message by following the previous steps), S sends (Add, sid, m, t) to F∆′

BD-STL,
where t is the time when the finalization proof corresponding to m appeared in the simulated
F∆

BD-TL.
Notice that the execution with S is exactly the same as in the real execution. Following

these steps, S ensures that messages finalized for each shard in the simulated execution of
ΠBD-STL match the messages in F∆′,ν

BD-STL. However, messages are only added to F∆′,ν
BD-STL after

they are finalized in the simulated execution of ΠBD-STL. Hence, the delay ∆′ must be such that
finalizing a message m sent to a shard sid of F∆′,ν

BD-STL in the simulated execution of ΠBD-STL
takes at most ∆′ clock ticks. We remark that ∆′ is guaranteed to be finite since it is equal to
the delay ∆ from the simulated F∆

BD-TL plus the worst case delay to find a live instance Fs,L,∆
Shard

in the gearbox Fs1,L,∆
Shard , . . . ,Fsℓ,L,∆

Shard , which is guaranteed to be finite as per the analysis in the
beginning of this section. Hence, no PPT environment Z can distinguish an ideal execution with
S and F∆′,ν

BD-STL from a real execution of ΠBD-STL with any adversary A.

Remark 1. In the description above, a heartbeat is the hash of TOi. This is due to the abstraction
boundary of TOi, which has no concept of blocks. In practice, if shards are implemented using
the protocol from Section 4.2, or, e.g., HotStuff [YMR+19], it is sufficient to hash only the
last block, since it implicitly finalizes all previous blocks. It furthermore makes sense to have
structured heartbeats that allow parties to produce short proofs about the current state of the
shard. This can be used, e.g., for intershard transactions and is further discussed in Section 5.5.

Furthermore, if the shards are implemented using a leader-based consensus, it is natural to
let only the leader post heartbeats on the control chain.

5.4 Extensions

While Protocol ΠBD-STL realizes a sharded ledger FBD-STL, it can have its efficiency and security
improved by extending the way it switches gears over functionalities Fs1,L,∆

Shard , . . . ,Fsℓ,L,∆
Shard for

each shard. Here we describe some of these extensions informally.

5.4.1 Damping

So far we only showed how to move up the gearbox of consensus algorithms. That is enough to
prove eventual liveness. In practice one also wants to have a way to regain efficiency if the loss
of liveness was due to some temporary event such as a burst error in the network. This can be
achieved using some heuristic. The timestamps on the control chain can be used to determine
the uptime of the shards, and if the uptime exceeds some heuristic threshold, one tries to move
down the gearbox again. This will tend to find the optimal position in the gearbox producing
only some acceptable downtime. Since safety is never violated, any heuristic can be used that
works well in practice.

5.4.2 Adaptive and Mobile Corruptions

Our analysis so far has assumed static corruptions. An inherent problem with committee-based
protocols is that an adaptive adversary can corrupt all parties in a committee to break security.
A straightforward way to tolerate slowly adaptive corruptions (as recently formalized as δ-delayed

25

corruptions in [MNT22]), one can resample committees repeatedly. This can even be combined
with the damping described above, i.e., one can close and reopen shards after some timeouts and
possibly change gears when resampling. This is secure as long as the time it takes to corrupt a
party is longer than the resampling timeout.

5.5 Inter-Shard Transactions and Communication

There are different approaches for inter-shard communication in the literature (for an overview of
different solutions, see [ZABZ+21, AKW19, WSNH19]). Describing such a solution in full detail
in our model would require us to include a notion of transactions and accounts (or UTXO [Nak09]),
which we have not included in our formalism for clarity. A formal treatment of inter-shard
communication is thus out of the scope of this paper, where we want to focus on how to minimize
committee sizes using the safety-liveness dichotomy. Below, we sketch how existing solutions
can be adapted to our setting.

Special care needs to be taken in our setting because it can happen that shards are not live
and consequently get restarted with a new committee. Thus, one cannot immediately trust
transactions appearing on one shard for intershard transactions. One can, however, leverage
the heartbeats posted on the control chain, which is always safe and live, to ensure transaction
finality.

Adapting Atomix. We give a high-level overview of how Atomix7, which is the intershard
transaction protocol of OmniLedger [KJG+18], can be adapted to our setting. When a user
wants to initiate a transaction from shard A to shard B using Atomix, the user’s client first
creates an “export” transaction on shard A, which effectively locks the funds of the user. Once
the transaction is included in shard A, the user’s client posts a proof that the transaction was
accepted by shard A on shard B, which makes the funds available on shard B.

If such a protocol is naively used with our sharding approach, it may happen that a lock
transaction appears on shard A and the funds are unlocked on shard B, but shard A crashes
before a heartbeat can finalize the lock transaction. When shard A gets restarted with a fresh
committee starting from the last heartbeat, the new committee may include other transactions
on shard A first, invalidating the lock transaction and allowing to double spend.

To avoid this issue, the acceptance proof must not only prove that a transaction has happened
on shard A, but also that it was finalized on the control chain. Recall that in our sharding
protocol, all shards regularly post heartbeats on the control chain, where each heartbeat contains
a hash of the latest block in the shard. For intershard transactions, we additionally assume
that block headers contain the root of a Merkle tree containing (among other data) all the
transactions in a block produced by the shard as well as hashes of the blockheader of the parent
block. An acceptance proof now consists of a Merkle proof for the transaction in the block plus
additional block-header hashes if the transaction was in a block between two heartbeats. These
proofs can be further optimized by arranging the hashes of block headers in a tree.

Note that with this approach, even though all intershard messages are finalized through the
control chain, only a single heartbeat is needed to finalize all messages of a given shard since the
last heartbeat, independently of how many intershard transactions were initiated on that shard.
Hence, the throughput of the shards is not bottlenecked by the control chain.

Shard-committee driven intershard transactions. Atomix is a client-driven approach
in which the client directly sends the messages to the receiving shard. This puts an additional

7Note that the Atomix protocol allowed for a subtle replay attack, which was fixed in a subsequent
work [SBAD20]. This issue is, however, not relevant for the high-level overview we give here.

26

responsibility on the clients, which may be undesirable in practice. An alternative solution
is to let the (leader of the) shard committee who prepares the heartbeats directly post the
acceptance proofs of outgoing intershard transactions to all receiving shards. An inter-committee
routing protocol such as the one from RapidChain [ZMR18] should then be used to minimize
communication overheard. Nevertheless, this may put an undesirable overhead on the committee
leaders.

Another possibility is to give rewards to the users including the acceptance proofs to the
receiving shards. In that case, the user’s clients and the committee leaders can still include those
proofs, but in case they fail to do so, there is an incentive for other parties to add the missing
proofs. Exploring these different options in detail is beyond the scope of this paper.

6 Instantiations
Our treatment so far has been mostly at an abstract level, where we construct a sharded ledger
from several building blocks that can be instantiated with different protocols. This makes our
treatment more general and allows for modularity. In this section, we provide some concrete
instantiations with data points to evaluate the efficiency of the approach. Note that these
are simply examples of how one could instantiate the building blocks, and other options with
potentially better performance can also be used.

6.1 Instantiation of Timed Ledger

We suggest to instantiate the timed ledger F∆
BD-TL = F∆,1

BD-STL using HotStuff [YMR+19] (for
an alternative instantiation using a Nakamoto-style blockchain, see Appendix B). This directly
provides a ledger via a sequence of blocks containing a list of messages. The blocks are proposed
by a leader and validated by other parties signing them. HotStuff includes a mechanism to
replace the leader in case the leader fails or is corrupted. To ensure a dishonest leader cannot
censor messages, leaders should also be rotated regularly. As discussed in [YMR+19], this comes
without a significant overhead.

The only feature required by F∆
BD-TL that a basic HotStuff implementation does not provide

are the timestamps. These can be added easily assuming (weakly) synchronized clocks: The
leader adds the current time as a timestamp to the proposed block, and validators only accept a
block if its timestamp is larger than that of the previous block and the timestamp is not in the
future. Given that basic HotStuff has bounded latency, it is easy to see that this provides the
“bounded timestamps” property.

While all parties in the system must be able to read data from the control chain and post
messages there, not all of them are required to act as validators in the consensus. We need
that the control chain is always safe and live, i.e., less than 1/3 corruption can be tolerated on
the control chain. As one can see from the data in Table 1, sampling a subset of size 16 037
is sufficient in the worst case to guarantee less than 1/3 corruption in the subset. Hence, the
control chain consensus never needs to be run with more than 16 037 validators.

6.2 Instantiation of Shard Consensus and GearBox

As discussed in Section 4.2, one can use our simple consensus protocol without leader replacement,
or alternatively a protocol such as HotStuff [YMR+19] that includes leader rotation for the
shard consensus. If a protocol without leader replacement is used, this will come at the cost of
resampling the whole committee in case of a corrupted leader, but it will potentially provide
better performance with an honest leader due to the simplicity of the protocol. In our analysis

27

below, we will use performance data from HotStuff, but count the expected resamplings assuming
no leader replacement happens in the protocol, providing a worst-case analysis.

For our sharding protocol, we need a “gearbox” of shard functionalities Fs1,L,∆
Shard , . . . ,Fsℓ,L,∆

Shard
with increasing committee sizes s1 ≤ s2 ≤ · · · ≤ sℓ (see Section 5). A decent choice is to have
four gears with liveness thresholds 10%, 20%, 25%, and 30%. As one can see in Table 1, this
requires committee sizes of 82, 232, 528, and 2264, respectively, in the worst case with up to
30% overall corruption and no upper limit on the total number of parties.

6.3 Instantiation of Randomness Beacon

It is observed in [AKW19] that all currently known sharding protocols require a source of
randomness. We can leverage the modular nature of our approach and use an external unbiasable
randomness beacon such as DRAND (https://drand.love) in a practical implementation. We
could also use the (publicly verifiable) randomness intrinsically generated in an external proof-of-
stake (PoS) based blockchain such as Algorand [CM19], Ouroboros [KRDO17] and Ouroboros
Praos [DGKR18]. These protocols use an internal randomness beacon in order to generate
seeds for randomly selecting parties to generate blocks. Notice that these randomness beacon
protocols have been proven practical as they are implemented as part of, e.g., the Algorand
and Cardano cryptocurrency platforms, which respectively run the Algorand and Ouroboros
Praos protocols. In case a PoS blockchain is used as the control chain, these same seeds can be
re-used in our sharding protocol to sample random committees at no extra cost. Given a seed
seed and a random oracle H : {0, 1}⋆ → {1, . . . , n} where n is the total number of parties, this
can be easily done for a shard sid by computing ij ← H(seed|j|sid) for j = 1, . . . , s, where s
is the number of parties in the shard committee, finally assigning each party Pij to the shard
committee executing shard sid.

In order to obtain a self-contained solution departing from a non-PoS based control chain
(such as HotStuff), randomness beacons traditionally used by PoS blockchains can be executed
on top of our control chain regardless of how it is instantiated, since these protocols only rely
on the chain for writing information in a black-box manner. Concretely, one can instantiate a
UC-secure unbiasable randomness beacon based on Publicly Verifiable Secret Sharing (PVSS)
using the approach of ALBATROSS, which would require a honest majority committee of size
k, where each party performs 1.5k2 − 2k modular exponentiations and a total |G|(2.5k2 − 2k)
bits are written to the chain, where |G| is the size of the representation of a group where DDH
is hard. Using our estimates from Table 1, in case the corruption ratio is t = 30%, we have
concretely k = 528 and consequently 417120 modular exponentiations per party and about 21.2
megabytes required to generate one unbiasable output. Notice that the initial committee for
running such a solution is given in the genesis block, while subsequent committees are selected
using the outputs of the beacon itself.

A more efficient solution can be obtained by running a Verifiable Random Function (VRF)
based randomness beacon on top of the control chain. A UC-secure instantiation of such a beacon
has been shown in [DGKR18]. Using again a honest majority committee of size k, each committee
member only needs to compute around 4k exponentiations and the total storage on chain is only
4k|G| where |G| is the size of a group element where CDH is hard. Concretely this corresponds
to 2112 modular exponentiations per party and 0.065 megabytes of total communication. Once
again, the initial committee for running such a solution is given in the genesis block, while
subsequent committees are selected using the outputs of the beacon itself. However, such beacons
come with a caveat that they produce bounded bias randomness. Fortunately, the only use we
make of this randomness is in selecting committees with a certain upper bound on the corruption
ratio. It is observed in [DGKR18] that this is possible if the randomness used for committee

28

https://drand.love

selection is has a bounded bias by selecting slightly larger committees. In the remainder of
our analysis we only address the case of committee sizes when selection is done with unbiased
randomness for the sake of simplicity and due to the fact that this is an orthogonal problem
to our core results. However, an analysis similar to that of [DGKR18] could be done in order
to derive concrete committee sizes given that the selection is done using bounded biased seeds,
although this is out of the scope of our current work.

6.4 Efficiency Analysis of Overall Protocol

Number of sampled committees to obtain liveness. Using the numbers from Section 6.2,
we have a GearBox with 4 gears, having liveness thresholds between 10% and 30%. If the actual
corruption in the overall system is below 10%, the first sampled committee will already have a
corruption ratio below the threshold with high probability. That is because the Chernoff bound
implies that these corruption ratios are very close with high probability. To achieve liveness
(if our protocol with a fixed leader is used), we additionally need that the uniform leader is
honest, which is the case with probability at least 90%. Hence, the expected number of sampled
committees is less than 2 in this case.

In the worst case, where the actual corruption in total population equals the maximal 30%,
we most likely have to move to the last gear with 30% liveness threshold. In that gear,
the probability to sample a committee with not more than the expected 30% corruption is
roughly 1/2. Additionally, an honest leader is selected with probability at least 70%, i.e., the
overall probability to sample a live committee is at least 35%. Hence, the expected total number
of sampled committees is less than 6 (3 committees in the lower gears plus 3 committees in the
highest gear on expectation).

Latency and throughput. We here give some rough estimates on the concrete performance
based on experimental data for a prototype implementation from the HotStuff paper [YMR+19].
That paper only provides data for up to 128 nodes. We thus extrapolate that data to get some
rough idea on the performance. The numbers here are thus not to be understood as precise data
points, but only as rough estimates. The actual performance in a production system with code
optimized for the particular setting may deviate significantly.

For the control chain, use the experimental data with 128 byte payload data. Since the
control chain only needs to process heartbeat messages consisting of hash values and some
metadata, 128 byte are sufficient for control-chain messages. The data available in the paper
suggests that in that setting, the latency l in milliseconds of messages with committees of size s
can be approximated by the linear function l = 0.37s + 6. The throughput t in messages per
second is roughly inversely proportional to the latency and can be approximated by the function
t = 2 400 000

l . As discussed in Section 6.1, the committee size of the control chain will never have
to exceed 16 037. Hence, we can estimate a latency of around 6 seconds and a throughput of
about 404 messages per second.

For the shard consensus, we use the data for 1024 bytes of payload data because the shards
contain the actual transactions, which may be more complex. As above, we approximate the
latency in that setting by the function l = 0.67s + 20 and the throughput again by t = 2 400 000

l .
Thus, we obtain for the four gears with committee sizes of 82, 232, 528, and 2264, the latency
values of 75, 175, 374, and 1537 milliseconds, and the throughput values of 32 000, 13 714, 6417,
and 1561 transactions per second, respectively.

Note that transactions can only be considered fully final and intershard transactions can
only be imported to the receiving shard once their hashes appear on the control chain. Thus
the perceived latency (but not the throughput) is limited by the latency of the control chain.

29

Nevertheless, the numbers show that our approach of minimizing committee sizes can vastly
improve performance, even in the worst case with 30% corruption, were we can still operate with
shards of size 2264 instead of 16 037 required by prior work.

Scalability and limits on the number of shards. To analyze the scalability of sharding
proposals, Avarikioti et al. [AKW19] consider the overhead in terms of communication, storage,
and computation. In our protocol, the overhead is limited by ensuring that parties only need to
communicate with parties in the same committee (of the shard or the control chain). This is
even true for intershard communication when using the solution based on Atomix sketched in
Section 5.5. Since HotStuff has linear communication complexity [YMR+19] and our committee
sizes are bounded, our protocol scales with respect to communication complexity. With respect to
space and computational overhead, note that nodes only need to store and validate transactions
in the shards they are assigned to, including outgoing or incoming intershard transactions of
these shards, plus the data on the control chain. Since the control chain only contains Merkle
tree hashes of the transactions and is thus independent of the number of transactions (intra- or
intershard), our protocol scales up to a large constant with the number of shards.

For unlimited scalability, the number shards should be able to scale with the size of the total
population. This is not the case in our protocol since all shards need to post their heartbeats to
the control chain, and thus the number of shards is limited by the throughput of the control
chain and the frequency of the heartbeats. Assuming 400 messages per second throughput on
the control chain as estimated above, this means that if shards post their heartbeats every 10
seconds, one can have up to 4000 shards, and if heartbeats are only posted once a minute, this
allows for 24 000 shards. While this does not allow for unlimited scalability, we believe these
numbers to be more than sufficient in practice in the foreseeable future.

If truly unlimited scalability is desired, an approach with multiple control chains, e.g.,
arranged in a tree, is necessary. We leave the exploration thereof as a direction for future work.

A Shard Safety-Liveness Dichotomies
In this section, we present the shard safety-liveness dichotomies (SSLD). They follow from
basic quorum based proof techniques from Byzantine agreement theory, but we present them
explicitly here for the shard setting for completeness. We want to prove the if S is the fraction
of corruptions that can be tolerated without breaking safety and L is the fraction of corruptions
that can be tolerated without breaking liveness, then L + S < 100% in the synchronous case
and 2L + S < 100% in the partially synchronous case. Note that the Dolev-Strong broadcast
protocol [DS82] achieves synchronous broadcast for L = s = 99%, so it seemingly violates or
bound L + S < 100%. However, Dolev-Strong only achieves internal agreement among the n
servers. External parties cannot verify the value agreed on. The crucial thing about a shard
is that external parties can post on it and read from it. A shard is not run by all parties. It
is therefore not enough for committee members to be able to agree among themselves on the
ledger. They must be able to convince a third party about the value of the ledger.

To exploit this in the lower bound we need to model readers and writer. We will go for
a minimal model with a single writer W and several readers R. Besides this there will be n
committee members C = {C1, . . . , Cn}. We assume they are fixed for the lower bound.

A.1 Synchronous, Unauthenticated SSLD

As a warm-up we first look at a very minimal model where the writer can chose to send a bit on
the shard and the reader can read it, if it was posted.

30

A writer node posts to the shard by sending the same bit to all Ci. The writer and reader
do not speak to each other, they only speak to C. We can assume that first W sends a single
bit to each Ci and then leaves. Letting W take interactive part in the protocol would de facto
make it another server and we would get other bounds. We assume that the reader node reads
by getting a message from each Ci and then R maybe outputs a bit. Letting R take interactive
part in the protocol would de facto make it another server and we would get other bounds. The
committee members will talk between themselves.

We are interested in when we can get liveness and safety. Liveness means R outputs something.
Safety means that if W is honest and sends the same bit to all servers then this is the bit that
R will output if it outputs something. It is clear this is not enough to have a blockchain, but
having low expectations makes the lower bound stronger.

We assume a monotone liveness structure L, a set of subsets of C. By monotone we mean
that if L ∈ L and L′ ⊂ L then L′ ∈ L. We also assume a monotone safety structure S. Let C
be the set of corrupted parties. We only want liveness if we have safety, so we assume L ⊂ S.
With this we can make the following minimal requirements.

Liveness If W sends the same bit b to all Ci and C ∈ L then eventually R outputs a bit.

Safety If W sends the same b to all Ci and R outputs some c and C ∈ S, then c = b.

For a synchronous protocol we can prove that it cannot be the case that there exist S ∈ S
and L ∈ L such that S ∪ L = C.8 To see this consider two disjoint sets S ∈ S and L ∈ L such
that S ∪ L = C. If they are not disjoint we can make them smaller with monotonicity until they
are disjoint and still in C and L.

Consider two experiments.

Experiment 1: Let W send 0 to all servers. Corrupt L and let all parties in L run with input 1.
Since we corrupted from L the reader R will give an output. Call it b1. Since L ⊂ S the output
will be b1 = 0.

Experiment 2: Let W send 1 to all servers. Corrupt S and let all parties in S run with input
instead 0. Since we corrupted from S the reader R will only output 1. From the point of view
of the reader the experiment 2 is identical to experiment 1. So we know that R does give an
output. So it outputs b2 = 1.

We conclude that 0 = b1 = b2 = 1, a contradiction.

A.2 Synchronous, Authenticated SSLD

The above proof did not take care of the fact that W might sign its bit to prevent corrupt servers
from changing its input. We now cover this case too. To get a lower bound in this case we will
need to also require agreement on the order of messages. To prove the bound we will then let a
corrupt W sends signed 0’s to some servers and signed 1’s to other servers and show that the
receivers cannot agree on which bit appeared on the shard first.

We assume the committee knows the public key of W for a signature scheme and that W has
the secret key.

As before W only writes to the shard and R only reads. The writer W posts to the shard by
sending the same signed bit to all Ci. Then the committee members will talk between themselves
defining a sequence of signed bits having been posted. For our proof it is enough to consider

8Notice that if we let S be all sets of servers of size s and let L be all sets of servers size ℓ, then S ∪ L ≠ C for
disjoint sets translates into s + ℓ < n. Dividing by n we get the simplified dichotomy s/n + ℓ/n < 100% of the
introduction.

31

ledgers of length at most 1. So the ledger is empty or has a single message. In other words,
we prove that it is even impossible to agree on just the first element of the ledger. We assume
that R at some point reads from each committee member and possibly computes a single output
message m. The readers do not communicate. If they did, they would de facto become servers
and the bounds would change. We allow that R does not give an output. Think of it as the
ledger currently being empty.

We again have monotone liveness structure L and monotone safety structure S and require
that L ⊂ S. Let C be the set of corrupted parties. We require the following.

Liveness If W sends the same signed m to all Ci and C ∈ L, then Ri can eventually read
mi = m.

Validity If W does not send a signed m to any server Ci and C ∈ S and Ri outputs mi, then
mi ̸= m.

Agreement If R1 outputs m1 and R2 outputs m2 and C ∈ S, then m1 = m2.

Note that the way we phrase liveness it implies safety. Normally you would formulate liveness as
a pure liveness property, but we assume L ⊂ S and the above makes the proof simpler. Validity
just means that the ledger cannot post anything that the writer did not sign. This is an essential
requirement for the ledger to be meaningful. Agreement says that two different honest readers
agree on what is the first message on the ledger if they both consider the ledger non-empty. This
is again essential.

For a synchronous protocols we assume the parties have access to round-based communication,
where if a party does not send a message in a round, then instead NoMsg is delivered.

For a synchronous protocol we can prove that it cannot be the case that there exist S ∈ S
and L ∈ L such that S ∪ L = C. To see this consider two disjoint sets S ∈ S and L ∈ L such
that S ∪ L = C.

Let W sign 0 and 1. When we say that b is given as input we mean that the signature is
given along. Let the output of a reader Ri be the first bit bi it sees appearing on the ledger.
Experiment 1: Let W send 0 to all servers. Run with R0. Corrupt L and drop all messages
between L and S. I.e., L sends NoMsg and will act as if S did the same. Since we corrupted
from L ⊂ S the reader R0 will get output b1 = 0 by liveness and validity.
Experiment 2: Let W send 0 to all servers and also send 1 to L. Run with R2. Corrupt L and
drop all messages between L and S. Since we corrupted from L the reader R2 will get some
output b2 by liveness.

Assume for the sake of contradiction that b2 = 1 with constant positive probability p. Then
we can break safety as follows. Let W send 0 to all servers and also send 1 to L. Corrupt L and
make in run two copies of L. One running with input 0 and one with input 1, call them L0 and
L1. Drop all messages between L0 to S. Drop all messages between L1 to S. Clearly L can run
both copies as they do not interact with S, the view of S is the same with both of them. Show
L0 to R0 and show L1 to R1. Now we break agreement with probability p. So we can assume
b2 = 0.
Experiment 3: Let W send 1 to all servers. Run with R3. Corrupt L and drop all messages
between L and S. Since we corrupted from L the reader R3 will get output b3 = 1 by liveness
and validity.
Experiment 4: Let W send 1 to all servers and also send 0 to L. Run with R4. Corrupt L and
drop all messages between L and S. Since we corrupted from L the reader R1 will get some
output b4 by liveness. We can conclude that b4 = 1 as above.

32

Experiment 5: Let W send 0 and 1 to all servers. Run with R5. Corrupt S and drop all
messages between L and S. Let S ignore the 0 input. This experiment is identical to experiment
4 so the output of R5 is b5 = b4 = 1.

Experiment 6: Let W send 0 and 1 to all servers. Run with R6. Corrupt S and drop all
messages between L and S. Let S ignore the 1 input. This experiment is identical to experiment
2 so the output of R6 is b6 = b2 = 0.

We are now again ready to break agreement. The difference between experiment 5 and 6 is
whether S drops 0 or 1. Since it does not talk to L it can run both experiments in the head and
show experiment 5 to R5 and show experiment 6 to R6.

A.3 Partially Synchronous, Authenticated SSLD

We finally look at the partially synchronous SSLD. For a partially synchronous protocol all
messages are delivered within some unknown delay ∆net. We use the same liveness and safety
properties as for the synchronous, authenticated SSLD. Assume we have a partially synchronous
shard with L-liveness and S-safety. We can prove that it cannot be the case that there exist
disjoint sets S ∈ S and L0, L1 ∈ L such that L0 ∪ L1 ∪ S = C.9 Assume for the sake of
contradiction that we have such sets.

Consider the following experiment. Give L0 input 0. Give L1 input 1. Delay all messages
between L0 and L1 for time ∆net =∞. This is not allowed in the partially synchronous model,
but we will lower ∆net to a large enough finite value below.

Let a corrupt S run as follows. Towards L0 it runs an honest copy of S with input 0. Call it
S0. Towards L1 it runs an honest copy of S with input 1. Call it S1. We consider two readers
R0 and R1. When R0 reads delay message from L1 for time ∆net = ∞ and let S reply as S0
would. When R1 reads delay message from L0 for time ∆net =∞ and let S reply as S1 would.

Consider the view of R0. It is interacting with honest S0 and L0 and with L1 being infinitely
later. This corresponds to a corruption of L1 ∈ L where we let L1 send no messages, so eventually
R0 will output 0. Say this happens within time E0. Now set ∆net = E0 + 1, run L1 honestly but
instead delay all messages from L1 for time ∆net as allowed in a partially synchronous run. In
this run L0, S0, R0 all have the same view of L1 as when L1 is corrupted and sends no messages,
so R0 still outputs m0 = 0.

Consider then the view of R1. It is interacting with honest S1 and L1 and with L0 being
infinitely later. This corresponds to a corruption of L0 ∈ L so R1 will output 1. Say this happens
within time E1. Now set ∆net = max(E0, E1) + 1, run L1 honestly but delay all messages from
L1 for time ∆net. In this run L1, S1, R1 all have the same view of L0, so R1 still outputs m1 = 1.

Since we now consider a valid partially synchronous run with ∆net = max(E0, E1) + 1 and
corruption S ∈ S it follows that if R0 eventually outputs m0 and R1 eventually outputs m1, then
m0 = m1. We conclude that 0 = m0 = m1 = 1, a contradiction.

B Implementing the Timed Ledger using a Nakamoto-Style
Blockchain

As discussed in Section 6.1, our timed ledger functionality F∆
BD-TL can be implemented using a

BFT consensus protocol such as HotStuff [YMR+19], or similarly using, e.g., Algorand [CM19],
or Tendermint [Kwo14, Buc16]. In this section, we show how one can alternatively use a

9Notice that if we let S be all sets of servers of size s and let L be all sets of servers size ℓ, then S ∪ L0 ∪ L1 ̸= C
for disjoint sets translates into s + 2ℓ < n. Dividing by n we get the simplified dichotomy s/n + 2(ℓ/n) < 100% of
the introduction.

33

Nakamoto-style blockchain such as Bitcoin [Nak09] or Ouroboros Praos [DGKR18]. We note
that in case a Nakamoto-style blockchain is used, combining it with a finality layer, e.g., Casper
the Friendly Finality Gadget [BG17] or Afgjort [DYMM+20], is advisable to improve the latency.

Following the analysis and the discussion in for instance [GKL17] and in [DGKR18] it seems
straight-forward that F∆

BD-TL can be implemented using the Bitcoin protocol or the Ouroboros
Praos [DGKR18] blockchain under reasonable assumptions on known bounded network delay
and traffic load, and assuming honest computational power respectively honest majority of stake.

Simply let the ledger arrival time be the time of the block the transaction appears in and
output a message when it is in a block which is final. For Bitcoin finality is defined by the prefix
property [DGKR18]. A message will appear in a blocks in reasonable time by chain quality
plus chain growth and assuming that no more transactions are sent than can be put into blocks
by the honest parties. In our setting, this should be the case as we will use F∆

BD-TL as the
Control Chain, where by design we can enforce that only control information from the sharding
orchestration is posted, or that control information is given priority over normal payload. This
allows to ensure by design the no more transactions are sent than can be posted.

In the following, we go into a bit more detail on how the Bitcoin protocol achieves F∆
BD-TL.

According to the analysis in [GKL17] Bitcoin satisfies the following properties:

Common-Prefix: There exists a k ∈ N (depending on the security parameter and the network
delay) for any points in time ti ≤ tj and any pair of honest parties Pi, Pj with chains Ci

resp. Cj they had a time ti resp. tj it holds that Ci with the last k blocks removed is a
prefix of Cj .

Chain-Growth: For any honest party the adapted chain grows over time.

Chain-Quality: There exists a ℓ ∈ N and 0 < µ ≤ 1 such that for any chain C of an honest
party any ℓ consecutive blocks contain a µ fraction of honestly created blocks.

Given a bounded network delay, we can fix as part of the protocol a constant k′ ∈ N such that
for any honest party the k′-pruned chain (i.e., the chain with the last k′ ∈ N blocks removed) is
in the common-prefix. A message is considered final for party P if it is in this k′-pruned chain.
We can also assume that parties add a timestamp to blocks they create where valid blocks have
increasing time-stamps. The ledger arrival time of a message is then defined as the timestamp
of the block that contains the message.

We can now argue that this achieves the ledger F∆
BD-TL for some fixed ∆. First, we observe

that persistence follows directly from the common-prefix property. For liveness and bounded
delay we need to bound the time between message input and ledger arrival and between ledger
arrival and message delivery. In the Bitcoin protocol input messages are flooded on the network.
The bounded network delay ensures that exists an ∆net such that an input arrives at all honest
parties within ∆net ticks. Once the message has been flooded it will be added latest to the
next honest block (assuming not too many inputs or unlimited block size). Chain-growth
and chain-quality ensure that an honest block is created within ∆add ticks. Assuming that
parties do not accept blocks from the future (i.e., with a timestamp in the future), the time
difference between input and ledger arrival is bounded by ∆net + ∆add. Bounded network delay,
Chain-growth, and chain-quality ensure that within another ∆growth ticks the message block is
in the k′-pruned chain of every party. The difference between ledger arrival and message delivery
is thus bounded by ∆growth. For ∆ = max(∆net + ∆add, ∆growth) the claim follows.

Note that we are not making a formal security claim here. The models in [GKL17, DGKR18]
are different from ours in the exact details and considerably work would have to be done to
re-prove them secure in our model. However, the results in [GKL17, DGKR18] justify that
F∆

BD-TL is a reasonable simple model of the finalized part of a blockchain for the sake of proving

34

secure abstract protocol designs which use only the finalised part of a blockchain. Towards
a secure real-life implementation of our sharding scheme it is an important step to ensure
that F∆

BD-TL is securely implemented as a basis. This involves as much distributed systems
engineering as it does cryptography.

Prevent delays for control messages. In order to achieve F∆
BD-TL with constant ∆ it is

important that at any time there is a bounded number of valid input messages that can be
added to blocks. In our use-case, where F∆

BD-TL acts as a control chain for a bounded number of
shard, this can be ensured. Moreover, these control messages should be given priority on the
peer-to-peer layer, such that they propagate in some bounded time ∆net. Finally, parties should
priorties control messages when adding messages to blocks (in case the blocks are also used for
different messages).

C Tight Analytic Bound for Committee Sizes
We analyze the asymptotic probability that when sampling a random committee of size n from a
population with corruption ratio p, we get a committee with corruption ratio ≤ q for some q > p.
We will calculate the probability of the bad event that there are more than qn corruptions, and
give a formula for picking n such that this bad event has small probability. For an asymptotically
large total population, the probability of picking a corrupted party essentially remains equal
after removing a party. Hence, we can consider a binomial distribution with n trials and success
probability p, corresponding to the probability of selecting a corrupted party.

The lemma below shows that for constant p and q, and large enough κ, the minimum required
committee size n linearly depends on κ.

Lemma 1. Let κ ∈ N, and let X be a random variable following a binomial distribution
with n trials and success probability p for each trial. Further let q ∈ (p, 1), α := q − p, and
β := e

2πα

√
q(1−p)√

1−q
. Then, Pr[X > qn] < 2−κ if

n ≥ max
{

β2, κ/ log2

((
q

p

)q(1− q

1− p

)1−q)}
.

Proof. Let Px := Pr[X = x]. Then,

Px =
(

n

x

)
px(1− p)n−x .

We are interested in upper bounding Pr[X > qn] = ∑n
x=qn+1 Px. We have that

Px+1
Px

=
(n

x+1
)
px+1(1− p)n−x−1(n

x

)
px(1− p)n−x

= (n− x)p
(x + 1)(1− p) .

When x > qn, then
(n− x)
(x + 1) <

1− q

q + 1/n
<

1− q

q
.

Hence
Px+1 < Px

(1− q)p
q(1− p) .

35

If we do a geometric sum with start term a = Pqn and ratio (1−q)p
q(1−p) , we get

n∑
x=qn+1

Px <
Pqn

1− (1−q)p
q(1−p)

= Pqn
q(1− p)

q(1− p)− (1− q)p

= Pqn
q(1− p)

q − p
.

(1)

Using q = p + α, this yields
n∑

x=qn+1
Px < Pqn

q(1− p)
α

.

We will now focus on Pqn. We have that

Pqn =
(

n

qn

)
pqn(1− p)n(1−q) .

Furthermore, (
n

qn

)
= n!

(qn)!(n− qn)! .

By Stirling’s approximation we have
√

2πnnne−n < n! < e
√

nnne−n .

This yields (
n

qn

)
<

e
√

nnn

√
2πqn(qn)qn

√
2π(n− qn)(n− qn)n−qn

= e
√

n
√

2πqn
√

2π(n− qn)
nn

(qn)qn(n− qn)n−qn
.

(2)

We have
e
√

n
√

2πqn
√

2π(n− qn)
= e

2π
√

n
√

q(1− q)
,

and

nn

(qn)qn(n− qn)n−qn
= nn

qqnnqnnn−qn(1− q)n−qn

= 1
qqn(1− q)n−qn

=
(
qq(1− q)1−q

)−n
.

(3)

Putting these together, we conclude that(
n

qn

)
<

e

2π
√

n
√

q(1− q)

(
qq(1− q)1−q

)−n
.

Putting all the above together, we obtain

n∑
x=qn+1

Px <
q(1− p)

α
· e
(
qq(1− q)1−q

)−n
pqn(1− p)n(1−q)

2π
√

n
√

q(1− q)
.

36

Collecting terms, we can simplify to
n∑

x=qn+1
Px <

√
n

−1
β

((
p

q

)q (1− p

1− q

)1−q
)n

for β = e
2πα

√
q(1−p)√

1−q
.

If n ≥ β2, we thus have
n∑

x=qn+1
Px <

((
p

q

)q (1− p

1− q

)1−q
)n

.

Therefore, when additionally

n ≥ κ/ log2

((
q

p

)q (1− q

1− p

)1−q
)

,

we get ∑n
x=qn+1 Px < 2−κ. Putting this together concludes the proof.

D Python Code for Computing Minimal Committee Sizes
In this section we list the python code used to compute the numbers for committee sizes displayed
in Table 1 and Figure 1.
import math
import s c i p y . s p e c i a l
from f r a c t i o n s import Fraction
from ta bu l a t e import ta bu l a t e

For all functions , we use
n = total population
t = number of corruptions in total population
k = security parameter

Probability of having < h honest parties in committee
s = committee size
h = minimum number of honest parties required in committee
p_max = maximal value for which pFail returns correct value . Output is 1 if p_fail >

p_max .
def p _ f a i l (n , t , s , h , p_max) :

p = 0
compute n choose s as exact integer
denom = s c i p y . s p e c i a l . comb (n , s , exact=True)
for i in range (s − h + 1 , s +1) :

p += Fraction (s c i p y . s p e c i a l . comb (t , i , exact=True) ∗ s c i p y . s p e c i a l . comb (n−t , s−i ,
exact=True) , denom)

if p > p_max :
return 1

return p

Minimum committee size with corruption ratio at most cr such that p_fail <= 2^{ -k}
def min_csize (n , t , cr , k) :

p_max = Fraction (1 , 2∗∗k)
for s in range (1 , n+1) :

we want at least h honest parties
h = math . ceil ((1 − cr) ∗ s)
if p _ f a i l (n , t , s , h , p_max) <= p_max :

return s

Compute analytical upper bound
p = fraction of corruption in total population
cr = maximal corruption ratio in committee
def analytic_bound (p , cr , k) :

37

q = cr
alpha = q − p
beta = (math . e ∗ math . sqrt (q) ∗ (1−p)) / (2 ∗ math . p i ∗ alpha ∗ math . sqrt(1−q))
bound = math . ceil (k/math . l og ((q/p) ∗∗q∗((1−q) /(1−p)) ∗∗(1−q) ,2))
beta_bound = math . ceil (beta ∗ beta)
return max (bound , beta_bound)

Print committee sizes for different parameters
ns = list of values of n, total population
ps = list of corruption fractions in total population
k = security parameter
crs = list of maximal corruption ratios in committee
def p r i n t _ c s i z e s (ns , ps , k , c r s) :

header = ["" , ""] + [float (c r) for cr in c r s]
t a b l e = []
for p in ps :

t a b l e += [[" analytic " , "p = " + str (p)] + [analytic_bound (p , cr , k) for cr in c r s]]
for n in ns :

t = n ∗ p
t a b l e += [["n = " + str (n) , "p = " + str (p)] + [min_csize (n , t , cr , k) for cr in

c r s]]

print (tab u la t e (tab le , header))

Print coordinates of committee sizes over guaranteed honesty
def print_graph_coordinates (n , t , k) :

for crp in range (99 , 32 , −1) : # corruption from 99% down to 33%
cr = Fraction (crp , 100) # convert percentage to fraction
print ("(" , int (100 − 100∗ cr) , "," , min_csize (n , t , cr , k) , ")" , sep=’’ , end=’ ’)

print ("\n")

Print analytic bound for coordinates of committee sizes over guaranteed honesty
p = fraction of corruption in total population
def pr int_analyt ic_graph_coordinates (p , k) :

for crp in range (99 , 32 , −1) : # corruption from 99% down to 33%
cr = Fraction (crp , 100) # convert percentage to fraction
print ("(" , int (100 − 100∗ cr) , "," , analytic_bound (p , cr , k) , ")" , sep=’’ , end=’ ’)

print ("\n")

def main () :
Consider total populations 10000 and 2000 with 30% and 20% corruption , with 60 bit

security
ns = [10000 , 2000]
ps = [Fraction (3 , 10) , Fraction (2 , 10)]
k = 60

maximal corruption ratios in committees from 99% to 33%
c r s = [Fraction (99 , 100) , Fraction (89 , 100) , Fraction (79 , 100) , Fraction (69 , 100) ,

Fraction (59 , 100) , Fraction (49 , 100) , Fraction (39 , 100) , Fraction (1 , 3)]

print table with committee sizes
p r i n t _ c s i z e s (ns , ps , k , c r s)
print ("\n")

print graph coordinates
for p in ps :

print (" Analytic graph coordinates , p = " , p , ", k = " , k , sep=’’)
pr int_analyt ic_graph_coordinates (p , k)
for n in ns :

print (" Graph coordinates , n = " , n , ", p = " , p , ", k = " , k , sep=’’)
t = n ∗ p
print_graph_coordinates (n , t , k)

if __name__ == ’__main__ ’ :
main ()

38

References
[AKW19] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide and scale:

Formalization of distributed ledger sharding protocols. CoRR, abs/1910.10434, 2019.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable
signature functionality. In Kan Zhang and Yuliang Zheng, editors, ISC 2004, volume 3225
of LNCS, pages 61–72. Springer, Heidelberg, September 2004.

[BKT+19] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod Viswanath.
Prism: Deconstructing the blockchain to approach physical limits. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 585–602. ACM, 2019.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a
transaction ledger: A composable treatment. In Katz and Shacham [KS17], pages 324–356.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. Master’s
thesis, The University of Guelph, Guelph, Ontario, Canada, 6 2016.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In 17th
IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004,
Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

[CD17] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by public
entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17,
volume 10355 of LNCS, pages 537–556. Springer, Heidelberg, July 2017.

[CD20] Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe BATched
Randomness based On Secret Sharing. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 311–341. Springer, Heidelberg,
December 2020.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, page
173–186, USA, 1999. USENIX Association.

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 777:155–183, 2019.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
66–98. Springer, Heidelberg, April / May 2018.

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus
and applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore,
editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, February
2019.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor
agreement. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H.
Landweber, editors, Proceedings of the 14th Annual ACM Symposium on Theory of Com-
puting, May 5-7, 1982, San Francisco, California, USA, pages 401–407. ACM, 1982.

[DYMM+20] Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel
Tschudi. Afgjort: A partially synchronous finality layer for blockchains. In Clemente Galdi
and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 24–44. Springer,
Heidelberg, September 2020.

39

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 51–68. ACM,
2017.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In Katz and Shacham [KS17], pages 291–323.

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. OmniLedger: A secure, scale-out, decentralized ledger via sharding. In 2018
IEEE Symposium on Security and Privacy, pages 583–598. IEEE Computer Society Press,
May 2018.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
477–498. Springer, Heidelberg, March 2013.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Katz and Shacham [KS17], pages
357–388.

[KS17] Jonathan Katz and Hovav Shacham, editors. CRYPTO 2017, Part I, volume 10401 of
LNCS. Springer, Heidelberg, August 2017.

[Kwo14] Jae Kwon. Tendermint: Consensus without mining. manuscript, 2014. https://
tendermint.com/static/docs/tendermint.pdf.

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 17–30. ACM Press, October 2016.

[MNT22] Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formalizing delayed
adaptive corruptions and the security of flooding networks. In Advances in Cryptology –
CRYPTO 2022, Cham, 2022. Springer International Publishing. To appear.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. manuscript, 2009.
http://www.bitcoin.org/bitcoin.pdf.

[PS17] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing,
DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 39:1–39:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[RKTV22] Ranvir Rana, Sreeram Kannan, David Tse, and Pramod Viswanath. Free2shard: Adversary-
resistant distributed resource allocation for blockchains. Proc. ACM Meas. Anal. Comput.
Syst., 6(1):11:1–11:38, 2022.

[SBAD20] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. Replay attacks
and defenses against cross-shard consensus in sharded distributed ledgers. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020,
pages 294–308. IEEE, 2020.

[SC21] Abdurrashid Ibrahim Sanka and Ray C.C. Cheung. A systematic review of blockchain
scalability: Issues, solutions, analysis and future research. Journal of Network and Computer
Applications, 195:103232, 2021.

[WSNH19] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on blockchain. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT 2019,
Zurich, Switzerland, October 21-23, 2019, pages 41–61. ACM, 2019.

40

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
http://www.bitcoin.org/bitcoin.pdf

[WW19] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous consensus
zones. In Jay R. Lorch and Minlan Yu, editors, 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, pages 95–112. USENIX Association, 2019.

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In Peter Robinson and Faith
Ellen, editors, 38th ACM PODC, pages 347–356. ACM, July / August 2019.

[YNHS20] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. OHIE: blockchain scaling
made simple. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, pages 90–105. IEEE, 2020.

[ZABZ+21] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro
Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt. Sok: Communication across
distributed ledgers. In Nikita Borisov and Claudia Diaz, editors, Financial Cryptography
and Data Security, pages 3–36, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. RapidChain: Scaling blockchain
via full sharding. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 931–948. ACM Press, October 2018.

41

	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Security Model

	Ledger Functionalities
	(Sharded) Timed ledger
	Shards

	Committee Selection and Shard Consensus
	Committee Selection
	Shard Consensus
	Determining the Committee Size

	Constructing a Sharded Ledger
	Overview
	Data Repository
	The Sharded Ledger Protocol Pi-BD-STL
	Extensions
	Inter-Shard Transactions and Communication

	Instantiations
	Instantiation of Timed Ledger
	Instantiation of Shard Consensus and GearBox
	Instantiation of Randomness Beacon
	Efficiency Analysis of Overall Protocol

	Shard Safety-Liveness Dichotomies
	Synchronous, Unauthenticated SSLD
	Synchronous, Authenticated SSLD
	Partially Synchronous, Authenticated SSLD

	Implementing the Timed Ledger using a Nakamoto-Style Blockchain
	Tight Analytic Bound for Committee Sizes
	Python Code for Computing Minimal Committee Sizes

