
Snarky Ceremonies

Markulf Kohlweiss1,2, Mary Maller3, Janno Siim4, Mikhail Volkhov2

1 IOHK
2 The University of Edinburgh, UK

{mkohlwei, mikhail.volkhov}@ed.ac.uk
3 Ethereum Foundation

mary.maller@ethereum.org
4 University of Tartu, Estonia

janno.siim@ut.ee

Abstract. Succinct non-interactive arguments of knowledge (SNARKs) have found nu-
merous applications in the blockchain setting and elsewhere. The most efficient SNARKs
require a distributed ceremony protocol to generate public parameters, also known as a
structured reference string (SRS). Our contributions are two-fold:

– We give a security framework for non-interactive zero-knowledge arguments with a
ceremony protocol.

– We revisit the ceremony protocol of Groth’s SNARK [Bowe et al., 2017]. We show that
the original construction can be simplified and optimized, and then prove its security
in our new framework. Importantly, our construction avoids the random beacon model
used in the original work.

1 Introduction

Zero-knowledge proofs of knowledge [GMR85] allow to prove knowledge of a witness for some
NP statement while not revealing any information besides the truth of the statement. The recent
progress in zero-knowledge (ZK) Succinct Non-interactive Arguments of Knowledge (SNARKs)
[Gro10,Lip12,PHGR13,DFGK14,Gro16] has enabled the use of zero-knowledge proofs in practical
systems, especially in the context of blockchains [BCG+14,KMS+16,BCG+20].

Groth16 [Gro16] is the SNARK with the smallest proof size and fastest verifier in the literature,
and it is also competitive in terms of prover time. Beyond efficiency, it has several other useful
properties. Groth16 is rerandomizable [LCKO19], which is a desirable property for achieving
receipt-free voting [LCKO19]. Simultaneously, it also has a weak form of simulation extractabil-
ity [BKSV20] which guarantees that even if the adversary has seen some proofs before, it cannot
prove a new statement without knowing the witness. The prover and verifier use only algebraic
operations and thus proofs can be aggregated [BMMV19]. Furthermore, Groth16 is attractive
to practitioners due to the vast quantity of implementation and code auditing it has already
received.

Every application using Groth16 must run a separate trusted setup ceremony in order to ensure
security, and even small errors in the setup could result a complete break of the system. Indeed,
the paper of the original Zcash SNARK [BCTV14] contained a small typo which resulted in a
bug that would allow an attacker to print unlimited funds in an undetectable manner [Gab19].
Some would use this example as a reason to avoid any SNARK with a trusted setup ceremony
at all costs. And yet Groth16 is not only still being used, but many protocols are being actively
designed on top of it, potentially for the reasons listed above. Thus we believe that if this SNARK

2 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

ceremony is going to be used anyway, it is important to put significant effort on simplifying its
description and verifying its security.

The primary purpose of this work is to take a formal approach to proving the security of the
Groth16 setup ceremony of Bowe, Gabizon, and Miers [BGM17] that is currently commonly used
in practice. The first prominent application of the protocol was the Zcash Sapling ceremony, but it
was also run by many other projects, for example Aztec protocol, Filecoin, Semaphore, Loopring,
Tornado Cash, Plumo Ceremony, and Hermez. Some of these ceremonies are based on the project
called Perpetual Powers of Tau (PPoT), which implements the first phase of [BGM17], that is
not specialized to any circuit — this implies that the project planning to run a ceremony can fork
off the PPoT, reducing its own setup cost. In other words, [BGM17] is by far the most popular
ceremony protocol used in practice; but it is also modified, specialized, and re-implemented by
many independent projects. We simplify the original protocol, specifically we remove the need
for a random beacon. Our security proofs equally apply to the version of the protocol with a
beacon already used in practice.

A number of different works have analysed the setup security of zk-SNARKs. The works of
[BCG+15, BGG17,ABL+19] (see also [AFK+20]) propose specialized multi-party computation
protocols for SRS generation ceremonies. A common feature of these protocols is that they
are secure if at least one of the parties is honest. However, these schemes are not robust in
the sense that all parties must be fixed before the beginning of the protocol and be active
throughout the whole execution. In other words if a single party goes offline between rounds
then the protocol will not terminate. Bowe, Gabizon, and Miers [BGM17] showed that the latter
problem could be solved if there is access to a random beacon — an oracle that periodically
produces bitstrings of high entropy — which can be used to rerandomize the SRS after each
protocol phase. Unfortunately, obtaining a secure random beacon is, by itself, an extremely
challenging problem [KRDO17,BBBF18,HYL20]. Secure solutions include unique threshold sig-
natures [HMW18], which themselves require complex setup ceremonies as well as verifiable delay
functions [BBBF18,Pie19,Wes19] that require the design and use of specialized hardware. Prac-
tical realizations have instead opted for using a hash function applied to a recent blockchain
block as a random beacon. This is not an ideal approach since the blockchain miners can bias
the outcome.5

The work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [GKM+18] takes a different ap-
proach and directly constructs a SNARK where the SRS is updatable, that is, anyone can update
the SRS and knowledge soundness and zero-knowledge are preserved if at least one of the up-
daters was honest.6 Subsequent updatable SNARKS like Sonic [MBKM19], Marlin [CHM+20],
and PLONK [GWC19] have improved the efficiency of updatable SNARKs, but they are still less
efficient than for example [Gro16]. Mirage [KPPS20] modifies the original Groth16 by making
the SRS universal, that is the SRS works for all relations up to some size bound. The latter
work can be seen as complementary to the results of this paper as it amplifies the benefits of a
successfully conducted ceremony.

1.1 Our Contributions

Our key contributions are as follows:

5 It is desirable for a setup ceremony to avoid dependence on setups as much as possible—we spurn
random beacons but embrace random oracles.

6 Note that one can independently prove subversion ZK [ABLZ17,Fuc18].

Snarky Ceremonies 3

Designing a security framework. We formalize the notion of non-interactive zero-knowledge
(NIZK) argument with a multi-round SRS ceremony protocol, which extends the framework
of updatable NIZKs in [MBKM19]. Our definitions fix a syntax for ceremonies with Update
and VerifySRS algorithms and take a game-based approach. This is less rigid than a multi-
party computation definition (see for example [ABL+19] for a UC-functionality). Our security
notion says that an adversary cannot forge a SNARK proofs even if they can participate in
the setup ceremony. We call such a SNARK ceremonial. This notion is more permissible
for the setup ceremony than requiring simulatability and is therefore easier to achieve. In
particular, using our definitions we do not require the use of a random beacon (as is needed
in [BGM17]) or additional setup assumptions ([BCG+15] assumes a common random string
and [ABL+19] assumes a trusted commitment key), whereas it is not clear that those could
be avoided in the MPC setting. Our definitions are applicable to SNARKs with a multiple
round setup ceremony as long as they are ceremonial.

Proving security without a random beacon. We prove the security of the Groth16 SNARK
with a setup ceremony of [BGM17] in our new security framework. We intentionally try not
change the original ceremony protocol too much so that our security proof would apply
to protocols already used in practice. Security is proven with respect to algebraic adver-
saries [FKL18] in the random oracle model. We require a single party to be honest in each
phase of the protocol in order to guarantee that knowledge soundness and subversion zero-
knowledge hold. Unlike [BGM17], our security proof does not rely on the use of a random
beacon. However, our security proof does apply to protocols that have been implemented
using a (potentially insecure) random beacon because the beacon can just be treated as
an additional malicious party. We see this as an important security validation of real-life
protocols that cryptocurrencies depend on.

Revisiting the discrete logarithm argument. The original paper of [BGM17] used a novel
discrete logarithm argument Πdl to prove knowledge of update contributions. They showed
that the argument has knowledge soundness under the knowledge of exponent assumption
in the random oracle model. While proving the security of the ceremony protocol, we ob-
serve that even stronger security properties are necessary. The discrete logarithm argument
must be zero-knowledge and straight-line simulation extractable, i.e., knowledge sound in
the presence of simulated proofs. Furthermore, simulation-extractability has to hold even if
the adversary obtains group elements as an auxiliary input for which he does not know the
discrete logarithm. We slightly modify the original argument to show that those stronger
properties are satisfied if we use the algebraic group model with random oracles.

Thus, this work simplifies the widely used protocol of [BGM17] and puts it onto firmer security
foundations.

1.2 Our Techniques

Security framework Our security framework assumes that the SRS is split into ϕmax distinct
components srs = (srs1, . . . , srsϕmax) and in each phase of the ceremony protocol one of the
components gets finalized. We formalize this by enhancing the standard definition of NIZK with
an Update and VerifySRS algorithms. Given srs and the phase number ϕ, the Update algorithm
updates srsϕ and produces a proof ρ that the update was correct. The verification algorithm
VerifySRS is used to check that srs and update proofs {ρi}i are valid.

We obtain the standard updatability model of [MBKM19] if ϕmax = 1. When modelling the
Groth16 SNARK we set ϕmax = 2. In that scenario, we split the SRS into a universal component

4 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

srs1 = srsu that is independent of the specific relation that we want to prove7 and to a specialized
component srs2 = srss, which depends on a concrete relation R. Both srsu and srss are updatable;
however, the initial srss has to be derived from srsu and the relation R. Thus, parties need first
to update srsu, and only after a sufficient number of updates can they start to update srss. The
universal srsu can potentially be reused for other relations.

In our definition of update knowledge soundness, we require that no adversary can convince
an honest verifier of a statement unless either (1) they know a valid witness; (2) the SRS does
not pass the setup ceremony verification VerifySRS; or (3) one of the phases did not include
any honest updates. Completeness and zero-knowledge hold for any SRS that passes the setup
ceremony verification, even if there were no honest updates at all. The latter notions are known
as subversion completeness and subversion zero-knowledge [BFS16].

Security proof of setup ceremony We must prove subversion zero-knowledge and update
knowledge-soundness. Subversion zero-knowledge follows from the previous work in [ABLZ17,
Fuc18], which already proved it for Groth16 under knowledge assumptions. The only key differ-
ence is that we can extract the simulation trapdoor with a discrete logarithm proof of knowledge
argument Πdl used in the ceremony protocol.

Our security proof of update knowledge-soundness uses a combination of the algebraic group
model and the random oracle (RO) model. As was recently shown by Fuchsbauer, Plouviez,
and Seurin [FPS20] the mixture of those two models can be used to prove powerful results
(tight reductions of Schnorr-based schemes in their case) but it also introduces new technical
challenges. Recall that the algebraic group model (AGM) is a relaxation of the generic group
model proposed by Fuchsbauer, Kiltz, and Loss [FKL18]. They consider algebraic adversaries
Aalg that obtain some group elements G1, . . . , Gn during the execution of the protocol and
whenever Aalg outputs a new group element E, it also has to output a linear representation
~C = (c1, . . . , cn) such that E = Gc11 G

c2
2 . . . Gcnn . Essentially, Aalg can only produce new group

elements by applying group operations to previously known group elements. In contrast to the
generic group model, the representation of group elements is visible to Aalg, and thus security
proofs in AGM are typically reductions to some group-assumptions (e.g. the discrete logarithm
assumption).

Already the original AGM paper [FKL18] proved knowledge soundness of the Groth16 SNARK
in the AGM model (assuming trusted SRS). They proved it under the q-discrete logarithm
assumption, i.e., a discrete logarithm assumption where the challenge is (Gz, Gz

2

, . . . , Gz
q

). The
main idea for the reduction is that we can embed Gz in the SRS of the SNARK. Then when
the algebraic adversary Aalg outputs a group-based proof π, all the proof elements are in the
span of the SRS elements, and Aalg also outputs the respective algebraic representation. We
can view the verification equation as a polynomial Q that depends on the SRS and π such that
Q(SRS, π) = 0 when the verifier accepts. Moreover, since π and SRS depend on z, we can write
Q(SRS, π) = Q′(z). Roughly, the proof continues by looking at the formal polynomial Q′(Z),
where Z is a variable corresponding to z, and distinguishing two cases: (i) if Q′(Z) = 0, it is
possible to argue based on the coefficient of Q′ that the statement is valid and some of the
coefficients are the witness, i.e., Aalg knows the witness, or (ii) if Q′(Z) 6= 0, then it is possible
to efficiently find the root z of Q′ and solve the discrete logarithm problem.

7 Similarly to the universal updatability notions that share the same “independence”, e.g. [MBKM19],
srsu still formally depends on the maximum size of the circuit, which can nevertheless be made large
enough to be practically universal.

Snarky Ceremonies 5

Our proof of update knowledge soundness follows a similar strategy, but it is much more chal-
lenging since the SRS can be biased, and the Aalg has access to all the intermediate values
related to the updates. Furthermore, Aalg also has access to the random oracle, which is used
by the discrete logarithm proof of knowledge Πdl. Firstly, since the SRS of the Groth16 SNARK
contains one trapdoor that is inverted (that is δ), we need to use a novel extended discrete loga-
rithm assumption where the challenge value is ({Gzi}q1i=0, {Hzi}q2i=0, r, s,G

1
rz+s , H

1
rz+s) where G

and H are generators of pairing groups and r, s, z are random integers. We prove that this new
assumption is very closely related (equivalent under small change of parameters) to the q-discrete
logarithm assumption. In the case with an honest SRS [FKL18] it was possible to argue that
by multiplying all SRS elements by δ we get an equivalent argument which does not contain
division, but it is harder to use the same reasoning when the adversary biases δ. The reduction
still follows a similar high-level idea, but we need to introduce intermediate games that create
a simplified environment before we can use the polynomial Q. For these games we rely on the
zero-knowledge property and simulation extractability of Πdl. Moreover, we have to consider
that Aalg sees and adaptively affects intermediate states of the SRS on which the proof by π can
depend on. Therefore the polynomial Q′ takes a significantly more complicated form, but the
simplified environment will reduce this complexity.

Revisiting the discrete logarithm argument One of the key ingredients in the [BGM17]
ceremony is the discrete logarithm proof of knowledge Πdl. Each updater uses this to prove that
it knows its contribution to the SRS. The original [BGM17] proved only knowledge soundness of
Πdl. While proving the security of the setup ceremony in our framework, we observe that much
stronger properties are needed. Firstly, Πdl needs to be zero-knowledge since it should not reveal
the trapdoor contribution. Secondly, Πdl should be knowledge sound, but in an environment
where the adversary also sees simulated proofs and obtains group elements (SRS elements) for
which it does not know the discrete logarithm. For this, we define a stronger notion simulation-
extractability where the adversary can query oracle Ose for simulated proofs and oracle Opoly on
polynomials f(X1, . . . , Xn) that get evaluated at some random points x1, . . . , xn such that the
adversary learns Gf(x1,...,xn) or Hf(x1,...,xn).

We show that proofs can be trivially simulated when the simulator has access to the internals of
the random oracle and thus Πdl is zero-knowledge. We once again use AGM, this time to prove
simulation-extractability. Since in this proof we can embed the discrete logarithm challenge in
the random oracle responses, we do not need different powers of the challenge and can instead
rely on the standard discrete logarithm assumption. We also slightly simplify the original Πdl

and remove the dependence on the public transcript TΠ of the ceremony protocol, that is, the
sequence of messages broadcasted by the parties so far. Namely, the original protocol hashes TΠ
and the statement to obtain a challenge value. This turns out to be a redundant feature, and
removing it makes Πdl more modular.

Implementation and Optimization Partners in a joint research project have developed a
Rust implementation8 of our Update and VerifySRS algorithms for Groth16 building on the
arkworks library with various optimizations such as batching and parallelization. This validates
the correctness of our algorithms and intends to serve as an independent implementation to
measure other solutions. We describe batched SRS update verification in Appendix D.

8 https://github.com/grnet/snarky

https://github.com/grnet/snarky

6 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

2 Preliminaries

PPT denotes probabilistic polynomial time, and DPT denotes deterministic polynomial time.
The security parameter is denoted by λ. We write y r← A(x) when a PPT algorithm A outputs
y on input x and uses random coins r. Often we neglect r for simplicity. If A runs with specific
random coins r, we write y ← A(x; r). Uniformly sampling x from a set A is denoted by x←$A.
A view of an algorithm A is a list denoted by viewA which contains the data that fixes A’s
execution trace: random coins, its inputs (including ones from the oracles), and outputs9. We
sometimes refer to the “transcript” implying only the public part of the view: that is interactions
of A with oracles and the challenger.

Let ~a and ~b be vectors of length n. We say that the vector ~c of length 2n − 1 is a convolution

of ~a and ~b if ck =

(n,n)∑
(i,j)=(1,1);i+j=k+1

aibj for k ∈ {1, . . . , 2n − 1}. In particular, multiplying the polynomial∑n
i=1 aiX

i−1 with
∑n
i=1 biX

i−1 produces
∑2n−1
i=1 ciX

i−1. When indexing families of values, we
sometimes use semicolon to separate indices, e.g. {Gβx:i}ni=0 is a vector Gβx indexed by i.

Bilinear Pairings. Let BGen be a bilinear group generator that takes in a security parameter 1λ
and outputs a pairing description bp = (p,G1,G2,GT , ê, G,H) where G1,G2,GT are groups of
prime order p, G is a generator of G1, H is a generator of G2, and ê : G1 ×G2 → GT is a non-
degenerate and efficient bilinear map. That is, ê(G,H) is a generator of GT and for any a, b ∈ Zp,
ê(Ga, Hb) = ê(G,H)ab. We consider Type III asymmetric pairings [GPS06], with G1 6= G2 and
without any efficiently computable homomorphism between G1 and G2.

2.1 Algebraic Group Model with RO and Discrete Logarithm Assumptions

We will use the algebraic group model (AGM) [FKL18] to prove the security of Groth’s SNARK.
In AGM, we consider only algebraic algorithms that provide a linear explanation for each group
element that they output. More precisely, if Aalg has so far received group elements G1, . . . , Gn ∈
G and outputs a group element Gn+1 ∈ G, then it has to also provide a vector of integer
coefficients ~C = (c1, . . . , cn) such that Gn+1 =

∏n
i=1G

ci
i . We will use AGM in a pairing-based

setting where we distinguish between group elements of G1 and G2. Formally, the set of algebraic
coefficients ~C is obtained by calling the algebraic extractor ~C ← EagmA (viewA) that is guaranteed
to exist for any algebraic adversary A. This extractor is white-box and requires A’s view to run.

Random Oracle. Fuchsbauer et al. [FKL18] also show how to integrate the AGM with the
random oracle (RO) model. In particular, we are interested in RO that outputs group elements.
Group elements returned by RO(φ) are added to the set of received group elements. To simulate
update proofs we make use of a weakening of the programmable RO model that we refer to as
a transparent RO, presented on Fig. 1. For convenience we will denote RO(·) := RO0(·). The
simulator has access to RO1(·) and can learn the discrete logarithm r by querying RO1(x). It
could query RO0(x) for Gr but can also compute this value itself. Constructions and the A in all
security definitions only have access to the restricted oracle RO0(·).

One remarkable detail in using white-box access to the adversary A in the RO model is that
viewA includes the RO transcript (but not RO randomness), since it contains all requests and
replies A exchanges with the oracles it has access to, including RO. Thus access to viewA is
sufficient for our proofs, even though we do not give any explicit access to the RO history besides
the view of the adversary to the extractor.
9 The latter can be derived from the former elements of the list, and is added to viewA for convenience

Snarky Ceremonies 7

ROt(φ) // Initially QRO = ∅

if QRO[φ] 6= ⊥ then r ← QRO[φ];
else r←$Zp; QRO[φ]← r
if t = 1 then return r else return Gr

Fig. 1. The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) : {0, 1}∗ → Zp. We write
RO(φ) for the interface RO0(φ) provided to protocols.

Assumptions. We recall the (q1, q2)-discrete logarithm assumption [FKL18].

Definition 1 ((q1, q2)-dlog). The (q1, q2)-discrete logarithm assumption holds for BGen if for
any PPT A, the following probability is negligible in λ,

Pr
[
bp← BGen(1λ); z←$Zp; z′ ← A(bp, {Gz

i}q1i=1, {Hzi}q2i=1) : z = z′
]
.

The real-world security of q-dlog assumptions is analysed in [BG04,Che06,KKM07] suggesting
an attack taking about O(

√
p/q +

√
q) evaluations, where p = |G|. In our main theorem it is

more convenient to use a slight variation of the above.

Definition 2 ((q1, q2)-edlog). The (q1, q2)-extended discrete logarithm assumption holds for
BGen if for any PPT A, the following probability is negligible in λ,

Pr

[
bp← BGen(1λ); z, r, s←$Zp s.t. rz + s 6= 0;

z′ ← A(bp, {Gzi}q1i=1, {Hzi}q2i=1, r, s,G
1

rz+s , H
1

rz+s) : z = z′

]
.

The assumption is an extension of (q1, q2)-dlog, where we additionally give A the challenge z
in denominator (in both groups), blinded by s, r, which A is allowed to see. Later this helps to
model fractional elements in Groth16’s SRS. Notice that (q1, q2)-edlog trivially implies (q1, q2)-
dlog, since A for the latter does not need to use the extra elements of the former. The opposite
implication is also true (except for a slight difference in parameters) as we state in the following
theorem. The proof is postponed to Appendix A.

Theorem 1. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog assumption holds.

We also state two lemmas that are often useful in conjunction with AGM proofs.

Lemma 1 ([BFL20]). Let Q be a non-zero polynomial in Zp[X1, . . . , Xn] of total degree d.
Define Q′(Z) := Q(R1Z + S1, . . . , RnZ + Sn) in the ring (Zp[R1, . . . , Rn, S1, . . . , Sn])[Z]. Then
the coefficient of the highest degree monomial in Q′(Z) is a degree d polynomial in Zp[R1, . . . , Rn].

Lemma 2 (Schwartz-Zippel). Let P be a non-zero polynomial in Zp[X1, . . . , Xn] of total
degree d. Then, Pr[x1, . . . , xn←$Zp : P (x1, . . . , xn) = 0] ≤ d/p.

3 Ceremonial SNARKs

We present our definitions for NIZKs that are secure with respect to a setup ceremony. We
discuss the new notions of update completeness and update soundness that apply to ceremonies

8 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

that take place over many rounds. We also define subversion zero-knowledge which is adjusted
to our ceremonial setting.

Compared to standard MPC definitions, our definition of (update) knowledge soundness is not
simulation-based and the final SRS may not be uniformly random. We believe that the attempt
to realise standard MPC definitions is what led prior works to make significant practical sacrifices
e.g. random beacons or players that cannot go offline. This is because a rushing adversary that
plays last can manipulate the bit-decomposition, for example to enforce that the first bit of the
SRS is always 0. We here choose to offer an alternative protection: we allow that the final SRS is
not distributed uniformly at random provided that the adversary does not gain any meaningful
advantage when attacking the soundness of the SNARK. This is in essence an extension of
updatability definitions [GKM+18] to ceremonies that require more than one round.

We consider NP-languages L and their corresponding relations R = {(φ,w)} where w is an
NP-witness for the statement φ ∈ L. An argument system Ψ (with a ceremony protocol) for a
relation R contains the following algorithms:

(i) A PPT parameter generator Pgen that takes the security parameter 1λ as input and outputs
a parameter p (e.g., a pairing description) 10. We assume that p← Pgen(1λ) and the security
parameter is given as input to all algorithms without explicitly writing it.

(ii) A PPT SRS update algorithm Update that takes as input a phase number ϕ ∈ {1, . . . , ϕmax},
the current SRS srs, and proofs of previous updates {ρi}i, and outputs a new SRS srs′ and
an update proof ρ′. It is expected that Update itself forces a certain phase order, e.g. the
sequential one.

(iii) A DPT SRS verification algorithm VerifySRS that takes as an input a SRS srs and update
proofs {ρi}i, and outputs 0 or 1.

(iv) A PPT prover algorithm Prove that takes as an input a SRS srs, a statement φ, and a
witness w, and outputs a proof π.

(v) A DPT verification algorithm Verify that takes as an input a SRS srs, a statement φ, and
a proof π, and outputs 0 or 1.

(vi) A PPT simulator algorithm Sim that takes as an input a SRS srs, a trapdoor τ , and a
statement φ, and outputs a simulated proof π.

The description of Ψ also fixes a default srsd = (srsd1, . . . , srs
d
ϕmax). We require that a secure Ψ

satisfies the following flavours of completeness, zero-knowledge, and knowledge soundness. All
our definitions are in the (implicit) random oracle model, since our final SRS update protocol
will be using RO-dependent proof of knowledge. Therefore, all the algorithms in this section have
access to RO, if some sub-components of Ψ require it.

Completeness of Ψ requires that Update and Prove always satisfy verification.

Definition 3 (Perfect Completeness). An argument Ψ for R is perfectly complete if for any
adversary A, it has the following properties:

1. Update completeness:

Pr

[
(ϕ, srs, {ρi}i)← A(1λ), (srs′, ρ′)← Update(ϕ, srs, {ρi}i) :
VerifySRS(srs, {ρi}i) = 1 ∧ VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

]
= 0.

10 We disallow subversion of p in this paper but in real life systems also this part of the setup needs
scrutiny. This is arguable easier since usually p is trapdoor free.

Snarky Ceremonies 9

2. Prover completeness:

Pr

[
(srs, {ρi}i, φ, w)← A(1λ), π ← Prove(srs, φ, w) :
VerifySRS(srs, {ρi}i) = 1 ∧ (φ,w) ∈ R ∧ Verify(srs, φ, π) 6= 1

]
= 0.

Our definition of subversion zero-knowledge follows [ABLZ17]. Intuitively it says that an adver-
sary that outputs a well-formed SRS knows the simulation trapdoor τ and thus could simulate a
proof himself even without the witness. Therefore, proofs do not reveal any additional informa-
tion. On a more technical side, we divide the adversary into an efficient SRS subverter Z that
generates the SRS (showing knowledge of τ makes sense only for an efficient adversary) and into
an unbounded distinguisher A. We let Z send st to communicate with A.

Definition 4 (Subversion Zero-Knowledge (sub-ZK)). An argument Ψ for R is subversion
zero-knowledge if for all PPT subverters Z, there exists a PPT extractor EZ , such that for all
(unbounded) A, |ε0 − ε1| is negligible in λ, where

εb := Pr

[
(srs, {ρi}i, st)← Z(1λ), τ ← EZ(viewZ) :
VerifySRS(srs, {ρi}i) = 1 ∧ AOb(srs,τ,·)(st) = 1

]
.

Ob is a proof oracle that takes as input (srs, τ, (φ,w)) and only proceeds if (φ,w) ∈ R. If b = 0, Ob
returns an honest proof Prove(srs, φ, w) and when b = 1, it returns a simulated proof Sim(srs, τ, φ).

Bellare et al. [BFS16] showed that it is possible to achieve soundness and subversion zero-
knowledge at the same time, but also that subversion soundness is incompatible with (even
non-subversion) zero-knowledge. Updatable knowledge soundness from [GKM+18] can be seen
as a relaxation of subversion soundness to overcome the impossibility result.

We generalize the notion of update knowledge soundness to multiple SRS generation phases.
SRS is initially empty (or can be thought to be set to a default value srsd). In each phase ϕ,
the adversary has to fix a part of the SRS, denoted by srsϕ, in such a way building the final srs.
The adversary can ask honest updates for his own proposal of srs∗ϕ, however, it has to pass the
verification VerifySRS. The adversary can query honest updates using update query through a
special oracle Osrs, described in Fig. 2. Eventually, adversary can propose some srs∗ϕ with update
proofs Q∗ to be finalized through finalize query. The oracle does it if Q∗ contains at least one
honest update proof obtained from the oracle for the current phase. If that is the case, then srsϕ
cannot be changed anymore and the phase ϕ+ 1 starts. Once the whole SRS has been fixed, A
outputs a statements φ and a proof π. The adversary wins if (srs, φ, π) passes verification, but
there is no PPT extractor EA that can extract a witness even when given the view of A.

Definition 5 (Update Knowledge Soundness). An argument Ψ for R is update knowledge-
sound if for all PPT adversaries A, there exists a PPT extractor EA such that Pr[GameA,EAuks (1λ) =
1] is negligible in λ, where

GameA,EAuks (1λ) :=

[
(φ, π)← AOsrs(·)(1λ); get (srs, ϕ) from Osrs;w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) 6∈ R ∧ ϕ > ϕmax

]
,

SRS update oracle Osrs is described in Fig. 2.

If ϕmax = 1, we obtain the standard notion of update knowledge soundness. In the rest of
the paper, we only consider the case where ϕmax = 2. In particular, in the first phase we will
generate a universal SRS srsu = srs1 that is independent of the relation and in the second phase

10 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Osrs(intent, srs
∗, Q∗) // Initially Q1 = · · · = Qϕmax = ∅;ϕ = 1

if ϕ > ϕmax : return ⊥; // SRS already finalized for all phases

srsnew ← (srs1, . . . , srsϕ−1, srs
∗
ϕ, . . . , srs

∗
ϕmax);

if VerifySRS(srsnew, Q
∗) = 0 : return ⊥; // Invalid SRS

if intent = update :

(srs′, ρ′)← Update(ϕ, srsnew, Q
∗);Qϕ ← Qϕ ∪ {ρ′};

return (srs′, ρ′);

if intent = finalize ∧Qϕ ∩Q∗ 6= ∅ :
Assign srsϕ ← srs∗ϕ;ϕ← ϕ+ 1;

Fig. 2. SRS update oracle Osrs given to the adversary in Definition 5. update returns A an
honest update for ϕ, and finalize finalizes the current phase. Current phase ϕ and current SRS
srs are shared with the KS challenger. {Qϕi}i is a local set of proofs for honest updates, one for
each phase.

we generate a specialized SRS srss = srs2 that depends on the concrete relation. We leave it as an
open question whether ceremony protocols with ϕmax > 2 can provide any additional benefits.
We also note that we do not model the possibility of the protocol running for several relations
honestly simultaneously, although A can construct such SRS variants on its own.

It is important to explain the role of the default SRS in the definition. Our definition allows A to
start its chain of SRS updates from any SRS, not just from the default one; the only condition is
the presence of a single honest update in the chain. The default srsd is only used as a reference,
for honest users. This has positive real-world consequences: since the chain is not required to be
connected to any “starting point”, clients only need to verify the suffix of Q∗, if they are confident
it contains an honest update. In particular, clients that contribute to the SRS update can start
from the corresponding proof of update.

We again note that when using the random oracle model in a sub-protocol, we assume that all
of the above algorithms in our security model have access to RO.

4 Update Proofs of Knowledge

One of the primary ingredients in the setup ceremony is a proof of update knowledge whose
purpose is to ensure that adversary knows which values they used for updating the SRS. In
this section, we discuss the proof of knowledge given by Bowe et al [BGM17]. Bowe et al. only
proved this proof of knowledge secure under the presence of an adversary that can make random
oracle queries. This definition is not sufficient to guarantee security (at least in our framework),
because the adversary might be able to manipulate other users proofs or update elements in order
to cheat. We therefore define a significantly stronger property that suffices for proving security
of our update ceremony.

4.1 White-box Simulation-Extraction with Oracles

In this section, we provide definitions for the central ingredient of the ceremony protocol — the
update proof of knowledge that ensures validity of each sequential SRS update. The proof of

Snarky Ceremonies 11

Ose(φ)

// Initially Q = ∅
π ← SimRO1(·)(φ)
Q← Q ∪ {(φ, π)}
return π

OG1
poly(f(Z1, . . . , Zd(λ)))

if deg(f) > d(λ)
return ⊥

else return Gf(z1,...,zd(λ))

OG2
poly(g(Z1, . . . , Zd(λ)))

if deg(g) > d(λ)
return ⊥

else return Hg(z1,...,zd(λ))

Fig. 3. Simulation-extraction oracle and two d−Poly oracles — for G1 and G2. All used in
GamesSE.

knowledge (PoK) protocol does not rely on reference string but employs a random oracle as a
setup. Hence we will extend the standard NIZK definitions with ROt(·), defined in Fig. 1.

Since NIZK proof of knowledge is used in our ceremony protocol, we require it to satisfy a
stronger security property than knowledge soundness or even simulation extraction. Instead of
the standard white-box simulation-extractability (SE), we need a property that allows to compose
the proof system more freely with other protocols while still allowing the adversary to extract.
This is somewhat similar to idea of universal composability (UC, [Can01]), but contrary to the
standard UC, our extractor is still white-box. Another way would be to use an augmented UC
model which allows white-box assumptions (see [KKK21]). In this work we follow the more
minimal and commonly used game-based approach.

We model influence of other protocols by considering a polynomial oracle Opoly in the SE game
of the update PoK.

The adversary can query the oracle Opoly on Laurent polynomials fi(Z1, . . . , Zn) and it will
output Gfi(z1,...,zn) for z1, . . . , zn pre-sampled from a uniform distribution, and unknown to A.
We use Laurent polynomials since SRS elements, the access to which the oracle models, may
have negative trapdoor powers.11 By deg(f) we will denote the maximum absolute degree of its
monomials, where by absolute degree of the monomial we mean the sum of all its degrees taken
as absolute values. Formally, deg(c ·

∏
i Z

ai
i) :=

∑
i |ai|, and deg(f(Z1, . . . , Zn)) = deg(

∑
iMi) :=

max{deg(Mi)}, where Mi are monomials of f . For example, deg(3x2αδ−2 + y) = 5. This notion
is used to limit the degree of input to Opoly — we denote the corresponding degree d(λ) (or d,
interchangeably).

This empowered adversary still should not be able to output a proof of knowledge unless it knows
a witness. Note that Opoly is independent from the random oracle ROt and cannot provide the
adversary any information about the random oracle’s responses. In general, Opoly adds strictly
more power to A. The intention of introducing Opoly is to account for the SRS of the Groth’s
SNARK later on.

In addition, our ceremony protocol for Groth’s SNARK requires NIZK to be straight-line simu-
lation extractable, i.e., that extraction works without rewinding and is possible even when the
adversary sees simulated proofs. Below, we define such a NIZK in the random oracle model.

Let L be a language and R the corresponding relation. The argument Ψ for R in the random
oracle model consists of the following PPT algorithms: the parameter generator Pgen, the prover
ProveRO(·), the verifier VerifyRO(·), and the simulator SimRO1(·). We make an assumption that all
algorithms get p← Pgen(1λ) as an input without explicitly writing it.

11 See the description of Groth16 SRS, which has 1/δ in some SRS elements.

12 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

We assume that Ψ in the random oracle model satisfies the following definitions.

Definition 6. An argument Ψ for R is perfectly complete in the random oracle model, if for
any adversary A,

Pr
[
(φ,w)← ARO(·), π ← ProveRO(·)(φ,w) : (φ,w) ∈ R ∧ VerifyRO(·)(φ, π) 6= 1

]
= 0.

Definition 7. An argument Ψ for R is straight-line simulation extractable in the (RO, d−Poly)-
model, if for all PPT A, there exists a PPT extractor EA such that Pr[GameAsSE(1

λ) = 1] =
negl(λ), where GameAsSE(1

λ) =Q← ∅; z1, . . . , zd(λ) ← Zp;
(φ, π)← AOse,RO,O

G1
poly,O

G2
poly(1λ);

w ← EA(viewA);
:
VerifyRO(·)(φ, π) = 1∧
(φ,w) 6∈ R ∧ (φ, π) 6∈ Q

The oracles Ose,OG1

poly,O
G2

poly are defined on Fig. 3.

Roughly speaking, the adversary wins if it can output a verifying statement and proof for which
it does not know a witness, such that this proof has not been obtained from a simulation oracle.
There are also up to d(λ) random variables chosen at the start such that the adversary can query
an oracle for arbitrary polynomial evaluations with maximum degree d(λ) of these values in the
group. With respect to the relation of this definition to more standard one we note two things.
First, our definition is white-box (since EA requires viewA), and strong (in the sense that proofs
are not randomizable). Second, our notion implies strong-SE in the presence of RO, which is
the special case of GamesSE with Opoly removed, and thus is very close to the standard non-RO
strong-SE variant.

Definition 8. An argument Ψ for the relation R is perfectly zero-knowledge in the random
oracle model if for all PPT adversaries A, ε0 = ε1, where εb := Pr

[
AOb(·),RO(·)(1λ) = 1

]
. Ob is

a proof oracle that takes as an input (φ,w) and only proceeds if (φ,w) ∈ R. If b = 0, Ob returns
an honest proof ProveRO(·)(φ,w) and when b = 1, it returns a simulated proof SimRO1(·)(φ).

Note that Sim is allowed to have access to RO discrete logarithms.

4.2 On the Security of BGM Update Proofs

We now prove that the proof system of [BGM17] satisfies this stronger property.

Bowe et al. [BGM17] proved that the proof system is secure under a Knowledge-of-Exponent
assumption. Their analysis does not capture the possibility that an attacker might use additional
knowledge obtained from the ceremony to attack the update proof. Our analysis is more thorough
and assumes this additional knowledge. This means that we cannot use a simple Knowledge-of-
Exponent assumption. Instead we rely on the algebraic group model; the AGM is to date the
weakest idealized model in which Groth16 has provable security and thus we do not see this as
being a theoretical drawback. The proof of knowledge is for the discrete logarithm relation

Rdl = {(φ = (m,Gy1 , Hy2), w) | y1 = y2 = w},

where m is an auxiliary input that was used in the original [BGM17] proof of knowledge. The
auxiliary input is redundant as we will see, but we still model it to have consistency with the

Snarky Ceremonies 13

Prove
RO(·)
dl (φ,w)

Gr ← RO(φ);
return Grw;

Verify
RO(·)
dl (φ = (·, Gy1 , Hy2), π)

Gr ← RO(φ);
Verify that
ê(Gy1 , H) = (G,Hy2) ∧
ê(π,H) = ê(Gr, Hy2);

Sim
RO1(·)
dl (φ = (·, Gy1 , Hy2))

Assert ê(Gy1 , H) = (G,Hy2);
rφ ← RO1(φ);
return π ← (Gy1)rφ ;

Fig. 4. A discrete logarithm proof of knowledge Πdl.

original protocol. We recall that one of our goals is also to confirm the security of ceremony
protocols already used in practice.

The protocol is given formally in Fig. 4. First the prover queries the random oracle on the instance
φ. The oracle returns a fresh random group elementHr. The prover returns π = Hrw. The verifier
checks that the instance is well-formed (y1 = y2), and then checks that ê(π,H) = ê(RO(φ), Hy2)
which ensures knowledge of y2. Intuition for the last equation is that RO(φ) acts as a fresh
random challenge for φ and the only way to compute π = RO(φ)y2 and Hy2 is by knowing y2.
The fact that in Rdl every φ with y1 = y2 belongs to Ldl (the exponent w always exists) justifies
that we will call the correspondent equation “well-formedness check”; subsequently, we will refer
to the other check as “the main verification equation”.

Here we have moderately simplified the description from [BGM17]:

– We allow the message m to be unconstrained. Thus if one were to hash the public protocol
view, as current implementations do, our security proof demonstrates that this approach is
valid. However, we can also allow m to be anything, including the empty string.

– The original protocol has the proof element in G2. We switched it to G1 to have shorter
proofs.

– Our protocol includes the pairing based equality check for y in Gy and Hy in the verifier
rather than relying on this being externally done in the ceremony protocol. The value Gy is
needed by the simulator.

We are now ready to state the security theorem for Πdl.

Theorem 2. The argument Πdl = (Prove
RO(·)
dl ,Verify

RO(·)
dl ,Sim

RO1(·)
dl) is (i) complete, (ii) perfect

zero-knowledge in the random oracle model, and (iii) straight-line SE in the (RO,d−Poly)-model
against algebraic adversaries under the (1, 0)-dlog assumption in G1.

Proof (sketch). Completeness and perfect zero-knowledge follow directly from the construction of
the prover, verifier, and simulator algorithms. The proof of straight-line simulation extractability
is considerably more challenging and we provide the proof in Appendix B. We only mention the
high level idea here.

We consider security against algebraic adversaries A. Both statement φ elements (Gy, Hy) and
proof π ∈ G1 that A outputs are going to be in the span of elements that A queried from oracles.
Coefficients of those spans are available in A’s view viewA due to A being algebraic. We construct
an extractor EA that gets viewA as an input and returns the coefficient k corresponding to the
element RO(φ) = Gr. Rest of the proof focuses on proving that k is the witness y. Roughly
speaking, the idea is to construct a discrete logarithm adversary C that embeds (a randomized)
discrete logarithm challenge Gc into each of the random oracle queries that A makes. We show

14 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

that unless k = y, C is able to compute the discrete logarithm c from viewA with an overwhelming
probablity. ut

5 Groth16 is Ceremonial

We show that Groth16 is ceremonial for a setup ceremony similar to the one proposed in [BGM17].
In this section, we start by giving an intuitive overview of the [BGM17] ceremony protocol. After
that, we recall the Groth16 argument and carefully model the ceremony protocol in our security
framework.

5.1 Ceremony Overview

We briefly remind the main idea of the [BGM17] ceremony protocol.

– The SRS contains elements of the form e.g. (A1, . . . , An, T) = (Gx, Gx
2

, . . . , Gx
n

, Gδp(x))
where p(X) is a public polynomial known to all parties, and x and δ are secret trapdoors.12

– Parties initialize the SRS to (A1, . . . , An, T) = (G, . . . , G,G).

– In the first phase any party can update (A1, . . . , An) by picking a random x′ ∈ Zp and
computing (Ax

′

1 , . . . , A
(x′)n

n). They must provide a proof of knowledge of x′.

– The value T is publicly updated to Gp(x) given A1, . . . , An.

– In the second phase any party can update T by picking a random δ′ ∈ Zp and computing
T δ
′
. They must provide a proof of knowledge of δ′.

In order to prove knowledge of x′ they assume access to a random oracle RO : {0, 1}∗ → G2 and
proceed as follows:

– The prover computes R ← RO(TΠ‖Gx) as a challenge where TΠ is the public transcript of
the protocol.

– Then prover outputs π ← Rx as a proof which can be verified by recomputing R and checking
that ê(G, π) = ê(Gx, R). The original protocol is knowledge sound under (a variation of) the
knowledge of exponent assumption, which states that if given a challenge R, the adversary
outputs (Gx, Rx), then the adversary knows x.

Our protocol differs from the [BGM17] in a few aspects related to both performance and security.
Additionally to the RO switch to G1 and optionality of including TΠ in evaluation of RO, which
we described in Section 4, we remove the update with the random beacon in the end of each
phase. That means that SRS can be slightly biased, but we prove that it is not sufficient to
break the argument’s security. We consider this to be the biggest contribution of this work since
obtaining random beacons is a significant challenge both in theory and practice. Our approach
completely side-steps this issue by directly proving the protocol without relying on the random
beacon model.

5.2 Formal Description

We present the version of Groth’s SNARK [Gro16] from [BGM17] and adjust the ceremony
protocol to our security framework by defining Update and VerifySRS algorithms which follow
the intuition of the previous section.
12 The polynomial p(X) is introduced only in the scope of this example, and is not related to QAP.

Snarky Ceremonies 15

Setup(RQAP): Sample τ = (α, β, δ, x)←$ (Z∗p)4 and return (srs = (srsu, srss), τ) s.t.

srsu ←
(
{Gx

i

, Hxi}2n−2
i=0 , {Gαx

i

, Gβx
i

, Hαxi , Hβxi}n−1
i=0

)
,

srss ←
(
Gδ, Hδ, {G

βui(x)+αvi(x)+wi(x)
δ }mi=`+1, {G

xit(x)
δ }n−2

i=0

)
.

Prove(RQAP, srs, {ai}mi=0): Sample r, s←$Zp and return π = (GA, HB , GC), where

A = α+
∑m
i=0 aiui(x) + rδ, B = β +

∑m
i=0 aivi(x) + sδ,

C =
∑m
i=`+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+As+Br − rsδ.

Verify(RQAP, srs, {ai}`i=1, π): Parse π as (GA, HB , GC) and verify that

ê(GA, HB) = ê(Gα, Hβ) · ê(
∏̀
i=0

Gai(βui(x)+αvi(x)+wi(x)), H) · ê(GC , Hδ).

Sim(RQAP, srs, τ, {ai}`i=1): Return (GA, HB , GC), where

A,B←$Zp, C =
AB−αβ−

(∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

)
δ

Fig. 5. Groth’s zk-SNARK description.

Firstly, let us recall the language of Groth’s SNARK. A Quadratic Arithmetic Program (QAP)
is described by a tuple

QAP =
(
Zp, {ui(X), vi(X), wi(X)}mi=0, t(X)

)
where ui(X), vi(X), wi(X) are degree n − 1 polynomials over Zp, and t(X) is a degree n poly-
nomial over Zp. Let the coefficients of the polynomials be respectively uij , vij , wij , and tj . We
can define the following relation for QAP,

RQAP =

(φ,w)

0 φ = (a0 = 1, a1, . . . , a`) ∈ Z1+`
p ,

w = (a`+1, . . . , am) ∈ Zm−`p ,
∃h(X) ∈ Zp[X] of degree ≤ n− 2 such that
(
∑m
i=0 aiui(X)) (

∑m
i=0 aivi(X)) =

∑m
i=0 aiwi(X) + h(X)t(X)

 .

In particular, the satisfiability of any arithmetic circuit, with a mixture of public and private
inputs, can be encoded as a QAP relation (see [GGPR13] for details).

Groth [Gro16] proposed an efficient SNARK for the QAP relation, which is now widely used in
practice. Bowe et al. [BGM17] modified original argument’s SRS to make it consistent with their
distributed SRS generation protocol. The full description of the latter argument is in Fig. 5. For
the intuition of the construction, we refer the reader to the original paper by Groth.

We adjust the SRS in Fig. 5 to our model with a ceremony protocols: the default SRS, update
algorithm, and a SRS specialization algorithm are described in Fig. 6. 13 We obtain the default

13 Our Groth16 SRS follows [BGM17] and not the original [Gro16]. It additionally contains {Hxi}2n−2
i=n−2,

{Hαxi}n−1
i=1 , and {H

βxi}n−1
i=1 . This simplifies our presentation, but also strengthens the security result

as it shows that contrary to what happened with a different extended SRS of Zcash [Gab19] adding
these elements does not break soundness.

16 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

SRS from the trapdoor τ = (1, 1, 1, 1). The algorithm Update samples new trapdoors and includes
them in the previous SRS by exponentiation as was described in Section 5.1. For example, to
update Gι, where ι is some trapdoor, the updater will sample ι′ and computes (Gι)ι

′
. Depending

on the phase number ϕ ∈ {1, 2}, the algorithm will either update srsu or srss. When updating
srsu, we also derive a consistent srss using the Specialize algorithm14 which essentially computes
srss with δ = 1. This fixes a sequential phase update scenario, since updating srsu after srss
overwrites the latter.

Each update is additionally accompanied with an update proof ρ, which allows us to verify update
correctness. For each trapdoor update ι′, ρ contains Gιι

′
(the element of the new SRS), Gι

′
, Hι′ ,

and a NIZK proof of knowledge πι′ for ι′. Since Gι is part of the previous update proof, we can
use pairings to assert well-formedness of Gιι

′
, Gι

′
, and Hι′ . The first element of the update proof

duplicates the element of the new SRS, but since we do not store every updated SRS but only
update proofs, we must keep these elements.

Finally, we have a SRS verification algorithm VerifySRS in Fig. 7, that takes as an input srs and
a set of update proofs Q, and then (i) uses pairing-equations to verify that srs is well-formed
respect to some trapdoors, (ii) checks that each update proof ρ ∈ Q contains a valid NIZK
proof of discrete logarithm, and (iii) uses pairing-equations to verify that update proofs in Q
are consistent with srs. In Appendix D, we show how to make VerifySRS more efficient by using
batching techniques. This will allow to substitute most of pairings in VerifySRS with significantly
cheaper small-exponent multi-exponentiations.

6 Security

We prove the security of Groth’s SNARK from Section 5 in our NIZK with a ceremony framework
of Section 3.

Theorem 3 (Completeness). Groth’s SNARK has perfect completeness, i.e., it has update
completeness and prover completeness.

Proof. Let us first make a general observation that if some bitstring s = (srs, {ρi}i) satisfies
VerifySRS(s) = 1, then there exists a unique α, β, x, δ ∈ Z∗p that define a well-formed srs.
See Lemma 7, Appendix C.

Update completeness: Let A be an adversary that outputs s = (ϕ, srs, {ρi}i) such that
VerifySRS(s) = 1. By the observation above, there exists some α, β, x, δ ∈ Z∗p that map to a
well-formed srs. It is easy to observe that by construction Update(QAP, ϕ, (srs, {ρi}i)) picks a
new α′, β′, x′ ∈ Z∗p (or δ′ if ϕ = 2) and rerandomizes srs such that the new srs′ has a trapdoor
αα′, ββ′, xx′ ∈ Z∗p (or δδ′ ∈ Z∗p). Since the srs′ is still well-formed and ρ is computed indepen-
dently, VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 1. See details in Lemma 8, Appendix C.

Prover completeness: Suppose that A output (srs, {ρi}i, φ, w) such that (φ,w) ∈ RQAP, and
VerifySRS(srs, {ρi}i) = 1. It follows that srs is a well-formed SRS for Groth’s SNARK. From here,
the prover completeness follows from the completeness proof in [Gro16]. ut

Subversion zero-knowledge of Groth’s SNARK was independently proven in [ABLZ17] and [Fuc18]
under slightly different knowledge assumptions. Our approach here differs only in that we extract
the trapdoor from Πdl proofs. For sake of completeness, we sketch the main idea below.
14 This generality simplifies our model. In practice srss can be derived using Specialize only once just

before starting phase 2.

Snarky Ceremonies 17

Default SRS: Run Setup in Fig. 5 with τ = (1, 1, 1, 1) to obtain srsd.

Update(RQAP, ϕ ∈ {1, 2}, (srs = (srsu, srss), Q)):
If ϕ = 1:

1. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

2. Sample α′, β′, x′ ←$Z∗p;
3. For ι ∈ {α, β, x}: πι′ ← Prove

RO(·)
dl (Gι

′
, Hι′ , ι′);

4. ρα′ ← (Gα
′
αx:0, G

α′ , Hα′ , πα′);
5. ρβ′ ← (Gβ

′

βx:0, G
β′ , Hβ′ , πβ′);

6. ρx′ ← (Gx
′
x:1, G

x′ , Hx′ , πx′);
7. ρ← (ρα′ , ρβ′ , ρx′);

8. srs′u ←
(
{G(x′)i

x:i , H
(x′)i

x:i }
2n−2
i=0 , {Gα

′(x′)i

αx:i , G
β′(x′)i

βx:i , H
α′(x′)i

αx:i , H
β′(x′)i

βx:i }n−1
i=0

)
9. srs′s ← Specialize(QAP, srs′u);

10. return ((srs′u, srs
′
s), ρ);

If ϕ = 2:
11. Parse srss =

(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0

)
;

12. Sample δ′ ←$Z∗p;
13. πδ′ ← Prove

RO(·)
dl (Gδ

′
, Hδ′ , δ′);

14. ρ← (Gδ
′
δ , G

δ′ , Hδ′ , πδ′);
15. srs′s ←

(
Gδ
′
δ , H

δ′
δ , {G

1/δ′

sum:i}
m
i=`+1, {G

1/δ′

t(x):i}
n−2
i=0

)
;

16. return ((srsu, srs
′
s), ρ);

Specialize(RQAP, srsu): // Computes srss with δ = 1

17. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

18. srss ←
(
G,H, {

∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j }

m
i=`+1, {

∏n
j=0G

tj
x:(i+j)}

n−2
i=0

)
;

19. return srss;

Fig. 6. Default SRS and update algorithm for Groth’s SNARK

Theorem 4 (sub-ZK). If Πdl is a non-interactive proof of knowledge, then Groth’s SNARK is
subversion zero-knowledge.

Proof (sketch). Let Z be a PPT subverter and A an unbounded adversary in the subversion zero-
knowledge definition. We suppose that Z(1λ) outputs (srs, {ρi}i, st) such that VerifySRS(srs, {ρi}i) =
1. The latter guarantees that srs is well-formed and that update proofs verify. To prove subversion
zero-knowledge, we need to construct an extractor EZ that give viewZ extracts the simulation
trapdoor for srs. Idea behind EA is that we use straight-line extractability of Πdl to extract
ι1, ..., ιm for ι ∈ {x, α, β, δ} from the proofs {ρi}i and then compute ι =

∏
i ιi to obtain the

trapdoor τ = (x, α, β, δ). Given that EA outputs the correct trapdoor τ , proofs can be perfectly
simulated as is proven in [Gro16]. ut

6.1 Update Knowledge Soundness

Theorem 5. Let us assume the (2n− 1, 2n− 2)-edlog assumption holds. Then Groth’s SNARK
has update knowledge soundness with respect to all PPT algebraic adversaries in the random
oracle model.

18 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

VerifySRSRO(·)(QAP, srs, Q):
1. Parse srs = (srsu, srss) and Q = (Qu, Qs) = {ρu,i}kui=1 ∪ {ρs,i}

ks
i=1;

2. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
and assert that elements

belong to correct groups;
3. For i = 1, . . . , ku:

(a) Parse ρu,i = (ρ
(i)

α′ , ρ
(i)

β′ , ρ
(i)

x′);
(b) For ι ∈ {α, β, x}:

i. Parse ρ(i)ι′ = (G
(i)
ι , G

(i)

ι′ , H
(i)

ι′ , π
(i)

ι′);
ii. Assert VerifyRO(·)

dl (G
(i)

ι′ , H
(i)

ι′ , π
(i)

ι′) = 1;
iii. If i 6= 1: Assert ê(G(i)

ι , H) = ê(G
(i−1)
ι , H

(i)

ι′);
4. Assert Gx:1 = G

(ku)
x 6= 1; Gαx:0 = G

(ku)
α 6= 1; Gβx:0 = G

(ku)
β 6= 1;

5. For i = 1, . . . , 2n− 2: Assert ê(Gx:i, H) = ê(G,Hx:i) and ê(Gx:i, H) = ê(Gx:(i−1), Hx:1);
6. For i = 0, . . . , n − 1 and ι ∈ {α, β}: Assert ê(Gιx:i, H) = ê(G,Hιx:i) and ê(Gιx:i, H) =

ê(Gx:i, Hιx:0);
7. Parse srss ←

(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0 ,
)
and assert that elements belong to

correct groups;
8. For i = 1, . . . , ks:

(a) Parse ρs,i = (G
(i)
δ , G

(i)

δ′ , H
(i)

δ′ , πδ′);
(b) Assert VerifyRO(·)

dl (G
(i)

δ′ , H
(i)

δ′ , πδ′) = 1;
(c) if i 6= 1 assert ê(G(i)

δ , H) = ê(G
(i−1)
δ , H

(i)

δ′);
9. Assert ê(Gδ, H) = ê(G,Hδ) and Gδ = G

(ks)
δ 6= 1;

10. For i = `+ 1, . . . ,m: Assert ê(Gsum:i, Hδ) = ê(
∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j , H);

11. For i = 0, . . . , n− 2: Assert ê(Gt(x):i, Hδ) = ê(Gt(x), Hx:i), where Gt(x) =
∏n
j=0G

tj
x:j ;

Fig. 7. SRS verification algorithm for Groth’s SNARK

EA(viewA)

1. Extract the set of algebraic coefficients Tπ ← EagmA (viewA) and obtain {Ci:x:j}m1,m
i,j=(1,l+1) from it,

corresponding to the elements {(βui(x) + αvi(x) +wi(x))/δ} in the second phase, where m1 is
the number of update queries made in the first phase, and m is the QAP parameter.

2. From viewA deduce icrit2 — Osrs query index that corresponds to the last honest update in the
final SRS.

3. Return coefficients w = {Cicrit2 :x:j}mj=l+1.

Fig. 8. The extractor EA for update knowledge soundness

Proof. Let A be an algebraic adversary against update knowledge soundness and let us denote
the update knowledge soundness game Gameuks by Game0. We construct an explicit white-box
extractor EA and prove it to succeed with an overwhelming probability. The theorem statement
is thus AdvGame0

A,EA (λ) = negl(λ). We assume that A makes at most q1 update queries in phase 1
and at most q2 in phase 2. Often we will use ι to denote any of the elements x, α, β or δ.

Description of the extractor EA. We present the extractor EA on Fig. 8. The extractor
takes the adversarial view viewA as an input and extracts AGM coefficients from viewA when
A produces a verifying proof. The goal of the extractor is to reconstruct the witness from this
information.

Snarky Ceremonies 19

The intuition behind its strategy is that, in Prove on Fig. 5, C is constructed as
∑
i ai(αui(x) +

βvi(x) + wi(x))/δ, and we would like to obtain precisely these ai as AGM coefficients corre-
sponding to the (αui(x) + . . .)/δ elements of the final SRS. When A submits the final response
(φ, π = (A,B,C)), the proof element C ∈ G1 has the algebraic representation, corresponding
to following G1 elements: (1) SRS elements that the update oracle outputs, (2) corresponding
update proofs, and (3) direct RO replies. These sets include all the SRS elements that were
produced during the update KS game, not only those that were included in the final SRS. The
coefficient of elements (αui(x) + . . .)/δ that the extractor needs belong to the the first category
and in particular correspond to the second phase updates, since δ is updated there.

Let mϕ be the number of update queries that A makes in phase ϕ ∈ {1, 2}. We introduce the
notion of the critical query — icritϕ ∈ {1, . . . ,mϕ} corresponds to the last honest update that A
includes into the finalized SRS in phase ϕ. Technically, we define it in the following way. For every
phase ϕ, the final SRS is associated with update proofs {ρϕ,i}

kϕ
i=1 (contained in Q∗ in Fig. 2)

and at least one of them must be produced by honest update query for finalization to succeed.
Suppose that ρϕ,imax is the last honest update in that set, that is, the one with the largest index
i. If ρϕ,imax was obtained as the j-th update query, then we define icritϕ := j.

The extractor EA can deduce icritϕ , since viewA includes Osrs responses and Q∗. When EA obtains
icrit2 , it merely returns the AGM coefficients (which it can obtain from viewA since A is algebraic)
corresponding to the (αui(x) + . . .)/δ elements of update oracle response number icrit2 . For now,
there is no guarantee that these elements are in any way connected to the final SRS, but later
we show that EA indeed succeeds.

Description of Game1. We describe Game1 (see Fig. 9 for full details), that differs from Game0
in that one of the honest updates in each phase is a freshly generated SRS instead of being an
update of the input SRS. This simplifies further reasoning (Lemma 4), and also at a later step we
build a reduction B that embeds the edlog challenge z into the trapdoors of the fresh SRS. For
convenience, we describe Game1 in terms of communication between the challenger C (top-level
execution code of Game1) and A.

C of Game1 maintains an update (current call) counter icall, which is reset to zero in the beginning
of each phase. Before the game starts, C uniformly samples two values iguess1 and iguess2 , ranging
from 1, . . . , q1 and 1, . . . , q2 (upperbounds on the number of queries) correspondingly, in such
a way attempting to guess critical queries {icritϕ}ϕ. In case the actual number of queries mϕ

in a particular execution of A is less than iguessϕ , C will just execute as in Game0 for phase ϕ.
C will generate fresh SRS for at most two (randomly picked) update queries through Osrs, and
it will respond to all the other update requests from A honestly. The successful guess formally
corresponds to the event lucky, set during SRS finalization in Game1 (see Fig. 9).

It is not possible for C to generate an update proof for a fresh SRS as in Game0 because it does
not know the update trapdoors ι̂′ for critical queries — these values do not exist explicitly, since
instead of updating an SRS, C generated a new one. Therefore, it uses a specific technique to
simulate update proofs using the procedure SimUpdProof(see Fig. 9). The task of SimUpdProof
is to create ρι̂′ = (Gι̂

′

ι̂ , G
ι̂′ , H ι̂′ , πι̂′), which is a valid update proof from srs∗ to a freshly generated

srs′. Since C does not actually update srs∗, but creates a completely new one with zι trapdoors,
we have Gzι = Gι̂ι̂

′
where ι̂ is the trapdoor value of srs∗ and ι̂′ is the new update trapdoor. Given

the value ι̂ in clear, we can reconstruct Gι̂
′
by computing (Gι̂ι̂

′
)ι̂
−1

= (Gzι)ι̂
−1

.

This is the strategy of C: it uses viewA to extract the trapdoors ιj for all the ku updates that
led to srs∗ϕ, and thus obtains ι̂. Notice that these updates can be both honest and adversarial,

20 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

GameA,EA1 (1λ)

srs← srsd, ϕ = 1,

Q1, Q2 ← ∅; icall ← 0; iguess1 ←$ [0, q1]; iguess2 ←$ [0, q2];

{zι}ι∈{x,α,β,δ} ←$Zp;
Initialize ROt(·);

(φ, π)← AOsrs,RO; w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > 2

Osrs(intent, srs
∗ = (srs∗u, srs

∗
s), Q

∗ = {ρ(i)u }kui=1 ∪ {ρ
(i)
s }ksi=1)

// Update icall ← icall + 1 on each successful return

if ϕ > 2 : return ⊥;
srsnew ← if ϕ = 1 then srs∗else (srsu, srs

∗
s);

if VerifySRSRO(·)(srsnew, Q
∗) = 0 : return ⊥;

if intent = update ∧ ϕ = 1 ∧ icall = iguess1 //Simulated update

srs′u ←
(
{Gz

i
x , Hzix}2n−2

i=0 , {Gzαz
i
x , Gzβz

i
x , Hzαz

i
x , Hzβz

i
x}n−1
i=0

)
;

srs′s ← Specialize(RQAP, srs
′
u);

for ι ∈ {x, α, β} do ρι′ ← SimUpdProof(zι, ϕ = u);

return (srs′, (ρα′ , ρβ′ , ρx′));

if intent = update ∧ ϕ = 2 ∧ icall = iguess2 //Simulated update

Let {ẑι}ι∈x,α,β correspond to the trapdoors at the end of phase 1;

srs′s ←
(
Gzδ , Hzδ , {G

ẑixt(ẑx)

zδ }n−2
i=0 , {G

ẑβui(ẑx)+ẑαvi(ẑx)+wi(ẑx)

zδ }mi=`+1

)
;

ρ′δ ← SimUpdProof(zδ, ϕ = s);

return ((srs∗u, srs
′
s), ρ

′
δ);

if intent = update // Honest update

(srs′, ρ′)← Update(ϕ, srsnew, Q
∗); Qϕ ← Qϕ ∪ {ρ′};

return (srs′, ρ′);

if intent = finalize ∧Qϕ ∩Q∗ 6= ∅
if ϕ = 1 then srsu ← srs∗u else srss ← srs∗s ;

ϕ← ϕ+ 1; icall ← 0;

if ϕ > 2

Deduce {icritϕ}ϕ from Q∗ as last honest updates in phase ϕ;

lucky :=
(
iguess1 = icrit1 ∧ iguess2 = icrit2

)
;

SimUpdProof(zι, ϕ)

// PoKs may correspond both to honest and malicious updates

{ι̂j}kϕj=1 ← extract trapdoors from {ρ(i)ϕ }
kϕ
i=1 PoKs using viewA;

ι̂←
kϕ∏
ι̂j ; Gι̂

′
← (Gzι)ι̂

−1

; H ι̂′ ← (Hzι)ι̂
−1

;

πι′ ← Sim
RO1(·)
dl (φdl = (⊥, Gι̂

′
, H ι̂′));

ρι′ ← (Gzι , Gι̂
′
, H ι̂′ , πι′); return ρι′ ;

Fig. 9. Description of Game1, a modified update KS game.

Snarky Ceremonies 21

but importantly, none of them are simulated (because we perform this procedure only once per
phase), which guarantees that extraction succeeds. Next, SimUpdProof computes a product ι̂ of
these extracted values, and using its inverse produces (Gι̂

′
, H ι̂′), which are the second and third

elements of the update proof. The first element of ρι̂′ is just an element of the new SRS (e.g. for
ι = x, it is Gι

′

x:1, and for ι ∈ {α, β} it is Gι′ιx:0), so we set the value to Gzι . The last element, the
proof-of-knowledge of ι̂′, we create by black-box simulation, since Πdl is perfectly ZK. Namely,
since the challenger already has φdl = (⊥, Gι̂′ , H ι̂′), it passes it into Simdl, and attaches the
resulting πι′ to the update proof. Since we know zι in Game1 (and therefore know φdl exponent
ι̂′), it is not necessary to simulate the proof in Game1 — technically, the procedure only requires
Gzι . However, simulation will be critical in the final part of our theorem, reduction to edlog,
since in that case zι contains embedded edlog challenge for which the challenger does not know
the exponent. This is why we introduce it here in Game1.

We prove in Appendix E that the game Game1 that we introduced is indistinguishable from
Game0 for A by relying on the zero-knowledge and simulation-extractability properties of Πdl.
We recall that (1, 0)-dlog assumption is implied by (2n− 1, 2n− 2)-edlog assumption.

Lemma 3. Assuming (1, 0)-dlog, the difference between advantage of A in winning Game0 and
Game1 is negligible: AdvGame0

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Reconstructing the proof algebraically. For the next steps of our proof we will need to
be able to reconstruct the proof elements, and the verification equation generically from the
AGM coefficients we extract from A. Almost all the elements that A sees depend on certain
variables ~Ψ that are considered secret for the adversary (update trapdoors, RO exponents, critical
query honest trapdoors). Since A can describe proof elements A,B,C as linear combinations of
elements it sees, that depend on ~Ψ , we are able to reconstruct the proof elements as functions
A(~Ψ), B(~Ψ), C(~Ψ) (Laurent polynomials, as we will show later). That is, for the particular values
~ψ that we chose in some execution in Game1, A(~ψ) = A (but we can also evaluate A(~Ψ) on a
different set of trapdoors). From these functions A(~Ψ), B(~Ψ), C(~Ψ) one can reconstruct a SNARK
verification equation Q(~Ψ), such that Verify(ψ, π) = 1 ⇐⇒ Q(~ψ) = 0.

We note that it is not trivial to obtain the (general) form of these functions, because it depends
on viewA — different traces produce different elements that A sees, which affects with which
functions these elements are modelled. Therefore, we start by defining which variables are used
to model elements that A sees.

We denote by ~Ψ this set of variables which are unknown to A. This includes, first and foremost,
the set of trapdoors that are used for the (critical) simulation update queries: Zx, Zα, Zβ , Zδ
(these abstract the corresponding trapdoors {zι}). To denote the expression that includes final
adversarial trapdoors ιAj , we will use Ẑι that is equal to the previously defined Zι, but now as a
function of Zι: Ẑι(Zι) = Zι

∏
ιAj for ι ∈ {x, α, β}, and Ẑδ(Zδ) = Zδ/

∏
δAj .15

The full list of variables that constitute ~Ψ is the following:

1. Critical honest trapdoor variables: Zα, Zβ , Zx, Zδ.
2. Honest (non-critical) update trapdoors ~T = {Ti,ι}.
3. RO replies, which we, for convenience of indexing, split into three disjoint sets:

15 If Ẑι is not equal Zι
∏
ιAj as a function we have Ẑι(Ψ) − Zι

∏
ιAj 6= 0 but Ẑι(ψ) − zι

∏
ιAj ≡ 0 for

ι ∈ {x, α, β, δ}, and we break the (2n− 1, 2n− 2)-edlog problem as in Lemma 6.

22 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

– RO values for the critical queries ~K = {Kι}x,α,β,δ: these RO replies are used in PoK
simulation by Game1.

– RO values for honest update proofs ~RT = {RT :i:ι}i,ι. First phase update query number
i ∈ {1, . . . ,m1} corresponds to three values RT :i:x, RT :i:α, RT :i:β , and second phase
update query number j ∈ {1, . . . ,m2} corresponds to RT :j:δ.

– RO responses ~RA that A directly requests from RO. These are used by A, in particular,
but not only, to create PoKs for adversarial SRS updates.

We denote by ~R = ~RA ∪ ~RT . Therefore, ~Ψ = ({Zι}ι, ~K, ~T , ~R). Since we will be often working
only with the first set of variables {Zι}, we will denote it as ~Ψ2, and all other variables from ~Ψ

as ~Ψ1.

Success in lucky executions. In general, the set structure of Q(~Ψ) can vary enormously, and it
depends on many things, including the way A interacts with the challenger. Each interaction can
present a different set of coefficients in A that will be modelled by different functions. Therefore,
we would like to take advantage of the lucky event to simplify our reasoning and reduce the
space of possible interactions.

We claim that lucky is independent from A’s success in Game1. In other words, in order to win
Game1 it suffices to only show the existence of a witness extractor in the case where the lucky
indices correspond to A’s critical queries.

AdvGame1
A,EA (λ) = Pr[GameA,EA1 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1 | lucky]

where q1 and q2 are polynomially bounded. Indeed, A is blind to whether we simulate or not,
and so we can assume independence of events: Pr[GameA,EA1 (1λ) = 1 | simi] is the same for all
simulation strategies simi, including the lucky one.

AdvGame1
A,EA (λ) =

q1q2∑
i=0

Pr[GameA,EA1 (1λ) = 1 | simi]
1

q1q2

=
1

q1q2

∑
i

Pr[GameA,EA1 (1λ) = 1 | lucky] = Pr[GameA,EA1 (1λ) = 1 | lucky]

Our choice of {iguessϕ}ϕ, and thus the chosen simulation strategy simi is independent from the
success of A. This does not imply that we ignore some traces of A, which would break the
reduction. Instead, for each possible trace of A, and thus each possible way it communicates
with the challenger and the oracles, we only consider those executions in which we guess the
indices correctly.

Defining the function Q(~Ψ) for Game1. Therefore, when in Game1 the challenger guesses
critical queries correctly (lucky), and A returns a verifying proof, the complexity is greatly
simplified, and we can now define at least the high-level form of the function Q:

Q(~Ψ) :=

(
A(~Ψ)B(~Ψ)− ẐαẐβ −

∑̀
i=0

ai(Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx))− C(~Ψ)Ẑδ

)
(1)

such that GA(~ψ) = A and similarly for B and C, where ~ψ is the concrete set of secret values used
for a particular execution.16 The function Q(~Ψ) reconstructs verification equation of the proof
in this particular game execution: in particular, Q(~ψ) = 0 ⇐⇒ Verify(srs, φ, π) = 1.
16 The form of the proof-independent parts of the verification equation (see Eq. (4)) is due to our critical-

step-simulation strategy that we introduce in Game1. That is, these values they only depend on the

Snarky Ceremonies 23

Note that the form of functions A(~Ψ), B(~Ψ), and C(~Ψ) depends on the interaction with A, and
thus on the particular execution trace. But the general form of Q we have just specified is enough
to argue the critical lemmas. The proof of the following Lemma, which shows exactly that, is
deferred to Appendix F.

Lemma 4. In Game1, conditioned on event lucky, the general form of the function Q(~Ψ) recon-
structing the main verification equation is as presented in Eq. (1), under (2n− 1, 2n− 2)-edlog.
Moreover, A,B,C are Laurent polynomials in ~Ψ2 when viewed over Zp[~C, ~Ψ1], where ~C are AGM
coefficients, abstracted as variables. In other words, A,B,C ∈ (Zp[~C, ~Ψ1])[~Ψ2] are Laurent. There-
fore, Q also is Laurent when viewed as (Zp[~C, ~Ψ1])[~Ψ2] element.

GameA,EA2 (1λ)

srs← srsd, ϕ = 1,

Q1, Q2 ← ∅; icall ← 0; iguess1 ←$ [0, q1]; iguess2 ←$ [0, q2]; {zι}ι∈{x,α,β,δ} ←$Zp;
ROt, Osrs and SimUpdProof are constructed as in Game1;

(φ, π)← AOsrs,RO;

w ← EA(viewA);

bad :=
(
lucky ∧Q(ψ1, {zι}) = 0 ∧Q(ψ1, {Zι}) 6≡ 0

)
return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > ϕmax ∧ lucky;

Fig. 10. Description of Game2, an extension of Game1 with bad event. Q(~Ψ1, ~Ψ2) is the func-
tion (Laurent polynomial in ~Ψ2) that corresponds to the way to reconstruct π and verification
equation, where Ψ2 corresponds to the trapdoor variables {Zι}.

Description of Game2. The following game, presented on Fig. 10 extends Game1 with two
additions. Firstly, it introduces the event bad. The condition that we are trying to capture
is whether A uses the elements that depend on trapdoors zι blindly or not. When bad does
not happen, the adversary is constructing π in such a way that it works for any value of z′ι
(Q(ψ1, {Zι}) is a zero as a polynomial). Otherwise, we can argue that A’s cheating strategy
depends on the specific value of zι, even though it is hidden in the exponent (Q(ψ1, {zι}) = 0,
but Q(ψ1, {Zι}) is a non-zero polynomial).

Secondly, we require that adversary wins only if the event lucky happens. Since lucky is an inde-
pendent event, then Pr[GameA,EA2 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1∧lucky] = Pr[GameA,EA1 (1λ) =
1]/(q1q2). The last transition is due to independence of winning Game1 and lucky explained ear-
lier (Pr[GameA,EA1 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1 | lucky]). We can use the total probability
formula to condition winning in Game2 on the event bad.

Pr[GameA,EA2 (1λ) = 1] =Pr[GameA,EA2 (1λ) = 1 | ¬bad] · Pr[¬bad]

+Pr[GameA,EA2 (1λ) = 1 | bad] · Pr[bad]

≤Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad].

challenge variables Zι plus last adversarial trapdoors (e.g.
∏
αAi etc). This is where guessing the last

query really helps: otherwise these terms would also depend on Ψ1, e.g. on ~T .

24 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

The next two lemmas will upperbound this probability. The Lemma 5 will bound the first term
of the sum and the Lemma 6 bounds the second term.

Extractor succeeds in good executions. In this subsection we present a lemma, that states
that whenever C guesses the critical indices correctly, and event bad does not happen, the output
of the extractor EA is a QAP witness. The proof of Lemma 5 is presented in Appendix G.

Lemma 5. In Game2, when ¬bad happens and A produces a verifying proof, then EA succeeds:
Pr[GameA,EA2 (1λ) = 1 | ¬bad] = negl(λ).

Description of the EDLOG reduction. We show that the event bad can only happen with
a negligible probability by making a reduction to the edlog assumption. If A triggers bad, then
it could construct a proof in a manner that is specific to the SRS ~ψ2 and does not generalize to
any other ~ψ′2. This means that A has knowledge of the exponent element, which is impossible
assuming edlog. The proof of the following lemma is delayed to Appendix H.

Lemma 6. The probability of bad in Game2 is negligible under the (2n − 1, 2n − 2)-edlog as-
sumption.

Now, combining the results of Lemma 5 and Lemma 6 with previous game transitions:

Pr[GameA,EA0 (1λ) = 1] ≤ Pr[GameA,EA1 (1λ) = 1] + negl(λ)

= (q1q2) Pr[GameA,EA2 (1λ) = 1] + negl(λ)

≤ (q1q2)
(
Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad]

)
+ negl(λ)

= (q1q2)(negl(λ) + negl(λ)) + negl(λ) = negl(λ)

This concludes the proof of the update knowledge soundness theorem. ut

7 Future Work

The proof of update soundness we present is quite complex structurally, and even though we
split it into subsections and lemmas, it seems to be possible to simplify it and make more
modular. However, we believe it is an inherent property of such proofs, especially in the AGM,
and thus the question we would like to ask rather is “how simpler proof structure can be achieved
by adapting the proof model?”. Another immediate question is whether it is possible to show
simulation-extractable version of update (knowledge) soundness, similarly to how Baghery et
al. [BKSV20] show for Groth16. This would allow (after a certain transformation to achieve
black-box extractability) lifting our security properties to the UC framework.

Acknowledgements

This work has been supported in part by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 780477 (project PRIViLEDGE). Janno Siim
was additionally supported by the Estonian Research Council grant PRG49. An early version
of this work [Mal18] included a Sapling security proof that was funded by the Electric Coin
Company.

Snarky Ceremonies 25

References

ABL+19. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal Zajac. UC-
secure CRS generation for SNARKs. In Johannes Buchmann, Abderrahmane Nitaj, and
Tajje eddine Rachidi, editors, AFRICACRYPT 19, volume 11627 of LNCS, pages 99–117.
Springer, Heidelberg, July 2019.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-
resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part III, volume 10626 of LNCS, pages 3–33. Springer, Heidelberg, December 2017.

AFK+20. Antonis Aggelakis, Prastudy Fauzi, Georgios Korfiatis, Panos Louridas, Foteinos Mergoupis-
Anagnou, Janno Siim, and Michal Zajac. A non-interactive shuffle argument with low trust
assumptions. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages
667–692. Springer, Heidelberg, February 2020.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society
Press, May 2014.

BCG+15. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium
on Security and Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

BCG+20. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard
Wu. ZEXE: Enabling decentralized private computation. In 2020 IEEE Symposium on
Security and Privacy, pages 947–964. IEEE Computer Society Press, May 2020.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association, August 2014.

BFL20. Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational
assumptions in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 121–151. Springer, Heidelberg,
August 2020.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016.

BG04. Ian F Blake and Theo Garefalakis. On the complexity of the discrete logarithm and diffie–
hellman problems. Journal of Complexity, 20(2-3):148–170, 2004.

BGG17. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for construct-
ing the public parameters of the pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602, 2017. http://eprint.iacr.org/2017/602.

BGM17. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050,
2017. http://eprint.iacr.org/2017/1050.

BKSV20. Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another look at
extraction and randomization of groth’s zk-SNARK. Cryptology ePrint Archive, Report
2020/811, 2020. https://eprint.iacr.org/2020/811.

BMMV19. Benedikt Bünz, Mary Maller, Pratyush Mishra, and Noah Vesely. Proofs for inner pairing
products and applications. Cryptology ePrint Archive, Report 2019/1177, 2019. https:
//eprint.iacr.org/2019/1177.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

http://eprint.iacr.org/2017/602
http://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177

26 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Che06. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer, Heidelberg,
May / June 2006.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages
738–768. Springer, Heidelberg, May 2020.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg,
December 2014.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applica-
tions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and
signed ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer,
Heidelberg, May 2020.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Da-
hab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, Heidelberg,
March 2018.

Gab19. Ariel Gabizon. On the security of the BCTV pinocchio zk-SNARK variant. Cryptology
ePrint Archive, Report 2019/119, 2019. https://eprint.iacr.org/2019/119.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg,
May 2013.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable
and universal common reference strings with applications to zk-SNARKs. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
698–728. Springer, Heidelberg, August 2018.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May
1985.

GPS06. S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org/2006/165.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg,
December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

HMW18. Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018. https://arxiv.org/abs/1805.
04548.

HYL20. Runchao Han, Jiangshan Yu, and Haoyu Lin. RandChain: Decentralised randomness beacon
from sequential proof-of-work. Cryptology ePrint Archive, Report 2020/1033, 2020. https:
//eprint.iacr.org/2020/1033.

KKK21. Thomas Kerber, Aggelos Kiayas, and Markulf Kohlweiss. Composition with knowledge as-
sumptions. Cryptology ePrint Archive, Report 2021/165, 2021. https://eprint.iacr.org/
2021/165.

https://eprint.iacr.org/2019/119
http://eprint.iacr.org/2006/165
https://eprint.iacr.org/2019/953
https://arxiv.org/abs/1805.04548
https://arxiv.org/abs/1805.04548
https://eprint.iacr.org/2020/1033
https://eprint.iacr.org/2020/1033
https://eprint.iacr.org/2021/165
https://eprint.iacr.org/2021/165

Snarky Ceremonies 27

KKM07. Shunji Kozaki, Taketeru Kutsuma, and Kazuto Matsuo. Remarks on cheon’s algorithms for
pairing-related problems. In International Conference on Pairing-Based Cryptography, pages
302–316. Springer, 2007.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In
2016 IEEE Symposium on Security and Privacy, pages 839–858. IEEE Computer Society
Press, May 2016.

KPPS20. Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn Song.
MIRAGE: Succinct arguments for randomized algorithms with applications to universal zk-
SNARKs. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020, pages
2129–2146. USENIX Association, August 2020.

KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
August 2017.

LCKO19. Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. SAVER: Snark-friendly, additively-
homomorphic, and verifiable encryption and decryption with rerandomization. Cryptology
ePrint Archive, Report 2019/1270, 2019. https://eprint.iacr.org/2019/1270.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189. Springer, Heidelberg, March 2012.

Mal18. Mary Maller. A proof of security for the sapling generation of zk-snark parameters in
the generic group model. https://github.com/zcash/sapling-security-analysis/blob/
master/MaryMallerUpdated.pdf, 2018. Accessed 26/02/2020.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2111–2128. ACM Press, November 2019.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019,
volume 124, pages 60:1–60:15. LIPIcs, January 2019.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer,
Heidelberg, May 2019.

https://eprint.iacr.org/2019/1270
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf

28 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Supplementary Material
A Proof of Theorem 1

Proof. Suppose that a PPT adversary A breaks (q1, q2)-edlog assumption with a probability ε.
We will construct an adversary B that breaks (q1 + 1, q2 + 1)-dlog assumption with the same
probability.

The adversary B gets as an input a challenge (bp, {Gzi}q1+1
i=1 , {Hzi}q2+1

i=1). Firstly, B samples
r, s←$Zp and we implicitly define x such that z = rx + s; the value of x is unknown to B.
After this B constructs a pairing description bp∗ which is exactly like bp but the generator G
is changed to Ĝ := Gz and H to Ĥ = Gz.17 Now, let us observe that Ĝ

1
rx+s = Ĝ1/z = G and

Ĝx
i

= Ĝ((z−s)/r)i = Gz((z−s)/r)
i

for i = 1, . . . , q1 are all values that B either already knows or
can compute from r, s and {Gzi}q1+1

i=0 . Considering that the same is true for G2 elements, B is
able to run A on an input (bp, {Ĝxi}q1i=1, {Ĥxi}q2i=1, r, s, Ĝ

1
rx+s , Ĥ

1
rx+s) and obtain some output

x′. Finally, B returns rx′ + s.

The adversary A will output x′ = x with a probability ε since the input to A is indistinguishable
from an honest (q1, q2)-edlog challenge. If this happens, then B will succeed in computing z.
Thus, B will break the (q1 + 1, q2 + 1)-dlog assumption with the same probability ε. Given the
statement of our theorem, ε must be negligible and it follows that (q1, q2)-edlog assumption
holds. ut

B Proof of Theorem 2

Proof. (i) Completeness: Holds straightforwardly.

(ii) Zero-Knowledge: It is easy to see that Πdl is perfect zero-knowledge with respect to Sim
in Fig. 4. When the simulator gets an input φ = (m,Gw, Hw) (note that φ ∈ L by definition,
so the exponent w is equal in Gw and Hw), it queries r for Gr = RO(φ) using RO1, and returns
Gwr. No adversary can distinguish between honest and simulated proofs since they are equal.

(iii) Strong Simulation Extractability: Let A be an algebraic adversary playing GamesSE,
and let us denote ~z = (z1, . . . , zd(λ)). As A is algebraic, at the end of GamesSE it returns a
statement and a proof (φ, π) such that φ = (m,Gy

′
, Hy) for some unknown variables y, y′, and

π ∈ G1. The fact that y′ = y immediately follows from the instance well-formedness pairing
equation in Verify, and implies φ ∈ L (although does not affect the proof in any other way). For
the elements Hy and π, A returns their representations (ρ, b1, . . . , bq2) and (α, a1, . . . , aq1 , k1, . . .
kq3 , p1, . . . pq4) that satisfy, correspondingly,

Hy = Hρ+b1g1(~z)+···+bq2gq2 (~z) (2)

and

π = Gα+a1f1(~z)+···+aq1fq1 (~z) ·
q3∏
j=1

K
kj
j ·

q4∏
j=1

P
pj
j (3)

In the former, ρ stands for the power of H, and bi are linear coefficients of the polynomial
evaluations returned by OG2

poly. Similarly, for π, the representation is split into powers of the

17 We implicitly assume that generators in bp are uniformly random. This might not always be the case
in a real-life pairing library.

Snarky Ceremonies 29

generator G, and coefficients of OG1

poly, but it also accounts for the answers to hash queries Kj , 1 ≤
j ≤ q3, and for the proof elements Pj , 1 ≤ j ≤ q4, returned by the simulation oracle.

Let S ⊂ [1, . . . , q3], replacing [1, . . . , q4], be a set of indices denoting queries made by the simulator
to the random oracle; |S| = q4, and we know q3 ≥ q4 since every simulation query produces one
RO query. Also in the following, we let r∗ and rj be such that RO(φ) = Gr

∗
and RO(φj) = Grj

for 1 ≤ j ≤ q3. RO responses {Grj} , corresponding to the second set of elements {rj}, exist
in viewA (in the list of queries and responses to RO), since these values were generated by RO
during the game. On the other hand, Gr

∗
may not exist in viewA, but then the probability that

π verifies is negligible, as fresh Gr
∗
will be generated during the verification. Therefore, since we

assume that A wins GamesSE, r∗ ∈ {rj}j∈[1,q3]\S . S is excluded from the set of indices, since A
also must not query Sim on φ.

Thus, Kkj
j in the previously mentioned linear representations is just Grjkj . In order to give

algebraic representation of the simulated proofs Pj we must consider algebraic representations of
inputs to Sim first. Because the simulated proof is constructed as (Gy1)r where Gy1 is an input
provided by A, Gy1 is the only input element that must be viewed algebraically. Notice that
since we have a ê(Gy1 , H) = ê(G,Hy2) check in the simulator too, the algebraic representation
of y1 must be consistent with the one of y2, i.e. whatever A uses to construct Gy1 it must also
have in G2 to construct Hy2 . In particular, this means that A cannot include (previous) direct
RO responses and (previous) Sim responses into Gy1 , since these both contain ri which A does
not have in G2. Therefore, Pj = Grjyj is algebraically represented as Pj = Grj(ρ̂j+

∑q1
i=1 âj,ifi(~z)).

Note that if A has not yet performed all the q1 queries to OG1

poly, then we can assume that âj,i = 0
for the subsequent queries. Finally, it is important to emphasize that fi(~z) do not have any
further algebraic decomposition: A specifies these polynomials to Opoly in terms of fi,j ∈ Zp, so
these elements are just assumed to be standard public variables in our reasoning.

Because of the verification equation we have RO(φ)y = π. We thus have the two equations
describing challenge values Gy and π, corresponding to Equations 2 and 3, in the exponent form:
y = ρ+

∑q2
i=1 bigi(~z) and

yr∗ = α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kjrj +
∑
j∈S

pjrj(ρ̂j +

q1∑
i=1

âj,ifi(~z))

where in the second we used algebraic representations of Kj and Pj .

Let EA be the SE extractor with the following logic. First it obtains the set S of (indices of)
simulated queries; this can be deduced from the interaction pattern with the oracles, which is a
part of viewA. Then, in the adversarial view viewA find such an RO query index j ∈ [1, q3] \ S
that RO input is equal to φ; if successful, return kj , and otherwise fail, returning 0. The intuition
behind the extractor is the following. Since honest proofs are RO(φ)w for direct RO queries A
makes, we expect kj to be the witness. If j ∈ S, A re-used the simulation query and does not
win.18 When Gr

∗ 6= Grj (which implies r∗ 6= rj) for all j ∈ [1, q3] \ S, A did not query RO, and
thus cannot win except with negligible probability.

We emphasize two limitations that any EA has, which shape the algorithm that we have just
presented. First, the extractor does not have access to exponent values ri themselves, since they
are embedded inside RO, but EA only sees interaction with the oracle via viewA; therefore, it
works only with Gri and S. Second, EA cannot compute exponent y right away merely from the
algebraic representation of Hy passed as a part of φ. Even though the coefficients (ρ, b1, . . . , bq2)
18 We exclude RO collision as they only happen with negligible probability.

30 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

are available to EA in the SE game, it does not have access to the trapdoor ~z of OG1

poly, which is
intended to model the external honest SRS setup procedure.

To prove that EA is a valid SE extractor for A, we shall describe the behaviour of an adversary
C that succeeds against the discrete logarithm assumption whenever EA fails to return a valid
witness for A. Thus if A has non-negligible advantage in the SE game with respect to EA, then
C also succeeds with non-negligible probability. As usual, C will simulate the SE game to A, and
it will succeed when A succeeds in the simulated game.

The adversary C takes as input a challenge C and aims to return c such that C = Gc. To begin
it samples (z1, . . . , zd)←$Zp and then runs A on input bp. C simulates the oracles for A in the
following way:

– When A queries OG
poly with G = G1 on f(~Z), C returns Gf(z1,...,zd); on G = G2 and g(~Z) it

returns Hg(z1,...,zd).

– When A queries RO on φj then C checks whether (φj , G
ctj+sj , (tj , sj)) ∈ QRO and if yes

returns Gctj+sj .

Otherwise C samples tj , sj ←$Zp, adds (φj , Gctj+sj , (tj , sj)) to QRO and returns Gctj+sj , thus
embedding the challenge into the response.

– When A queries simulation oracle Ose on φj = (mj , G
yj , Hyj) then its algebraic extractor

outputs representations (ρ̂j , âj,1, . . . , âj,q1) such that yj = ρ̂j+
∑q1
i=1 âj,ifi(~z) for fi(Z) being

ith query to OG1

poly (the representation is, as previously for y, due to the well-formedness

verification equation). In this case C obtains Kj = RO(φj) and returns K ρ̂j+
∑q1
i=1 âj,ifi(~z)

j

(notice that C, unlike EA, knows ~z but not ctj + sj , thus the simulation strategy is different
from Sim).

When, finally, A returns (φ = (·, ·, Hy), π), C obtains (ρ, {aj}, {bj}, {kj}, {pj}) such that y =
(ρ+

∑q2
j=1 bjgj(~z)) and

y(ct∗ + s∗) = α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kj(ctj + sj) +
∑
j∈S

pj(ctj + sj)(ρ̂j +

q1∑
i=1

âj,ifi(~z)).

This is the same representation as EA obtains, with the previous randomness now depending on
the challenge c. Additionally we assume that Gr

∗
= RO(φ) is of form r∗ = ct∗+ s∗ and that it is

determined by the j∗th RO query of A (thus t∗ and s∗ are, too). This is, again, because A cannot
succeed without querying φ to RO during the game. Substituting y from the first equation into
the second equation gives us a polynomial equation in c which it is possible to solve. Note that
c enters the last equation in three different places. Now C sets

ξ =

(ρ+

q2∑
j=1

bjgj(~z))t
∗ −

q3∑
j=1

kjtj −
∑
j∈S

pjtj(ρ̂j +

q1∑
i=1

âj,ifi(~z))

and returns

c = ξ−1

α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kjsj +
∑
j∈S

pjsj(ρ̂j +

q1∑
i=1

âj,ifi(~z))− s∗(ρ+
q2∑
j=1

bjgj(~z))

 .

Snarky Ceremonies 31

Observe that C succeeds (returns c) whenever ξ−1 exists i.e. whenever ξ 6= 0. Recall that since A
succeeds, t∗ 6= tj for any j ∈ S. Consider the coefficients of ξ that include t∗ in the monomials:

ξ = t∗
[
(ρ+

q2∑
j=1

bjgj(~z))− kj∗
]
+ . . .

If ξ = 0 then this expression is equal to zero with overwhelming probability bounded below by
1− 1

p by the Schwartz-Zippel Lemma. This is because the adversary learns no information about
the secret values, including tj , due to the presence of the sj randomizers, thus ξ must be zero
as a polynomial in all tj , and in particular in tj∗ = t∗. And for a zero polynomial, for all its
monomial the related coefficients are zero. However, if (ρ +

∑q2
j=1 bjgj(~z)) − kj∗ = 0, then EA

succeeds (since then kj∗ = y), which we assumed to be false. Therefore, ξ 6= 0 and C succeeds.

Finally observe that if r∗ is not determined by any adversarial query (A passing φ that was
not sent to RO before), then (ρ +

∑q2
j=1 bjgj(~z)) = 0 except with negligible probability by the

same Schwartz-Zippel argument since A does not see RO exponents. Therefore y = 0 is the only
possible valid witness, so EA succeeds. ut

C Lemmas for Groth16 Completeness

This section presents the additional lemmas for the completeness proof of Theorem 3.

Lemma 7. If SRS passes VerifySRS, then it forms a valid Groth’s SNARK SRS.

Proof. We prove the statement following VerifySRS line by line.

– Line 4 certifies that Gx:1 6= [0]1, Gαx:0 6= [0]1, Gβx:0 6= [0]1. Assume then then their values
are x, α, β correspondingly.

– Line 5 ensures that (1) Gx:i has the same exponent as Hx:i (thus exponent of Hx:1 is x too),
and that (2) exponent of Gx:i is exponent of Gx:i−1 multiplied by x. Thus, Gx:i = [xi]1, and
Hx:i = [xi]2.

– Similarly, line 6 ensures that (1) Gιx:i has the same exponent as Hιx:i (thus exponent of Hιx:0

is ι), and that (2) exponent of Gιx:i is ιxi. Therefore, the exponent of Hιx:i is ιxi too.

– Line 9 certifies that Gδ 6= [0] (thus let uss assume that its exponent is δ), and that exponent
of Hδ is the same.

– Line 10 certifies that Gsum:i is the ith x-power of
∑n−1

0 (βu(x) + αv(x) + w(x))/δ.

– Line 11 ensures that each Gt(x):i is equal to t(x)xi/δ.

Therefore, SRS is in exactly the same form as in Setup presented on Fig. 5. ut

Lemma 8. Groth’s SNARK has update completeness.

Proof. Again, we are analysing Update together with VerifySRS:

ϕ = 1 First, we will ensure that new SRS is well-formed. Line 8 first multiplies every Gx
i

and
Hxi by x′i replacing x with xx′. Next it updates each ιxi to ιι′(xx′)i in Gιx

i

and Hιxi for
ι ∈ α, β. Specialize merely recomputes srss from srsu and its correctness is easy to verify.
Thus, the new srs is well-formed. Second, the update proof is correct because for each ι: (1)

32 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

on step 3.b.ii of VerifySRS the proof of knowledge created on line 3 will be correct, since it is
applied to the same instance; and (2) for i > 1, assuming the previous update was correct,
the verification equation will check that the exponent of G(i)

ι (expected to be ιι′) is equal to
the exponent of G(i−1)

ι (ι) multiplied by the exponent of H(i)
ι′ (ι′).

ϕ = 2 Similarly. The SRS itself updates δ to δδ′, and proofs are verified exactly in the same
manner, but for δ instead of α, β, x.

ut

D Batched VerifySRS

We provide an optimized VerifySRS algorithm for Groth’s SNARK. It follows closely the batch-
ing techniques used in [ABLZ17] for verifying the SRS for subversion zero-knowledge Groth’s
SNARK. Our approach only differs in that we also consider update proofs.

We briefly remind the main idea behind the batching technique. Suppose the verifier has to verify
a set of pairing equations of the form ê(Gi, H) = ê(G,Hi) for i = 1, . . . , n. The naive way of
checking those equations would require 2n pairings. Batching technique can be used substitute
most of those pairings with small exponent multi-exponentiations which is much cheaper. Idea
is to sample s1, . . . , sn←$Zp and instead verify a single equation

n∏
i=1

ê(Gi, H)si =

n∏
i=1

ê(G,Hi)
si .

By using bilinear properties, the latter equation can be simplified to

ê(

n∏
i=1

Gsii , H) = ê(G,

n∏
i=1

Hsi
i).

This equation requires only 2 n-wise multi-exponentions and 2 pairings. It can be shown using the
Schwartz-Zippel lemma that the probability that one of the initial equations does not hold and
ê(
∏n
i=1G

si
i , H) = ê(G,

∏n
i=1H

si
i) holds is bounded by 1/p. Since this is a very low probability,

we can even sample si from a much smaller set to further speed up the exponentiation. For
example, we may sample si ∈ {0, 1}40, which will give an error 1/240.

We apply this technique to VerifySRS in Fig. 11 to construct a batched batchVerifySRS.

Theorem 6. Take any (possibly malformed) srs and Q and any valid QAP. Then,

Pr[VerifySRS(QAP, srs, Q) 6= batchVerifySRS(QAP, srs, Q)] ≤ 12/2κ,

where the probability is taken over random coin-tosses of batchVerifySRS.

Proof. Let us consider a set of equations in a general form ê(Gai , Hbi) = ê(Gci , Hdi) for i ∈
{1, . . . , t} and let

∏t
i=1 ê(G

ai , Hbi)si =
∏t
i=1 ê(G

ci , Hdi)si be the respective batched equation,
where si←$ {0, 1}κ. All of the batched equations in batchVerifySRS follow this form. It is clear
that if the initial equations are satisfied, then also the batched equation is satisfied. Thus,
VerifySRS(QAP, srs, Q) = 1 implies batchVerifySRS(QAP, srs, Q) = 1.

Snarky Ceremonies 33

We can rewrite the batched equation as ê(G,H)
∑t
i=1(aibi−cidi)si = ê(G,H)0. Let us now consider

the polynomial p(X1, . . . , Xn) =
∑t
i=1(aibi−cidi)Xi. If one of the initial equations is not satisfied

then p is a non-zero polynomial and the probability p(s1, . . . , st) = 0 is bounded by 1/2κ. Given
that we batch 12 sets of equations, Pr[VerifySRS(QAP, srs, Q) = 0∧batchVerifySRS(QAP, srs, Q) =
1] ≤ 12/2κ. ut

batchVerifySRSRO(·)(QAP, srs, Q):
1. Parse srs = (srsu, srss) and Q = (Qu, Qs) = {ρu,i}kui=1 ∪ {ρs,i}

ks
i=1;

2. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
and assert that elements

belong to correct groups;
3. Sample s0, . . . , smax ←$ {0, 1}κ where max = max{2n− 2,m, ku, ks};
4. For i = 1, . . . , ku:

(a) Parse ρu,i = (ρ
(i)

α′ , ρ
(i)

β′ , ρ
(i)

x′);

(b) For ι ∈ {α, β, x}: Parse ρ(i)ι′ = (G
(i)
ι , G

(i)

ι′ , H
(i)

ι′ , π
(i)

ι′); R
(i)

ι′ ← RO(G
(i)

ι′ , H
(i)

ι′);
5. For ι ∈ {α, β, x}:

(a) Assert ê(
∏ku
i=2(G

(i)
ι)si , H) =

∏ku
i=2 ê((G

(i−1)
ι)si , H

(i)

ι′);
(b) Assert ê(

∏ku
i=1(G

(i)

ι′)
si , H) = ê(G,

∏ku
i=1(H

(i)

ι′)
si);

(c) Assert ê(
∏ku
i=1(π

(i)

ι′)
si , H) =

∏ku
i=1 ê((R

(i)

ι′)
si , H

(i)

ι′);
6. Assert Gx:1 = G

(ku)
x 6= 1; Gαx:0 = G

(ku)
α 6= 1; Gβx:0 = G

(ku)
β 6= 1;

7. Assert ê(
∏2n−2
i=1 Gsix:i, H) = ê(G,

∏2n−2
i=1 Hsi

x:i) and ê(
∏2n−2
i=1 Gsix:i, H) =

ê(
∏2n−2
i=1 Gsix:(i−1), Hx:1);

8. For ι ∈ {α, β}: Assert ê(
∏n−1
i=0 G

si
ιx:i, H) = ê(G,

∏n−1
i=0 H

si
ιx:i) and ê(

∏n−1
i=0 G

si
ιx:i, H) =

ê(
∏n−1
i=0 G

si
x:i, Hιx:0);

9. Parse srss ←
(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0 ,
)
and assert that elements belong to

correct groups;
10. For i = 1, . . . , ks: Parse ρs,i = (G

(i)
δ , G

(i)

δ′ , H
(i)

δ′ , πδ′); R
(i)

δ′ ← RO(G
(i)

δ′ , H
(i)

δ′);
11. (a) Assert ê(

∏ks
i=2(G

(i)
δ)si , H) =

∏ks
i=2 ê((G

(i−1)
δ)si , H

(i)

δ′);
(b) Assert ê(

∏ks
i=1(G

(i)

δ′)
si , H) = ê(G,

∏ks
i=1(H

(i)

δ′)
si);

(c) Assert ê(
∏ks
i=1(π

(i)

δ′)
si , H) =

∏ks
i=1 ê((R

(i)

δ′)
si , H

(i)

δ′);
12. Assert ê(Gδ, H) = ê(G,Hδ) and Gδ = G

(ks)
δ 6= 1;

13. Assert ê(
∏m
i=`+1G

si
sum:i, Hδ) = ê(

∏m
i=`+1

(∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j

)si , H);
14. Assert ê(

∏n−2
i=0 G

si
t(x):i, Hδ) = ê(Gt(x),

∏n−2
i=0 H

si
x:i), where Gt(x) =

∏n
j=0G

tj
x:j ;

Fig. 11. Batched SRS verification algorithm for Groth’s SNARK where κ ≈ 240

E Proof of Lemma 3

Proof. We introduce the intermediate game Game1⁄2, and prove the lemma in two steps, cor-
responding to the transitions between Game0 and Game1⁄2, and between Game1⁄2 and Game1,
correspondingly. Both transitions are using security properties of the underlying Πdl PoK (ZK
and SE), which hold under (1, 0)-dlog.

Step 1. In Game1⁄2, we choose the critical queries, but we still update the SRS honestly. The
only thing that we change is the PoK: instead of producing honest PoKs on critical queries,

34 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

we simulate them. That is, we still have the update trapdoor ι̂′, but we use it to construct
φ = (⊥, Gι̂′ , H ι̂′), and simulate for this φ. Game0 and Game1⁄2 are indistinguishable by perfect
ZK of the PoK, thus AdvGame0

A,EA (λ) ≤ AdvGame1⁄2
A,EA (λ) + negl(λ). The formal reduction breaking ZK

uses Ob (the real prover, or the simulator) in the critical queries; every other part of the game is
the same.

Step 2. Next, we recall Game1 which, compared to Game1⁄2, generates a fresh SRS with trapdoors
{zι}ι, and reconstructs φ for PoKs in a different way. Because for critical queries we do not have
the update trapdoor ι̂ in the clear (since we do not do the update, but pretend our fresh SRS is the
outcome of the update), we extract the corresponding trapdoors ι̂i from honest and adversarial
PoKs, and reconstruct ι̂′ from these and zι. Since fresh and updated trapdoors are identically
distributed, this part of the transition is perfect. Similarly, our reversed computation outputs
exactly the same value of the update trapdoor ι̂′ that the game was supposed to obtain by honest
update, so instance φ to PoK is the same in two games. Therefore, the only risk in the transition
between the two games is that PoK extraction can fail, and in this case we abort the execution,
which is noticeable by A. But the PoK is simulation-extractable — even though A sees simulated
PoKs already in Game1⁄2, the probability for PoK extractor to fail is negligible by SE. Therefore,
Game1⁄2 is indistinguishable from Game1: AdvGame1⁄2

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Technically, we need to explain two things: why we are allowed to use PoK SE here, and why it
applies here, guaranteeing us extraction. First, by Theorem 2 our PoK is SE. Second, we must
show that our current setting does not give A more power than it is considered in the SE game.
Concretely, in the SE game A is given access to simulation oracle, RO, and two Poly oracles.

In our setting adversary also has access to RO, simulation oracle models update proofs, and other
elements that adversary sees (SRS elements and non-PoK update proof elements) only depend on
update trapdoors and fresh trapdoors, which are modelled with Opoly. The degree d(λ) of Opoly

that we need is q1(2n− 2)+ q2. Let us recall that we defined the degree of a Laurent polynomial
to be the degree of its highest degree momonial, where the degree of a monomial is the sum of
absolute values of variable degrees. Given this definition, the highest degree element in the SRS
is xn−2t(x)/δ, which has the degree 2n− 1, we obtain the degree q1(2n− 2) + q2, if A updates a
single SRS sequentially in all its queries. ut

F Proof of Lemma 4

Proof. We will first argue why the form of Q(~Ψ), and concretely its proof-independent elements
that are included in it (ẐαẐβ for instance), is as in Eq. (1). Consider the first phase for now.
When A finalizes srsu we locate in Q∗u (Q∗ = (Q∗u, Q

∗
s), where ku := |Q∗u|) the critical update

proofs for x, α, β — let their position be j ∈ [1, ku]. Note that j is not equal to the Osrs query
index icrit1 since there can be many adversarial updates in Q∗u. These update proofs are followed
by a (potentially non-empty) set of adversarial proofs with indices j+1, . . . , ku — honest proofs
are not included in this suffix since critical proofs are the last honest ones in Q∗u. Now, let us
argue that the element Gαx:0 in the final SRS corresponds to Zα

∏
αAi , where αAi are adversarial

update trapdoors. In step 3.b.iii of SRS verification we do a cascade verification: in particular, on
the j+1 step we check ê(G(j+1)

α , H) = ê(G
(j)
α , H

(j+1)
α′). First of all, the form of G(j)

α is exactly Gzα ,
since we assume that the proof number j, which consists of ρ(j)α′ = (G

(j)
α , G

(j)
α′ , H

(j)
α′ , π

(j)
α′), is the

last honestly generated one. And since we assuming lucky, we know that the first tuple element
of ρ(j)α′ is exactly Gzα (and other three are simulated; see Fig. 9). So, if the exponent of H(i)

α′ is
some αAj , and G

(j)
α = Gα, then we know after this loop ends that G(ku)

α = Gzα
∏
αAi . Finally, from

Snarky Ceremonies 35

line 4 of verification procedure it follows from Gαx:0 = G
(ku)
α . Same logic applies to Gx:1, Gβx:0.

The next step is to use other VerifySRS equations, similarly to the style in Lemma 7, to show
that every α related slot in the final SRS contains zα

∏
αAi (in other words, srs is consistent

w.r.t. this value of α trapdoor). We can show similar form and prove consistency similarly for
the second phase and δ slot being taken by zδ

∏
δAi , and srss being consistent w.r.t. this value.

This argument explains the form of the proof-independent part of Q(~Ψ):{
ẐαẐβ ,

∑̀
i=0

ai(Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)), Ẑδ

}
(4)

One technical detail is that the statement of the current lemma suggests that executions of Game1
possess a certain property (i.e. reconstructing the verification equation is represented by Q(~Ψ)).
But what really takes place is rather an AGM reduction: what we want to show is that the SRS
elements A finalizes have such-and-such form. This we do, based on the verification equations
that are used inside VerifySRS, and we base our reasoning critically on the assumption that A
does not break the discrete logarithm. So the lemma, in fact, implies a simple game transition,
and a reduction to the dlog (similar to the one that will be shown later in Lemma 6).

What we also need to show to proceed, is that the exponents αAi (of elements H(i)
ι′ , that take

third tuple-place in adversarial update proofs) should be constants. Even though we can extract
these values from PoKs, it is important that H(i)

ι′ are not constructed as a non-constant linear
combination of elements A has seen; that is, we must have that the AGM coefficient matrix A
returns together with H(i)

ι has αAi as the only non-zero coefficient, associated with the constant
slot. This is guaranteed by the implicit reduction: the logic is very similar to the proof of Theo-
rem 2, where we showed that A can either return a simulated proof, or create a honest one from
a constant. Since A cannot reuse honest proofs (this is guaranteed by VerifySRS), the only option
for it is to create H(i)

ι′ honestly (as constants).

Finally, to explain why Q(~Ψ) is a Laurent polynomial in ~Ψ2, it is enough to understand three
things. First, the elements E that Osrs outputs on the critical queries are Laurent polynomials
in ~Ψ2 — this can be verified by observing that the form of honest SRS consists of Laurent
polynomials in its trapdoors. Second, no new elements depending on ~Ψ2 can be obtained by
passing E into RO, since RO returns randomly sampled values that are independent of ~Ψ2.
Third, Update of SRS does not use any older trapdoors, and only introduces new ones: this
means that for any set of elements E′ (that are Laurent polynomials in ~Ψ2) being inputs of
Update, it will merely produce linear combinations of E′, which will be again Laurent in ~Ψ2. ut

G Proof of Lemma 5

Proof. Assume Verify(srs, φ, π) = 1, the event lucky happens since otherwise A cannot win
Game2. Because bad did not happen, we deduce that Q(ψ1, ~Ψ2) ≡ 0 w.o.p., where Q(~Ψ) is as in
the equation Eq. (1).

The problem is that we do not know the form of Q; we want to argue that if Q(ψ1, ~Ψ2) ≡ 0
then AGM coefficients that A returns have some specific form, and contain witness wires. But
we also do not know what is the most general form of Q — with AGM coefficients being treated
as variables, and not as concrete values. For our proof to proceed in such generality, we will only
care about those AGM base elements that depend on ~Ψ2 — all the other elements are considered
constants in Q(ψ1, ~Ψ2). Now, we must determine which elements depend on ~Ψ2.

36 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

Observation 7 Let E1, E2 be elements depending on ~Ψ2 that A sees as an output of critical
queries in the first and second round correspondingly. Then, the proof elements A,B,C can only
include these elements and linear coefficients of E1∪E2 with constant values potentially unknown
to A.

1. In the first phase, {Zx, Zα, Zβ} ⊂ ~Ψ2 appear in the update query number icrit1 : in SRS
elements and in the corresponding update proof, let us call these elements E1. Now, since
icrit1 does not have to be the last query of the first round, nothing stops A from passing
E1 into other RO queries or update oracle queries (and not using them for final SRS).
Passing these values into RO is generally useful both here and in the second phase: on any
request A will receive an unrelated constant value, so no elements that depend on E1 can
be produced in such a way. Passing E1 into SRS update oracle only mixes E1 with some
other values that are considered constants over ~Ψ2. This is easy to see: Update procedure is
designed in such a way that no knowledge of internal SRS trapdoors in needed to perform
the update. As a result, all output elements of Update are of form [k0 +

∑
kie], where

e ∈ E1, and ki are constants (e.g. update trapdoors). This is equivalent to A producing
the linear combination of E1 elements on its own, but in this case ki may not be known to
A. Therefore, in the first round, until A finalizes, it only sees E1 and linear combinations
of E1 elements (with unknown coefficients potentially).

2. The same logic applies to the adversarial queries w.r.t. E1 in the second round before the
second round critical queries.

3. In the second round query icrit2 adversary obtains elements that depend on E2 = {Zδ} ⊂
~Ψ2: second phase SRS elements and corresponding update proofs. Now, similarly, A cannot
mix E1 with E2 (and within these sets) using update oracle, producing conceptually new
elements that depend on E2 and cannot be represented as linear combinations of E1 and
E2 elements.

4. The second round ends and A submits the final SRS. It then can query RO (since update
oracle is disabled after the second round finalization), and finally A submits the instance
and the proof.

ut

Then we can assume A,B,C to only contain linear combinations of both Ei, and some other
constant values. The form of this constant value may be complex, since it is a linear (AGM)
combination of constants, the form of which depends on the particular execution, interaction
pattern and other things. Nevertheless, these values are constant factor in Q(ψ1, ~Ψ2). As we just
argued, elements that depend on Ei and that are not direct outputs of update oracle on two
critical queries are linear combinations [

∑
kiei]ι. So since these are in the span of E1 ∪ E2, we

will only consider A,B,C to consist of linear elements E1 ∪ E2 and constant values.

We now formally state the list of elements that can be used in the algebraic base of A,B,C. We
use a custom enumeration to simplify our notation.

A(~Ψ2) = A0 +

2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x +A3:iZβZ

i
x) +A4Zδ

+

m∑
i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+

n−2∑
i=0

A6:i
Ẑixt(Ẑx)

Zδ

Snarky Ceremonies 37

+
∑
ι

(A7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i)

+A8:ι
KιZι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i)

)

B(~Ψ2) = B0 +

2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

+
∑
i,ι

(B7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i)

)

C is constructed as A. The constant value G sometimes corresponds to x0 and could be referred
to as A1:0, but we will give the coefficient a separate index 0 for clarity. Indices 1 to 6 correspond to
outputs of critical queries. Elements number 7 are second and third elements of proof of update:
they contain update trapdoors as exponents. Elements number 8 are corresponding PoKs. In
both these last two types of elements the denominator contains some honest and adversarial
trapdoors corresponding to the prefix of the update procedure before the critical query: these
are the elements that are extracted in SimUpdProof of Game1. Essentially, we divide the new
trapdoor by the old one to reconstruct the update trapdoor (for the update the challenger did
not do).

We can immediately simplify the representation even further: observe that elements number 10
and 11 already exist in the span of elements they are included into. For example,A10:ιZι/(

∏
I1 Ti,ι

∏
I2 ι
A
i)

is just Zι multiplied by a very specific constant that A knows only partially (because Ti is hidden
from it). For ι = x, there exists A1:1, for ι = α, β there exist, correspondingly, A2:0 and A3:0.
Therefore, the coefficient of Zx is now A1:1 +A10:ι/(

∏
I1 Ti,ι

∏
I2 ι
A
i). It is more restrictive for A

to use constants which it knows only partially, therefore without loss of generality we can assume
that A10:ι = 0, and if adversary wants to include Zx it will set A1:1 to a nonzero value. Similarly,
A11:ι = B10:ι = 0.

Which leads to the general form similar to the one we have in the original proof of Groth16
in [BGM17], except our elements have extra adversarial trapdoors (hidden inside some variables
with hats):

A(~Ψ2) = A0 +

2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x +A3:iZβZ

i
x) +A4Zδ

+

m∑
i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+

n−2∑
i=0

A6:i
Ẑixt(Ẑx)

Zδ

B(~Ψ2) = B0 +

2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

We follow a proof strategy similar to the one in [BGM17]. One structural difference is that we
will not try to deduce first which elements can be included into A,B,C and which can not —
since we do not know whether this will be necessary for the result. Instead, we will start from
the end, immediately locating the three critical equations from which we expect to extract —
these are equations that correspond to the monomials of public verification equation elements.
The corresponding monomials are: ZiX , ZαZ

i
x, ZβZ

i
x. For ZαZix:

(
∑

A2,iZαZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐαvi(Ẑx))B4+

(
∑

B2,iZαZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐαvi(Ẑx)− (

∑
C5,iẐαvi(Ẑx)) = 0

38 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

For ZβZix:

(
∑

A3,iZβZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐβui(Ẑx))B4+

(
∑

B3,iZβZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐβui(Ẑx)− (

∑
C5,iẐβui(Ẑx)) = 0

And for Zix:

(B0 +
∑

B1,iZ
i
x)(A0 +

∑
A1,iZ

i
x) + (

∑
A5,iwi(Ẑx) +

∑
A6,iẐ

i
xt(Ẑx))B4−∑

aiwi(Ẑx)−
∑

C5,iwi(Ẑx)−
∑

C6,iẐ
i
xt(Ẑx) = 0

Our strategy now is to attempt to remove the elements which clutter these equations and prevent
us from substituting the first two into the third one to obtain a QAP. Let us write out equations
on monomials that include Zα, Zβ , Zx and see whether we can deduce any simplifying relations
on the AGM coefficients involved.

Z2
αZ

i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) = 0 =⇒

∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A2:jB2:k = 0,

Z2
βZ

i
x : (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) = 0 =⇒

∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A3:jB3:k = 0,

ZαZβZ
i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) + (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) =

αAβA(6= 0),

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0,

Z2
βZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) = 0,

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x)+

(

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0,

ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x)+

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0,

Snarky Ceremonies 39

ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x)+

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) = 0.

From the first equation, Z2
αZ

i
x, we have A2 ∗B2 = 0, where ∗ denotes convolution product. From

Z2
βZ

i
x, A3 ∗B3 = 0. From ZαZβZ

i
x, A2 ∗B3 +A3 ∗B2 = (αAβA, 0, . . . , 0)T .

Convolution products have a property useful in this context which we explain now. Assume
a ∗ b = 0, then a0b0 = 0, a1b0 + a0b1 = 0, a2b0 + a1b1 + a0b2 = 0 and so on (the longest equation
is for degree n, and then the number of elements decreases one-by-one until degree 2n). It is easy
to see that the product is symmetric: a∗b = b∗a. Importantly, if a0 6= 0, then all bi = 0: from the
first equation b0 = 0, from the second equation a0b1 = 0, so b1 = 0 too, from the third equation
similarly a0b2 = 0 (the other two terms cancel because of b0 = b1 = 0), and thus b2 = 0. This
process is continued until the degree n (middle, longest) equation. Therefore, if a ∗ b = 0, then
a0 6= 0 =⇒ b = 0, or b0 6= 0 =⇒ a = 0.

In our case, the ZαZβZix gives A2:0B3:0 + A3:0B2:0 = αAβA. But at the same time, at least
one from {A2:0, B2:0} and {A3:0, B3:0} must be zero. If both zero values are in both terms, it is
impossible for their sum to be zero, therefore both zero values must be in one term. This leads
us to the two options:

(a) A2:0 = B3:0 = 0 and both A3:0 and B2:0 are nonzero. From this, by the convolution property
above, we immediately conclude ∀i. A2:i = B3:i = 0.

(b) Symmetrically, A3:i = B2:i = 0 for all i, but A2:0 and B3:0 are nonzero.

In the honest proof generation, β ∈ B, as in option (b), so let us assume option (a) first. We will
later see that one can indeed construct a proof with B swapped with A; we will succeed with
(a), so this choice is performed without loss of generality.

Now, the equation ZαZβZ
i
x becomes (

∑n−1
i=0 A3:iZβZ

i
x)(
∑n−1
i=0 B2:iZαZ

i
x) = αAβA 6= 0 or A3 ∗

B2 = (αAβA, 0 . . . 0)T . By an argument similar to above we can argue that A3,i = B2,i = 0 for all
i > 0. We examine the highest degree coefficient A3,nB2,n = 0, and assume A3,n 6= 0 wlog, then
B2,n = 0. Then, from the previous equation A3,n−1B2,n+A3,nB2,n−1 = 0 we derive B2,n−1 = 0.
This process goes on until on the degree n equation A3,0B2,n + . . .+A3,n−1B2,1 +A3,nB2,0 = 0
where we reach a contradiction since B2,0 = 0 but we assumed it is not. By a symmetric argument,
B2,n 6= 0 lead to A3,0 = 0 and contradiction too. So B2,n = A3,n = 0. The equation 2n−1 is now
immediately satisfied, but the equation for 2n − 2 becomes A3,n−1B2,n−1 = 0. Here the proof
idea repeats, but we reach contradiction on degree n− 1 equation instead. Using this process we
conclude that A3,i = B2,i = 0 for i > 0.

If ∀i. A2:i = B3:i = 0, A3:0B2:0 = αAβA, and A3:i = B2:i = 0 for i > 0, our system of equation
becomes:

ZαZβZ
i
x : A3:0B2:0 = 1

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)B2,0Zα = 0

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)B2,0Zα = 0

40 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x)+

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0

ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x) = 0

The equations Z2
αZ

i
x, Z2

βZ
i
x, Z2

βZ
i
x/Zδ are now satisfied, so are not considered anymore. From

Z2
αZ

i
x/Zδ we conclude that

∑m
i=l+1A5,ivi(Ẑx) = 0 as a polynomial in Zx, and same for (

∑m
i=l+1A5,iui(Ẑx) =

0. ZαZix/Zδ reduces to

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0

from which, since these two sets are of different powers, we conclude
m∑

i=l+1

A5,iwi(Ẑx) = 0 and
n−2∑
i=0

A6,iẐx
i
t(Ẑx) = 0

both as polynomials in Zx.

We now return to the three critical equations which are now significantly simplified:

ZαZ
i
x : B2,0(A0 +

∑
A1,iZ

i
x) =

∑
aiα
Avi(Ẑx) + (

∑
C5,iα

Avi(Ẑx))

ZβZ
i
x : A3,0(B0 +

∑
B1,iZ

i
x) =

∑
aiβ
Aui(Ẑx) + (

∑
C5,iβ

Aui(Ẑx))

Zix : (B0 +
∑

B1,iZ
i
x)(A0 +

∑
A1,iZ

i
x) =

∑
aiwi(Ẑx)+∑

C5,iwi(Ẑx) +
∑

C6,iẐ
i
xt(Ẑx)

Express 1 and 2 and substitute into 3:

βAαA

A3,0B2,0
(

l∑
i=0

aiui(Ẑx) +

m∑
i=l+1

C5,iui(Ẑx))(

l∑
i=0

aivi(Ẑx) +

m∑
i=l+1

C5,ivi(Ẑx)) =

l∑
i=0

aiwi(Ẑx) +

m∑
i=l+1

C5,iwi(Ẑx) +

n−2∑
i=0

C6,iẐ
i
xt(Ẑx)

A3,0B2,0 = βAαA, so the first term is equal to 1. Our result is a QAP in Ẑx: C5,i elements are
witness wires, and C6,i are coefficients of h(Ẑx) (such that h(Ẑx)t(Ẑx) is equal to QAP left hand
side). Therefore the extractor targeting C5,i succeeds in extracting the witness. ut

H Proof of Lemma 6

Proof. Recall that we denote ~Ψ2 = {Zι}ι; similarly, let us say ~ψ2 = {zι}ι. Let us define Q2(~Ψ2) :=

Q(ψ1, ~Ψ2) 6≡ 0. Also recall that bad implies lucky, so we are implicitly considering lucky traces
in this lemma.

Snarky Ceremonies 41

B({Gz
i

}2n−1
i=1 , {Hzi}2n−2

i=1 , rδ, sδ, G
1

rδz+sδ , H
1

rδz+sδ)

Initialize ROt(·);
{rι, sι}ι∈{x,α,β} ←$Zp;
Set implicitly zι ← rιz + sι for critical query embeddings for
ι ∈ {α, β, x};

Similarly set zδ ←
1

rδz + sδ
;

Run A and E as in Game1 using dlog challenge elements to embed zι
into critical SRS updates, and modified SimUpdProofB;

assert Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R;

Reconstruct Q(~ψ1, ~Ψ2) using AGM matrix T and
extracted trapdoors from srs PoKs;
Reinterpret it as Q′(Z); factor Q′(Z), find z among the roots;
return z;

SimUpdProofB(ι, ϕ)

Compute Gι̂
′
, H ι̂′ , as before, except now we do not know exponent

of Gzι , Hzι ;

Notice: for δ, Gι̂
′
= (G

1
rδz+sδ)ι̂

−1

due to inverted embedding;

As in SimUpdProof, create φ and call SimRO1(·)
dl on it to obtain πι′ ;

return (Gzι , Gι̂
′
, H ι̂′ , πι′);

Fig. 12. Adversary B against (2n − 1, 2n − 2)-extended dlog assumption in Theorem 5. It is
parameterized by a full update knowledge soundness algebraic adversary A, and the extractor
EA as in Fig. 8. Its main task is to simulate Game1 to A, embedding the edlog instance z into
SRS on critical queries.

Let A be a PPT adversary in Game2. We want to show that it is computationally hard for
A to come up with a non-zero polynomial Q2 such that the verifier accepts, i.e. Q2(~ψ2) = 0.
The idea of the proof is to construct an adversary B that simulates Game2 for A and embeds
(2n − 1, 2n − 2)-edlog challenge z into the update trapdoors zι (~ψ2) at critical queries icrit1
and icrit2 . We show Q2(~Ψ) 6≡ 0 implies that a closely related univariate polynomial Q′(Z) 6≡ 0
where (2n− 1, 2n− 2)-edlog challenge value z is one of the roots of Q′. Since Q′ is a univariate
polynomial, B can efficiently factor it and output z. It follows that Q2(~ψ2) = 0 and Q2(~Ψ) 6≡ 0
can only hold with negligible probability, thus event bad is negligibly rare.

We now explain in detail the embedding strategy of B in Fig. 12. Firstly, B obtains as a challenge
(bp, {Gzi}2n−1i=1 , {Hzi}2n−2i=1 , r, s,G

1
rz+s , H

1
rz+s). Instead of sampling critical trapdoor values zι

randomly, we implicitly define zι := rιz + sι for ι ∈ {x, α, β} and let B sample sι, rι randomly.

42 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

When A requests an update number icrit1 in the first phase, B uses the challenge input and
(rx, rα, rβ , sx, sα, sβ) to set

srs′u =

(
{G(rxz+sx)

i

, H(rxz+sx)
i}2n−2i=0 , {G(rαz+sα)(rxz+sx)

i

, G(rβz+sβ)(rxz+sx)
i

,

H(rαz+sα)(rxz+sx)
i

, H(rβz+sβ)(rxz+sx)
i}n−1i=0

)
.

Similary SimUpdProof is computed exactly as in Game2 except that B knows Gzι and Hzι instead
of zι = rιz + sι itself.

When A finalizes the first phase 1, B sees the verifying proofs (πA1:1, . . . , π
A
1:t1) for all updates

after the last update query that A made. More precisely, B also receives other verifying proofs,
corresponding to the previous honest updates and adversarial updates between them, but B can
just discard them after verifying their validity, keeping only the last t1 of them. Then B can
extract (~αA, ~βA, ~xA) such that

srsu =

{G(
(rxz+sx)

∏
j x
A
j)

i

, H((rxz+sx)
∏
j x
A
j)

i

}2n−2i=0 ,

{G((rαz+sα)
∏
j α
A
j)((rxz+sx)

∏
j x
A
j)

i

, G((rβz+sβ)
∏
j β
A
j)((rxz+sx)

∏
j x
A
j)

i

,

H((rαz+sα)
∏
j α
A
j)((rxz+sx)

∏
j x
A
j)

i

, H((rβz+sβ)
∏
j β
A
j)((rxz+sx)

∏
j x
A
j)

i

}n−1i=0

 .

where j = 1, . . . , t1. The reasoning of why the form of srsu is that is similar to Lemma 4: because
the critical queries are guessed correctly, A can only add its own adversarial trapdoors, but not to
change the general form of the last honest SRS elements. To simplify the notation, we, as before,
us polynomials Zx(Z) = (rxZ + sx)

∏
j x
A
j and Zα(Z) = (rαZ + sα)

∏
j α
A
j and Zβ(Z) = (rβZ +

sβ)
∏
j β
A
j . The variable Z stands for the edlog challenge exponent z. We note that extraction of

(~αA, ~βA, ~xA) above is possible only due to the strong form of simulation extractability that we
proved for Πdl (under (1, 0)-dlog, which is clearly implied by (2n−1, 2n−2)-edlog). Namely, in
our scenario, A sees both honest and simulated proofs from B and also gets group-based auxiliary
inputs that the strong simulation extractability modelled by OG1

poly,O
G2

poly oracles (the extraction
success is argued similarly to how it is done in Lemma 3).

When A requests an honest update number icrit2 in the second phase, B uses rδ, sδ from the
challenge to set

srss =

(
G

1
rδz+sδ , H

1
rδz+sδ , {G(rδz+sδ)(Zβ(z)ui(Zx(z))+Zα(z)vi(Zx(z))+wi(Zx(z)))}mi=`+1,

{G(rδz+sδ)(Zx(z))
it(Zx(z))}n−2i=0

)
.

Notice that B embeds rδz + sδ in an inverted way. This is due to the fact that we only have
G1/(rδz+sδ) and H1/(rδz+sδ) in the dlog challenge, but when we do the second phase update we
must construct the G(αui(x)+...)/δ and Gt(x)x

i/δ elements which we cannot do if δ is in the denom-
inator. The reason is that these elements are constructed from Gx

i/δ, Gαx
i/δ, Gβx

i/δ monomials,
and since B does not know δ, it cannot exponentiate the elements A provided as an input to
the update query, so B must construct these problematic SRS parts from scratch using the edlog
challenge. For example, xi/δ would be represented as (rxz+sx)i/(rδz+sδ), which is not a Laurent
polynomial but a rational function in z. So we cannot build Gx

i/δ from our dlog challenge with
the direct δ embedding strategy. At the same time, embedding rδz+sδ in an inverted way can be
done: now xi/δ is G(rxz+sx)

i(rδz+sδ) which is a positive-power polynomial in z, so we can build
it from {Gzj} which are available. Simpler SRS elements Gδ and Hδ can also be constructed:
they are just G1/(rδz+sδ), H1/(rδz+sδ). Since if rδz + sδ is uniform, 1/(rδz + sδ) is also uniform,
and A cannot notice the inverted embedding.

Snarky Ceremonies 43

The maximum degree polynomial here is in the fourth set of srss elements,G(rδz+sδ)(Zx(z))
n−2t(Zx(z)),

equal to 2n − 1, which explains the G1 degree of edlog. As for G2, its maximum degree is in
H(rxz+sx)

2n−2

in srsu, and thus equal to 2n− 2. Therefore, (2n− 1, 2n− 2)-edlog is enough for
the embedding to succeed.

Then B simulates a proof of correctness by using SimUpdProof as in ϕ = 1 case, which again
uses the PoK simulator in a black-box way after constructing an instance φ. In this case, with
the inverted embedding, we must set Gι̂

′
= (G

1
rδz+sδ)ι̂

−1

and similarly for H, but we can still do
it from the edlog challenge.

When A finalises in phase 2, B sees the verifying proofs (πA2:1, . . . , π
A
2:t2) for all updates after

the last (critical) update query that A made. Again, the actual number of proofs in the SRS is
higher, but B discards the prefix corresponding to the pre-critical execution. Then B can extract
~δA such that

srss =

G

∏
j δ
A
j

rδz+sδ , H

∏
j δ
A
j

rδz+sδ ,

{
G

(rδz+sδ)(Ẑβ(z)ui(Ẑx(z))+Ẑα(z)vi(Ẑx(z))+wi(Ẑx(z)))∏
j δ
A
j

}m
i=`+1

,{
G

(rδz+sδ)(Ẑx(z))it(Ẑx(z))∏
j δ
A
j

}n−2
i=0

where j = 1, . . . , t2. We, as before, set Zδ(Z) = rδZ+sδ∏

j δ
A
j
.

We first define Q3(Zx, Zα, Zβ , Zδ) = Q2(Zx, Zα, Zβ , 1/Zδ), which inverts the last coefficient, to
account for the inverted embedding of δ trapdoor. From bad we know Q2 6≡ 0, and Q2(~ψ2) = 0;
Q3 has similar properties. First, if Q2 6≡ 0, then Q3 6≡ 0, since if Q2 includes some nonzero
monomial MZiδ for M monomial in Zx, Zα, Zβ , and some i, then in Q3 there will be a nonzero
coefficient of MZ−iδ . Second, if Q2(~ψ2) = 0, then Q3(zx, zα, zβ , 1/zδ) = Q2(~ψ) = 0. We will
denote ~ψ3 := (zx, zα, zβ , 1/zδ), so Q3(~ψ3) = 0.

Let us transform the Laurent polynomial Q3 to a standard positive-power polynomial. We do
this by defining Q4({Zι}ι) := Q3({Zι}ι)·Z2

δ , where Zδ is a formal variable. Q4 is a positive power
polynomial since Q3 can only have at most Z−2δ as a negative degree monomial: e.g. Z−1δ in both
A and B, which is true even after Q3 inversion on the previous step, since δ has powers 1 and
−1 in the SRS. Moreover, since Q3({Zι}ι) 6≡ 0 and Q3(~ψ3) = 0, it follows that Q4({Zι}ι) 6≡ 0

and Q4(~ψ3) = 0.

Next we introduce Q′(Z) := Q4(rxZ+sx, rαZ+sα, rβZ+sβ , rδZ+sδ), which reinterprets Q4 as
a polynomial over Z instead of {Zι}. Here, the last element rδZ + sδ is passed into Q4 directly,
since rδZ + sδ = 1/zδ. From this it follows that (rxz + sx, rαz + sα, rβz + sβ , rδz + sδ) = ~ψ3(z),
and z is one of the roots of Q′ since Q′(z) = Q4(~ψ3(z)) = 0.

If we can show that Q′(Z) 6= 0, then B can factor it to find z. To show this, let us first define
an intermediate polynomial Q′3(Z) = Q4({RιZ + Sι}ι) in variable Z over the ring of polyno-
mials Zp[Rα, Rβ , Rx, Rδ, Sα, Sβ , Sx, Sδ]. Accoding to Lemma 1, the leading coefficient of Q′3(Z)
is a polynomial C(Rα, Rβ , Rx, Rδ) with the same degree d as is the total degree of Q4({Zι}ι).
Since the total degree of Q4({Zι}ι) is non-zero, then C is a non-zero polynomial. Values rι
are information-theoretically hidden from A since B set critical trapdoors to be zι = rιz + sι
(and for δ it is inverted). Therefore, rα, rβ , rx, rδ are chosen uniformly randomly and indepen-
dently from C. According to the Schwartz-Zippel lemma (see Lemma 2), the probability that
c := C(rα, rβ , rx, rδ) = 0 is bounded by d/p. Hence, with an overwhelming probability Q′(Z) 6≡ 0
since it has a non-zero leading coefficient c. This is sufficient for B to factor Q′ and to find z.

44 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

It follows that the event bad can only happen with negligible probability. ut

	Snarky Ceremonies
	 Markulf Kohlweiss, Mary Maller, Janno Siim, Mikhail Volkhov

