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Abstract. At CRYPTO’19, Gohr proposed a new cryptanalysis strat-
egy based on the utilisation of machine learning algorithms. Using deep
neural networks, he managed to build a neural based distinguisher that
surprisingly surpassed state-of-the-art cryptanalysis efforts on one of the
versions of the well studied NSA block cipher SPECK (this distinguisher
could in turn be placed in a larger key recovery attack). While this
work opens new possibilities for machine learning-aided cryptanalysis, it
remains unclear how this distinguisher actually works and what infor-
mation is the machine learning algorithm deducing. The attacker is left
with a black-box that does not tell much about the nature of the possible
weaknesses of the algorithm tested, while hope is thin as interpretability
of deep neural networks is a well-known difficult task.

In this article, we propose a detailed analysis and thorough explanations
of the inherent workings of this new neural distinguisher. First, we stud-
ied the classified sets and tried to find some patterns that could guide
us to better understand Gohr’s results. We show with experiments that
the neural distinguisher generally relies on the differential distribution
on the ciphertext pairs, but also on the differential distribution in penul-
timate and antepenultimate rounds. In order to validate our findings, we
construct a distinguisher for SPECK cipher based on pure cryptanaly-
sis, without using any neural network, that achieves basically the same
accuracy as Gohr’s neural distinguisher and with the same efficiency
(therefore improving over previous non-neural based distinguishers).

Moreover, as another approach, we provide a machine learning-based
distinguisher that strips down Gohr’s deep neural network to a bare
minimum. We are able to remain very close to Gohr’s distinguishers’
accuracy using simple standard machine learning tools. In particular, we
show that Gohr’s neural distinguisher is in fact inherently building a
very good approximation of the Differential Distribution Table (DDT)
of the cipher during the learning phase, and using that information to
directly classify ciphertext pairs. This result allows a full interpretability
of the distinguisher and represents on its own an interesting contribution
towards interpretability of deep neural networks.

Finally, we propose some method to improve over Gohr’s work and possi-
ble new neural distinguishers settings. All our results are confirmed with



experiments we have been conducted on SPECK block cipher (source
code available online).

1 Introduction

While modern symmetric-key cryptography designs are heavily relying on se-
curity by construction with strong security arguments (resistance against sim-
ple differential/linear attacks, study of algebraic properties, etc.), cryptanalysis
remains a crucial part of a cipher’s validation process. Only a primitive that
went through active and thorough scrutiny of third-party cryptanalysts should
gain enough trust by the community to be considered as secure. However, there
has been more and more cipher proposals in the past decade (especially with
the recent rise of lightweight cryptography) and cryptanalysis effort could not
really keep up the pace: conducting cryptanalysis remains a very tough and
low-rewarding task.

In order to partially overcome this shortage in cryptanalysts manpower, a
recent trend arose of automating as much as possible the various tasks of an
attacker. Typically, searching for differential and linear characteristics can now
be modeled as Satisfiability/Satisfiability Modulo Theories [17] (SAT/SMT),
Mixed Linear Integer Programming [18] (MILP) or Constraint Programming [25]
(CP) problems, which can in turn simply be handled by an appropriate solver.
The task of the cryptanalyst is therefore reduced to only providing an efficient
modeling of the problem to be studied. Due to the impressive results considering
the simplicity of the process, a lot of advances have been made in the past decade
in this very active research field and this even improved the ciphers designs
themselves (how to choose better cryptographic bricks and how to assemble
them has been made much easier thanks to these new automated tools). One
is then naturally tempted to push this idea further by even getting rid of the
modeling part. More generally, can a tool recognize possible weaknesses/patterns
in a cipher by just interacting with it, with as little input as possible from the
cryptanalysts? One does not expect such a tool to replace a cryptanalyst’s job,
but it might come in handy for easily pre-checking a cipher (or reduced versions
of it) for possible weaknesses.

Machine learning and particularly deep learning have recently attracted a
lot of attention, due to impressive advances in important research areas such
as computer vision, speech recognition, etc. Some possible connections between
cryptography and machine learning were already identified in [21] and we have
seen many applications of machine learning for side-channels analysis [16]. How-
ever, machine learning for black-box cryptanalysis remained mostly unexplored
until Gohr’s article presented at CRYPTO’19 [11].

In his work, Gohr trained a deep neural network on labeled data composed
of ciphertext pairs: half the data coming from ciphering plaintexts pairs with a
fixed input difference with the cipher studied, half from random values. He then
checks if the trained neural network is able to classify accurately random from
real ciphertext pairs. Quite surprisingly, when applying his framework to the
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block cipher SPECK-32/64 (the 32-bit block 64-bit key version of SPECK [2]),
he managed to obtain a good accuracy for a non-negligible number of rounds.
He even managed to mount a key recovery process on top of his neural distin-
guisher, eventually leading to the current best known key recovery attack for
this number of rounds (improving over works on SPECK-32/64 such as [6, 24]).
Even if his distinguisher/key recovery attack had not been improving over the
state-of-the-art, the prospect of a generic tool that could pre-scan for vulnera-
bilities in a cryptographic primitive (while reaching an accuracy close to exiting
cryptanalysis) would have been very attractive anyway.

Yet, Gohr’s paper actually opened many questions. The most important,
listed by the author as an open problem, is the interpretability of the distin-
guisher. An obvious issue with a neural distinguisher is that its black-box nature
is not really telling us much about the actual weakness of the cipher analyzed.
More generally, interpretability for deep neural networks has been known to be
a very complex problem and represents a key challenge for the machine learning
community. At first sight, it seems therefore very difficult to make any advances
in this direction.

Another interesting aspect to explore is to try to match Gohr’s neural dis-
tinguisher/key recovery attack with classical cryptanalysis tools. It remains very
surprising that a trained deep neural network can perform better than the
scrutiny of experienced cryptanalysts. As remarked by Gohr, his neural dis-
tinguisher is mostly differential in nature (on the ciphertext pairs), but some
unknown extra property is exploited. Indeed, as demonstrated by one of his ex-
periments, the neural distinguisher can still distinguish between a real and a
random set that have the exact same differential distribution on the ciphertext
pairs. Since we know there is some property that researchers have not seen or
exploited, what is it?

Finally, a last natural question is: can we do better? Are there some better
settings that could improve the accuracy of Gohr’s distinguishers?

Our Contributions. In this article, we analyze the behavior of Gohr’s neural
distinguishers when working on SPECK-32/64 cipher. We first study in detail
the classified sets of real/random ciphertext pairs in order to get some hints on
what criterion the neural network is actually basing its decisions on. Looking for
patterns, we observe that the neural distinguisher is very probably deducing some
differential conditions not on the ciphertext pairs directly, but on the penultimate
or antepenultimate rounds. We then conduct some experiments to validate our
hypothesis.

In order to further confirm our findings, we construct for 5, 6 and 7-round
reduced SPECK-32/64 a new distinguisher purely based on cryptanalysis, with-
out any neural network or machine learning algorithm, that matches Gohr’s
neural distinguisher’s accuracy while actually being faster and using the same
amount of precomputation/training data. In short, our distinguisher relies on
selective partial decryption: in order to attack nr rounds, some hypothesis is
made on some bits of the last round subkey and partial decryption is performed,
eventually filtered by a precomputed approximated DDT on nr − 1 rounds.

3



We then take a different approach by tackling the problem not from the crypt-
analysis side, but the machine learning side. More precisely, as a deep learning
model learns high-level features by itself, in order to reach full interpretability
we need to discover what these features are. By analyzing the components of
Gohr’s neural network, we managed to identify a procedure to model these fea-
tures, while retaining almost the same accuracy as Gohr’s neural distinguishers.
Moreover, we also show that our method performs similarly on other primitives
by applying it on the SIMON block cipher. This result is interesting from a cryp-
tography perspective, but also from a machine learning perspective, showing an
example of interpretability by transformation of a deep neural network.

Finally, we explore possible improvements over Gohr’s neural distinguishers.
By using batches of ciphertexts instead of pairs, we are able to significantly im-
prove the accuracy of the distinguisher, while maintaining identical experimental
conditions.

Outline. In Section 2, we introduce notations as well as basic cryptanalysis
and machine learning concepts that will be used in the rest of the paper. In
Section 3, we describe in more detail the various experiments conducted by
Gohr and the corresponding results. We provide in Section 4 an explanation of
his neural distinguishers as well as the description of an actual cryptanalysis-only
distinguisher that matches Gohr’s accuracy. We propose in Section 5 a machine
learning approach to enable interpretability of the neural distinguishers. Finally,
we studied possible improvements in Section 6.

2 Preliminaries

Basic notations. In the rest of this article, ⊕, ∧ and � will denote the
eXclusive-OR operation, the bitwise AND operation and the modular addition3

respectively. A right/left bit rotation will be denoted as≫ and≪ respectively,
while a||b will represent the concatenation of two bit strings a and b.

2.1 A Brief Description of SPECK

The lightweight family of ARX block ciphers SPECK was proposed by the US
National Security Agency (NSA) [2] in 2013, targeting mainly good performances
on micro-controllers. Several versions of the cipher have been proposed within
its family, but in this article (and in Gohr’s work [11]) we will focus mainly on
SPECK-32/64, the 32-bit block 64-bit key version of SPECK, which is composed
of 22 rounds (for simplicity, SPECK-32/64 will be referred to as SPECK in the
rest of the article).

The 32-bit internal state is divided into a 16-bit left and a 16-bit right part,
that we will generally denote li and ri at round i respectively, and is initialised
with the plaintext (l0||r0)← P . The round function of the cipher is then a very

3 The modulo will be stated explicitly if it is not clear from the context
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simple Feistel structure combining bitwise XOR operation and 16-bit modular
addition. See Figure 1 where ki represents the 16-bit subkey at round i and
where α = 7, β = 2. The final ciphertext C is then obtained as C ← (l22||r22).
The subkeys are generated with a key schedule that is very similar to the round
function (we refer to [2] for a complete description, as we do not make use of the
details of the key schedule in this article).

li+1 = ((li ≫ α)� ri)⊕ ki
ri+1 = (ri ≪ β)⊕ li+1

li ri

≫ α

≪ β

li+1 ri+1

ki

Fig. 1: The SPECK-32/64 round function.

2.2 Differential Cryptanalysis

Differential cryptanalysis studies the propagation of a difference through a ci-
pher. Let a function f : Fb2 → Fb2 and x, x′ be two different inputs for f with a
difference ∆x = x⊕x′. Let y = f(x) and y′ = f(x′) and a difference ∆y = y⊕y′.
Then, we are interested in the transition probability from ∆x to ∆y (∆x

f−→ ∆y):

P(∆x
f−→ ∆y) :=

#{x|f(x)⊕ f(x⊕∆x) = ∆y}
2b

One classical tool for differential cryptanalysis is the Difference Distribution Ta-
ble (DDT), which simply lists the differential transition probabilities for each
possible input/output difference pairs (∆x,∆y). The studied function f is usu-
ally some Sbox, or some small cipher sub-component, as the DDT of an entire
64-bit or 128-bit cipher would obviously be too large to store.

Since SPECK is internally composed of a left and right part, for a ciphertext
C we will denote by Cl and Cr its 16-bit left and right parts respectively. Then,
for two ciphertexts C and C ′, we will denote ∆L the XOR difference Cl ⊕ C ′l
between the left parts of the two ciphertexts (respectively ∆R = Cr⊕C ′r for the
right parts). Moreover, for a round i, we will denote by Vi the difference between
the two parts of the internal state Vi = li ⊕ ri.

2.3 Deep Neural Networks

Deep Neural Networks (DNN) are a family of non-linear machine learning clas-
sifiers that have gained popularity since their success in addressing a variety of
data-driven tasks, such as computer vision, speech recognition, etc.
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The main problem tackled by DNN is, given a datasetD = {(x0, y0)...(xn, yn)},
with xi ∈ X being samples and yi ∈ [0, . . . , l] being labels, to find the optimal
parameters θ∗ for the DNNθ model, with the parameters θ such that:

θ∗ = argmin
θ

n∑
i=0

L(yi, DNNθ(xi)) (1)

with L being the loss function. As there is no literal expression of θ∗, the ap-
proximate solution will depend on the chosen optimization algorithm such as the
stochastic gradient descent. Moreover, hyper-parameters of the problem (param-
eters whose value is used to control the learning process) need to be adjusted as
they play an important role in the final quality of the solution.

DNN are powerful enough to derive accurate non-linear features from the
training data, but these features are not robust. Indeed, adding a small amount
of noise at the input can cause these features to deviate and confuse the model.
In other words, the DNN is a very unbiased classifier, but has a high variance.

Different blocks can be used to implement these complex models. However,
in this paper, we will be using four types of blocks: the linear neural network, the
one-dimensional convolutional neural network, the activation functions (ReLU
and sigmoid) and the batch normalization.

Linear neural network. Linear neural networks applies a linear transforma-
tion to the incoming data: out = in.AT + b. Here we have θ = (A, b). The linear
neural network is also commonly named perceptron layer or dense layer.

One-dimensional convolutional neural network. The 1D-CNN applies a
convolution over a fixed (multi-)temporal input signal. The 1D-CNN operation
can be seen as multiple linear neural networks (one per filter) where each one is
applied to a sub-part of the input. This sub-part is sliding, its size is kernel size,
its pitch is the stride and its start and end points depend on the padding.

Activation functions. The three activation functions that we discuss here
are the Rectified Linear Unit (ReLU), defined as ReLU(x) = max(0, x), the
sigmoid, defined as Sigmoid(x) = σ(x) = 1

1+exp(−x) and the Heaviside step

function, defined as H(x) = 1
2 + sgn(x)

2 . This block, added between each layer of
the DNN, introduces the non-linear part of the model.

Batch normalization. Training samples are typically randomly collected in
batches to speed up the training process. It is thus usual to normalize the overall
tensor according to the batch dimension.

3 A First Look at Gohr’s CRYPTO 2019 Results

Since its release, the lightweight block cipher SPECK attracted a lot of external
cryptanalysis, together with its sibling SIMON (this was amplified by the fact
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that no cryptanalysis was reported in the original specifications document [2]).
Many different aspects of SPECK have been covered by these efforts, but the
works from Dinur [6] and Song et al. [24] are the most successful advances on its
differential cryptanalysis aspect so far. Dinur [6] studied all versions of SPECK,
improving the best known differential characteristics (from [1, 3]) as well as de-
scribing a new key recovery strategy for this cipher. In particular, he devised a
4-round attack for 11 rounds of SPECK-32/64 using a 7 round differential char-
acteristic, that has a time complexity of 246 and data complexity of 222 (chosen
plaintexts).

Later, at CRYPTO’19, Gohr published a cryptanalysis work on SPECK-32/64
that is based on deep learning [11]. Gohr proposed a key-recovery attack on 11-
round SPECK-32/64 with estimated time complexity 238, improving the previous
best attack [6] in 246, albeit with a slightly higher data complexity: 214.5 cipher-
text pairs required. In this section, we will briefly review Gohr’s results [11].

Overview. In his article, Gohr proposes multiple differential cryptanalysis of
SPECK, focusing on the input difference ∆in = 0x0040/0000. In this setting,
the aim is to distinguish real pairs, i.e., encryptions of plaintext pairs P, P ′ such
that P ⊕ P ′ = ∆in, from random pairs, which are the encryptions of random
pairs of plaintext with no fixed input difference. Gohr compares a traditional
(pure) differential distinguisher with a distinguisher based on a DNN for 5 to 8
rounds of SPECK-32/64 and showed that the DNN performs better.

Pure differential distinguishers. Gohr computed the full DDT for the input
difference ∆in, using the Markov assumption. Then, to classify a ciphertext pair
(C,C ′), the probability p of the output difference C ⊕C ′ is read from the DDT
and compared to the uniform probability. Let ∆out = C ⊕ C ′, then

Classification =

{
Real if DDT (∆in → ∆out) >

1
232−1

Random otherwise

These distinguishers for reduced-round SPECK-32/64 are denoted Dnr, where
nr ∈ {5, 6, 7, 8} represents the number of rounds. The neural distinguishers are
denoted as Nnr.

Gohr’s neural distinguisher. We provide in Figure 2 a representation of
Gohr’s neural distinguisher. It is a deep neural network, whose main components
are:

1. Block 1: a 1D-CNN with kernel size of 1, a batch normalization and a ReLU
activation function

2. Blocks 2-i: one to ten layers with each layer consisting of two 1D-CNN with
kernel size of 3, each followed by batch normalization and a ReLU activation
function.

3. Block 3: a non-linear final classification block, composed of three percep-
tron layers separated by two batch normalization and ReLU functions, and
finished with a sigmoid function.
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Fig. 2: The whole pipeline of Gohr’s deep neural network. Block 1 refers to the
initial convolution block, Block 2-1 to 2-10 refer to the residual block and Block
3 refers to the classification block.

The input to the initial convolution block (Block 1) is a 4 × 16 matrix,
where each row corresponds to each 16-bit value in this order: Cl, Cr, C

′
l , C

′
r,

a convolution layer with 32 filters is then applied. The kernel size of this 1D-
CNN is 1, thus, it maps (Cl, Cr, C

′
l , C
′
r) to (filter1, filter2, ..., filter32). Each

filter is a non-linear combination of the features (Cl, Cr, C
′
l , C
′
r) after the ReLU

activation function depending on the value of the inputs and weights learned by
the 1D-CNN. The output of the first block is connected to the input and added
to the output of the subsequent layer in the residual block (see Figure 3).

In the residual blocks (Blocks 2-i), both 1D-CNNs have a kernel of size 3,
a padding of size 1 and a stride of size 1 which make the temporal dimension
invariant across layers. At the end of each layer, the output is connected to the
input and added to the output of the subsequent layer to prevent the relevant
input signal from being wiped out across layers. The output of a residual block
is a (32× 16) feature tensor (see Figure 4).
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Fig. 4: The residual block (Blocks 2-i).

The final classification block takes as input the flattened output tensor of
the residual block. This 512 × 1 vector is passed into three perceptron layers
(Multi-Layer Perceptron or MLP) with batch normalization and ReLU activation

8



functions for the first two layers and a final sigmoid activation function performs
the binary classification (see Figure 5).
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Fig. 5: The classification block (Block 3).

Accuracy and efficiency of the neural distinguishers. For each pair, the
neural distinguishers outputs a real-valued score between 0 and 1. If this score
is greater than or equal to 0.5, the sample is classified as a real pair, and as a
random pair otherwise. The results given by Gohr are presented in Table 1. Note
that N7 and N8 are trained using some sophisticated methods (we refer to [11]
for more details on the training). We remark that Gohr’s neural distinguisher
has about 100,000 floating parameters, which is size efficient considering the
accuracies obtained.

Table 1: Accuracies of neural distinguishers for 5, 6, 7 and 8 rounds (taken from
Table 2 of [11]). TPR and TNR denote true positive and true negative rates
respectively.

Rds Distinguisher Accuracy TPR TNR

5
D5 0.911 0.877 0.947
N5 0.929± 5.13× 10−4 0.904± 8.33× 10−4 0.954± 5.91× 10−4

6
D6 0.758 0.680 0.837
N6 0.788± 8.17× 10−4 0.724± 1.26× 10−3 0.853± 1.00× 10−3

7
D7 0.591 0.543 0.640
N7 0.616± 9.7× 10−4 0.533± 1.41× 10−3 0.699± 1.30× 10−3

8
D8 0.512 0.496 0.527
N8 0.514± 1.00× 10−3 0.519± 1.41× 10−3 0.508± 1.42× 10−3

Real differences experiment. The neural distinguishers performed better
than the distinguishers using the full DDT, indicating that the neural distin-
guishers may learn something more than pure differential cryptanalysis. Gohr
explores this effect with the real differences experiment. In this experiment,
instead of distinguishing a real pair from a random pair, the challenge is to
distinguish real pairs from masked real pairs, computed as (C ⊕M,C ′ ⊕M),
where M is a random 32-bit value. These experiments use the Nnr distin-
guishers directly, without retraining them for this new task. Table 2 shows the
accuracies of these distinguishers. Notice that this operation does not affect
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∆out = C ⊕ C ′ = (C ⊕M) ⊕ (C ′ ⊕M) and thus the output difference distri-
bution. However, the neural distinguishers are still able to distinguish real pairs
from masked pairs even without re-training for this particular purpose, which
shows that they do not just rely on the difference distribution.

Table 2: Accuracies of various neural distinguishers in the real differences exper-
iment.

Rds Distinguisher Accuracy

5 N5 0.707± 9.10× 10−4

6 N6 0.606± 9.77× 10−4

7 N7 0.551± 9.95× 10−4

8 N8 0.507± 1.00× 10−3

4 Interpretation of Gohr’s Neural Network: a
Cryptanalysis Perspective

Interpretability of neural networks remains a highly researched area in machine
learning, but the focus has always been on improving the model and computa-
tional efficiency. We will discuss more about the interpretability in a machine
learning sense in Section 5. In this section, we want to find out why and how
the neural distinguishers work in a cryptanalysis sense. In essence, we want to
answer the following question:

What type of cryptanalysis is Gohr’s neural distinguisher learning?

If the neural distinguisher is learning some currently-unknown form of cryptanal-
ysis, then we would like to extrapolate the additional statistics that it exploits.
If not, then we want to find out what causes Gohr’s neural distinguishers to
perform better than pure differential attacks, and even improve state-of-the-art
attacks. With this question in mind, we perform a series of experiments and
analyses in order to come up with a reasonable guess, later validated by the
creation of a pure cryptanalysis-based distinguisher that matches the accuracy
of Gohr’s one.

Gohr’s neural distinguishers are able to correctly identify approximately
90.4%, 68.0% and 54.3% of the real ciphertext pairs (given by the true posi-
tive rates) for 5, 6 and 7 rounds of SPECK-32/64 respectively (see Table 1). We
will try to find out what these ciphertext pairs are if there are any common
patterns and see whether we are able to identify and isolate them.

Choice of input difference. As a start, we looked into Gohr’s choice of input
difference: 0x0040/0000. This difference is part of a 9-round differential charac-
teristics from Table 7 of [1]. The reason given by Gohr is that this difference de-
terministically transits to a difference with low Hamming weight after one round.
Using constraint programming and techniques similar to [10], we found that the
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best differential characteristics with a fixed input difference of 0x0040/0000 for
5 rounds is 0x0040/0000→ 0x802a/d4a8, with probability of 2−13. In contrast,
when we do not restrict the input difference, the best differential characteristics
for 5 rounds is 0x2800/0010→ 0x850a/9520, with probability of 2−9. However,
when we trained the neural distinguishers to recognize ciphertext pairs with the
input difference of 0x2800/0010, the neural distinguishers performed worse (an
accuracy of 75.85% for 5 rounds). This is surprising as it is generally natural for
a cryptanalyst to maximize the differential probability when choosing a differ-
ential characteristic. We believe this is explained by the fact that 0x0040/0000

is the input difference maximizing the differential probability for 3 or 4 rounds
of SPECK-32/64 (verified with constraint programming), which has the most
chances to provide a biased distribution one or two rounds later. Generally, we
believe that when using such neural distinguisher, a good method to choose
an input difference is to simply use the input difference leading to the highest
differential probability for nr − 1 or nr − 2 rounds.

Changing the inputs to the neural network. Gohr’s neural distinguishers
are trained using the actual ciphertext pairs (C,C ′) whereas the pure differential
distinguishers are only using the difference between the two ciphertexts C ⊕C ′.
Thus, it is unfair to compare both as they are not exploiting the same amount of
information. To have a fair comparison of the capability of neural distinguishers
and pure differential distinguishers, we trained new neural distinguishers using
C ⊕ C ′, instead of (C,C ′). The results are an accuracy of 90.6% for 5 rounds,
75.4% for 6 rounds and 58.3% for 7 rounds. This shows us that when the neural
distinguishers are restricted to only have access to the difference distribution,
they do not perform as well as their respective Nnr, and similarly to Dnr

4 as
can be seen in Table 1. Therefore, this is another confirmation (on top of the
real differences experiment conducted in [11]), that Gohr’s neural distinguishers
are learning more than just the distribution of the differences on the ciphertext.
With that information, we therefore naturally looked beyond just the difference
distribution at round nr.

4.1 Analyzing Ciphertext Pairs

In this section, we limit and focus the discussions and results mostly to 5 rounds
of SPECK-32/64. We recall that the last layer of the neural distinguisher is a
sigmoid activation function. Thus, its output is a value between 0 and 1. When
the score is 0.5 or more, the neural distinguisher predicts it as a real pair or
otherwise, random pair.

The closer a score is to 0.5, the least certain the neural distinguisher is on the
classification. In order to know what are the traits that the neural distinguisher is
looking for, we segregate the ciphertext pairs that yield extreme scores, i.e. scores
that are either less than 0.1 (bad score) or more than 0.9 (good score). For the

4 Note that the new neural distinguishers are trained with 107 pairs, the same number
as in [11]
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rest of this section, we label the ciphertext pairs as “bad” and “good” ciphertext
pairs and refer to the sets as B and G respectively. As we were experimenting
with them, we kept the keys (unique to each pair) that are used to generate the
ciphertext pairs. The goal now is to find similarities and differences in these two
groups separately.

As we believe that most of the features the neural distinguishers learned is
differential in nature, we focus on the differentials of these ciphertext pairs. To
start, we did the following experiment (Experiment A):

1. Using 105 real 5-round SPECK-32/64 ciphertext pairs, extract the set G.
2. Obtain the differences of the ciphertext pairs and sort them by frequency
3. For each of the differences δ:

(a) Generate 104 random 32-bit numbers and apply the difference, δ to get
104 different ciphertext pairs.

(b) Feed the pairs to the neural distinguisher N5 to obtain the scores.
(c) Note down the number of pairs that yield a score ≥ 0.5

In Table 3, we show the top 25 differences for 5 rounds of SPECK-32/64
with their respective score from the above experiment. Out of the first 1000
differences, each records about 75% of the pairs scoring more than 0.5. Also,
there exist multiple pairs of differences such that one is more probable than the
other, and yet, it has a lower number of pairs classifying as real (e.g. No. 21
in Table 3). Thus, there is little evidence showing that if a difference is more
probable, then the neural distinguisher is necessarily more likely to recognize it.

Table 3: The top 25 differences (5 rounds of SPECK-32/64) in G with their
respective results for Experiment A as a percentage of how many pairs having a
score of ≥ 0.5 out of 104 pairs. Cnt refers to the number of differences obtained
in G.

No. Difference Cnt Percent.

1 0x802a/d4a8 116 75
2 0x802e/d4ac 81 76
3 0x803a/d4b8 73 74
4 0x8e2a/daa8 73 75
5 0x822a/d6a8 72 75
6 0xb82a/eca8 67 75
7 0x882a/dca8 65 75
8 0x801a/d498 62 75
9 0xa02a/f4a8 62 75
10 0xbe2a/eaa8 62 75
11 0x806a/d4e8 59 74
12 0x8e26/daa4 47 75
13 0x8026/d4a4 46 74

No. Difference Cnt Percent.

14 0x883a/dcb8 45 75
15 0x801e/d49c 45 75
16 0xa026/f4a4 42 75
17 0xbe1a/ea98 41 75
18 0x821a/d698 41 76
19 0xbe26/eaa4 41 75
20 0x83ea/d768 40 75
21 0x8626/caa4 40 38
22 0x886a/dce8 40 75
23 0xa06a/f4e8 40 75
24 0x8e1a/da98 39 75
25 0x8226/cea4 38 37

Since the neural distinguishers outperform the ones with just the XOR input,
we started to look beyond just the differences at 5 rounds. We decided to partially
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decrypt the ciphertext pairs from G for a few rounds and re-run Experiment A on
these partially decrypted pairs: for each pair, we compute the difference and for
each difference, we created 104 random plaintext pairs with these differences and
encrypted them to round nr using random keys. The results are very intriguing,
as compared to that of Table 3: almost all of the (top 1000) unique differences
obtained in this experiment achieved 99% or 100% of ciphertext pairs having a
score of ≥ 0.5.

We can see that the differences at rounds 3 and 4 (after decrypting 2 and 1
round respectively) start to show some strong biases. In fact, for all of the top
1000 differences at rounds 3 and 4, all 104 pairs × 1000 differences returned a
score of ≥ 0.55. With that, we conduct yet another experiment (Experiment B):

1. For all the ciphertext pairs in G, decrypt i rounds with their respective keys
and compute the corresponding difference. Denote the set of differences as
Diff5-i.

2. Generate 105 plaintext pairs with a difference of 0x0040/0000 with random
keys, encrypt to 4 rounds

3. If the pair’s difference is in Diff5-i, keep the pair. Otherwise, discard.
4. Encrypt the remaining pairs to 5 rounds and evaluate them using N5.

When i = 2, we obtain 1669 unique differences with a dataset size of 89,969.
97.86% of these ciphertext pairs yielded a score ≥ 0.5 (i.e. by this method, we
can isolate 88.04% of the true positive ciphertexts pair). Using i = 1, we have
128,039 unique differences and the size of the dataset is 74,077. While we could
get a cleaner set with 99.98% of these ciphertext pairs obtaining a score of ≥ 0.5,
we only managed to isolate 74.06% of the true positive pairs. Comparing with
the true positive rate of N5 from Table 1, which is 0.904± 8.33× 10−4, the case
when i = 2 seems to be closer.

We also looked into the bias of the difference bits (the jth difference bit
refers to the jth bit index of C5−2 ⊕ C ′5−2 where Cnr−i refers to the nr round
ciphertext decrypted by i rounds. Table 4 shows the difference bit biases of the
first 1000 (most common) unique differences of ciphertext pairs in G and B
after decrypting two rounds. We assume that the neural distinguisher is able to
identify some bits at these rounds because they are significantly more biased,
though both the set B and G are from the real distribution.

Now, we state the assumption required for our conjecture, which we will
verify experimentally in Section 4.3.

Assumption 1 Given a 5-round SPECK-32/64 ciphertext pair, N5 is able to
determine the difference of certain bits at rounds 3 and 4 with high accuracy.

Conjecture 1. Given a 5-round SPECK-32/64 ciphertext pair, N5 finds the dif-
ference of certain bits at round 3 and decides if the ciphertext pair is real or
random.

Interestingly, the difference bit biases after decrypting 1 and 2 rounds are
very similar (in their positions). We will provide an explanation in Section 4.2.

5 the differences were obtained experimentally.
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Table 4: Difference bit bias of ciphertext pairs in G and B after decrypting 2
rounds. A negative (resp. positive) value indicates a bias towards ‘0’ (resp. ‘1’).
bit position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G 0.476 -0.454 -0.355 -0.135 0.045 0.084 -0.009 0.487 -0.473 -0.426 -0.300 -0.050 0.006 0.019 0.500 -0.500
B -0.002 0.018 0.008 -0.011 0.044 0.002 0.023 -0.022 0.010 -0.002 0.013 -0.004 0.006 -0.005 0.103 0.072

bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G 0.476 -0.454 -0.142 -0.006 0.025 0.084 -0.009 0.487 -0.473 -0.426 0.165 0.094 -0.006 0.019 -0.500 -0.500
B 0.031 -0.009 -0.015 -0.007 -0.014 -0.024 0.025 0.026 0.034 -0.005 -0.018 -0.021 0.006 0.009 0.079 -0.065

The exact truncated differentials are (∗ denotes no specific constraint, while 0
or 1 denotes the expected bit difference):

3 rounds: 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 00 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 10

4 rounds: 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 10 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 00

We refer to these particular truncated differential masks as TD3 and TD4 for
the following discussion. Using constraint programming, we evaluate that the
probabilities for these truncated differentials are 87.86% and 49.87% respectively.
In order to verify how much the neural distinguisher is relying on these bits, we
perform the following experiment (Experiment C):

1. Generate 106 plaintext pairs with initial difference 0x0040/0000 and 106

random keys.
2. Encrypt all 106 plaintext pairs to 5 − i rounds. If a plaintext pair satisfies

the TD5−i, then we keep it. Otherwise, it will be discarded.
3. Encrypt the remaining pairs to 5 rounds and evaluate them using N5.

Table 5: Results of Experiment C with TD3 and TD4. Proport. refers to the
number of true positive ciphertext pairs captured by the experiment.

5-i Trunc. Diff. Dataset size Acc. Proport.

3 TD3 87741 99.277% 87.11%
4 TD4 50063 99.996% 50.06%

Table 5 shows the statistics of the above experiment with 5 rounds of SPECK-
32/64. The true positive rates for ciphertext pairs that follow these are closer
to that of Gohr’s neural distinguisher. Now, there remains about 3% of the
ciphertext pairs yet to be explained (comparing the results of TD5−2 with N5).
The important point to note here is that the pairs we have identified are exactly
the ones verified by the neural distinguisher as well, by the nature of these
experiments. In other words, we managed to find what the neural distinguisher
is looking for and not just another distinguisher that would achieve a good
accuracy by identifying a different set of ciphertext pairs.

4.2 Deriving TD3 and TD4

With an input difference of 0x0040/0000, which has a deterministic transition to
0x8000/8000 in round 1, the difference will only start to spread after round 1 due
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to the modular addition in the SPECK-32/64 round function. The inputs to the
modular addition at round 2 are 0x0100 and 0x8000 (cf. Figure 6). While there
are two active bits, only one of them will propagate the carry (as the other is
the MSB), resulting in multiple differences. Assuming a uniform distribution, the
carry has a probability 1

2 of propagating to the left. This causes the probability
of the various differentials to reduce by 1

2 as the carry bit propagates until b31
(bit position 31) is reached and any further carry will be removed by the modular
addition.

Fig. 6: The distribution of the possible output differences after passing through
the modular addition operation.

0x0100

0x8000

0x8100,0x8300,0x8700,0x8f00

0x9f00,0xbf00,0xff00,0x7f00

+

Out. Diff. Prob.

0x8100 2−1

0x8300 2−2

0x8700 2−3

0x8f00 2−4

0x9f00 2−5

0xbf00 2−6

0xff00 2−7

0x7f00 2−7

In Figure 7 and Figure 8, we show how the bits evolve along the most probable
differential path from round 1 (0x8000/8000) to round 4 (0x850a/9520). As
it passes through the modular addition operation, we highlight the bits that
have a relatively higher probability of being different from the most probable
differential. The darker the color, the higher the probability of the difference
being toggled.

Figure 7 and Figure 8 show us why TD3 is important at round 3, and how
the active bits shift in SPECK-32/64 when we start with the input difference of
0x0040/0000. In every round, b31, (the leftmost bit) has a high probability of
staying active. This bit is then rotated to b24 before it goes into the modular
addition operation. In each round, b26 has a 1

2 chance of switching from 1→ 0 or
the other way round. b27 and b28 have a 1

4 and 1
8 chance respectively of switching.

This makes them highly volatile and therefore, unreliable. On the other hand,
the right part of SPECK-32/64 rotates by 2 to the left at the end of each round.
Because of the high rotation value in the left part of SPECK-32/64, low rotation
value of the right part of SPECK-32/64, and the fact that the left part is added
into the right part after the rotation, it takes about 3 to 4 rounds for the volatile
and unreliable bits to spread.
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Fig. 7: The left (resp. right) part shows how the active bit from differ-
ence 0x8000/8000 (resp. 0x8100/8102) propagates to difference 0x8100/8102

(0x8000/820a). The darker the color, the higher the probability (≥ 1
4 ) that it

has a carry propagated to.
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Fig. 8: Showing how the active bit from difference 0x8000/820a propagates to
difference 0x850a/9520. The darker the color, the higher the probability (≥ 1

4 )
that it has a carry propagated to.
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4.3 Verifying Assumption 1

To verify if Gohr’s neural distinguisher is able to recognize the truncated differ-
ential, we retrain the neural distinguisher with a slight difference (Experiment
D):

1. Generate 107 plaintext pairs such that about 1
2 of the pairs satisfy TD3

(these are the positive pairs)
2. Encrypt the plaintext pairs for two rounds
3. Train the neural network to distinguish the two distributions, and validate

with the same hyper-parameters as in [11], with a depth of 1 in the residual
block.

After retraining, the neural distinguisher has an accuracy of 96.57% (TPR:
99.95%, TNR: 93.19%) This shows that the neural distinguisher has the ca-
pabilities to actually recognize the truncated differential with an outstanding
accuracy.

4.4 SPECK-32/64 Reduced to 6 Rounds

We perform Experiments C for 6 rounds of SPECK-32/64 as well. Table 6 shows
the comparison of the true positive results of rounds 5 and 6. While the results
are not as obvious as for the case of 5 rounds, we can still observe a similar trend
for 6 rounds.

6-i rds Truncated Differential Size of dataset Accuracy Proport.

4 10*****10*****10 10*****10*****00 49902 99.41% 49.6%
5 10*****00*****10 11*****01*****00 6884 99.927% 6.88%

Table 6: Results of SPECK-32/64 reduced to six rounds for Experiment C. Pro-
portion refers to the number of true positive ciphertext pairs captured by the
experiment.

4.5 Average Key Rank Differential Distinguisher

Taking into consideration the observations we presented in this section, we intro-
duce a new average key rank distinguisher that is not based on machine learning
and almost matches the accuracy as Gohr’s neural network for 5, 6 and 7 rounds
of SPECK-32/64. Here are the key considerations used in our distinguisher:

– The training set of Gohr’s neural network consists of 107 ciphertext pairs.
Thus, we restrict our distinguisher to only use 107 ciphertext pairs as well.

– If we do an exhaustive key search for two rounds, the time complexity will
be extremely high. Instead, we may need to limit ourselves to only one round
to match the complexity of the neural distinguishers.

– If we know the difference at round i, the i− 1 round difference for the right
part is known as well, since ri−1 = (li ⊕ ri)≫ 2
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With those pointers in mind, we created a distinguisher that uses an ap-
proximated DDT (aDDT); that is, a truncated DDT that is experimentally
constructed based on n ciphertext pairs. In this distinguisher, we use n = 107 to
ensure that both our distinguisher and the neural distinguishers have the same
amount of information. The idea of the distinguisher is to decrypt the last round,
nr, using all possible subkey bits that are relevant to the bits we are interested
in. Then, we compute the average of the probabilities of all partial decryptions
for a given pair, read from aDDT (nr − 1), to get a score. If the score is greater
than that of the random distribution, the distinguisher will return 1 (Real) and
0 (Random) otherwise. The bits we are interested in can be represented as an
AND mask, that is, a mask that has ‘1’ in the bit positions that we want to
consider the bit and ‘0’ for those we want to ignore. The mask value we have
chosen is 0xff8f/ff8f rather than the expected 0xc183/c183 as we believe the
truncated differential they are detecting is at nr − 2 rounds. Thus, other than
the bits that are identified earlier in this section, we decided to include more bits
to improve the accuracy. With the look-up table to the aDDT, we do not just
only match the data complexity (of the offline training) of the Gohr’s neural
distinguishers, but at the same time, include the correlations between bits as
well.

The pseudocodes for creating the aDDT and the average key rank distin-
guisher can be found in Algorithm 1 and Algorithm 2 given in Supplementary
Materials. We applied the distinguisher for 5, 6 and 7 rounds of SPECK-32/64
and the results are given in Table 7. It shows that our distinguisher closely
matches the accuracies of Gohr’s neural distinguishers.

Degree of closeness. We now study the similarity between our distinguishers
and Gohr’s neural distinguishers. In particular, we are interested in whether the
classifications of the ciphertext pairs are the same for both distinguishers. To
verify this, we gave a set of 105 5-round ciphertext pairs (approx. 50,000 from
real and random distribution each) to both our average key rank distinguisher
and N5, and measured how many times did they have the same output. The
results for nr = 5 are shown in Table 8. We can see that about 97.6% of the
ciphertext pairs tested have the same classification in both distinguishers. For
nr = 6, we achieved 94.98% of the pairs with the same classification.

Complexity comparison. In our average key rank distinguisher, for each pair,
we perform the partial decryption of two ciphertexts, and a table lookup in
aDDT. In the partial decryption, we enumerate the 212 keys affecting the right-
most 13 bits of δlnr−1 covered by our mask. Therefore, the complexity of our
distinguisher is 213 one-round SPECK-32/64 decryptions, and 213 table lookups.
Comparing its complexity with Gohr’s distinguishers is not trivial, as the op-
erations involved are different. Gohr evaluates the complexity of his neural key
recovery by their runtime and an estimation of the number of speck encryptions
that could be performed at the same time on a GPU implementation. We pro-
pose to use the number of floating point multiplications performed by the neural
network instead. Let I and O respectively denote the number of inputs and out-
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puts to one layer. The computational cost of going through a dense layer is I ·O
multiplications. For 1D-CNN with kernel size ks = 1, a null padding, a stride
equal to 1 and F filters, with input size (I, T ) the cost is computed as I · F · T
multiplications. With the same input but with kernel size ks = 3, a padding
equal to 1, the cost is I · ks · F · T Applying these formulas to Gohr’s neural
network, we obtain a total of 137280 ≈ 217.07 multiplications. Note that we do
not account for batch normalizations and additions, which are dominated by the
cost of the multiplications. Using this estimation, it seems that our distinguisher
is slightly better in terms of complexity.

Table 7: Accuracy of the average key
rank distinguisher with a mask value
of 0xff8f/ff8f.

N5 Accuracy TPR TNR

5 92.98% 90.76% 95.22%

6 78.79% 72.53% 85.07%

7 60.28% 55.31% 65.24%

Table 8: Closeness of the outputs of N5

and average key rank distinguisher.

Nr output

≥ 0.5 < 0.5

AKR Dist
1 46.6% 1.48%

0 0.953% 51.0%

4.6 Discussion

Even though Gohr trained a neural distinguisher with a fixed input difference, it
is unfair to compare the accuracy of neural distinguisher to that of a pure differ-
ential cryptanalysis (with the use of DDT), since there are alternative cryptanal-
ysis methods that the neural distinguisher may have learned. The experiments
performed indicate that while Gohr’s neural distinguishers did not rely much on
difference at the nr round, they rely strongly on the differences at round nr− 1
and even more strongly at round nr − 2. These results support the hypothesis
that the neural distinguisher may learn differential-linear cryptanalysis [13] in
the case of SPECK. While we did not present any attacks here, using the MILP
model shown in [9], we verified that there are indeed many linear relations with
large biases for 2 to 3 rounds.

Unlike traditional linear cryptanalysis, which usually use independent char-
acteristics or linear hull involving the same plaintext and ciphertext bits, a well-
trained neural network is able to learn and exploit several linear characteristics
while taking into account their dependencies and correlations.

We believe that neural networks find the easiest way to achieve the best
accuracy. In the case of SPECK, it seems that differential-linear cryptanalysis
would be a good fit since it requires less data and the truncated differential
has a very high probability. Thus, we think that neural networks have the abil-
ity to efficiently learn short but strong differential, linear or differential-linear
characteristics for small block ciphers for a small number of rounds.

4.7 Application to AES-2-2-4 [7]

We are also interested in the capabilities of the neural distinguishers on a
Substitution-Permutation Network (SPN) cipher. We chose a small scale variant
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of AES from [7] with the parameters: r = 2, c = 2, e = 4. We chose this cipher
as it has a small state size, which could be exhaustively searched through. AES-
2-2-8 would be a good choice as it also has a state size of 32-bit, however, our
distinguishers are not able to learn anything significant. We trained AES-2-2-4
with 215 pairs, starting with an input difference of (1, 0, 0, 1). This input dif-
ference was chosen such that only after two rounds, all S-boxes will be active.
We trained them for 3 rounds and obtained an accuracy of 61.0%. In contrast,
we use the same number of pairs, we trained an aDDT distinguisher and we
obtained an accuracy of 62.3%.

To show the possibilities of relying purely on differences, we perform an
experiment similar to Experiment A. With the trained neural distinguisher, we
exhaust all possible 16-bit differences and we generate 100 random pairs for
each difference. Next, we feed the pairs to the neural distinguisher and count
the number of pairs in each basket of score: [0.0− 0.1), [0.1− 0.2), ..., [0.9− 1.0].
Our result shows that for each differential, the 100 random pairs form a cluster
about a center similar to a Gaussian distribution. These results seem to suggest
the nature of the neural distinguisher for AES-2-2-4 is one that relies fully on
differential: giving a confidence interval based on just the difference.

5 Interpretation of Gohr’s Neural Network: a Machine
Learning Perspective

In this section, we are exploring the following practical question:

Can Gohr’s neural network be replaced by a strategy inspired by both
differential cryptanalysis and machine learning?

We will demonstrate here that this is possible. First of all, it should be em-
phasized that DNNs often outperform mathematical modeling or standard ma-
chine learning approaches in supervised data-driven settings, especially on high-
dimensional data. It seems to be the case because correlations found between
input and output pairs during DNN training lead to more relevant character-
istics than those found by experts. In other words, Gohr’s neural distinguisher
seems to be capable of finding a property P currently unknown by cryptana-
lysts. One may ask if we could experimentally approach this unknown property
P that encodes the neural distinguisher behavior, using both machine learning
and cryptanalysis expertise. With this question in mind, we propose our best
estimate with a focus on 5 and 6 SPECK-32/64 rounds where the DNN achieves
accuracies of 92.9% and 78.8% in a real/random distinction setting and where
the full DDT approach can achieve accuracies of 91.1% and 75.8%. In our best
setting, we reach accuracy values of 92.3% and 77.9%.

Section 3 discusses in detail how Gohr’s neural distinguisher is modeled in
three blocks. Our objective here is to replace each of these individual blocks by a
more interpretable one, coming either from machine learning or from the crypt-
analysts’ point of view. This work is thus the result of the collaboration between
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two worlds addressing the open question of deep learning interpretability. In the
course of the study, we set forth and challenged four conjectures to estimate the
property P learned by the DNN as detailed below.

5.1 Four Conjectures

Conjectures 2 & 3 aim to uncover Block 3 behavior. Conjecture 4 tackles Block
1 while Conjecture 5 concerns Block 2-i.

The DNN can not be entirely replaced by another machine learning
model. Ensemble-based machine learning models such as random forests [4]
and gradient boosting decision trees [8] are accurate and easier to interpret than
DNNs [14]. Nevertheless, DNNs outperform ensemble-based machine learning
models for most tasks on high-dimensional data such as images. However, with
only 64 bits of input, we could legitimately wonder whether the DNN could be
replaced by another ensemble-based machine learning model. Despite our small
size problem, our experiments reveal that other models significantly decrease the
accuracy.

Conjecture 2. Gohr’s neural network outperforms other non-neuronal network
machine learning models.

Experiment. To challenge this conjecture, we tested multiple machine learn-
ing models, such as Random Forest (RF), Light Gradient Boosting Machine
(LGBM), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) and
Linear Regression (LR). They all performed equally. For the rest of this paper,
we will only consider LGBM [12] as an alternative ensemble classifier for DNN
and MLP. LGBM is an extension of Gradient Boosting Decision Tree (GBDT) [8]
and we fixed our choice on it because it is accurate, interpretable and faster to
train than RF or GBDT. In support of our conjecture, we established that the
accuracy for the LGBM model is significantly lower than the one of the DNN
when the inputs are (Cl, Cr, C

′
l , C
′
r), see third column of Table 9.

Table 9: A comparison of the neural distinguisher and LGBM model for 5 round,
for 106 samples generated of type (Cl, Cr, C

′
l , C
′
r).

N5 D5
LGBM as classifier

for the original input
LGBM as classifier
for the 512-feature

LGBM as classifier
for the 64-feature

92.9% 91.1% 76.34% ± 2.62 91.49% ± 0.09 92.36% ± 0.07

The final MLP block is not essential. As described above, we can not
replace the entire DNN with another non-neuronal machine learning model that
is easier to interpret. However, we may be able to replace the last block (Block
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3) of the neural distinguisher performing the final classification, by an ensemble
model.

Conjecture 3. The MLP block of Gohr’s neural network can be replaced by an-
other ensemble classifier.

Experiment. We successfully exchanged the final MLP block for a LGBM model.
The reasons for choosing LGBM as a non-linear classifier were detailed in the
previous experiment paragraph. The first attempt is a complete substitution of
Block 3, taking the 512-dimension output of Block 2-10 as input. In the fourth
column of Table 9, we observe that this experiment leads to much better results
than the one from Conjecture 2, and even better results than the classical DDT
methodD5 (+0.39%). To further improve the accuracy, we implemented a partial
substitution, taking only the 64-dimension output of the first layer of the MLP as
input. As can be seen in the fifth column from Table 9, the accuracy with those
inputs is now much closer to the DNN accuracy. In both cases, the accuracy
is close to the neural distinguisher, supporting our conjecture. At this point, in
order to grasp the unknown property P, one needs to understand the feature
vector at the residuals’ output.

The linear transformation on the inputs. We saw in Section 3 that Block
1 performs a linear transformation on the input. By looking at the weights of the
DNN first convolution, we observe that it contains many opposite values. This
indicates that the DNN is looking for differences between the input features.
Consequently, we propose the following conjecture.

Conjecture 4. The first convolution layer of Gohr’s neural network transforms
the input (Cl, Cr, C

′
l , C
′
r) into (∆L,∆V, V0, V1) and a linear combination of those

terms.

Experiments. As the inputs of the first convolution are binary, we could formally
verify our conjecture. By forcing to one all non-zero values of the output of this
layer, we calculated the truth-table of the first convolution. We thus obtained
the boolean expression of the first layer for the 32 filters. We observed that eight
filters were empty and the remaining twenty-four filters were simple. The filter
expressions are provided in Table 14 in the Supplementary Materials.

However, one may argue that setting all non-zero values to one is an over-
simplified approach. Therefore, we replaced the first ReLU activation function
by the Heaviside activation function, and then we retrained the DNN. Since the
Heaviside function binarizes the intermediate value (as in [28]), we can estab-
lish the formal expression of the first layer of the retrained DNN. This second
DNN had the same accuracy as the first one and almost the same filter boolean
expression.

Finally, we trained the same DNN with the following entries (∆L,∆V, V0, V1).
Using the same method as before, we established the filters’ boolean expressions.
This time, we obtained twenty five null filters and seven non-null filters, with the
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following expressions: ∆L, V0∧V1, ∆L, ∆L, V0∧V1, ∆L∧∆V , ∆L∧∆V . These
observations support conjecture 4. Therefore, we kept only (∆L,∆V, V0, V1) as
inputs for our pipeline.

The masked output distribution table. With regards to the remaining
residual block replacement, our first assumption is that the DNN calculates a
shape close to the DDT in that residual block. However, two major properties of
the neural distinguisher prevent us from assuming that it is a DDT in the classical
sense of the term. The first property, as explained in Section 3, is that the neural
distinguisher does not only rely on the difference distribution to distinguish real
pairs as presented in Table 2. The second specificity is that the DNN has only
approximately 100,000 floating parameters to perform classification, which can
be considered as size efficient. Our second assumption is therefore that the DNN
is able to compress the distribution table. We introduce the following definitions.

Output Distribution Table (ODT). We propose to compute a distribution table
on the values (∆L,∆V, V0, V1) directly, instead of doing so on the difference
of the ciphertext pair (Cl ⊕ C ′l , Cr ⊕ C ′r). We call this new table an Output
Distribution Table (ODT) and it can be seen as a generalization of the DDT.
The entries of the ODT are 64 bits, which is not tractable for 107 samples. Also,
the DNN has only 100,000 parameters. The DNN is therefore able to compress
the ODT.

Masked Output Distribution Table (M-ODT). A compressed ODT means that
the input is not 64 bits, but instead hw bits, where hw represents the Hamming
weight of the mask. Let us consider a mask M ∈Mhw with Mhw the ensemble
of 64-bits masks with Hamming weight hw and M = (M1,M2,M3,M4), with
Mi a 16-bit mask. Compressing the ODT therefore means applying the M mask
to all inputs. In our case, with I = (∆L,∆V, V0, V1), we get IM = (∆L ∧
M1, ∆V ∧ M2, V0 ∧ M3, V1 ∧ M4) = I ∧ M , before computing the ODT. By
calculating that way, the number of ODT entries per mask decreases. It becomes
a function that depends only on hw and on the bit positions in the masks. It
is therefore a more compact representation of the complete ODT. However, it
turns out that if we consider only one mask, we get only one value per sample to
perform the classification: P (Real|IM ), while the DNN has a final vector size of
512. We considered several masks. Thus, by defining the ensemble RM ∈Mhw,
the set of relevant masks of Mhw, we can calculate for a specific input I =
(∆L,∆V, V0, V1) the probability P (Real|IM ),∀M ∈ RM . Then, we concatenate
all the probabilities into a feature vector of size m = |RM |. We get the feature

F for the input I: F =
(
P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)

)T
. We are now able

to propose the final conjecture.

Conjecture 5. The neural distinguisher internal data processing of Block 2-i can
be approached by:

1. Computing a distribution table for input (∆L,∆V, V0, V1).
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2. Finding several relevant masks and applying them to the input in order to
compress the output distribution table.

We abbreviate M-ODT this Masked-Output Distribution Table. Thus, the fea-
ture vector of the DNN can be replaced by a vector where each value represents
the probability stored in the M-ODT for each mask.

This approach enables us to replace Block 2-i of the DNN. Though, we still
need to clarify how to get the RM ensemble.

Extracting masks. Based on local interpretation methods, we can extract these
masks from the DNN. Indeed, these methods consist of highlighting the most
important bits of the entries for classification. Thus, by sorting the entries ac-
cording to their score and by applying these local interpretation methods, we
can obtain the relevant masks.

5.2 Approximating the Expression of the Property P

From our conjectures, we hypothesized that we can approximate the unknown
property P that encodes the neural distinguisher behavior by the following:

– Changing (C,C ′) into I = (∆L,∆V, V0, V1).
– Changing the 512-feature vector of the DNN by the feature vector of prob-

abilities F =
(
P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)

)T
.

– Changing the final MLP block by the ensemble machine learning model
LGBM.

These points stand respectively for Block 1, Block 2-i and Block 3.

5.3 Implementation

In this section and based on the verified conjectures, we are describing the step-
wise implementation of our method. We consider that we have a DNN formed
with 107 data of type (∆L,∆V, V0, V1) for 5 and 6 rounds of SPECK-32/64. We
developed a three-step approach:

1. Extraction of the masks from the DNN with a first dataset.
2. Construction of the M-ODT with a second dataset.
3. Training of the final classifier from the probabilities stored in the M-ODT

with a third dataset.

Mask extraction from the DNN. We first ranked 104 real samples accord-
ing to DNN score, as described in Section 4.1, in order to estimate the masks
from these entries. We used multiple local interpretation methods: Integrated
Gradients [26], DeepLift [22], Gradient Shap [15], Saliency maps [23], Shapley
Value [5], and Occlusion [27]. These methods score each bit according to their
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importance for the classification. Following averaging by batch and by method,
there were two possible ways to move forward. We could either assign a Ham-
ming weight or else set a threshold above which all bits would be set to one.
After a wide range of experiments, we chose the first option and set the Ham-
ming weight to sixteen and eighteen (which turned out to be the best values in
our testing). This approach allowed us to build the ensemble RM of the relevant
masks.

Implementation details. We used the captum library6 which brings together
multiple methods on local interpretation. The dataset is divided into batches
of size about 2,500 and grouped by scores. The categories we used were: scores
from 1 to 0.9 (about 2,000 samples), scores from 0.9 to 0.5 (about 500 samples),
scores from 1 to 0.8 (about 2,100 samples) and scores from 1 to 0.5 (about 2,500
samples). This way, one score per method could be derived for each bit of each
sample. We then proposed several methods to average these importance scores
by bit of category: the sum of absolute values, the median of absolute values
and the average of absolute values. Then, we took the sixteen and eighteen best
values and we obtained a mask. There is one mask per score, one per local inter-
pretation method and one per averaging method. On average, for 5,000 samples
we generate about 100 relevant masks. Finally, with the methods available in
scikit-learn [20], we ranked the features and so the masks according to their per-
formance. After multiple repetitions of mask generation and selection at every
time, we obtained 50 masks that are effective: they are provided in Table 15
in the Supplementary Materials. The final ensemble of masks is the addition of
those 50 effective masks and the generated relevant masks.

Constructing the M-ODT. Once the ensemble RM of relevant masks is de-
termined, we compute the M-ODT. Algorithm D (in Supplementary Materials)
describes our construction method which is similar to that of the DDT. The in-
puts of the algorithm include a second dataset composed of n = 107 real samples
of type I = (∆L,∆V, V0, V1), and the set of relevant masks RM . The output is
the M-ODT dictionary with the mask as first key, the masked input as second
key, and P (Real|I ∧M) = P (Real|IM ) as value.

The M-ODT dictionary is constructed as follow: first, for each mask M in
RM , we compute the corresponding masked-dataset DM which is simply the
operation IM = I ∧M for all I in D. Secondly we compute a dictionary U with
key the element of DM and with value the occurrences number of that element
in DM . Then, we compute for all element IM in DM the probability:

P (Real|IM ) =
P (IM |Real)P (Real)

P (IM |Real)P (Real) + P (IM |Random)P (Random)

6 https://github.com/pytorch/captum
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with P (Real) = P (Random) = 0.5, P (IM |Random) = 2−HW (M), HW (M) being
the Hamming weight of M and P (IM |Real) = 1

n × U [IM ]. Finally we update
M-ODT as follow: M-ODT[M ][IM ] = P (Real|IM ).

Training the classifier on probabilities. Upon building the M-ODT, we
can start training the classifier. Given a third dataset D = {(input0, y0)...
(inputn, yn)}, with inputj a sample of type (C,C ′), transformed into (∆L,∆V,
V0, V1) and the label yj ∈ [0, 1], with n = 106, we first compute the feature

vector Fj =
(
P (Real|Ij∧M1) P (Real|Ij∧M2) ··· P (Real|Ij∧Mm)

)T
for all inputs and for

m = |RM |. Next, we determined the optimal θ parameters for the gθ model
according to Equation 1, with L being the square loss. Here, the gθ classifier is
Light Gradient Boosting Machine (LGBM) [12].

Implementation details. Feature vectors are standardized. Model hyper-parameters
fine-tuning has been achieved by grid search. Results were obtained by cross-
validation on 20% of the train set and the test set had 105 samples. Finally,
results are obtained on the complete pipeline for three different seeds, five times
for every seed.

5.4 Results

The M-ODT pipeline was implemented with numpy, scikit-learn [20] and pytorch
[19]. The project code can be found at this URL address7. Our work station is
constituted of a GPU Nvidia GeForce GTX 970 with 4043 MiB memory and
four Intel core i5-4460 processors clocked at 3.20GHz.

General results. Table 10 shows accuracies of the DDT, the DNN and our M-
ODT pipeline on 5 and 6-round reduced SPECK-32/64 for 1.1 × 107 generated
samples. When compared to DNN and DDT, our M-ODT pipeline reached an
intermediate performance right below DNN. The main difference is the true
positive rate which is higher in our pipeline (this can be explained by the fact
that our M-ODT preprocessing only considers real samples). All in all, our M-
ODT pipeline successfully models the property P.

Matching. Table 11 summarizes the results of the quantitative correspondence
studies for the prediction between the two models. We compared the DNN
trained on samples type (∆L,∆V, V0, V1) to our M-ODT pipeline. On 5 rounds,
we obtained a rate of 97.5% identical predictions. In addition, 91.3% were both
identical and equal to the label. On 6 rounds, matching prediction reduces down
to 93.1%.

We thus demonstrated that our method advantageously approximates the
performance of the neural distinguisher. With an initial linear transformation

7 https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-
Machine-Learning-Based-Cryptanalysis
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Table 10: A comparison of Gohr’s neural network, the DDT and our M-
ODT pipeline accuracies for around 150 masks generated each time, with input
(∆L,∆V, V0, V1), LGBM as classifier and 1.1 × 107 samples generated in total.
TPR and TNR refers to true positive and true negative rate respectively.

Rd Distinguisher Accuracy TPR TNR

5
D5 91.1% 87.7% 94.7%
N5 92.9%± 0.05 90.4%± 0.08 95.4%± 0.06

M-ODT (Ours) 92.3%± 0.08 95.5%± 0.09 89.1%± 0.2

6
D6 75.8% 68.0% 83.7%
N6 78.8%± 0.08 72.4%± 0.01 85.3%± 0.1

M-ODT (Ours) 77.9%± 0.1 85.2%± 0.1 70.6%± 0.2

on the inputs, computing a M-ODT for a set of masks extracted from the DNN
and then classifying the resulting feature vector with LGBM, we achieved an
efficient yet more easily interpretable approach than Gohr distinguishers. In-
deed, DNN obscure features are simply approached in our pipeline by F =(
P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)

)T
. Finally, we interpret the performance of

the classifier globally (i.e. retrieving the decision tree) and locally (i.e. deduc-
ing which feature played the greatest role in the classification for each sample)
as in [14]. Those results are not displayed as they are beyond the scope of the
present work, but they can be found in the project code.

Table 11: A comparison of Gohr’s neural network predictions and our M-
ODT pipeline predictions for around 150 masks generated each time, with input
(∆L,∆V, V0, V1), LGBM as classifier and 1.1× 107 samples generated in total.

Nr Model Accuracy Matching Matching & equal
to label

5
N5 92.9%

97.5% ± 0.06 91.3% ± 0.08
M-ODT (Ours) 92.3%

6
N6 78.8%

93.1% ± 0.07 75.3% ± 0.11
M-ODT (Ours) 77.9%

5.5 Application to SIMON Cipher

In order to check whether our approach could be generalized to other crypto-
graphic primitives, we evaluated our M-ODT method on 8 rounds of SIMON-
32/64 block cipher. Implementing the same pipeline, we enjoyed a 82.2% ac-
curacy for the classification, whereas the neural distinguisher achieves 83.4%
accuracy. In addition, the matching rate between the two models was up to
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92.4%. The slight deterioration in the results of our pipeline for SIMON can be
explained by the lack of efficient masks as introduced in Section 5.3 for SPECK.

5.6 Discussions

From the cryptanalysts’ standpoint, one important aspect of using the neural
distinguisher is to uncover the property P learned by the DNN. Unfortunately,
while being powerful and easy to use, Gohr’s neural network remains opaque.

Our main conjecture is that the 10-layer residual blocks, considered as the
core of the model, are acting as a compressed DDT applied on the whole input
space. We model our idea with a Masked Output Distribution Table (M-ODT).
The M-ODT can be seen as a distribution table applied on masked outputs,
in our case (∆L,∆V, V0, V1), instead of only the difference (Cl ⊕ C ′l , Cr ⊕ C ′r).
By doing so, features are no longer abstract as in the neural distinguisher. In
our pipeline, each one of the features is a probability for the sample to be real
knowing the mask and the input. In the end, with our M-ODT pipeline, we
successfully obtained a model which has only −0.6% difference accuracy with the
DNN and a matching of 97.3% on 5 rounds of SPECK-32/64. Additional analysis
of our pipeline (e.g. masks independence, inputs influence, classifiers influence)
are available into the project code. To the best of our knowledge, this work is
the first successful attempt to exhibit the underlying mechanism of the neural
distinguisher. However, we note that a minor limitation of our method is that it
still requires the DNN to extract the relevant masks during the preparation of the
distinguisher. Since it is only during preparation, this does not remove anything
with regards to the interpretability of the distinguisher. Future work will aim
at computing these masks without DNN. All in all, our findings represent an
opportunity to guide the development of a novel, easy-to-use and interpretable
cryptanalysis method.

6 Improved Training Models

While in the two previous sections we focused on understanding how the neural
distinguisher works, here we will explain how one can outperform Gohr’s results.
The main idea is to create batches of ciphertext inputs instead of pairs.

We refer to batch input of size B, a group of B ciphertexts that are con-
structed from the same key. Here, we can distinguish two ways to train and
evaluate the neural distinguisher pipeline with batch input. The straightfor-
ward one is to evaluate the neural distinguisher score for each element of the
batch and then to take the median of the results. The second is to consider
the whole batch as a single input for a neural distinguisher. In order to do so,
we used 2-dimensional CNN (2D-CNN) where the channel dimension is the fea-
tures (∆L,∆V, V0, V1). We should point out that, for sake of comparability with
Gohr’s work, we maintained the product of the training set size by the batch
size to be equal to 107. Both batch size-based challenging methods yielded sim-
ilar accuracy values (see Table 12). Notably, in both cases, we enjoyed 100%
accuracy on 5 and 6 rounds with batch sizes 10 and 50 respectively.
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Table 12: Study of the batch size methods on the accuracies with (∆L, ∆V , V0,
V1) as input for 5 and 6 rounds.

Rounds 5 6

Batch input size 1 5 10 1 5 10 50

Averaging Method 92.9% 99.8% 100% 78.6% 95.41% 99.0% 100%
2D-CNN Method - 99.4% 100% - 93.27% 97.7% 100%

Considering these encouraging outcomes, we extended the method to 7 rounds.
As the 7-round training is more sophisticated and the two previous methods are
equivalent, we decided to only apply the first method (the averaging one), be-
cause it requires to train only one neural distinguisher. Results given in Table 13
confirm our previous findings: with a batch size of 100, we obtain 99.7% accuracy
on 7 rounds. This remarkable outcome demonstrates the major improvement of
our batch strategy over those from earlier Gohr’s work.

Table 13: Study of the averaging batch size method on the 7-round accuracies
with (∆L, ∆V , V0, V1) as input.

Batch input size 1 5 10 50 100

Averaging Method 61.2% 73.5% 80.8% 96.7% 99.7%

Conclusion

In this article, we proposed a thorough analysis of Gohr’s deep neural network
distinguishers of SPECK-32/64 from CRYPTO’19. By carefully studying the clas-
sified sets, we managed to uncover that these distinguishers are not only basing
their decisions on the ciphertext pair difference, but also the internal state differ-
ence in penultimate and antepenultimate rounds. We confirmed our findings by
proposing pure cryptanalysis-based distinguishers on SPECK-32/64 that match
Gohr’s accuracy. Moreover, we also proposed a new simplified pipeline for Gohr’s
distinguishers, that could reach the same accuracy while allowing a complete in-
terpretability of the decision process. We finally gave possible directions to even
improve over Gohr’s accuracy.

Our results indicate that Gohr’s neural distinguishers are not really pro-
ducing novel cryptanalysis attacks, but more like optimizing the information
extraction with the low-data constraints. Many more distinguisher settings, ma-
chine learning pipelines, types of ciphers should be studied to have a better
understanding of what machine learning-based cryptanalysis might be capable
of. Yet, we foresee that such tools could become of interest for cryptanalysts and
designers to easily and generically pre-test a primitive for simple weaknesses.

Our work also opens interesting directions with regards to interpretability of
deep neural networks and we believe our simplified pipeline might lead to better
interpretability in other areas than cryptography.
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Supplementary Materials

A Pseudocode for aDDT and Average Key Rank
Distinguisher

Algorithm 1 Function used to build the approximated DDT from a given
number of random samples and a bitmask.

1: function BuildApproxDDT(nr, np,m) . where nr - Number of rounds, np
- No. of pairs, m - bitmask

2: aDDT ← ZEROS(232)
3: for i = 1 to np do
4: p← rand(0, 232 − 1)
5: p′ ← p⊕ 0x0040/0000

6: key ← rand(0, 264 − 1)
7: lnr, rnr ← ENCkey(p, nr);
8: l′nr, r

′
nr ← ENCkey(p′, nr)

9: δl ← lnr ⊕ l′nr;
10: δv ← lnr ⊕ rnr ⊕ l′nr ⊕ r′nr

11: aDDT [(δl||δv) ∧m] = aDDT [(δl||δv) ∧m] + 1
n

12: end for
13: return aDDT
14: end function

Algorithm 2 Pseudocode for the average key rank differential distinguisher.

1: function AKRDD(nr,C,C′,m) . where nr - Number of rounds, C,
C′ - two ciphertexts, m - bitmask

2: aDDT ← BuildApproxDDT (nr − 1, 107,m)
3: score← 0
4: for key = 0 to 212 − 1 do
5: lnr−1, rnr−1 ← DECkey(C, 1); . Decrypt the last round with the

subkey key
6: l′nr−1, r

′
nr−1 ← DECkey(C′, 1)

7: δl ← lnr−1 ⊕ l′nr−1;
8: δv ← lnr−1 ⊕ rnr−1 ⊕ l′nr−1 ⊕ r′nr−1

9: score+ = aDDT [δl||δv]
10: end for
11: return ( score

212
> 2−HW (m)) . HW(x) refers to the Hamming

weight of x
12: end function
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B Expression of the Filter After First 1D-CNN
According to Methods from Section 5.1

Table 14: Expression of the filter after first 1D-CNN for type input
(Cl, Cr, C

′
l , C
′
r).

Filter
number

Boolean expression

1 (Cl ∧ C′l) OR (Cr ∧ Cl ∧ C′r) OR (Cr ∧ C′l ∧ C′r)

2 Cl ∧ C′r ∧ C′l
3 (Cr ∧ C′l ∧ C′r) OR (Cl ∧ C′l ∧ C′r)

4 (Cl ∧Cr ∧C′l) OR (Cl ∧Cr ∧C′r) OR (Cl ∧C′l ∧C′r) OR (Cr ∧C′l ∧C′r)
5 Null

6 (C′l ∧ Cl ∧ C′r) OR (C′l ∧ Cr ∧ C′r)

7 (C′r ∧ Cl ∧ C′l) OR (Cl ∧ Cr ∧ C′l)
8 (Cl ∧ Cr ∧ C′l) OR (Cl ∧ C′l ∧ C′r) OR (Cr ∧ C′l ∧ C′r)

9 (C′l ∧ C′r) OR (C′l ∧ Cl) OR (Cr ∧ C′r ∧ Cl)
10 Null

11 (C′l ∧ C′r ∧ Cl) OR (C′l ∧ C′r ∧ Cr) OR (C′l ∧ Cl ∧ Cr)
12 Null

13 (Cl ∧ C′l) OR (Cl ∧ Cr ∧ C′r) OR (Cr ∧ C′l ∧ C′r)

14 (Cl ∧Cr ∧C′l) OR (Cl ∧Cr ∧C′r) OR (Cl ∧C′l ∧C′r) OR (Cr ∧C′l ∧C′r)

15 (Cl ∧ C′l) OR (Cl ∧ Cr ∧ C′r) OR (Cr ∧ C′r ∧ C′l)
16 Null

17 Cl ∧ Cr ∧ C′l
18 (Cl ∧ C′l) OR (C′l ∧ C′r) OR (Cl ∧ Cr ∧ C′r)

19 Cl ∧ C′l ∧ Cr

20 (Cr ∧C′l ∧Cl) OR (Cr ∧C′l ∧C′r) OR (Cr ∧Cl ∧C′r) OR (C′l ∧Cl ∧C′r)
21 Null

22 (Cl ∧ C′l ∧ C′r) OR (Cl ∧ C′l ∧ Cr) OR (Cl ∧ C′r ∧ Cr)

23 Cl ∧ C′l
24 Cl ∧ Cr ∧ C′l
25 Null

26 Cl ∧ C′l
27 (C′r ∧ C′l) OR (Cl ∧ C′l) OR (Cr ∧ C′r ∧ Cl)

28 (Cr ∧C′l ∧Cl) OR (Cr ∧C′l ∧C′r) OR (Cr ∧Cl ∧C′r) OR (C′l ∧Cl ∧C′r)

29 C′l ∧ Cl

30 Null

31 Cl ∧ Cr

32 Null
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C Expression of the 50 Efficient Masks for the M-ODT
Pipeline

Table 15: Expression (in hexadecimal notation) of the 50 efficient masks for the
M-ODT pipeline for samples generated of type (∆L,∆V, V0, V1).

Name masks Mask 1 Mask 2 Mask 3 Mask 4

(3844-15384-7692-7692) 0F04 3C18 1E0C 1E0C

(7939-31804-15360-15360) 1F03 7C3C 3C00 3C00

(3842-16020-516-7684) 0F02 3E94 0204 1E04

(1551-15420-12-12) 060F 3C3C 000C 000C

(7693-30768-14336-14352) 1E0D 7830 3800 3810

(25569-12039-0-0) 63E1 2F07 0000 0000

(6409-26738-10240-10240) 1909 6872 2800 2800

(1543-7708-3072-3072) 0607 1E1C 0C00 0C00

(7693-7228-24-24) 1E0D 1C3C 0018 0018

(6150-30780-12312-12312) 1806 783C 3018 3018

(6159-14396-6168-2072) 180F 383C 1818 0818

(7692-31792-11264-12312) 1E0C 7C30 2C00 3018

(7683-21564-15360-15360) 1E03 543C 3C00 3C00

(6159-15420-8196-4124) 180F 3C3C 2004 101C

(30768-24624-0-0) 7830 6030 0000 0000

(11280-8208-0-0) 2C10 2010 0000 0000

(33155-34691-12-12) 8183 8783 000C 000C

(3852-14384-7184-7184) 0F0C 3830 1C10 1C10

(527-5692-2068-2068) 020F 163C 0814 0814

(5647-14396-4112-6168) 160F 383C 1010 1818

(772-256-41066-41066) 0304 0100 A06A A06A

(5644-0-7186-7186) 160C 0000 1C12 1C12

(7-7740-1038-1038) 0007 1E3C 040E 040E

(779-7958-2048-3588) 030B 1F16 0800 0E04

(49496-45811-3-0) C158 B2F3 0003 0000

(7680-30780-7168-7168) 1E00 783C 1C00 1C00

(7680-30780-6144-6144) 1E00 783C 1800 1800

(15-7740-1030-1030) 000F 1E3C 0406 0406

(7692-30768-14336-12304) 1E0C 7830 3800 3010

(7695-31804-0-28) 1E0F 7C3C 0000 001C

(37304-21475-0-12) 91B8 53E3 0000 000C

(2823-32566-0-4) 0B07 7F36 0000 0004

(1025-13923-4611-9795) 0401 3663 1203 2643

(3855-32316-0-0) 0F0F 7E3C 0000 0000

(7951-32308-0-0) 1F0F 7E34 0000 0000

(3840-13372-3076-3076) 0F00 343C 0C04 0C04

(3842-7196-9216-9216) 0F02 1C1C 2400 2400

(54568-192-4632-4632) D528 00C0 1218 1218

(7692-28728-6144-6144) 1E0C 7038 1800 1800

(37304-21475-2-140) 91B8 53E3 0002 008C

(3840-14384-3076-3076) 0F00 3830 0C04 0C04

(28704-24608-0-0) 7020 6020 0000 0000

(2569-13360-273-273) 0A09 3430 0111 0111

(7693-30768-14336-13328) 1E0D 7830 3800 3410

(7174-14396-2560-5144) 1C06 383C 0A00 1418

(1-47891-4865-785) 0001 BB13 1301 0311

(5292-1-51-51) 14AC 0001 0033 0033

(2831-16182-0-2048) 0B0F 3F36 0000 0800

(7692-30768-12288-13328) 1E0C 7830 3000 3410

(7-31731-0-6674) 0007 7BF3 0000 1A12
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D Algorithm for Computing the M-ODT

Algorithm 3 Function used to construct the masked-output distribution table
(M-ODT) from a dataset and a set of relevant masks.

1: function Build M-ODT(D, RM )
2: M-ODT = {}
3: n = |D|
4: P (Real) = 0.5
5: P (Random) = 0.5
6: for all M in RM do
7: Nh(M) = number of 1 in M
8: DM = D ∧M . ∀I ∈ D, IM = I ∧M
9: U = Unique(DM ) . Return a dictionary with key the element of DM and

with value the number occurrence of that element in DM

10: for all IM in DM do
11: P (IM |Random) = 2−Nh(M)

12: P (IM |Real) = 1
n
× U [IM ]

13: P (Real|IM ) = P (Real)P (IM |Real)
P (IM |Real)P (Real)+P (IM |Random)P (Random)

14: M-ODT[M ][IM ] = P (Real|IM )
15: end for
16: end for
17: return M-ODT
18: end function
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