
HashSplit: Exploiting Bitcoin Asynchrony to Violate Common

Prefix and Chain Quality

Muhammad Saad‡, Afsah Anwar‡, Srivatsan Ravi†, and David Mohaisen‡
‡University of Central Florida †University of Southern California

saad.ucf@knights.ucf.edu, afsahanwar@knights.ucf.edu, srivatsr@usc.edu, mohaisen@ucf.edu

03-05-2021

Contents

1 Introduction and Related Work 2

2 The Bitcoin Ideal Functionality 4

3 Data Collection 6
3.1 Bitcoin Peer-to-Peer Network . 6
3.2 Data Collection System . 7

4 Identifying the Mining Nodes 8

5 Network Synchronization 9
5.1 Bitcoin Network Asynchrony . 10

6 The HashSplit Attack 11
6.1 Threat Model and Attack Objectives . 12
6.2 Attack Procedure . 13

6.2.1 Identifying Vulnerable Nodes . 13
6.2.2 Blockchain Splitting . 13
6.2.3 Block Race . 14

7 Attack Countermeasures 18

8 Discussion and Conclusion 19

A Ideal World Functionality Proof 22

B Algorithmic Analysis of Bitcoin Consensus 23

C Data Collection Details 25

D Revisiting Partitioning Attacks 25

E Network Synchronization 26

F Notable Attacks on Bitcoin 27

G Simulations 28

1

mailto:saad.ucf@knights.ucf.edu
afsahanwar@knights.ucf.edu
srivatsr@usc.edu
mailto:

Abstract

The Bitcoin blockchain safety relies on strong network synchrony. Therefore, violating the blockchain
safety requires strong adversaries that control a mining pool with ≈51% hash rate. In this paper, we show
that the network synchrony does not hold in the real world Bitcoin network which can be exploited to
lower the cost of various attacks that violate the blockchain safety and chain quality. Towards that, first
we construct the Bitcoin ideal functionality to formally specify its ideal execution model in a synchronous
network. We then develop a large-scale data collection system through which we connect with more than
36K IP addresses of the Bitcoin nodes and identify 359 mining nodes. We contrast the ideal functionality
against the real world measurements to expose the network anomalies that can be exploited to optimize
the existing attacks. Particularly, we observe a non-uniform block propagation pattern among the mining
nodes showing that the Bitcoin network is asynchronous in practice.

To realize the threat of an asynchronous network, we present the HashSplit attack that allows an
adversary to orchestrate concurrent mining on multiple branches of the blockchain to violate common
prefix and chain quality properties. We also propose the attack countermeasures by tweaking Bitcoin
Core to model the Bitcoin ideal functionality. Our measurements, theoretical modeling, proposed attack,
and countermeasures open new directions in the security evaluation of blockchain systems.

1 Introduction and Related Work

Bitcoin is a dynamically evolving distributed system that has significantly scaled up in recent years [9]. As
Bitcoin continues to grow and inspire other decentralized applications, its security features are continuously
investigated using theoretical analysis and measurement techniques [25, 31]. However, as evident from the
prior work, various aspects of theory and measurements have not been combined under a unified framework
to fully characterize the Bitcoin network anatomy and synthesize a computation model that captures the
intricacies of its real world deployments. We bridge this gap by formally contrasting Bitcoin’s theoretical un-
derpinnings with network-wide measurements to investigate its security. To put our work in the appropriate
context, below we briefly discuss some notable related works and their limitations.
Theoretical Models’ Shortcomings. The existing theoretical models [29, 13, 32, 34] that formally
analyze the Nakamoto consensus (1) ignore the mining power centralization in the real world Bitcoin imple-
mentation, and (2) implicitly assume a form of synchronous execution that uniformly applies to all network
nodes. However, the proof-of-work (PoW) difficulty has considerably increased over the years, allowing
only a few nodes to mine blocks. As a result, the network is naturally divided between mining and non-
mining nodes [3, 26].1 To incorporate the mining centrality in a theoretical model, we construct the Bitcoin
ideal functionality (§2), which acknowledges the distinction between the mining and non-mining nodes and
presents an execution model that preserves the blockchain safety properties.

Another limitation of the existing theoretical models is that they assume uniform block propagation delay.
The Bitcoin backbone protocol, proposed by Garay et al. [13], assumes a lock-step synchronous network with
no block propagation delay. This assumption is impractical for a large-scale distributed system such as
Bitcoin, where block propagation incurs non-zero delay [10]. To address this limitation, Pass et al. [32]
extended the work in [13] and analyzed Bitcoin in the non-lock-step synchronous settings [34]. The non-lock-
step synchronous model assumes a network in which all miners experience the same block propagation delay,
which gives a uniform advantage to the adversary over all other miners. Our measurements contradict this
assumption by showing that miners receive blocks at different times (Figure 6), which cannot be modeled
as a uniform advantage. In §A, we analyze the shortcomings of these models along with refinements to
their assumptions. In §5.1, we conduct experiments to show that the real world execution of Nakamoto
consensus in Bitcoin is asynchronous. We note that the change in the execution model affects the network
synchronization which is pertinent to ensure the two blockchain safety properties, namely the common prefix
and the chain quality [13]. In §6, we show that the asynchronous network relaxes the requirement to violate
these two properties.
Measurement Studies. In addition to the theoretical models, notable works on network measurements
have focused on (1) analyzing Bitcoin nodes distribution across autonomous systems (ASes) [3, 36, 14],

1The Bitcoin network consists of full nodes and SPV clients. Among the full nodes, there are mining and non-mining nodes.
The mining nodes are used by the mining pools to broadcast blocks in the network. In [26, 3], mining nodes are also called
the “gateway nodes” of mining pools. The non-mining nodes do not mine blocks and only maintain the blockchain. Our work
focuses on the mining and non-mining full nodes.

2

(2) discovering influential nodes controlled by the mining pools [26, 3], and (3) measuring the network
synchronization [10, 36]. The security evaluations of these studies proposed (1) partitioning attacks through
BGP prefix hijacking of high profile ASes [3], (2) majority attacks with less than 51% hash rate (≈49%
in [10]), and (3) a combination of the two attacks (i.e., spatio-temporal partitioning in [36] and the balance
attack in [30]). In the context of measuring the network synchronization, the two related studies to our work
are [10] and [36].

In 2012, Decker et al. [10] conducted the first measurement study to analyze the Bitcoin network syn-
chronization. They concluded that the block size is the dominant factor in blockchain synchronization. In
their measurements, they connected to ≈3.5K IP addresses and observed that ≈90% of the nodes in the
network receive the newly published block within 12.6 seconds on average.2 In contrast, our measurements
reveal a relatively weaker synchronization where a large number of the connected nodes do not synchronize
on a newly published block. The observed differences are likely due to (1) an increase in the network size
from 16K reachable IP addresses in 2012 [10] to ≈36K reachable IP addresses at the time of conducting
this study, (2) an increase in the block size from 500KB to 1MB, and (3) an increase in the number of low
bandwidth nodes and Tor nodes. In 2019, weak network synchronization was also reported in [36] using
Bitnodes’ dataset. The authors observed a few instances reported by Bitnodes where a majority of the
network nodes did not synchronize on the blockchain.
Limited Attack Strategies. The attacks proposed in these studies have not been frequently observed in
the wild due to strong adversarial requirements. First, their threat models directly inherit the assumptions
of theoretical frameworks in [13, 32] and ignore the critical distinction between the mining and non-mining
nodes (i.e., in [36, 10, 30]). As a result, their models require the adversary to target all the network
nodes. Moreover, the inability to distinguish between the mining and non-mining nodes prevents them from
analyzing the block propagation patterns among the mining nodes which exposes the asynchronous network.
Therefore, these studies have assumed a synchronous network which only allows limited attack strategies [32].
The key challenge lies in getting visibility into the network intricacies to (1) identify the mining nodes, (2)
study the block propagation among them, and (3) uncover the actual execution model. With the aid of
such measurements and their deviation from the ideal functionality, requirements for existing attacks can be
lowered, which we demonstrate in this work.
Splitting Mining Power. As mentioned earlier, the effect of block propagation delay on the Bitcoin
blockchain has been discussed in theoretical models and measurement studies. Particularly, in the routing
attack in [3], the authors show that BGP attacks can reduce the mining power of the Bitcoin network.
In [30], Natoli et al. used the routing attack model to present a trade-off between the network delay and the
adversary’s mining power (also simulated by Gervais et al. [15]). Similarly, the Eclipse attack [19] showed
that an adversary can influence the hash rate of the mining nodes by occupying all their incoming and
outgoing connections. However, all these attacks rely on disrupting the network communication to create a
split between the mining nodes. Therefore, they implicitly assume a form of route manipulation (i.e., BGP
hijacking or occupying incoming and outgoing connections [30, 19, ?]) as a prerequisite to introduce delay and
split the mining power. In contrast, we show that the non-uniform delay in the existing block propagation
patterns can be exploited to split the mining power without disrupting the communication model through
route manipulation or connection control. We show that by only leveraging the observed block propagation
pattern among the mining nodes and selective block broadcast, an adversary can violate the safety properties
of the Bitcoin blockchain.
Contributions and Roadmap. Combining our insight from the theoretical analysis and measurements,
we present the HashSplit attack which relaxes the requirements to violate the blockchain safety properties.
The underpinnings of the HashSplit attack are grounded in systematic theoretical analysis and measurements
that represent independent contributions in their own right. Along with the attack and its countermeasures,
our work exposes the anatomy and characteristics of the Bitcoin network that are summarized below as the
key contributions.

1. We construct the Bitcoin ideal world functionality to formally specify the safety properties of the Bitcoin
ledger; the common prefix property and the chain quality property [13] (§2). The ideal world function-
ality faithfully models the expected functionality of a correct Bitcoin implementation across prevalent

2Another interpretation of this result is that 12.6 seconds after the release of a new block, 90% of the nodes synchronized
on that block and added it to their blockchain.

3

deployments in real world Bitcoin network.

2. We deploy crawlers in the Bitcoin network and connect with over 36K IP addresses in five weeks (§3). We
develop heuristics to identify the mining nodes and identify 359 IP addresses of the mining nodes using
those heuristics (§4).

3. We measure the block propagation patterns in the Bitcoin network (§5) and show that during the average
inter-arrival block time, a large number of connected nodes do not synchronize on the blockchain. Moreover,
through a fine-grained analysis of the block propagation patterns, we show that execution of the Nakamoto
consensus in Bitcoin is asynchronous §5.1.

4. We show the effect of the asynchronous execution by presenting the HashSplit attack which allows an
adversary to violate the safety properties of the Bitcoin blockchain. We model our attack for an adversary
with 26% hash rate and show that the common prefix and the chain quality properties are violated with
high probability. We also propose attack countermeasures by tweaking Bitcoin Core in order to closely
model the ideal functionality [1].

The HashSplit attack is a lower bound construction and it can be launched as long as there is a non-
uniform block propagation in the network. The attack is based on the gaps between the Bitcoin ideal world
functionality and its real world implementation. Therefore, in keep with the flow, this paper first introduces
the ideal world functionality followed by the measurements and the attack. Moreover, the paper includes
discussions and conclusions in §8, and appendices with supplementary findings in §A–§G.

2 The Bitcoin Ideal Functionality

In this section, we present the Bitcoin ideal world functionality, which we later contrast with our mea-
surements to present the HashSplit attack. The Bitcoin white paper assumed a network where each node
possessed the capability of solving PoW (1 CPU=1 Vote) [29]. However, over time, the PoW difficulty has
significantly increased, allowing only a few nodes to solve it. This change occurred due to large mining pools
that create the mining centralization [39].

Acknowledging these changes in the network, we formally define the Bitcoin ideal world functionality to
characterize the existing Bitcoin operative model, including the distinctive functionality of the mining and
non-mining nodes. The formulation of our ideal functionality is inspired by theoretical models proposed
in [13, 32], with necessary adjustments to incorporate the mining centrality. To formulate the safety and
liveness of the blockchain, we adopt the formalism from the Bitcoin backbone protocol [13]. In Appendix §B,
we explain the model assumptions and the main theorems derived in [13, 32] by presenting the experimental
interpretation of their results in the context of our ideal functionality.

First, we define N as the set of all reachable IP addresses of Bitcoin nodes. We define ViewPi

C as the
blockchain view of a single node Pi ∈ N, where C is the blockchain ledger. The Bitcoin backbone protocol [13]
states that the inter-arrival time between two blocks must be sufficiently large that each Pi ∈ N has ViewPi

C
(i.e., in ≈10 minutes, all Pi ∈ N have the up-to-date blockchain). Next, we define {M ⊂ N} as a set IP

addresses of the mining nodes.3 For each Pi ∈M , hi is Pi’s hash power, where 0 < hi < 1. H =
∑|M |
i hi = 1

is the total hash power of all the mining nodes. With the network entities defined, below, we discuss the
common prefix property and the chain quality property of the Bitcoin blockchain.
Common Prefix Property. The common prefix property Qcp, with parameter k specifies that for any

pair of honest nodes P1 and P2, adopting the chains C1 and C2 at rounds r1 ≤ r2, it holds that Cdk1 � C2. In

this context, an honest node is a node that respects the ideal functionality. Cdk1 denotes the chain obtained
by pruning the last k blocks from C, and � is the prefix relationship. For transaction confirmation, the

common prefix property must hold for 6 blocks (Cdk1 � C2 for k = 6) [6].
Chain Quality Property. The chain quality property Qcq with parameters µ and l specifies that for any
honest node Pi with chain C, it holds that for any l consecutive blocks of C, the ratio of honest blocks is at
least µ. Qcq ensures that for a sufficiently large value of l, the contribution of Pi in C is proportional to its

4

Input: Nodes N including miners M , blockchain C, and trusted party F . The protocol starts at round
r = r0 for a length l. Prior to the execution, each Pi ∈ M reports its hash rate hi to F , using which F
computes µ

′

i, the expected chain quality parameter for each Pi. F mandates that hi < 0.5H, ∀Pi ∈ M ;
otherwise, F aborts. When a Pi ∈ N broadcasts block br at time t0, it reaches all nodes in N and F at the
next time index t1. Therefore, N×N is fully connected, allowing each Pi to communicate with any node in
N or F , concurrently.
onStart: The block mining starts in which Pi ∈M compete.
• Each round r, each Pi ∈M computes br+1 with probability hi

H .

• If Pi ∈ M finds br+1 before it receives br+1 from any other miner, it broadcasts br+1 to F and N (no
block withholding).

onReceive: On receiving a new block br+1, Pi ∈M , Pi /∈M , and F follow the following protocol:

• If F receives a single block br+1 in round r from Pi ∈M , F extends the chain C ← br+1.

• If Pi /∈M receives a single block br+1 in round r from Pi ∈M , Pi /∈M extends the chain C ← br+1.

• If Pi ∈ M receives br+1 from another Pj ∈ M in round r, then Pi stops its own computation for br+1,
extends the chain C ← br+1, and moves to the next round to compute the next block using br+1 as the
parent block.

• If F receives multiple inputs for the same parent block in a round (i.e., br+1 � br and b
′

r+1 � br), F
forms two concurrent chains C1 ← br+1 C2 ← b

′

r+1. Both C1 and C2 have an equal length.

• If Pi ∈ M receives multiple inputs for the same parent block (i.e., br+1 � br and b
′

r+1 � br), Pi gives

time-based precedence to the blocks. i.e., br+1 is received at t1 and b
′

r+1 is received at t2, where t2 > t1,

then Pi only accepts br+1 and discards b
′

r+1 by treating it as an orphaned block. Pi extends the chain
C ← br+1 and moves to the next round to compute the next block using br+1 as the parent block.

• If Pi ∈M receives multiple inputs for the same parent block in a round (i.e., br+1 � br and b
′

r+1 � br),
at the same time t1, Pi tosses a coin and selects one of the two blocks to extend the chain.

• If Pi /∈M receives multiple inputs for the same parent block in a round (i.e., br+1 � br and b
′

r+1 � br),
Pi /∈M forms two concurrent chains C1 ← br+1 C2 ← b

′

r+1. Both C1 and C2 have an equal length.

onTerminate: On input (r = rl), F terminates the execution and proceed towards the evaluation of Qcp
and Qcq.
onQuery: In any round, F can query each Pi ∈ N to report ViewPi

C . F then evaluates the Qcp and Qcq
for that round.
onValidate: In any round, to validate Qcp, F queries each Pi ∈ N to report ViewPi

C . If F receives a single
ledger C from all Pi ∈ N, it considers Qcp to be preserved. If F receives more than one ledgers (i.e., C1 and

C2) from one or more Pi ∈ N, F prunes k blocks from C1 chain and verifies if Cdk1 � C2 (i.e., two chains
share a common prefix). To evaluate Qcq, F selects the longest chain among C1 and C2, and computes the

experimental value of µi. If µi − µ
′

i = ε (negligible in k), F assumes Qcq is preserved. Otherwise, Qcq is
violated and some Pi ∈M has maliciously contributed more blocks than its hash rate.

Ideal World Functionality of Bitcoin

Figure 1: The Bitcoin ideal functionality closely modeled on the practical implementation of Bitcoin as we
largely see it. We use Pi to denote any node in the network. If Pi is among the mining nodes Pi ∈M , then
it possesses the hashing power to mine blocks. If Pi is not among the mining nodes Pi /∈M , then it simply
maintains a blockchain and contributes to network synchronization by relaying blocks to other nodes. The
mining nodes M follow the communication model specified in [29, 13].Model Network Topology Mining Nodes

Garay et al. [13] lock-step synchronous Strongly Connected 7
Pass et al. [32] non-lock-step synchronous Strongly Connected 7
This Work lock-step synchronous Strongly Connected 3

Table 1: Contrasting our ideal functionality against the prior theoretical models. The key difference is the
distinction we make between the mining and non-mining nodes by embracing the mining centrality in the
current Bitcoin network.

5

Mining Pool A

Mining Pool B

Mining Pool C

Unreachable
Nodes

Reachable
Nodes

Our
Crawlers

Unreachable

Space

Rea
ch

ab
le

Sp

ac
e

Mining Pool
Machinery

Figure 2: An illustration of our data collection system contextualized in the Bitcoin network. Mining pools
can have reachable (Mining Pool A), unreachable (Mining Pool C), or both (Mining Pool B) types of nodes.
Note that unreachable nodes cannot connect with each other. Therefore, a block must appear in the reachable
space to reach other miners. Our crawlers connect with the reachable nodes in order to receive the blocks
relayed by the mining pools.

hash rate hi. Moreover, Qcq assumes that no Pi ∈M acquires more than 50% hash rate [12, 23, 16, 18, 37].
Using these properties, we define the Bitcoin ideal world functionality in Figure 1. Our formulation

assumes Pi ∈ N as “interactive Turing machines” (ITM) that execute the Nakamoto consensus for l rounds,
arbitrated by a trusted party F . A round is a time in which each Pi ∈M is mining on the same block. For
any Pi ∈ M , a round terminates when the ViewPi

C is updated with a new block. The network N × N is a
fully connected such that when a block is released by any Pi ∈M at t1, all nodes receive it at the next time
step t2. As a result, the network exhibits a lock-step synchronous execution [34]. Due to varying roles in the
system, the mining nodes Pi ∈M and the non-mining nodes Pi /∈M have unique operations. For instance,
when a Pi ∈ M receives two valid blocks for the same parent block, it gives time-based precedence to the
block received earlier. The block received later is discarded. However, when a Pi /∈ M receives two valid
blocks, it creates two concurrent branches of the chain and waits for the next block to extend one of them.
The ideal world functionality in Figure 1 is consistent with the rules encoded in the current Bitcoin Core
version. In Table 1, we contrast our ideal world functionality against the prior theoretical models and in §A,
we provide the ideal world functionality proof.
Key Takeaways. The ideal world functionality, in Figure 1, characterizes the modus operandi of the
Bitcoin network. Compared to the prior theoretical models [13, 32], we distinctly define the mining nodes
and non-mining nodes and characterize their unique roles in the system. In the rest of the paper, we perform
a data-driven study to investigate (1) the size |M | of the mining nodes, (2) the synchronization patterns in
the network to understand how closely Bitcoin follows the ideal functionality, and (3) show gaps between
the ideal functionality and measurements to construct HashSplit.

3 Data Collection

In this section, we present our data collection system used for conducting measurements and analysis.
Prior to highlighting the system details, it is important to discuss the Bitcoin network anatomy and the
characteristics of reachable and unreachable nodes.

3.1 Bitcoin Peer-to-Peer Network

Broadly, there are two types of Bitcoin full nodes, namely the reachable nodes and the unreachable nodes.
The reachable nodes establish outgoing connections as well as accept incoming connections from other reach-
able and unreachable nodes. The unreachable nodes (often behind a NATs [26]) only establish outgoing
connections. For simplicity, we can characterize the Bitcoin network between the reachable space and the
unreachable space, as shown in Figure 2.

3M = N, implies all nodes are the mining nodes (satisfying Nakamoto’s assumption). However, in §4, we show that due to
mining centralization, there are only 359 miming nodes among 36K IP addresses (|M |=359 and |N|=36K).

6

It is argued that mining pools prefer to host their mining nodes in the unreachable space due to security
concerns [26]. As such, if we assume that all mining nodes exist in the unreachable space, it implies that
mining nodes cannot accept incoming connections from other mining nodes, and their blocks will have to be
relayed by the non-mining nodes in the reachable space to reach other mining nodes. This assumption alone
reflects an asynchronous network that deviates from the ideal world functionality and therefore vulnerable
to the attack construction presented in §6. Moreover, hosting only the unreachable nodes also adds delay
in block propagation since the block is first relayed to a reachable node which then relays the block to its
connections. This delay is undesirable for the miner and the Bitcoin network at large [10]. To further
understand these arguments, we reached out to developers and authors of prior works. From our discussions,
we learned that there is no empirical evidence to support the argument that all the mining nodes exist in
the unreachable space. In fact, mining pools host both reachable and unreachable mining nodes. From those
discussions, we made the following characterizations.

(1) Mining pools typically host both reachable and unreachable nodes. (2) Since two unreachable nodes
cannot directly connect to each other, blocks between the unreachable nodes are relayed by the reachable
nodes. (3) Reachable nodes are responsible for relaying blocks and maintaining the network synchronization.
(4) This block relaying method is followed even when miners use fast relay networks [28]. (5) Since the
reachable nodes are the entry points for a block in the reachable network (Figure 2), we can mark those entry
points and treat them as the mining nodes by connecting to all the reachable nodes.4 (6) The frequency of
relaying blocks can be used to estimate the hashing power of the mining pool behind a reachable node [26].

Using these insights, we set up a data collection system to connect with the reachable nodes. Based on
the prior works, we noticed that the number of reachable nodes in Bitcoin can vary between ≈6K to ≈9K
addresses at any time. However, unlike [36], we did not want to rely solely on Bitnodes [7] for data collection
since Bitnodes does not disclose the mining nodes. Instead, we developed our own data collection system
and customized it to our desired measurement specifications.
Key Challenges. In setting up our data collection system, we encountered several challenges. The default
Bitcoin Core client is not designed to support large-scale network measurements. The maximum connectivity
limit in the Bitcoin Core is 125 (115 incoming and 10 outgoing connections), which is insufficient to map a
network of thousands of nodes. Typical stand-alone systems do not support concurrent connectivity with
thousands of IP addresses due to file descriptors and socket connection limits. Moreover, to avoid storage
intensive network traffic monitoring required for obtaining IP addresses of reachable nodes through GETADDR
and ADDR messages and for identifying the mining nodes through a block broadcast, we instead leveraged
useful artifacts in the Bitcoin Core to maintain a lightweight data collection system.

Among those artifacts, first we noticed a peers.dat file in the Bitcoin Core data directory. The peers.dat
file compactly logs the information obtained from ADDR messages. The ADDR messages include IP addresses
that can be used to expand the network reachability. We parsed the peers.dat file to obtain those addresses.
Second, we used the Bitcoin RPC API for mining nodes detection. For measurements, we also sought help
from the Bitcoin developers to understand the workings of the software.

3.2 Data Collection System

We deployed eight crawlers in the Bitcoin network to connect with all the reachable nodes. At each crawler,
we mounted a NodeJS implementation of the RPC client-server module for data collection and analysis.
We also set up a node manager that (1) connected to all the crawlers, (2) provided them the list of IP
addresses to connect with, (3) obtained the JSON data from each crawler, (4) applied techniques to identify
the mining nodes, and (5) measured the block propagation patterns at specified intervals to monitor the
network synchronization. In five weeks, we connected to 36,360 unique IP addresses, including 29,477 IPv4,
6,391 IPv6, and 522 Tor addresses.5 Figure 2 provides an illustration of our data collection system in the
context of Bitcoin peer-to-peer network. We connected to the reachable nodes in the network and whenever
a mining pool released a block in the reachable space, our crawlers marked that node and measured the

4Bitcoin network cannot synchronize without reachable nodes participating in the block propagation. Therefore, our tech-
nique of identifying the mining nodes through the reachable nodes is valid even if miners use fast relay network or exchange
blocks through non-Bitcoin communication channels.

5We found that at any time, there were up to ≈10K reachable nodes. Therefore, the difference between the total number
of nodes we connected (≈36K) and the maximum number of nodes reachable at any time (≈10K) indicates a churn which was
predominantly observed among the non-mining nodes.

7

{ i d : 12188 ,
addr : ’ 169 . x . x . x : 8333 ’ ,
a d d r l o c a l : ’ 132 . x . x . x : 8333 ’ ,
add rb ind : ’ 132 . x . x . x : 8333 ’ ,
l a s t s e n d : 1554493200 ,
l a s t r e c v : 1554493185 ,
v e r s i o n : 70015 ,
subve r : ‘ ‘ / S a t o s h i : 0 . 16 . 0 / ’ ’ ,
s t a r t i n g h e i g h t : 569534 ,
s y n c ed h e ad e r s : 570367 ,
s y n c e d b l o c k s : 570366 ,
i n f l i g h t : [570367] , }

Figure 3: A sample JSON output when a block is received by our crawler from a peer. Here, “addr” is the
IP address of the peer to which the crawler is connected to, “synced headers” is the height of blockchain
header at which the crawler has synchronized with the node, and “inflight” is the block that the node is
relaying to the crawler.

1
8
.1

8
8
.x

2
4
.5

.x
1
3
8
.1

9
7
.x

1
0
4
.2

3
7
.x

1
3
.2

2
9
.x

d
v
u
.t

o
r

1
7
8
.1

2
8
.x

1
8
8
.1

6
6
.x

u
l3

.t
o
r

1
6
7
.9

9
.x

6
9
.6

4
.x

8
3
.2

5
1
.x

v
cs

.t
o
r

3
5
.1

5
8
.x

3
r4

.t
o
r

1
3
.2

2
9
.x

[2
a
0
2
::
x
]

1
6
9
.5

5
.x

fz
6
.t

o
r

x
a
g
.t

o
r

1
4
2
.9

3
.x

[2
a
0
1
::
x
]

v
ev

.t
o
r

7
0
.7

0
.x

jj
s.

to
r

1
4
9
.2

8
.x

p
v
w

.t
o
r

1
4
6
.2

5
5
.x

[2
0
0
2
::
x
]

ep
2
.t

o
r

IP Addresses of Mining Nodes

0.0

2.5

5.0

7.5

10.0

P
er

ce
n
ta

g
e

o
f

B
lo

ck
s

0 100 200 300

IP Addresses (Count)

0.8

1.0

C
D

F

Figure 4: Results obtained by applying Heuristic 1 on our dataset. The histograms show the percentage of
blocks contributed by mining nodes. We mask the last two octets to preserve anonymity. The subplot is the
CDF showing the distribution of IP addresses with respect to the blocks produced.

network synchronization. Supplementary details on data collection are provided in §C.

4 Identifying the Mining Nodes

Prior works have used block INV messages to detect mining nodes [3].6 For our experiments, we used
the Bitcoin RPC API to sample the network information and developed Heuristic 1 to detect the mining
nodes. We also validated the correctness of Heuristic 1 using direct network monitoring.

The Bitcoin RPC API command getblockchaininfo provides information about the latest block on the
blockchain tip. We deployed a socket listener at the RPC client-side implementation to record the arrival of
a new block from a mining node. When a new block was received, it generated an interrupt on the listener
which invoked the getpeerinfo API. The getpeerinfo renders the up-to-date interactions with all connected
peers. A sample interaction with one peer is shown in Figure 3 and the key variables to note are “addr”,
“lastsrecv”, “synced headers”, “synced blocks”, and “inflight.” “addr” is the connected peer’s IP address,
“lastrecv” is the latest UNIX timestamp at which the peer relayed any information, “synced headers” is the
last block header message sent by the peer, “synced blocks” is the last block INV message sent by the peer,
and “inflight” is the block relayed by the peer. Viewed through the lens of our ideal world functionality
(Figure 1), “synced blocks” renders the view ViewPi

C of a peer Pi with the chain tip at C. An update on the
tip C + 1 is captured by “synced headers”. Using this information, we developed Heuristic 1 to detect the
mining nodes.

Heuristic 1. For a peer Pi, when the blockchain view is updated from ViewPi

C to ViewPi

C+1, if the
“synced headers” value and the inflight value are equal to C + 1, then the “addr” value is the mining node
Pi ∈M ’s IP address.

6An INV message is an announcement of a new block or a transaction by a node to all its connected nodes. In response,
the connected nodes may send a GETDATA message to request for the transaction or the block, corresponding to the INV
message. The CMPCTBLOCK method is a recent technique [8] that reduces delay incurred in the INV and GETDATA exchange
(see Figure 11 for details).

8

0 20 40 60 80

Percentage of Synchronized Nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bitnodes Measurements µ = 0.52

Our Measurements µ = 0.39

Figure 5: CDF of synchronized nodes reported from our measurements and Bitnodes dataset. Our results
show that in ≈9.98 minutes on average, only 39.43% of the connected nodes synchronized on the blockchain.
Bitnodes dataset shows that on average, only 52.24% nodes had an up-to-date blockchain at any time. In
both cases, the results are different from the expected ideal functionality.

Heuristic 1 is a mapping between the information exposed by the RPC API and the Bitcoin network
traffic of a crawler. For more clarity on Heuristic 1, revisit Figure 3 that shows a sample interaction of a
crawler connected to peers in N with its blockchain tip C = 570366 (“synced blocks”=570366). When the
crawler receives an update “570367” from getblockchaininfo, it checks the information of all its connected
peers using getpeerinfo. One information sample of a connected peer is shown in Figure 3. For each peer,
the crawler checks if “synced headers” value is 570367 (C + 1). When the mining node relays a block, the
“inflight” value is also set to C + 1. The example in Figure 3 shows that the “inflight” value is “570367,”
hence the “addr” is the node’s IP address.
Results. We applied Heuristic 1 to detect the mining nodes. A summary of results is reported
in Figure 4. To preserve anonymity of the mining nodes, we mask the last two octets of their IP addresses.
Overall, we discovered 359 mining nodes. Among them, 250 (69.6)% were IPv4, 34 (9.47%) were IPv6, and
75 (20.89)% were Tor addresses. Our results indicate that mining pools use Tor to shield their nodes from
routing attacks [2]. Among the 359 mining nodes, 31 nodes produced 80% blocks, and 67 nodes produced
90% blocks.

As discussed in §2, due to the mining centralization, there are a few mining pools that mine the Bitcoin
blockchain. Therefore, the number of full nodes hosted by those mining pools (|M |) is less than the total
number of full nodes (|N|) in the network. In 2014, Miller et al. [26] conducted a measurement study,
reporting ≈100 mining nodes controlled by 8 mining pools. Simply extrapolating the measurements in [26]
to the number of dominant mining pools at the time of conducting our study (25 [39, 33]), an estimation for
|M | would be 313 (=100×25/8). As such, the number of mining nodes discovered in our experiments (i.e.,
|M |= 359) is close to the expected number through extrapolation (i.e., 313).7

5 Network Synchronization

After identifying the mining nodes, we analyzed the network communication model to validate its compliance
with the ideal world functionality. Our main objective was to understand if the block propagation pattern
of the mining nodes varies based on their network reachability. As such, variance in the block propagation
pattern deviates from the communication model specified in the ideal functionality (Figure 1), which can be
exploited to curate new attack strategies. In this section, we first report a high level overview of network
synchronization observed in our experiments, followed by a demonstrative example that shows that block
propagation pattern varies in the real world Bitcoin network.

For a high level overview of network synchronization, we analyzed the interaction between our crawlers
and the nodes to which they were connected. To preserve the common prefix property, the inter-arrival time
between two blocks must be long enough to allow all nodes to synchronize on the blockchain [13]. In terms of
the ideal functionality (Figure 1), when a new block bi+1 is released, if any node Pi ∈ N queries its connected
peers, it must observe the previous block (bi) on the blockchain tip of all connected peers. To evaluate this
synchronization property, we use Heuristic 2 below.

7Mining nodes detection not only contributes to the HashSplit attack but also lowers the cost of launching other partitioning
attacks [3, 36], which we discuss in §D.

9

Heuristic 2. When a crawler receives a new block bi+1 from a mining node, the crawler checks ViewPi

C for
all connected peers in N. For a connected peer Pi, if the blockchain tip C = bi (the previous block), then Pi is
synchronized with an up-to-date blockchain view. If C < bi, then the peer exhibits a weak synchronization.

To elaborate on Heuristic 2, we again refer to Figure 3. When our crawler received the new block
570367 (bi+1) from the mining node, the “synced blocks” value was 570366 (bi). This means that before
sending the new block, the mining node’s blockchain tip was 570366 (C = bi). Hence, the mining node had
synchronized with an up-to-date blockchain. Similarly, at the time of receiving the new block 570367, the
crawler expected all its connected peers to have the “synced blocks” value 570366 in order to satisfy strong
synchronization. If the value of “synced blocks” was found to be less than 570366 (i.e., 570365), the peer
was noted to exhibit weak synchronization. The “synced blocks” value of all connected peers was obtained
from the RPC API. We sampled this information every time we received a block from a mining node. As a
result, for all the connected nodes, we were able to observe the percentage of nodes that synchronized with
an up-to-date blockchain.

We plot the CDF of synchronized nodes in Figure 5, showing a weak network synchronization. We ob-
served that the average block time was ≈9.98 minutes during which only 39.43% nodes had the synchornized
blockchain. Moreover, compared to the measurements in prior works [10, 36] (details in §E), our results
indicate that the network synchronization has changed with time.
Result Validation. Given a surprisingly weak network synchronization observed at our crawlers, we
decided to validate our findings by crawling recent data from Bitnodes (October 2020 to December 2020).
In Figure 5, we plot results from the Bitnodes dataset which also highlights the issues with network (on
average, 52.2% of the nodes have a synchronized blockchain at any time). In §E, we further elaborate on the
aspects of weak synchronization. It is reasonable to assume that the weak synchronization could increase the
number of blockchain forks. Unsurprisingly, 34 forks have been observed on the blockchain since January
2020.8 9

5.1 Bitcoin Network Asynchrony

Exploiting the block propagation pattern to violate the blockchain consistency has been extensively studied
in prior works [10, 40, 22]. The most commonly referenced theoretical model in this context is by Pass et
al. [32] in which they analyzed the Bitcoin blockchain consistency in the non-lock-step synchronous network.
The non-lock-step synchronous network allows an adversary to delay the block by a parameter ∆, giving
the adversary a head start mining advantage. Pass et al. [32] assumed that after ∆, all the mining nodes
simultaneously receive a block to start the next round. More precisely, they assumed that all honest miners
“freeze” and do not start mining until all miners receive the block. Although, Pass et al. [32] called their
model “asynchronous,” however, Ren et al. [34] showed that the model is actually non-lock-step synchronous.

Ren et al. [34] further specified that an asynchronous model is weaker than the non-lock-step synchronous
model, allowing an adversary to maintain a public fork for k blocks. In light of our ideal world functionality,
a prerequisite to that model would be that the mining nodes (1) receive blocks at different times, and
(2) do not form M ×M topology. In this section, we show that these two observations can be made in
the current Bitcoin network, thus satisfying the notion of “asynchrony” established in [34]. In §6, we will
further demonstrate how the adversary exploits the asynchronous network to maintain a fork by orchestrating
concurrent mining on two branches of the public chain.
Block Propagation Among Mining Nodes. To validate that mining nodes receive blocks at different
times and do not form M × M topology, we conducted a short experiment to precisely study the block
propagation among the mining nodes. For this experiment, we executed the getpeerinfo command at one
second interval, allowing us to monitor the time at which the block appeared in the network and the time
at which each connected node reported it to us.

8The observed variations in synchronization can also occur due to the rules deployed in the current Bitcoin RPC imple-
mentation shown in Figure 3. Since tailoring the default RPC implementation (i.e., by not forwarding blocks to connected
peers) can have ethical implications, therefore, we instead used the RPC implementation as provisioned in the protocol and
reported results. Assuming that the RPC implementation results may vary from the actual network synchronization, that again
highlights that measuring and mapping the network synchronization remains largely an open problem.

9Forks can be counted by (1) running a full node and executing getchaintips command, or (2) using the ChainQuery’s full
node and executing getchaintips command [5].

10

0 20 40 60 80 100 120 140

Time (seconds)

0

20

40

60

80

N
o
d

es
w

it
h

B
lo

ck
s

(%
)

Mb

Ma

0 10
0

5

10

Figure 6: Block propagation pattern of two nodes (Ma and Mb ∈M), sampled at one second interval. Note
that Ma’s block reaches |M |/2, |M |, |N|/2, and |N| at 2, 6, 30, and 76 seconds, respectively. In contrast,
Mb’s block reaches the same set of nodes at 52, 58, 90, and 140 seconds respectively. Ma has a reachability
advantage over Mb

.

In our second experiment, we observed that the mining nodes received blocks at different times, which
clearly shows that the network is not non-lock-step synchronous in practice. Moreover, we also noted that the
block propagation pattern for each mining node varied, demonstrating variations in their network reachability
(i.e., the number of connected peers). 10

To further highlight the aforementioned observations, we present an example from our experiment in Fig-
ure 6, showing block propagation for two nodes (Ma and Mb ∈ M). Figure 6 shows that when Ma released
the block, within 2 seconds, the block reached |M |/2, and within 6 seconds, the block reached |M |. Moreover,
within 76 seconds, the block reached ≈90% of all the connected nodes |N|. In contrast, when Mb released the
block, the block took 52 seconds to reach |M |/2 and 58 seconds to reach |M |. The block took 140 seconds
to reach ≈90% of all the connected nodes |N|.

From the analysis above, we derived the following conclusions. (1) The current Bitcoin network is neither
lock-step synchronous [13] nor non-lock-step synchronous [32, 40, 22]. (2) The block propagation pattern
suggests that the mining nodes do not form a completely connected M ×M topology.11 The mining nodes
topology is analogous to our illustration in Figure 2, where Mining Pool A is two hops away from Mining Pool
B, and Mining Pool C is one hop away from Mining Pool B. If Mining Pool B broadcasts a block through its
mining node, Mining Pool C is likely to receive it before Mining Pool A. (3) Variations in the propagation
suggest that the mining nodes have a varying network reachability. (4) Based on the observed network
characteristics and the specifications provided in [34], the Bitcoin network can be considered asynchronous.

6 The HashSplit Attack

Nakamoto’s consensus in a non-lock-step synchronous network increases the fork probability, wastes the effort
of the honest miners, and lowers the cost for the majority attack [10, 32, 36]. Moreover, as indicated by
Pass et al. [32], the problem becomes worse if the network is fully asynchronous, thus allowing an adversary
to mount new attacks to violate the blockchain safety properties. Since our measurements indicate that the
Bitcoin network is asynchronous, the next objective becomes formulating a new and feasible attack that
violates the common prefix (Qcp) and the chain quality (Qcq) properties with high probability. Towards
this objective, we present HashSplit which allows an adversary to exploit the asynchrony and orchestrate
concurrent mining on multiple branches of a public chain to violate Qcp and Qcq.

HashSplit is a lower bound construction that shows: (1) an adversary with an arbitrary hashing power
can violate Qcq, (2) an adversary with 26% hash rate can violate both Qcp and Qcq with high probability, and
(3) the requirement for a majority attack under any hash rate distribution can be amortized for all compu-
tationally admissible Bitcoin executions. From our measurements (§3–§5.1), we note that the asynchronous

10The observation regarding non-uniform block propagation patterns can also be verified on Bitnodes website, although
without the knowledge of the mining nodes. The data on the website shows that some nodes report the block arrival in a few
seconds. However, no two block propagation patterns are the same.

11Prior work [26] also reported that that mining nodes do not have a high network outdegree and they typically follow the
standard node configurations. Our findings are consistent with the prior work.

11

Study Requirement Branches Network Disruption
Decker et al. [10] 49% Hash Rate Two or More 7
Saad et al. [36] 30% Hash Rate Two or More 7
Natoli et al. [30] 5% Two or More 3
Apostolaki et al. [3] – One 3
Heilman et al. [19] – One 3
HashSplit 26% Hash Rate Two or More 7

Table 2: Comparing HashSplit with other attacks presented in prior works. Unlike [3, 30], the HashSplit
adversary does not disrupt the network communication through a BGP attack. As such, with only 26% hash
rate and concurrent mining on two or more blockchain branches, the adversary violates the blockchain safety
and chain quality.

00
00

Time

N
o
d

es
R

ea
ch

ed

Am
Hm

M1

M2

N/2

N

ta,1
ta,2

ta,3 ta,4
th,1th,2 th,3 th,4

Figure 7: Generalized illustration of Figure 6. For simplicity of modelling, we assume a uniform hashing
power distribution in M (i.e., M1 ≈ |M |/2 ≈ 51% hash rate and i.e., M2 ≈ |M |/2 ≈ 49% hash rate). Am is
well connected compared to Hm. If Hm and Am concurrently produce a block, Am wins race due to Hm’s
propagation delay. Here ta,1, ta,2, ta,3 and ta,4 are times when Am’s block reaches 50% miners, 100% miners,
50% network, and 100% network. Accordingly, th,1...th,4 are the corresponding values for Hm.

network creates a natural partitioning among the mining nodes which then expands the strategy space for
an adversary to launch various attacks when combined with the Bitcoin mining policies [29, 32, 12, 10, 13].

It is worth noting that, unlike the balance attack [30] or the routing attacks [3, 36], HashSplit does not
require the adversary to disrupt the network communication through BGP hijacking. Instead, the adversary
simply exploits the existing propagation pattern among the mining nodes and the natural partitioning created
by the asynchronous network to split the hash rate. Below, we present the threat model for the HashSplit
attack. In Table 2, we compare HashSplit with similar attacks presented in the literature. For more details
on HashSplit novelty, we refer the reader to §F.

6.1 Threat Model and Attack Objectives

For HashSplit, we assume an adversary Am ∈M with less than 51% hash rate. Am follows the experiment
methodology in §3–§5 to connect to all Pi ∈ N, identify the mining nodes M , estimate their hashing power
using the block mining rate (Figure 4), and obtain the block propagation pattern of each mining node
(Figure 6). After identifying all Pi ∈ M , Am maintains a direct connection with them to instantly send or
receive blocks. Using the measurements, Am calculates how a block generated by each Pi ∈ M reaches all
Pi ∈ N. If Am samples the block propagation pattern of each Pi ∈M , Figure 6 can be expressed in terms of
the general model in Figure 7. Note that Figure 7 is a generalized illustration that can be abstracted from
any sequence of non-uniform block propagation pattern of two mining nodes, irrespective of the absolute
delay.

Figure 7 shows that Am has a strong network reachability like Ma in Figure 6, while Hm (an honest
miner) has a weaker network reachability like Mb in Figure 6. Since Figure 6 is sampled at one second
interval, Am knows precisely at what time each Pi ∈ N receives a block. By calculating the difference in the

12

block generation time and the time at which each Pi ∈ N receives the block, Am can calculate the delay in the
block reception for each Pi ∈ N. For each Pi ∈M , we define the reachability time Ti,j = [ti,1, ti,2, ti,3, ti,4] as
four time indexes at which the block is received by 50% miners, 100% miners, 50% network, 100% network.

We further assume that each Pi ∈M , except Am, conforms to the ideal functionality such that when any
Pi ∈M generates a block, it immediately releases the block to the network without withholding. Moreover,
when a Pi ∈ M receives two blocks with a hash pointer to the same parent block, Pi ∈ M gives a time-
based precedence to the block received earlier, and mines on top of it. The time-based precedence is a
mining policy proposed by Nakamoto [29] and is currently deployed in all Bitcoin Core versions. Finally,
we assume that (1) Am cannot influence the communication model of other Pi ∈ N by launching routing
attacks [3, 30], and (2) there is no other attack (i.e., selfish mining) taking place concurrent with the HashSplit
attack. We specifically model HashSplit for a weaker adversary as a lower bound construction. Logically,
the attack is more favorable for a stronger adversary considered in prior works on Bitcoin partitioning
attacks [3, 10, 36, 32].
Attack Objectives. Given that Am is a miner with a view of the network’s communication model, Am
can: (1) deviate from the ideal functionality and violate Qcp and Qcq, (2) waste the mining power of honest
miners, and (3) prevent non-mining nodes from generating or receiving k-confirmed transactions [29]. In
HashSplit, Am achieves these goals by exploiting the block propagation pattern to split the public chain into
two branches C1 and C2, and the mining nodes M into two groups M1 and M2. Here, M1 is the group of
miners mining on branch C1, while M2 is the group of miners mining on branch C2. In a perfect split, Am
splits the network hash rate into C1 ← α = 0.51 (mined by M1), and C2 ← β = 0.49 (α + β = 1) (mined
by M2, and mines on the branch with a higher hash rate. To violate Qcp for any Pi ∈ N, Am ensures that

Cdk1 � C2 for k = 6. To violate Qcq, Am ensures that for any Pi ∈ N, µi − µ
′

i 6= ε (the blockchain ledger
has disproportionately high blocks mined by the adversary). In the following, we show that the HashSplit
adversary meets these objectives with high probability.

6.2 Attack Procedure

6.2.1 Identifying Vulnerable Nodes

To split the blockchain, Am first identifies the vulnerable mining nodes with a high reachability time by
running algorithm 1. In algorithm 1, Ta,j and Ti,j are reachability times for Am and other Pi ∈ M ,
respectively. Am initializes four lists (aList...dList) and four variables (aMax...dMax). For each Pi ∈M , Am
computes the time windows δ1...δ4 that represent the difference between the block propagation time of Am
and the target mining node. For intuition, we again refer to Figure 6, in which if assume Ma as Am and Mb

as Hm, then algorithm 1 outputs δ1 = 50, δ2 = 52, δ3 = 60, and δ4 = 64 seconds, respectively. Therefore,
algorithm 1 provides the difference in the reachability time of all Pi ∈M relative to Am’s reachability time.
Additionally, algorithm 1 also determines the most vulnerable node with the maximum reachability time
difference, which can be the easiest target to initiate the split.

6.2.2 Blockchain Splitting

After discovering the vulnerable nodes, Am splits the blockchain into two branches, C1 and C2, and miners
into two groups, M1 and M2, using algorithm 2. We define the combined hash rate of M1 as α and M2 as
β. algorithm 2 provides two attack strategies to achieve the split.
Strategy 1. In this strategy Am produces a block br+1 before any Pi ∈ M , and withholds it. Am waits
for another Pi ∈ M to produce a block b

′

r+1. With the apriori knowledge of b
′

r+1 propagation pattern in

the network (algorithm 1), Am releases br+1 to M1 while b
′

r+1 reaches M2. As a result, when b
′

r+1 reaches

M1 after ta,1, M1 will not mine on it (time-based precedence [29]). However, by ti,2, M2 receive b
′

r+1 and

start mining on it. Since the miners mine on the earliest received block (br+1 for M1 and b
′

r+1 for M2), the
blockchain forks into two branches C1 ← α and C2 ← β.
Strategy 2. In this strategy, an honest miner Pi ∈M produces the block b

′

r+1 before Am. Since Am knows

that b
′

r+1 will take ti,1 time to reach M1 (see Figure 7), Am violates the ideal functionality and keeps mining
for br+1 until ti,1. If Am succeeds in mining br+1 by ti,1, Am will release br+1 to the other set of miners (M2)

13

Algorithm 1: Identifying Vulnerable Mining Nodes
1 Input: Reachability time of the adversary (Ta,j = [ta,1, ta,2, ta,3, ta,4]), and the reachability time of the other mining nodes

(Ti,j = [ti,1, ti,2, ti,3, ti,4])
2 Initialize: aList, bList, cList, dList
3 Initialize: aMax, bMax, cMax, dMax = 0
4 for i = 0; i < |M |; i++ do
5 δ1 = ti,1 − ta,1, aList ← δ1
6 if δ1 > aMax then
7 aMax = δ1
8 δ2 = ti,2 − ta,2, bList ← δ2
9 if δ2 > bMax then

10 bMax = δ2
11 δ3 = ti,3 − ta,3, cList ← δ3
12 if δ3 > cMax then
13 cMax = δ3
14 δ4 = ti,4 − ta,4, dList ← δ4
15 if δ4 > dMax then
16 dMax = δ4

return: aList, bList, cList, dList, aMax, bMax, cMax

Algorithm 2: Attack Procedure (Split Ledger)

1 Input: M , Am

2 Case 1: Am finds br+1 before any Pi ∈M
3 Strategy 1: Am waits for another Pi ∈M to find b

′
r+1. When Am receives b

′
r+1 from Pi ∈M , Am releases br+1 only to M1

before M1 receive b
′
r+1. Am does not release br+1 to M2, which invariably receive b

′
r+1 from the other miner at ti,2

(Figure 7).

4 Case 2: Any Pi ∈M finds b
′
r+1 before Am

5 Strategy 2: Am violates the ideal functionality (see onStart in Figure 1) and keeps mining br+1. By ti,1, b
′
r+1 reaches M1

miners. If Am finds br+1 before ti,1, it releases br+1 to M2 before b
′
r+1 reaches them.

6 Result: In Strategy 1, M1 receives br+1 and M2 receives b
′
r+1. In Strategy 2, M1 receives b

′
r+1 and M2 receives br+1. In both

cases, the chain C splits into two branches C1 and C2, and the network hash rate into α and β.

to which b
′

r+1 is yet to reach. As a result, and similar to Strategy 1, the blockchain splits into C1 ← α and
C2 ← β. Therefore, algorithm 2 provides two strategies to split the chain into two branches.
Perfect Split. As described in §6.1, the perfect split leads to C1 ← α = 0.51 and C2 ← β = 0.49. If Am,
with a hash rate α1, mines on C1, we define the combined hash rate of all miners in M1 as α = α1 + α2.
Am can achieve the perfect split since it knows the block propagation pattern and the hash rate distribution
(Figure 7) of all the miners. Am can time both strategies in algorithm 2 to achieve the perfect split such
that α1 + α2 = 0.51.

Without losing generality, in the rest of the analysis we assume: (1) Am achieves perfect split from al-
gorithm 2, (2) there are four miners in the network (Am, h1, h2, and h3), (3) Am and h1 mine on C1 with
α1 = 0.26 and α2 = 0.25, (4) h2 and h3 mine on C2 with hash rates β1 = 0.25 and β2 = 0.24, respectively
(β = β1 + β2 = 0.49), and (5) Am has block propagation pattern similar to Ma in Figure 6 and all other
miners have block propagation patterns of Mb in Figure 6. At ta,1, Am’s block reaches h1, and reaches both
h2 and h3 at ta,2. Similarly, for h2, th,1 and th,2 are times at which Am and both h2 and h3 receive a block.
We can extend the same propagation sequence for h2 and h3.

We make these assumptions to simplify the analysis. The model can be easily generalized to more than
four miners with varying hash rates and reachability times. The key idea is that as long as there is variation
in block propagation patterns of the mining nodes (irrespective of the actual delay value), an adversary with
better network reachability and faster block propagation can split the network and trigger concurrent mining
on multiple branches of the public blockchain.

6.2.3 Block Race

Once the perfect split is achieved, the two chains, C1 and C2, enter in a block race. To formally analyze the
race conditions, we first revisit the mathematical underpinnings of the Nakamoto consensus in Bitcoin.

Bitcoin mining can be modeled as a Poisson process with inter-block times exponentially distributed
with mean τ = 600 seconds. A valid block has the double hash of the block header less than the difficulty
SHA256(SHA256((Header))< d ∈ [0, 2256 − 1]. On average, a miner computes m = 2256/d hashes to mine a
block [17]. With the total network hash rate α+β, m= (α+β)× τ is the total number of hashes required to
mine a block at the specified block time τ [17]. When the hash rate is split into α and β (algorithm 2), the

14

time required to mine the next block on each branch becomes to = m/α and t
′

o = m/β. In other words, after
executing algorithm 2, the next block from C1 is mined at to, and at t

′

o for C1, respectively. Therefore, the
probability that C1 succeeds in producing the block before C2 becomes to/(to + t

′

o) = α/(α+ β) [17, 18, 35].
Similarly, the probability that Am mines the next block on C1 before h1 is α1/(α1 +α2), and the probability
that h1 mines the next block on C1 before Am is α2/(α1 + α2). This analysis can be easily extended to the
miners h1 and h2 on the branch C2.

After executing algorithm 2, Am needs to maintain the fork for k consecutive blocks to violate Qcp.
However, if the fork gets resolved and the resulting chain has more blocks than 100α1 (i.e., out of 100
blocks, more than 26 mined by Am), Qcq is violated. Note that since there are two public chains, if the fork
gets resolved before k, and C1 is the winning chain, Qcq is violated even when Qcp is preserved. Considering
these cases, in the following, we concretely specify the conditions under which the HashSplit attack succeeds
or fails:

1. If the forks persist for more than k blocks, Qcp is violated, and the attack succeeds partially.

2. If the forks get resolved before k blocks and C1 wins, Qcq is violated, and the attack succeeds partially.

3. If the forks persist for k blocks and get resolved at k + 1 block with C1 as the winning branch, both Qcp
and Qcq are violated, and the attack succeeds completely.

4. If the forks persist for k blocks and get resolved at k + 1 block, with all k blocks mined by Am, both
Qcp and Qcq are violated. Moreover, in that case, the HashSplit attack becomes a majority attack since
the adversary mines all blocks. In a synchronous network, the probability of this event is 0.08 with
α1 = 0.26 [35].

5. If the forks get resolved before or after k blocks and C2 wins, Am loses all blocks, and the attack fails.

Clearly, HashSplit relies on the block race outcomes in which the blockchain forks persist or get resolved.
In Figure 8, we formally analyze all outcomes of a block race along with their probability distribution and
Am’s strategies for the next round. We define a random variable X that specifies the probability distribution
of the block race outcome in Figure 8. We further define F and R as the sum of events in which forks persist
or get resolved. In (1) and (2), we show the probability P[X = F] and P[X = R].

P[X = F] = α1(1− α2)(1− β1)(1− β2) + α1β1(1− α2)(1− β2) + α1β2(1− α2)(1− β1)

+ α1β1β2(1− α2) + α1α2(1− β1) + (1− β2) + α2β1(1− α1)(1− β2)

+ α2β2(1− α1)(1− β1) + α2β1β2(1− α1) + α1α2β1(1− β2) + α1α2β2(1− β1)

+ α1α2β1β2 + β1β2(1− α1)(1− α2) + (1− α1)(1− α2) + (1− β1)(1− β2)

P[X = F] = 3α1α2β1β2 − 2α1α2β2 − 2α1β1β2 − 3α2β1β2 − 2α1α2β1 + α1β2

+ 2α2β2 + 2β1β2 + α1α2 + α1β1 + 2α2β1 − β2 − α2 − β1 + 1

(1)

P[X = R] = α2(1− α1)(1− β1)(1− β2) + β1(1− α1)(1− α2)(1− β2)

+ β2(1− α1)(1− α2)(1− β1)

P[X = R] = 2α1α2β1 + 2α1α2β2 + 2α1β1β2 − 3α1α2β1β2 + 3α2β1β2

− α1α2 − α1β1 − α1β2 − 2α2β1 − 2α2β2 − 2β1β2 + α2 + β1 + β2

(2)

Plugging the hash rate of each miner from our threat model, P[X = F] and P[X = R] become 0.6892
and 0.3108, respectively. From these values and Figure 8, we make the following conclusions.

1. With algorithm 2 as the starting point of a block race, there is higher probability that the given fork
persists or new forks appear. This favors the violation of Qcp.

2. The probability that a fork is resolved by an honest miner on C1 is α2(1− α1)(1− β1)(1− β2) = 0.1275;
significantly less than 0.6892 and favors Qcq’s violation.12

3. The probability that a fork is resolved by any honest miner on C2 is β1(1− α1)(1− α2)(1− β2) + β2(1−
α1)(1 − α2)(1 − β1) = 0.2401. This is the failure probability for the attack, and it is considerably less
than 0.6892 .

12If a fork is resolved by an honest miner, the adversary loses all blocks on the blockchain. Although, the probability of such
an event is low (0.127).

15

Fork Persists:

• f1: Am produces a block on C1. No other miner produces a
block on either C1 or C2. Am withholds its block to maintain
the fork. Event probability is α1(1− α2)(1− β1)(1− β2).

• f2: Am produces a block on C1 and either h2 or h3 produce
a block on C2. Am sends its block to h1 who mines on C1.
h2 and h3 mine on C2. Event probability is α1β1(1−α2)(1−
β2) + α1β2(1− α2)(1− β1).

• f3: Am produces a block on C1 and both h2 and h3 produce
a block on C2. Three chains appear C1, C2, and C3. Am

sends its block to h1 and both mine on C1. h2 and h3 mine
on C2 and C3, respectively. Event probability is α1β1β2(1−
α2).

• f4: Am and h1 produce a block on C1 and no miner on C2
produces a block. Am sends block to h2 to maintain the
perfect split. Probability is α1α2(1− β1)(1− β2).

• f5: h1 produces a block on C1 and either h2 or h3 produce a
block on C2. C1 and C2 persist (perfect split exists) and Am

mines on C1. Event probability is α2β1(1 − α1)(1 − β2) +
α2β2(1− α1)(1− β1).

• f6: h1 produces a block on C1 and both h2 or h3 produce
a block on C2. Three chains form (C1, C2, C3). Am receives
block from h1 and both mine on C1. h2 and h3 mine on C2
and C3. Event probability is α2β1β2(1− α1).

• f7: Both Am and h1 produce blocks on C1 and either h2, or
h3, or both produce blocks on C2. Three or four branches
can appear. Am mines with h1 to maintain the hash rate ad-
vantage. Event probability is α1α2β1(1−β2) +α1α2β2(1−
β1) + α1α2β1β2.

• f8: No miner produces block on either C1 or C2. The original
fork persists. Event probability is (1−α1)(1−α2)(1−β1)(1−
β2).

• f9: Both h2 and h3 produce blocks on C2 and no miner on
C1 produces a block. C1 resolves and C2 and C3 form. Am

mines on h2’s branch for higher hash rate advantage. Event
probability is β1β2(1− α1)(1− α2).

Fork Gets Resolved:

• r1: h1 produces a block on C1 before Am, and neither h2 or
h3 produce a block on C2. C2 dissolves and no fork remains.
Event probability is α2(1− α1)(1− β1)(1− β2).

• r2: Either h2 or h3 produce a block and no miner on C1
produces a block. Fork gets resolved and Am mines on
h2’s branch to maintain the hash rate advantage. Event
probability is β1(1− α1)(1− α2)(1− β2) + β2(1− α1)(1−
α2)(1− β1).

Block Race

Figure 8: Block race after algorithm 2. For each event, we show the event probability and Am’s next strategy.

S0 S1p00

p01

p11

p10

Figure 9: State machine representation of a block race. Transition probabilities are p00, p01, p10, and p11

are P[X = F], P[X = R], P[X = F], and P[X = R], respectively.

16

4. With M miners, potentially M branches can appear after a block race, although with a negligible prob-

ability
(∏|M |

i=1 h(i)
)

. More branches increase the probability of violating Qcp, and we show in Figure 8

how Am can deal with more than two branches.

5. Block race can be modeled as a state machine in which the outcomes can be a fork with probability
P[Xk = F] or no fork with probability P[Xk = R] [12, 24]. Figure 9 presents a state machine with S0

and S1 denoting states of forks and no forks, respectively. The transition probabilities p00, p01, p10, and
p11 are P[X = F], P[X = R], P[X = F], and P[X = R], respectively.

6. Using Figure 9 and incorporating the propagation pattern, we can compute the long term probability of
a forked blockchain that violates Qcp and Qcq.

Incorporating Propagation Advantage. Before computing the stationary distribution of Figure 9, it
is important to incorporate Am’s mining advantage due to delay and block withholding. For instance, in f1,
when Am produces a block and withholds until h2 or h3 produce blocks, Am can leverage the waiting time
and the block propagation time to extend the newly mined block. The gap between ta,1 and th,1 (or ta,2
and th,2) provides additional time for Am to mine the next block. To model this advantage, we first need
to characterize the effect of delay on each miner’s hash rate. Let ta,0, th1,0

, th2,0
, th3,0

be times at which
Am, h1, h2, and h3 mine blocks with hash rates α1, α2, β1, and β2, respectively. The relationship between
propagation delay and the hash rate can be obtained as:

α1 =
τ

ta,0
, α2 =

τ

th1,0
, β1 =

τ

th2,0
, β2 =

τ

th3,0
(3)

α1 =
τ

ta,0 + ta,1
, α2 =

τ

th1,0 + th,1
, β1 =

τ

th2,0 + th,1
, β2 =

τ

th3,0 + th,1
(4)

Considering α1 = 0.26, α2 = 0.25, β1 = 0.25, β2 = 0.24, and τ = 600 seconds, from (3), ta,0, th1,0,
th2,0 become ≈ 2308, 2400, 2400, and 2500, respectively. Plugging these values in (4), the hash rate of each
miner becomes α1 = 0.259, α2 = 0.244, β1 = 0.244, and β2 = 0.235. Next, to incorporate Am’s advantage
in a block race, we convert δ1 in algorithm 1 as the mining advantage that increases α1. In our model, Am
gets (δ1/τ = 0.0833 fraction of additional mining power. As a result, the effective hash rate of each miner
becomes α1 = 0.3423, α2 = 0.2163, β1 = 0.2163, and β2 = 0.2073. Moreover, P[X = F] and P[X = R]
become 0.739 and 0.261, respectively.13

This advantage can be extended to miners when they resolve forks (r1 and r2 in Figure 8). If resolved,
the probability that a fork appears in the next round will be less than 0.739. More precisely, the winning
miner will have ta,1 advantage over Am, and th,1 advantage over other miners. Empirically, ta,1 accounts
for 2/600 = 0.0033, and th,1 accounts for 52/600 = 0.087 fraction of the mining power. Therefore, if a fork
resolve, the probability that it appears in the next round becomes P[X = F] = 0.683. Using these values,
we can construct the transition probability matrix for Figure 9.

P =

S0 S1

S0 p00 p01

S1 p10 p11

=

S0 S1

S0 0.739 0.261
S1 0.683 0.317

In (5), we derive the stationary distribution of P to calculate the long term probability of a forked blockchain.
The stationary distribution of P is a row vector π such that πP = π.

0.739π1 + 0.261π2 = π1, 0.683π1 + 0.317π2 = π2, π1 + π2 = 1 (5)

From (5), π1 = 0.724 and π2 = 0.276, and the long term probability of a forked chain is significantly
greater than of a single branch. Using the stationary distribution, we evaluate the impact of HashSplit on
Qcp, Qcq, and the majority attack.

13Note that the delay provides a marginal incentive to the adversary in terms of the network hash rate. The attack would
succeed even if the delay values are kept small (i.e., 2–4 seconds, assuming a faster propagation). For instance, if we simply
assume δ1 = 2 seconds, α1, α2, α3, and α4 become ≈ 0.263, 0.249, 0.249, and 0.239, respectively. Even in that case, P[X = F]
and and P[X = R] remain reasonably high (0.69 and 0.31, respectively). Therefore, the key idea is as long as (1) mining nodes
receive blocks at different times, and (2) the adversary (malicious mining node) has better network reachability than the honest
mining nodes.

17

Common Prefix Property. Our analysis reveals for any block race of length k, Qcp is violated (Cdk1 � C2
for any k) with 0.724 probability. For k = 6, P 6 yields P[X = F] = 0.72. Therefore, HashSplit violates Qcp
with high probability.
Chain Quality Property. Per (4), the block propagation affects the hash rate of each miner. As such,
and even when not partitioning the blockchain, Am can still mine more blocks that its hash rate allows.
For instance, assuming an honest block race and δ1 = 50 seconds, Am has 50/(3 × 600) fraction of mining
advantage over the other three miners (α1 = 0.26, α2 = 0.223, β1 = 0.223, β2 = 0.213). Moreover, if 100
blocks are mined, Am will mine 28.29 blocks. From the ideal-world functionality view, µ − µ′

= 2.29 6= ε.
Am mines two blocks more than its hash rate, thus Qcq is violated.
Common Prefix and Chain Quality. To violate Qcp and Qcq, a fork needs to persist or get resolved
after k blocks, and C1 is the winning branch. Figure 8 shows that r2 is the only outcome where forks get
resolved to C2 with probability 0.2401. We analyze that by branching S1 in Figure 9 into two states and
calculate the probability of C2 being the winning chain (computed as 0.167). Therefore, both Qcp and Qcq
are violated with a probability of 1− 0.167 = 0.833.
Majority Attack. From Figure 8, a majority attack happens if (1) C1 is the winning branch after k
rounds, and (2) all blocks on C1 are mined by Am. This happens if for k − 1 rounds, one of the events fi,
for i = 1, 2, 3, 4, 7 or 9 occurs, followed by event f1 on the kth round. Similar to the analysis above, we can
decompose this into a state machine where S0 determines the probability of events fi, for i = 1, 2, 3, 4, 7 or 9,
while S1 determines the probability of fi for i = 5, 6, or 8, and r1 or r2. From Figure 8, we compute p00, p01,
p10, and p11 as 0.663, 0.337, 0.576, and 0.424, respectively. For k = 6, the result is (0.63× 0.342) = 0.2156.
Therefore, with a probability of 0.2156, HashSplit allows Am to launch a majority attack with only 26%
hash rate. In the lock-step synchronous or non-lock-step synchronous networks, the probability of successful
majority attack with 26% hash rate is ≈ 0.08 [35].

In summary, HashSplit violates the blockchain safety properties with high probability and significantly
lowers the cost for the majority attack. In this paper, we have only presented an attack against the mining
nodes, although it can be launched against non-mining nodes (i.e., Bitcoin exchanges) to prevent them from
generating k−confirmed transactions. As shown in §5, the non-mining nodes have a relatively weaker network
synchronization compared to the mining nodes, making them more vulnerable to HashSplit. As noted in §1,
splitting the mining power to lower the cost of the 51% attack is known in the literature [30, 15, 3]. However,
these attacks require an adversary to disrupt the communication model which can be detected by the victims.
In contrast, the HashSplit adversary does not disrupt the communication, and only relies on the latency and
mining policies to split the network. In the past five years, 26% hash rate has been possessed by various
mining pools, including BTC.com, Antpool, and F2Pool (see Antpool’s example [27]). All these features
make HashSplit more practical, stealthy, and feasible in the current Bitcoin network. We acknowledge that
the asynchronous network can be exploited in several other ways to launch new attacks similar to HashSplit
or further refine HashSplit by incorporating new strategies. However, covering all those attacks is beyond
the scope of this paper. Moreover, since the Bitcoin network is permissionless and dynamic, the information
propagation and blockchain synchronization can significantly vary with time (see [7]). However, irrespective
of those changes, as long as the block propagation pattern of the mining nodes is different from each other
(the network being asynchronous), the HashSplit attack can be launched by the adversary.

7 Attack Countermeasures

In this section, we discuss the attack countermeasures. Since HashSplit primarily exploits asynchronous
network and block propagation pattern, if δ1 . . . δ4 in algorithm 1 are minimized, Am: (1) cannot split the
mining nodes, and (2) cannot leverage a significant mining advantage. Additionally, if all Pi ∈ M form
M ×M topology, Bitcoin will exhibit a lock-step or non-lock-step synchronous network which can be used
to counter HashSplit.

In order to expedite block reception and form M ×M network topology, we made a few refinements to
Bitcoin Core in order to counter the attack [1]. We modified the source code to allow fast connectivity with
Bitcoin nodes. From a mining node’s perspective, the existing Bitcoin client may not offer a good network
reachability to form M ×M topology. For instance, it can take up to ≈120 days for all incoming connection
slots to be full [38]. If those incoming connections include the mining nodes, it would rather be desirable to
connect with them sooner in order to form the desired topology. For that purpose, we made refinements to

18

0 200 400 600 800 1000 1200 1400 1600

Time (seconds)

0

2

4

6

C
o
n

n
ec

ti
o
n

s
x
(1

0
3
)

(a) Number of Bitcoin connections established in 1800
seconds

20 40 60 80 100 120 140 160

Time (seconds)

0

1

2

3

B
an

d
w

id
th

(M
b

p
s)

Outgoing

Incoming

(b) Incoming and outgoing bandwidth consumption in
Mbps.

Figure 10: Evaluation of our Bitcoin client deployed on a custom node. In less than 300 seconds, the node
connected with over 6K reachable nodes while maintaining the bandwidth overhead under 6Mbps. The
number of nodes drop around 900 seconds since Bitcoin Core automatically disconnects with peers that are
unresponsive (i.e., do not send ping or pong messages). Disconnecting such nodes saves connection slots and
reduces the connectivity overhead [21].

Bitcoin Core by adding scripts that allow a faster connectivity [1].
For performance evaluation, we deployed our client on a local machine and evaluated the connectivity

speedup and bandwidth consumption, with results reported in Figure 10. Our node connected with over 6K
reachable nodes in less than 100 seconds, with a bandwidth consumption under 6Mbps (4Mbps incoming
and 2Mbps outgoing) during the initial connectivity phase. Once the number of connections stabilize, the
bandwidth consumption becomes ≈4Mbps. Our client is still in the testing phase and currently supports
connections to IPv4 and IPv6 nodes.

From Figure 10, we note that a the node can connect to the mining nodes in less than 300 seconds.
Through direct connectivity and better reachability, the node can instantly receive blocks from honest mining
nodes, thereby minimizing Am’s advantage. However, we acknowledge that M ×M topology does not fully
counter the attack. Due to characteristics of the underlying Internet infrastructure (i.e., low bandwidth),
the network latency can be heterogeneous such that two peers connected to a same node can experience non-
uniform propagation delay. Heterogeneous latency can be leveraged by Am to launch the HashSplit attack
even in M ×M topology. Therefore, in addition to network layer remedies, we also require application layer
defenses to counter the attack.

For application layer defenses, we equip our client with a fork resolution mechanism. We note from Fig-
ure 8, that the victim nodes have multiple branches of the same length in each round (i.e., C1 and C2) during
the attack. Particularly, miners on C1 will continuously receive blocks from Am, immediately followed by
blocks from other honest miners. We leverage this sequence of block arrival to eliminate Am’s advantage
and reduce the likelihood of a perfect split. In [1], we provide a fork resolution mechanism in which a
node removes the connection and bans the IP address for twenty four hours in the event of receiving k = 6
sequential blocks from it. This means that Am will lose a direct connection to all mining nodes and will
not be able to achieve a perfect split. Am may deploy Sybil nodes in the network to connect to the victim.
However, in that case Am will lose δ1 advantage over the victim since the block will be first relayed to the
Sybil and then to victim node. Therefore, a combination of high network reachability and fork resolution
mechanism can alleviate the risk of the HashSplit attack.

8 Discussion and Conclusion

HashSplit: Holistic Perspective. The HashSplit attack is an outcome of rigorous theoretical analysis
and systematic measurements for which we construct the Bitcoin ideal functionality, identify the mining
nodes, characterize the network synchronization, and present the effects of asynchrony on the Nakamoto
consensus. We acknowledge that our measurement results can be improved and further enumerated to
curate new attack strategies. However, the HashSplit attack is one demonstrative characterization of the
execution model that is admissible in the Bitcoin computation model.
Limitations and Future Work. We also acknowledge some limitations in our work. First, due to
limited resources, we could not conduct the measurements for a longer duration that could have provided

19

more interesting insights about the Bitcoin network. For instance, the per-second sampling of the network
provided deeper insights into the synchronization pattern among the mining nodes. However, since it was
highly storage-intensive, therefore, we only conducted it for a short duration to only validate asynchrony
among the mining nodes, which is the fundamental idea behind HashSplit.
Conclusion. In this paper, we formulate the Bitcoin ideal functionality, identify the mining nodes, and
show the network asynchrony in the real word. Across various measures, we show that the Bitcoin network
is evolving, where known attacks can be optimized and new attacks can be launched, as demonstrated by
HashSplit. Our work bridges the gap between theory and practice of blockchain security and draws attention
to the Bitcoin security properties. Moreover, our proposed countermeasures provide means to mitigate the
attack by creating a lock-step synchronous network.

References

[1] Anonymous. Improved bitcoin core to counter hashsplit. https://anonymous.4open.science/r/

56e77487-0470-4e10-b634-b13e939863c0/, 2020.

[2] M. Apostolaki, G. Marti, J. Müller, and L. Vanbever. SABRE: protecting bitcoin against routing
attacks. In Network and Distributed System Security Symposium. The Internet Society, 2019.

[3] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking bitcoin: Routing attacks on cryptocurrencies.
In Symposium on Security and Privacy, pages 375–392. IEEE, 2017. https://doi.org/10.1109/SP.

2017.29.

[4] M. Bastiaan. Preventing the 51%-attack: a stochastic analysis of two phase proof of work in bitcoin.
University of Twente, 2015. http://fmt.cs.utwente.nl/files/sprojects/268.pdf.

[5] ChainQuery. bitcoin-cli getchaintips – chainquery. https://chainquery.com/bitcoin-cli/

getchaintips, 2020. (Accessed on 03/29/2021).

[6] B. Community. Six confirmation practice in bitcoin, 2019. https://en.bitcoin.it/wiki/

Confirmation.

[7] B. Community. Bitnodes: Discovering all reachable nodes in bitcoin, 2020.

[8] M. Corallo. Bitcoin improvement proposal 152, 2018.

[9] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust, and A. Sadeghi. Fastkitten:
Practical smart contracts on bitcoin. In N. Heninger and P. Traynor, editors, Security Symposium, pages
801–818. USENIX, 2019.

[10] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In International
Conference on Peer-to-Peer Computing, pages 1–10. IEEE, Sep 2013. https://doi.org/10.1109/

P2P.2013.6688704.

[11] T. Duong, L. Fan, T. Veale, and H. Zhou. Securing bitcoin-like backbone protocols against a malicious
majority of computing power. IACR Cryptology ePrint Archive, 2016:716, 2016.

[12] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography
and Data Security, pages 436–454. Springer, 2014.

[13] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Advances in Cryptology, pages 291–323. Springer, 2017.

[14] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer. Decentralization in bitcoin and ethereum
networks. CoRR, abs/1801.03998, 2018.

[15] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the security and
performance of proof of work blockchains. In Conference on Computer and Communications Security,
pages 3–16. ACM, 2016.

20

https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0/
https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0/
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
http://fmt.cs.utwente.nl/files/sprojects/268.pdf
https://chainquery.com/bitcoin-cli/getchaintips
https://chainquery.com/bitcoin-cli/getchaintips
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Confirmation
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704

[16] S. Goldberg and E. Heilman. Technical perspective: The rewards of selfish mining. Commun. ACM,
61(7):94, 2018.

[17] C. Grunspan and R. Pérez-Marco. Double spend races. CoRR, abs/1702.02867, 2017.

[18] C. Grunspan and R. Pérez-Marco. On profitability of selfish mining. CoRR, abs/1805.08281, 2018.

[19] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network.
In USENIX Security Symposium, pages 129–144, 2015.

[20] J. Jang and H. Lee. Profitable double-spending attacks. CoRR, abs/1903.01711, 2019.

[21] JBaczuk. bitcoind - specific explanation of ”timeout” configuration option in bitcoin - bitcoin stack
exchange. https://bit.ly/3tWbJCg, 2021. (Accessed on 03/25/2021).

[22] L. Kiffer, R. Rajaraman, and A. Shelat. A better method to analyze blockchain consistency. In Con-
ference on Computer and Communications Security, pages 729–744, 2018.

[23] Y. Kwon, D. Kim, Y. Son, E. Y. Vasserman, and Y. Kim. Be selfish and avoid dilemmas: Fork after
withholding (FAW) attacks on bitcoin. In Conference on Computer and Communications Security,
pages 195–209. ACM, 2017.

[24] Q. Li, Y. Chang, X. Wu, and G. Zhang. A new theoretical framework of pyramid markov processes for
blockchain selfish mining. CoRR, abs/2007.01459, 2020.

[25] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and S. Capkun. BITE: bitcoin lightweight
client privacy using trusted execution. In Security Symposium,, pages 783–800. USENIX, 2019.

[26] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhattacharjee. Discovering
bitcoin’s public topology and influential nodes.(2015), 2015.

[27] A. Mining. Antpoolhashrate, 2020.

[28] R. Nagayama, R. Banno, and K. Shudo. Identifying impacts of protocol and internet development on
the bitcoin network. In Symposium on Computers and Communications, pages 1–6. IEEE, 2020.

[29] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https://bitcoin.org/bitcoin.

pdf.

[30] C. Natoli and V. Gramoli. The balance attack or why forkable blockchains are ill-suited for consortium.
In International Conference on Dependable Systems and Networks, pages 579–590. IEEE, 2017.

[31] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh. Erlay: Efficient transaction
relay for bitcoin. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, Conference on Computer
and Communications Security, pages 817–831. ACM, 2019.

[32] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. IACR
Cryptology ePrint Archive, 2016:454, 2016.

[33] Poolin. Pool stats bitcoin mining pools. https://btc.com/stats/pool, 2021. (Accessed on
03/29/2021).

[34] L. Ren. Analysis of nakamoto consensus. Cryptology ePrint Archive, Report 2019/943, 2019. https:

//eprint.iacr.org/2019/943.

[35] M. Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009, 2014.

[36] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen. Partitioning attacks on bitcoin: Colliding
space, time, and logic. In International Conference on Distributed Computing Systems, pages 1175–1187.
IEEE, 2019.

21

https://bit.ly/3tWbJCg
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://btc.com/stats/pool
https://eprint.iacr.org/2019/943
https://eprint.iacr.org/2019/943

[37] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. In Financial
Cryptography and Data Security, pages 515–532. Springer, 2016.

[38] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang. A stealthier partitioning attack against
bitcoin peer-to-peer network. In Symposium on Security and Privacy, pages 894–909. IEEE, 2020.

[39] C. Wang, X. Chu, and Q. Yang. Measurement and analysis of the bitcoin networks: A view from mining
pools. CoRR, abs/1902.07549, 2019.

[40] J. Zhao, J. Tang, Z. Li, H. Wang, K. Lam, and K. Xue. An analysis of blockchain consistency in
asynchronous networks: Deriving a neat bound. In International Conference on Distributed Computing
Systems, pages 179–189, 2020.

A Ideal World Functionality Proof

In the following, we provide the proof for the ideal world functionality (§2 and Figure 1).

Theorem 1 (Bitcoin Ideal World Functionality). If the protocol is run for l= 6 consecutive rounds, in which
k = 6 blocks are produced, then with high probability, F guarantees the common prefix property and the chain
quality, as long as the adversary is bounded by H/2 hash rate.

Proof. Prior to the proof, we present some practical considerations for our execution model. In the current
Bitcoin protocol specifications, the average duration of a round is 10 minutes (600 seconds) and the parameter
k for the common prefix is 6 blocks [6]. Moreover, Theorem 1 assumes that in each round, only one block is
produced, and therefore, for l consecutive rounds, a total of k = l blocks are produced.

To prove Theorem 1, we assume by contradiction that the ideal world execution runs for l = 6 consecutive

rounds after which Cd61 � C2 does not hold. In other words, the two chains do not share a common prefix after
pruning the last 6 blocks. For this to be true, in each round, at least two miners in M should concurrently
produce a block at the same time t0 and due to a fully connected or close to a fully connected graph, the
remaining miners should receive the two blocks at t1. As shown in Figure 1, the recipients toss a coin and
select one of the two blocks (for generalization if x blocks are received, recipients roll x sided dice). The
probability that for l = k rounds, x blocks are concurrently produced is:

P (x|λ) =

(
e−λλx

x!

)k
(6)

Now assume a random variable X which represents an event that Cd61 � C2 for l = k rounds due to x
concurrent blocks. And since each recipient has to roll an x sided dice if x blocks are received, therefore
P (X) (from (6)) becomes:

P (X) =

(
e−λλx

x2(x− 1)!

)k
(7)

With λ =1/600, k = 6, and x = 2, P (X) is 0.00001. In other words, the ideal world functionality guarantees
the common prefix for k = 6 with overwhelming probability of 0.99999.

To ensure the chain quality property, F specifies that no hi for Pi ∈ M has more than 50% hash rate.
Otherwise, hi

H does not hold and F aborts. Moreover, in the winning chain, the number of blocks contributed
by the honest miners is proportional to their hash rate. For instance, in a chain length of l = 6 rounds in
which 6 consecutive blocks are produced, a miner with 14.3% hash rate should be able to contribute 1 block
(µi). If a miner faithfully respects the protocol in Figure 1, its probability of contributing 1 block becomes
k hi

H . Plugging in the experimental values, the probability is 0.999 (µ
′

i. Therefore, µi − µ
′

i is 0.001. This is
negligible (ε) as defined in the ideal world functionality Figure 1.

22

B Algorithmic Analysis of Bitcoin Consensus

In this section, we perform a comparative analysis of the two well-known models that characterize the
functionality of Bitcoin. The first model is proposed by Garay et al. [13] that specifies the Bitcoin backbone
protocol and provides the formal definitions of the “Common Prefix Property” and the “Chain Quality
Property.” The second model is proposed by Pass et al. [32] that analyzes the performance of Blockchain
protocols in asynchronous networks.14

The Bitcoin Backbone Protocol [13]. Garay et al. assumed a synchronous network in which when a
miner releases a block, it is received by all the other miners concurrently, with negligible delay. Therefore, in
each round, all nodes execute the protocol in a lock-step [34]. Moreover, the model assumes M = N, where
the hash rate is uniformly distributed among all miners. Finally, the adversary does not control more than
|M |/2 = |N|/2 miners. In other words, the miner is bounded by 50% hash rate. Using these assumptions,
the [13] proposes the two theorems for the common prefix property and the chain quality property.

Theorem 2. (Common Prefix). In a typical execution, the common prefix property holds with a parameter
k ≥ 2λf . Here, k is the number of blocks for the common prefix property, f is the probability that at least
one honest miner produces a block, and λ ≥ 2/f is defined as the security parameter.

Theorem 3. (Chain Quality). In a typical execution, the common prefix property holds with a parameter
l ≥ 2λf .

Although the Bitcoin backbone protocol in [13] formally specifies the properties of the Bitcoin system,
however, it makes some assumptions that deviate from the real world implementation. In the following, we
briefly discuss them.

(1) Firstly, the model assumes M = N and the mining power to be uniformly distributed. However, as
shown in §4, M << N and the mining power is not uniformly distributed. (2) Secondly, the synchronous
execution assumes that in each round, the block experiences no propagation delay. As a result, the adversary
gains no advantage from the propagation delay. In our measurements, we have observed that the Bitcoin
network is not a fully connected graph. As such, even if we reduce the Bitcoin network to M ×M , the
network may still not be synchronous. (3) Finally as we show in the HashSplit attack, the asynchronous
network empowers the adversary to violate the common prefix property and the chain quality property with
as low as 26% hash rate. Translated to the formulation of [13], this means that if the adversary controls
≈ |M |/4 or |N|/4 miners, the common prefix property and the chain quality property will not hold.
Blockchains in non-lock-step Synchronous Networks [32]. Improving the model of Garay et al.
[13], Pass et al. [32] proposed an non-lock-step synchronous model to evaluate Bitcoin. Their proposition
introduces a network delay parameter ∆ that an adversary can add during block propagation. By the time
the block reaches other miners, the adversary leverages ∆ to gain a head start mining advantage towards
computing the next block. In the following, we analyze the model proposed in [32].

(1) The primary assumption of their model is that an adversary is able to compute a block, delay its
transmission by an upper bound ∆, and broadcast it to the network. After the broadcast, all participants
receive the block and the non-lock-step synchronous network starts to emulate the lock-step synchronous
network [13]. Therefore the key difference in the non-lock-step synchronous model [32] and the lock-step
synchronous model [13] is ∆, after which both models emulate the same behavior. (2) ∆ gives an advantage
to the adversary over all the other participants. Roughly speaking, in the ∆ time window, the adversary is
able to mine on top of its previous block. Moreover, [32] assumes that during ∆, all the other participants
remain idle. More formally, the model specifies α ≈ p(1 − ρ)n to be the probability that an honest player
computes the block. Here, p is the mining hardness and ρ is the fraction of nodes in n that the adversary
controls. Moreover, β = ρnp is the expected number of blocks that an adversary can mine in a round. (3)
Once the bounded delay ∆ is plugged into the system, the model in [32] assumes a parameter δ > 0 such
that to meet consistency property, the model has to satisfy α(1− (2∆ + 2)α) ≥ (1 + δ)β. As long as ρ < 0.5
and p < 1

pn∆ , consistency is satisfied. (3) The bounded delay ∆ also “discounts” the capability α of honest

nodes to produce blocks in a round. To formally capture that, the model in [32] introduces γ = α
1+∆α which

is the discounted version of α or the effective mining power gained by delaying the block propagation by ∆.

14Although Pass et al. call their model asynchronous, however, Ren et al. [34] show that their model is actually non-lock-step
synchronous. For simplicity, in this section, we still refer to [32]’s model as asynchronous.

23

Using the aforementioned assumptions and a security parameter κ, [32] proposes two theorems to char-
acterize Nakamoto consensus specific to the Bitcoin operations.

Theorem 4. (Chain quality). For all δ > 0 any p(.), (
∏p
nak, C

p
nak) has the chain quality:

µpδ(κ, n, ρ,∆) = 1− (1 + δ)
β

γ
(8)

Theorem 5. (Consistency). Assume there is δ > 0 such that

α(1− (2∆ + 2)α) ≥ (1 + δ)β (9)

Then, except with an exponentially small probability (in T), Nakamoto consensus satisfies T -consistency
under the assumption that the network latency is bounded by ∆.

The consistency property in (9) can also be interpreted as the common prefix property in [13]. The
T -consistency specifies that the two ledgers must share a common prefix after pruning the last T blocks from

their chains (CdT1 � C2). Moreover, in [32] (Section 3.5), the authors mention “for instance, in the Bitcoin
application, we are interested in achieving T -consistency for T = 6.” This is similar to our formulation of

the ideal world functionality and its proof, where we prove that (Cdk1 � C2, for k = 6). However, in the
HashSplit attack, we show that the adversary violates the consistency property by deviating from the ideal
world functionality. Additionally, we provide Theorem 6 to improve the characterization of [32], where the
non-lock-step synchronous model starts to emulate the properties of the lock-step synchronous model.
Experimental Interpretation. The experimental setup in [32] assumes a network where each node can
mine. Moreover, it also assumes n = 105 and ∆ = 10s. The results show that Nakamoto consensus tolerates
a 49.75% attack, under ∆ = 10s bound.

Non-lock-step Synchronous Model in Real World

Although the non-lock-step synchronous model in [32] enhances the understanding about the Bitcoin system,
however, it also makes some generalized assumptions that may not reflect the actual Bitcoin system as we
largely observe in our experiments. Firstly, [32] assumes that during ∆, other mining nodes remain idle,
and after ∆, the system abruptly starts emulating lock-step synchronous behavior. This would imply that
when an adversary delays a block by ∆, no other miner receives the block in the meantime, and after ∆, all
miners receive the block instantly and start mining on top of it. This generalization does not capture the real
world Bitcoin operations. For instance, assume there are w = |M | mining nodes in the system. Each node is
1, ..., w hops away from a typical mining node (adversary in this case). Further, assume that the adversary
releases the block and the block incurs a delay at each hop. Now, P1 ∈ M receives the block after ∆1,
P2 ∈ M receives the block after ∆2, and Pw ∈ M receives the block after ∆w. Naturally, ∆1 < ∆2 < ∆w.
In PoW, each miner is motivated by its interests. If the miner receives a new block, for which it has been
unsuccessfully mining, it immediately drops its computation and starts mining on top of the newly received
block. Therefore, the network does not exhibit synchronous behavior until all |M | miners receive the block.
Moreover, if by the time Pw ∈ M receives the block, and another miner P1...Pw−1 ∈ M produces the next
block, then the system may never exhibit the synchronous model. For a synchronous execution, all miners
in M should be mining for the same block. Acknowledging this requirement for a synchronous execution, in
the following, we present a theorem that puts a stronger bound on the emulation of lock-step synchronous
model. We also provide a proof sketch.

Theorem 6. Bitcoin emulates synchronous behavior iff each Pi ∈ M receives br before another Pj ∈ M
produces br+1.

Proof. Assume by contradiction that a miner Pi ∈M receives blocks br at time t1 and another miner Pj ∈M
produces another block br+1 at t0 where t0 < t1. Pj ∈M releases its block and a subset of miners M1 ∈M ,
where Pi /∈M1 start mining on top of br+1. Since Pi has not received br+1 so it will continue to mine on top
of the received br. As a result, not all miners in M are solving for the same PoW (i.e., extending the same
block). Hence they do not exhibit synchronous behavior.

24

block

Node A Node B

headers or inv

getdata

block

Legacy Relaying

block

Node A Node B

cmpctblock

getblocktxn

blocktxn

High Bandwidth Relaying

sendcmpct(1)

Figure 11: Differences between INV-based block relaying and CMPCTBLOCK-based block relaying. In INV
relaying, when Node A receives a block, first it verifies the contents of the block and then issues INV message
to which Node B responds with a GETDATA message. In CMPCTBLOCK relaying, first Node B sends a
SENDCMPCT message to Node A to signal that it supports CMPCTBLOCK relaying. As a result, when
Node A receives a block, it immediately forwards it to Node B without validating headers. Node B then
reconstructs the block from its mempool.

Note by the time Pw ∈ M receives the br, other miners P1...Pw−1 will not be in an “idle” state, as
assumed in [32]. They will be mining on top of br. Therefore values of α, γ, and δ in Theorem 4, Theorem 5
will change. In the case that we have outlined above, α will become α1, ..., αw, and similarly δ and γ would
change to δ1, ..., δw and γ1, ..., γw, respectively. The value of β will however remain unchanged. As a result, in
the real world settings, the overall advantage of the adversary, due to ∆ will decrease. Plugging this into [32],
the chain quality in the honest environment actually becomes 1− [(1 + δ1) βγ1 × (1 + δ2) βγ2×, ...,×(1 + δw) β

γw
].

Other assumptions in the experimental interpretation of the model are the network size of 105 nodes and
∆ = 10s. The paper uses the network size as 105 nodes in order to support the real world Bitcoin hash
rate. However, they assumed that the hash rate is uniformly distributed among all nodes. As a result, their
experimental results matched the ones presented by Decker et al. [10]. However, as we have already shown
through our measurements, the network size is significantly less than 105 nodes and the mining power is not
uniformly distributed. As such, the non-lock-step synchronous model can be improved to characterize the
actual Bitcoin system.

C Data Collection Details

At each crawler, we used high-speed fiber-optic Internet with a 1Gbps connection. After five weeks, we
discontinued the experiment since we we had sufficient data (i.e., information about the mining nodes and
variations in block propagation) to motivate for the HashSplit attack. We also want to emphasize that
our crawlers were merely listeners in the network since they only logged the information that was willingly
disclosed by their connections. We did not send any measurement probes other than what is acceptable
within the Bitcoin network (i.e., GETDATA message in response to the INV message).

D Revisiting Partitioning Attacks

In this section, we revisit the two notable partitioning attacks proposed in [36, 3] to understand how the
new insight we uncovered about the mining nodes (§4) refines those attacks.
Temporal Partitioning Attacks [36]. In the temporal partitioning attack, an adversary connects to
all reachable IP addresses in N to isolate the vulnerable nodes that have an outdated view. As such, the
threat model in [36] makes no distinction between the mining and non-mining nodes. Therefore, attacking a
mining node becomes a probability game in which the adversary expects that a vulnerable node is one of the
mining nodes. However, with additional insights from our work, if the adversary learns about the mining
nodes M , the attack can be significantly optimized. Our results show that among |N|=36,360 IP addresses,
only |M |=359 IP addresses belong to the mining nodes. Since, |M |<< |N|, the connectivity overhead can
be significantly reduced.

25

0 20 40 60 80 100

Number of ASes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 12: Distribution of mining nodes across ASes. Compared to the general distribution of full nodes
[36, 3], mining nodes are comparatively more decentralized, and therefore, less vulnerable to routing attacks.
90 (31.69%) mining nodes are uniquely hosted across 90 ASes (at the time of this study), showing a higher
distribution in the hosting patterns.

Routing Attacks [3]. Although our results can be used to optimize the temporal partitioning attacks,
we observe rather unfavorable outcomes for routing attacks. BGP-based routing attacks are launched to
disrupt communication between subgroups of a blockchain system [30]. These attacks are more effective
when launched against the mining nodes to split the network hash rate. To analyze this aspect, we monitored
the hosting patterns of the mining nodes and made the following observations. Since 20.89% of all the mining
nodes use Tor, they are less vulnerable to the BGP hijacks. Among the remaining 284 (79.1%) nodes that use
IPv4 and IPv6, 90 (31.69%) mining nodes are uniquely hosted across 90 ASes (one node per AS), showing a
high diversity in hosting patterns. We further observed that 15 (5.28%) ASes hosted 2 nodes, and 11 (3.87)%
ASes hosted 3-8 nodes. Only 5 (1.76%) ASes hosted 10 or more mining nodes. In Figure 12, we plot the
CDF of the mining nodes across ASes. Due to the high diversity in the hosting patterns, the mining nodes
are less vulnerable to the routing attacks, as previously reported in [2, 36]. However, these results are not
particularly surprising: the routing attacks are well-known to the mining pool operators, perhaps leading
them to diversify their mining nodes’ hosting patterns to protect them against such attacks.

E Network Synchronization

In the following, we contrast our findings against prior works to highlight the aspects of weak network
synchronization.

In 2012, Decker et al. [10] connected to ≈3.5K reachable nodes and observed that 90% of them received a
new block in 12.6 seconds. They also observed a correlation between the block size and the block propagation
delay, stating that for blocks greater than 20KB, each KB increase in the size adds 80 milliseconds delay in
the block propagation. In 2019, Saad et al. [36] observed a weaker network synchronization than [10] using
Bitnodes dataset. They attributed the change in synchronization to the increasing network size.

Our measurements also show weak network synchronization with ≈39% nodes having an up-to-date
blockchain. After observing a surprisingly weak synchronization, we followed up our analysis by observing
the Bitcoin network synchronization through Bitnodes [7]. Bitnodes provides APIs to (1) observe the latest
Bitcoin block, and (2) latest block on the tip of all Bitnodes’ connected nodes. The gap between the latest
block on the Bitnodes blockchain and the latest block on the blockchain tip of Bitnodes’ connected nodes
can be used to estimate the network synchronization.

We conducted our experiment from October 2020 to December 2020 and found that at any time, only
52.2% nodes had an up-to-date blockchain, with the maximum and minimum values of 86% and 15% respec-
tively.15

Variations in network synchronization can also occur due to the current Bitcoin RPC protocol implemen-
tation shown in Figure 3. Since tailoring the default RPC implementation (i.e., by not forwarding blocks to
the connected peers) can have ethical implications, therefore, we instead used the RPC implementation as
provisioned in the protocol and reported the results in Figure 5. Assuming that the RPC implementation

15Variations between our results and Bitnodes (Figure 5) could be due to the difference the time of conducting the experiments
and the methodology of network sampling. In our experiments, we measured the Bitcoin network synchronization immediately
after receiving a new block. (1) The synchronization pattern observed is significantly below the expected value specified in the
ideal functionality Figure 1. (2) Variation in the synchronization pattern (see Figure 13) is itself indicative of an asynchronous
network which is the foundation of the HashSplit attack. (3) Since Bitnodes data is publicly available, we encourage future
research towards analyzing the gaps in network synchronization and improving them.

26

20 40 60 80 100

Percentage of Synchronized Nodes

K
er

n
el

D
en

si
ty

Mean = 52%, Min=15% , Max=86%

Figure 13: Network synchronization observed in the Bitnodes dataset. The results show that on average,
only 52% nodes have an up-to-date blockchain at any time, with the maximum and minimum values of 86%
and 15% ,respectively. The data distribution shape (Kernel Density) is itself indicative of an asynchronous
network since there are variations in block propagation and network synchronization.

results may vary (i.e., due to protocol implementation) from the actual network synchronization, that again
highlights that measuring and mapping the network synchronization remains largely an open problem.

F Notable Attacks on Bitcoin

In this section, we discuss the notable attacks on PoW-based blockchain systems. We will discuss the 51%
attack, the selfish mining attack, and the double-spending attack.
51% Attack. The 51% attack is a classical weakness in blockchains where an adversary acquires a majority
of the network’s hash rate to gain control over the blockchain [12, 11]. The 51% attack primarily relies on
the ability to generate the “longest chain” in the long run [4]. To understand how the majority attack works,
assume an attacker with the hash rate ha, participating in the block race. The attacker is s blocks behind
the rest of the network and aims to catch up with a private chain that is longer than the public chain. If the
rest of the network with hash rate H −ha finds the next block then the attacker will be s+ 1 blocks behind,
with his success probability as as+1. Conversely, if the attacker finds the next block with probability, the
gap will reduce by s − 1, with his success probability as as−1. Given this information, as must satisfy the
following recurrence relationship.

as =
(H − ha)as−1

ha
+

(ha)as+1

H − ha
(10)

as = min
(ha
H − ha

, 1
)max(s+1,0)

(11)

as =

 1 if s < 0 or ha > (H − ha)(
ha

H−ha

)s+1

if s > 0 or ha < (H − ha)
(12)

Note from above, if ha > (H − ha) (the attacker has more than 50% hash power), it will succeed in the
attack. As a result, the attacker will be able to have a strong control over the blockchain, depriving other
miners from extending it.
Selfish Mining. Selfish mining is a form of attack, in which the adversary computes a block and does not
publish it [35]. Instead, it keeps on extending its private chain in hopes that the honest miners on the public
chain invariably switch to the adversary’s private chain. The chain switching by honest miners invalidates
their effort of the honest miners. The selfish mining strategy proposed by [12] undermines the incentive
compatibility of Bitcoin and can be launched with less than the majority hash rate.
Double-spending. Double-spending or equivocation is when an attacker spends their cryptocurrency
token twice [20]. The double-spending attack is launched in various ways. One possible method is that the
attacker sends the transaction to a receiver and the receiver delivers a product before the transaction is
confirmed. The attacker then sends the other transaction to himself. Both transactions are received by a
miner, who can only accept one of them. Therefore, with 0.5 probability the recipient could be tricked. The
other strategy could be that the attacker transacts with the recipient and the transaction gets confirmed in
the public blockchain. The attacker then generates the other transaction, adds it to the private blockchain,

27

20 40 60 80 100 120 140 160

Time (seconds)

2

4

6

8

10

N
u

m
b

er
o
f

B
lo

ck
s

Attacker’s Blocks

Other Miner’s Blocks

Figure 14: Simulations of the HashSplit attack. In each round (except 5th), the adversary with 26% hash
rate is the first to produce a block and follows algorithm 2. In the 5th round, the adversary manages to
produce the block before th,2. Adversary releases the chain after 8th block

and extends that chain. If the private chain becomes longer than the public chain (with probability 1 if the
attacker has 51% hash rate), then the recipient’s transaction will be invalidated.

In each of the aforementioned attacks, the attacker’s success is guaranteed if he has 51% hash rate and
the network is synchronous. If the hash rate is less than 51% or the network is asynchronous, the success
probability decreases. For instance, assume a selfish mining attack in which the adversary is able to mine
a private blockchain which is one block longer than the public blockchain. Next, the adversary releases
the chain. Assuming a synchronous environment, in the next time step, the entire network will receive the
attacker’s chain and switch to it. However, if the network exhibits an asynchronous behavior such that the
chain experiences propagation delay, then it is possible that any other honest miner is able to produce the
block and propagate it faster. As a result, the selfish mining attack will not succeed in that case.

Another key aspect of these attacks is that there are two competing chains. One chain is the public
chain on which honest miners work. The other is the private chain on which the attacker works. The private
chain is kept hidden from the network until the attack is launched. However, a distinguishing aspect of the
HashSplit attack is that there are two competing public chains in the network on which honest miners and
the attacker are working concurrently. This situation is only possible in an asynchronous network where at
one time, only a particular set of miners have visibility of the block. The adversary exploits this opportunity
to launch the attack.
Blockchain Forks. When two or more conflicting chains exist in a blockchain system, it is called a fork. A
fork essentially violates the common prefix property. In all the attacks mentioned above, when the attacker
substitutes the public chain with his private chain, it first forks the public chain and violates the common
prefix property. To resolve the fork, the network follows the longest prefix rule and switches to the longer
chain with higher PoW behind it.

While a fork violates the common prefix property, the hash rate-based attacks violate the chain quality.
The chain quality ensures that in the public ledger, the number of blocks contributed by a miner should
be proportional to the miner’s hash rate. In Bitcoin, the chain quality holds if the attacker’s hash rate is
below 51% (10). Exceeding the limit would give the attacker a permanent control over the chain growth.
Significant to the HashSplit attack, we show that by mounting new strategy in the asynchronous network,
the attacker can violate the chain quality with only 26% hash rate.

G Simulations

In the following, we demonstrate HashSplit through computer simulations. We developed a simulator in
Python that implements the PoW protocol. For simplicity, and to enable mining on a CPU, we significantly
lowered the target of PoW. To perform concurrent mining, we used the multiprocessing library which ef-
fectively side-steps the “Global Interpreter Lock” by replacing threads with subprocesses. As a result, we
were able to efficiently leverage the multi-core processor to simulate a block race among multiple mining
nodes. For this experiment, we set up six miners, each with a genesis block and a block prototype containing
dummy transactions. We assigned 26% processing power to the adversary and the remaining 74% randomly
assigned to the other five miners.

For simulations, we created the network topology in a way that the adversary was directly connected

28

with all five miners so that whenever a new block was produced by any node, the adversary directly received
the block. Additionally, the topology among the other miners was adjusted to mimic the real-world Bitcoin
network in which random delay affected the block propagation, thereby allowing the adversary to propagate
two blocks among two separate sets of miners. We had two options to curate the network topology. One was
to implement sockets and add deterministic delay in the block propagation. However, we noticed that socket
implementation incurred significant processing overhead which wasted critical CPU cycles that could be
utilized in solving the PoW. Again, favoring simplicity, we instead used an access control policy to construct
the network topology. When a miner produced a block, the block was added to the public blockchain stored
in a file. Next, the file sent the updated blockchain to each process (miner) of the execution. Based on
the pre-determined relationship between the block producing miner and other miners, we introduced the
deterministic delay in the blockchain broadcast. For instance, since adversary was directly connected to
each miner, it immediately received the block when the blockchain was updated in the file. In contrast, if
two miners were not directly connected to each other, a block produced by one was sent to the other after
some delay. This strategy allowed us to construct the network topology without incurring the overhead of a
client-server socket implementation.

Figure 14 shows that except for the 5th block, the adversary is able to find a block before any other
miner. After computing the block, the adversary waited for any other miner from the competing chain to
release the block while extending its chain atop its previously mined block. In our results, we observed that
at the 5th block, a miner on the second public chain produced a block before the adversary. However, the
adversary was able to mine the block immediately after, and it released the block to keep the branch alive
with |M |/2 miners. Finally, at the 8th block, when the adversary mined its block, it did not withhold it.
Instead, it released the block to all miners in M , forcing them to switch to the longer chain.

Our simulation results validated the theoretical propositions that by exploiting the asynchronous network,
the adversary maintained to branches of the public blockchain to violate the common prefix property. The
resulting chain had a majority of blocks mined by the adversary, which violated chain quality.

29

	1 Introduction and Related Work
	2 The Bitcoin Ideal Functionality
	3 Data Collection
	3.1 Bitcoin Peer-to-Peer Network
	3.2 Data Collection System

	4 Identifying the Mining Nodes
	5 Network Synchronization
	5.1 Bitcoin Network Asynchrony

	6 The HashSplit Attack
	6.1 Threat Model and Attack Objectives
	6.2 Attack Procedure
	6.2.1 Identifying Vulnerable Nodes
	6.2.2 Blockchain Splitting
	6.2.3 Block Race

	7 Attack Countermeasures
	8 Discussion and Conclusion
	A Ideal World Functionality Proof
	B Algorithmic Analysis of Bitcoin Consensus
	C Data Collection Details
	D Revisiting Partitioning Attacks
	E Network Synchronization
	F Notable Attacks on Bitcoin
	G Simulations

