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Abstract. We proposed three general frameworks F1, F2, and F3 for n-
to-n-bit PRFs with one, two parallel, and two serial public permutation
calls respectively, where every permutation is preceded and followed by
any bitwise linear mappings. We analyze them in the Q2 model where
attackers have quantum-query access to PRFs and permutations. Our
results show F1 is not secure with O(n) quantum queries while its PRFs
achieve n/2-bit security in the classical setting, and F2, F3 are not se-
cure with O(2n/2n) quantum queries while their PRFs, such as SoEM,
PDMMAC, and pEDM, achieve 2n/3-bit security in the classical setting.
Besides, we attack three general instantiations XopEM, EDMEM, and
EDMDEM of F2, F3, which derive from replacing the two PRPs in Xop,
EDM, and EDMD with two independent EM constructions, and con-
crete PRF instantiations DS-SoEM, PDMMAC, and pEDM, SoKAC21
of F2, F3, with at most O(2n/2n) quantum queries.
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1 Introduction

Symmetric-key Schemes based on PRFs. A Message Authentication Code
(MAC) is a symmetric-key primitive that ensures message integrity. For a popu-
lar nouce-based MAC, the Wegman-Carter (WC) scheme [35,9,33,5], it offers bet-
ter security when replacing the underlying Pseudorandom Permutation (PRP)
with Pseudorandom Function (PRF). For other cryptographic designs, such as
encryption mode CTR [1] and authenticated encryption mode GCM [26], it also
offers better security when replacing the underlying PRPs (block ciphers) with
PRFs. Thus it is of great necessity to design pseudorandom functions (PRFs)
even with fixed-input length. Unfortunately, dedicated fixed input length PRF
designs are scarce. The well-known PRP/PRF switching lemma [22,4] suggests
simply viewing the PRP as a PRF. However, it makes the cryptographic designs
be limited to only birthday bound security, i.e., n/2-bit security (We say a design
m-bit security if it is secure up to O(2m) queries) assuming the size of the out
of PRP is n bits. Thus, plenty of researchers make a great effort to transform
PRPs to PRFs with high quality.
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PRP-to-PRF Conversion Methods with BBB Security. Fortunately, there
have existed four main PRP-to-PRF transformation methods in achieving se-
curity beyond the birthday bound: Trunc, Xop, EDM, and EDMD. Let block
ciphers be modeled as PRPs. Trunc [21] truncates the output of an n-bit block
cipher by m < n bits, resulting (m + n)/2-bit security [2,18]. Let E1, E2 be
two independent block ciphers. Xop, EDM, and EDMD based on E1, E2 all
provide n-bit security [29,30,31,27]. Xop [3] is the XOR of PRPs for input M :
XoPE1,E2

(M) = E1(M) ⊕ E2(M). Encrypted Davies-Meyer (EDM) [15] and
Encrypted Davies-Meyer Dual (EDMD) [27] serial perform two block ciphers:
EDME1,E2(M) = E2(E1(M) ⊕ M),EDMDE1,E2(M) = E2(E1(M)) ⊕ E1(M).
In fact, at ASIACRYPT 2021, Chen et al. [14] have proved XoP, EDM, and
EDMD are the only constructions with Beyond-Birthday-Bound (BBB) security
(> n/2-bit security) of all n-to-n-bit PRFs based on two block cipher calls.

Advantages of Permutation-Based Designs. It is well known that design-
ing a block cipher is more complex than a keyless public permutation, as the
former involves evaluating the underlying key scheduling algorithm. Besides, we
do not need to store the round keys in public permutation-based designs. In
addition, the theory of analyzing the security of any cryptographic design based
on public permutations is full-fledged. Therefore, it has been an extraordinarily
popular approach to design cryptographic schemes based on public permutations
straightforwardly.

Even-Mansour Constructions. We can view PRPs as PRFs directly. One of
the most famous public permutation-based PRPs is Even-Mansour (EM) con-
struction [17]: EM(M) = π(M⊕K1)⊕K2, where π is a public random permuta-
tion and K1,K2 are two independent keys. Later, Bogdanov et al. [7] introduced
a more general PRP KAC by iterating EM for multiple rounds. However, they
both only provide birthday bound security with respect to the block size by
PRP/PRF switching lemma.

n-to-n-Bit PRFs with One or Two Permutation Calls. Researchers try
to design public permutation-based n-to-n-bit PRFs that provide BBB security
with one or two permutations calls. At CRYPTO 2019 Chen et al. [13] firstly
delved into the methods of designing such PRFs. They presented the general
design of a PRF with only one public permutation call and whose permutation
is preceded and followed by any linear mappings consisting of bitwise exclusive-or
and scalar multiplication (see Fig.1(a)). They showed such construction cannot
be secure beyond the birthday bound for any linear mapping in the classical
setting.

So they try to design PRFs with higher security by making two public permu-
tations calls. In the same paper [13], they try to get such PRFs by instantiating
generic BBB secure PRP-to-PRF conversion functions with EMs or their vari-
ants, i.e., replacing the two PRPs in Xop and EDMD with two independent
EMs or their variants. They firstly proposed SoKAC by instantiating with the
variants of EM for EDMD construction, which is similar to 2-round KAC [7],
with two public permutations and two keys. They named it SoKAC1 if the two
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permutations are the same, which only provides birthday bound security [13].
And they named it SoKAC21 if the two keys are the same, which provides BBB
security [13] but unfortunately attacked by Nandi [28] at EUROCRYPT 2020
with only birthday bound complexity. In addition to SoKAC, they also put for-
ward SoEM by instantiating with EM for Xop construction. SoEM is based on
two public permutations and two keys as well. They called it SoEM1 if the two
permutations are the same and SoEM21 if the two keys are the same, which are
both only birthday bound securities [13]. Delightfully, they proved that SoEM22,
with two independent permutations and two independent keys, is secure up to
2n/3 bits [13].

Following their design method, plentiful fantabulous PRFs have been put for-
ward. Quickly, at CRYPTO 2020 Chakraborti et al. [12] introduced PDMMAC,
which is based on only single public permutation and its reverse and only takes a
single key, by instantiating with the EM appropriately for EDM construction. It
also provides 2n/3-bit security [12]. Next to PDMMAC, in 2020, Bhattacharjee
et al. [6] designed DS-SoEM, which is based on only one public permutation and
even doesn’t need the inverse of the permutation like PDMMAC. It is a Xop
construction instantiated with EM with two same public permutation calls and
two independent keys and still maintains 2n/3-bit security. Another preeminent
PRF based on only one public permutation and two keys is pEDM, which is
introduced by Dutta [16] in 2021. It is also an EDM construction instantiated
with EMs with 2n/3-bit security.

Previous Quantum Attacks. There have existed attacks for permutation-
based PRFs in the Q2 model, which means attackers can make superposition
queries to a quantum oracle of UF : |x, y〉 7→ |x, y⊕F (x)〉, where F is the classic
primitive. In 2012, Kuwakado et al. [24] firstly recover the keys of Even-Mansour
cipher by applying Simon’s algorithm with only O(n) quantum queries. And
for PRFs based on two public permutation calls, recently in 2022 Shinagawa et
al. [32] presented key recovery attacks against SoEM. They successfully attacked
SoEM1 and SoEM21 with polynomial quantum queries by applying Simon’s
algorithm, and SoEM22 with O(2n/2n) quantum queries by applying Grover-
meet-Simon algorithm. For SoEM variants with linear key schedules, Zhang [36]
showed they are also vulnerable to Simon’s algorithm and Grover-meet-Simon
algorithm.

Motivations. There are still plenty of PRFs based on permutations haven’t
been analyzed in the Q2 model, such as SoKAC, PDMMAC, DS-SoEM, pEDM,
and so on. What about the security of such PRFs in the Q2 model? Is it possible
to get an optimal PRF based on one or two permutations? How to propose
general frameworks and analyze their securities?

Our Contributions. We assume all permutations in all functions we analyzed
are on n bits. And then the following functions are all n-to-n-bit functions except
for DS-SoEM. We summarize our main results in Table 1.

1. The first contribution of work is to systematically tackle the security of a
PRF with one random permutation call whose permutation is preceded and



4 Tingting Guo, Peng Wang, Lei Hu, Dingfeng Ye

followed by linear mappings from a generalized perspective in the Q2 model.
The general function we considered (See Fig.1(b)) is more universal than
Chen et al. [13] (See Fig.1(a)):
1) First, we popularize the value from the first linear mapping to the permu-

tation (i.e. x) and the value from the first linear mapping to the second
linear mapping (i.e. z) from same to be independent;

2) Second we extend blockwise linear mappings to bitwise linear mappings.
We name our generalized function as F1. We considering different types of
linear mappings and prove that such construction is not secure with poly-
nomial quantum queries in the Q2 model in spite of its birthday bound
security [13] in the classical setting.

(a) Function proposed by Chen et al. [13]
based on two keys K1 and K2, and mak-
ing one public random permutations eval-
uation π, where L1, L2 are two blockwise
linear mappings.

(b) Function F1 based on two keys K1

and K2, and making one public random
permutations evaluation π, where L1, L2

are two bitwise linear mappings..

(c) Function F2 based on four keys
K1,K2,K3 and K4, and making
two parallel public random permu-
tations evaluation π1 and π2, where
L1, L2, L3 are two bitwise linear
mappings.

(d) Function F3 based on four keys
K1,K2,K3 and K4, and making two se-
rial public random permutations evaluation
π1 and π2, , where L1, L2, L3 are two bitwise
linear mappings.

Fig. 1. Functions based on one or two public permutations calls.

2. The second contribution of work is to systematically tackle the the security of
a PRF with two public random permutations calls and both permutations
are preceded and followed by bitwise linear mappings from a generalized
perspective. We show that all such PRFs can be divided into two kinds:
one’s two permutation calls are parallel and the other’s are serial. We call
the general design of the former as F2 as pictured in Fig.1(c) and the latter
as F3 as pictured in Fig.1(d). We find that both two constructions cannot be
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secure beyond O(2n/2n) quantum queries in the Q2 model in spite of BBB
security of their concrete instantiations in the classical setting [12,16,13].

3. Our third contribution is to present the quantum security of general and
cencrete instantiations of F2, F3. We show the hierarchy of all PRFs based
on two public permutations in Fig.2.

Fig. 2. The hierarchy of all PRFs based on two public permutations calls.

1) By replacing the two PRPs in Xop, EDM, and EDMD with two inde-
pendent EMs respectively, we get three general instantiations of F2, F3:
XopEM, EDMEM, and EDMDEM. We show they are not secure with
at most O(2n/2n) quantum queries in the Q2 model in spite of their
concrete instantiations (PDMMAC, pEDM, and SoEM22) are secure up
to 2n/3 bits.

2) We show the security of concrete PRF designs instantiated with EM for
Xop, EDM, and EDMD. Our results show 2n/3-bit secure DS-SoEM,
PDMMAC, pEDM in the classical break with at most O(2n/2n) queries
in the Q2 model. We also show SoKAC21 break with O(2n/3) queries in
the Q2 model.

Table 1. Summary of the our main results. n is the size of permutation. b is a truncation
parameter.

The number of The number The The query
Functions calls of public of public number complexity of our

permutations permutations of keys quantum attack

Generic F1 1 1 2 O(n)

functions F2 2 2 4 O(2n/2n)

F3 2 2 4 O(2n/2n)

Instantiations EDMEM 2 2 4 O(2n/2n)

with EM EDMDEM 2 2 4 O(2n/2n)

XopEM 2 2 4 O(2n/2n)

DS-SoEM [6] 2 1 2 O(2(n−d)/2(n− d))

Special PDMMAC [12] 2 1 1 O(2n/2)

instantiations pEDM [16] 2 1 2 O(2n/2n)

SoKAC21 [13] 2 2 1 O(2n/3)

2 Preliminaries

2.1 Notations

Let N be the set of positive integers. For n ∈ N, let {0, 1}n be the set of all
n-bit binary strings. Let Perm(n) be the set of all permutations on n bits and
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Func(m,n) be the set of all functions from m bits to n bits. Let x
$← X indicate

choosing x from set X uniformly and random. Let π
$← Perm(n) be a random

permutation on n bits (i.e. π
$←Perm(n)). Let ρ be a random function from n

bits to n bits (i.e. ρ
$←Func(n, n)). Let #X be the number of the elements in set

X . Let O indicate the zero linear mappings which maps all values in {0, 1}n to
0n.

2.2 The Security of qPRF Based on Public Random Permutations

Let π1, . . . , π` be public random permutations. Let F be a keyed function that
may depend on π1, . . . , π` and ρ be a random function that is independent of
π1, . . . , π`. Given the quantum oracle of π±1 , . . . , π

±
` and function F or ρ, where

the superscript ± for πi indicates the distinguisher has bi-directional access.
The security of quantum pseudorandom function (qPRF) of F is defined by
the minimum number of quantum queries of all distinguishers to distinguish
(F, π±1 , . . . , π

±
` ) from (ρ, π±1 , . . . , π

±
` ).

2.3 Quantum Algorithms

1) Grover’s Algorithm. Let test : {0, 1}n → {0, 1} be a boolean function.
Classically, we can find a u such that test(u) = 1 with O( 2n

#{u:test(u)=1} ) queries

to test(·). However, in the Q2 model Grover’s algorithm [19] can speed up the
search by square root [10]. More generally, the test function can’t describe the
target set so precisely. That is to say, test(u) always outputs 1 for elements in
the target set, but for elements not in the target set that test(u) also output 1
with some probability. Luckily, Grover’s algorithm can find an element in such
a target set as well, which is shown in theorem 1.

Theorem 1. ([20,8]) Let U ⊆ {0, 1}n and test : {0, 1}n → {0, 1} be a boolean
function who satisfies {

Pr[test(u) = 1] = 1, u ∈ U ,
Pr[test(u) = 1] ≤ p1, u 6∈ U .

Then the Grover’s algorithm with O(2n/2) quantum queries to test(·) using O(n+
m) qubits can output a u ∈ U with probability almost 1 assuming #U ≤ 2, p1 ≤
1

22n , sufficient large n and m-qubit quantum implementation of test(·).

2) Simon’s algorithm. Let f : {0, 1}n → {0, 1}n be a boolean function. We
call f as a periodic function if there is a unique s ∈ {0, 1}n\{0n} such that
f(x) = f(x ⊕ s) for all x ∈ {0, 1}n. Classically, we can find out the period of
a periodic function by searching collisions with O(2n/2) queries. However, in
the Q2 model Simon’s algorithm [34] can reduce the queries rapidly to only
polynomial times and find the period as well, which is shown in theorem 2.
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Theorem 2. ([23]) Let f : {0, 1}n → {0, 1}n be a periodic function with a
period s and

ε(f) := max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x⊕ t)].

Then Simon’s algorithm with O(n) quantum queries to f using O(n) qubits can
recover s with probability almost 1 assuming ε(f) ≤ 1/2.

Remark 1. ε(f) in theorem 2 quantifies the disturbance of other partial periods,
i.e., f(x) = f(x⊕ t) where t ∈ {0, 1}n\{0n, s}.
3) Grover-meet-Simon Algorithm. In 2017 Leander and May [25] combined
Grover’s algorithm with Simon’s algorithm to recover the keys of FX construc-
tion. They named their technique as Grover-meet-Simon algorithm. Paper [8,20]
considered the universal case. In short, this algorithm can find a u in a special
set U by quering function f(u, x), where f(u, ·) is periodic function for u ∈ U
but for other us it doesn’t hold with some probability. The main idea of the
algorithm is to search u ∈ U by Grover’s algorithm and check whether or not
u ∈ U by whether f(u, ·) is periodic or not, which can be implemented by Simon’s
algorithm. The formalization is in theorem 3.

Theorem 3. ([20]) Let set U ⊆ {0, 1}n and f : {0, 1}n × {0, 1}n → {0, 1}n be
a function who satisfies{

f(u, ·) is a period function with period su, u ∈ U ,
f(u, ·) is not a periodic function, u 6∈ U .

Let Us := {(u, su) : u ∈ U , su is the period of f(u, ·)}, and

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x⊕ t)].

Then Grover-meet-Simon algorithm with O(2n/2n) quantum queries to f using
O(n2) qubits will output a tuple (u, su) ∈ Us with probability almost 1 assuming
ε(f) ≤ 7/8,#U ≤ 2 and sufficient large n.

Remark 2. ε(f) in theorem 3 is to quantify the disturbance of u 6∈ U and other
partial periods ts for u ∈ U , i.e., f(u, x) = f(u, x ⊕ t) where (u, t) ∈ {0, 1}m ×
{0, 1}n\(Us ∪ {0, 1}m × {0n}).

3 Attack on Function with One Permutation Call

We will show that any function that makes only one public random permutation
call and has linear pre- and post-processing functions of the permutation only
is not secure with polynomial queries in the Q2 model. Let M,C ∈ {0, 1}n and
K1,K2 be two independent keys in {0, 1}n. Let π be a public random permuta-
tion, L1 : ({0, 1}n)2 → ({0, 1}n)2 and L2 : ({0, 1}n)3 → {0, 1}n be any two linear
mappings. Then we let F1 : {0, 1}2n×{0, 1}n → {0, 1}n be the general function
using keys K1,K2 with input M and output C. And it makes one call to public
random permutation π and has the pre- and post-linear mapping L1, L2. See F1
in Fig.1(b).
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Theorem 4. Let n ∈ N, and consider the function F1 : {0, 1}2n × {0, 1}n →
{0, 1}n of Fig.1(b) based on a public random permutation π with block length of n

bits and using two keys K1,K2
$← {0, 1}n, for any linear mappings L1, L2. There

exists a distinguisher D making at most O(n) construction queries and at most
O(n) primitive queries to distinguish F1 from random oracle with probability
almost 1.

Proof. Firstly, we decompose L1 = (l11, l12, l13, l14), L2 = (l21, l22, l23) such that
L1(K1,M) = (l11(K1)⊕ l12(M), l13(K1)⊕ l14(M)), L2(K2, y, z) = l21(K2) ⊕
l22(y) ⊕ l23(z), where every sub linear mapping lij maps {0, 1}n → {0, 1}n.
The function F1 after decomposition is in Fig.3(a). Then we can distinguish
(F1, π) from (ρ, π) by considering these sub mappings in three cases, which
cover all scenarios. In the case 1), 2), and 3.1), we refer to the attack in [13] to
distinguish F1 from random function just by O(1) classical queries. The subcase
3.2) is a bit more complicated. However, we can still attack it by constructing
a periodic function and applying Simon’s algorithm to recover the secret period
of F1, which leads to distinguishing attack as well. Let e denote a value only
related to keys. And h(M) denotes a function which can been calculated by
public functions or primitive queries with M . For simplicity, then we can write
function F1 as:

F1(M) = l22π(l12(M)⊕ l11(K1))⊕ h(M)⊕ e,
where here e = l23l13(K1) and h(M) = l23l14(M). See Fig.3(b).

(a) The decomposition of function F1 by
L1 = (l11, l12, l13, l14) and L2 = (l21, l22,
l23).

(b) The simple form of function F1 after
decomposition.

Fig. 3. The decomposition of function F1.

Case 1) l22 = O. When l22 = O, the output of the permutation π is not
related to C. That is to say, F1(M) = h(M)⊕e. We select arbitrary two different
messages M and M ′ and query the construction oracle with them to get answers
C and C ′. If the function is F1, then C ′ ⊕ C = h(M) ⊕ h(M ′). However, for
random function it holds with negligible probability. So we distinguish them.

Case 2) l11(K1) = 0n. In this case, the input of the function π is inde-
pendent of the key K1. We select arbitrary two different messages M and
M ′ and query the construction oracle with them to get answers C and C ′.
Then we distinguish F1 from random function by whether or not C ′ ⊕ C =
l22π(l12(M))⊕ l22π(l12(M ′))⊕ h(M)⊕ h(M ′).
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Case 3) l22 6= O, l11(K1) 6= 0n.

Subcase 3.1) l12 is irreversible. Firstly, we find two different M and M ′ who
satisfies l12(M) = l12(M ′). Then we query the construction oracle with them to
obtain C and C ′. And we can distinguish F1 from random function by whether
or not C ′ ⊕ C = h(M)⊕ h(M ′).

Subcase 3.2) l12 is reversible. We let

f(M) :=F1(M)⊕ h(M)⊕ l22π(l12(M))

=l22π(l12(M)⊕ l11(K1))⊕ l22π(l12(M))⊕ e.
Given the quantum oracle of F1 and π, we can get the quantum oracle of f
referring to paper [23]. It is easily to obtain f(M) = f(M ⊕ l−112 l11(K1)) for
all M . That is to say, f is a periodic function with period s := l−112 (l11(K1)).
If ε(f) ≤ 1/2, then by theorem 2, Simon’s algorithm can find the period with
O(n) quantum queries to F1 and π using O(n) qubits. We put the proof of
ε(f) ≤ 1/2 in Appendix A. After recovering s, query the construction oracle with
any M,M ⊕ s to get responds C,C ′ and query l22π(·) with l12(M), l12(M ⊕ s)
to get responses y, y′. Then C ′ ⊕ C = h(M) ⊕ y ⊕ h(M ⊕ s) ⊕ y′. Instead, if
the adversary is given quantum access to random function ρ and permutation
π, it doesn’t hold. Because Simon’s algorithm will output a random value after
querying random function. So we distinguish them. The method can be applied
to EM construction.

4 Pseudorandom Function with Two Permutation Calls

We will show that any pseudorandom function that makes two serial (see Fig.1(d))
or parallel (see Fig.1(c)) public permutation calls and every permutation has lin-
ear pre- and post-processing functions is not secure with O(2n/2n) queries in the
Q2 model by applying Grover-meet-Simon algorithm. In section 5, the method
applies to EDM [15], EDMD [27] and Xop [3] constructions instantiated with
EM construction [17], and concrete schemes DS-SoEM [6], PDMMAC [12] and
pEDM [16].

4.1 Attack on Pseudorandom Function with Two Parallel
Permutation Calls

Let π1, π2 ∈ Perm(n) and K1,K2,K3,K4 are four independent keys in {0, 1}n.
Let L1 : ({0, 1}n)2 → ({0, 1}n)2, L2 : ({0, 1}n)2 → ({0, 1}n)2, L3 : ({0, 1}n)6 →
{0, 1}n be any three linear mappings. Then let the general function F2 : {0, 1}4n×
{0, 1}n → {0, 1}n based on two parallel public permutation calls be defined as
Fig.1(c).

Theorem 5. Let n ∈ N, and consider the function F2 : {0, 1}4n × {0, 1}n →
{0, 1}n of Fig.1(c) based on public random permutations π1 and π2 with block

length of n bits and using four keys K1,K2, K3,K4
$← {0, 1}n, for any linear

mapplings L1, L2, L3. There exists a distinguisher D making at most O(2n/2n)
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construction queries and at most O(2n/2n) primitive queries to distinguish F2
from random oracle with probability almost 1.

Proof. Firstly, we decompose L1, L2, L3 into L1 = (l11, l12, l13, l14), L2 = (l21, l22, l23,
l24), L3 = (l31, l32, l33, l34, l35, l36) as in Fig.4(a), where every sub linear mapping
lij : {0, 1}n → {0, 1}n. Then we will attack the decomposition form of F2. We
consider four cases as follows, which cover all scenarios. Let e denote a value
only related to keys. And h(M) denotes a function which can been calculated by
public functions or primitive queries with M . For simplicity, then we can write

F2(M) = l32π1(l12(M)⊕ l11(K1))⊕ l34π2(l22(M)⊕ l21(K2))⊕ h(M)⊕ e,
where here h(M) = l33l14(M)⊕l35l24(M) and e = l31(K1)⊕l36(K4)⊕l35l23(K2)⊕
l33l13(K1). See Fig.4(b).

(a) The decomposition of function F2
by L1 = (l11, l12, l13, l14), L2 = (l21, l22,
l23, l24) and L3 = (l31, l32, l33, l34, l35, l36).

(b) The simple form of function F2 after
decomposition.

Fig. 4. The decomposition of function F2.

Case 1) l32 = O or l34 = O. Take l32 = O as an example. Now

F2(M) = l34π2(l22(M)⊕ l21(K2))⊕ h(M)⊕ e,
which degenerates into F1. By theorem 4 there exists a distinguisher making at
mostO(n) construction queries and at mostO(n) primitive queries to distinguish
it from random oracle.

Case 2) l12 = O or l22 = O. Take l12 = O as an example. Now

F2(M) = l34π2(l22(M)⊕ l21(K2))⊕ h(M)⊕ e⊕ l32π1(l11(K1)),

which degenerates into F1, too.

Case 3) l11(K1) = 0n or l21(K2) = 0n. Take l11(K1) = 0n as an example.
Now

F2(M) = l34π2(l22(M)⊕ l21(K2))⊕ h(M)⊕ l32π1(l12(M))⊕ e,
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which degenerates into F1, too.

Case 4) l32 6= O, l12 6= O, l34 6= O, l22 6= O, l11(K1) 6= 0n, l21(K2) 6= 0n.

Subcase 4.1) l12 is irreversible or l22 is irreversible. We take l12 is irre-
versible as an example.

If there are two differentM andM ′ such that l12(M) = l12(M ′) and l22(M) =
l22(M ′), we query the construction oracle with M and M ′ to obtain C and C ′.
Then we can distinguish F2 from random function by whether or not C ⊕C ′ =
h(M)⊕ h(M ′).

If there are no two different M and M ′ such that l12(M) = l12(M ′) and
l22(M) = l22(M ′), no nonzero element of the kernel of linear mapping l22
(resp.l12) belongs to the kernel of l12 (resp.l22). Fix an arbitrary nonzero el-
ement a of the kernel of l12 and any M . Then l12(M) = l12(M ⊕ a) and
l22(M) ⊕ l22(M ⊕ a) = l22(a)( 6= 0n) hold. Assume the size of the kernel of
l12 (resp. l22) is r (resp. x), then linear mapping l12 (resp. l22) has 2n/r (resp.
2n/x) different images and every image of l12 (resp. l22) has r (resp. x) pre-
images. By there being no two different M and M ′ such that l12(M) = l12(M ′)
and l22(M) = l22(M ′), we get every different pre-images corresponding to the
same image of l12 (resp. l22) correspond to different images of l22 (resp. l12),
which leads r ≤ 2n/x (resp. x ≤ 2n/r). Thus max{2n/x, 2n/r} ≥ 2n/2, which
means the larger size of the images of l12, l22 is at least 2n/2. Assume the image
size of l22 is larger than l21. Under this assumption there exist the following
attack, or there exist another similar attack as well. Let

f(u) :=F2(M)⊕ h(M)⊕ F2(M ⊕ a)⊕ h(M ⊕ a)⊕
l34π2(l22(M)⊕ u)⊕ l34π2(l22(M ⊕ a)⊕ u).

=l34π2(l22(M)⊕ l21(K2))⊕ l34π2(l22(M ⊕ a)⊕ l21(K2))⊕
l34π2(l22(M)⊕ u)⊕ l34π2(l22(M ⊕ a)⊕ u)

Let U := {l21(K2), l21(K2)⊕ l22(a)}. It is easy to obtain when u ∈ U , f(u) = 0n

for all M ∈ {0, 1}n. So we try to search an u ∈ U by Grover’s algorithm through
defining a test function, which filters u ∈ U from all us by whether or not
f(u) = 0n. Firstly, fix M := {M1,M2, . . . ,Mq} which satisfies for any Mi that
l22(Mi), l22(Mi⊕a) /∈ {l22(Mj), l22(Mj⊕a)|Mj ∈M\{Mi}}. Secondly, calculate
bi := F2(Mi)⊕h(Mi)⊕F2(Mi⊕a)⊕h(Mi⊕a) for i = 1, . . . , q through querying
F2. Then let test : {0, 1}n → {0, 1} be

test(u) =

{
1, if bi = l34π2(l22(Mi)⊕ u)⊕ l34π2(l22(Mi ⊕ a)⊕ u) i = 1, . . . , q,
0, otherwise.

It is easy to obtain that test(u) = 1 for any u ∈ U . If Pr[test(u) = 1] ≤ 1
22n

holds for any u /∈ U , then we can recovery an u ∈ U by theorem 1. We prove
Pr[test(u) = 1] ≤ 1

22n for any u /∈ U when q ≥ 4n in Appendix B. After
recovering a u ∈ U , for a fixed M ∈ {0, 1}n\M we check whether F2(M) ⊕
h(M)⊕F2(M ⊕a)⊕h(M ⊕a)⊕ l34π2(l22(M)⊕u)⊕ l34π2(l22(M ⊕a)⊕u) = 0n

or not by O(1) classical queries to F2 and π2. It holds beyond doubt. However, if
we replace the construction function from F2 to a random function, it happens
with negligible probability. Thus we distinguish F2 from the random function.
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Subcase 4.2) l12, l22 are reversible. Because π1 and π2 are two independent
random permutations, so π1 = π2 with negligible probability. We only consider
π1 6= π2. We let

f(u,M) :=F3(M)⊕ h(M)⊕ l34π2(l22(M)⊕ u)⊕ l32π1(l12(M))

=l34π2(l22(M)⊕ l21(K2))⊕ l32π1(l12(M)⊕ l11(K1))⊕
l34π2(l22(M)⊕ u)⊕ l32π1(l12(M))⊕ e.

Let U := {l21(K2), l22l
−1
12 l11(K1) ⊕ l21(K2)} and s := l−112 l11(K1). It is easy to

get when u ∈ U , f(u,M) = f(u,M ⊕ s) holds for all M . Thus if ε(f) ≤ 7/8,
then by theorem 3 Grover-meet-Simon algorithm can recover an u ∈ U and s
with O(2n/2n) quantum queries to f . After that, we can distinguish F2 from
random function. We put the proof of ε(f) ≤ 7/8 in Appendix C.

4.2 Attack on Pseudorandom Function with Two Serial
Permutation Calls

(a) The decomposition of function F3 by L1 = (l11, l12, l13, l14, l15, l16), L2 =
(l21, l22, l23, l24, l25, l26, l27, l28) and L3 = (l31, l32, l33, l34).

(b) The simple form of function F3 after decomposition.

Fig. 5. The decomposition of function F3.

Let π1, π2
$← Perm(n) and K1,K2,K3,K4 are four independent keys in {0, 1}n.

Let L1 : ({0, 1}n)2 → ({0, 1}n)3, L2 : ({0, 1}n)4 → ({0, 1}n)2, L3 : ({0, 1}n)4 →
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{0, 1}n be any three linear mappings. And let the general function F3 : {0, 1}4n×
{0, 1}n → {0, 1}n based on two serial public permutation calls be defined as
in Fig.1(d). Similar to F1 and F2, we can decompose L1, L2, L3 into L1 =
(l11, l12, l13, l14, l15, l16), L2 = (l21, l22, l23, l24, l25, l26, l27, l28), L3 = (l31, l32, l33, l34)
as in Fig.5(a), where every sub linear mapping lij : {0, 1}n → {0, 1}n. For
whether general or concrete instantiations of F3 in section 5, l12 is identical
mappling. Thus for l12 6= O, we only consider l12 is reversible.

Theorem 6. Let n ∈ N, and consider the function F3 : {0, 1}4n × {0, 1}n →
{0, 1}n of Fig.1(d) based on two public random permutation π1 and π2 with block

length of n bits and using four keys K1,K2, K3,K4
$← {0, 1}n, for any linear

mapplings L1, L2, L3 where l12 = O or reversible. There exists a distinguisher D
making at most O(2n/2n) construction queries and at most O(2n/2n) primitive
queries to distinguish F3 from random oracle with probability almost 1.

Proof. For simplicity, we let h(M) := l33l28l14(M)⊕l34l16(M), e := l33(l28l13(K1)⊕
l25(K2)⊕ l26(K3))⊕ l31(K4)⊕ l34l15(K1), u∗ := l21 (K2)⊕ l22 (K3)⊕ l24l13(K1).
Then

F3(M) =l32π2(l23π1(l12(M)⊕ l11(K1))⊕ l24l14(M)⊕ u∗)⊕
l33l27π1(l12(M)⊕ l11(K1))⊕ h(M)⊕ e.

See Fig.5(b). We will attack F3 by attacking four cases as follows.

Case 1) l32 = O. In this case,

F3(M) = l33l27π1(l12(M)⊕ l11(K1))⊕ h(M)⊕ e,
which degenerates into F1.

Case 2) l12 = O. In this case,

F3(M) = l32π2(l23π1(l11(K1))⊕ l24l14(M)⊕ u∗)⊕ h(M)⊕ e⊕ l33l27π1(l11(K1)),

which degenerates into F1, too.

Case 3) l23 = O. In this case,

F3(M) = l32π2(l24l14(M)⊕ u∗)⊕ l33l27π1(l12(M)⊕ l11(K1))⊕ h(M)⊕ e,
which degenerates into F2.

Case 4) l32 6= O, l12 6= O, l23 6= O. In this case, l12 is reversible. Let u∗∗ :=
u∗⊕l24l14l−112 l11 (K1) , g(u, x) := l32π2

(
l23π1(x)⊕ l24l14l−112 (x)⊕ u

)
⊕l33l27π1(x).

Then
F3(M) = g(u∗∗, l12(M)⊕ l11(K1))⊕ h(M)⊕ e.

Let
f(u,M) :=F3(M)⊕ h(M)⊕ g(u, l12(M))

=g(u∗∗, l12(M)⊕ l11(K1))⊕ g(u, l12(M))⊕ e.

Then it is easy to get when u = u∗∗, f(u∗∗,M) = f(u∗∗,M ⊕ s) holds for all
M ∈ {0, 1}n where s := l−112 l11(K1). Thus if ε(f) ≤ 7/8, then by theorem 3
Grover-meet-Simon algorithm can recover an u∗∗ and s with O(2n/2n) quantum
queries to f . We put the proof of ε(f) ≤ 7/8 in Appendix D. After that, we can
distinguish F3 from random function.
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5 Instantiation

In this section, we show the security of general and some concrete instantiations

of F2 and F3. In the following, we always assume K1,K2,K3,K4
$← {0, 1}n

and π1, π2
$← Perm(n). For the reason that Ki = 0n happens with negligible

probability, we assume Ki 6= 0n for i = 1, 2, 3, 4. And we only put the key
recovery methods of concrete functions. After recovery the distinguishing attacks
from random function are similar as F2, F3, so we omit them.

5.1 Xop construction instantiated with EM construction

We instantiate Xop construction by replacing two block ciphers with two EM
constructions EM(x) = π1(x ⊕K1) ⊕K2 and EM(x) = π2(x ⊕K3) ⊕K4, and
get

XopEM(M) = π1(M ⊕K1)⊕ π2(M ⊕K2)⊕K3 ⊕K4.

It is a general instantiation of F2. Thus we can recover K1,K2 by applying
Grover-meet-Simon algorithm with O(2n/2n) queries using O(n2) qubits when
considering function

f(u,M) = XopEM(M)⊕ π1(M)⊕ π2(M ⊕ u),

which has a period K1 in its second component when u = K1 ⊕K2 or K2.

DS-SoEM. For message M ∈ {0, 1}n−d, ‘msbn−d’ means the truncation of key
masks at the input to their n− b most significant bits. Bhattarcharjee et al. [6]
defined

DS-SoEM(M) =π1((M ⊕msbn−d(K1))‖0d)⊕
π1((M ⊕msbn−d(K2))‖1d)⊕K1 ⊕K2.

It is a concrete variant of the instantiation of Xop. We can recover msbn−d(K1),

msbn−d(K2) by applying Grover-meet-Simon algorithm with O(2
n−d

2 (n − d))
queries using O(n2) qubits when considering function

f(u,M) = DS-SoEM(M)⊕ π1(M‖0d)⊕ π1((M ⊕ u)‖1d),

which has a period msbn−d(K1) in its second component when u = msbn−d(K1⊕
K2) or msbn−d(K2).

5.2 EDM construction instantiated with EM construction

We can instantiate EDM construction with two EM construction and get

EDMEM(M) = π2(π1(M ⊕K1)⊕M ⊕K2 ⊕K3)⊕K4.

It is a general instantiation of F3. We can recover K1,K2 ⊕ K3 by applying
Grover-meet-Simon algorithm with O(2n/2n) queries using O(n2) qubits when
considering function

f(u,M) = EDMEM(M)⊕ π2(π1(M)⊕M ⊕ u),

which has a period K1 in its second component when u = K1 ⊕K2 ⊕K3.
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PDMMAC. Chakraborti et al. [12] defined

PDMMAC(M) = π−11 (π1(M ⊕K1)⊕M ⊕K1 ⊕ 2K1)⊕ 2K1.

It is a concrete instantiation of EDM. Although we can apply Grover-meet-Simon
algorithm to attack it with O(2n/2n) queries using O(n2) qubits as EDMEM.
However, here it is easier to search K1 straightforwardly by Grover’s search,
which costs O(2n/2) queries to π1, π

−1
1 , O(n) queries to PDMMAC and O(n)

qubits.

pEDM. Dutta et al [16] defined

pEDM(M) = π1(π1(M ⊕K1)⊕M ⊕K1 ⊕K2)⊕K1.

It is a concrete instantiation of EDM. We apply Grover-meet-Simon algorithm
to attack it with O(2n/2n) queries to pEDM and π using O(n2) qubits when
considering function

f(u,M) = pEDM(M)⊕ π1(π1(M)⊕M ⊕ u),

which has a period K1 in its second component when u = K2.

5.3 EDMD construction instantiated with EM construction

We instantiate EDMD construction with EM construction and get

EDMDEM(M) = π2(π1(M ⊕K1)⊕K2 ⊕K3)⊕ π1(M ⊕K1)⊕K2 ⊕K4.

It is a general instantiation of F3. We can recover K1,K2 ⊕ K3 by applying
Grover-meet-Simon algorithm with O(2n/2n) queries using O(n2) qubits when
considering function

f(u,M) = EDMDEM(M)⊕ π2(π1(M)⊕ u)⊕ π1(M),

which has a period K1 in its second component when u = K2 ⊕K3.

SoKAC21. SoKAC21 [13] is as follows:

SoKAC21(M) = π2(π1(M ⊕K1)⊕K1)⊕ π1(M ⊕K1)⊕K1.

It is a concrete instantiation of EDMD. It is well known that BHT algorithm [11]
is a time-memory trade-off algorithm of Grover’s algorithm. By applying this
algorithm to speed up the birthday bound classical attack [28] by Nandi, we can
distinguish it from random function with O(2n/3) quantum queries.

6 Conclusion

In this paper, we systematically analyze the security of PRFs based on one
or two public random permutation calls with pre- and post-linear processes of
each permutation in the Q2 model. Besides, we present the security of some
popular instantiations: contain general instantiations (XopEM, EDMEM, ED-
MDEM)and concrete PRFs (DS-SoEM, PDMMAC, pEDM, SoKAC21). Notice
that our attack for F3 in section 4.2 not include that case l12 irreversible. We
find it is more complexity to find attack when l12 is irreversible for whatever
other linear mapplings be. We leave it as an open problem. Generally, it is suf-
ficient to consider l12 = O or reversible with respect to existing instantiations.
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The further question is if there is provable security in the Q2 model to show the
tightness of the bound.

A Proof of ε(f) ≤ 1/2 in Subcase 3.2) in Section 3

In fact, we can prove ε(f) is at most 1
2 , i.e., for any t ∈ {0, 1}n\{0n, s} that

PrM

[
l22π(l12(M)⊕ l11(K1))⊕ l22π(l12(M))

l22π(l12(M ⊕ t)⊕ l11(K1))⊕ l22π(l12(M ⊕ t)) = 0n

]
≤ 1/2. (1)

By t 6∈ {0n, s} we know the four inputs of l22π, i.e., l12(M) ⊕ l11(K1), l12(M),
l12(M ⊕ t) ⊕ l11(K1), and l12(M ⊕ t), are different from each other. Then by
the randomness of π, the four inputs of l22(·) are four distinct random values in
{0, 1}n. By l22 6= O, we obtain the range of l22(·) has at least two elements and
the probability of l22(x) = y for any random x ∈ {0, 1}n and y in the range is
at most 1

2 . Thus the equation (1) happens with probability no more than 1
2 .

B Proof of Pr[test(u) = 1] ≤ 1
22n for Any u /∈ U in

Subcase 4.1) in Section 4.1

Let fi(u) :=F2(Mi)⊕ h(Mi)⊕ F2(Mi ⊕ a)⊕ h(Mi ⊕ a)⊕ l34π2(l22(Mi)⊕ u)⊕
l34π2(l22(Mi ⊕ a)⊕ u)

=l34π2(l22(Mi)⊕ l21(K2))⊕ l34π2(l22(Mi ⊕ a)⊕ l21(K2))⊕
l34π2(l22(Mi)⊕ u)⊕ l34π2(l22(Mi ⊕ a)⊕ u),

and y1i := l22(Mi)⊕ l21(K2), y2i := l22(Mi⊕a)⊕ l21(K2), y3i := l22(Mi)⊕u, y4i :=
l22(Mi ⊕ a) ⊕ u, for i = 1, 2, . . . , q. By l22(a) 6= 0n, u /∈ U we get for any
function fi, the y1i , y

2
i , y

3
i , and y4i are different from each other. To calculate the

probability of these q equations fi(u) = 0n where u /∈ U , we consider sampling
about π2. If y1i , y

2
i , y

3
i , and y4i , who are the inputs of π2 in ith equation, all

have appeared in the other q − 1 equations, then we don’t sample in the ith
equation. By any Mi that l22(Mi), l22(Mi ⊕ a) /∈ {l22(Mj), l22(Mj ⊕ a) : Mj ∈
M \ {Mi}}, we get y1i , y

2
i /∈ {y1j , y2j : j ∈ {1, 2, . . . , q} \ {i}}. However, if u =

l22(Mi) ⊕ l22(Mj) ⊕ l21(K2) then y1i = y3j , y
2
i = y4j , y

3
i = y1j , y

4
i = y2j . Or if

u = l22(Mi)⊕ l22(Mj)⊕ l21(K2)⊕ l22(a) then y1i = y4j , y
2
i = y3j , y

3
i = y2j , y

4
i = y1j .

Therefore, even in the worst case we have to sample π2 in at least b q2c equations
among q. For every equation needing sample, by the randomness of π2, it holds
with probability at most 1

2 . Therefore, for any u /∈ U , we have Pr[test(u) = 1] ≤
( 1
2 )b

q
2 c. We have Pr[test(u) = 1] ≤ 1/22n for q ≥ 4n. We notice that this attack

requires l22 with at least 4n different images. When 4n ≤ 2n/2, that is to say,
n ≥ 6, it works.
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C Proof of ε(f) ≤ 7/8 in Subcase 4.2) in Section 4.1

Let Ut = {0, 1}n×{0, 1}n\({(l21(K2), s), (l22l
−1
12 l11(K1)⊕ l21(K2), s)}∪{0, 1}n×

{0n}). In this case, ε(f) = max
(u,t)∈Ut

PrM [f(u,M) = f(u,M ⊕ t)]. The function

f(u,M) = f(u,M ⊕ t) equals

l34π2(l22(M)⊕ l21(K2))⊕ l34π2(l22(M)⊕ u)⊕
l34π2(l22(M ⊕ t)⊕ l21(K2))⊕ l34π2(l22(M ⊕ t)⊕ u)⊕
l32π1(l12(M)⊕ l11(K1))⊕ l32π1(l12(M))⊕
l32π1(l12(M ⊕ t)⊕ l11(K1))⊕ l32π1(l12(M ⊕ t)) = 0n

(2)

1) u ∈ U , t /∈ {0n, s}. By l11(K1) 6= 0n, t /∈ {0n, s} we get the four inputs of
l32π1 in equation (2) are different. By the randomness of π1 the equation (2)
holds with probability at most 1/2.

2) u /∈ U , t = s. Now the equation (2) equals

l34π2(l22(M)⊕ l21(K2))⊕ l34π2(l22(M)⊕ u)⊕
l34π2(l22(M ⊕ l−112 l11(K1))⊕ l21(K2))⊕ l34π2(l22(M ⊕ l−112 l11(K1))⊕ u) = 0n

By u /∈ U , l22l−112 l11(K1) 6= 0n, we get the four inputs of l34π2 in equation (2)
are different. By the randomness of π2 the equation (2) holds with probability
at most 1/2.

3) u /∈ U , t /∈ {0n, s}. We can prove the equation (2) holds with probability at
most 1/2 the same as 1), so we omit it.

D Proof of ε(f) ≤ 7/8 in Case 4) of Section 4.2

Let Ut = {0, 1}n × {0, 1}n\({(u∗∗, s)} ∪ {0, 1}n × {0n}). In this case, ε(f) =
max

(u,t)∈Ut
PrM [f(u,M) = f(u,M ⊕ t)]. we take l33l27 = l24l14 = O as an example.

The other cases when l33l27 6= O, l24l14 6= O are similar. We divide (u, t) ∈ Ut
into the following cases, which cover all sceneries.

1) u = u∗∗, t /∈ {0n, s}. Now the equation f(u,M) = f(u,M ⊕ t) equals

l32π2(y1)⊕ l32π2(y2)⊕ l32π2(y3)⊕ l32π2(y4) = 0n, (3)

wherec y1 = l23π1(l12(M) ⊕ l11(K1)) ⊕ u∗∗, y2 = l23π1(l12(M)) ⊕ u∗∗, y3 =
l23π1(l12(M⊕t)⊕ l11(K1))⊕u∗∗, y4 = l23π1(l12(M⊕t))⊕u∗∗. If y1 = y2, y3 = y4
or y1 = y3, y2 = y4 or y1 = y4, y2 = y3, then equation (3) holds. We observe
that four inputs of l23π1 in y1, y2, y3, and y4 are distinct from each other by
l11(K1) 6= 0n and t /∈ {0n, s}. So this case happens with probability at most 3/4
by the randomness of π1. Otherwise, there is at least one yi(i ∈ {1, 2, 3, 4}) is
different from the other three. In this case, by the randomness of π2, the equation
(3) holds with probability at most 1/2. So the equation (3) holds with a bound
3/4 + 1/4 · 1/2 = 7/8.

2) u 6= u∗∗, t = s. Now the equation f(u,M) = f(u,M ⊕ t) is equal to

l32π2(y1)⊕ l32π2(y2)⊕ l32π2(y3)⊕ l32π2(l23π1(y4) = 0n, (4)
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where y1 = l23π1(l12(M)⊕ l11(K1))⊕ u∗∗, y2 = l23π1(l12(M))⊕ u, y3 =
l23π1(l12(M)) ⊕ u∗∗, y4 = l23π1(l12(M) ⊕ l11(K1)) ⊕ u. By u 6= u∗∗, we get
y1 6= y4. And we observe that [y1 = y2 ⇔ y3 = y4] (resp. [y1 = y3 ⇔ y2 = y4]).
So y1 = y2 and y1 = y3 don’t hold simultaneously, or it leads to y1 = y4. If
y1 = y2, the equation (4) holds. This case holds with probability at most 1/2 by
the randomness of π1. Otherwise, if y1 6= y2 and y1 = y3, the equation (4) holds as
well. This case holds with probability at most 1/2 ·1/2 = 1/4 by the randomness
of π1. At last, if y1 6= y2 and y1 6= y3, then y1, y2, y3, and y4 are different from
each other, the equation (4) holds with probability of 1/2 · 1/2 · 1/2 = 1/8 by
the randomness of π2. So the equation (4) holds with a bound 7/8.

3) u 6= u∗∗, t /∈ {0n, s}. This case is similar to 1), so we omit it.
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