
A White-Box Speck Implementation using
Self-Equivalence Encodings (Full Version)

Joachim Vandersmissen1, Adrián Ranea2, and Bart Preneel2

1 atsec information security
joachim@atsec.com

2 imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. In 2002, Chow et al. initiated the formal study of white-box
cryptography and introduced the CEJO framework. Since then, various
white-box designs based on their framework have been proposed, all of
them broken. Ranea and Preneel proposed a different method in 2020,
called self-equivalence encodings and analyzed its security for AES. In
this paper, we apply this method to generate the first academic white-
box speck implementations using self-equivalence encodings. Although
we focus on speck in this work, our design could easily be adapted to
protect other add-rotate-xor (ARX) ciphers. Then, we analyze the secu-
rity of our implementation against key-recovery attacks. We propose an
algebraic attack to fully recover the master key and external encodings
from a white-box speck implementation, with limited effort required.
While this result shows that the linear and affine self-equivalences of
speck are insecure, we hope that this negative result will spur addi-
tional research in higher-degree self-equivalence encodings for white-box
cryptography. Finally, we created an open-source Python project imple-
menting our design, publicly available at https://github.com/jvdsn/

white-box-speck. We give an overview of five strategies to generate out-
put code, which can be used to improve the performance of the white-
box implementation. We compare these strategies and determine how to
generate the most performant white-box speck code. Furthermore, this
project could be employed to test and compare the efficiency of attacks
on white-box implementations using self-equivalence encodings.

Keywords: White-box cryptography · Self-equivalence · speck.

1 Introduction

Traditionally, honest parties use cryptographic algorithms in combination with
cryptographic keys to encrypt or decrypt messages. However, there are situations
in which these keys must remain hidden in software, even from the party per-
forming the encryption or decryption. In this case, the adversary has full control
over the execution environment. As such, the implementation is a “white box” to
the adversary. White-box cryptography is used to protect these implementations

https://github.com/jvdsn/white-box-speck
https://github.com/jvdsn/white-box-speck
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against key-recovery attacks. From an attacker’s perspective, reverse engineer-
ing and extracting a protected implementation of a cipher is less convenient
compared to simply redistributing the keys. This implementation might also be
restricted to a specific computing platform. As a result, white-box cryptogra-
phy is a widely deployed method to protect private keys in the mobile banking
industry and for digital rights management (DRM).

In 2002, Chow et al. initiated the formal study of white-box cryptography
in their seminal work [19]. They introduced the White-Box Attack Context, also
called the white-box model. The white-box model has three main properties:

– The attacker is a privileged user on the same host as the cryptographic
algorithm, with complete access to the implementation.

– The attacker can dynamically execute the cryptographic algorithm.

– At any point before, during, or after the execution, the attacker is able to
view and modify the internal details of the implementation.

On top of this, they introduced the first academic framework (commonly
called the CEJO framework) to generate protected implementations in the white-
box model, based on the AES block cipher [21]. Shortly after publishing their
work onAES, Chow et al. also applied their method to the protection of theDES
block cipher [20]. Concurrently, a practical side-channel attack on the white-box
DES implementation was published by Jacob et al., using Differential Fault
Analysis [27]. However, this attack was not applicable to the AES implementa-
tion protected using the CEJO framework. Still, it would take only two years for
the initial AES implementation to be broken; in 2004, Billet et al. designed a
practical key-recovery attack by analyzing the composition of the AES lookup
tables [8].

The publication of these papers sparked more interest in the topic of white-
box cryptography, with many new constructions based on DES [31] and AES
[40,28,41,29,2] appearing over the years. Unfortunately, all of these implemen-
tations have been broken, using both algebraic attacks [39,26,34,22,30,24] and
attacks based on side-channel analysis [16,13,12]. All of these designs improved
upon or were inspired by the CEJO framework. Consequently, this framework
has been analyzed extensively.

On the other hand, the work of Chow et al. also spurred research into entirely
different types of constructions, using modified cipher designs [18] or completely
new white-box ciphers [9,14,15]. Often this includes different security goals, such
as incompressibility or one-wayness [11]. Some of these new designs have enjoyed
limited success, while others were quickly broken [23,35].

In 2016, McMillion et al. used a type of permutations called self-equivalences
to construct a toy white-box implementation of AES [33]. A self-equivalence of
a function is a pair of permutations which can be applied to the start and end of
that function without changing the original behavior. McMillion et al. divided
AES into substitution and permutation (affine) layers. Then, they computed
the self-equivalences of the substitution layers and applied these self-equivalence
encodings to the affine layers directly preceding and succeeding the substitution
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layer. The resulting white-box implementation (also called a self-equivalence im-
plementation) is a composition of substitution layers and encoded affine layers
containing the round keys. In the same work, they also presented a practical
attack to recover the cryptographic key from such implementations.

The work of McMillion et al. received little attention, and was only recently
picked up Ranea and Preneel [36]. They analyzed the white-box security of
substitution-permutation network (SPN) ciphers protected using self-equivalence
encodings. They proposed a generic attack on such implementations, and proved
that it is possible to recover the key from self-equivalence implementations of
traditional SPN ciphers, if the S-box does not have differential and linear ap-
proximations with probability one. As cryptographically strong S-boxes are de-
signed to resist differential [6] and linear [32] cryptanalysis, they showed that
self-equivalence encodings are unsuitable to protect this class of traditional SPN
ciphers. On the other hand, they also indicated that self-equivalence encodings
might be of interest to protect ciphers with a better self-equivalence structure.

One possible class of interesting ciphers are add-rotate-xor (ARX) ciphers,
whose rounds consist of the three basic operations the name implies: modular
addition, bitwise rotation, and bitwise XOR. Because ARX ciphers do not rely on
cryptographically strong S-boxes to provide nonlinearity, they are not susceptible
to the attack described by Ranea and Preneel. Furthermore, in [37], it was found
that the n-bit modular addition has a number of self-equivalences exponential
in n. As a result, ciphers employing the modular addition as their only source
of nonlinearity are a promising target for research in white-box cryptography
based on self-equivalence encodings.

1.1 Contributions

In this paper, we introduce the first academic method to protect speck imple-
mentations using self-equivalence encodings. Let n be the speck word size, and
m the number of key words, that is, the key size divided by n [3]. We start
by rewriting the speck encryption function Ek as a substitution-permutation
network (SPN), a composition of affine layers AL and substitution layers SL,
with the first and last affine layer having a special structure. To obtain the self-
equivalence implementation Ek, we apply self-equivalence encodings of SL to
each of the affine layers. Notably, this design could also be applied to protect
other ARX ciphers.

Then, we define the set of linear self-equivalences of SL as SEL(SL) and the
set of affine self-equivalences of SL as SEA(SL). Using a result from [37], we
can determine that SEL(SL) contains 3×22n+2 elements and SEA(SL) contains
3 × 22n+8 elements. To encode an affine layer, self-equivalences are randomly
sampled from SEL(SL) or SEA(SL). Provided that n is large enough, it would
be impossible for an attacker to brute force the self-equivalence encodings of an
encoded affine layer.

However, we found that it is possible to efficiently recover the linear self-
equivalence encodings from an encoded affine layer by computing the Gröbner
basis of a system of equations. An attacker can then easily compute the round
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keys, external encodings, and the speck master key. Additionally, we also ana-
lyzed the security of affine self-equivalence encodings. We show that an attacker
can recover the affine self-equivalence encodings from an encoded affine layer up
to one free variable. Consequently, the attacker only has to try 2m+1 possible
configurations to break the white-box speck implementation. As m is at most
4 in practice, only 25 = 32 configurations need to be guessed.

We tested these attacks using our Python implementation on consumer hard-
ware. For n = 64, the largest speck word size available, we found that it
took only 16.08 and 42.00 seconds to break the self-equivalence implementa-
tions when linear and affine self-equivalence encodings were used, respectively.
Unfortunately, we conclude that these self-equivalence encodings are trivially in-
secure in the white-box model. Still, we hope that our method can be extended
using higher-degree self-equivalences in the future to produce a secure white-box
speck implementation.

We also created a Python implementation of our white-box speck method,
capable of generating correct white-box speck code. This allows us to compare
the performance impact of our design to an unprotected speck implementation.
Because this impact is significant, we extend the program with strategies to
generate more performant code. These strategies improve the execution speed
of the matrix-vector product, one of the core functions in our implementations,
and reduce the disk space required to store the binary matrices and vectors.
We believe that these code generation strategies can be of independent interest
to improve the performance of other mathematical computations relying on the
storage of matrices and the computation of a matrix-vector product. In particu-
lar, these improvements could be applied to self-equivalence implementations of
other ARX ciphers.

Finally, we compare an unprotected, reference speck implementation, an un-
optimized white-box speck implementation, and the code generated by the dif-
ferent code generation strategies for three different speck variants: speck32/64,
speck64/128, and speck128/256. The results show that the bit-packed and
SIMD code generation strategies provides the most efficient code, both in terms
of disk space usage and execution time. However, these strategies still pale in
comparison to the unprotected, reference speck implementation, which is 5.4
times smaller and 24.8 times faster than the most efficient white-box implemen-
tations.

White-box cryptography is a hard problem, and over the years many white-
box designs have been proposed and broken. While many new designs are based
on the CEJO framework [20], we attempt to build on the comparatively recent
method using self-equivalences [33]. Even though the results show our design is
insecure for speck, we hope that this work can still be a useful stepping stone
in the study of self-equivalence encodings for white-box cryptography.

Outline In Sect. 2, we define some preliminary notation and concepts that will be
reused throughout this text. We introduce our approach to apply self-equivalence
encodings to speck in Sect. 3. Then, in Sect. 4, we will analyze the security
of our white-box speck implementation using linear and affine self-equivalence



Title Suppressed Due to Excessive Length 5

encodings. In Sect. 5, we give an overview of our Python project to generate
white-box speck implementations using self-equivalence encodings and a com-
parison of five additional strategies to improve the performance of the generated
code. Lastly, Sect. 6 contains the conclusions and future work.

2 Preliminaries

In general, lowercase symbols in this paper refer to numbers and vectors, while
uppercase symbols are used to denote functions and matrices. In particular, E
and D will be used to denote encryption and decryption functions, respectively.
On top of this, we use Ek and Dk to refer to encryption and decryption functions
with a hard coded key, k.

Finite fields with q elements are written as Fq. We will only work with the
finite field over two elements, F2. Vectors over this field are called binary vec-
tors, while matrices over F2 are called binary matrices. More specifically, binary
vectors in the vector space Fn

2 are called n-bit vectors. The addition in F2 is
denoted using ⊕, and we extend this to the addition of n-bit vectors by pairwise
addition of each element. Finally, as a shorthand, we will sometimes replace ⊕ c
by ⊕c if c is a constant.

A function A : Fn
2 7→ Fm

2 is called an (n,m)-bit function. If n = m, then we
simply call these functions n-bit functions. We use ◦ to refer to the composition
of functions.

An important operation in this paper is the modular addition, defined as the
addition of two numbers x and y, modulo some power of two. We use ⊞ to refer
to the modular addition, and ⊟ to refer to its inverse, the modular subtraction.
Lastly, x ≫ α denotes a right bitwise circular shift of x by α positions and
x ≪ β denotes a left bitwise circular shift of x by β positions.

2.1 Self-equivalences

We briefly introduce the definition of linear and affine self-equivalences, and its
matrix and matrix-vector forms.

Definition 1 (Linear self-equivalence, [10]). Let F be an (n,m)-bit func-
tion. Let A be an n-bit linear permutation and B be an m-bit linear permutation.
If F = B ◦ F ◦A, we call the pair (A,B) a linear self-equivalence of F .

Because A and B are linear functions, they could be given in the form of n× n
and m × m matrices, respectively. In that case, we say (A,B) is a linear self-
equivalence of F in matrix form.

Definition 2 (Affine self-equivalence, [10]). Let F be an (n,m)-bit function.
Let A be an n-bit linear permutation, a an n-bit constant, B an m-bit linear
permutation, and b an m-bit constant. Together, (A, a) and (B, b) describe affine
permutations. If F = (⊕b ◦B) ◦ F ◦ (⊕a ◦A), we call the pair ((A, a), (B, b)) an
affine self-equivalence of F , or just a self-equivalence of F .
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Similarly, A, a, B, and b could be given in the form of n×n and m×m matrices,
and vectors of length n and m, respectively. In that case, we say ((A, a), (B, b))
is an (affine) self-equivalence of F in matrix-vector form. Of course, linear self-
equivalences are also affine self-equivalences, with a and b equal to the zero
vector.

In this paper, we will mostly work with the matrix and matrix-vector forms
of self-equivalences. This allows us to precisely specify the self-equivalences we
are using, as well as manipulate these matrices and vectors using basic linear
algebra.

2.2 Speck

speck is a family of lightweight block ciphers proposed by the National Security
Agency in 2013 [3]. In particular, speck was designed with a focus on perfor-
mance in software. In this paper, we also use “the speck (block) cipher” to refer
to the general design of the speck family.

The speck family consists of ten different instances, depending on the block
size and key size parameters. The block size refers to the size in bits of the
input, internal state, and output. These values always consist of two words, x
and y, with bit size n. The key size refers to the size in bits of the master key
k, which consists of m key words, with bit size n. We use the block size and key
size in a shorthand notation to refer to specific speck instances. For example,
speck128/256 refers to a speck instance with block size 128 and key size 256.

3 Self-equivalences and Speck

This section describes how self-equivalences can be used to create a white-box
implementation of speck3. Being an ARX cipher, the speck encryption function
is commonly written as a composition of the basic operations: modular addition,
bitwise rotation, and bitwise XOR. However, to properly use self-equivalences in
our design, speck needs to be rewritten as a repeated composition of non-linear
and affine layers, similar to a substitution-permutation network (SPN). In the
case of speck, the non-linear layers will contain the modular addition, and the
affine layers contain the bitwise rotation, bitwise XOR, and round keys.

Then, we introduce the definition of an encoding : a permutation applied
to the start or the end of a function F , to hide the original behavior of F .
Encodings can be applied to the round functions of a block cipher to create
encoded implementations, a type of white-box implementations [19].

We use a special type of encodings, based on self-equivalences of the modular
addition, to encode the affine layers of speck. The start of the first affine layer
and the end of the last affine layer are encoded using random permutations,
called external encodings. When these encodings are applied to all affine layers

3 Our method will focus on protecting the speck encryption function, but this design
could easily be adapted to the speck decryption function.
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of speck, we obtain a self-equivalence implementation, a different type of white-
box implementations [36]. Note the difference with encoded implementations:
in an encoded implementation, entire round functions are encoded; in a self-
equivalence implementation, only the affine layers are encoded.

Let us start by rewriting the speck encryption function as a substitution-
permutation network (SPN). First, we define the encryption function of an SPN.

Definition 3 (SPN encryption function). Let Ek be an encryption func-
tion which takes a plaintext m and encrypts this plaintext using key k to pro-
duce ciphertext c. Then Ek represents the encryption function of a substitution-
permutation network if Ek can be decomposed in affine layers AL and substitution
layers SL as follows:

Ek = AL(nr) ◦SL ◦ · · · ◦AL(2) ◦SL ◦AL(1) .

In addition, we call SL ◦AL(r) an SPN encryption round E(r).

We can now show that the speck encryption function can also be written as a
combination of SPN encryption rounds. Let Ek be the encryption function of the
speck cipher consisting of nr rounds with word size n. Ek can be decomposed
into affine layers AL and substitution layers SL:

Ek = AL(nr) ◦SL ◦ · · · ◦AL(1) ◦SL ◦AL(0)

with:

SL(x, y) = (x⊞ y, y),

AL(0)(x, y) = (x ≫ α, y),

AL(r)(x, y) = ((x⊕ k(r)) ≫ α, (x⊕ k(r))⊕ (y ≪ β)), for 1 ≤ r ≤ nr − 1,

AL(nr)(x, y) = (x⊕ k(nr), (x⊕ k(nr))⊕ (y ≪ β)) .

This result is also shown visually in Fig. 1. Here, two speck rounds are
shown in sequence, with the dotted lines indicating the affine layers separated
by modular additions. Evidently, this can be extended to nr speck rounds,
resulting in nr + 1 affine layers, where layer 0 and nr have a special structure.

In the previous definitions of AL, the speck state consists of two n-bit vari-
ables x and y. However, the self-equivalences of SL are 2n-bit affine permutations,
which operate on vectors of length 2n with elements in F2. To be able to apply
these self-equivalences to AL, we need rewrite AL as 2n-bit affine permutations
operating on a 2n-bit state vector xy:

AL(0) = Rα,

AL(r) = Rα ◦X ◦ Lβ ◦ ⊕k′(r) , for 1 ≤ r ≤ nr − 1,

AL(nr) = X ◦ Lβ ◦ ⊕k′(nr) .

Here, xy contains the bits of x and y in little-endian order, Rα represents a right
circular shift of x by α bits, Lβ represents a left circular shift of y by β bits, and



8 Joachim Vandersmissen, Adrián Ranea, and Bart Preneel

k(r)

x(r) ≫ α

y(r) ≪ β

k(r+1)

≫ α x(r+2)

≪ β y(r+2)

Fig. 1. Diagram of two speck encryption rounds, with affine layers indicated using
dotted lines.

X represents the bitwise XOR operation such that y = x⊕ y. Finally, k′(r) is a
vector of length 2n containing the key bits of the round key k(r) in the first n
positions and zero in the last n positions.

To protect the key material in AL(r), we need to encode the affine layers. Let
us first introduce the definitions of an encoding.

Definition 4 (Encoding, [36]). Let F be an (n, m)-bit function and let (I,O)
be a pair of n-bit and m-bit permutations, respectively. The function F = O◦F ◦I
is called an encoded F , and I and O are called the input and output encoding,
respectively.

In our design, the encodings I and O will mainly be self-equivalences of
SL when an affine layer is encoded. Therefore, we call these encodings self-
equivalence encodings. However, the input encoding of the first affine layer and
the output encoding of the last affine layer must be random affine permutations,
called the external encodings. It is critical to the security of white-box implemen-
tations that these external encodings are generated at random and kept secret
from the attacker. Without external encodings, our design would be trivially
insecure [19]. Now, we define the encoded affine layers.

Definition 5 (Encoded affine layer, [36]). Let AL(r) be an affine layer of

the speck cipher, with 1 ≤ r ≤ nr. Then we call AL(r) an encoded affine layer,
with:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦(⊕i(r) ◦ I(r)),

where ((O(r), o(r)), (I(r+1), i(r+1))) is a self-equivalence of the speck substitution
layer SL, and (I(1), i(1)) and (O(nr), o(nr)) are random affine permutations.

Note that AL(0) will not be encoded: this affine layer does not contain any key
material, so it can be skipped.

If the self-equivalences composed with each AL(r) are sampled randomly from
a set of self-equivalences, the unencoded affine layer AL(r) can not be recovered
without knowledge of (I(r), i(r)) and (O(r), o(r)). This effectively hides the round
keys inside the affine layers, and is the basis of our method to protect speck
implementations using self-equivalence encodings. Moreover, this process could
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easily be adapted to other ARX ciphers. When all affine layers of a speck
encryption function are encoded using self-equivalence encodings and external
encodings, we obtain a self-equivalence implementation of speck.

Definition 6 (Self-equivalence implementation, [36]). Let Ek be the en-
cryption function of the speck cipher consisting of nr rounds with word size n.
We call Ek a self-equivalence implementation of speck, with:

Ek = AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0) .

We can show that a self-equivalence implementation of speck, Ek, is func-
tionally equivalent to Ek, up to the external encodings. Due to the self-equivalence
property, the intermediate encodings are canceled:

Ek = AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0)

= (⊕o(nr) ◦O(nr)) ◦AL(nr) ◦SL ◦ · · · ◦AL(1) ◦(⊕i(1) ◦ I(1)) ◦ SL ◦AL(0)

= (⊕o(nr) ◦O(nr)) ◦AL(nr) ◦SL ◦ · · · ◦AL(1) ◦SL ◦AL(0) ◦(⊕i′(1) ◦ I ′(1))
= (⊕o(nr) ◦O(nr)) ◦ Ek ◦ (⊕i′(1) ◦ I ′(1)) .

This property is also illustrated in Fig. 2, for two encryption rounds. The dashed
lines indicate the substitution layer SL surrounded by its self-equivalence, which

can simply be reduced to SL. The encoded affine layers AL(r) and AL(r+1) are
marked by dotted lines.

xy(r)
I(r)

i(r)

AL(r) O(r)

o(r)

I(r+1)

i(r+1)

AL(r+1) O(r+1)

o(r+1)

xy(r+2)

Fig. 2. Diagram of two speck SPN encryption rounds encoded using self-equivalences.

3.1 Self-equivalences of SL

We use the method described in [37] to generate the self-equivalences of SL. This
allows us to randomly sample both linear and affine self-equivalences. For more
information, we refer the reader to Section 5.2 of [37].

We call the sets of linear and affine self-equivalences generated using this
method SEL(SL) and SEA(SL), respectively. When n > 2, |SEL(SL)| = 3 ×
22n+2 and |SEA(SL)| = 3 × 22n+8. This is important for the security of our
method to protect speck implementations: the number of self-equivalences should
be as high as possible to prevent a simple brute-force key-recovery attack. For
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n = 64, the largest speck word size, this would result in 3 × 2130 and 3 × 2136

possibilities for linear and affine self-equivalences, respectively, enough to resist
a naive brute-force attack. In the next section, we introduce a more extensive
security analysis of self-equivalence encodings and show an attacker can still
recover self-equivalences without resorting to brute-force.

4 Security analysis

This section analyzes the security of our white-box speck design. The security
of white-box implementations can be expressed in many different ways. Most
commonly, the goal of the attacker is to extract the cryptographic key from a
provided implementation (key extraction). However, other security notions in-
clude one-wayness and incompressibility. A detailed analysis of white-box cryp-
tography security goals is presented by Bock et al. in [11]. In this paper, we
focus on the fundamental white-box security feature: resistance to key-recovery
attacks.

In our analysis, we will evaluate the security of our white-box speck method
from an algebraic perspective. Although self-equivalence encodings are generated
at random, they are not completely random linear or affine transformations. We
will try to exploit the additional structure of SEL(SL) and SEA(SL) to reduce
the brute-force search space of possible self-equivalence encodings and recover
key bits. Moreover, to fully compromise the security, we will also need to recover
the external encodings from the white-box implementation. Unlike the attack
introduced by Ranea and Preneel in [36], which is based on equivalence problems
and not applicable to speck, we analyze self-equivalence equations in bits. In
the broader context of the white-box model, our approach is quite simple: we
only require access to the encoded affine layers of the implementation.

To perform a key-recovery attack on the white-box speck implementation,
we need to recover the master key k from the self-equivalence implementation
Ek. Unfortunately, the self-equivalence implementation only contains protected
versions of the round keys, k(r). As a result, recovering k directly is not possible,
so computing k using some recovered k(r) is a crucial part of a successful key-
recovery attack. Luckily, the speck key schedule is invertible, and k can be
computed easily, using only the m first round keys. Let n be the speck word
size, and m the number of key words, that is, the key size divided by n [3].
Suppose k(1), . . . , k(m) are known, then compute:

l(r+m−1) = (k(r) ≪ β)⊕ k(r+1)

l(r) = ((l(r+m−1) ⊕ r)⊟ k(r)) ≪ α .

Combining l(m−1), . . . , l(1), and k(1), we obtain the master key k.

Note that this approach can be extended to reconstruct k using any sequence
of m consecutive round keys, by working backwards to compute the preceding
k(r) and l(r) values.
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4.1 Security analysis of linear self-equivalences

We start the analysis of the white-box method for speck by looking at a variant
where all encodings, both self-equivalence encodings and external encodings, are
linear. Although linear encodings are significantly weaker than affine encodings in
terms of security, they are also conceptually easier to understand. Furthermore,
the analysis of this weaker version might give us some initial insights in the
security of a more secure variant using affine encodings.

In this section, we will focus on a single intermediate affine layer of an en-
coded speck encryption function Ek. For the sake of convenience, we repeat the
definition of an encoded affine layer for round r (see Definition 5) here:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦(⊕i(r) ◦ I(r)) (1)

Because we only consider linear encodings for now, i(r) and o(r) are zero vectors.
Consequently, Eq. (1) can be simplified to:

AL(r) = O(r) ◦AL(r) ◦I(r) (2)

This encoded affine layer will be stored as a combination of an encoded matrix

M (r) and an encoded vector v(r):

M (0) = M (0),

v(0) = v(0),

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr,

v(r) = O(r)v(r), for 1 ≤ r ≤ nr .

For each round r, M (r) represents the known linear operations of the affine layer,
while v(r) is the constant of the affine layer. However, as v(0) does not contain
any key material, this round is not protected using self-equivalences.

To hide the key material in v(r), (O(r), I(r+1)) need to be randomly generated
linear self-equivalences of SL. If the self-equivalences are generated using the
method from [37], then SEL(SL) can be parameterized by a bit vector c of
length 2n + 5, where n is the speck word size. We do not describe the full
parametrization for SEL(SL) here, instead, it can be found in the Python project

code. For any encoded matrix M (r), c(r−1) and c(r) fully define I(r) and O(r),
respectively. In other words, if it is possible to recover these bit vectors, an
attacker can re-generate I(r) and O(r), peel off the self-equivalence encodings,
and compute the round keys and external encodings.

We will now describe a method to recover c(r−1) and c(r) for any intermediate
round r. Let X and Y be the matrix forms of the unknown self-equivalence
encodings, I(r) and O(r), respectively. Combining this with the definition of

M (r), we obtain the following equation:

M (r) = YM (r)X (3)
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As I(r) and O(r) are generated using the method from [37], each entry in the
matrices X and Y is parameterized by c(r−1) and c(r) respectively. Furthermore,

M (r) and M (r) are the 2n × 2n matrices known to the attacker. By looking at
each entry of these matrices individually, Eq. (3) can be written as a system of
(2n)2 equations in 2 × (2n + 5) unknowns, the bits in c(r−1) and c(r). Let αi

be the unknowns corresponding to X and βi the unknowns corresponding to Y .
Now, let R be the Boolean polynomial ring in these variables, that is:

R = F2[αi, βi]/⟨α2
i + αi, β

2
i + βi⟩, for 1 ≤ i ≤ 2n+ 5 .

Of course, depending on the density of X, Y , and M (r), many of these equations
might not include any αi or βi variables. However, by computing the Gröbner
basis G of the ideal defined by these equations in R, it is possible to uniquely
determine the values of αi and βi. We verified this experimentally for every
speck word size. This in turn reveals the values of c(r−1) and c(r).

An attacker can use this method to recover c(r) for M (r+1) and 1 ≤ r ≤ m,
where m is the number of speck key words. The attacker then re-generates
the self-equivalences (O(r), I(r+1)). Because v(r) is always publicly known, the
attacker can compute

(O(r))−1v(r) = (O(r))−1O(r)v(r)

= v(r)

to obtain the round keys k(r) for r = 1, 2, . . . ,m.

Similarly, an attacker can recover c(1) from M (2) and re-generate the self-
equivalence (O(1), I(2)). As with v(r), M (1) is always publicly known, so the
attacker can compute

(O(1)M (1))−1M (1) = (O(1)M (1))−1O(1)M (1)I(1)

= I(1)

to obtain the input external encoding I(1).

Finally, an attacker can recover c(nr−1) from M (nr−1) and re-generate the
self-equivalence (O(nr−1), I(nr)). The attacker then computes

M (nr)(M (nr)I(nr))−1 = O(nr)M (nr)I(nr)(M (nr)I(nr))−1

= O(nr)

to obtain the output external encoding O(nr).

Note that it is not possible to recover c(1) from M (1) or c(nr−1) from M (nr).
Because M (1) and M (nr) are multiplied by respectively I(1) and O(nr), random
affine permutations, Eq. (3) does not hold.

The most expensive operation in this attack is computing the Gröbner basis
for 4n2 equations in 2 × (2n + 5) variables. Unfortunately, it is notoriously dif-
ficult to estimate the time complexity required to compute the Gröbner basis.
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Instead, we implemented this attack in Python [1] using SageMath [38] and the
PolyBoRi framework [17]. We executed this implementation using a single core
on a laptop with an AMD Ryzen 7 PRO 3700U CPU, running Linux 5.15.5. The
attack took only 16.08 seconds to recover the master key and external encod-
ings from a white-box speck128/256 instance. The full results for every speck
instance can be found in Appendix A.

Clearly, it is feasible to execute this attack using even modest consumer
hardware. We conclude that a white-box speck implementation using only linear
encodings is insecure against key-recovery attacks, even with relatively limited
capabilities. In particular, it is not necessary to inspect or modify the execution of
the white-box implementation. Furthermore, recovering the encodings is possible
using only the information revealed by a single encoded affine layer.

4.2 Security analysis of affine self-equivalences

Knowing that a white-box speck implementation using only linear encodings is
insecure, we can try to extend this attack to the full design using affine encodings.

We start by updating the equations for M (r) and v(r) with affine self-equivalence
encodings (I(r), i(r)) and (O(r), o(r)):

M (0) = M (0),

v(0) = v(0),

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr,

v(r) = O(r)(v(r) ⊕M (r)i(r))⊕ o(r), for 1 ≤ r ≤ nr .

Once again, we will try to recover the coefficients used to generate a ran-
dom affine self-equivalence ((O(r), o(r)), (I(r+1), i(r+1))). In this case, if the self-
equivalences are generated using the method from [37], then SEA(SL) can be
parameterized by a bit vector c of length 2n + 11, where speck n is the word

size. We previously showed that c(r) can easily be recovered from M (r) when
only linear encodings are used. However, we found that some coefficients are ex-
clusively used in the constants i(r) and o(r). As a result, we also need to use the

definition of v(r) to recover the full value of c(r). Furthermore, to simplify our
implementation, we will simultaneously recover the bit vector k(r), the round
key bits for round r.

Instead of uniquely determining c(r−1), c(r), and k(r) for a round r, we will
describe a method to generate possible configurations for these coefficients and
key bits. Let (X,x) and (Y, y) be the matrix-vector forms of the unknown self-
equivalence encodings, (I(r), i(r)) and (O(r), o(r)), respectively. First, we apply

the definition of M (r) again to obtain (2n)2 equations, similar to the first step in
the attack on linear self-equivalences (Eq. (3)). Let αi be the unknowns corre-
sponding to (X,x), βi the unknowns corresponding to (Y, y), and R1 the Boolean
polynomial ring in these variables, that is:

R1 = F2[αi, βi]/⟨α2
i + αi, β

2
i + βi⟩, for 1 ≤ i ≤ 2n+ 11 .
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Computing the Gröbner basis G1 of the ideal defined by these equations in
R1 reveals the values of 4n+ 15 unknowns, slightly less than the total number,
2 × (2n + 11). Now, let z represent the vector v(r), unknown to the attacker.

Combining this with (X,x) and (Y, y) and the definition of v(r), we obtain the
following equation:

v(r) = Y (z ⊕M (r)x)⊕ y (4)

In this case, x is parametrized by by c(r−1), whereas Y and y are parametrized
by c(r). Furthermore, recall that v(r) contains k(r), the n unknown round key

bits. As M (r) and v(r) are known to the attacker, Eq. (4) can be written as a
system of 2n equations in 2× (2n+ 11) + n unknowns. As before, let αi be the
unknowns corresponding to (X,x) and βi the unknowns corresponding to (Y, y).
We now also introduce γj to denote the unknowns corresponding to z. Let R2

the Boolean polynomial ring in these variables, that is:

R2 = R1[γj ]/⟨γ2
j + γj⟩, for 1 ≤ j ≤ n .

However, because the values of 4n+15 unknowns were revealed by G1, we also
define the quotient ringQ = R2/G1. Finally, we again compute the Gröbner basis

G2 of the ideal defined by the equations of v(r) in Q. This uniquely determines
the values of all but one of the unknowns, resulting in two possible configurations
for c(r−1), c(r), and k(r).

An attacker can then follow the same process described in Sect. 4.1 to recover
the possible round keys and external encodings I(1) and O(nr). In total, 2m+1

possible configurations must be enumerated, with m the number of key words.
Because m is at most 4 for speck, this exponential function is no problem in
practice. We implemented this attack in Python [1] using SageMath [38] and
PolyBoRi [17] and executed it using the same setup used for linear encodings.
Now the attack took 42.00 seconds to recover the master key and external en-
codings from a white-box speck128/256 instance. Again, the full results can
be found in Appendix A.

Although this attack is certainly more expensive than the one for linear
encodings, the master key and external encodings are still easily extracted in
practice. Consequently, we must conclude that our white-box speck method is
insecure in the white-box model. However, a higher level of security might be
achieved by using quadratic, cubic, and even quartic self-equivalences.

5 Implementation

In previous sections, we discussed the theoretical foundations of our method to
construct white-box speck implementations. To research the practical viability
of this method, we also implemented a program to generate white-box speck
code. This project is publicly available in our GitHub repository4. Our program

4 https://github.com/jvdsn/white-box-speck

https://github.com/jvdsn/white-box-speck
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to generate white-box speck implementations5 is written in Python, a free and
open source programming language [1]. We chose Python because its source
code is completely portable across platforms, programming in Python is com-
paratively simple, and it is possible to interact with SageMath using a language
interface [38]. SageMath is a free and open source mathematics package, which
is used extensively for mathematical computations throughout the project.

Our program generates white-box speck implementations in four major
steps. First, the program takes the block size 2n and master key k as input.
Using the speck key schedule, k is transformed into round keys k(r), and M (r)

and v(r) (see Sect. 4.1) are computed. Then, for each round r, random self-
equivalence encodings are generated to encode M (r) and v(r). In this step, the
random external encodings are also generated and applied to round 1 and nr.

Finally, using M (r) and v(r), the program generates the output code, a white-box
speck implementation and its inverse external encodings.

Currently, this output code is exclusively C source code. We chose the C
programming language because it is widely used, provides fast low-level memory
control, and contains a convenient interface for single instruction, multiple data
(SIMD) functions. However, our project could easily be adapted to return source
or compiled code for other programming languages.

The generated C code follows the same intuitive pattern as simple SPN ci-
pher implementations. For each round, a modular addition and affine transfor-
mation are performed, except for the final round, which consists only of the affine
transformation. Because the white-box speck encryption algorithm operates on
vectors of bits instead of integers, the input x and y has to be converted to bits
first. Similarly, the state vector xy has to be converted back to integers after
encryption. No key expansion is necessary, as the round keys k(r) are encoded
in the affine layers.

The encryption function relies on five subroutines: functions to convert to
and from bits, a function to perform the modular addition on xy, a function
to perform the matrix-vector product, and a function to perform the vector
addition. Conversion to and from binary is done big-endian. The other three
functions use a standard textbook implementation. For example, the modular
addition simply performs the addition with carry algorithm on each individual
bit, ignoring the final carry to perform the modular reduction. In the case of the
matrix-vector product, two for loops are used to compute the resulting vector.
For the vector addition, the generated code performs an XOR operation for each
bit in the vector. We call this the default code generation strategy; in the next
section we will consider techniques to implement these functions more efficiently.

Finally, apart from the definitions and implementations of these subroutines,

the required data (matrices M (r) and vectors v(r)) will also have to be stored
in the C source code. A straightforward way of storing a matrix in C is to use

5 Our project currently only supports the generation of white-box speck encryption
code. However, the existing project could easily be modified to also generate white-
box speck decryption implementations. When discussing the generated code in this
section, we always refer to speck encryption.
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a two-dimensional array: storing each row as an array of the elements in an
enclosing array to represent the full matrix. A vector can be stored by simply
using a single one-dimensional array. In total, nr + 1 two-dimensional arrays
and nr +1 one-dimensional arrays are generated by the default code generation
strategy.

5.1 Code generation strategies

Although the method described previously generates correct and functional C
code, this code is far from optimal. We introduce five additional code generation
strategies to improve the efficiency of the generated C code.

Sparse matrix code generation Because the entries of M (r) are in F2, one
could consider storing only the nonzero entries to save disk space. The other
entries are then implicitly known to be 0. We call this the sparse matrix
representation. In addition to reducing the disk space used by the generated
C code, using the sparse matrix representation also simplifies the matrix-
vector product. Similar to the sparse matrix representation, we can also use

a sparse vector representation for the vectors v(r). The vector addition can
also be modified to take advantage of the sparse vector representation.

Inlined code generation Before the C code is generated, the contents of M (r)

and v(r) are already known. Therefore, it is possible to generate nr + 1 dif-
ferent functions for the matrix-vector product and for the vector addition.
In the case of the matrix-vector products, these functions will only contain
the array operations for the nonzero entries in the matrix. Similarly, the
functions for the vector additions only modify the positions for the nonzero
entries in the vector. In this way, the data is inlined in the function imple-
mentations.

Bit-packed code generation The C standard library contains data types to
store 16-bit, 32-bit, and 64-bit unsigned integers. Instead of storing the bits
individually in an integer data type, we can use these larger data types to
store multiple bits simultaneously, bit-packing n bits in an n-bit unsigned
integer. This will considerably reduce the disk space usage and improve the
execution time of the generated C code. When n = 24 or n = 48, the data
must be stored in 32-bit or 64-bit unsigned integers, respectively.

Inlined bit-packed code generation This code generation strategy combines
the previous two strategies. n bits are bit-packed in an n-bit unsigned in-
teger, and used in nr + 1 different functions for the matrix-vector product
and for the vector addition. Compared to the inlined strategy, this method
has the advantage of the state vector xy being bit-packed. Compared to the
bit-packing method, we might expect a performance improvement as a result
of the loop unrolling in the inlined functions.

SIMD code generation We extend the bit-packed code generation with in-
structions from the Advanced Vector Extensions (AVX) and Advanced Vec-
tor Extensions 2 (AVX2) instruction sets. Single instruction, multiple data
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(SIMD) allows algorithms to operate on multiple pieces of data, called vec-
tors, at the same time. For example, sixteen 16-bit integers could be com-
bined into a 256-bit SIMD vector, which could then be manipulated using
SIMD instructions. For the sake of simplicity, our implementation does not
consider n = 24 and n = 32.

5.2 Comparison

To provide a comprehensive comparison of the speck encryption performance
for the unprotected and self-equivalence implementations, we tested three differ-
ent variants: speck32/64, speck64/128, and speck128/256. We did not test
the block sizes 48 and 96, as these parameters are not supported by all code gen-
eration strategies. For every variant, we used the keys from the original speck
test vectors to perform the encryptions [3]. However, the choice and length of
key should not have an impact on the performance of the self-equivalence im-
plementations. Furthermore, to ensure a fair comparison, the same affine self-
equivalence encodings were used when generating C code using different strate-
gies. We give an overview of the results for each of the three variants, the full
details of the experiments can be found in Appendix B.

In the case of speck32/64, the unprotected reference implementation takes
up 16 320 bytes of disk space, with the smallest self-equivalence implementa-
tion, the bit-packed implementation, using only 19 552 bytes of disk space. To
compare the performance, 1 000 000 random encryptions were performed upon
execution of the program. On average, the unprotected implementation finished
this in 0.22 seconds at 4.0 GHz, reaching a throughput of 220 cycles per byte
(c/b). The most efficient self-equivalence implementation, again the bit-packed
implementation, is considerably slower, taking on average 2.26 seconds, which
results in a throughput of 2260 c/b.

Because unprotected implementations do not store matrices and vectors
which depend on the block size, the required disk space for the unprotected
speck64/128 implementation stays the same. The smallest self-equivalence im-
plementations are the SIMD and bit-packed implementations, using 31 072 and
31 080 bytes respectively. For a block size of 64 bits, 300 000 encryptions were
executed, which results in an average execution time of 0.08 seconds for the un-
protected implementation. This is equivalent to a throughput of 133 c/b. Here,
the SIMD strategy also produces the fastest code (1.31 seconds, 2183 c/b), how-
ever bit-packed code is only slightly behind (1.51 seconds, 2517 c/b).

Finally, for speck128/256 implementations, the sparse matrix representa-
tion requires a similar amount of disk space on average (95 345.6 bytes) compared
to the bit-packed (88 760 bytes) or SIMD (88 752 bytes) implementations. While
code generated using these strategies still takes up six times the amount of disk
space of an unprotected implementation, it still improves on the default self-
equivalence implementation with a reduction of 85%. For this block size, the
number of random encryption iterations was set to 100 000. The experimental
results show an average throughput of 125 c/b for the unprotected implemen-
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tation, while the bit-packed code is the most performant self-equivalence imple-
mentation, reaching a throughput of 2825 c/b on average.

6 Conclusion

In this work, we introduced the first academic method to protect white-box
speck implementations using self-equivalence encodings. We showed that these
encodings can be applied to speck rounds, ostensibly hiding the round keys in
encoded affine layers. Similar techniques could be used to protect other ARX ci-
phers, such as salsa20 [5], chacha20 [4], or threefish [25]. We also analyzed
the security of our design against key-recovery attacks. We presented practical
attacks to fully recover the self-equivalence encodings and external encodings of
a self-equivalence implementation, showing that our method is completely inse-
cure in the white-box model. Finally, we created a Python project to generate
self-equivalence implementations using our method. We used this project to cal-
culate the impact of our method on the performance of speck. Furthermore, we
were able to compare five additional strategies to generate output C code, and
determined an overall optimal strategy: bit-packed code generation.

One possible area for future research is the generation of self-equivalences.
In this paper, we only employed linear and affine self-equivalences. Extending
this design to quadratic, cubic, or higher-degree self-equivalences could result in
more secure white-box implementations. Alternatively, the security of our cur-
rent method could be analyzed using several approaches in the white-box model.
In particular, we did not consider the known techniques based on side-channel
analysis, such as differential fault analysis [7] and differential computation anal-
ysis [12]. Our Python project could be used to test and compare the efficiency of
several attacks on white-box implementations using self-equivalence encodings.
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A Key-recovery attack experimental results

In Sect. 4.1 and Sect. 4.2 we introduced attacks on white-box speck imple-
mentations using linear, respectively affine, self-equivalences. We executed these
attacks using a single core on a laptop with an AMD Ryzen 7 PRO 3700U CPU,
running Linux 5.15.5. The full results of our experiments in the linear case can
be found in Table 1.

Table 1. Time required to recover the master key and external encodings when linear
encodings are used.

Word size n Key words m Execution time (s)

16 4 1.38
24 3 2.05
24 4 2.43
32 3 3.35
32 4 3.91
48 2 7.85
48 3 7.30
64 2 14.10
64 3 14.57
64 4 16.08

Table 2 contains the full results of our experiments when affine encodings are
used.

Table 2. Time required to recover the master key and external encodings when affine
encodings are used.

Word size n Key words m Execution time (s)

16 4 4.24
24 3 5.75
24 4 7.39
32 3 7.31
32 4 14.62
48 2 13.52
48 3 20.72
64 2 28.77
64 3 39.42
64 4 42.00

B Comparison of code generation strategies

We used the GNU Compiler Collection (GCC), version 11.1.0, to compile the
C code to executable files. Each speck implementation was compiled using the
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following compiler flags: -Ofast, -march=native, -pipe, and -s. After compi-
lation, disk space usage was measured using the du -b command. Finally, the
perf stat command was used to measure the execution time of the compiled
program. These programs were executed using a single core on a laptop with an
AMD Ryzen 7 PRO 3700U CPU, running Linux 5.15.5.

In total, this process of generating white-box speck implementations, com-
piling the C code, and benchmarking the results, was iterated 50 times for every
variant to account for variability in disk space usage and execution times. Fig-
ures 3 to Fig. 8 show the experimental results for each of three different speck
variants we considered: speck32/64, speck64/128, and speck128/256.
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Fig. 3. Average disk space used by different speck32/64 implementations.
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Fig. 4. Average execution time for different speck32/64 implementations.
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Fig. 5. Average disk space used by different speck64/128 implementations.
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Fig. 6. Average execution time for different speck64/128 implementations.
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Fig. 7. Average disk space used by different speck128/256 implementations.
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Fig. 8. Average execution time for different speck128/256 implementations.
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