
Counting Vampires: From Univariate Sumcheck
to Updatable ZK-SNARK⋆

Version 2.0, Thursday 23rd June, 2022, 12:58

Helger Lipmaa1, Janno Siim1, and Michał Zając2

1 Simula UiB, Bergen, Norway
2 Nethermind, London, UK

Abstract. We propose a univariate sumcheck argument Count of es-
sentially optimal communication efficiency of one group element. While
the previously most efficient univariate sumcheck argument of Aurora is
based on polynomial commitments, Count is based on inner-product com-
mitments. We use Count to construct a new pairing-based updatable and
universal zk-SNARK Vampire with the shortest known argument length
(four group and two finite field elements) for NP. In addition, Vampire
uses the aggregated polynomial commitment scheme of Boneh et al.

Keywords: Aggregatable polynomial commitment, inner-product com-
mitment, univariate sumcheck, updatable and universal zk-SNARK

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)
[18,26,17,30] are zero-knowledge argument systems for NP with succinct argu-
ment length and efficient verification. In many applications, one can describe the
desired NP language instance as an instance R of the rank-1 constraint system
(R1CS) [17], and the task of the verifier is to check that R is satisfied on the
partially-public input. Zk-SNARKs are immensely popular due to applications
in, say, verifiable computation and cryptocurrencies.

Non-interactive zero-knowledge arguments, and thus also zk-SNARKs, are
impossible in the plain model. To overcome this, one gives all parties access to
a trusted common reference string (CRS). The most efficient zk-SNARKs have
a relation-specific structured CRS (SRS). That is, they assume that there exists
a trusted third party who, given the description of R as an input, generates an
SRS srsR. The most efficient zk-SNARK by Groth [19] for R1CS with a relation-
specific SRS has an argument that consists of only three group elements.

A significant practical downside of such “non-universal” SNARKs is that one
has to construct a new SRS for every instance of the constraint system. This
observation has spurred an enormous effort to design universal zk-SNARKs, i.e.,
⋆ This is the second, more optimized, version of Vampire. We point out the main

optimization in Footnote 8. The old version can be recovered from [27].

2 Helger Lipmaa, Janno Siim, and Michał Zając

zk-SNARKs with an SRS that only depends on an upper bound on R’s size.
In addition, it is crucial to decrease the amount of trust in the SRS creator.
A popular approach is to design updatable and universal zk-SNARKs [20,29],
where the universal SRS is updated sequentially by several parties such that
the soundness holds if at least one of the updaters is honest. For brevity, by
“updatable” we will sometimes mean “updatable and universal”.

Plonk [16] and Marlin [12] are the first genuinely efficient univer-
sal zk-SNARKs. Marlin and many subsequent updatable and universal zk-
SNARKs [31,11] work for sparse R1CS instances, where the underlying matrices
contain a linear (instead of quadratic) number of non-zero elements. Chiesa et
al. [12] first define an information-theoretic model, algebraic holographic proof
(AHP). An AHP is an interactive protocol, where at each step, the prover sends
polynomial oracles, and the verifier sends to the prover random field elements.
Polynomial oracles are usually implemented using polynomial commitments [22].
In the end, the verifier queries the polynomial oracles and performs some low-
degree tests. After that, [12] proposes a new AHP for sparse R1CS, and then
compiles it to a zk-SNARK named Marlin.

Marlin relies crucially on a univariate sumcheck. A sumcheck argument aims
to prove that the given polynomial sums to the given value over the given do-
main. The first sumcheck arguments [28] were for multivariate polynomials but
small domains. Ben-Sasson et al. [5] proposed a univariate sumcheck argument
for large domains and used it to construct a new zk-SNARK Aurora. Suppose
the domain is a multiplicative subgroup of the given finite field. In that case,
Aurora’s sumcheck argument requires the prover to forward two different poly-
nomial oracles and use a low-degree test on one of the polynomials.

Lunar [11] improves on Marlin in several aspects. First, they define PHPs,
a generalization of AHPs. In particular, they note that instead of opening all
polynomial commitments, one can often operate directly on the polynomial com-
mitments, thus obtaining better efficiency. Second, they define a simpler version
of R1CS called R1CSLite, with one of the three characterizing matrices of R
being the identity matrix. Moreover, they provide a more fine-grained analysis
of the zero-knowledge property and implement several additional optimizations.

Basilisk [31] gains additional efficiency by using a different technique to ob-
tain zero-knowledge and constructing a “free” low-degree test. In addition, [31]
constructs even more efficient zk-SNARKs for somewhat more limited constraint
systems. Both Lunar and Basilisk introduce new theoretical frameworks; e.g.,
Basilisk introduces checkable subspace sampling (CSS) arguments as a separate
primitive. For simplicity (of reading), we opted not to use such frameworks in
the context of the current paper.

[34] proposed Vector Oracle proofs (VOProofs), a new information-theoretic
model based on vector operations. They use it to construct efficient zk-SNARKs
for several well-known constraint systems such as R1CS (VOR1CS) and Plonk’s
constraint system (VOPlonk).

Finally, we mention attempts to add updatability and universality to Groth’s
zk-SNARK [19]. [23] proves that Groth’s zk-SNARK is two-phase updatable (a

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 3

Table 1. Comparison of some known updatable and universal zk-SNARKs.

Scheme Argument length Arithmetization

Elements Bits

Updatable and universal zk-SNARKs

Sonic [29] 20|G1|+ 16|F| 11776 [8] constraints
Marlin [12] 13|G1|+ 8|F| 7040 R1CS, sparse matrices
Basilisk [31] 10|G1|+ 3|F| 4608 R1CSLite, sparse matrices
Plonk [16] 7|G1|+ 7|F| 4480 Plonk constraints
LunarLite [11] 10|G1|+ 2|F| 4352 R1CSLite, sparse matrices
Basilisk [31] 8|G1|+ 4|F| 4096 Plonk constraints
VOR1CS* [34] 9|G1|+ 2|F| 3968 R1CS, sparse matrices
VOPlonk* [34] 7|G1|+ 2|F| 3200 Plonk constraints
Basilisk (full version, [32]) 6|G1|+ 2|F| 2816 Weighted R1CS with bounded fan-out
Vampire (this work) 4|G1|+ 2|F| 2048 R1CSLite, sparse matrices

Non-universal zk-SNARKs (relation-specific SRS)

Groth16 [19] 2|G1|+ 1|G2| 1536 R1CS

weaker version of updatability) but not universal. [24] proposes a modification
of Groth’s zk-SNARK, which is universal (but not updatable); this comes with
significant overhead in the prover’s running time.

In Table 1, we overview the argument lengths of the most efficient updatable
and universal zk-SNARKs. Here, |X| denotes the representation length of an
element from X in bits, given the BLS12-381 curve [10], with |G1| = 384, |G2| =
768, and |F| = 256. Thus, even the most efficient updatable and universal zk-
SNARK has an approximately two times longer argument than Groth16 [19].

Moreover, Groth16 works for QAP [17] (i.e., full R1CS), while the most effi-
cient variant of Basilisk works for instances of R1CS where the relation-defining
matrices are limited to have a small constant number of elements per row (this
corresponds to arithmetic circuits of bounded fan-out). Thus, there is still a
non-trivial difference between the communication efficiency of relation-specific
zk-SNARKs and updatable and universal zk-SNARKs.

1.1 Our Contributions

The current paper has three related contributions of independent interest:
1. The combined use of polynomial commitments and inner-product commit-

ments in the sumcheck and updatable and universal zk-SNARK design. The
use of polynomial commitment schemes in zk-SNARKs has dramatically in-
creased their popularity, and we hope the same will happen with inner-

4 Helger Lipmaa, Janno Siim, and Michał Zając

product commitments. In particular, ILV inner-product commitments [21]
use a SRS made of non-consequent monomial powers.3

2. A new updatable (and universal) univariate sumcheck argument Count that
uses inner-product commitments to achieve optimal computation complexity
of a single group element. Since sumchecks are used in many different zk-
SNARKs (and elsewhere, [9]), we believe Count will have wider interest.

3. A new updatable and universal zk-SNARK Vampire for sparse R1CSLite
with the smallest argument length among all known updatable and universal
zk-SNARKs for NP-complete languages. (See Table 1.) Vampire uses Count
and thus inner-product commitments.

1.2 Our Techniques

Non-Consequent Monomial SRSs. Groth et al. [20] proved that the SRS of
an updatable zk-SNARK cannot contain non-monomial polynomials. Moreover,
the SRS’s correctness must be verifiable. For example, if the SRS contains4
[1, σ, σ3, σ4]1 ∈ G4

1 for a trapdoor σ, it must also contain [σ, σ2]2 ∈ G2
2, so that

one can verify the consistency of the SRS elements by using pairing operations.
We observe that [σ2]1 does not have to belong to the SRS, and thus, an updatable
SRS may contain gaps. Similarly, the SRS can contain multivariate monomials.
However, most of the known updatable and universal zk-SNARKs ([20,29] being
exceptions) use SRSs that consist of consequent univariate monomials only, i.e.,
are of the shape ([(σi)m1

i=0]1, [(σ
i)mi=0]2) for some mi.

One reason why efficient updatable and universal zk-SNARKs use a conse-
quent monomial SRS is their reliance on polynomial commitment schemes like
KZG [22] that have such SRSs. While other polynomial commitment schemes
are known, up to our knowledge, no efficient one uses non-consequent monomial
SRSs. In particular, AHP [12] and PHP [11] model polynomial commitments
as polynomial oracles and allow the parties to perform operations (e.g., queries
to committed oracles and low-degree tests) related to such oracles. Low-degree
tests model consequent monomial SRSs: a committed polynomial is a degree-
≤ m polynomial iff it is in the span of Xi for i ≤ m.

One can use non-consequent monomial SRSs to efficiently construct proto-
cols like broadcast encryption and inner-product commitments [25,21]. We use
non-consequent monomial SRSs in the context of sumchecks and updatable and
universal zk-SNARKs. We will not define an information-theoretic model, but
we mention two possible approaches that both have their limitations. First, the
pairing-based setting can be modeled as linear interactive proofs (LIPs, [6])
or non-interactive LIPs [19]. However, either model has to be tweaked to our
setting: namely, we allow the generation of updatable SRS for multi-round pro-
tocols, with the restrictions natural in such a setting (e.g., one can efficiently
3 Inner-product commitments and arguments are commonly used in the zk-SNARK

design. However, the way we use them is markedly different from the prior work.
4 We rely on the pairing-based setting and use the by now standard additive bracket

notation, see Section 2 for more details.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 5

“span test” that a committed element is in the span of the SRS). Such a model
is tailor-fit to pairings and might not be suitable in other algebraic settings.
Second, one can generalize PHPs by adding an abstract model of inner-product
commitment schemes and allowing for span tests. Such a model is independent of
the algebraic setting but restricts one to a limited number of cryptographic tools
(polynomial and inner-product commitment schemes), with a need to redefine
the model when more tools are found to be helpful.

We have chosen to remain agnostic on this issue by defining new arguments
without an intermediate information-theoretic model.

New Univariate Sumcheck Argument Count. Let F be a finite field and
let H ⊂ F be a fixed multiplicative subgroup. In a univariate sumcheck argu-
ment (for multiplicative subgroups), the prover convinces the verifier that the
committed polynomial f(X) ∈ F[X] sums to the given value vM ∈ F over H.

Let nh := |H| and ZH(X) :=
∏
χ∈H(X − χ). Aurora’s sumcheck [5] relies on

the fact that
∑
χ∈H f(χ) = nhf(0), when f ∈ F≤nh−1[X] is a polynomial with

deg f ≤ nh − 1. Then, for f ∈ F[X] of arbitrarily large degree,
∑
χ∈H f(χ) = vf

iff there exist polynomials R,Q ∈ F[X], such that (1) degR ≤ nh − 2, and (2)
f(X) = vf/nh +XR(X) + Q(X)ZH(X). In a cryptographic implementation of
Aurora’s sumcheck argument in say Marlin [12], the prover uses KZG [22] to
commit to R and Q; this means the communication of two group elements. In
addition, the prover uses a low-degree test to convince the verifier that (1) holds.

Based on the ILV inner-product commitment [21], we construct a new sum-
check argument Count for f ∈ F≤d[X]. ILV’s non-consequent monomial SRS
contains ([(σi)2Ni=0:i ̸=N+1]1, [(σ

i)Ni=0]2), where σ is a trapdoor and N is a large
integer. The prover commits to µ ∈ ZNp as [µ(σ)]1 ←

∑N
j=1 µj [σ

j]1. When the
verifier outputs ν ∈ ZNp , the prover returns the inner product v ← µ⊤ν together
with a short evaluation proof (a single group element [op]1) that v is correctly
computed. ILV’s security depends on the fact that [σN]1 is not in the SRS.

We present an alternative extension of the equality
∑
χ∈H f(χ) = nhf(0) to

the case when d = deg f is arbitrarily large. Namely, we prove that if f(X) =∑d
i=0 fiX

i ∈ F≤d[X], then
∑
χ∈H f(χ) = nh · (

∑⌊d/nh⌋
i=0 fnhi). (See Lemma 1.)

Alternatively,
∑
χ∈H f(χ) = vf iff f⊤s = vf , where f = (fi) and s is a Boolean

vector that has ones in positions nh · i for i ≤ ⌊d/nh⌋.
In Count, the prover first ILV-commits to f and then ILV-opens the com-

mitment to f⊤s. Thus, the prover has to output one ILV commitment (one
group element) instead of two polynomial commitments (two group elements)
in Aurora’s sumcheck. Moreover, there is no need for a low-degree test, mak-
ing Count even more efficient. In addition, in the application to Vampire, s has
a small constant number of non-zero elements. Thus, differently from Aurora’s
sumcheck, the prover’s computation is linear in both field operations and group
operations. An explicit cost of using ILV is that the SRS becomes larger: if the
SRS, without Count, contains [(σi)di=0]1 (where d is some constant, fixed by the
rest of the zk-SNARK), it now has to contain also [(σi)2di=d+2]1 and [(σi)di=0]2.
(Although, in our construction, we will add significantly less elements to G2.)

6 Helger Lipmaa, Janno Siim, and Michał Zając

Since sumchecks have ubiquitous applications [9], Count is of independent in-
terest. In particular, univariate sumcheck is used in both updatable and universal
zk-SNARKs and transparent zk-SNARKs. As an important application, we will
design a new updatable and universal zk-SNARK. We leave it an interesting
open question to apply Count in transparent zk-SNARKs.

New zk-SNARK. We use Count to design a new pairing-based updatable and
universal zk-SNARK Vampire for the sparse R1CSLite constraint system [11].
Vampire’s argument length is four elements of G1 and two elements of F, which is
less than in any known updatable and universal zk-SNARK. While Basilisk [31]
(as improved in the full version, [32]) has just 37.5% larger communication than
Vampire, it works for a version of R1CSLite with additional restrictions on the
underlying matrices; the version of Basilisk for the arithmetization handled by
Vampire is less communication-efficient than LunarLite or VOR1CS*.

Let us now give a very brief glimpse to the structure of Vampire. (The real
description, with a very long intuition behind Vampire’s construction, is given
in Section 4.) Following Lunar and Basilisk, we use the R1CSLite constraint
system, where an instance consists of two parameter matrices L and R (the left
and right inputs to all constraints) instead of three in the case of R1CS. Let m
be the number of constraints. Following Marlin, Lunar, and Basilisk, we use the
setting of sparse matrices, where L and R have together at most |K| = Θ(m)
non-zero entries. Here, K is a multiplicative subgroup of F.

Let z be the interpolating polynomial of (x,w, rz), where rz is a short ran-
dom vector needed for zero-knowledge. The prover starts by committing to z̃,
where z̃ is a polynomial related to z. Using z̃ helps one efficiently check that the
prover used the correct public input. The verifier replies with a random field ele-
ment α. We reformulate the check that (x,w) (where w is encoded in z̃) satisfies
the R1CSLite instance as a univariate sumcheck argument that

∑
y∈H ψα(y) = 0,

for a well-chosen polynomial ψα. We then run Count, letting the prover send an
ILV-opening [ψipc(σ)]1 of ψα to the verifier. The verifier replies with another ran-
dom field element β. The prover’s final message consists of two field elements and
two group elements. These elements are needed to batch-open three polynomial
commitments at different locations, two of which are related to β. It involves a
complicated but by now standard step of proving the correctness of the arithme-
tization of a sparse matrix. This step involves using a univariate sumcheck the
second time. However, since here the summed polynomial is of a small degree,
we do not need to use Count. We refer to Section 4 for more details.

Vampire is based on the ideas of Marlin (e.g., we use a similar arithmetization
of sparse matrices), but it uses optimizations of both Lunar [11] and Basilisk [31].
These optimizations (together with an apparently novel combination of the full
witness to a single commitment) result in the argument length of 7 elements
of G1 and 2 finite field elements, which is already comparable to prior shortest
updatable and universal zk-SNARKs for any NP-complete constraint system.

Count helps to remove one more group element from the argument of Vampire.
This step is not trivial: the sumcheck argument requires that the sumchecked
polynomial f is committed to, which is not the case in Vampire. We solve this

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 7

issue using a batching technique similar to Lunar and Basilisk, asking the prover
to open two polynomial commitments. The second committed polynomial is a
linear combination of other polynomial commitments with coefficients known to
the prover and the verifier after opening the first polynomial.

Our second innovation is the use of polynomial commitment aggregation at
different points [7]. Intuitively, we commit to a single polynomial z̃ that encodes
both the left and right inputs of all constraints; this allows us to save one more
group element. When combining the result with the batching technique of the
previous paragraph, we need to open three polynomials at different points. In
particular, we aggregate the commitment of the second sumcheck, further re-
ducing the proof size by one group element. For batching, we use a technique of
Boneh et al. [7]. However, differently from [7], our batching is not randomized
since the two opening points are different.

In Theorem 1, we prove that Vampire is knowledge-sound in the Alge-
braic Group Model (AGM, [15]). The proof structure is standard, involving two
branches depending on whether the verifier’s equations hold as polynomials (we
get a reduction to the well-known Power Discrete Logarithm assumption if not).
However, the proof of the former case is quite complicated, partially since one
has to consider several different polynomials sent by the prover, which depend
on different verifier’s challenge values.

We prove that Vampire is perfectly zero-knowledge by constructing a sim-
ulator that uses the knowledge of trapdoor to make the sumcheck argument
acceptable for any, even an all-zero witness. For a simulated argument to be
indistinguishable from the real one, we add random terms (rz) to polynomial
z̃(X) which, in the case of real argument, encodes the witness, and, in the case
of a simulated argument, encodes a (mostly) zero vector. This assures that even
an unbounded adversary who knows the instance and witness cannot tell apart
commitments to z̃(X) in real and simulated arguments. In Appendix B, we prove
that Vampire is also Sub-ZK (i.e., zero-knowledge even if the SRS generation is
compromised, [4,1,14,2]) under the BDH-KE knowledge assumption [1].

On Efficiency. We study how much the argument length can be reduced in
updatable and universal SNARKs while only allowing minimal relaxations in
other efficiency parameters. We achieve the shortest argument by far. The SRS
size of our zk-SNARK is a constant factor larger than in the previous work, which
we believe is a reasonable compromise as the SRS needs to be transferred only
once. Vampire is especially advantageous when the R1CSLite instance is not so
sparse. As a function of the number of non-zero elements in R1CSLite matrices
only, Vampire has the best prover’s computation as any previous updatable and
universal zk-SNARK. Importantly, the verifier has only to execute O(|x|) field
operations as opposed to O(|x|) group operations in [19].

8 Helger Lipmaa, Janno Siim, and Michał Zając

However, differently from the prior work, prover’s computation time in
Vampire depends on the largest supported R1CSLite size. We discuss this is-
sue further and give a thorough efficiency comparison in Appendix A.

Demaking Vampire. It is possible to “demake” Vampire by removing some of
the aggressive length-optimization to obtain a larger argument size but better
(say) the SRS size. We leave it as an open question about which optimization
should be removed first or whether this is needed at all.

2 Preliminaries

Let F = Zp be a finite field of prime order p, and let F≤d[X] ⊂ F[X] be the
set of degree ≤ d polynomials. Define the set of (d, dgap)-punctured univari-
ate polynomials over F as PolyPuncF(d, dgap, X) := {f(X) =

∑dgap+d
i=0 fiX

i ∈
F≤dgap+d[X] : fdgap = 0}. Let x ◦ y be the elementwise product of vectors x and
y, ∀i.(x◦y)i = xiyi. Let In ∈ Fn×n be the n-dimensional identity matrix. Denote
matrix and vector elements by using square brackets as in A[i, j] and a[i].

Interpolation. Let ω be the nh-th primitive root of unity in F and let H =
{ωj : 0 ≤ j < nh} be a multiplicative subgroup of F. Then,
– For any T ⊂ F, the vanishing polynomial ZT (X) :=

∏
i∈T (X − i) is the

degree-|T | monic polynomial, such that ZT (i) = 0 for all i ∈ T . ZH(Y) =
Y nh − 1 can be computed in Θ(log nh) field operations.

– For i ∈ [1, nh], ℓHi (Y) is the ith Lagrange polynomial, i.e., the unique de-
gree nh − 1 polynomial, such that ℓHi (ωi−1) = 1 and ℓHi (ω

j−1) = 0 for
i ̸= j. It is well known that ℓHi (Y) = ZH(Y)/(Z′

H(ω
i−1) · (Y − ωi−1)) =

ZH(Y)ωi−1/(nh(Y − ωi−1)). Here, Z′
H(X) = dZH(X)/dX.

– LH
X(Y) := ZH(Y)X/ (nh(Y −X)) ∈ F(X,Y) (a lifted Lagrange rational

function), with Lωi−1(Y) = ℓHi (Y) for i ∈ [1, nh].
For f ∈ F[X], let f̂H(X) :=

∑nh

i=1 f(ω
i−1)ℓHi (X) be its low-degree extension. To

simplify notation, we often omit the accent ·̂ and the superscript H.

R1CSLite. R1CSLite [11,31] is a variant of the Rank 1 Constraint Sys-
tem [17,12]. An R1CSLite instance I = (F,m,m0,L,R) consists of a field F,
instance size m, input size m0, and matrices L,R ∈ Fm×m. An R1CSLite in-
stance is sparse if L and R have nk = O(m) non-zero elements.
I = (F,m,m0,L,R) defines the following relation R = RI :

R :=

(x,w) : x = (z1, . . . , zm0
)⊤ ∧ w = (za

zb
) ∧ za, zb ∈ Fm−m0−1 ∧

zl =
(

1
x

za

)
∧ zr =

(
1m0+1

zb

)
∧ zl = L(zl ◦ zr) ∧ zr = R(zl ◦ zr)

 .

Equivalently, Wz∗ = 0, where

W =
(
Im 0 −L
0 Im −R

)
∈ F2m×3m , z∗ =

(
zl
zr

z=zl◦zr

)
. (1)

Basic Cryptography. We denote the security parameter by λ. For any algo-
rithm A, r ←$ RNDλ(A) samples random coins of sufficient length for A for fixed

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 9

λ. By y ← A(x; r), we denote that A outputs y on input x and random coins r.
PPT means probabilistic polynomial time.

Pairings. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê,
[1]1, [1]2), where p is a prime, G1, G2, and GT are three additive cyclic groups
of order p, ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear
pairing, and [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2). In
this paper, F = Zp has always two large multiplicative subgroups H and K. Thus,
we assume implicitly that |H|, |K| | (p − 1). We require the bilinear pairing to
be Type-3, that is, not to have an efficient isomorphism between G1 and G2. In
practice, one uses a fixed pairing-friendly curve like BLS-381; then, |K|, |H| | 232.

We use the by now standard additive bracket notation, by writing [a]ι to
denote a[1]ι for ι ∈ {1, 2, T}. We denote ê([x]1, [y]2) by [x]1 • [y]2. Thus, [x]1 •
[y]2 = [xy]T . We freely use the bracket notation together with matrix notation;
for example, if A · B = C then [A]1 • [B]2 = [C]T .

Polynomial Commitment Schemes. In a polynomial commitment
scheme [22], the prover commits to a polynomial f ∈ F≤d[X] and later opens
it to f(β) for β ∈ F chosen by the verifier. The (non-randomized) KZG [22]
polynomial commitment scheme consists of the following algorithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given a system parameter p and an upper-

bound d on the polynomial degree, compute the trapdoor tk = σ ←$ Z∗
p and

the commitment key ck← (p, [(σi)di=0]1, [1, σ]2). Return (ck, tk).
Commitment: Given a commitment key ck and a polynomial f ∈ F≤d[X],

return the commitment [f(σ)]1 ←
∑d
j=0 fj [σ

j]1.
Opening: Given a commitment key ck, a commitment [f(σ)]1, an evaluation

point β ∈ F, and a polynomial f ∈ F≤d[X], set v ← f(β) and fpc(X) ←
(f(X) − v)/(X − β). The evaluation proof is [fpc(σ)]1 ←

∑d−1
j=0(fpc)j [σ

j]1.
Return (v, [fpc(σ)]1).

Verification: Given a commitment key ck, a commitment [f(σ)]1, an evaluation
point β, a purported evaluation v = f(β), and an evaluation proof [fpc(σ)]1,
check [f(σ)− v]1 • [1]2 = [fpc(σ)]1 • [σ − β]2.

KZG’s security is based on the fact that (X − β) | (f(X)− v)⇔ f(β) = v.

Inner-Product Commitment Schemes. In an inner-product commitment
scheme [25,21], the prover commits to a vector µ ∈ FN and later opens it to the
inner product µ⊤ν for ν ∈ FN chosen by the verifier. The (non-randomized)
ILV [21] inner-product commitment scheme consists of the following algorithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given a system parameter p and a vector di-

mension N , compute the trapdoor tk = σ ←$ Z∗
p and the commitment key

ck← ([(σi)2Ni=0:i ̸=N+1]1, [(σ
i)Ni=0]2). Return (ck, tk).

Commitment: Given a commitment key ck and a vector µ ∈ FN , compute
the coefficients of µ(X) ←

∑N
j=1 µjX

j ∈ F≤N [X]; [µ(σ)]1 =
∑N
j=1 µj [σ

j]1.
Return the commitment [µ(σ)]1.

10 Helger Lipmaa, Janno Siim, and Michał Zając

Opening: Given a commitment key ck, a commitment [µ(σ)]1, the original vec-
tor µ, and a vector ν, let v ← µ⊤ν. Set ν∗(X) ←

∑N
j=1 νjX

N+1−j ∈
F≤N [X], and µipc(X) ← µ(X)ν∗(X) − vXN+1 ∈ PolyPuncF(N − 1, N +

1, X). The evaluation proof is [µipc(σ)]1 ←
∑2N
i=1,i̸=N+1 µipc[σ

i]1. Return
(v, [µipc(σ)]1).

Verification: Given a commitment key ck, a commitment [µ(σ)]1, a vector ν, a
purported inner product v = µ⊤ν, and an evaluation proof [µipc(σ)]1, check
[µipc(σ)]1 • [1]2 = [µ(σ)]1 •

∑N
j=1 νj [σ

N+1−j]2 − v[σN]1 • [σ]2.
ILV’s security follows since the coefficient of XN+1 in µipc(X) is µ⊤ν−v = 0 iff v
is correctly computed. In this paper, the vector ν is public and known in advance.
Then, the verifier only has to compute two pairings and no exponentiations.

Succinct Zero-Knowledge Arguments. The following definition is based
on [11]. Groth et al. [20] introduced the notion of (preprocessing) zk-SNARKs
with specializable universal structured reference string (SRS). This notion for-
malizes the idea that the key generation for R ∈ UR, where UR is a univer-
sal relation, can be seen as the sequential combination of two steps. First, a
probabilistic algorithm generating an SRS for UR and second, a deterministic
algorithm specializing this universal SRS into one for a specific R.

We consider relation families (Pgen, {URp,N}p∈range(Pgen),N∈N) parametrized
by p ∈ Pgen(1λ) and a size bound N ∈ poly(λ).5 A succinct zero-knowledge
argument Π = (Pgen,KGen,Derive,P,V) with specializable universal SRS for a
relation family (Pgen, {URp,N}p∈{0,1}∗,N∈N) consists of the following algorithms.
Setup: Given 1λ, return p← Pgen(1λ).
Universal SRS Generation: a probabilistic algorithm KGen(p, N)→ (srs, td)

that takes as input public parameters p and an upper bound N on the
relation size, and outputs srs = (ek, vk) together with a trapdoor. We assume
implicitly that elements like ek and vk contain p.

SRS Specialization: a deterministic algorithm Derive(srs,R) → (ekR, vkR)
that takes as input a universal SRS srs and a relation R ∈ URp,N , and
outputs a specialized SRS srsR := (ekR, vkR).

Prover/Verifier: a pair of interactive algorithms ⟨P(ekR,x,w),V(vkR,x)⟩ →
b, where P takes a proving key ekR for a relation R, a statement x, and a
witness w, s.t. (x,w) ∈ R, and V takes a verification key for a relationR and
a statement x, and either accepts (b = 1) or rejects (b = 0) the argument.

Π must satisfy the following four requirements.
Completeness. For all p ∈ range(Pgen), N ∈ N, R ∈ URp,N , and (x,w) ∈ R,

Pr

[
⟨P(ekR,x,w),V(vkR,x)⟩ = 1

(srs, td)← KGen(p, N);
(ekR, vkR)← Derive(srs,R)

]
= 1 .

Succinctness. Π is succinct if the running time of V is poly(λ+ |x|+ log |w|)
and the communication size is poly(λ+ log |w|).

5 Count and Vampire have several size bounds. The definitions generalize naturally.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 11

Knowledge-Soundness. Π is knowledge-sound, if for every non-uniform PPT ad-
versary A = (A1,A2), there exists a non-uniform PPT extractor ExtA

6, s.t.

Pr

 ⟨A2 (st; r) ,V(vkR,x)⟩ = 1∧
¬R(x,w)

∣∣∣∣∣∣∣∣
p← Pgen(1λ); (srs, td)← KGen(p, N);
r ←$ RNDλ(A); (R,x, st)← A1(srs; r);

w← ExtA(srs; r);
(ekR, vkR)← Derive(srs,R)

 = negl(λ) .

Zero-Knowledge.Π is (statistical) zero-knowledge if there exists a PPT simulator
Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all N ∈ poly(λ),

Pr

 ⟨P (ekR,x,w) ,A2(st)⟩ = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 ≈s

Pr

 ⟨Sim (srs, td,R,x) ,A2(st)⟩ = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

Π is subversion zero-knowledge (Sub-ZK, [4]), if it is zero-knowledge even
in the case the SRS is maliciously generated. For perfect zero-knowledge argu-
ments, Sub-ZK follows from the usual zero-knowledge (with trusted SRS), SRS
verifiability (there exists a PPT algorithm that checks that the SRS belongs
to range(KGen)), and a SNARK-specific knowledge assumption, [1,2]. We will
provide the formal definition in Appendix B.

Π is updatable [20], if the SRS can be sequentially updated by many updaters,
such that knowledge-soundness holds if either the original SRS creator or one
of the updaters is honest. [20] showed that an updatable SRS cannot contain
non-monomial polynomial evaluations. Moreover, an updatable SRS must be
verifiable in the same sense as in the case of Sub-ZK.

Since Vampire is public-coin and has a constant number of rounds, we can
apply the Fiat-Shamir heuristic [13] to obtain a zk-SNARK.

Sumcheck Arguments. In a sumcheck argument [28] over F, the prover con-
vinces the verifier that for H ⊆ F, f ∈ F[X1, . . . , Xc], and vf ∈ F, it holds
that

∑
(x1,...,xc)∈Hc f(x1, . . . , xc) = vf . Multivariate sumcheck has many applica-

tions, [9], with usually relatively small |H| but large c. In the context of efficient
updatable zk-SNARKs, one is often interested in univariate sumcheck, where
c = 1 but |H| is large. Univariate sumcheck arguments are most efficient when
H is either an affine subspace or a multiplicative subgroup [5].

The univariate sumcheck relation for multiplicative subgroups is the set of all
pairs Rsum := {((F, d,H, vf) , f)}, where F is a finite field, d is a positive integer,
H is a multiplicative subgroup of F, vf ∈ F, f ∈ F≤d[X], and

∑
χ∈H f(χ) = vf .

Aurora’s Sumcheck. As a part of the zk-SNARK Aurora, Ben-Sasson et al. [5]
proposed an efficient univariate sumcheck (“Aurora’s sumcheck”) for multiplica-
6 Note that although the protocol is interactive, extraction is done non-interactively.

This is sometimes called straight-line extractability.

12 Helger Lipmaa, Janno Siim, and Michał Zając

tive subgroups. Since the new univariate sumcheck relies on similar techniques,
we next recall Aurora’s sumcheck.

As before, let H = ⟨ω⟩ = {ωi : i ∈ [0, nh − 1]} be a cyclic multiplicative
subgroup of order nh = |H|. Fact 1 underlies Aurora’s sumcheck.

Fact 1 Let f ∈ F[X] with deg f ≤ nh − 1. Then
∑
χ∈H f(χ) = nhf(0).

In the case of a large-degree f , Ben-Sasson et al. [5] used Fact 2 to construct
Aurora’s sumcheck argument for proving that

∑
χ∈H f(χ) = vf .

Fact 2 (Core Lemma of Aurora’s Sumcheck) Let f ∈ F[X] with d =
deg f ≥ nh. Then,

∑
χ∈H f(χ) = vf iff there exist R ∈ F≤nh−2[X] and

Q ∈ F≤d−nh
[X], such that f(X) = vf/nh +R(X)X +Q(X)ZH(X).

Assume that d = deg f = poly(λ) while p = 2Θ(λ). In Aurora’s sumcheck
argument, the prover sends to the verifier polynomial commitments to f , R,
and Q. The verifier accepts if (1) R has a low degree ≤ nh − 2 and (2)
f(X) = vf/nh +R(X)X +Q(X)ZH(X).

On top of two polynomial commitments (two group elements), one has
to implement a low-degree test to check that degR ≤ nh − 2. As the low-
degree test, Aurora uses an interactive oracle proof for testing proximity to the
Reed–Solomon code, resulting in additional costs. The full version of Basilisk [32]
implementes a low-degree test in a partially costless way (without added ar-
gument size or verifier’s computation); however, one may need to add a large
number of elements to the SRS for their low-degree test to succeed.

Assumptions. Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1, d2)-PDL (Power Discrete
Logarithm [26]) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A
(
p, [(xi)d1i=0]1, [(x

i)d2i=0]2

)
= x p← Pgen(1λ);x←$ F∗

]
= negl(λ) .

Algebraic Group Model (AGM). AGM is an idealized model [15] for security
proofs. In the AGM, adversaries are restricted to be algebraic in the following
sense: if A inputs some group elements and outputs a group element, it provides
an algebraic representation of the latter in terms of the former. More precisely,
if A has received group elements [x1]1, [x2]2 so far and outputs [y1]1, [y2]2, then
there exists an extractor ExtA which on the same input and random coins outputs
integer vectors γ1, γ2 such that [y1]1 =

∑
i γ1,i[x1,i]1 and [y2]2 =

∑
j γ2,j [x2,j]2.

3 Count: New Univariate Sumcheck Argument

In this section, we propose Count, a new sumcheck argument with improved on-
line efficiency (including the argument size) but a larger SRS size than Aurora’s
univariate sumcheck. We first prove the following generalization of Fact 1, an
alternative to Fact 2 in the case f has degree larger than nh − 1.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 13

Lemma 1. Let f(X) =
∑d
i=0 fiX

i for d ≥ 0. Then,
∑
χ∈H f(χ) = nh ·∑⌊d/nh⌋

i=0 fnhi .

Proof. Write f(X) = R(X)+Q(X)ZH(X) for degR ≤ nh− 1. Based on Fact 1,∑
χ∈H f(χ) =

∑
χ∈HR(χ) = nhR(0). Since Xnh ≡ 1 (mod ZH(X)), f(X) =∑d

i=0 fiX
i ≡

∑nh−1
j=0 (

∑d
i=0:nh|(i−j) fi)X

j (mod ZH(X)). Since f(X) ≡ R(X)

(mod ZH(X)), R(0) =
∑⌊d/nh⌋
i=0 fnhi. Thus,

∑
χ∈H f(χ) = nh ·

∑⌊d/nh⌋
i=0 fnhi. ⊓⊔

Count is based on the following result.

Lemma 2 (Core Lemma of Count). Let H be an order-nh > 1 multi-
plicative subgroup of F∗. Let dgap, d > 0 with dgap ≥ nh · ⌊d/nh⌋, and f ∈
PolyPuncF(d, dgap, X). Define S(X) :=

∑⌊d/nh⌋
i=0 Xdgap−nhi ∈ F≤dgap [X] . Then,∑

χ∈H f(χ) = vf and deg f ≤ d iff there exists fipc ∈ PolyPuncF(d, dgap, X), s.t.

f(X)S(X)− fipc(X) =
vf
nh
·Xdgap . (2)

Here, dgap is a parameter fixed by the master protocol (in our case, Vampire)
that uses Count as a subroutine.

Proof. Clearly, we need dgap ≥ nh · ⌊d/nh⌋ for S to be a polynomial.
(⇒) Define fipc(X) := f(X)S(X) − vf/nh · Xdgap . We must only show that

fipc ∈ PolyPuncF(d, dgap, X). Since deg f ≤ d and degS = dgap, we have deg fipc ≤
dgap + d. Since f(X)S(X) = (

∑d
i=0 fiX

i)(
∑⌊d/nh⌋
i=0 Xdgap−nhi), the coefficient of

Xdgap in f(X)S(X) is
∑⌊d/nh⌋
i=0 fnhi. By Lemma 1,

∑⌊d/nh⌋
i=0 fnhi = vf/nh. Thus,

the coefficient of Xdgap in fipc is 0 and fipc ∈ PolyPuncF(d, dgap, X).
(⇐) Suppose Eq. (2) holds for fipc ∈ PolyPuncF(d, dgap, X). Since degS = dgap

and deg fipc ≤ dgap + d, we have deg f ≤ d. As in (⇒), the coefficient of Xdgap in
f(X)S(X) is

∑⌊d/nh⌋
i=0 fnhi, which is equal to (

∑
χ∈H f(χ))/nh due to Lemma 1.

Since fipc is missing the monomial Xdgap , we get that vf =
∑
χ∈H f(χ). ⊓⊔

It is important that fipc has degree ≤ dgap + d. Thus, one cannot add elements
[σi]1 for i > dgap + d to the SRS of a master argument that uses Count.

Description of Count. Next, we describe Count as a zk-SNARK for the sum-
check relation; if needed, it is straightforward to modify it to the language of
polynomial oracles. In Count, the common input is ([f(σ)]1, vf). The prover sends
to the verifier a polynomial commitment to [fipc(σ)]1, and the verifier accepts
that

∑
χ∈H f(χ) = vf iff a naturally modified version of Eq. (2) holds on com-

mitted polynomials. See Fig. 1 for the full argument. Here, Derive does only
preprocessing and does not do any specialization.

Since we only use Count as a sub-argument of Vampire, we do not formally
have to prove that it is knowledge-sound or zero-knowledge. Nevertheless, for
the sake of completeness, we provide proof sketches.

Lemma 3. The sumcheck zk-SNARK Count in Eq. (2) is complete and per-
fectly zero-knowledge. Additionally, the probability that any algebraic A can break
knowledge-soundness is bounded by Advpdld1,d2,Pgen,B(λ), where B is some PPT ad-
versary, d1 = dgap + d, and d2 = dgap.

14 Helger Lipmaa, Janno Siim, and Michał Zając

Pgen(p): generate p as usually. We implicitly assume nh | (p− 1).

KGen(p, nh, d, dgap): S1(X)← {(Xi)
dgap+d

i=0:i ̸=dgap
}; S2(X)← {1, X, (Xdgap−nhi)

⌊d/nh⌋
i=0 };

σ ←$ F∗; td← σ; srs← (p, nh, d, dgap, [g(σ) : g ∈ S1(X)]1, [g(σ) : g ∈ S2(X)]2)

Derive(srs): S(X)←
∑⌊d/nh⌋

i=0 Xdgap−nhi ∈ F≤dgap [X]; ekR ← srs;
vkR ← (srs, [S(σ)]2, [σ

dgap]T); return (ekR, vkR);

P(ekR,x,w = f) /* x = ([f(σ)]1, vf) */ V(vkR,x)

. .Online phase. .
S(X)←

∑⌊d/nh⌋
i=0 Xdgap−nhi ∈ F≤dgap [X]; fipc(X)← f(X)S(X)− vf/nh ·Xdgap

[fipc(σ)]1

Check [f(σ)]1 • [S(σ)]2 − [fipc(σ)]1 • [1]2 = vf/nh · [σdgap]T

Fig. 1. The new univariate sumcheck zk-SNARK Count for
∑

χ∈H f(χ) = vf .

Proof. Completeness follows from Lemma 2.
We sketch a knowledge-soundness proof in the AGM [15]. Since A is al-

gebraic, f(X), fipc(X) are in the span of Xi for i ∈ S1(X), i.e., f, fipc ∈
PolyPuncF(d, dgap, X). If Eq. (2) holds, then by Lemma 2, the prover is hon-
est. Otherwise, we have a non-zero polynomial V(X) := f(X)S(X)− fipc(X)−
vf/nh · Xdgap (its coefficients are known since the adversary is algebraic), such
that (since the verifier accepts) σ is a root of V. We construct a (d1, d2)-PDL
adversary B that gets (p, [(σi)d1i=0]1, [(σ

i)d2i=0]2) as an input. B constructs srs from
the challenge input, and runs A and its extractor ExtA to obtain V(X). When-
ever V(X) ̸= 0, B can find the root σ and break the PDL assumption.

We construct a simulator that on input (srs, td = σ, ([f(σ)]1, vf)) out-
puts an argument indistinguishable from the real argument. The simulator
just computes [fipc(σ)]1, such that the verification equation holds. That is,
[fipc(σ)]1 ← S(σ)[f(σ)]1 − vf/nh · σdgap [1]1. Zero-knowledge follows since in the
real argument, [fipc(σ)]1 is computed the same way. ⊓⊔

SRS Verifiability. As noted in Section 2, for both Sub-ZK and updatability,
it is required that the SRS is verifiable, i.e., that there exists a PPT algorithm
that checks that the SRS belongs to the span of KGen. One can verify Count’s
SRS by checking that [σ]1 • [1]2 = [1]1 • [σ]2, [σi]1 • [1]2 = [σi−1]1 • [σ]2 for
i ∈ [1, dgap+d]\{dgap, dgap+1}, [σdgap+1]1 • [1]2 = [σ]1 • [σdgap]2, [σdgap−1]1 • [σ]2 =
[1]1 • [σdgap]2, and [σnhi]1 • [σdgap−nhi]2 = [1]1 • [σdgap]2 for i ∈ [1, ⌊d/nh⌋]. Since, in
addition, Count’s SRS consists of monomial evaluations only, Count is updatable.

Efficiency. In Count, the prover outputs a single group element instead of two
in Aurora’s univariate sumcheck argument. The latter also requires one to im-
plement a low-degree test, while there is no need for a low-degree test in Count.

Another important aspect of Count is the prover’s computation. In Aurora’s
univariate sumcheck, the prover computes polynomials R and Q, such that

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 15

f(X) = vf/nh+XR(X)+Q(X)ZH(X); this can be done in quasilinear number
of field operations. On the other hand, since in Vampire, S only has a small
number of non-zero coefficients, the prover of Count only executes a linear num-
ber of field operations. Both univariate sumchecks however require the prover to
use a linear number of G1 operations. Linear-time multivariate sumchecks are
well-known, [33] and important in applications.

We emphasize that dgap needs to satisfy dgap ≥ nh · ⌊d/nh⌋, but it can be
bigger. In Vampire, dgap = d.

As a drawback, Count’s SRS contains more elements than in Aurora’s sum-
check. This is a consequence of using the ILV inner-product commitment scheme.

4 Vampire: New Updatable And Universal zk-SNARK

In this section, we will use Count to construct an efficient updatable and universal
zk-SNARK Vampire for the sparse R1CSLite constraint system. At a very high
level, we use the general approach of Marlin [12], taking into account optimiza-
tions of Lunar [11] and Basilisk [31]. On top of already aggressive optimization,
we use three novel techniques.

First, Marlin uses Aurora’s univariate sumcheck twice. We replace the latter
with Count in one of the instantiations. (In the second one, the sumcheck is for a
low-degree polynomial and thus one can just use Fact 1.) Second, we use a variant
of the aggregated polynomial commitment scheme of [7] to batch together the
openings of three different polynomials at different points. While [7] proposed
only a randomized batch-opening protocol, we observe that in our case, it can
be deterministic. Third, we use a single commitment to commit to left and right
inputs of each constraint. All the techniques together remove four group elements
from the communication. As the end result, Vampire is the most communication-
efficient updatable and universal zk-SNARK for any NP-complete constraint
system. (See Table 1 and Appendix A for an efficiency comparison.)

4.1 Formulating R1CSLite as Sumcheck

Let F = Zp. As in [12,31,11], let H = ⟨ω⟩ and K be two multiplicative subgroups
of F. We use H to index the rows (and columns) and K to index the non-
zero elements of specific matrices. From now on, we assume that the R1CSLite
instance I = (F,H,K,m,m0,L,R) includes descriptions of H and K.

We want to demonstrate the satisfiability of I. Recall from Eq. (1) that for
this we need to show that W · z∗ = 0, where W = (I2m∥ −M), M =

(
L
R

)
, and

z∗ = (z⊤
l ∥z⊤

r ∥(zl ◦ zr)
⊤)⊤, where zl and zr are the vectors of all left and right

inputs of all R1CSLite constraints.

Zero-Knowledge. To obtain zero-knowledge, we use a technique motivated
by [32]. Let |H| = nh := 2m+ b, for a randomizing parameter b ∈ N (to be fixed
to b = 4 in Theorem 2) that helps us to achieve zero knowledge. We add new

16 Helger Lipmaa, Janno Siim, and Michał Zając

random elements to z∗ and zero elements to W; the latter are needed not to
disturb the knowledge-soundness proof. More precisely, for rz ←$ Fb, let

zl :=
(

1
x

za

)
∈ Fm , zr :=

(
1m0+1

zb

)
∈ Fm , and z :=

(
zl
zr
rz

)
.

Let Ib :=
(

Im 0 0
0 Im 0
0 0 0

)
and Mb :=

(
L 0
R 0
0 0

)
be nh × nh matrices. Let z′ :=

(zr
0nh−m

)
.

Our goal is to show
Wb · (z

z◦z′) = 0 , (3)

where Wb :=
(
Ib∥ −Mb

)
. Clearly, Eq. (3) is equivalent to W · z∗ = 0.

Next, Eq. (3) holds iff Ibz −Mb(z ◦ z′) = 0, i.e.,

∀x ∈ H.P [x] :=
∑
y∈H

(
Ib[x, y]−Mb[x, y]z′[y]

)
z[y] = 0 .

Language of Polynomials. Next, we replace vectors with their low-degree
encodings, with say z(Y) :=

∑
χ∈H z[χ]L

H
χ(Y) ∈ F≤nh−1[Y]. Let ΛbH(X,Y) and

M b be polynomials, fixed later, that interpolate the matrices Ib and Mb. That
is, ΛbH(x, y) = Ib[x, y] and M b(x, y) = Mb[x, y] for x, y ∈ H. Thus, Ib[x, y]z[y] =
ΛbH(x, y)z(y) for any x, y ∈ H. Moreover, since z(yωm) = z[yωm] = z′[y] for
y ∈ {ω0, . . . , ωm−1}, we get Mb[x, y]z′[y]z[y] = M b(x, y)z(yωm)z(y). On the
other hand, for x ∈ H and y ∈ {ωm, . . . , ωnh−1}, the value of z[yωm] does not
matter since we multiply it by M b(x, y) = 0.

Thus, Eq. (3) is equivalent to ∀x ∈ H.P (x) = 0, where

P (X) :=
∑
y∈H ψ(X, y), (4)

ψ(X,Y) :=
(
ΛbH(X,Y)−M b(X,Y)z(Y ωm)

)
z(Y) . (5)

To simplify it further, ΛbH(X,Y) and M b(X,Y) have to satisfy additional condi-
tions that we define in the rest of this subsection.

Interpolating Ib. Following [11], we interpolate I with the function

ΛH(X,Y) := ZH(X)Y−ZH(Y)X
nh(X−Y) . (6)

ΛH satisfies the following properties: (1) ΛH(x, y) is PPT computable, (2) ΛH is
a polynomial (this follows since ZH(X)Y − ZH(Y)X = X − Y +XY (Xnh−1 −
Y nh−1) = (X − Y)(1 + XY (

∑nh−2
i=0 Xnh−2−iY i)) divides by X − Y), (3) ΛH

is symmetric, ΛH(X,Y) = ΛH(Y,X), (4) ΛH(x, y) interpolates I over H2, i.e.,
∀x, y ∈ H.ΛH(x, y) = I[x, y] (this follows since ZH(x)y − ZH(y)x = 0 for all
x ̸= y ∈ H and 1+XY (

∑nh−2
i=0 Xnh−2−iY i) = 1+(nh−1)xnh = 1+nh−1 = nh

when X = Y = x ∈ H), (5) ΛH(x, y) = LH
x (y) for any x ∈ H, y ∈ F. Thus,

{ΛH(x, Y)}x∈H is a basis of F≤|H|−1[Y].
It is natural to define the interpolating polynomial of Ib as

ΛbH(X,Y) := ΛH(X,Y)−
∑b
i=1 ℓ

H
nh−b+i(X)ℓHnh−b+i(Y) .

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 17

Clearly, if b is small, then ΛbH(X,Y) is efficiently computable. Moreover,
ΛbH(X,Y) is symmetric since ΛH(X,Y) is symmetric.

Interpolating Mb. We use the sparse matrix encoding of Mb

from [12] that keeps track of the matrix’s non-zero entries. Let
NZ :=

{
(i, j) ∈ H×H : Mb[i, j] ̸= 0

}
be the set of indices where Mb is

non-zero. Let K be the minimum-size multiplicative subgroup of F such that
nk := |K| ≥ |NZ|.7 We encode Mb by using polynomials row and col to keep
track of the indices of its non-zero entries while using a polynomial val for the
values of these entries. That is, ∀κ ∈ K, row(κ) ∈ H is the row index of the κth
element (by using the natural ordering of H2) of NZ, col(κ) ∈ H is the column
index of the κth element of NZ, and val(κ) = Mb[row(κ), col(κ)] ∈ F is the
corresponding matrix entry. Let

row(Z) :=
∑
κ∈K row(κ)LK

κ (Z) ∈ F≤nk−1[Z]

be the low-degree extension of the vector (row(κ))κ∈K. Let col(Z) and val(Z)
be the low-degree extensions of (col(κ))κ∈K and (val(κ))κ∈K. Let zcv(Z),
rcv(Z), zrow(Z), zcol(Z), rc(Z), and zrc(Z) be the low-degree encodings
of Zcol(Z)val(Z), row(Z)col(Z)val(Z), Zrow(Z), Zcol(Z), row(Z)col(Z), and
Zrow(Z)col(Z). For example,

rcv(Z) :=
∑
κ∈K row(κ)col(κ)val(κ)LK

κ (Z) ∈ F≤nk−1[Z] .

We define M b ∈ F[X,Y] that interpolates Mb, as the low-degree extension of

∀x, y ∈ H.M b(x, y) := Mb[x, y] =
∑
κ∈K val(κ)ΛH(row(κ), x)ΛH(col(κ), y) .

Next, ΛH(row(κ), x) = (ZH(row(κ))x − ZH(x)row(κ))/(nh(row(κ) − x)). Since
ZH(row(κ)) = 0, ΛH(row(κ), x) = ZH(x)row(κ)/(nh(x − row(κ))). Similarly,
ΛH(col(κ), y) = ZH(y)col(κ)/(nh(y − col(κ))). Thus,

∀x, y ∈ H.M b(x, y) =
∑
κ∈K val(κ) · ZH(x)row(κ)

nh(x−row(κ)) ·
ZH(y)col(κ)
nh(y−col(κ))

=ZH(x)ZH(y)
n2
h

∑
κ∈K

rcv(κ)
(x−row(κ))(y−col(κ))

(∗)
= ZH(x)ZH(y)

n2
h

∑
κ∈K

rcv(κ)
xy−xcol(κ)−yrow(κ)+rc(κ) ,

where (*) follows from ∀κ ∈ K.rc(κ) = col(κ)row(κ). Thus, we define

M b(X,Y) := ZH(X)ZH(Y)
n2
h

∑
κ∈K

rcv(κ)
XY−Xcol(κ)−Y row(κ)+rc(κ) . (7)

7 H and K can be arbitrary subsets of F, but the most efficient algorithms are known
when they are multiplicative subgroups. One can assume K = H by adding all-zero
rows and columns to the matrix, but we generally do not need that K = H. Keeping
|K| and |H| flexible allows us to achieve different trade-offs.

18 Helger Lipmaa, Janno Siim, and Michał Zając

Since degXM
b(X,Y) ≤ |H| − 1, ∀y ∈ H.M b(X, y) =

∑
χ∈HM

b(χ, y)ΛH(χ,X).
Clearly, M b interpolates Mb.

Getting to Sumcheck. Next, we show that, under mild conditions on inter-
polating matrices that the above encodings satisfy, ∀x ∈ H.P (x) = 0 (and thus
also Eq. (3)) is equivalent to

∑
y∈H ψ(X, y) = 0.

Lemma 4. Assume degX ΛH(X,Y),degXM
b(X,Y) ≤ |H| − 1. Then, ∀x ∈

H.P (x) = 0 iff
∑
y∈H ψ(X, y) = 0.

Proof. (⇒) Assume ∀x ∈ H.P (x) = 0. Recall from Eq. (5) that ψ(X, y) =
(ΛbH(X, y) − M b(X, y)z(yωm))z(y). Since degX ΛH(X,Y),degXM

b(X,Y) ≤
|H| − 1, then also degX ψ(X, y) ≤ |H| − 1. Thus,

∑
y∈H ψ(X, y) =∑

y∈H
∑
x∈H ψ(x, y)Lx(X)

4
=

∑
x∈H P (x)Lx(X)

(∗)
= 0, where (*) follows from

∀x ∈ H.P (x) = 0.
(⇐) Let

∑
y∈H ψ(X, y) = 0. By Eq. (4), ∀x ∈ H.P (x) =

∑
y∈H ψ(x, y) = 0. ⊓⊔

To enable efficient verification that the public input was correctly computed,
the prover transmits [z̃(σ)]1, for the polynomial z̃(Y) defined as follows. Let

Zinp(Y) :=
∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2(m0+1)[Y] ,

inp(Y) :=ℓH1 (Y) +
∑m0

i=1 xiℓ
H
i+1(Y) +

∑m0+1
i=1 ℓHm+i(Y) ∈ F≤nh−1[Y] ,

z̃(Y) :=
∑m−m0−1
i=1 za[i]

ℓHm0+1+i(Y)

Zinp(Y) +
∑m−m0−1
i=1 zb[i]

ℓHm+m0+1+i(Y)

Zinp(Y) +∑b
i=1 rz[i]

ℓH2m+i(Y)

Zinp(Y) .

(8)

Since ℓHi (Y) =
∏
j ̸=i(Y − ωj−1)/(ωi−1 − ωj−1), z̃(Y) ∈ F≤nh−2m0−3[Y]. Thus,

Zinp(Y)z̃(Y) =
∑m−m0−1
i=1 za[i]ℓ

H
m0+1+i(Y) +

∑m−m0−1
i=1 zb[i]ℓ

H
m+m0+1+i(Y) +∑b

i=1 rz[i]ℓ
H
2m+i(Y) interpolates (0⊤

m0+1∥z⊤
a ∥0⊤

m0+1∥z⊤
b ∥r⊤z)⊤. Moreover,

z(Y) = Zinp(Y)z̃(Y) + inp(Y) ∈ F≤nh−1[Y] . (9)

Thus, the existence of a polynomial z̃(Y), such that Eq. (9) holds, guarantees
that z(Y) interpolates (1∥x⊤∥z⊤

a ∥1⊤
m0+1∥z⊤

b ∥r⊤z)⊤ for some za, zb, and rz.

4.2 From Sumcheck to Vampire

According to the preceding discussion, one can handle R1CSLite by proving
that

∑
y∈H ψ(X, y) = 0. In the current subsection, we construct an argument for

the latter. We replace X with a random α chosen by the verifier, obtaining the
polynomial ψα(Y) := ψ(α, Y). We use Count to show that

∑
y∈H ψα(y) = 0. For

this, as in Section 3, the prover computes the polynomial ψipc and the verifier
checks φ(Y) := ψα(Y)S(Y) − ψipc(Y) is a zero polynomial. The latter can be
done by KZG-opening all involved polynomials (e.g., z̃(Y); see Eq. (5)), but
this is inefficient. Instead, the prover KZG-opens z̃(Y) at Y = βωm and Φ(Y),

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 19

M b(α, Y) at Y = β, where (1) Φ is a polynomial defined so that Φ(β) = φ(β) =
0, and (2) one can verify efficiently the correctness, given vz ← z̃(βωm) and
vM ← M b(α, β). This requires us to open a polynomial related to the ILV-
opening of ψα(Y). We aggregate two KZG-openings by using the technique of [7].
Finally, we use a univariate sumcheck to check the correctness of vM ; this step
is complicated, but it follows closely [12,11]. Importantly, we also show that
one of the two commitments from the second sumcheck can be considered an
aggregated KZG-opening and thus batched with other KZG-openings.

To simplify some formulas, we assume always nh > 3. This is w.l.o.g., since
nh = 2m+ b, m ≥ 1, and b ≥ 2.

Details. Let α ←$ F \ H be sampled by the verifier. (We explain later why
α /∈ H.) To test that

∑
y∈H ψ(X, y) = 0, define ψα(Y) := ψ(α, Y) ∈ F≤d[Y].

From Eqs. (5) and (9), we get

ψα(Y) =
(
ΛbH(α, Y)−M b(α, Y)z(Y ωm)

)
· (Zinp(Y)z̃(Y) + inp(Y)) .

Clearly, one can set
d := degψα = 3(nh − 1) . (10)

We use Count to prove that
∑
y∈H ψα(y) = 0. As in Lemma 2, we define

S(Y) :=
∑⌊d/nh⌋
i=0 Y dgap−nhi ∈ F≤dgap [Y] ,

ψipc(Y) := ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y) . (11)

Here, dgap ∈ N is some integer, such that S(Y) and ψipc(Y) are polynomials, i.e.,
dgap ≥ nh · ⌊d/nh⌋ = nh · ⌊3(nh − 1)/nh⌋ = 2nh. (This holds for nh ≥ 3.) Taking
into account later considerations, we set

dgap :=3(nh − 1) . (12)

Thus, S(Y) = Y dgap + Y dgap−nh + Y dgap−2nh = Y 3nh−3 + Y 2nh−3 + Y nh−3.
According to Lemma 2, we need to check that the coefficient of Y dgap in

ψα(Y)S(Y) is 0. We do it by checking that
(i) ψipc(Y) ∈ PolyPuncF(d, dgap, Y), and
(ii) ψipc(Y) is the correct ILV-opening polynomial, i.e.,

φ(Y) :=ψα(Y)S(Y)− ψipc(Y)

=
(
Λb

H(α, Y)−Mb(α, Y)z(Y ωm)
)
(Zinp(Y)z̃(Y) + inp(Y)) · S(Y)− ψipc(Y)

is a zero polynomial.
The prover sends to the verifier KZG-commitments to z̃(Y) and ψipc(Y). Check-
ing i is free in the pairing-based setting. To check ii, we verify that φ(β) = 0,
where β ∈ Cβ ⊂ F\H is sampled by the verifier. (We will define and motivate Cβ
later.) More precisely, we verify that φ(β) = 0, where M b(α, β) is substituted by
a value vM computed by the prover. (The latter means that the verifier does not
have to compute M b(α, β) itself.) We first describe how to check that φ(β) = 0,

20 Helger Lipmaa, Janno Siim, and Michał Zając

assuming vM is correct. After that, we use another sumcheck instantiation to
prove that vM is correctly computed.

First: checking φ(β) = 0. A straightforward check that φ(β) = 0 requires, on
top of sending vM , the prover to KZG-open z̃(Y) both at Y = β and Y = βωm

and ψipc(Y) at Y = β. (The verifier can efficiently evaluate other polynomials
like ΛbH(X,Y), Zinp(Y), and S(Y) at (X,Y) = (α, β) itself.)

To improve on efficiency, we implicitly KZG-commit to Φ, where

Φ(Y) :=(Ψ(Y)S(Y)− ψipc(Y))/S(Y) = Ψ(Y)− ψα(Y) ∈ F≤d[Y] , and

Ψ(Y) :=
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−2m0−3[Y] .

(13)

Ψ(Y) is obtained from ψα(Y) by replacing M b(α, β) with vM and all but one
occurrences of Y with β. Φ is a (low-degree) polynomial that satisfies Φ(β) =
φ(β) = 0.

We open KZG-commitments to z̃(Y) at Y = βωm (in order to compute
z(βωm)) and Φ(Y) at Y = β. For this, the prover sends vz ← z̃(βωm) ∈ F.
Since Φ(β) = 0, Φ(β) is not transferred. We can open and verify the KZG-
commitment to Φ (see Eq. (13)) since we have KZG-commitments to z̃ and ψipc

(the need for the latter becomes apparent soon), KZG is homomorphic, and
the verifier knows all other information present in Φ like inp(β) and vM . More
precisely, the prover batch-opens the two KZG-commitments by computing the
KZG-opening polynomials

z̃pc(Y) := z̃(Y)−z̃(βωm)
Y−βωm ∈ F≤nh−2m0−4[Y] ,

Φpc(Y) :=Φ(Y)−Φ(β)
Y−β = Ψ(Y)−ψα(Y)

Y−β ∈ F≤d−1[Y] .

Since the prover batches these openings together with one more opening, we will
explain the batching process later.

Second (correctness of vM). We modify a technique from [12,11] by us-
ing batching. Recall that M b satisfies Eq. (7). Moreover, degXM

b(X,Y),
degY M

b(X,Y) ≤ nh − 1. Thus, M b(α, β) =
∑
κ∈K T (κ) ∈ F, where

num(Z) :=ZH(α)ZH(β)/n
2
h · rcv(Z) ∈ F≤nk−1[Z] ,

den(Z) :=αβ − α · col(Z)− β · row(Z) + rc(Z) ∈ F≤nk−1[Z] ,

T (Z) := num(Z)
den(Z) ∈ F(Z) .

(14)

Here, we need den(κ) = (α−row(κ))(β−col(κ)) ̸= 0 for any κ ∈ K. This explains
why we chose α, β /∈ H.

We use a sumcheck to check that vM = M b(α, β). Since this sumcheck is
over a low-degree polynomial, we do not need to use Count’s full power. Let
T̂ (Z) :=

∑
κ∈K T (κ)L

K
κ (Z) ∈ F≤nk−1[Z]. Clearly, num(Z) − T̂ (Z)den(Z) ≡ 0

(mod ZK(Z)). Since
∑
κ∈K T̂ (κ) = vM , by Fact 1, T̂ (Z) = ZR(Z) + vM/nk

for some R ∈ F≤nk−2[Z]. Thus, num(Z) − (ZR(Z) + vM/nk)den(Z) ≡ 0
(mod ZK(Z)). Since this equality has to hold only when Z ∈ K, we modify
it as follows. Let Q ∈ F≤nk−3[Z] be such that

num(Z)−R(Z) · zden(Z)− vM/nk · den(Z) = Q(Z)ZK(Z) , where (15)

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 21

zden(Z) := αβZ − αzcol(Z)− βzrow(Z) + zrc(Z) ∈ F≤nk−1[Z] . (16)

Thus, zden(κ) = κden(κ) for κ ∈ K. This rewriting minimizes the degree of
polynomials (e.g., zcol(Z) ∈ F≤nk−1[Z] while Zcol(Z) ∈ F≤nk

[Z]).
[12,11] now transferred polynomial commitment to Q(Z). We improve on

it, by interpreting Eq. (15) as saying that the polynomial num(Z) − R(Z) ·
zden(Z) − vM/nk · den(Z) opens to 0 at all points Z ∈ K. Thus, Q(Z) is an
aggregated polynomial opening of the left-hand side of Eq. (15) at all points of
K. Importantly, we can aggregate this opening with the openings z̃pc(Z) and
Φpc(Z) from before. Hence, we can save an additional one group element.8 (We
will explain batching in a few paragraphs.)

Thus, the prover only commits to R. When we add to srsR elements like
[rcv(σ), col(σ)]2, the verifier can compute the G2 elements in the last equation
since he knows α and β. Thus, polynomials like [rcv(σ)]2 need to be in srsR,
while monomials, needed for the V to be able to compute srsR, need to be in srs.
This explains the definition of srsR in Fig. 2.

Finally, one needs to check that degR ≤ nk − 2. To perform this low-degree
test without increasing the argument size, we use a second trapdoor τ ←$ F∗. We
add [(σiτ)nk−2

i=0]2 to the SRS and use [R(σ)τ,Q(σ)τ]1 instead of [R(σ), Q(σ)]1.
This also modifies the verification equations. The idea behind it is that if the SRS
contains [(σi)i∈S , (σ

iτ)i∈S′]1, then a verification [a]1• [1]2 = [b]1• [τ]2 guarantees
in the AGM that a ∈ span(σiτ)i∈S′ .

Batching. The prover batches the openings of z̃(Y) at Y = βωm, Φ(Y) at
Y = β, and the left-hand side of Eq. (15) at all points Y ∈ K as [Bpc(σ, τ)]1 ←
[z̃pc(σ) +Φpc(σ) +Q(σ)τ]1. Notably, since the three polynomial openings are at
different locations (β, βωm, and all points of K, correspondingly), one does not
have to randomize this check. (See Section 5.1 for formal proof.) The latter is a
general fact, not mentioned in [7] and is thus an independent contribution.

Following the aggregation of [7], the verifier must check that [z̃(σ) − vz]1 •
[(σ−β)ZK(σ)]2+[Φ(σ)]1 • [(σ−βωm)ZK(σ)]2+[num(σ)−R(σ)zden(σ)−vM/nk ·
den(σ)]1 • [(σ − β)(σ − βωm)]2 = [Bpc(σ)]1 • [(σ − β)(σ − βωm)ZK(σ)]2, where
[Φ(σ)]1 = [Ψ(σ)]1−[ψα(σ)]1. Since the verifier does not know [ψα(σ)]1 but knows
[ψipc(σ)]1 = [ψα(σ)S(σ)]1, we multiply each term of the verification equation by
S(σ). We also modify the last addend on the left-hand side to allow the prover
and the verifier to compute it given the terms given in the SRS. Finally, we use
the trapdoor τ because we need to do a low-degree test.

As part of [Bpc(σ)]1, the prover has to compute [Φpc(σ)]1 ← [(Φ(σ) −
ψα(σ))/(σ − β)]1, where Φpc ∈ F≤d−1[Y] and σ is a trapdoor. For Count to
be secure, the SRS cannot contain [σdgap]1. Hence, we need to assume d ≤ dgap.
This motivates the choice of dgap = 3(nh − 1) in Eq. (10).

The batch opening reduces the communication by two group elements.

8 The first version of Vampire (OldVampire), [27], differs from the current Vampire
exactly at this point: in OldVampire, we also transferred a polynomial commitment
to Q(Z). This resulted in an argument that is longer by one group element but in a
shorter SRS.

22 Helger Lipmaa, Janno Siim, and Michał Zając

4.3 Description of Vampire

In Fig. 2, we describe interactive Vampire, the new succinct interactive zero-
knowledge argument with a specializable universal SRS. For the sake of com-
pleteness, Fig. 2 defines all used polynomials. Since this argument is public-coin
and has a constant number of rounds, we can apply the Fiat-Shamir heuristic
([13], we omit the details) to obtain the zk-SNARK Vampire.

We sample the challenge β from the set

Cβ =

{
β ∈ F β /∈ (H ∪K ∪ {0, σ, σ/ωm})∧

S(β) ̸= 0 ∧ S(βωm) ̸= 0 ∧ βωm /∈ K

}
.

We need β /∈ {σ, σ/ωm} to get perfect zero-knowledge (see the proof of The-
orem 2). One can efficiently verify that β /∈ {σ, σ/ωm}, given [σ]1 from the
SRS. In addition, in the knowledge-soundness proof we need that S(Y), ZK(Y),
Y −β, and Y −βωm are coprime. Hence, we need that (1) S(β) ̸= 0, S(βωm) ̸= 0,
ZK(β) ̸= 0, ZK(βω

m) = 0 (the latter two conditions hold iff β /∈ K and βωm /∈ K)
for coprimeness with Y − β and Y − βωm, and (2) β ̸= 0 (otherwise β = βωm,
and thus Y − β and Y − βωm cannot be coprime). As mentioned previously,
α, β /∈ H since otherwise den(κ) = 0 for any κ ∈ K. Note that if nh and dgap are
much smaller than |F| (which is typically the case), then β ←$ F is contained in
Cβ with an overwhelming probability. Thus, in practice, β can be sampled from
F, resulting in only a negligible security risk.

Since S1(X,Xτ) and S2(X) consist of monomials and one can verify the
correctness of its SRS efficiently, Vampire is updatable. We will prove the latter
in Theorem 3. See Appendix A for a thorough efficiency analysis.

5 Security Proofs

We first provide additional preliminaries, needed to prove Vampire’s security.

Fact 3 (Schwartz-Zippel Lemma) Let f(X1, . . . , Xc) ̸= 0 be a total degree-d
polynomial over a field F and let S ⊆ Fc. Then, Pr[x←$ S : f(x) = 0] ≤ d/|S|.

Fact 4 (Bauer et al. [3]) Let V(X1, . . . , Xc) ∈ F[X1, . . . , Xc] be a non-zero
polynomial of total degree d. Define P(Z) ∈ (F[S1, . . . , Sc, R1, . . . , Rc])[Z] as
P(Z) := V(S1Z +R1, . . . , ScZ +Rc). Then the coefficient of the leading term in
P(Z) is a polynomial in F[S1, . . . , Sc] of degree d.

The following lemma (that is based on [22,7]) allows us to batch-open several
polynomials in distinct locations. [7] presented a more general version where the
locations do not have to be distinct; the cost of it is a randomized verification
that involves a value γ ←$ F sampled by the verifier. On the other hand, [7] did
not involve the polynomial S(Y) and worked only with univariate polynomials.

Lemma 5 (Aggregation lemma). Let fi ∈ F[Y,Xτ], Ti ⊂ F be mutually
disjoint sets, and let T := ∪iTi. Let S(Y) ∈ F[Y] be such that ∀s ∈ T.S(s) ̸= 0.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 23

Pgen(1λ): generate p as usually, assuming that nh, nk | (p− 1) and 3 ∤ nk

KGen(p, nh, nk): S1(X,Xτ) = {(Xi)
dgap+d

i=0:i ̸=dgap
, (XiXτ)

nk−2
i=0 };

S2(X) = {1, X,X2, Xnk , Xnk+1, (Xdgap−jnh+i)j∈{0,1,2},i∈[0,nk+2]};
σ, τ ←$ F∗; td← (σ, τ); srs← (p, nh, nk, [g(σ, τ) : g ∈ S1(X,Xτ)]1, [g(σ) : g ∈ S2(X)]2);

Derive(srs, I): ekR ← (p, I, [g(σ, τ) : g ∈ S1(X,Xτ)]1);

srsR ←

[
(σiS(σ))3i=0, rcv(σ)S(σ), col(σ)S(σ), row(σ)S(σ), rc(σ)S(σ),ZK(σ), σZK(σ)

]
2
,[

(σizcol(σ)S(σ), σizrow(σ)S(σ), σizrc(σ)S(σ), σi
ZK(σ)S(σ))

2
i=0

]
2

 ;

vkR ← (p, I, [1, τ, στ, σ2τ]1, [1]2, srsR);

P(ekR,x,w) V(vkR,x). Init .
Zinp(Y)←

∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2m0+2[Y];

inp(Y)← ℓH1 (Y) +
∑m0

i=1 xiℓ
H
i+1(Y) +

∑m0+1
i=1 ℓHm+i(Y) ∈ F≤nh−1[Y];

rz ←$ Fb; z̃(Y)←
m−m0−1∑

i=1

za[i]
ℓHm0+1+i(Y)

Zinp(Y)
+

m−m0−1∑
i=1

zb[i]
ℓHm+m0+1+i(Y)

Zinp(Y)
+

b∑
i=1

rz[i]
ℓH2m+i(Y)

Zinp(Y)
;

z(Y)← Zinp(Y)z̃(Y) + inp(Y); // z̃(Y) ∈ F≤nh−2m0−3[Y]; z(Y) ∈ F≤nh−1[Y]

[z̃(σ)]1

α←$ F \Hα

Abort if α /∈ F \H
. Count:

∑
y∈H ψα(y) = 0 for ψα(Y) =

(
Λb

H(α, Y)−Mb(α, Y)z(Y ωm)
)
z(Y)

S(Y)←
∑⌊d/nh⌋

i=0 Y dgap−nhi ∈ F≤dgap [Y]; ψipc(Y)← ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y);

[ψipc(σ)]1

β ←$ Cββ

. Low-degree sumcheck for
∑

κ∈K(num(κ)/den(κ)) = vM =Mb(α, β)
Abort if β /∈ Cβ ; vM ←Mb(α, β) ∈ F; vz ← z̃(βωm) ∈ F;
Compute R ∈ F≤nk−2[Z], Q ∈ F≤nk−3[Z], such that

num(Z)−R(Z)zden(Z)− vM/nk · den(Z) = Q(Z)ZK(Z);

z(βωm)← Zinp(βω
m)vz + inp(βωm);

Ψ(Y)←
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−m0−3[Y];

z̃pc(Y)← (z̃(Y)− vz)/(Y − βωm) ∈ F≤nh−m0−4[Y];

Φpc(Y)← (Ψ(Y)− ψα(Y))/(Y − β) ∈ F≤d−1[Y];

Bpc(Y,Xτ)← z̃pc(Y) + Φpc(Y) +Q(Y)Xτ ∈ F≤d−1[Y] ∪ (F≤nk−3[Y])[Xτ];

vz, vM , [R(σ)τ, Bpc(σ, τ)]1

[ζ1(σ)]2 ← ZH(α)ZH(β)/n
2
h · [rcv(σ)S(σ)]2; // = [num(σ)S(σ)]2

[ζ2(σ)]2 ← αβ[S(σ)]2 − α[col(σ)S(σ)]2 − β[row(σ)S(σ)]2 + [rc(σ)S(σ)]2; // = [den(σ)S(σ)]2

[ζ3(σ)]2 ← αβ[(σ − β)(σ − βωm)σS(σ)]2 − α[(σ − β)(σ − βωm)zcol(σ)S(σ)]2
−β[(σ − β)(σ − βωm)zrow(σ)S(σ)]2 + [(σ − β)(σ − βωm)zrc(σ)S(σ)]2;

// = [(σ − β)(σ − βωm)zden(σ)S(σ)]2

inp(βωm)← ℓH1 (βω
m) +

∑m0
i=1 xiℓ

H
i+1(βω

m) +
∑m0+1

i=1 ℓHm+i(βω
m);

Zinp(βω
m)←

∏m0+1
i=1 (βωm − ωi−1)(βωm − ωm+i−1); z(βωm)← Zinp(βω

m)vz + inp(βωm);

[Ψ(σ)]1 ←
(
Λb

H(α, β)− vM · z(βωm)
)
(Zinp(β)[z̃(σ)]1 + inp(β)[1]1);

(♯♯) Check ([z̃(σ)− vz]1 • [(σ − β)ZK(σ)S(σ)]2)
+([Ψ(σ)]1 • [(σ − βω

m)ZK(σ)S(σ)]2 − [ψipc(σ)]1 • [(σ − βω
m)ZK(σ)]2)

+
(
[(σ − β)(σ − βωm)τ]1 • [ζ1(σ)− vM/nk · ζ2(σ)]2 − [R(σ)τ]1 • [ζ3(σ)]2

)
=? [Bpc(σ, τ)]1 • [(σ − β)(σ − βωm)ZK(σ)S(σ)]2;

Fig. 2. Vampire: I = (F,H,K,m,m0,L,R) and w = (za
zb

) ∈ F2(m−m0−1).

24 Helger Lipmaa, Janno Siim, and Michał Zając

Fix vs ∈ F for all s ∈ T . Let v̂i ∈ F[Y] be a polynomial, such that v̂i(s) = vs for
all s ∈ Ti. Let bi ∈ {0, 1}. If there exists a polynomial Bpc ∈ F[Y,Xτ], such that∑

i(fi(Y,Xτ)− v̂i(Y))ZT\Ti
(Y)S(Y)bi = Bpc(Y,Xτ)ZT (Y)S(Y) , (17)

then ∀i.∀s ∈ Ti.fi(s,Xτ) = vs.

Proof. Since Ti are disjoint and the roots of S(Y) are not in T , Eq. (17) implies
that ∀i. (ZTi

(Y) | (fi(Y,Xτ)− v̂i(Y))). The lemma follows. ⊓⊔

In our use, v̂i(Y) is either constant or the unique monic polynomial (e.g, La-
grange’s polynomial) of degree |Ti| − 1, such that v̂i(s) = vs for all s ∈ Ti.

5.1 Knowledge-Soundness Proof

We start by proving two lemmas about coprimeness of some of the polynomials
used in Vampire. We need them later in the knowledge soundness proof.

Lemma 6. Recall that ZK(Y) =
∏
κ∈K(Y − κ) and S(Y) = Y dgap + Y dgap−nh +

Y dgap−2nh . If char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk, then gcd(S(Y),ZK(Y)) = 1.

Proof. Clearly, gcd(S(Y),ZK(Y)) = 1 iff K does not contain roots of S(Y). Since
S(Y) = Y 3nh−3+Y 2nh−3+Y nh−3 = Y nh−3(Y 2nh +Y nh +1), roots of S(Y) are
0 (when nh > 3), which is not in K, and roots of S∗(Y) := Y 2nh + Y nh + 1.

Consider the polynomial P (X) = X2 + X + 1 where Y nh from S∗(Y) is
substituted by X. Let a be a root of P (X). Since a2 = −a − 1, we have a3 =
−a2 − a = a + 1 − a = 1. Thus, the order of a divides three. The order cannot
be one since then a1 = a = 1, but P (1) = 1 + 1 + 1 ̸= 0 when char(F) ̸= 3.
Thus, the order of a is three. If a ∈ K, then by Lagrange’s theorem, 3 | nk,
violating the assumption 3 ∤ nk. Thus, a /∈ K. Finally, suppose that b is a root of
Y 2nh +Y nh +1. If b ∈ K, then bnh ∈ K and P (bnh) = 0. We already showed that
P (X) does not have roots in K and thus, S(Y) does not have roots in K. ⊓⊔

Lemma 7. If char(F) ̸= 3, nh ≥ 3, 3 ∤ nk, and β ∈ Cβ, then S(Y), ZK(Y),
Y − β, and Y − βωm are pair-wise coprime.

Proof. Let us look at all the pairs one-by-one.
1. We proved in Lemma 6 that S(Y) and ZK(Y) are coprime assuming

char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk.
2. Suppose that β = βωm. Then, β(ωm − 1) = 0 and thus either β = 0 or
ωm = 1. However, 0 /∈ Cβ . Moreover, ωm ̸= 1 since m < nh. Thus, Y − β
and Y − βωm are coprime.

3. ZK(Y) is coprime with Y − β and Y − βωm since β and βωm are not roots
of ZK(Y) by the definition of Cβ .

4. For the same reason, S(Y) is coprime with Y − β and Y − βωm. ⊓⊔

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 25

Ext(srs, aux; r)

z̃(Y,Xτ)← ExtA(srs, aux; r);

za ←
(
z̃(ωm0+1, 0) · Zinp(ω

m0+1), . . . , z̃(ωm−1, 0) · Zinp(ω
m−1)

)⊤
;

zb ←
(
z̃(ωm+m0+1, 0) · Zinp(ω

m+m0+1), . . . , z̃(ω2m−1, 0) · Zinp(ω
2m−1)

)⊤
;

return w = (za
zb

);

Fig. 3. The knowledge-soundness extractor Ext for Vampire zk-SNARK where A is an
algebraic adversary and ExtA its extractor.

Theorem 1. Assume that char(F) ̸= 3, nh ≥ 3 and 3 ∤ nk. Then, Vampire is
knowledge-sound in the AGM under the PDL assumption. More precisely, an
algebraic A breaks the knowledge-soundness of Vampire with probability at most

Advpdld1,d2,Pgen,B(λ) ·
|F|2

|F|2−q +
16nh+4m0−12

|Cβ | + nh−1
|F|−nh

, (18)

where B is some PPT adversary, d1 = max(dgap+ d, nk− 1), d2 = nk+ dgap+2,
and q ≤ 2 + nk + dgap + dmax such that dmax = max(dgap + d, nk − 1).

Proof. Let A = (A1,A2) be an arbitrary algebraic adversary in the knowledge
soundness game and ExtA its extractor. In each round of the protocol, A sends
some elements of either G1 or F. For the elements of G1, ExtA outputs coefficients
of a polynomial where its monomials belong to S1(X,Xτ). We denote polynomi-
als that the adversary sends as z̃(Y,Xτ), ψipc(Y,Xτ), R(Y,Xτ), and Bpc(Y,Xτ),
where each of the polynomials is in the span of S1(Y,Xτ). We denote the field
elements vz, vM ∈ F, sent by the prover, as in the honest protocol description.

In Fig. 3, we depict the knowledge extractor Ext. Ext runs ExtA
9 to obtain

coefficients of z̃(Y,Xτ). Ext then evaluates z̃(Y, 0) · Zinp(Y) at points of Y ∈ H,
corresponding to za and zb in the honest argument. Ext then returns those
vectors. In the rest of this proof, we show that the value outputted by Ext is a
valid witness for x with an overwhelming probability.

We have one verification check that guarantees V(σ, τ) = 0, where

V(Y,Xτ) := (z̃(Y,Xτ)− vz) · (Y − β)ZK(Y)S(Y)+

(Ψ(Y,Xτ)S(Y)− ψipc(Y,Xτ)) · (Y − βωm)ZK(Y)+((
num(Y)− vM

nk
den(Y)

)
Xτ −R(Y,Xτ)zden(Y)

)
· (Y − β)(Y − βωm)S(Y)−

Bpc(Y,Xτ) · (Y − β)(Y − βωm)ZK(Y)S(Y) ,

where Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y,Xτ) + inp(β)) for

z(βωm) = Zinp(βω
m)vz + inp(βωm). (V(σ, τ) = 0 follows from (♯♯) in Fig. 2

when one allows polynomials like z̃(Y,Xτ) to be maliciously chosen.)
Clearly, Pr[A wins] ≤ Pr[A wins | V(Y,Xτ) = 0]+Pr[A wins | V(Y,Xτ) ̸= 0].

Below, we will analyze both conditional probabilities.
9 Even though A is interactive, since we extract only from the first round message of
A, the knowledge soundness extractor is still non-interactive.

26 Helger Lipmaa, Janno Siim, and Michał Zając

Lemma 8. Assume char(F) ̸= 3, nh ≥ 3, and 3 ∤ nk. For an algebraic A,
Pr[A wins | V(Y,Xτ) = 0] ≤ (16nh + 4m0 − 12)/|Cβ |+ (nh − 1)/(|F| − nh).

Proof. Assume V(Y,Xτ) = 0. Recall that by Lemma 7, S(Y), ZK(Y), Y − β,
and Y − βωm are pair-wise coprime. Hence, we can use Lemma 5 with f1(Y) =
z̃(Y,Xτ)S(Y), f2(Y) = Ψ(Y,Xτ)S(Y)−ψipc(Y,Xτ), f3(Y) = (num(Y)−vM/nk ·
den(Y))Xτ − R(Y,Xτ)zden(Y), T1 = {βωm}, T2 = {β}, T3 = K, vβωm = vz,
vβ = 0, and vy = 0 for y ∈ K. It follows from V = 0 and Lemma 5 that

z̃(βωm, Xτ) = vz , (19)
Ψ(β,Xτ)S(β)− ψipc(β,Xτ) = 0 , (20)

∀y ∈ K.
(
num(y)− vM

nk
den(y)

)
Xτ −R(y,Xτ)zden(y) = 0 . (21)

We analyze each of the three equations separately.
Equation (19). Denote z̃(Y,Xτ) = z̃′(Y)Xτ + z̃

′′(Y). It follows from Eq. (19)
that z̃′(βωm)Xτ + z̃′′(βωm) = vz. Thus, z̃′′(βωm) = vz and z̃′(βωm) = 0.

Equation (21). Write R(Y,Xτ) = R′(Y)Xτ + R′′(Y) and Q(Y,Xτ) =

Q′(Y)Xτ+Q
′′(Y). In particular, degR′(Y) ≤ nk−2 since the onlyXτ -dependent

monomials in S1(Y) are (Y iXτ)
nk−2
i=0 . Thus, from Eq. (21),

∀y ∈ K.
(
num(y)− vM

nk
den(y)−R′(Y)zden(y)

)
Xτ −R′′(y)zden(y) = 0.

Hence, ∀y ∈ K.num(y) − vM/nk · den(y) − yR′(y)den(y) = 0, that is, ∀y ∈
K.T (y) := num(y)/den(y) = vM/nk + yR′(y). Since T̂ (Z) :=

∑
y∈K T (y)L

K
y (Z)

has degree ≤ nk − 1, we get that T̂ (Z) = ZR′(Z) + vM/nk. By Fact 1,

M b(α, β) =
∑
y∈K T (y) =

∑
y∈K T̂ (y) = vM . (22)

Equation (20). Denote ψipc(Y,Xτ) = ψ′
ipc(Y)Xτ + ψ′′

ipc(Y). Observe that
ψ′′
ipc(Y) ∈ PolyPuncF(d, dgap, Y). We express Ψ(Y,Xτ) as

Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)z̃(Y,Xτ) + inp(β))

=
(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)(z̃

′(Y)Xτ + z̃′′(Y)) + inp(β))

=Ψ ′(Y)Xτ + Ψ ′′(Y) ,

where Ψ ′(Y) :=
(
ΛbH(α, β)− vM · z(βωm)

)
Zinp(β)z̃

′(Y) and Ψ ′′(Y) =(
ΛbH(α, β)− vM · z(βωm)

)
· (Zinp(β)z̃

′′(Y) + inp(β)).
Thus, Eq. (20) implies (Ψ ′(β)S(β)− ψ′

ipc(β))Xτ + Ψ ′′(β)S(β)− ψ′′
ipc(β) = 0.

Hence, Ψ ′′(β)S(β) = ψ′′
ipc(β).

Denote ψ(Y) :=
(
ΛbH(α, Y)−M b(α, Y) · z(Y ωm)

)
· (Zinp(Y)z̃′′(Y) + inp(Y)).

Let V3(Y) := ψ(Y)S(Y)−ψ′′
ipc(Y). By Eq. (22), ψ(β) = Ψ ′′(β) and thus V3(β) =

0. Since ψ(Y) and ψipc(Y) were fixed before the adversary received β, we can
apply the Schwartz-Zippel lemma to V3. Recall that (1) deg z̃′′ ≤ dgap + d,
(2) deg inp ≤ nh − 1, (3) degZinp ≤ 2(m0 + 1), (4) deg z ≤ dgap + d+ 2(m0 + 1),
(5) degY ΛH(α, Y) ≤ nh − 1, degY M

b(α, Y) ≤ nh − 1, (6) degψ′′
ipc ≤ dgap +

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 27

d, (7) degψ ≤ (nh − 1) + 2 (dgap + d+ 2(m0 + 1)) = 13nh + 4m0 − 9. Thus,
degV3 ≤ max(degψ + dgap,degψ

′′
ipc) ≤ max(16nh + 4m0 − 12, 6(nh − 1)) =

16nh + 4m0 − 12. If V3(Y) ̸= 0, then the verifier’s acceptance implies that
V3(β) = 0, which according to Schwartz-Zippel lemma can only happen with
probability (16nh + 4m0 − 12)/|Cβ |.

Let us consider the case V3(Y) = 0. Since ψ(Y)S(Y) = ψ′′
ipc(Y), degψ′′

ipc ≤
dgap+d and degS = dgap, then degψ(Y) ≤ d. Since Y dgap /∈ S1(Y,Xτ), the coeffi-
cient of Y dgap in ψ(Y)S(Y) = ψ′′

ipc(Y) =
∑dgap+d
i=0 (ψ′′

ipc)iY
i is 0. But this coefficient

is ψ0 + ψnh
+ ψ2nh

= 0. Thus, from Lemma 1, it follows that
∑
y∈H ψ(y) = 0.

Let us express ψ(Y) as ψ(X,Y), where X corresponds to α. We estab-
lished that

∑
y∈H ψ(α, y) = 0. For any y ∈ H, degψ(X, y) = nh − 1. If∑

y∈H ψ(X, y) ̸= 0, then by the Schwartz-Zippel lemma,
∑
y∈H ψ(α, y) = 0 with

probability at most (nh − 1)/(|F| − nh). Assume that
∑
y∈H ψ(X, y) = 0. By

Lemma 4, ∀x ∈ H.P (x) = 0, where P (x) is as in Eq. (4). In the beginning
of Section 4, we established that this equation is equivalent to R1CSLite. Since
z(Y) = Zinp(Y)z̃′′(Y)+inp(Y) = z̃′′(Y)

∏m0+1
i=1 (Y −ωi−1)(Y −ωm+i−1)+ℓH1 (Y)+∑m0

i=1 xiℓ
H
i+1(Y)+

∑m0+1
i=1 ℓHm+i(Y), then z(ωi−1) for i ∈ {1, . . . ,m0+1} correctly

encodes (1,x1, . . . ,xm0
). The extractor extracts z(ωi−1) for i ∈ {m0+2, . . . ,m}∪

{m+m0 + 2, . . . , 2m} which indeed corresponds to the R1CSLite witness. ⊓⊔

Lemma 9. Let d1 := max(dgap + d, nk − 1), d2 := nk + dgap + 2, and q ≤
2 + nk + dgap + dmax for dmax := max(dgap + d, nk − 1). For an algebraic A and
V(Y,Xτ) as above, there exists a PPT B, such that Pr[A wins | V(Y,Xτ) ̸= 0] ≤
Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q).

Proof. This part of the proof is standard and similar to [15]’s AGM proof for
Groth16 SNARK. Thus, we only sketch the main idea. We construct an adversary
B that breaks the (d1, d2)-PDL assumption whenever A wins in the knowledge
soundness game and V(Y) ̸= 0.
B gets as an input (p; [(xi)d1i=0]1, [(x

i)d2i=0]2). B samples s1, s2, r1, r2 and defines
σ = s1x+ r1 and τ = s2x+ r2. Although B does not know σ or τ (they depend
on the challenge x), B is able to homomorphically compute elements of the form
[σi]ι and [σiτ]ι (e.g., [σ]1 = s1[x]1+r1[1]1). The degrees d1 and d2 are sufficiently
high so that B can compute srs where σ and τ are the trapdoors. Next, B runs A
and ExtA on this srs to obtain the argument and related argument polynomials.
B now knows coefficients of verification polynomial V(Y,Xτ).

When A wins, V(σ, τ) = 0. We define P(X) := V(S1X + R1, S2X + R2) ∈
(F[S1, S2, R1, R2])[X]. According to Fact 4, if V(Y,Xτ) ̸= 0 has degree q, then
the coefficient of the maximal degree of P(X) is some polynomial C(S1, S2) ∈
F[S1, S2] of degree q. Thus, the coefficient of the leading term of P ′(X) :=
V(s1X + r1, s2X + r2) ∈ F[X] is C(s1, s2). Since s1 and s2 are information-
theoretically hidden from A (they are masked by r1 and r2), by the Schwartz-
Zippel lemma, C(s1, s2) = 0 at most with probability q/|F|2. Thus, with an
overwhelming probability, C(s1, s2) ̸= 0 and P ′(X) ̸= 0. Thus, B can find the
roots of P ′(X). One of the roots must be σ since P ′(σ) = V(s1σ+r1, s2σ+r2) =
V(σ, τ) = 0. Finally, B outputs σ.

28 Helger Lipmaa, Janno Siim, and Michał Zając

The total degree q of V is ≤ 2+ dgap + nk + dmax, where dmax := max(dgap +

d, nk − 2). Thus, Pr[A wins | V(Y) ̸= 0](1− q/|F|2) ≤ Advpdld1,d2,Pgen,B(λ). Hence,
Pr[A wins | V(Y) ̸= 0] ≤ Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q). ⊓⊔

It follows from these lemmas that Eq. (18) holds. This proves the claim. ⊓⊔

5.2 Zero-Knowledge Proof

Theorem 2. Let b = 4. Then, Vampire is perfectly zero-knowledge.

Proof. We construct a simulator that, given an input (srs, td,R,x), simulates
the argument using za = zb = 0. We argue that no adversary can distinguish
an argument with the all-zero witness from an argument with the real witness.

Let A = (A1,A2) be an unbounded adversary. Suppose that A1(srs) outputs
(R,x,w, st) such that (x,w) ∈ R andR ∈ URp,nh,nk

. We describe the simulator
as it interacts with A2(st) who plays the role of a malicious verifier.

The simulator Sim proceeds as follows. In the first round, Sim sets za, zb ←
0m−m0−1 and outputs the commitment [z̃(σ)]1 computed from za, zb as in the
real protocol. Then, Sim obtains α from A2(st) and aborts if α /∈ F \H.

In the second round, Sim computes the polynomial ψipc(Y) as in the honest
protocol. In the real argument, ψipc(Y) has a zero coefficient of Y dgap ; with an
overwhelming probability, this is not the case in the simulated argument. Hence,
Sim uses the trapdoor σ to compute the commitment [ψipc(σ)]1 as in Eq. (11).
Next, Sim obtains β from A2(st) and aborts if β /∈ Cβ .

After that, Sim follows the protocol. In particular, Sim computes [R(σ)τ]1
and [Bpc(σ, τ)]1 honestly. The latter is computed by setting Bpc(σ, τ)← (z̃(σ)−
vz)/(σ − βωm) + (Ψ(σ)− ψα(σ)) /(σ − β) + Q(σ)τ ; this is possible since β /∈
{σ, σ/ωm} and σ ̸∈ K. (Since vz can be maliciously chosen, (z̃(σ)−vz)/(σ − βωm)
does not have to be polynomial.) Hence, if there are no aborts, the argument
transcript is [z̃(σ)]1, α, [ψipc(σ)]1, β, vz, vM , [R(σ)τ]1, [Bpc(σ)]1.

We show that A cannot tell apart the real and simulated arguments by
showing that each argument element has identical distribution in the real and
simulated case. First, only the polynomials z̃ and z depend on the witness;
moreover, z is determined by z̃ and the public input x. Next, z̃ is evaluated at
the points β, βωm, σ, and σωm (the last evaluation is done inside ψipc(σ)). Thus,
given b = 4, z̃(σ) (resp., z(σ)) has the same distribution as in the real case.

Recall from Eq. (11) that ψipc(Y) = (ΛbH(α, Y) − M b(α, Y)z(Y ωm))
z(Y)S(Y). All polynomials except z are public. As observed, z(Y ωm) is uniquely
determined by x and z̃(Y ωm). Since z̃(σ) has identical distributions in the honest
and simulated arguments and ψipc(σ) is deterministically computed from z̃(σ),
[ψipc(σ)]1 has the same distribution in the honest and in the simulated argument.

The values vM =M b(α, β) and [R(σ)τ]1 are independent of the witness and
computed honestly by the simulator. Finally, [Bpc(σ, τ)]1 is uniquely determined
by the verification equation and can be computed from z̃(σ), τ, σ, β and x. That
is, from elements with identical distributions in the honest and simulated argu-
ments. This proves the claim. ⊓⊔

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 29

We prove subversion zero-knowledge in Appendix B.

Acknowledgment. Most of the work was done when Janno Siim was employed
by the University of Tartu and Michał Zając by Clearmatics Technologies.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant
SNARKs. Journal of Cryptology 34(3) (2021) p. 17

3. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: CRYPTO 2020, Part II. LNCS, vol. 12171, pp.
121–151

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In: ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 777–804

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 103–128

6. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: TCC 2013. LNCS, vol.
7785, pp. 315–333

7. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081 (2020) https://eprint.iacr.org/2020/081.

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge ar-
guments for arithmetic circuits in the discrete log setting. In: EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 327–357

9. Bootle, J., Chiesa, A., Sotiraki, K.: Sumcheck arguments and their applications.
In: CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 742–773

10. Bowe, S.: BLS12-381: New zk-SNARK Elliptic Curve Construction. Blog post,
https://blog.z.cash/new-snark-curve/, last accessed in July, 2018 (2017)

11. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: ASIACRYPT 2021 (3). LNCS, vol. 13092, pp. 3–33

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 738–768

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO’86. LNCS, vol. 263, pp. 186–194

14. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: PKC 2018, Part I. LNCS,
vol. 10769, pp. 315–347

15. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62

16. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019) https://eprint.iacr.org/2019/953.

https://eprint.iacr.org/2020/081
https://blog.z.cash/new-snark-curve/
https://eprint.iacr.org/2019/953

30 Helger Lipmaa, Janno Siim, and Michał Zając

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp.
626–645

18. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326

20. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs. In:
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728

21. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: 13th IMA Inter-
national Conference on Cryptography and Coding. LNCS, vol. 7089, pp. 431–450

22. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194

23. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Advances
in Cryptology – ASIACRYPT 2021, pp. 98–127

24. Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: Succinct
arguments for randomized algorithms with applications to universal zk-SNARKs.
In: USENIX Security 2020, pp. 2129–2146

25. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: TCC 2010. LNCS, vol. 5978, pp. 499–
517

26. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

27. Lipmaa, H., Siim, J., Zajac, M.: Counting Vampires: From Univariate Sumcheck
to Updatable ZK-SNARK. Technical Report 2022/406, IACR (2022)

28. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2–10

29. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS 2019, pp. 2111–2128

30. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252

31. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable
SNARKs. In: CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 774–804

32. Ràfols, C., Zapico, A.: An Algebraic Framework for Universal and Updatable
SNARKs. Technical Report 2021/590, IACR (2021) Last checked modification
from August 19, 2021.

33. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71–89

34. Zhang, Y., Szepieniec, A., Zhang, R., Sun, S., Wang, G., Gu, D.: VOProof: Efficient
zkSNARKs from Vector Oracle Compilers. Technical Report 2021/710, IACR
(2021) Last checked modification from Mar 12, 2022.

A Vampire’s Efficiency Comparison

Next, we establish the efficiency of Vampire. In Table 2, we provide an exten-
sive comparison with other recent updatable and universal zk-SNARKs. We will

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 31

Table 2. Efficiency comparison of updatable and universal zk-SNARKs. m0 is the
number of public input wires, m is the number of multiplicative gates, ng is the number
of total gates, v is the bounded fan-out, nk is the number of non-zero elements of the
matrix that describe the circuit, a is the number of additive gates, Nk, A,M,M0, V are
maximum supported values for nk, a,m,m0, v. We omitted constant terms in |srs| and
KGen.

Scheme |srs| |srsR| |π| KGen Derive Prove Verify Language

Sonic G1 4M – 20 4M 36m 273m 7P

[8] constraints[29] G2 4M 3 – 4M – –
F – – 16 – O(nk lognk) O(nk lognk) O(m0 + lognk)

Marlin G1 3Nk 12 13 3Nk 12nk 14m+ 8nk 2P R1CS with
sparse
matrices

[12] G2 2 2 – – – –
F – – 8 – O(nk lognk) O(nk lognk) O(m0 + lognk)

Plonk G1 3ng 8 7 3ng 8ng 11ng 2P
Plonk
constraints[16] G2 1 1 – – – –

F – – 7 – O(ng logng) O(ng logng) O(m0 + logng)

LunarLite2x G1 Nk 16 11 Nk 16nk 8m+ 4nk 2P R1CSLite
with sparse
matrices

[11] G2 1 1 – 1 – –
F – – 3 – O(nk lognk) O(nk lognk) O(m0 + lognk)

LunarLite G1 Nk – 10 Nk – 8m+ 3nk 7P R1CSLite
with sparse
matrices

[11] G2 Nk 27 – Nk 24nk –
F – – 2 – O(nk lognk) O(nk lognk) O(m0 + lognk)

RZ21 G1 Nk 4 10 Nk 6nk 6m+ 4nk 2P R1CSLite
with sparse
matrices

(sparse matrices) G2 – – – – – –
[31], §5.3 F – – 3 – O(nk lognk) O(nk lognk) O(m0 + lognk)

RZ21 (“Plonk”) G1 ng 11 8 ng 11ng 8ng 2P
Plonk
constraints[32], Fig 11 G2 1 1 – – – –

F – – 4 – O(ng logng) O(ng logng) O(m0 + logng)

Basilisk G1 M 3V + 1 6 M (3v + 1)m 6m 2P weighted
R1CS with
bounded
fan-out

[32], App F G2 1 1 – – – –
F – – 2 – O(m logm) O(m logm) O(m0 + logm)

Vampire G1 12M +Nk – 4 12M +Nk – 20M + 2Nk
5G1 + 21G2 + 6P R1CSLite

with sparse
matrices

(sparse matrices) G2 4M +Nk 22 – 4M +Nk 120M + 18Nk –
current paper F – – 2 – O(Nk logNk) O(Nk logNk) O(M0 + logM)

provide some more background to understand the table and reproduce some of
the numbers given there.

Recall that nh = |H| is equal to 2m+ b = 2m+ 4, m is the dimension of the
matrices L and R (the number of multiplication gates), and nk = |K| is equal to
the total number of non-zero entries in L and R.

M/Nk versus m/nk. In most of the recent efficient updatable and universal
zk-SNARKs [12,31,11], KGen depends on M ≥ m and Nk ≥ nk, a priori fixed
upper bounds on m and nk, while the actual values of m and nk are fixed only
when invoking Derive. This has the added benefit that one can share a single
long SRS between many applications that have varied instance sizes. At the same
time, the complexity of the prover and the verifier depends on nk and m and
not on Nk and M .

32 Helger Lipmaa, Janno Siim, and Michał Zając

Table 3. G1 elements, needed in Vampire’s SRS for prover’s computation.

Group element Polynomial SRS elements

[z̃(σ)]1 z̃(Y) ∈ F≤nh−2m0−3[Y] [(σi)
nh−2m0−3
i=0]1

[ψipc(σ)]1 ψipc(Y) ∈ PolyPuncF(d, dgap, Y) [(σi)
dgap+d

i=0:i ̸=dgap
]1

[R(σ)τ]1 R(Y)Xτ ∈ (F≤nk−2[Y])[Xτ] [(σiτ)
nk−2
i=0]1

[Bpc(σ, τ)]1 Bpc(Y,Xτ) ∈ F≤d−1[Y] ∪ (F≤nk−3[Y])[Xτ] ([(σ
i)d−1

i=0 , (σ
iτ)

nk−3
i=0]1)

Since our main goal was to minimize the argument length, we had to make
several trade-offs. One of such trade-offs of Vampire is that m and nk cannot
be adjusted in Vampire after the SRS has been generated. Thus, the prover’s
complexity depends on M and Nk. Because of that, in Table 2, we differentiate
between Nk and nk, and M and m.

From a practical perspective we do not expect this to result in a major
increase in the prover’s computation time. For example, in a typical blockchain
application, the zk-SNARK must support different relations since there might
be updates to the underlying blockchain protocol. That does not however mean
that the constraint system’s size will necessarily change by a large extent. If
there indeed is a need to support constraint systems of very different sizes, we
recommend to simply generate SRSs (each using different trapdoors) for several
different values of m (say, 228, 224, and 220) and nk (say, 232, 228, and 224).
This will increase the total length of the SRS by a small constant factor while
enabling one to scale the prover’s work more precisely with the actual values of
m and nk.

In the following discussion, we assume for simplicity that Nk = nk and
M = m.

Size of srs. Let us compute which SRS elements are needed by Vampire. For the
prover’s computation to succeed, srs needs to contain a number of G1 elements
that we explain in Table 3 (we list the group elements output by P, important
underlying polynomials, and the needed SRS elements).

Recalling the definitions of d and dgap from Eqs. (10) and (12) (in particular,
nh < d = dgap), the prover needs [g(σ, τ) : g ∈ S1(X,Xτ)]1 to be in the SRS,
where S1(X,Xτ) = {(Xi)

dgap+d
i=0:i̸=dgap

, (XiXτ)
nk−2
i=0 } is as in Fig. 2.

For the verifier’s computation to succeed, the SRS needs to contain the fol-
lowing elements:
– To check (♯♯), srsR needs to contain 22 polynomial evaluations in G2. Those

values can be computed from [(σi)
nk+dgap+2
i=0]2. For a more precise com-

putation, we will enlist Table 4 which G2 elements are needed and why.
Here, f ∈ {rcv, col, row, rc}, g ∈ {zcol, zrow, zrc}, i1 ∈ {0, 1}, i2 ∈ {0, 1, 2},
i3 ∈ {0, 1, 2, 3}.

– To verify that the SRS is well-formed, [σ2]2 must be in the SRS. We use it to
check that [σnk]2 is correctly computed with the equation [σnk−2τ]2• [σ2]2 =
[τ]1 • [σnk]2 (see the proof of Theorem 3).

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 33

Table 4. G2 elements, needed in Vampire’s SRS for verifier’s computation.

Group element SRS elements

[σi3S(σ)]2 [(σdgap−jnh+i)j∈{0,1,2},i∈{0,1,2,3}]2
[f(σ)S(σ)]2 [(σdgap−jnh+i)j∈{0,1,2},i∈[0,nk−1]]2

[σi2g(σ)S(σ)]2 [(σdgap−jnh+i)j∈{0,1,2},i∈[0,nk+1]]2
[σi2ZK(σ)S(σ)]2 [(σdgap−jnh+ink+i2)i2,j∈[0,2],i∈{0,1}]2

[σi1ZK(σ)]2 [1, σ, σnk , σnk+1]2

Thus, the SRS must contain [σi]2 for i ∈ T , where

T = U ∪ (U + nh) ∪ (U + 2nh) ∪ V ,

U = [dgap − 2nh, dgap − 2nh + nk + 2] and V = {0, 1, 2, nk, nk + 1}. Let us first
compute the size of the set T ′ := U ∪ (U + nh) ∪ (U + 2nh). The size of T ′

depends on whether these three intervals overlap or not, which depends on how
nk and nh are related. Let A = dgap − 2nh, B = nk + 2, and C = nh. Note
that |U| = B + 1 and C is the step between the start points of the consequent
intervals U + inh and U + (i+ 1)nh. Clearly, |U ∪ (U + nh)∪ (U + 2nh)| is equal
to
– B+2C+1 if B ≥ C, that is, (nk+2)+2nh+1 = 2nh+nk+3 if nk ≥ nh−2

(this is the usual case),
– 3(B + 1) = 3C if B = C − 1, that is, 3nh if nk = nh − 3,
– 3(B + 1), if B < C − 1, that is, 3nk + 9, if nk < nh − 2.

Finally, the set V contains five elements, each of which may overlap with the rest
of the elements.

Thus, srs contains (dgap + d+ 1− 1) + (nk − 2 + 1) = 6(nh − 1) + (nk − 1) =
6nh + nk − 7 = 12m+ nk + 6b− 7 = 12m+ nk + 17 elements of G1. Assuming
nk ≥ nh − 2, srs contains ≤ 2nh + nk + 8 = 4m + nk + 2b + 8 = 4m + nk + 16
elements of G2.

Notably, if nk ≫ m, the SRS length is dominated by nk elements of both
groups. In most applications, nk > 6m, but for the sake of freedom, one probably
wants to choose a larger nk usually.

Computational Complexity of KGen. Key generation is dominated by the
need to compute all SRS elements, and is thus the same as SRS length (in scalar
multiplications).

Complexity of Derive. In Derive, one needs to compute a number of polyno-
mials. The computational complexity is the sum of the degrees plus the number
of polynomials, that is, (

∑3
i=0(dgap + i) + 4 · (nk − 1 + dgap) + nk + (nk + 1) +∑2

i=0 (3 · (i+ nk − 1 + dgap) + (i+ nk + dgap))) + 22 = 20dgap + 18nk + 28 =
60nh + 18nk − 32 = 120m+ 18nk + 208 scalar multiplications in G2.

Prover’s Computation. Like in other efficient updatable and universal zk-
SNARKs with constant communication, the prover’s computation is quasilinear.

34 Helger Lipmaa, Janno Siim, and Michał Zając

More precisely, P needs a quasilinear number of F operations to compute z(Y)←
Zinp(Y)z̃(Y)+inp(Y), R(Z), and polynomial openings z̃pc(Y), Φpc(Y), and Q(Z).

In addition, the prover needs a linear number of scalar multiplications to com-
pute the values [z̃(σ), ψipc(σ), R(σ)τ,Bpc(σ)]1. More precisely, to compute [f(σ)]1
for some f , the prover has to execute (at most) deg f +1 scalar multiplications.
Recall that z̃ ∈ F≤nh−2m0−3[Y], ψipc ∈ PolyPuncF(d, dgap, Y), R ∈ F≤nk−2[Z],
and Bpc ∈ F≤d−1[Z] ∪ F≤nk−3[Y][Xτ] correspondingly. Moreover, d = 3(nh − 1)
(see Eq. (10)), dgap = 3(nh − 1) (see Eq. (12)), nh = 2m+ b, and b = 4. Hence,
the total number of scalar multiplications is (nh− 2m0− 3+1)+ (dgap + d− 1+
1)+(nk−2+1)+((d−1+1)+(nk−3+1)) = dgap+2d+nh+2nk−2m0−5 =
10nh+2nk − 2m0− 14 = 20m+2nk − 2m0 +10b− 14 = 20m+2nk − 2m0 +26.

Verifier’s Computation. The verifier’s computation is dominated by the com-
putation of inp(β), Zinp(β) (see Eq. (8)), and ΛbH(α, β) (see Eq. (6)), in total
Θ(m0 + log nh) field multiplications. Otherwise, the verifier executes 5 scalar
multiplications in G1, 21 scalar multiplications in G2, and six pairings.

We note that using Count eliminates one FFT but adds cryptographic oper-
ations. Decreasing the prover’s computation is an interesting open question.

Summatory Efficiency Comparison of Vampire. See Table 2 for efficiency
comparison with previous work. Essentially, we copied the efficiency comparison
table of Table 2 from [32] and added one additional entry for Vampire. Clearly, it
makes sense to compare the efficiency of zk-SNARKs for the constraint system
that underlies Vampire, that is, R1CSLite with sparse matrices. (We denote
corresponding rows in Table 2 by bold font.) Pink cells contain the absolutely
best (most optimal) entries. In the case of the sparse R1CSLite constraint system,
yellow cells contain the absolute best entries as functions of nk (or Nk) only.

As we see from Table 2, Vampire has very good efficiency when measured
as a function of nk and somewhat worse efficiency as a function of m. In other
words, Vampire is very competitive when nk is relatively large compared to m.
In practice, we think it is reasonable to assume that nk ≫ m since it allows
to implement circuits of high fan-in. Inefficiency in m follows from our strategy
of optimizing the argument length. For example, the fact that we use a single
polynomial to commit both to zl and zr increases nh twice from m+b to 2m+b.
On the other hand, using aggregated polynomial openings and Count increases
the SRS size.

It is possible to “demake” Vampire by removing some of the aggressive length-
optimization to obtain a larger argument size but better (say) the SRS size. We
leave it as an open question about which optimization should be removed first
or whether this is needed at all.

Let us now ignore nk-independent terms (we can do it when say nk > 20m).
Then, Vampire’s SRS has the same length as LunarLite’s and Marlin’s; the same
holds for the complexity of KGen. The complexity of Derive is 18nk in the case
of Vampire, which is noticeably beaten only by [31], but comparable to other
zk-SNARK for the same constraint system. This is also likely to be one of the
less important parameters in practice since it only has to be done once per a

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 35

relation. The prover’s computation is 2nk, compared to 4nk in the case of [31]
(for the same arithmetization), 3nk in the case of LunarLite, and 8nk in the
case of Marlin. We emphasize that Vampire has the best prover computation, as
a function of nk, among any known updatable and universal zk-SNARKs. The
verifier’s computation is dominated by Θ(m0+logm) finite field multiplications,
with a very small constant.

Arguably, the argument size and verifier’s computation are long-term most
important measures in blockchain-like applications where one stores and re-
verifies arguments many times. Many other papers optimize the prover’s com-
putation but sacrifice argument length. Since our goal is diametrically opposite,
we are not competing with such papers.

B Subversion Zero Knowledge

We show that Vampire is subversion zero-knowledge (Sub-ZK, [4,1,14,2]), i.e.,
Vampire stays zero-knowledge even when the SRS generator is compromized. For
this, we first modify the Sub-ZK definition of [2] to match interactive argument
systems for universal relations. The new definition divides A into A1 and A2;
moreover, we allow it to pick the relation. Since Derive is deterministic and uses
only public input, we assume that the SRS specialization is performed honestly.
Hence, any party, when given ekR or vkR by an untrusted party, can verify their
correctness by running Derive(srs,R). More precisely, we explicitly assume that
the prover, who is supposed to verify correctness of ekR, has access to the whole
SRS.
Sub-ZK. Π is (statistical) subversion zero-knowledge, if there exist a PPT SRS
verification algorithm SrsVer and a PPT simulator Sim, such that the following
holds: for any PPT subverter Z, there exists a PPT ExtZ , such that for all
unbounded A = (A1,A2) and N ∈ poly(λ),

Pr

 ⟨P(ekR,x,w),A2(st)⟩ = 1∧
SrsVer(srs) = 1∧R(x,w)∧

R ∈ URp,N

∣∣∣∣∣∣
srs← Z (p, N);

(R,x,w, st)← A1(srs);
(ekR, vkR)← Derive(srs,R)

 ≈s

Pr

 ⟨Sim(srs, td,R,x),A2(st)⟩ = 1∧
SrsVer(srs) = 1∧R(x,w)∧

R ∈ URp,N

∣∣∣∣∣∣∣∣
r ←$ RNDλ(Z); srs← Z (p, N ; r);

td← ExtZ(p, N ; r);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 .

We highlighted the changes compared to the definition of zero-knowledge.
We prove that Vampire is subversion zero-knowledge under the BDH-KE as-

sumption [1,2]. Intuitively, BDH-KE states that if an adversary, given p, outputs
([σ]1, [σ]2), then one can extract σ. We also construct an algorithm SrsVer that
verifies the correctness of srs; SrsVer is also needed for Vampire to be updatable.

Theorem 3. Vampire is subversion zero-knowledge under the BDH-KE as-
sumption.

36 Helger Lipmaa, Janno Siim, and Michał Zając

Proof. As proven in [2] (for NIZKs, but their proof generalizes to interactive
arguments), a perfectly zero-knowledge argument system is subversion zero-
knowledge if

(1) there exists a PPT algorithm SrsVer(srs) that outputs 1 or 0; in the first
case, for a valid x, Sim(srs, td,R,x) outputs an argument indistinguishable
from the real one, and

(2) for any PPT adversary Z, there exists a PPT extractor ExtZ , such that: if
srs ← Z(p, N ; r) and SrsVer(srs) = 1, then ExtZ(p, N ; r) outputs the simu-
lation trapdoor σ with overwhelming probability.

Subversion zero-knowledge follows from these properties since if SrsVer accepts
then the SRS is correct (belongs to the range of KGen for some trapdoor) and
the extractor provides Sim with the corresponding trapdoor, i.e., Sim behaves as
in Theorem 2. Next, we construct SrsVer and ExtZ .

SrsVer(srs): Recall from Fig. 2 that {(Xi)
dgap+d
i=0:i ̸=dgap , (X

iXτ)
nk−2
i=0 } and S2(X) =

{1, X,X2, Xnk , Xnk+1, (Xdgap−nhi+j)i∈{0,1,2},j∈[0,nk+2]}. We use [x]ι to denote
the claimed value (e.g., [σ2]1) of an entry in the SRS (e.g., [σ2]1) and [x]ι to
denote the same value after it has already been verified. We assume in the start
that [1, σ, τ]1 and [1]2 are verified (here, [1]1, [1]2 are pairing generators and
[σ]1 and [τ]1 are group elements that correspond to arbitrarily chosen values of
the trapdoors). After a check of [x]ι in an equation where all other variables
are already verified, we think of [x]ι being verified too, that is, it will not be
underlined in the following equations. For example, the check [σ]1 • [1]2 = [1]1 •
[σ]2 convinces us that [σ]2 = [σ]2 is correctly computed.

1. Check [σ]1 • [1]2 = [1]1 • [σ]2.
2. Check [σ]1 • [σ]2 = [1]1 • [σ2]2.
3. For i ∈ [1, dgap − 1]: check [σi−1]1 • [σ]2 = [σi]1 • [1]2.
4. Check [σdgap−1]1 • [σ2]2 = [σdgap+1]1 • [1]2.
5. For i ∈ [dgap + 2, dgap + d]: check [σi−1]1 • [σ]2 = [σi]1 • [1]2.
6. For i ∈ [1, nk − 2]: check [σi−1τ]1 • [σ]2 = [σiτ]1 • [1]2.
7. Check [σnk−2τ]1 • [σ2]2 = [τ]1 • [σnk]2.
8. Check [σ]1 • [σnk]2 = [1]1 • [σnk+1]2.
9. Check [σdgap−1]1 • [σ]2 = [1]1 • [σdgap]2.

10. Check [σdgap−nh]1 • [1]2 = [1]1 • [σdgap−nh]2.
11. Check [σdgap−2nh]1 • [1]2 = [1]1 • [σdgap−2nh]2.
12. For k ∈ {dgap−nhi+ j}i={0,1,2},j∈[1,nk+2]; check [σ]1 • [σk−1]2 = [1]1 • [σk]2.

If all of the above checks pass, then SrsVer outputs 1, otherwise it outputs 0.
Clearly, SrsVer is correctly constructed.

ExtZ(p, nh): Let Z be an adversary, that on input (p, N) outputs srs. Since
SrsVer(srs) = 1, the SRS has the form specified at Fig. 2. In particular, it contains
([σ]1, [σ]2) = σ([1]1, [1]2). By the BDH-KE assumption, there exists an extractor
Ext′A that extracts σ from A. The Sub-ZK extractor ExtA just returns σ.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 37

Since the SRS has been computed correctly and there exists an extractor
that extracts σ, Sim(srs,x) outputs an argument indistinguishable from a real
one. This proves the claim. ⊓⊔

	Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK

