
Interpolation Cryptanalysis of Unbalanced
Feistel Networks with Low Degree Round

Functions

Arnab Roy1, Elena Andreeva2, and Jan Ferdinand Sauer3

1 University of Klagenfurt, Austria
arnab.roy@aau.at

2 Technical University of Vienna, Austria
elena.andreeva@tuwien.ac.at

3 KU Leuven, Belgium and KIT, Germany
ferdinand.sauer@posteo.de

Abstract. In recent years a new type of block ciphers and hash functions
over a (large) field, such as MiMC and GMiMC, have been designed. Their
security, particularly over a prime field, is mainly determined by algebraic
cryptanalysis techniques, such as Gröbner basis and interpolation attacks.
In SAC 2019, Li and Preneel presented low memory interpolation attack
against the MiMC and Feistel-MiMC designs.
In this work we answer the open question posed in their work and show
that low memory interpolation attacks can be extended to unbalanced
Feistel networks (UFN) with low degree functions, and in particular to
the GMiMC design. Our attack applies to UFNs with expanding and con-
tracting round functions keyed either via identical (univariate) or distinct
round keys (multivariate). Since interpolation attacks do not necessarily
yield the best possible attacks over a binary extension field, we focus our
analysis on prime fields Fp.
Our next contribution is to develop an improved technique for a more effi-
cient key recovery against UFNs with expanding round function. We show
that the final key recovery step can be reduced not only to the gcd but
also to the root finding problem. Despite its higher theoretical complex-
ity, we show that our approach has a particularly interesting application
on Sponge hash functions based on UFNs, such as GMiMCHash.
We illustrate for the first time how our root finding technique can be
used to find collision, second preimage and preimage attacks on (reduced
round) members of the GMiMCHash family. In addition, we support our
theoretical analysis with small-scale experimental results. 4

1 Introduction

In recent years we have seen the advent of novel symmetric cryptographic prim-
itives that aim to facilitate efficiency optimizations for higher level Multi-Party
Computation (MPC), Zero-Knowledge (ZK) proofs, or Fully Homomorphic En-
cryption (FHE) protocols. Examples of such primitives are the LowMC [5] block

4 A version of this article was accepted at Selected Areas in Cryptography (SAC) 2020.

2 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

cipher, MiMC [4], GMiMC [2,3], Starkard and Poseidon [12], MARVELlous [6,7]
families of primitives, Kreyvium [10], FLIP [17], and Rasta [11] stream ciphers.

The main design goals of these novel primitives are to reduce the number
of multiplications in the (arithmetic) circuit and/or to reduce the multiplicative
depth of the circuit corresponding to the underlying block cipher or hash func-
tion. These objectives often mean that the primitives must be designed over one
(possibly large) finite field and more generally, require thorough rethinking of
the way traditional block ciphers (and hash functions) are designed and crypt-
analyzed. A recent effort in that direction was the public STARK-Friendly hash
challenge [18] which aimed at the evaluation and developing better understanding
of the security of the ZK-friendly hash function families Feistel-MiMC, GMiMC,
Starkard and Poseidon, and MARVELlous.

The MiMC and Feistel-MiMC (over Fp) family of block ciphers and hash
functions are the first ZKP-friendly dedicated symmetric designs. The MiMC
block cipher introduced a novel approach towards designing an ZK/MPC-friendly
primitive. Unlike previously existing designs, MiMC iterates a low-degree function
sufficiently many times to achieve the target security. Both Feistel-MiMC and
GMiMC rely on the Feistel iterative structure which builds a permutation from
a low degree polynomial round function(s).

The first third party cryptanalysis on the MiMC construction has been con-
ducted by Li and Preneel [15]. Their main idea of retrieving a key dependent
coefficient of interpolating polynomial stems from [20]. Li and Preneel apply
algebraic cryptanalysis based on Lagrange interpolation with low memory com-
plexity against MiMC. In essence, their cryptanalysis boils down to finding a key
recovery “shortcut” by reconstructing and evaluating the second highest coeffi-
cient in the cipher polynomial representation. In their work the authors left the
open question whether a similar cryptanalysis approach applies to the GMiMC
design. The main reason behind this question we speculate is – it is not obvious
how to extend the algebraic analysis in [15] to generalized Feistel networks. Our
technical contribution in this article starts with the analytical results that solve
this problem.

GMiMC or Generalized MiMC family is an extension of the Feistel-MiMC
family and uses generalized Feistel structures with t > 2 branches. GMiMC is
proposed for both balanced and unbalanced Feistel networks. In particular, two
unbalanced Feistel networks (UFN) are investigated: with expanding round func-
tion (ERF); and with contracting round function (CRF). For both ZKSNARK
and MPC applications, the UFN with ERF was found to be more efficient com-
pared to balanced Feistel networks. The GMiMC designers also use a fixed-key
GMiMC permutation in a Sponge hashing mode to construct the hash function
GMiMCHash. Since the general design principle in GMiMC family relies on a
Feistel network with a low degree round function, in this work we focus on the
(interpolation) cryptanalysis of UFN with low degree round function over Fp.

1.1 Related work

The MiMC and GMiMC constructions use an APN function to instantiate the
round function in the Feistel network. Traditional differential cryptanalysis tech-

Title Suppressed Due to Excessive Length 3

niques are ineffective against those designs [2,4]. The design rationale and crypt-
analysis of these constructions thus, heavily relies on the algebraic analysis of the
keyed permutation. Known algebraic cryptanalysis is mainly based on Gröbner
basis, interpolation, greatest common divisor (GCD), and higher-order differen-
tial analysis. We point out that higher-order differential analysis exploits simply
the degree of a keyed function over a field.

In CRYPTO 2020, a higher order differential cryptanalysis against the full
(round) GMiMC permutation was proposed [8]. More specifically, the authors
showed a zero-sum distinguisher against the GMiMC fixed-key permutation. Yet,
they do not provide a collision on the full GMiMCHash using this distinguisher,
and to the best of our knowledge no result on finding collision using such dis-
tinguisher exists to date. A collision on the reduced round GMiMCHash was
given via (algebraic) differential analysis of UFNs. Compared to this our analysis
is based on purely algebraic techniques such as polynomial interpolation, GCD
computation and root finding.

Bonnetain showed an attack [9] on the Feistel-MiMC and GMiMC n-bit key
block ciphers with complexity 2n/2. The attack followed due to a key schedule
weakness and is comparable with the slide attack.

Our results

In this article we analyze UFN constructions over Fp, and the concrete GMiMC
instantiation. More specifically, we focus on the interpolation cryptanalysis of
UFNs with low degree round functions. Thereafter, we apply our analysis to
the GMiMC block cipher over Fp. We further use these ideas to cryptanalyze
GMiMCHash ERF and CRF instances.

– We exhibit a low memory interpolation attack on UFNs with both contracting
and expanding round functions. Then, we apply our analysis to GMiMCerf

and GMiMCcrf which are UFNs instantiated with the APN function x 7→ x3.
This answers the open question of Li and Preneel [15] – how to extend the low
memory interpolation attack against GMiMC. The main idea starts with an
extension of their low memory (LM) interpolation analysis. Namely, we first
construct the key-dependent coefficient of the interpolation polynomial and
then recover the coefficient with constant memory. To extend Li and Preneel’s
cryptanalysis to our setting we also need to first fix all but one input to a
UFN, such that for both ERF and CRF UFNs we can obtain key-dependent
polynomial terms with algebraic degree as low as possible. While the method
bears similarity with the main idea of [15], we show that a more in-depth
analysis (section 3.2) is required to extend the low memory interpolation
attacks for UFNs with t > 2 branches compared to the two branch FN used
to construct Feistel-MiMC. We present a new attack (in section 5.4) which
demonstrates how the multiple output branches in UFNerf can be combined
to improve the complexity of the low memory interpolation attack.

– We show how root finding algorithms for polynomials over finite fields can
be used instead of the GCD technique. For the target (MPC and ZKP) ap-
plications of GMiMCerf and GMiMCcrf block ciphers and hash functions this

4 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

method has roughly the same complexity as the GCD one. This is due to the
fact that for these applications the size of the prime field is bounded.

– Another important contribution of this work is that we show for the first time
how the interpolation analysis together with the root finding technique can be
utilized to attack a hash function constructed with UFNs of low degree round
function in a Sponge hashing mode, such as the GMiMCerf and GMiMCcrf

hash functions. Using this technique we mount collision, second preimage and
preimage attacks (in section 7) against these hash functions.

– As a proof-of-concept we apply our cryptanalysis against a few small-scale
instantiations of GMiMCerf and GMiMCcrf block ciphers and provide the
experimental results in tables 2 and 3.
For second preimage, preimage and for collision attacks against round reduced
GMiMCHash we provide small-scale experiments, the results of which are
presented in tables 5 and 6 and figs. 4 and 5.

2 Preliminaries

Fp denotes the finite field where p is prime. Let ki denote the rounds keys, while
round constants are denoted by ci for i > 0. We denote the tuple of all subkeys
by K = (k0, . . . , kr−1). When working with fix but unknown key we denote it by

k̄i or K̄. The monic polynomial f(x) =
∑d−1
j=0 ajx

j + xd with degree d is used to
define the round function in a UFN. We denote the output of f(x) in round i
by σi. (x0, . . . , xt−1) ∈ Ftp is the plaintext or input to a UFN with t (> 2) branches.

P
(i)
j denotes the polynomial corresponding to branch j after the i-th round, and

P
(0)
j = xj for 0 6 j < t. For the inputs analyzed in section 3 and because f(x)

is monic, we have P
(i)
j = xd

y

+ q(K)xd
y−1 + . . . where y depends on r and t.

We call the polynomial q(K) in the key K the “second highest coefficient”. We
illustrate one-round UFNs with ERF and CRF in fig. 1.

2.1 Background

We will consider UFNs with the above polynomial round function f(x). The

round function UFNerf is defined as σi = f(P
(i)
0 + ki + ci) where i > 0 and

P
(i)
j = xj for i = 0, 0 6 j < t. Each round is viewed as a mapping

(P
(i+1)
0 , . . . , P

(i+1)
t−1)← (P

(i)
1 + σi, . . . , P

(i)
t−1 + σi, P

(i)
0) (1)

in Ftp.

The round function of an UFNcrf is defined as σi = f(
∑t−1
j=1 P

(i)
j + ki + ci).

Each round of UFNcrf is a mapping defined as

(P
(i+1)
0 , . . . , P

(i+1)
t−1)← (P

(i)
1 , . . . , P

(i)
t−1, P

(i)
0 + σi) (2)

We will use the notations UFNerf [p, r, t] and UFNcrf [p, r, t] to indicate the
number of rounds r and number of branches t for UFNs over Fp.

Title Suppressed Due to Excessive Length 5

f

ki

ci

P
(i)
0 P

(i)
1 P

(i)
2

P
(i)
t−1

. . .

σi

P
(i+1)
t−1P

(i+1)
0 P

(i+1)
1 P

(i+1)
2

(a) UFN with ERF

f

ki

ci

σi

P
(i)
0 P

(i)
1 P

(i)
2

P
(i)
t−1

. . .

P
(i+1)
t−1P

(i+1)
0 P

(i+1)
1 P

(i+1)
2

(b) UFN with CRF

Fig. 1: One round UFN with ERF(left) and CRF(right)

GMiMC uses the monomial round function f(x) := x3. Typically, GMiMC is
defined for primes of size 128 bit or more for their target MPC or ZK applications.
The key scheduling in the GMiMC proposal is defined as ki = k for i > 0 and
k ∈ Fp. However, following the recent attack [9] against GMiMCerf , certain types
of GMiMCcrf , and Feistel-MiMC, the round key scheduling is updated [16]. The
new key schedule defines ki := (i + 1)k for i > 0. To the best of our knowledge
this thwarts the attack of [9]. Using the new key schedule, the round function

for GMiMCerf is defined as σi = (P
(i)
0 + (i+ 1)ki + ci)

3, and for GMiMCcrf it is

defined as σi = (
∑t−1
j=1 P

(i)
j + (i+ 1)ki + ci)

3.
We will also use the notations GMiMCerf [p, r, t] and GMiMCcrf [p, r, t] to indi-

cate the number of rounds and number of branches when necessary or GMiMC.

2.2 Low Memory Interpolation

The interpolation attack [13] on block ciphers was introduced by Jakobsen and
Knudsen in 1997. In this attack, the output of a block cipher Ek is viewed as a
polynomial in the input of the cipher. The adversary first estimates the degree d of
the polynomial and then gathers at least (d+1) pairs of plaintext and ciphertext.
This allows reconstruction of Ek without the knowledge of k. The time complexity
for reconstructing the polynomial corresponding to Ek is O(d log d) [19] and the
space complexity is O(d).

For polynomials of large degree, the amount of required memory can make
interpolation impractical. If the involvement of subkeys in a specific coefficient
of the polynomial is “well-understood”, a partial recovery of the polynomial can
be sufficient to recover the key or reconstruct a decryption oracle. In [15], for
example, the reconstruction of only a single coefficient allows the recovery of two
subkeys.

This lowers the space complexity to O(1), meaning that the memory con-
straints are not an issue with this form of low memory interpolation. One such
enabling technique is choosing the polynomials’ evaluation points. Concretely,
when interpolating f : Fp → Fp, points (xj , yj) = (αj , f(αj)) are used, where
α ∈ Fp is a primitive element. The yj are retrieved in an online manner, i. e. “on
the fly”. This removes the need to store a list of (d+ 1) coordinates.

6 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

The low memory interpolation algorithm is developed by rearranging the
equation for Lagrange interpolation, which is revisited in eq. (3).

L(x) =

d∑
j=0

yj
∏

0≤i≤d
i 6=j

x− xi
xj − xi

=

d∑
j=0

f(αj)
∏

0≤i≤d
i 6=j

x− αi

αj − αi
=

d∑
j=0

bjx
j (3)

Solving for the coefficient bd−1, the authors of [15] arrive at

bd−1 =

d∑
j=0

f(αj)
βj
γj
, γj =

∏
0≤i≤d
i6=j

(αj − αi), βj = αj −
d∑
i=0

αi (4)

The recursive form of γj+1 = γj · αd · αj−α−1
/αj−αd allows its iterative construc-

tion. Low memory interpolation can now be achieved by iteratively constructing
the summands of eq. (4). Only current values of variables αj , βj , γj , and the par-
tial result are stored across iterations, resulting in space requirements of O(1).
Despite the improvements on space complexity, interpolation of even one coeffi-
cient amounts to time complexity O(d log d).

3 Analysis of output polynomials

In this section we will first analyze common properties of the output of Un-
balanced Feistel Networks (UFNs) when seen as polynomials of the input and
key variable(s). We take output branch j of a UFNerf [p, r, t] where the key
K = (k0, . . . , kr−1) values are regarded as indeterminates. Given inputs of the
form (x0, x1, . . . , xt−1), output branch j can be interpreted as a multivariate
polynomial in Fp[x0, . . . , xt−1, k0, . . . , kr−1].

Fixing all but one of the input variables to an arbitrary constant will give a
polynomial Fp[x, k0, . . . , kr−1] corresponding to any output branch.

3.1 ERF analysis

We analyze the output polynomials corresponding to different branches after r
rounds of a UFNerf . For simplicity we start with the analysis for UFNerf [p, r, 3].
To give a clear idea of the analysis throughout this section, we progressively gen-
eralize it. The first generalization is for the number of rounds r in Proposition 1
and then for t branches in Proposition 2. We simplify the analysis by combining
actual round key k′i and round constant ci i. e. , ki := k′i + ci. Furthermore, we
assume deg(f) > 3.

Proposition 1 Given an input of the form (b, b, x) to the UFNerf [p, r, 3], after

r > 4 rounds, the output polynomials P
(r)
0 , P

(r)
1 , P

(r)
2 ∈ Fp[x, k0, . . . , kr−1] for

the 3 branches have the following properties:

1. deg(P
(r)
0) = deg(P

(r)
1) = dr−2 and deg(P2) = dr−3

Title Suppressed Due to Excessive Length 7

2. coeff(P
(r)
0 , xd

r−2

) = coeff(P
(r)
1 , xd

r−2

) = 1

3. coeff(P
(r)
0 , xd

r−2−1) = coeff(P
(r)
1 , xd

r−2−1) = dr−3(ad−1 + dβ)
where β = f(b+ k0) + f (b+ f(b+ k0) + k1) + k2 = σ0 + σ1 + k2.

Proof. The proof is detailed in appendix A.1.

We further generalize the result for t branches in the following proposition:

Proposition 2 Given an input of the form (b, . . . , b, x) to the UFNerf [p, r, t],

let r > t > 3, then after r rounds, the output polynomials P
(r)
0 , P

(r)
1 , . . . , P

(r)
t−1 ∈

Fp[x, k0, . . . , kr−1] have the following properties:

1. deg(P
(r)
0) = . . . = deg(P

(r)
t−2) = dr−(t−1) and deg(P

(r)
t−1) = dr−t

2. coeff(P
(r)
0 , xd

r−(t−1)

) = . . . = coeff(P
(r)
t2 , xd

r−(t−1)

) = 1

3. coeff(P
(r)
0 , xd

r−(t−1)−1) = . . . = coeff(P
(r)
t−2, x

dr−(t−1)−1) = dr−t−1(ad−1 + dβ)

where β =
∑t−2
i=0 σi + kt−1.

Proof. The proof is detailed in appendix A.2.

Corollary 1 From Proposition 2 we summarize and can further conclude

1. deg(P
(r)
t) = deg(P

(r−1)
1) = dr−t

2. coeff(P
(r)
t , xd

r−t−1) = coeff(P
(r−1)
1 , xd

r−t−1) = dr−t−1(ad−1 + dβ)

Corollary 1 gives us the algebraic expression of the coefficient of the second high-

est degree term in the output polynomial P
(r)
t−1. In the remainder of this article,

we will informally refer to this coefficient as the “second highest coefficient.”
Lastly, we generalize the result for the position of the indeterminate x.

Proposition 3 Given an input of the form (b, . . . , b, x, b, . . . , b) to the UFNerf [p, r, t],
where the position of x is ` ∈ {0, . . . , t− 1}, after r > ` rounds, the output poly-

nomials P
(r)
0 , P

(r)
1 , . . . , P

(r)
t−1 ∈ Fp[x, k0, . . . , kr−1] have the following properties:

1. deg(P
(r)
0) = . . . = deg(P

(r)
t−2) = dr−` and deg(P

(r)
t−1) = dr−`−1

2. coeff(P
(r)
0 , xd

r−`

) = . . . = coeff(P
(r)
t−2, x

dr−`

) = 1

3. coeff(P
(r)
0 , xd

r−`−1) = . . . = coeff(P
(r)
t−2, x

dr−`−1) = dr−`−1(ad−1 + dβ)

where β =
∑`−1
i=0 σi + k`

Proof. Using the same argumentation as in the proof of Proposition 2, we observe
that deg(σi) = 0 for i < `. In the `-th round, using the same expansion as in the
proof of Proposition 2, we have the following expanded form for σ`:

σ` = f(x+ σ0 + · · ·+ σ`−1 + k`)

= f(x+ β)

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

Now we can make an induction over r much in the same way as in Proposition 1.

8 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

Corollary 2 Let σi be the output of the round function in round i of a UFNerf [p, r, t]
with input of the form (b, . . . , b, x, b, . . . , b), where indeterminate x is at position
`, and d > 3. From the proof of Proposition 3 we have

deg(σi) =

{
0, 0 6 i < `

di−`+1, ` 6 i < r

Note that generally, the output polynomials in Proposition 3 are of higher degree
than those in Proposition 2, unless ` = t − 1, in which case Proposition 2 and
Proposition 3 coincide.

3.2 CRF analysis

For the UFNcrf [p, r, t] we also analyze the degree and coefficients of the highest
and second highest term in all the output polynomials, which are described in the
following propositions. As in section 3.1, we simplify the analysis by combining
actual round key k′i and round constant ci to ki := k′i + ci. Recall that for a

UFNcrf , we use f(
∑t−1
i=1 xi + ki + ci) as round function in round i on inputs

(x0, . . . , xt−1).

Proposition 4 Given an input of the form (x, b, . . . , b) to the UFNcrf [p, r, t]

with t > 3 branches, after r > 2 rounds, the rightmost output polynomial P
(r)
t−1 ∈

Fp[x, k0, . . . , kr−1] has the following properties:

1. deg(P
(r)
t−1) = dr−1

2. coeff(P
(r)
t−1, x

dr−1

) = 1,

3. coeff(P
(r)
t−1, x

dr−1−1) = dr−1(ad−1 + dβ)
where β = (t− 2)b+ f((t− 1)b+ k0) + k1

Proof. The proof is given in appendix A.3

Corollary 3 From Proposition 4 we can conclude for r > t

1. deg(P
(r)
0) = deg(P

(r−(t−1))
t−1) = dr−t

2. coeff(P
(r)
0 , xd

r−t−1) = coeff(P
(r−(t−1))
t−1 , xd

r−t−1) = dr−t−1(ad−1 + dβ)

Corollary 3 gives us the algebraic expression of the coefficient of the second high-

est degree term in the output polynomial P
(r)
0 . In the remainder of this article,

we will informally refer to this coefficient as the “second highest coefficient.”
The insight of Proposition 4 allows the algebraic expression of the second

highest coefficient in indeterminates ki, i. e. a polynomial in Fp[k0, k1].

4 Low Memory Interpolation Cryptanalysis of UFNs

Using the results from section 3 we will analyze UFNerf and UFNcrf with uni-
formly randomly fixed but unknown key k̄ ∈ Fsp (s > 1), resulting in round keys

(k̄0, . . . , k̄r−1). When the key values are known the output polynomials developed

Title Suppressed Due to Excessive Length 9

in sections 3.1 and 3.2, specifically in Corollaries 1 and 3, are elements of Fp[x]
(not of Fp[x, k0, . . . , kr−1]).

Since the interpolation of a single coefficient requires low memory, as outlined
in section 2.2, we can recover the second highest coefficient to mount a low
memory attack on UFNerf and UFNcrf .

4.1 Analysis outline

The general idea of the cryptanalysis can be described in the following steps:

S1. Obtain the algebraic expression of the second highest coefficient Q(K) of the
output polynomial corresponding to the branch with the lowest algebraic de-
gree. For UFNerf and UFNcrf these are rightmost branch and leftmost branch
respectively. (Detailed analysis of UFNerf and UFNcrf are in sections 5.1 and 6
respectively.)

S2. Find value z of second highest coefficient of EK̄ of the same branch as in
step 1 by applying the low memory interpolation (used in [15]) technique.
(Detailed in Section 5.2)

S3. Recover the key by evaluating relation Q(K) = z by solving for K. Some of
the key recovering techniques may require multiple equations Qi(K) = zi.
(Sections 5.3 and 6)

Round keys. We explore two scenarios single key and multiple keys. In single
key, ki = g(k), where g is a linear5 function (and degree one) over Fp and k can
have values from Fp. For single round keys, we use two different techniques: a
novel root finding technique and the gcd technique (previously used by [15]).

In section 5.4, we show that the complexity of the key recovery can be further
improved for UFNerf by combining the output branch polynomials. We call this
technique branch subtraction. Table 1 gives an overview of the complexities.

In the multiple key scenario, the round keys are derived from k = (k0, k1) ∈
F2
p . In GMiMC, the round key ki = ki (mod 2), where j ∈ {0, . . . , r − 1}. The

analysis for this multiple key scenario is provided in section 5.5.

5 Cryptanalysis of UFNerf

5.1 Algebraic Expression of Second Highest Coefficient

We consider the output polynomial when all but one branch of the inputs have
fixed values. By arranging the terms as in Propositions 1 to 3, the polynomial
has the form xd

r

+Q(K)xd
r−1 + · · ·+ cx0, where Q(K) depends on the number

of rounds r, the number of branches t, and the position ` of indeterminate x in
the UFNs input. The coefficient Q(K) is a polynomial that we refer as “second
highest coefficient.” This coefficient is computable by applying the results from
section 3, as described below.

5 A low degree non-linear function can also be applied. However, the degree of this
function will have an effect on the complexity since the time complexity of finding
Q(k) depends on the degree.

10 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

In a UFNerf [p, r, t], the polynomial representing the rightmost output branch
has the lowest degree, as shown in Proposition 2. For this polynomial, the coeffi-
cient of the second highest degree term has form Q(K) = dr−t−1(ad−1+dβ), with

β =
∑t−2
i=0 σi + kt−1. Algorithm 1 describes the method to obtain the polynomial

Q(K), representing the second highest coefficient.
Complexity (of S1) In the single key case, the computation of Q(K) requires
multiplications of polynomials over Fp. More specifically, it requires at most
O(logD) multiplications of two polynomials with degree at most D. The mul-
tiplication of two polynomials of degree at most D over Fp requires M(D) :=
63.43D logD log logD+O(D logD) field operations [22, Thm. 8.23]. To simplify
the expressions we define M′(D) = O(logD) M(D). Hence, this step has com-
plexity

M′(dt−1) = O
(
log dt−1

)
M(dt−1).

Space complexity is O
(
dt−1

)
since only one polynomial of degree at most dt−1

has to be stored at any given time. Note that this space complexity is not due to
the interpolation part of the attack.

5.2 Value of Second Highest Coefficient

As outlined at the beginning of section 4, the second step of the analysis con-
sists of recovering the value of the second highest coefficient of the rightmost
output polynomial branch of the UFNerf . For this step we use the low memory
interpolation of [15] described in section 2.2.

In general, inputs of form αj are required, where α ∈ Fp is a primitive element,
0 6 j 6 D, and D is the degree of the underlying polynomial that is to be
interpolated. In the current analysis this means using inputs of the form xj =
(b, . . . , b, αj), in accordance with Proposition 2. The evaluation points yj for the
interpolation are the values of the rightmost output branch.
Complexity (of S2) The time complexity of finding the value of the second
highest coefficient using the low memory interpolation method of [15] is Ilm(D) :=
O(D log(D)) for polynomials of degree D. Its memory complexity is in O(1),
and data complexity is D + 1. For UFNerf , we have D = dr−t, resulting in time

Algorithm 1: Second highest coefficient of rightmost branch in
UFNerf [p, r, t] on input (b, . . . , b, x).

Input: r, t, f , branch constant b, round constants c0, . . . , ct−1

Output: polynomial Q(K) for second highest coefficient of rightmost branch
1 s := 0
2 for i ∈ (0, . . . , t− 2) do
3 σi := f (s+ b+ ci + ki)
4 s := s+ σi

5 β := s+ kt−1 + ct−1

6 return dr−t−1(ad−1 + dβ)

Title Suppressed Due to Excessive Length 11

complexity O((r − t)dr−t log d). The approach requires dr−t+1 pairs of plaintext
and ciphertext and uses O(1) space. Better time and data complexities can be
achieved by combining branches, as described in section 5.4.

5.3 Key recovery with a single key

First, we consider the case of single key e.g., ki = (i+ 1) · k for i > 0 and k is the
master key that can take any value in Fp. We find the polynomial representing
the second highest coefficient and the value of the second highest coefficient as
described in the previous two sections. For finding the value of the secret key two
different techniques can be employed: Finding the gcd, or finding roots.

Finding the GCD. This technique was introduced in [1] and also used in [15] to
analyze two-branch Feistel networks. We first select two different constants b, b′

for input to the UFNerf . We obtain two polynomials Q(k) and Q′(k) as described
in algorithm 1 using b and b′ respectively. Next, we interpolate the values of the
second highest coefficient say z, z′ with as described in section 5.2, twice: The
correct key is found from gcd(Q(k)− z,Q′(k)− z′) with high probability.
Complexity of GCD Finding the gcd of two polynomials of degree at most D
over Fp has time complexity G(D) := O

(
D log2D

)
[22, Cor. 11.9]. For UFNerfs, we

have D = dt−1. Hence the key recovery using the gcd method has time complexity
O
(
t2d(t−1) log2 d

)
and space complexity O

(
dt−1

)
.

Finding roots. By construction of Q(k) it satisfies Q(k̄) − z = 0, i.e., correct
key k̄ is a root of above equation Q(k)−z. Exhaustively trying the generally very
short list of key candidates [14] on one additional pair of plaintext and ciphertext
identifies the correct key.
Complexity of root finding Finding all roots without multiplicity of a polyno-
mial with degree D over Fp has time complexity R(D) := O(M(D) logD log(Dp))
[22, Cor. 14.16]. Checking at most D key candidates for a polynomial of degree D
has time complexityO(D). For UFNerf , we haveD = dt−1. Hence the key recovery
using the root finding method has time complexityO

(
M(dt−1) log dt−1 log(dt−1p)

)
and data complexity of O(1).

Finding roots versus GCD. Asymptotically, the complexity of the root find-
ing method is worse than using the gcd method. However, for our target con-
structions, i.e., GMiMC block ciphers and hash functions that are aimed for
practical applications, the complexities are roughly the same, since the field’s
size log p 6 28. More importantly, the root finding method can also be used to
find collisions when UFNerf (with a fixed key) is used in sponge mode to construct
a hash function, as described in section 7.

5.4 Complexity improvements via Branch Subtraction

When analyzing a UFNerf [p, r, t] EK̄ with K̄ = (k̄0, . . . , k̄r−1), improvements on
the complexities discussed above are possible. From Corollary 2 we have deg(σi) =
di−`−1 for i > ` for input of the form (b, . . . , b, x, b, . . . , b), where b ∈ Fp is a

12 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

constant and indeterminate x is at position `. After round i, by construction
of UFNerf , σi has been added to all branches except the rightmost one. As has
been used extensively in the proofs of Propositions 1 to 3, the degree of the
output polynomial of any branch is dominated by the largest σi. Thus, somehow
removing one or more of the highest σi from an output branch reduces the degree
of the corresponding polynomial. A lower degree in turn allows interpolation with
reduced time and data complexity. Since we’re using the low memory technique
of [15], space complexity cannot be lowered further.

As an example for this effect, consider the output branches P
(5)
0 (x), . . . , P

(5)
3 (x)

in fig. 2. We set P ′(x) := P
(5)
1 (x) − P (5)

0 (x) = σ1 − σ2. While deg(P ′(x)) = 0,

crucially mini(deg(P
(5)
i (x))) = deg(P

(5)
3 (x)) = deg(σ3) = d. This elimination of

high degree σi is the basic idea behind branch subtraction.
We represent the output of a UFNerf [p, r, t] EK with input (x0, . . . , xt−1) as a

vector ~o using the following matrix notation. Intuitively, the matrix A permutes
the inputs like the last operation in any one round of a UFNerf . The matrix B
accumulates the necessary σi, following the definition of a UFNerf .

~o := Ar · ~x+ (Brmodt|

b r
t c times︷ ︸︸ ︷
B| . . . |B︸ ︷︷ ︸

r columns

) · ~σ (5)

where

A =

— e2 —
— e3 —

...
— et —
— e1 —

 , ~x =

x0

x1

...
xt−1

 , B =

0 1

0

1
.. .

0

 , ~σ =

σ0

σ1

...
σr−1

and Brmodt are the right r mod t columns of B. Summarizing the dimensions, we
have A,B ∈ Ft×tp , ~x ∈ Ftp, and ~σ ∈ Frp .

Note that eq. (5) is not recursive. Increasing r to r + 1 leads to different
dimensions in the composite matrix on the right hand side as well as in ~σ. Note
also that the output branches ~o are nonlinear in variable x despite the seemingly
linear representation above, since the σi are nonlinear for i > `.

As an example, we consider a UFNerf [p, 5, 4] with inputs (b, b, b, x) like in fig. 2.
In this instance, we have the following:

~o =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

5

·

b
b
b
x

+

1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 0

 ·

σ0

σ1

σ2

σ3

σ4

 =

b
b
x
b

+

σ0 + σ2 + σ3 + σ4

σ0 + σ1 + σ3 + σ4

σ0 + σ1 + σ2 + σ4

σ1 + σ2 + σ3

Thus, ~o is an alternative representation of P

(5)
0 (x), . . . , P

(5)
3 (x), concluding the

example.

Title Suppressed Due to Excessive Length 13

Given this representation of the output branches ~o of EK , we can apply some
linear algebra in the following way: First, we observe the inverse of matrix B.

B−1 =
1

t− 1

2− t 1

2− t

1
.. .

2− t

Multiplying the vector of output branches ~o by B−1 limits occurrence of any σi in
any one component of ~o to exactly once. This corresponds to every σi occurring
on only one “combined output branch”.

B−1 · ~o = B−1 ·Ar · ~x+ (Irmodt|

b r
t c times︷ ︸︸ ︷
It| . . . |It︸ ︷︷ ︸

r columns

) · ~σ (6)

where It ∈ Ft×tp is the identity matrix and Irmodt are the right r mod t columns
of It.

From eq. (6) in combination with Corollary 2 we can derive

deg(first component(B−1 · ~o)) (7)

= deg(σr−t + σr−2t + · · ·+B−1Ar~x) = deg(σr−t)

= dr−2t+2

for ` = t− 1.
Complexity improvements Using the polynomial first component(B−1 · ~o) of
eq. (7) instead of the rightmost branch in the analysis of sections 5.1 to 5.3 lowers
the complexities involved. Step 1 and 3 are unaffected by branch subtraction
since the complexities do not depend on the number of rounds r. For S2, the
computational complexity is Ilm(dr−2t+2) as opposed to Ilm(dr−t).

Data complexity with branch subtraction is dr−2t+2 +1 as opposed to dr−t+1
without. Space complexity stays O(1) since the same low memory algorithm for
recovery is being used. A summary of all the complexities with and without
branch subtraction can be found in section 5.6.

In order to achieve these improvements, B−1 needs to be applied to the output
branches ~o. Since we only need the first component of vector B−1 · ~o, we can
limit ourselves to one product between two vectors of length r, where each of
the components has degree at most dr−t+1. The time complexity for r many
multiplications of two polynomials of degree at most dr−t+1 is rM(dr−t+1).

5.5 Key recovery with multiple keys

Our target case for multiple keys always reduces to keys (k0, k1) ∈ F2
p , i. e. keys ki

for i > 2 do not influence the analysis, we interpret round keys ki as derived
from k0 and k1.

14 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

We consider the round key scheduling ki = (i + 1) × ki (mod 2) for i > 0. As
opposed to the variant where the same key is added in every round, the methods
from section 5.3 building on Proposition 2 are not directly applicable. Instead,
we use the results of Proposition 3. Furthermore, we use multiple instances of
the equation Qi(K) = zi for different constants bi for i ∈ {0, 1, 2}. This is an
adaptation of the approach used in [15] where the authors analyzed balanced
Feistel networks.

In Proposition 3, let ` = 1, which corresponds to inputs of the form (bi, x, bi, . . . , bi).
Then, the second highest coefficient of the rightmost branch of EK is of the form
Qi(K) = dr−2(ad−1 + dβi) where βi = σ0 + k1 = f(bi + k0) + k1. Thus, we have
Qi(K) ∈ Fp[k0, k1] (Fp[K].

We combine the three equations Qi(K) = zi in the following manner: By
solving for βi we have

β0 = f (b0 + k0) + k1 =
z0

dr−1
− ad−1

d

β1 = f (b1 + k0) + k1 =
z1

dr−1
− ad−1

d
(8)

β2 = f (b2 + k0) + k1 =
z2

dr−1
− ad−1

d

For 0 6 i, j 6 2 we get, through subtracting and rearranging,

∆(i,j) := f(bi + k0)− f(bj + k0)− zi − zj
dr−1

= 0 (9)

As in section 5.3, it holds by the factor theorem that (k0 − k̄0) is a factor
of ∆(i,j) due to the construction of Qi(K). k̄0 can be found by computing the

gcd
(
∆(0,1), ∆(0,2)

)
. Substituting k0 with k̄0 in any of eq. (8) yields k̄1.

k̄1 =
z0

dr−1
− ad−1

d
− f

(
b0 + k̄0

)
(10)

Complexity (of S1 and S2) Computing the algebraic form of the second high-
est coefficient can be done in constant time and space. For the complexities of
recovering the value of the second highest coefficient, we refer to section 5.2,
restating the computational complexity of Ilm(dr−1) here. Data complexity is
3dr−1 + 3.
Complexity (of S3) Computing the gcd of polynomials of degree D has com-
putational complexity G(D) = O

(
D log2D

)
, as discussed in section 5.3. Since,

D = d, the complexity for recovering k̄0 is G(d). Once, we recover k0, the k1 can
be found by using one of the eq. (8).

5.6 Summary of Complexities

In the sections above, a few approaches for key recovery are proposed. In the
case of a single key k̄, i. e. K̄ = (k̄, . . . , k̄), we pointed out a novel method using
root finding and applied an existing method using the gcd. The time and data
complexities of the different approaches are summarized in table 1. Furthermore,

Title Suppressed Due to Excessive Length 15

Primitive strategy time data section

ERF

root M′(dt−1) + Ilm(dr−t) + R(dt−1) O
(
dr−t

)
5.3

gcd M′(dt−1) + Ilm(dr−t) + G(dt−1) O
(
dr−t

)
5.3

root (bs) M′(dt−1) + Ilm(dr−2t+2) + R(dt−1) O
(
dr−2t+2

)
5.3, 5.4

gcd (bs) rM(dr−t+1) + Ilm(dr−2t+2) + G(dt−1) O
(
dr−2t+2

)
5.3, 5.4

multikey Ilm(dr−1) + G(d) O
(
dr−1

)
5.5

CRF

root Ilm(dr−t) +R(d) O
(
dr−t

)
6

gcd Ilm(dr−t) +G(d) O
(
dr−t

)
6

multikey Ilm(dr−1) + G(d) O
(
dr−t

)
6

Table 1: Complexities of low memory interpolation cryptanalysis for UFNerf [p, r, t]
for r > 2t and UFNcrf [p, r, t] for r > t. The branch subtraction technique of
section 5.4 is denoted by “bs”.M,M′, Ilm,G and R are defined in section 5.2 and
section 5.1.

the sections describing the approaches are pointed out. Since the algebraic degree
of the round function d is assumed to be small, space complexities are omitted in
this overview. In most cases, the interpolation step dominates the computational
as well as data complexity.

5.7 Experimental Verification

We have validated our analysis by running small scale experiments. The UFN
instances use randomized key, round constants, and coefficients for the round
function. Since our analysis considers monic round functions, the highest coeffi-
cient of the round function is always 1. The fixed parameters of our experiments
are q = 99999989, r = 17, t = 4. The round function is of degree 3. We use both
proposed methods of key recovery, namely root finding and the gcd method, and
apply the branch subtraction technique of section 5.4. Given above parameters,
the degree of the combined output polynomial for UFNerf is 311.
It is interesting to observe the average number of roots: Although up to 34−1+1 =
10 roots could occur in theory, our experiments show that in practice, this number
is significantly lower, with an average of only 1.89 roots.

root gcd

algebraic coefficient 0.08950 0.10453
coefficient value 1 468.50751 3 132.21874
key recovery 0.80580 0.03565
total 1 469.40283 3 132.35892

Table 2: Observed average running times in milliseconds for key recovery of
UFNerf [p, 17, 4] using root finding and the gcd method. The degree of the in-
terpolated polynomial was 311. (n = 100)

16 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

Our experiments are implemented in python using sagemath [21]. All random
values were generated using python’s built in “random” module. Measurements
were taken on a machine with a standard Intel Core i5-6300U CPU and 7.22 GiB
of RAM. Each experiment was run n = 100 times. A summary of the observed
average running times can be found in table 2. We note that the discrepancy of
about factor 2 between the two applied methods comes from the fact that the
gcd method requires interpolating two polynomials. For the root finding method,
only one polynomial is required.

6 Cryptanalysis of UFNcrf

We now analyze UFNs in the CRF variant according to the steps outlined in
section 4. Since the analysis is extremely similar to the ERF variant, covered in
section section 5, we only point out significant differences. Notably, recovering
the value of the second highest coefficient as well as key recovery with only one
round key k̄, i. e. K̄ = (k̄, . . . , k̄) are not reiterated herein.

Algebraic Expression of Second Highest Coefficient. In a UFNcrf [p, r, t],
the polynomial representing the leftmost output branch has the lowest degree,
as shown in Proposition 4. For this branch, the second highest coefficient Q(K)
has form dr−t−1(ad−1 + dβ), with β = (t− 2)b+ f((t− 1)b+ k0) + k1, as shown
in Corollary 3. This coefficient is simpler than that of a UFNerf , as it depends
only on k0 and k1. Consequently, computing Q(K) is simpler, as described in
algorithm 2.

Algorithm 2: Second highest coefficient of leftmost branch in
UFNcrf [p, r, t] on input (x, b, . . . , b).

Input: r, t, f , branch constant b, round constants c0, c1
Output: polynomial q(K) for second highest coefficient of leftmost branch

1 β := f ((t− 1)b+ k0 + c0) + (t− 2)b+ k1 + c1
2 return dr−t−1(ad−1 + dβ)

Complexity (of S1) Calculating the algebraic form of the second highest coef-
ficient requires only addition and multiplication of scalars. Thus, the complexity
is O(1).

Value of Second Highest Coefficient. We recover the second highest co-
efficient of the leftmost branch for UFNcrf . Consequently, evaluation points yj for
the interpolation are the values of the leftmost output branch. Inputs of the form
xj = (αj , b, . . . , b) are used for the low memory interpolation, where α ∈ Fp is a
primitive element as before. These changes allow application of Corollary 3.
Complexity (of S2) The complexities do not change from those of UFNerf in
section 5.2, i.e., it remains Ilm(dr−t).

Title Suppressed Due to Excessive Length 17

root gcd

algebraic coefficient 0.03036 0.04744
coefficient value 11 832.86184 23 482.13424
key recovery 0.48999 0.02876
total 11 833.38219 23 482.21044

Table 3: Observed average running times in milliseconds for key recovery of
UFNcrf [p, 17, 4] using root finding and the gcd method. The degree of the in-
terpolated polynomial was 313. (n = 100)

Complexity (of S3) This is the final key recovery step. For the case of single
key, the complexity of this step using GCD technique is G(d) and using root
finding technique is R(d).

Key recovery in the general case. We now consider UFNcrf EK̄ with
general K̄, starting with the bivariate case. That is, K̄ = (k̄0, . . . , k̄r−1) where k̄i
is derived from k̄0 and k̄1. Like in section 5.5, we consider the round key scheduling
ki = (i + 1) × ki (mod 2) for i > 0. The algebraic form of the second highest
coefficient is Qi(K) = dr−1(ad−1 + dβi) where βi = (t−2)bi+f((t−1)bi+k0)+k1,
as shown in Proposition 4.

Combining the three equations Qi(K) = zi works the same way as in sec-
tion 5.5. Due to the different form of βi, the equations change slightly: By solving
for βi we have

βi = (t− 2)bi + f((t− 1)bi + k0) + k1 =
zi
dr
− ad−1

d
(11)

For 2 > i, j > 0 we get, through subtracting and rearranging,

∆(i,j) := f((t−1)bi+k0)−f((t−1)bj +k0) + (t−2)(bi− bj) +
zi − zj
dr

= 0 (12)

Now, as in section 5.3, we recover k̄0 by finding gcd
(
∆(0,1), ∆(0,2)

)
. Then k̄1 can

be found using one of the eq. (11).
Complexity (of S1-S3). Although the form of q(k) and β are slightly different
from those in UFNerf , the steps are fundamentally the same as for the ERF vari-
ant. Thus, the complexities don’t differ from those in section 5.5. We summarize
the complexities of the different key recovery approaches for UFNcrf in table 1.
Experimental Verification Just as for UFNerf in section 5.7, we performed
small scale experiments for UFNcrf with the same number of rounds r = 17 and
branches t = 4. Because the branch subtraction technique of section 5.4 does
not apply to UFNcrf , the degree of the polynomial that is to be interpolated is
313. Running times of the experiments can be found in table 3. We note that for
the root finding technique, the average length of the key candidate list was 2.1,
extremely similar to those of the experiments on UFNerf of section 5.7.

18 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

7 Cryptanalysis of UFN based Sponge hash

Either of the UFNs may be used in a Sponge mode to construct a hash function
over Fp. The permutation thereof is instantiated with a fixed key UFN. An ex-
ample of such hash function is recently proposed GMiMCHash [2]. Here we will
describe how the root finding technique can be used to find collision in such hash
function. We will assume that the rate in Sponge mode is r = log2 p (bits) and
the hash value also has the same size. An input message to the hash function
∈ Fsp for s > 1 and consists of message block that are elements of Fp.

Preimage and second preimage attack Let us consider a message M ′ =
(m′0,m

′
1) ∈ F2

p of size 2r bits. It is clear that the UFN must have branch size r
bits. Suppose, f denotes the permutation instantiated with a fixed key UFN and
the rightmost output branch corresponds to the rate in Sponge mode. We find a
second preimage M in the following way

1. Choose arbitrary message block m0 ∈ Fp. Suppose, ht (∈ Fp) denotes the
first r bits (and the rightmost output branch) of f(m0) and hi for i = 2, . . . t
denote the outputs corresponding to the t− 1 branches of the UFN. Let h be
the hash value of the message M ′ = (m′0,m

′
1).

2. Compute the polynomial P (x) corresponding to the first output branch of
the UFN for the input h1, h2, . . . , ht + x. Note that P (x) is the polynomial
corresponding to the hash value of (m0, x).

3. Find the roots of P (x)− h.

Note that any root of P (x)− h gives a second preimage attack.
Instead of choosing h as hash value of a message if we choose it arbitrarily

then the above attack gives a preimage attack on the hash function.
Complexity. The complexity of finding all roots (without multiplicities) is of a
polynomial of degree D over Fp is R(D). For UFNerf the degree of the polynomial
P (x) after r rounds is dr−t. Hence, the the complexity of the root finding step is
R(dr−t).

Collision attack Choose two message blocks m0,m
′
0 ∈ Fp.Then, a collision

attack on the hash function is described as following

1. Compute the polynomial P (x) representing the hash value of a message of
the form (m0, x) and P ′(x) corresponding to the hash value of the message
(m′0, x).

2. Compute the roots of Q(x) := P (x)− P ′(x).

The complexity of the collision attack is same as the complexity of the preim-
age or second preimage attacks. The degree of the polynomial Q is dr−t−1.

Increasing the rate If the rate is increased to 2r then the attacks apply
similarly. For preimage and second preimage attack we choose the message M =
((m′00,m

′
01), (m′10,m

′
11)) where each mij ∈ Fp. The polynomial is constructed for

((m00,m01), (m10, x)). The collision attack also applies analogously as for rate r.

Title Suppressed Due to Excessive Length 19

The hash output is in Fp. The complexities remains the same since the degree of
the does not change.

We point out that the number of rounds for the UFNerf given in the GMiMC
proposal is not explicitly justified by analyzing the security of the hash function.

7.1 Experimental verification

We evaluate our results from section 7 by running small scale experiments. We
regarded GMiMCerf [p, r, t] permutation with p = 99999989, 3 6 r 6 7, 3 6 t 6 6
with k = 0 to instantiate the hash function for two different sets of experiments:
Finding second preimages and finding collisions. The round constants were ran-
domly chosen and fixed. For each combination of (r, t) in the given intervals, 100
experiments were performed. The messages were re-randomized for every experi-
ment. The experiments were implemented in python using sagemath. To generate
the random values, pythons “random” module was used. All the measurements
were taken on a machine with a standard Intel Core i5-6300U CPU and 7.22 GiB
of RAM.

For the experiments on second preimages, across all 2000 experiments, we ob-
served a total of 751 iterations where no second preimage was found. We consider
these experiments to have failed. This puts the estimated success probability of
finding at least one preimage to 62.5%. Of secondary interest is the average num-
ber of second preimages found given that the attack was successful, i. e. at least
one second preimage was found. Over all the 1249 successful experiments, an
average of 1.55 second preimages were observed per experiment.

For the experiments on collisions, no collision could be found in 712 of the
2000 experiments. We consider these experiments to have failed. The success
probability is thus 64.4%. Of secondary interest is the average number of colli-
sions found in the successful experiments, i. e. at least one collision was found.
In 1288 successful experiments, an average of 1.57 collisions were observed per
experiment. The failure rates of 37.6% and 35.6% respectively are supported by
the fact that for our parameters (p and degree of the underlying polynomial),
≈ 36.8% of the polynomials do not have a root [14]. We elaborate on this in
appendix D.

Tables 5 and 6 in appendix C summarize running times of our experiments
on second preimages and collisions. In fig. 4 in appendix C, the number of second
preimages found in our experiments is plotted. Similarly, fig. 5 in appendix C
visualizes the number of collisions found.

8 Attacks on Reduced Round GMiMC

The GMiMC family has two members that are based on UFN: GMiMCerf and
GMiMCcrf . The round function used in both variants is f(x) = x3, i.e.,d = 3.
Due to target applications we can also assume that field size is bounded e.g.
log2 p 6 256. For some specific sizes of the field and number of branches in the
UFNs, we show the number of rounds of GMiMC block cipher and hash functions
that can be attacked in table 4. Our analysis of the GMiMCHash instances does

20 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

Primitive type log2 p Security t/Arity Rounds Time Data Attack type

GMiMCerf BC 128 128 4 60 292 254 KR
GMiMCerf Permutation 61 128 12 102 248 − ZS [8]
GMiMCerf Permutation 125 256 14 206 2125 − ZS [8]
GMiMCcrf 256 256 4 100 2159 296 KR
GMiMCerfHash Hash 254 127 1 : 4 60 2119 – Coll
GMiMCerfHash Hash 61 128 4 : 12 52 283 – Coll [8]

Table 4: Number of attacked rounds for specific GMiMC instances of GMiMC
block ciphers and hash functions. For hash function the arity denotes the ratio
of no. of branches used for hash output and total number of branches(t) in UFN.

not contradict their security claims in the GMiMC proposal [2] (in terms of
number of secure rounds).

Recently, in [8] a collision attack on GMiMCHash-256 was proposed for a field
Fq with q = 2125 + 266× 264 + 1 and t = 14. This means the hash output is F2

q.
However, our described method is designed for a hash output in Fp. Since the
choice of hash outputs over a field in the two cases are incomparable, a direct
comparison of our collision attack with the collision attack in [8] (in terms of
complexity or number of rounds attacked) is not meaningful. For the attacks on
GMiMC block ciphers, we provide key recovery attack on (reduced) 60-round
GMiMCerf over a prime field of size 128 bits. On the other hand a zero-sum(ZS)
distinguisher on the full GMiMC(ERF) permutation (with fixed key) over Fq
with log q = 125 is proposed in [8].

References

1. Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal mul-
tiplicative complexity. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 191–219. Springer, 2016.

2. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures
for mpc, and more. In Computer Security - ESORICS 2019 - 24th European Sym-
posium on Research in Computer Security, Luxembourg, September 23-27, 2019,
Proceedings, Part II, pages 151–171, 2019.

3. Martin R. Albrecht, Lorenzo Grassi, Leo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures
for mpc, and more. Cryptology ePrint Archive, Report 2019/397, 2019.

4. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity. In Advances in Cryptology - ASIACRYPT 2016 - 22nd Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, 2016.

5. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Advances in Cryptology - EURO-

Title Suppressed Due to Excessive Length 21

CRYPT 2015 - 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, 2015.

6. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic pro-
tocols. Cryptology ePrint Archive, Report 2019/426, 2019.

7. Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of crypto-
graphic primitives. Cryptology ePrint Archive, Report 2018/1098, 2018.

8. Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Gaëtan
Leurent, Maŕıa Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo, and Friedrich
Wiemer. Out of oddity – new cryptanalytic techniques against symmetric primitives
optimized for integrity proof systems. In Advances in Cryptology – CRYPTO 2020.
Springer International Publishing, 2020.

9. Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951, 2019.

10. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution
for efficient homomorphic-ciphertext compression. In Thomas Peyrin, editor, Fast
Software Encryption, 2016.

11. Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gre-
gor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A cipher
with low anddepth and few ands per bit. In Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part I, pages 662–692, 2018.

12. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof sys-
tems. Cryptology ePrint Archive, Report 2019/458, 2019.

13. Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block Ci-
phers. In In Fast Software Encryption, pages 28–40. Springer-Verlag, 1997.

14. V. K. Leont’ev. Roots of random polynomials over a finite field. Mathematical
Notes, 80(1):300–304, Jul 2006.

15. Chaoyun Li and Bart Preneel. Improved Interpolation Attacks on Cryptographic
Primitives of Low Algebraic Degree. Cryptology ePrint Archive, Report 2019/812,
2019.

16. Arnab Roy Lorenzo Grassi, Christian Rechberger. Gmimcs new key schedule. per-
sonal communication, 8 2019.

17. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet.
Towards stream ciphers for efficient fhe with low-noise ciphertexts. Cryptology
ePrint Archive, Report 2016/254, 2016.

18. Starkware. STARK-Friendly Hash Challenge. Website, 8 2019. https://

starkware.co/hash-challenge/.
19. H.-J. Stoss. The complexity of evaluating interpolation polynomials. Theoretical

Computer Science, 41:319–323, 1985.
20. Bing Sun, Longjiang Qu, and Chao Li. New cryptanalysis of block ciphers with low

algebraic degree. In Orr Dunkelman, editor, Fast Software Encryption. Springer
Berlin Heidelberg, 2009.

21. The Sage Developers. SageMath, the Sage Mathematics Software System (Version
x.y.z), YYYY. https://www.sagemath.org.

22. Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge university press, 2013.

https://starkware.co/hash-challenge/
https://starkware.co/hash-challenge/

22 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

A Proofs

A.1 Proof of Proposition 1

Proof. Suppose that Proposition 1 holds for fix r. Applying one more round r+1
yields the following, according to eq. (1):

σr = f(P
(r)
0 + kr)

(P
(r+1)
0 , P

(r+1)
1 , P

(r+1)
2) = (P

(r)
1 + σr, P

(r)
2 + σr, P

(r)
0)

Developing σr by the binomial theorem we get the following:

σr = (P
(r)
0 + kr)

d +

d−1∑
i=0

ai(P
(r)
0 + kr)

i

=
(
xd

r−2

+ dr−3(ad−1 + dβ)xd
r−2−1 + · · ·+ a0 + kr)

d +

d−1∑
i=0

ai(P
(r)
0 + kr)

i

= (xd
r−2

)d + d · dr−3(ad−1 + dβ)xd
r−2−1(xd

r−2

)d−1 + · · ·+ (dr−3(ad−1 + dβ)xd
r−2−1)d

+ · · ·+ ad0 + · · ·+ kdr +

d−1∑
i=0

ai(P
(r)
0 + kr)

i

= xd
r−1

+ dr−2(ad−1 + dβ)xd
r−1−1 + · · ·+ a0

By the assumption of the induction, deg(P
(r)
2) 6 deg(P

(r)
1) 6 dr−2. Thus the

degree of σr dominates, which leads us to the proofs first conclusions.

deg(P
(r+1)
0) = deg(P

(r+1)
1) = deg(σr) = xd

r−1

coeff(P
(r+1)
0 , xd

r−1

) = coeff(P
(r+1)
1 , xd

r−1

) = coeff(σr, x
dr−1

) = 1

Since, by assumption, d > 3 and r > 4, it holds that dr−1 − 1 > dr−2. The coeffi-

cients of the second highest term in P
(r+1)
0 and P

(r+1)
1 are thus solely contributed

by σr. This leads us to the proofs last conclusion.

coeff(P
(r+1)
0 , xd

r−1−1) = coeff(P
(r+1)
1 , xd

r−1−1) = coeff(σr, x
dr−1−1) = dr−2(ad−1+dβ)

A.2 Proof of Proposition 2

Proof. Because of the position of the variable x, (t − 1) many “swappings” of
branches need to be performed before x becomes part of the input to a round
function. Each round of the UFN performs exactly one such swap. Thus, we ob-
serve that x does not contribute to σi for the first (t− 2) rounds, i. e. deg(σi) = 0

Title Suppressed Due to Excessive Length 23

for i < t− 1. In the (t− 1)-st round, we have the following:

σt−1 = f(x+ σ0 + · · ·+ σt−2 + kt−1)

= f(x+ β)

= (x+ β)d + ad−1(x+ β)d−1 +

d−2∑
i=0

ai(x+ β)i

= xd + dβxd−1 + · · ·+ dβd−1x+ βd

+ ad−1x
d−1 + ad−1(d− 1)βxd−2 + · · ·+ ad−1(d− 1)βd−2x+ ad−1β

d−1

+

d−2∑
i=0

ai(x+ β)i

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

Now, we can use induction over r much in the same way as in Proposition 1.

A.3 Proof of Proposition 4

Proof. After 1 round, we have

σ0 = f(

t−1∑
j=1

b+ k0) = f((t− 1)b+ k0)

(P
(1)
0 , . . . , P

(1)
t−2, P

(1)
t−1) = (b, . . . , b, x+ σ0)

After 2 rounds, we have

σ1 = f(

t−2∑
j=1

b+ x+ σ0 + k1) = f(x+ β)

(P
(2)
0 , . . . , P

(2)
t−2, P

(2)
t−1) = (b, . . . , x+ σ0, b+ σ1)

Expanding σ1 by the binomial theorem yields the following:

σ1 = f(x+ β)

= (x+ β)d + ad−1(x+ β)d−1 +

d−2∑
i=0

ai(x+ β)i

= xd + dβxd−1 + · · ·+ βd

+ ad−1x
d−1 + ad−1(d− 1)βxd−2 + · · ·+ ad−1β

d−1 +

d−2∑
i=0

ai(x+ β)i

= xd + (ad−1 + dβ)xd−1 + · · ·+ a0

24 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

After expanding σ1, an induction over r like in Proposition 1 finishes the proof.

B Reduced Round Instances of UFNerfand UFNcrf

We depict the progression of an input (b, b, b, x) through 5 rounds of UFNerf with 4
branches in fig. 2. In fig. 3, we show the progression of an input variable through
4 rounds of UFNerf with 3 branches and variable input in the rightmost branch
as well as UFNcrf with 3 branches and variable input in the leftmost branch.

Fig. 2: Example of summands being added in a UFNerf

f

k0

c0

σ0

f

k1

c1

σ1

f

k2

c2

σ2

f

k3

c3

σ3

f

k4

c4

σ4

b b b x

b+ σ0 b+ σ0 x+ σ0 b

b+ σ0 + σ1 x+ σ0 + σ1 b+ σ1 b+ σ0

x+ σ0 + σ1 + σ2 b+ σ1 + σ2 b+ σ0 + σ2 b+ σ0 + σ1

b+ σ1 + σ2 + σ3 b+ σ0 + σ2 + σ3 b+ σ0 + σ1 + σ3 x+ σ0 + σ1 + σ2

b+ σ0 + σ2 + σ3 + σ4

b+ σ0 + σ1 + σ3 + σ4

x+ σ0 + σ1 + σ2 + σ4

b+ σ1 + σ2 + σ3

P
(5)
0 P

(5)
1 P

(5)
2 P

(5)
3

C Plots and runtime summaries for GMiMCHash
experiments

In tables 5 and 6 we summarize the running times for the experiments from
section 7.1 for 5 6 r 6 7 and 3 6 t 6 6. The running times for reconstruction of
the polynomial and root finding are reported alongside the total running times.

In fig. 4, the number of second preimages found in our experiments is plot-
ted. Similarly, fig. 5 visualizes the number of collisions found. In the subfigures,

Title Suppressed Due to Excessive Length 25

f

k0

c0

σ0

f

k1

c1

σ1

f

k2

c2

σ2

f

k3

c3

σ3

b b x

b+ σ0 x+ σ0 b

x+ σ0 + σ1 b+ σ1 b+ σ0

b+ σ1 + σ2 b+ σ0 + σ2 x+ σ0 + σ1

b+ σ0 + σ2 + σ3 x+ σ0 + σ1 + σ3 b+ σ1 + σ2

(a) Branch development in a
UFNerf [p, 4, 3].

f

k0

c0

σ0

f

k1

c1

σ1

f

k2

c2

σ2

f

k3

c3

σ3

x b b

b b x+ σ0

b x+ σ0 b+ σ1

x+ σ0 b+ σ1 b+ σ2

b+ σ1 b+ σ2 x+ σ0 + σ3

(b) Branch development in a
UFNcrf [p, 4, 3].

Fig. 3: UFNerf [4, 3] and UFNcrf [4, 3] with rightmost and leftmost branch input
as variable respectively.

different numbers of branches t are depicted. Each subfigure shows, for different
numbers of rounds r on the x-axis, the number of additional preimages or col-
lisions on the y-axis found over the 100 randomized experiments. For example,
when regarding t = 3 branches in fig. 4a, for the GMiMCHash instance instan-
tiated with GMiMCerf with r = 6 rounds, there were 14 of our 100 experiments
in which we found 2 preimages, and 9 in which we found 3 preimages. A red bar
signifies that no preimage (or no collision for fig. 5) was found, while the green
bars indicate at least one second preimage (or collision, respectively) found, i. e.
a successful attack.

D Roots of Random Polynomials over a Finite Field

In order to validate our failure rate of section 7.1, we calculate the probability
that a random polynomial of degree d has no roots in a specific finite field. A
formula td for the number of polynomials of degree d over finite field Fq that have
no root in Fq is given in lemma 1 in [14] and reproduced in eq. (13).

td =

d∑
i=0

(−1)i
(
q

i

)
qd−i (13)

The total number of polynomials of degree d over Fq is qd. Our parameters are
q = 99999989 and d = 3i with 3 6 i 6 7. This results in a probability of a random
polynomial not having any root in Fq of td/qd ≈ 36.8% for any i in the given
interval.

26 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

r = 5 r = 6 r = 7

construct poly 0.0003 0.0003 0.0003
root finding 0.0005 0.0005 0.0004
total 0.0008 0.0009 0.0008

(a) t = 3

r = 5 r = 6 r = 7

construct poly 0.0019 0.0019 0.0019
root finding 0.0026 0.0029 0.0032
total 0.0046 0.0049 0.0052

(b) t = 4

r = 5 r = 6 r = 7

construct poly 0.0233 0.0235 0.0229
root finding 0.0263 0.0267 0.0268
total 0.0498 0.0503 0.0498

(c) t = 5

r = 5 r = 6 r = 7

construct poly 0.2966 0.2940 0.2954
root finding 0.3018 0.3016 0.3025
total 0.5999 0.5971 0.5996

(d) t = 6

Table 5: Observed average running times in milliseconds for finding second preim-
ages of GMiMCHash using GMiMCerf [p, r, t]. (n = 100 per column)

r = 5 r = 6 r = 7

construct poly 0.0006 0.0006 0.0006
root finding 0.0004 0.0004 0.0004
total 0.0010 0.0010 0.0010

(a) t = 3

r = 5 r = 6 r = 7

construct poly 0.0037 0.0037 0.0042
root finding 0.0028 0.0030 0.0038
total 0.0065 0.0067 0.0080

(b) t = 4

r = 5 r = 6 r = 7

construct poly 0.0458 0.0457 0.0458
root finding 0.0275 0.0280 0.0269
total 0.0733 0.0738 0.0728

(c) t = 5

r = 5 r = 6 r = 7

construct poly 0.6015 0.6012 0.6801
root finding 0.3116 0.3063 0.3536
total 0.9131 0.9075 1.0338

(d) t = 6

Table 6: Observed average running times in milliseconds for collision finding of
GMiMCHash using GMiMCerf [p, r, t]. (n = 100 per column)

Title Suppressed Due to Excessive Length 27

(a) t = 3 (b) t = 4

(c) t = 5 (d) t = 6

Fig. 4: Number of second preimages found for various numbers of rounds with
GMiMCHash using GMiMCerf [p, r, t]. (n = 100 per given (r, t))

28 Arnab Roy, Elena Andreeva, and Jan Ferdinand Sauer

(a) t = 3 (b) t = 4

(c) t = 5 (d) t = 6

Fig. 5: Number of collisions found for various numbers of rounds with GMiM-
CHash using GMiMCerf [p, r, t]. (n = 100 per given (r, t))

	Interpolation Cryptanalysis of Unbalanced Feistel Networks with Low Degree Round Functions

