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Abstract

We present UnTraceable Transactions (UTT), a sys-
tem for decentralized ecash with accountable privacy.
UTT is the first ecash system that obtains three crit-
ical properties: (1) it provides decentralized trust by
implementing the ledger, bank, auditor, and regis-
tration authorities via threshold cryptography and
Byzantine Fault Tolerant infrastructure; (2) it bal-
ances accountability and privacy by implementing
anonymity budgets: users can anonymously send pay-
ments, but only up to a limited amount of currency
per month. Past this point, transactions can either
be made public or subjected to customizable auditing
rules; (3) by carefully choosing cryptographic build-
ing blocks and co-designing the cryptography and
decentralization, UTT is tailored for high through-
put and low latency. With a combination of opti-
mized cryptographic building blocks and vertical scal-
ing (optimistic concurrency control), UTT can pro-
vide almost 1,000 payments with accountable privacy
per second, with latencies of around 100 millisec-
onds and less. Through horizontal scaling (multiple
shards), UTT can scale to tens of thousands of such
transactions per second. With 60 shards we measure
over 10,000 transactions with accountable privacy per
second.
We formally define and prove the security of UTT

using an MPC-style ideal functionality. Along the
way, we define a new MPC framework that captures
the security of reactive functionalities in a stand-
alone setting, thus filling an important gap in the
MPC literature. Our new framework is compatible
with practical instantiations of cryptographic primi-
tives and provides a trade-off between concrete effi-
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ciency and provable security that may also be useful
for future work.

1 Introduction

From Chaum’s groundbreaking work on Electronic
cash (ecash) and blind signatures [1], anonymous
ecash schemes have received significant attention over
the last 40 years [2–14]. Such ecash systems require
an online bank entity (sometimes called a ledger)
that records transactions and often has control over
the minting of new anonymous tokens. One promi-
nent materialization of this interest is the deployment
of Zcash [15], a decentralized anonymous payment
scheme that hides all transaction details, including
senders, recipients and amounts [16].

There are serious concerns that systems that allow
payments with unconditional anonymity could make
illicit activities worse [17–19], and calls for future reg-
ulation may make unconditionally-anonymous pay-
ment systems illegal [20]. This has led to a line of re-
search around accountable privacy that aims to strike
a balance between privacy and accountability. Re-
search on responsible privacy originates from the pi-
oneering work of Sander and Ta-Shma [5,8] which has
recently reflourished [21–31].

The emergence of central bank digital currencies
(CBDC) has further increased demand for balanc-
ing privacy with accountability. Most relevant to our
work is the idea of anonymity budgets, originally sug-
gested and briefly sketched in [5], that allows users
to anonymously send payments, but only as long as
the total sum of the payments is smaller than some
limited amount. This anonymity budget can be set
and replenished, say once a month, by an auditing
authority.
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A digital analogue of physical cash

Motivated by these emerging use cases, the main re-
search question addressed in this paper can be infor-
mally stated as follows.

Can digital cash systems provide a digital
analogue to physical cash?

Towards answering this question we identify three
key characteristics of physical cash that are crucial
for a digital analogue.

1. Trust: Physical cash is issued by trusted au-
thorities and highly regulated entities. It embeds
physical protections that make it hard to double
spend and counterfeit. In fact, one may argue
that the value of cash strongly relies on it being
issued by a trustworthy authority; see, e.g., [32].

2. Accountable Privacy: With physical cash,
small transactions are anonymous and private.
In many jurisdictions, large cash payments are
regulated, require auditor approval, are time de-
layed, or might even be illegal [33].

3. Scalability: Transacting with physical cash is
very quick and can trivially scale horizontally
(cash transactions can trivially be executed in
parallel by different pairs of users).

Unfortunately, physical cash requires the payer and
the payee to physically transfer a note between them;
this makes physical cash rather useless in a digital
setting.
In this paper, we consider digital ecash systems

that are operated by licensed, supervised, estab-
lished, and highly regulated parties. To provide a
digital analogue of physical cash, ecash systems have
the following properties.

1. Trust: To obtain fault tolerance and decentral-
ized trust, the logically-centralized ecash entities
(e.g., the bank) need to be decentralized to mul-
tiple fault-isolated servers so that the security
and privacy of the system is maintained even if
a threshold of the servers are compromised by a
malicious adversary.

2. Accountable Privacy: To limit the total sum
of private payments, users of the system need to
receive a digital anonymity budget from an au-
diting authority at a regular time interval (say
monthly). All transactions that stay within this
anonymity budget need to remain completely

private. That is, all the information about a
transaction (e.g., the payer, payee, the amount of
money and its relation to other transactions) is
hidden from everyone including the bank. Digi-
tal payments beyond the anonymity budget need
to go through a real-time auditor approval.

3. Scalability: For an ecash system to be useful, it
needs to support low latency transactions and be
able to scale (both vertically and horizontally) to
handle (tens of) thousands of transactions with
accountable privacy per second.

Contributions

• The main contribution of this work is an ecash
system named UTT that combines decentralized
trust, accountable privacy, and scalability.

• UTT obtains decentralized trust by imple-
menting the bank (and other authorities) via
3f +1 servers using threshold cryptography and
Byzantine Fault Tolerance such that the secu-
rity and privacy guarantees are maintained de-
spite any f malicious servers and any number
of colluding users. Furthermore, we co-designed
the fault tolerance mechanisms along with the
cryptography to allow parallel processing, verti-
cal scaling, and sharding.

• UTT obtains accountable privacy via a novel
scheme that implements anonymity budgets [5].
Our implementation is optimized for perfor-
mance: we use efficient building blocks like Σ-
protocols and rerandomizable signatures [34].
The main novelty of our scheme is not in any
building block, but in the non-trivial way we
combine them in order to get accountable pri-
vacy using budget coins in an efficient manner.
Having said that, to the best of our knowledge,
our use of rerandomizable signatures over reran-
domizable commitments and our Σ-protocol for
proving correctness of “nullifiers” of spent coins
(see §4.3) are both novel building blocks that
provide concrete efficiency gains relative to pre-
vious solutions.

• We present a novel and arguably clean formula-
tion of UTT as an ideal functionality, and prove
that our protocol realizes it. Along the way,
we present a new MPC framework that formal-
izes, for the first time, the notion of stand-alone
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security for reactive functionalities. Our defini-
tion relaxes UC security [35] but still accounts
for adaptively and adversarily selected inputs to
honest parties. Being compatible with practical
building blocks, our framework provides a useful
trade-off between practical efficiency and prov-
able security.

• We provide extensive experimental evidence that
UTT obtains good scalability and perfor-
mance. We experiment with a decentralized
deployment showing that UTT scales well both
when implemented as a Byzantine Fault Toler-
ance State Machine Replication and when imple-
mented using Byzantine Consistent Broadcast.
We show scalability in terms of (1) minimal over-
head when increasing the number of faults (for
f = 1, 3, 5, 10); (2) near-linear vertical scalabil-
ity in terms of increasing the number of cores
per server; (3) near-linear vertical scalability in
terms of increasing the number of shards. For
a non-sharded system using n = 4 servers each
with 96 cores we obtain a throughput of 903
transactions with accountable privacy per sec-
ond, with a latency of 39ms. For a sharded sys-
tem using s = 60 shards, where each shard has a
16 core server we obtain a throughput of 11, 351
transactions with accountable privacy per sec-
ond.

• We leverage the decentralized threshold-based
nature of UTT to also use threshold-based
identity-based cryptography. This enables us to
(1) allow users to use natural names for recip-
ients; (2) reduce onboarding friction (by allow-
ing users to send payment to other users that
have not registered yet); and (3) avoid looking
up public keys of payees in a directory, which,
done naively, would break anonymity (or require
a heavy PIR operation).

1.1 Design goals and choices

We design UTT with several goals in mind. Our de-
sign choices come with trade-offs, but they help us
achieve an efficient, decentralized system, which we
evaluate in §6.

“Cash-like” payments. We seek to emulate phys-
ical cash, which offers complete anonymity for small
payments and auditability for large payments (in
many jurisdictions). In line with this philosophy, our

transactions are fully anonymous, hiding senders, re-
cipients and amounts. However, we balance this with
accountability, through so-called anonymity budgets,
as proposed by Sander and Ta-Shma [5]. Specifically,
we limit each user to only send up to B1 coins anony-
mously per month. We believe that this design rea-
sonably balances privacy with accountability. In §8,
we discuss how our design can also be changed to
support other balances such as limits on the amounts
of payments that users can receive.

Decentralization. Our ecash system has several
actors: banks, auditors and registration authorities
(discussed in §4). To avoid compromise and boot-
strap trust, we decentralize these actors using a set
of servers via Byzantine fault tolerance (BFT) in a
partially synchronous environment [36]. We explore
decentralization both via totally ordered BFT state
machine replication (SMR), and via a Byzantine-
consistent broadcast (BCB) primitive [37], which pre-
vious work applied to non-private payments [38–40].
In addition, we implement horizontal scaling via a
two phase sharding scheme via Byzantine-consistent
broadcast (BCB). In this work, the servers that im-
plement the actors do so via a permissioned proof-
of-membership mechanism. Our system could be
adopted to a setting where the servers are dynam-
ically changing and do so via a permissionless proof-
of-stake mechanism (see §8).

Fast, modular cryptography. The abstract UTT
design allows modularity of the cryptographic build-
ing blocks. For example, one can change the zero-
knowledge range proofs without changing the rest of
the scheme. When implementing UTT, we meticu-
lously consider each building block and use the most
efficient version we could find. We use Σ-protocols
in most places. We implement the nullifier using a
pseudo random function and a novel Σ-protocol. We
use PS rerandomizable signatures over commitments
to sign coins. We discuss alternative designs based
on algebraic message authentication codes [41] in §2.

Detecting majority corruptions by users.
UTT’s security is based on the assumption that at
most f servers are compromised. In this work we do
not address the case that there is an adversary that
controls more than f servers. One desirable property
that our current scheme does not support is the abil-
ity of users to detect minting violations. This prop-
erty, first defined by [4] and later implemented in [15],

1We often highlight newly-defined symbols in blue.
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protects validating users from an adversary that con-
trols any number of servers. We consider adding this
property as future work (see discussion in §8).

Setup assumptions. UTT requires a trusted setup.
Our system requires a distributed key generation
(DKG) protocol [42] for several threshold signature
systems, and a “powers-of-tau” ceremony [43] for our
range proofs. We view the implementation of the
setup assumptions (DKG and “powers-of-tau”) as fu-
ture work. A range proof with public setup [44] avoids
this ceremony (see §8).

User-friendly payment addresses. Current
schemes do not make it easy for senders to look up
the payment address of a recipient and pay them.
This often results in funds being sent to non-existing
addresses and lost. (Indeed, a company was started
on this premise [45].) While a public-key directory
(PKD) such as Keybase [46] could be used to look up
the recipient’s address, this would leak who is being
paid to the directory. As a result, we find it inter-
esting and natural to explore user-friendly addresses,
such as phone numbers, email addresses, or national
identification numbers, using identity-based cryptog-
raphy (IBC).

Beyond being user-friendly and anonymous, IBC
makes it possible to recover lost keys and to retroac-
tively audit, which we leave as future work. (Checks
and balances would be needed for this.) Furthermore,
threshold-issuance IBC removes single points of fail-
ure (see §3.1). On the other hand, dealing with key-
theft in IBC can be challenging, requiring us to main-
tain a non-anonymous list of stolen identities (see §8)
Should this be considered unacceptable, we can fall
back to normal public-key encryption, but only at the
cost of reintroducing a public-key distribution prob-
lem, and thus an anonymity problem.

Modeling and analysis UTT was designed in con-
junction with a security definition of its desired prop-
erties, as well as a proof that it complies with this
definition. Instead of using a game-based definition,
the security definition is similar to those used for
MPC protocols: the system is compared with an ideal
functionality, and the security proof argues indistin-
guishability from this ideal functionality. To support
ecach, the ideal functionality must be reactive and
keep a state.

1.2 Non-goals

Identity verification. For anonymity budgets to
work, as proposed in [5], it must be hard to create
fake user identities (i.e., Sybil attacks must be diffi-
cult). Otherwise, malicious users can artificially in-
crease their anonymity budget (see §4.2). Therefore,
like other accountable systems [31,47], we assume an
identity verification process that prevents attackers
from registering multiple times.

Network level anonymity. While an individ-
ual anonymous transaction leaks nothing about its
sender, recipient or amount, the collective timing and
network traffic pattern of multiple transactions can
be used, to of deanonymize users. Like in previous
work [16], we must assume that Alice can forward
her transactions to the BFT system via anonymous
networks such as Tor [48], Blinder [49] or HoneyBad-
gerMPC [50].

1.3 Overview of techniques

The high-level structure of our UTT protocol follows
the footsteps of Chaum’s seminal work on ecash [1],
and of more recent work based on ledgers [4, 12, 16,
47,51]. UTT uses some standard building blocks such
as standard Σ-protocols for equality, and also some
new building blocks such as a Σ-protocol for proving
correctness of “nullifiers” of spent coins, and a novel
randomizing of both the commitment and its signa-
ture to obtain efficient proofs of knowledge (see §4.3).
UTT generalizes ecash to allow multiple types of to-
kens and anonymity budgets. UTT’s main novelty is
the careful and novel combination of these building
blocks to achieve a scalable generalized ecash solu-
tion.

Coins as signed commitments. We represent a
coin as a cryptographic commitment ccm to three
values: the owner’s public identifier, denoted by pid
(e.g., a phone number), the value of the coin v and
a serial number sn used to prevent double spend-
ing: i.e., ccm = CM.Com(pid, sn, v). (We abuse no-
tation here and do not specify the randomness of
the commitment as part of the input.) To issue
the coin, the bank digitally signs its commitment as
σ = RS.Sign(bsk, ccm), where bsk is the bank’s se-
cret key for a rerandomizable signature scheme. In
practice, the bank is a BFT system and bsk is secret-
shared amongst the BFT replicas. (We more carefully
define CM.Com and RS.Sign in §3.1.)
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Anonymously spending a coin. When spend-
ing her coin, a user Alice does not reveal her orig-
inal ccm with signature σ, which the bank issued
and would recognize. Instead, Alice picks random-
izers ∆r and ∆u and rerandomizes her coin and
its signature as as ccm′ = CM.Rerand(ccm; ∆r) and
σ′ = RS.Rerand(σ; ∆r,∆u). As a result, the bank
cannot link the old coin with this newly rerandom-
ized one, which guarantees anonymity. Nonetheless,
the rerandomized signature will verify the rerandom-
ized commitment!
At the same time, Alice needs to anonymously indi-

cate in the transaction that she is sending her coin to
Bob, who has a public identifier pidB . For this, Alice
includes a commitment ĉcmB = CM.Com(pidB , 0, v)
to Bob’s future coin, excluding its serial num-
ber. The bank will homomorphically add in a ran-
dom serial number snB , obtaining ccmB = ĉcmB ·
CM.Com(0, snB , 0), which it will sign assuming the
transaction passes various checks such as no double
spends, authorization and value preservation. Impor-
tantly, Alice’s transaction encrypts the value v for
Bob using identity-based encryption (IBE). Although
Bob’s snB is included publicly in the transaction, Bob
will never have to reveal it again, which preserves
anonymity.

No double spends. To prevent double spends, Al-
ice will derive a unique nullifier for her coin. The
bank can then check a nullifier list for which nulli-
fiers are spent. Note that Alice cannot anonymously
reveal her coin’s serial number (SN) as the nullifier
since the SN is public, having been previously picked
by the bank. Instead, Alice will compute the nulli-
fier as the output of a pseudo-random function (PRF)
over the SN, similar to previous work [16,25,52]. Our
key contribution here is a faster mechanism for Alice
to prove (and for the bank to verify) the correctness
of her nullifier.

Authorizing spends. Clearly, only Alice should
be able to spend her coin. However, since coin se-
rial numbers are bank-picked and Alice’s pid and coin
value are guessable, this begs the question: “What se-
cret information can Alice use to authorize the trans-
fer of her coin?” Here, Alice can use her PRF key
to implicitly sign her transaction. Specifically, Al-
ice implicitly signs while proving the correctness of
her nullifier using Σ-protocols (via the Fiat-Shamir
transform [53]).
Lastly, when sending her coin of value v to Bob,

Alice could maliciously create a coin commitment for
Bob with value v′ > v, thereby creating money out

𝑟𝑐𝑚 = CM.Com 𝑝𝑖𝑑, 𝒔, 𝑎 𝑟𝑠 = RS.Sign 𝒓𝒔𝒌, 𝑟𝑐𝑚
Alice’s (anonymous) registration credential

𝑛𝑢𝑙𝑙𝑖𝑓! = 𝑃𝑅𝐹𝒔 𝑠𝑛!

𝑐𝑐𝑚! = CM.Com 𝑝𝑖𝑑, 𝑠𝑛!, 𝑣!; 𝑟!

𝜎! = RS.Sign 𝒃𝒔𝒌, 𝑐𝑐𝑚!

Alice’s input coin #1

𝑛𝑢𝑙𝑙𝑖𝑓# = 𝑃𝑅𝐹𝒔 𝑠𝑛#

𝑐𝑐𝑚" = CM.Com 𝑝𝑖𝑑, 𝑠𝑛", 𝑣"; 𝑟"

𝜎# = RS.Sign 𝒃𝒔𝒌, 𝑐𝑐𝑚#

Alice’s input coin #2

𝑐𝑡𝑥𝑡$ = IBE.Enc 𝑝𝑖𝑑, 𝑣$, 𝑟$

𝑐𝑐𝑚$ = CM.Com 𝑝𝑖𝑑, 0, 𝑣$; 𝑟$

Alice’s output (change) coin

𝑐𝑡𝑥𝑡% = IBE.Enc 𝑝𝑖𝑑%, 𝑣%, 𝑟%

𝑐𝑐𝑚% = CM.Com 𝑝𝑖𝑑%, 0, 𝑣%; 𝑟%

Bob‘s output coin
𝝅𝑻𝑿𝑵

𝑠𝑛% (bank picks pseudo-randomly)

𝑠𝑛$ (bank picks pseudo-randomly)

Figure 1: Overview of a UTT transaction from Al-
ice, who has coins of value v1 and v2. Alice sends
vB coins to Bob and gets vA coins back as change. A
coin is a commitment ccmi to its owner’s pid, its serial
number sni and its value vi. This commitment has
a rerandomizable signature σi under the bank’s bsk.
Each input coin ccmi is uniquely identified by its nul-
lifier nullifi, which is used to mark it as spent. nullifi
is computed as a PRF under Alice’s PRF secret key
s on the coin’s serial number sni. Alice’s registration
credential (rcm, rs), signed under a registration au-
thority’s rsk, proves that the correct s was used to de-
rive nullifi. Alice creates coin commitments ccmA (to
her change coin) and ccmB (to Bob’s coin), while the
bank homomorphically adds in a random serial num-
ber to these commitments. Here, (a, r1, r2, rA, rB)
are commitment randomizers.

of thin air. We tackle this next.

Combining multiple coins. If Alice has coins of
value v1 and v2, she should be able to send Bob vB
coins and give herself a change of vA = (v1+v2)−vB
coins. This 2-to-2 transaction type, where Alice
spends two input coins and creates two new output
coins, is central to our design; see Fig. 1. How-
ever, Alice must now prove value preservation, or that
v1+v2 = vA+vB . Otherwise, as hinted before, Alice
can maliciously create coins out of thin air. Further-
more, as shown in previous work [16, 54], when val-
ues are encoded as elements of Zp, proving that the
above equality holds modulo p is not sufficient, so
Alice gives an additional zero-knowledge range proof
(ZKRP) on the (committed) output values vA and
vB .

Anonymity budgets. To ensure that each user can
only send up to B coins per month, we issue a sin-
gle budget coin of denomination B to each user every
month [5]. We change the transaction to addition-
ally take this budget coin as its third input and give
budget coin change as its third output. Crucially,
the transaction proves (also via a range proof) that
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the amount transferred to Bob does not exceeded the
input budget amount.

Preventing Sybils using registration. To pre-
vent Sybil attacks, we use a registration author-
ity (RA) to allow new users into the system after
they pass an identity verification process as per §1.2.
Specifically, each user is given an anonymous registra-
tion credential rcm signed under the RA’s secret key
rsk, also using a rerandomizable signature schemes.
This credential anonymously links that user’s pid
with their PRF key s. In addition to anonymously
proving that a coin’s owning user is registered, the
credential also helps prove correctness of nullifiers by
anonymous linking a coin’s pid with the PRF key s
used to compute said nullifier.

2 Related work

We look at related work from three angles. First,
we survey theoretical foundations of anonymous pay-
ments, which are typically not concerned with imple-
mentation efficiency. Then, we survey cryptographic
implementations of anonymous payments, which typ-
ically microbenchmark performance but do not build
or macrobenchmark a decentralized BFT system.
Lastly, we survey decentralized BFT implementations
of anonymous payment systems. Our work falls into
this latter category and we believe it to be a novel de-
sign point in this space. Below, we often distinguish
between systems which offer k-anonymity for senders
and/or recipients and fully-anonymous systems.

Pointcheval-Sanders (PS) signatures. Our work
builds upon PS signatures [34] to blindly sign coins.
An alternative approach worth exploring would rely
upon algebraic MACs and zero-knowledge proofs-of-
knowledge (ZKPoKs) [41]. However, it appears dif-
ficult to make public verification of such MACs via
ZKPoKs as fast as PS verification. Initially, PS sig-
natures based their security on a new assumption
proved secure in the generic group model (GGM).
However, recent work shows PS security reduces to
simple variants of the Strong Diffie-Hellman assump-
tion [55].

Theoretical foundations. Chaum introduced
blind signatures and showed how they give rise
to ecash [1]. Sander and Ta-Shma first proposed
anonymity budgets for limiting the amounts sent [5].
They are also first to propose a ledger-based design
with zero-knowledge membership proofs of valid coins

as an alternative to blind signatures [4]. Maxwell pro-
posed using homomorphic commitments with corre-
lated randomness to hide transferred amounts [54].
Camenisch et al. [8] propose having each mer-
chant specify a per-user spending limit, but they do
not hide recipient identities nor support arbitrary-
denomination coins. Groth and Kohlweiss [56] pro-
pose one-out-of-many proofs and use it to build an
ecash scheme. Garman et al. [21] coin the notion
of an accountable DAP and give various account-
ability notions for anonymous payments, including
anonymity budgets, and sketch how they can be
achieved using zkSNARKs. They also give a new
simulation-based security definition that improves
over [16] and sketch how to handle accountability
in their definition. Mimblewimble [57] shows how
to “compress” a UTXO-based ledger such as Bit-
coin into a single super transaction. This gives full
anonymity, but only against attackers who see the
ledger post-compression, and k-anonymity for attack-
ers who are sniffing the network or getting multiple
snapshots of the ledger. Damg̊ard et al. [28] propose
an identity layer for ledger-based payment systems
that is amenable to auditability but only sketch how
it integrates with anonymous payments. Barki and
Gouget [26] explore trade-offs between privacy and
accountability in traceable ecash schemes, but do not
investigate anonymity budgets.

Cryptographic implementations. Solidus [22]
uses publicly-verifiable oblivious RAMs (PVORAMs)
for anonymity and has the advantage of only stor-
ing state linearly-sized in the number of users rather
than transactions. It also enables auditors to decrypt
user’s balances. However, in Solidus each user’s bal-
ance is visible to their associated bank. Also, the
PVORAM primitive is expensive: in a setting of 12
banks with 215 users each, it supports only 9 transac-
tions per second. PRcash [23] is partially-anonymous,
with validators having some “limited ability to link
transactions with the same recipient issued within a
short period of time.” PRcash also provides account-
ability by limiting incoming payments (whereas our
work limits outgoing payments). PRcash does not
have a formal security analysis. zkLedger [24] gives
anonymous payments from Σ-protocols and supports
certain third-party auditing functionality, but only
handles a small numbers of users who pay each other.
MiniLedger [30] improves upon the storage overheads
of zkLedger, but not the number of users. Co-
conut [58] gives a threshold variant of Pointcheval-
Sanders (PS) signatures, which this work slightly
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modifies, and sketches a tumbler for anonymous pay-
ments, but does not investigate accountability. An-
droulaki et al. [25] also use PS signatures to build
anonymous payments, but do not appear to leverage
re-randomizability when creating a transaction and
instead rely on proofs-of-knowledge of a signature.
They only microbenchmark their scheme which, when
compared to this work, has 31× slower transaction
creation and 90× slower validation. Without trans-
action auditability, these slowdowns would be 10×
and 33×, respectively. Quisquis [59] addresses the
unbounded growth of the state in systems like Mon-
ero and Zerocash [16]. However, Quisquis only offers
k-anonymity for senders and recipients. Bogatov et
al. [29] investigate using delegatable anonymous cre-
dentials for registering users inside an auditable pay-
ment scheme. Zether [60] allows users in an Ethereum
smart contract to pay each other while fully hiding
the amounts and partially-hiding the involved parties
using k-anonymity. Zexe [61] proposes a new Decen-
tralized Private Computation (DPC) notion, which
they use to build privacy-preserving smart contracts,
including a scheme for transferring user-defined as-
sets. However, Zexe does not tackle accountability
for anonymous payments and is not lightweight due to
zkSNARKs. PGC [27] hides denominations but not
user identities in a transaction, which are pseudony-
mous like in Bitcoin. However, PGC achieves three
accountability notions: limiting amounts sent or re-
ceived, paying a certain tax rate and disclosing a
transaction’s amount. Veksel [62] builds anonymous
payments from commit-and-prove SNARKs for RSA
accumulators, Bulletproofs [44] and SNARK-friendly
elliptic curves. Veksel does not provide auditability.
Concomitant with our work, Platypus [31] also pro-
poses anonymous payments with anonymity budgets
for incoming payments. Additionally Platypus can
limit the total balance of users. However, their pay-
ment protocol is interactive as it requires the recipi-
ent to send their account information to the sender.
Platypus microbenchmarks a zkSNARK-based and
a Σ-protocol-based instantiation of their protocol.
Compared to the SNARK one, UTT is 8× faster
when creating TXNs and 27× slower when validat-
ing them, which we believe can be improved (see §8).
The Σ-protocol instantiation also uses PS signatures,
but it does not seem to support accountability and it
is not actually described in the paper.

BFT implementations. Zerocoin [12] extends Bit-
coin with ecash-like privacy using RSA accumulators.
Monero [63,64] extends Maxwell’s confidential trans-

actions [54] by fully-hiding recipients via stealth ad-
dresses and partially-hiding senders (k-anonymity)
via ring signatures. Zerocash [16] builds decentral-
ized anonymous payments using zkSNARKs. None
of these systems provide accountability and all use
proof-of-work consensus which results in low through-
put.

3 Preliminaries

Notation. We assume Type III bilinear pairings
e : G1 × G2 → GT over groups of prime order p.
We use the multiplicative notation for G1 and G2

throughout the paper. Let [n] = {1, 2, . . . , n}. Let
a ←$ S denote uniformly sampling a from a set
S. We often use bolded variables to denote vec-
tors as m = [m1,m2, . . . ,mℓ]. Let g ∈ Gℓ and
(x,y) ∈ (Zℓ

p)
2. Then, gx = gx1

1 gx2
2 · · · g

xℓ

ℓ and
x+ y = [x1 + y1, . . . , xℓ + yℓ].

3.1 Cryptographic building blocks

We use homomorphic commitments to vectors m
computed as cm← CM.Com([m1, . . . ,mℓ]; r) where r
denotes the randomness. These commitments can be
rerandomized via cm′ ← CM.Rerand(cm; ∆r), where
∆r ←$ Zp, which prevents an attacker from link-
ing an old, known cm with a fresh, rerandomized
cm′. Homomorphism means that CM.Com(m1; r1) ·
CM.Com(m2; r2) = CM.Com(m1 +m2; r1 + r2). We
assume familiarity with notions of binding and hiding
for commitments, which we do not repeat here.

Pedersen commitments. In particular, we use
“dual” Pedersen commitments [65] computed over
both G1 and G2 using a public commitment key

ck
def
= (ck1, ck2) = ((g,g), (g̃, g̃)) as:

(cm, c̃m) = CM.Comck(m; r) = (gmgr, g̃mg̃r), r ←$ Zp

We can rerandomize any dual commitment (cm, c̃m),
as (cm · g∆r, c̃m · g̃∆r), where ∆r ←$ Zp. We of-
ten abuse notation and let cm = CM.Comck1(m, r) =
gmgr ∈ G1. (We proceed analogously for G2.) We
give full algorithms in Fig. 3 in the appendix.

Pointcheval-Sanders (PS) signatures. We of-
ten sign dual Pedersen commitments (cm, c̃m) us-
ing a rerandomizable signature (RS) scheme by
Pointcheval and Sanders [34] as:

σ = RS.Signck(sk, cm;u) = (gu, (sk · cm)u), u←$ Zp

(1)
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Note that the signing algorithm only needs the cm ∈
G1 part of the dual commitment. Here, sk ∈ G1 is
the secret key, u is the signing randomness and ck is
the commitment key. However, the verification algo-
rithm RS.Verck(vk, (cm, c̃m), σ) needs c̃m ∈ G2 and, of
course, the verification key vk for sk. Lastly, it is cru-
cial not to reuse u for two different signatures, which
would lead to a forgery. We detail (single-signer) PS
signatures in Fig. 4 in the appendix.
A signature σ on cm can be rerandomized

into a signature σ′ on a rerandomized cm′ =
CM.Rerand(cm; ∆r) via σ′ = RS.Rerand(σ,∆r,∆u),
where ∆u←$ Zp. As a consequence, a signer cannot
link the old, known signed commitment (cm, σ) with
the fresh, rerandomized (cm′, σ′).
In §4, we abuse the notation and use

RS.Sign(sk, cm;u) and RS.Ver(vk, cm, σ) when
describing our high-level design. Later, in §5, we
use the precise notation that accounts for ck and
c̃m ∈ G2 when describing low-level details.

Threshold PS. To thresholdize PS, the key pair
(sk, vk) is (t, n)-secret-shared amongst the signers,
such that each signer i has a share secret key ski and a
share verification key vki. As a result, only subsets of
≥ t+1 signers can collaborate to produce a signature
that verifies under vk. A key challenge is generating
the per-signature private randomness u from Eq. 1 in
a distributed manner so that no single signer learns
u. Here, we slightly modify previous work [58], which
gives a fast approach that avoids expensive distributed
key generation (DKG) protocols for each u.
Our threshold PS variant works as follows. First,

each signature request on a committed vector m is
associated with a pre-agreed upon, random h ∈ G1

such that nobody knows the discrete log between
h and g. (We detail later how pre-agreement on
h happens in our application.) Second, a client
sends (to each signer) individual commitments cmk =
hmkgrk , rk ←$ Zp to the ℓ messages in m with a
zero-knowledge proof-of-knowledge (ZKPoK) of open-

ing πzkpok
k (see App. B.1). Third, each signer pro-

duces their signature share:

[σ∗]i = RS.ShareSignck(ski, ((cmk, π
zkpok
k )k∈[ℓ]);h)

(2)

Fourth, the client verifies each signature share
via RS.ShareVerck(vki, (cmk, π

zkpok
k )k∈[ℓ], [σ

∗]i;h) and
identifies a set S of t+ 1 valid ones. Fifth, the client
aggregates them as follows:

σ ← RS.Aggregateck(([σ
∗]i)i∈S , [r1, . . . , rk]) (3)

Importantly, the final threshold signature veri-
fies as RS.Ver(vk, (cm, c̃m), σ), where (cm, c̃m) =
CM.Comck(m; 0) has randomness set to zero (but can
be rerandomized after). We give full details in Fig. 5
in the appendix.

Identity-based encryption (IBE). We use a key-
private, CCA-secure, threshold-issuance variant of
the Boneh-Franklin IBE [66, 67], fully described in
Fig. 6 in the appendix. In IBE, every user j has a
public identifier pidj (e.g., their phone number). The
IBE authority has an IBE key-pair (msk,mpk) and is-
sues to each user j their decryption secret key dskj ←
IBE.Extract(msk, pidj). To deal with a malicious au-
thority, threshold-issuance IBE secret shares the msk
amongst n cothoroties [68]. This way, t + 1 ≤ n or
more cothorities must collaborate to issue user j’s
dskj and no subset of ≤ t malicious cothorities can
learn dskj . To encrypt m for a user with pidj , one
computes ctxt ← IBE.Enc(mpk, pidj ,m). To decrypt,
user j computes m ← IBE.Dec(dskj , ctxt). When us-
ing CCA-secure IBE, this returns ⊥ if the ciphertext
is invalid.

Range proofs. We use a pairing-based range proof
protocol by Boneh et. al [69] based on constant-sized
polynomial commitments, which we adapt to work
for Pedersen commitments in App. B. A range proof
for a committed v ∈ [0, 2N ) is computed as πrange ←
ZKRP.Prove(rpp, v, z), where rpp are public param-
eters for proving [0, 2N ) ranges. The proof can be
verified against the commitment cm = CM.Com(v; z)
as ZKRP.Ver(rpp, cm, πrange). The scheme is fully de-
scribed in Fig. 7 in the appendix.

Discrete-log-based ZK proofs. We often use
zero-knowledge arguments of knowledge (ZKAoKs)
for discrete logs (DLs), where a computationally
bounded prover convinces a verifier that a certain
NP relation R(x;w) holds between the DLs of group
elements. Here, x is referred to as the statement and
w as the witness. Importantly, the prover proves that
it knows a w such that R(x;w) = 1. Lastly, secret
knowledge of the witness w can actually be used to
implicitly sign a message m as part of the proof for
R(x;w). If so, we refer to such an argument as a
zero-knowledge signature of knowledge (ZKSoK) [70].
For brevity, we refer the reader to [56,59,70] for well-
known definitions of ZKAoKs/ZKSoKs.

Example: A relation could be that cm1 = ga1g
b
2g

c
3g

r

and cm2 = hagz both commit to the same a. The
statement would be x = (cm1, cm2), while the open-
ings would be the witnessw = (a, b, c, r, z). Crucially,
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zero-knowledge guarantees the verifier learns nothing
about w (beyond cm1 and cm2 being related as de-
scribed above).

Notation. When proving a particular relation
Rrel(x;w) holds, we often use ZK.Proverel(x;w) and
ZK.Verrel(x) as notation for the prover and verifier
algorithms.

4 UTT design

In this section, we break down our high-level design
from Fig. 1 into a lower-level one built from commit-
ments, rerandomizable signatures, Σ-protocols and
range proofs; see Fig. 2. For ease of exposition, we
focus on how these building blocks fit together and
defer efficiently instantiating them to §5.

4.1 Actors

Our system consists of: (1) users, who want to
transact, (2) a bank, which issues new coins and
blindly validates transactions, (3) an auditor who
grants users anonymity budgets and audits transac-
tions when users run out of budget, and (4) a regis-
tration authority (RA), which is responsible for reg-
istering users to prevent Sybil attacks on anonymity
budgets. For ease of exposition, we describe the bank,
auditor and RA as single, honest-but-curious servers,
and we decentralize them in §5.

Bank. The bank has a rerandomizable signature key-
pair (bsk, bvk) which it uses to sign new coins. The
bank’s state consists of a ledger of valid transactions
and a nullifier list which keeps track of spent or “nul-
lified” coins.

Users. Users store coins in their wallet. Every user
has a public identifier pid (e.g., phone number, email
address or national identity number) and two secrets:
a PRF key s, which allows them to spend their coins,
and a decryption secret key dsk, which allows them
to receive coins.

Registration authority (RA). The RA prevents
attackers from arbitrarily creating fake user identi-
ties in our system (i.e., sybils) and artificially increas-
ing their anonymity budget. The RA registers new
users who passed an identity verification process as
per §1.2. Specifically, it issues anonymous credentials
using a rerandomizable signature key-pair (rsk, rvk).
Furthermore, the RA manages an IBE key-pair (msk,
mpk) and issues each user their dsk.

Auditor. Each user receives their anonymity budget
from the auditor, who signs so-called budget coins,
discussed in §4.6, using a rerandomizable signature
key-pair (ask, apk), which the bank also knows. When
a user “runs out of anonymity budget”, they can still
create transactions that are anonymous to the bank,
but not to the auditor, who must clear them based
on a customizable auditing policy, which is outside
the scope of this work. In future work the auditor
may have a governance mechanism that allows it to
change its anonymity budget policy.

4.2 Anonymous registration creden-
tials

To register, a user with pid must first pass an iden-
tity verification process (see §1.2). Then, the RA can
issue them a decryption secret key dsk and a registra-
tion credential consisting of a signature rs on a regis-
tration commitment rcm to their pid and PRF key s =
s1 + s2, where the user picks s1 and the server picks
s2. First, the user lets rcm1 ← CM.Com([0, s1]; a),
where (a, s1)←$ Z2

p and sends (pid, rcm1) to the RA,
together with a ZKPoK of the opening [0, s1] (see
App. B.1). Second, the RA picks s2 ←$ Zp, and lets:

rcm2 ← CM.Com([pid, s2]; 0) (4)

rcm← rcm1 · rcm2 = CM.Com([pid, s], a) (5)

rs← RS.Sign(rsk, rcm; b), where b←$ Zp (6)

dsk← IBE.Extract(msk, pid) (7)

Third, the RA sends (rcm, rs, dsk, s2) to the user
who computes his PRF key as s = s1+s2. Of course,
dsk and s2 are privately-sent (e.g., via TLS). Note
that while the RA learns who is registering, it does
not learn their PRF key s.

Why should users have to register? Whenever a
user asks for their monthly budget, they must present
their registration credential (rcm, rs) and provably-
reveal their committed pid (see App. B.1), which
allows the auditor to check if that pid has already
been issued budget. This prevents Sybil attacks on
anonymity budgets. Even though users reveal their
pid’s during budget issuance, anonymity could be pre-
served if users instead proved (in ZK) that their pid
has not already been issued budget. (We leave this
to future work.)
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4.3 Rerandomizable coins

Signing coins. We commit to a coin owner’s pid, its
value v and serial number sn as:

ccm = CM.Com([pid, sn, v]; r), where r ←$ Zp (8)

Since the bank will pick the sn pseudo-randomly (see
§4.5), transactions (TXNs) maintain privacy by re-
vealing a nullifier (i.e., a PRF over the sn) instead
of the publicly-known sn. The bank computes a coin
signature σ directly over the commitment ccm, which
hides all coin details from the bank:

σ = RS.Sign(bsk, ccm;u), where u←$ Zp (9)

This way, anyone can verify if a committed coin was
validly-issued by the bank via RS.Ver(bvk, ccm, σ)
(see Fig. 4).

Rerandomizing coins. A key ingredient of our
privacy-preserving design is that a user can take an
old coin (ccm, σ), which the bank knows of, and reran-
domize it as a new coin (ccm′, σ′). This way, if a
transaction spends the rerandomized coin (ccm′, σ′),
the bank cannot tell that this coin is actually spend-
ing the old coin. Specifically, the user randomly picks
(∆r,∆u)←$ Z2

p and rerandomizes as:

ccm′ ← CM.Rerand(ccm; ∆r) (10)

σ′ ← RS.Rerand(σ; ∆r,∆u)

Importantly, the new σ′ signature still verifies against
the rerandomized ccm.

Nullifiers, or how to mark coins as spent.
Since serial numbers are picked by (and known to)
the bank, coins cannot be anonymously marked as
spent by their serial number. Instead, when in-
cluding a coin (ccm, σ) in a transaction, the owner
reveals a nullifier computed as a PRF over the
coin’s serial number: nullif = PRFs(sn). It will be
useful to additionally reveal a separate value com-
mitment vcm = CM.Com([0, 0, v]; z), where z ←$
Zp (we explain why in §4.4). Importantly, the
owner argues correctness of nullif and vcm by prov-
ing, in zero-knowledge, that the following relation
Rsplit(ccm, rcm, nullif, vcm; pid, sn, v, r, s, a, z) holds:

ccm = CM.Com([pid, sn, v]; r) ∧
rcm = CM.Com([pid, s]; a) ∧
nullif = PRFs(sn) ∧
vcm = CM.Com([0, 0, v]; z)

 (11)

We call this a splitproof, denote it by πsplit and in-
stantiate it efficiently in §5.

4.4 Anonymous-but-unaccountable
transactions

As a warm-up, we first explain our anonymous-but-
unaccountable transactions format from Fig. 2 (i.e.,
no anonymity budgets). Throughout the rest of this
section, we consider Alice with pidA, PRF key sA
and registration credential (rcm, rs), who has two
coins (pidA, sni, vi)i∈{1,2}, committed and signed as
(ccmi, σi)i∈{1,2}. Alice wants to pay vB coins to Bob
with pidB and get vA coins back as change, of course
subject to v1+v2 = vA+vB . We incrementally design
an anonymous-but-unaccountable transaction format
for this task below. (We deal with transaction fees in
App. A.)

Step 1: Input commitments. First, Alice in-
cludes her anonymous registration credential in a
transaction tx. Second, she includes her signed in-
put coin commitments ccmi, their nullifiers, and sepa-
rate value commitments vcmi = CM.Com([0, 0, vi]; zi)
with randomness zi she picked. So far, the transac-
tion is:

tx = (rcm, rs), ⟨(ccmi, σi), vcmi, nullifi, π
split
i ⟩i∈{1,2} (12)

Importantly, Alice rerandomized her anonymous cre-
dential, as well as her coins and their signatures (via
CM.Rerand and RS.Rerand as per §4.3) so that neither
the bank nor the RA recognizes them from when they
issued them in the past. Alice will also need to anony-
mously prove that she owns her coins, which she will
actually do by implicitly signing tx via her πsplit (see
Step 4 below).

Step 2: Output commitments. Next, Alice needs
to anonymously indicate she is sending vB coins to
Bob with pidB and vA coins to herself back as change.
For this, Alice picks randomness (t′j , z

′
j) and creates

separate output value commitments and identity com-
mitments to the amount and identity of each recipient
j ∈ {A,B}:

icmj = CM.Com([pidj , 0, 0]; t
′
j) (13)

vcmj = CM.Com([0, 0, vj ]; z
′
j) (14)

Alice also uses IBE to encrypt recipient j’s coin value
and randomness, which they will need when receiving
her payment:

ctxtj = IBE.Enc(mpk, pidj , (vj , z
′
j , t

′
j)) (15)

Importantly, the anonymous IBE scheme guarantees
that ctxtj does not leak anything about the recipient
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𝑟𝑐𝑚 = CM.Com 𝑝𝑖𝑑, 𝒔, 𝑎 𝑟𝑠 = RS.Sign 𝒓𝒔𝒌, 𝑟𝑐𝑚
Alice’s (anonymous) registration credential

Alice’s input coin #1 Alice’s output (change) coin
𝑠𝑛! (bank picks pseudo-randomly)
𝑖𝑐𝑚! = CM.Com 𝑝𝑖𝑑, 0,0; 𝑡!"
𝑣𝑐𝑚! = CM.Com 0,0, 𝑣!; 𝒛!"

𝑐𝑡𝑥𝑡! = IBE.Enc 𝑝𝑖𝑑, 𝑣!, 𝒛!" , 𝑡!"

𝜋!
"#$%&

𝜋'
()#*)

𝜋'
+,-./

𝒛! + 𝒛0 = 𝒛'1 + 𝒛21

Bob‘s output coin
𝑠𝑛# (bank picks pseudo-randomly)
𝑖𝑐𝑚# = CM.Com 𝑝𝑖𝑑#, 0,0; 𝑡#"
𝑣𝑐𝑚# = CM.Com 0,0, 𝑣#; 𝒛#"

𝑐𝑡𝑥𝑡# = IBE.Enc 𝑝𝑖𝑑#, 𝑣#, 𝒛#" , 𝑡#"

𝜋2
()#*)

𝜋2
+,-./

Alice’s input coin #2

Correlated randomness:

𝑐𝑐𝑚$ = CM.Com 𝑝𝑖𝑑, 𝑠𝑛$, 𝑣$; 𝑟$
𝜎$ = RS.Sign 𝒃𝒔𝒌, 𝑐𝑐𝑚$
𝑣𝑐𝑚$ = CM.Com 0,0, 𝑣$; 𝒛$
𝑛𝑢𝑙𝑙𝑖𝑓$ = 𝑃𝑅𝐹𝒔 𝑠𝑛$

𝜋0
"#$%&

𝑐𝑐𝑚& = CM.Com 𝑝𝑖𝑑, 𝑠𝑛&, 𝑣&; 𝑟&
𝜎& = RS.Sign 𝒃𝒔𝒌, 𝑐𝑐𝑚&
𝑣𝑐𝑚& = CM.Com 0,0, 𝑣&; 𝒛&
𝑛𝑢𝑙𝑙𝑖𝑓& = 𝑃𝑅𝐹𝒔 𝑠𝑛&

Figure 2: More fine-grained view of an anonymous-
but-unaccountable UTT transaction. Alice is sending
two coins of values v1 and v2, giving vB coins to Bob
and vA coins back to herself. Alice provably “splits”
each input coin i into a nullifi and a value commit-
ment vcmi via a splitproof πsplit

i . For each recipient
j ∈ {A,B}, Alice creates output value commitments
vcmj with range proofs and uses correlated random-
ness to argue that v1 + v2 = vA + vB . Alice also
creates identity commitments icmj (with ZKPoKs of
opening), which the bank combines with their cor-
responding vcmj and serial number snj to obtain an
output coin commitment and sign it (see §4.5).

pidj . Next, Alice computes a ZKPoK πzkpok
j of the

opening [pidj , 0, 0] of each icmj and a ZK range proof
πrange
j = ZKRP.Prove(vj , z

′
j), for each vcmj . These

will be used to ensure Alice does not create coins out
of thin air, which we discuss next. The transaction is
now extended as:

tx =

{
(rcm, rs), ⟨(ccmi, σi), vcmi, nullifi, π

split
i ⟩i∈[2]

⟨icmj , π
zkpok
j , vcmj , π

range
j , ctxtj⟩j∈{A,B}

(16)

Step 3: Value preservation. Alice must prove
that v1 + v2 = vA + vB , or value preservation; other-
wise, she could create coins out of thin air by inflat-
ing her change amount vA! For this, we use a well-
known, efficient approach based on homomorphic
commitments with correlated randomness. Specifi-
cally, since Alice is the one who picks the random-
ness of the value commitments, she can correlate it
so that z1 + z2 = z′A + z′B . As a result, the homo-
morphic properties of the commitment can be used
to verify value preservation:

vcm1 · vcm2 = vcmA · vcmB ⇔ (17)

CM.Com([0, 0, v1 + v2]; z1 + z2) = (18)

= CM.Com([0, 0, vA + vB ]; z
′
A + z′B)⇒

v1 + v2 ≡ vA + vB (mod p) (19)

Here, p is the prime order of our bilinear groups (see
§3). However, note that the equality above holding
(mod p) is actually not enough: a malicious Alice
could set vB = (v1+v2)+1 and vA = p−1. This gives
vA+vB = (v1+v2)+p ≡ (v1+v2) (mod p), yet Alice
has maliciously created p additional coins out of thin
air! This is why each output value commitment vcmj

comes with a range proof πrange
j , which proves that,

when viewed as a positive integer, vj < 2N (i.e., a
predefined maximum number of coins in the system).

Step 4: Authorization (and TXN non-
malleability). Clearly, only Alice, who knows the
PRF key sA associated with her pidA should be able
to spend her coins. Furthermore, an adversary should
not be able to maul Alice’s TXN and change the
recipients or amounts. We ensure this by using a
zero-knowledge signature of knowledge (ZKSoK) as
our splitproof rather than a plain ZKAoK (see §3.1).
As a result, each input’s splitproof πsplit

i implicitly
signs all the outputs, which proves that Alice is au-
thorized to spend that input’s coin and prevents TXN
mauling. The signing key can be thought of as Alice’s
PRF key sA (and all other secrets in Eq. 11), which
only she knows.

4.5 Validating and processing trans-
actions

In this section, we explain how the bank (1) validates
our anonymous-but-unaccountable transactions from
§4.4 (2) issues new coins and (3) how recipients fetch
them. In §4.6, we add support for accountability.

Validating TXNs. Given Alice’s tx from Eq. 16,
the bank first checks that the sender’s registra-
tion credential is valid via RS.Ver(rvk, rcm, rs). Im-
portantly, since the bank verifies this signature
against the (rerandomized) registration commit-
ment, the bank learns nothing about Alice’s iden-
tity. Second, the bank checks that each coin
was validly issued via RS.Ver(bvk, ccmi, σi),∀i ∈
[2]. Third, the bank checks that the split relation
Rsplit(ccmi, rcm, nullifi, vcmi) from Eq. 11 holds via

πsplit
i for each i ∈ [2]. This implicitly verifies Alice’s

signature on the whole transaction, without leaking
Alice’s identity as the sender.

Fourth, the bank parses the tx’s input (vcmi)i∈[2]

and output (vcmj)j∈{A,B} and checks value preser-
vation holds modulo p as per Eq. 17. Then, the
bank checks each output’s range proof, which implic-
itly proves knowledge of an opening [0, 0, vj ] for vcmj .
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(Note that input vcmi’s do not need a range proof:
since input coins were validly-issued, they can safely
be assumed to be “in range”.) Fifth, the bank checks,

via πzkpok
j , that each icmj is of the form [pidj , 0, 0] for

some secret pidj . Lastly, the bank ensures all nullifi’s
are not in its nullifier list. If so, the bank adds the
nullifiers to the set and adds tx to the ledger of valid
TXNs.

Issuing new coins. The bank is now ready to
blindly issue new coins for the recipients, with-
out learning the amounts or identities of the re-
cipients. First, the bank pseudo-randomly picks
serial numbers snj = Hsn(tx||j) for each output
coin j ∈ {A,B}, where Hsn is a collision-resistant
hash function (CRHF). Since the bank verified each

(πzkpok
j , πrange

j ), it can safely compute the jth output
coin commitment as:

ccmj = icmj · CM.Com([0, snj , 0]; 0) · vcmj (20)

= CM.Com([pidj , snj , vj ]; t
′
j + z′j) (21)

Specifically, πzkpok
j prevents icmj from maliciously

committing to (pidj , 0, δj) with δj ̸= 0 which, when
combining it with vcmj , would yield a malicious ccmj

with a larger value vj + δj than what the range proof
was over.

The bank learns nothing about the recipient’s
(pidj , vj). Furthermore, even though the bank knows
the snj ’s of these new coins, it will not be able to
link them to their nullifiers when the coins are later
spent (see §4.3). Lastly, the bank signs each coin as
σj ← RS.Sign(bsk, ccmj ;uj), where uj ←$ Zp and
updates tx on the ledger with its σj ’s.

Receiving payments. Similar to previous
work [16], to receive payments, Bob has to scan
the bank’s transaction list for new transactions that
he missed and check if those transactions paid him.
For each new transaction tx (as per Eq. 16) and
for each output j in tx, Bob checks if ctxtj is en-
crypted for him via IBE.Dec(dsk, ctxtj) ̸= ⊥, where
dsk is his decryption secret key. If so, Bob decrypts
his (vj , t

′
j , z

′
j) from Eq. 15, recomputes his output’s

snj ← Hsn(tx||j) and reconstructs his coin commit-
ment ccmj ← CM.Com([pidj , snj , vj ]; t

′
j + z′j). Next,

he fetches the coin signature σj from the TXN, reran-
domizes (ccmj , σj) as per §4.3 and adds it to his wal-
let. We discuss how users can delegate this linear
scan to an untrusted third party in §8.

4.6 Anonymous-and-accountable
transactions

Budget coins. Each user gets B budget coins per
month, which allow them to send up to B normal
coins every month blindly, without revealing any
transaction details to the bank or the auditor. A bud-
get coin resembles a normal coin from §4.3, except it
has an expiration date expi and is signed using the
auditor’s ask. For example, at the beginning of the
month, a user provably reveals their pid to the audi-
tor using their registration credential (and a ZKPoK;
see App. B.1). The auditor then issues them their
monthly budget coin:

ccm = CM.Com([pid, sn,B, expi]; r), where (sn, r)←$ Z2
p

σ = RS.Sign(ask, ccm) (22)

Note that the auditor can easily encrypt the coin se-
crets for the user via IBE.Enc(mpk, pid, (sn, r)). For
example, if the pid is an email address (or a phone
number), this ciphertext can be emailed (or texted)
to the user. By default, normal coins are now com-
mitted with expiration date set to 0.

(Anonymous) accountable transac-
tions. Assume Alice has her budget coin
ccm3 = CM.Com([pidA, sn3, v3, expi]; r3) and its
signature σ3, as per Eq. 22. We modify our “2-to-2”
transactions from §4.4 as follows. First, Alice pro-
vides her budget coin (ccm3, σ3) as a third input to
the TXN and argues in zero-knowledge that (1) its
value v3 exceeds the value vB sent to Bob and (2) it
is not expired. Second, Alice creates a third output
(denoted by C) for the bank to issue her budget
change vC = v3 − vB . To validate the transaction,
the bank proceeds as per §4.4, nullifying all input
coins, including the budget, and issuing coins as
before, including Alice’s budget change. (Recall
that the bank also knows ask.) Our new “3-to-3”
anonymous-and-accountable transaction format is:

txacc =


(rcm, rs), πbudget, expi

⟨(ccmi, σi), vcmi, nullifi, π
split
i ⟩i∈[3]

⟨icmj , π
zkpok
j , vcmj , π

range
j , ctxtj⟩j∈{A,B,C}

(23)

Step 1: Proving budget suffices. Alice must prove
in zero-knowledge that (1) she gave enough budget
v3 ≥ vB and (2) that her budget change is exactly
vC = v3 − vB . First, Alice correlates the randomness
of the value commitments to satisfy not only z1+z2 =
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z′A + z′B , but also z3 = z′C + z′B . This way, similar to
Eq. 17, the bank can verify correctness of the budget
change via vcm3 = vcmC · vcmB ⇔ v3 ≡ vC + vB
(mod p). Second, Alice includes a range proof πrange

C

which argues that vC ∈ [0, 2N ). As a result, it follows
that v3 ≥ vB .

Step 2: Verifying expiration date. To verify the expi
of the budget coin, we do the following. Alice actually
computes ccm3 by using 0 as the expiration date and
proves this using a Σ-protocol (see App. B.1). Note
this is compatible with the split relation from Eq. 11,
which implicitly only accepts coins with expiration
date 0. Next, the bank can homomorphically add
in the actual expiration date from the transaction
and check the signature verifies via RS.Ver(apk, ccm3 ·
CM.Com([0, 0, 0, expi]; 0)).

Step 3: Proving single recipient. The above assumes
Alice correctly generates the TXN to (1) pay Bob
and (2) give herself normal change vA as well as bud-
get change vC . However, a malicious Alice might
craft the transaction to send the budget change to
another user altogether, or to use her change output,
which is not subject to budgeting, to pay yet another
user. We prevent this using a budget proof πbudget

which argues that Alice used her own pidA (from
rcm) in her icmA and icmC identity commitments,
which should only be used to give herself change. In
other words, Alice proves that the following relation
Rbudget(rcm, icmA, icmC ; pidA, sA, a, t

′
A, t

′
C) holds: rcm = CM.Com([pidA, sA]; a) ∧

icmA = CM.Com([pidA, 0, 0, 0]; t
′
A) ∧

icmC = CM.Com([pidA, 0, 0, 0]; t
′
C)

 (24)

Splitting coins. Alice should still be able to
split her own coins of value v1 and v2 into new
coins of value v′1 and v′2, without spending any of
her anonymity budget. For this, we still allow 2-
to-2 transactions as per Eq. 16, but only if they
come with a budget proof πbudget that argues all
inputs and outputs have the same pid: i.e., that
Rbudget(rcm, icmA, icmB) holds! Note that an adver-
sary can distinguish between transactions that split
coins and transaction that actually spend them using
budget.

Running out of budget? In the rare case that
Alice runs out of budget, she creates a 2-to-2 unac-
countable transaction as per Eq. 16 which she clears
with the auditor. Based on a customizable auditing
policy, the auditor can ask Alice to reveal various

transaction details. This could range anywhere from
provably-revealing everything to the auditor or re-
vealing nothing but the fact that the payment is a
donation to a charity. We leave exploring practical
policies to future work and for now assume Alice re-
veals everything to the auditor. The auditor can sim-
ply sign the transaction to signal to the bank that it
has been audited and can be accepted on the ledger.

5 UTT building blocks

Byzantine fault tolerance and threshold cryp-
tography. To deal with an actively-malicious bank,
registration authority or auditor, we decentralize
them as a Byzantine fault-tolerant (BFT) state ma-
chine replication (SMR) system of n = 3f+1 servers,
which guarantees safety in a partially-synchronous
model [36, 71]. (Separate BFT systems for each ac-
tor should be used, but we avoid this for ease of
exposition.) Every server i ∈ [n] will store shares
(bski, rski, aski,mski) of the bsk, rsk, ask and msk, re-
spectively. Furthermore, honest servers will have a
consistent view of the nullifier list and the valid trans-
action ledger. Servers must now collaborate to pro-
duce an f+1 out of n threshold signature on a coin (or
registration commitment), or to issue an encryption
SK to a user. This way, no subset of ≤ f servers can
maliciously issue new coins, register fake users or de-
crypt user’s transactions. We explain below how we
must augment our transactions to support threshold
signing coins.

Dual Pedersen commitments. We dual commit
to coins using Pedersen (see §3.1) as:

(ccm, c̃cm) = CM.Comcck([pid, sn, v, expi]; r) (25)

def
= (gpid1 gsn2 gv3g

expi
4 gr, g̃pid1 g̃sn2 g̃v3 g̃

expi
4 g̃r)

(26)

Here, cck
def
= (cck1, cck2) =

(g, (g1, . . . , g4), g̃, (g̃1, . . . , g̃4)) is our coin commit-
ment key. Registration commitments (rcm, r̃cm) are
also dual, but under a related registration commit-

ment key rck
def
= (rck1, rck2) = (g, (g1, g5), g̃, (g̃1, g̃5)).

Input value commitments in a TXN are computed
only in G1 as vcmi = CM.Comcck1([0, 0, vi, 0]; zi).
We defer discussion of output identity and value
commitments, which will be closely tied to our
threshold PS signatures discussed below.
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Threshold Pointcheval-Sanders signatures.
The bank will sign coin and registration commit-
ments using the threshold PS scheme from §3.1.
This slightly affects our TXN format, as illustrated
in Eq. 32, as well as how the bank validates and
processes TXNs.

Dual commitments. For PS verification to work, any
signed commitment in our TXN from Eq. 23 must be
dual. Thus, we include r̃cm ∈ G2 next to rcm and, for
each input ccmi ∈ G1, we include its corresponding
c̃cmi ∈ G2. When receiving a payment (as per §4.4),
users must now fetch individual signature shares from
the bank and aggregate them via RS.Aggregate (see
§3.1). (Alternatively, the bank can aggregate the sig-
nature for the user and the user need only unblind it
as per the last step in RS.Aggregate from Fig. 5.)

Agreeing on signing randomness. Recall that our
threshold PS variant from §3.1 requires pre-agreed
randomness hj for threshold signing the jth out-
put coin commitment ccmj from Eq. 20. For this,
both Alice and the bank pseudo-randomly compute
a unique hj ← Hps(j||(nullifi)i∈[3]) based on the in-
put coin nullifiers in the transaction, where Hps is a
CRHF.

Output identity and value commitments. For the
bank to threshold sign, Alice must separately commit
to the fields of each output coin j under a signature-
specific commitment key tckj = (hj , g) (see §3.1).
Since the bank already knows the snj ’s and the bud-
get coin’s expiration date, this could be as simple as
Alice recomputing icmj and vcmj under tckj . While
Alice can do so for icmj , using a different commit-
ment key for vcmj would break the value preservation
checks from Eq. 17.
Instead, Alice leaves vcmj as per Eq. 14

but computes an additional vcm∗
j ←

CM.Comtckj (vj ; d
′
j), d

′
j ←$ Zp and proves using

a ZK proof πpedeq
j that vcm∗

j commits to the
same value as vcmj (see App. B.1). Impor-
tantly, Alice now encrypts d′j for each recipient in
ctxtj ← IBE.Enc(mpk, pid, (vj , d

′
j , t

′
j)), where t′j is the

randomness of icmj .

Thresholdizing registration and budgets. To
threshold sign registration credentials for a user with
pid, the user’s rcm1 commitment from Eq. 5 must also
be computed under a signature-specific commitment
key (hpid, g), where hpid is pre-agreed upon between
the user and the RA. This is easy to achieve by letting
hpid be the hash of pid and the current time of the day.
Then, the RA can threshold sign rcm from Eq. 5 as

explained in §3.1. Similarly, when issuing each user’s
monthly budget coin, the auditor needs to threshold
sign it as well. Once again, the randomness for this
signature can be agreed to be the hash of pid and the
current month.

Dodis-Yampolskiy PRFs. We use a well-known
pseudo-random function by Dodis and Yampol-
skiy [72] to compute nullifiers as nullif = PRFs(sn) =

h1/(s+sn), where h ←$ G1 is a fixed PRF public pa-
rameter. Our main challenge is to efficiently prove
correctness of nullif in ZK as part of the Rsplit rela-
tion from Eq. 11. For this, we include some auxiliary
information:

vk = h̃s+snw̃t y = e(nullif, w̃)t (27)

Here, t is secret randomness from Zp and (h̃, w̃) ←$
G2

2 are also fixed PRF public parameters. Assum-
ing correctness of vk and y, the bank can check the
correctness of the PRF as:

e(nullif, vk)
?
= e(nullif, h̃s+snw̃t) = (28)

= e(nullif, h̃s+sn) · e(nullif, w̃t) (29)

= e(h
1

s+sn , h̃s+sn) · y ?
= e(h, h̃) · y (30)

We argue in §B.2 in the appendix why the check
above proves correctness of the nullifier in zero-
knowledge. Of course, since correctness of vk and
y cannot be assumed, we prove it as part of an inner
split relation, discussed next.

Splitproof. To prove the original Rsplit holds
as per Eq. 11, the TXN creator first com-
putes vk and y as per Eq. 27 and uses a Σ-
protocol to prove the following inner split relation
R∗

split(ccm, rcm, nullif, vcm, vk, y; pid, sn, v, r, s, a, z, t)
holds:

ccm = CM.Comcck1([pid, sn, v]; r) = gpid1 gsn2 g
v
3g

r ∧
rcm = CM.Comrck1([pid, s]; a) = gpid1 gs5g

a ∧

((((((((
nullif = PRFs(sn) ∧
vcm = CM.Comcck1([0, 0, v]; z) = gv3g

z ∧
vk = h̃s+snw̃t ∧ y = e(nullif, w̃)t


(31)

The splitproof πsplit for the original Rsplit will consist
of (vk, y) and the proof for this inner R∗

split, which
no longer (directly) argues about correctness of nullif
(crossed out in red above). TheRsplit verifier will first
check (nullif, vk, y) as per Eq. 28 and then verify the
proof for the inner R∗

split relation above.

14



ZKSoK. Our Σ-protocol for the inner R∗
split is made

non-interactive via the Fiat-Shamir transform. This
allows the TXN creator to implicitly sign the TXN
when computing splitproofs, by simply hashing the
TXN outputs when computing the challenge in the
Fiat-Shamir transform (see App. B.1).

Sigma protocols. We often have to prove knowl-
edge of commitment openings or equality of certain
committed values, which we do using well-known Σ-
protocols. (We give all details in App. B.1.) Our
final transaction format is:

txacc =


(rcm, r̃cm, rs), πbudget, expi

⟨(ccmi, c̃cmi, σi), vcmi, nullifi, π
split
i ⟩i∈[3]

⟨icmj , π
zkpok
j , vcmj , vcm

∗
j , π

pedeq
j , πrange

j , ctxtj⟩j∈{A,B,C}

(32)

5.1 Decentralizing the Bank via BFT
SMR

A natural approach to decentralize the bank is via
generic Secure Multiparty Computation (MPC), how-
ever this generic approach would be rather costly. We
use a highly optimized approach by observing that
the UTT transaction can be split into 3 parts: (1)
verification of the transaction (this is pure function);
(2) atomic verification that the nullifiers are new and
then adding them to the nullifier list; (3) signing the
outgoing coins.
Parts one and two require no secrets and hence

can be implemented as a public ledger (essentially a
Byzantine Fault Tolerant storage). Only Part three
requires secrets to securely sign the out going coins
(after the transaction is validated and verified atom-
ically for no double spend). We design this part via
an efficient threshold cryptography scheme. Using a
BFT and threshold cryptography is a fairly common
architecture. When designed naively, it requires to
serially execute all transactions and hence does not
scale well. In order to make better use of multi-core
servers, we use methods fromOptimistic Concurrency
Control approaches that we tailor to the malicious
setting. In particular we observe that it is possibly
to optimistically run part one (the verification of the
transaction) in parallel, before consensus, and only
execution part two (atomic verification of no double
spend of nullifiers) after consensus.

Vertical scalability via Pre-execution and Optimistic
Concurrency Control. In order to better utilize mod-
ern multi-core architectures and the inherent paral-
lelism of disjoint UTT transactions, we use a method

for Byzantine Fault Tolerant Optimistic Concurrency
Control which we call pre-execution.

Instead of sending UTT transaction directly for
consensus, the primary sends them to the servers
for pre-execution. Each server (optimistically) pre-
executes each UTT transaction by checking its cryp-
tographic validity and (optimistically) checking that
its nullifiers are not already present in the nullifier
list. If the check succeeds, the server creates a read
set and a write set that equals to the new nullifiers,
and sends a signed message back to the primary with
this read write set and the hash of the transaction.
Once the primary receives f + 1 signed messages of
the same read and write set and the hash of the trans-
action, it adds this cryptographic proof to the block
that goes for consensus. After a block passes con-
sensus, it gets sent for execution. During execution
each server serially checks each read-write set in its
block for conflicts (so there is no double spends) and
checks that there are f +1 signatures for this hash of
the transaction (so the transaction is valid). If there
are no conflicts and the transaction is valid then the
server signs its part of transaction’s outgoing coins
and adds the nullifiers to its nullifier list.

This Byzantine Fault Tolerant Optimistic Concur-
rency Control via Pre-execution provides important
benefits: (i) it allows UTT transactions to be veri-
fied in parallel (allowing to take advantage of mod-
ern multi-core servers), and (ii) it removes expensive
cryptography verification from the critical path of the
serial execution stage after consensus .

5.2 Decentralizing the Bank via
Byzantine Consistent Broadcast

We also explore an alternative design where the bank
is decentralized using Byzantine Consistent Broad-
cast and threshold cryptography. The main obser-
vation is that much like other token based payment
schemes [38–40], the consensus number of a UTT coin
is one (only the payer can make operations on its
coin) and there is no need to totally order transac-
tions from different payers.

In this design, the payer sends the transaction di-
rectly to all the servers. Each server simply process
the transactions it receives locally : it checks that the
transaction is valid and that the coins are not spent
(their nullifiers are not in the nullifier list). If these
checks pass, it sends the partial threshold signature
of the new coins to the clients and adds the new nul-
lifiers to the nullifier list. Reading and writing to the
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nullifier list is done atomically. The threshold signa-
ture is set to require at least n− f signatures.

Once the client accumulate n− f signatures is has
a cryptographic proof that indicates that the incom-
ing coins are spent by at least n − 2t honest servers
hence no other way of spending these coins can ob-
tain n − f signatures (due to quorum intersection).
In addition, since the outgoing coins are signed, the
payee can immediately use them. We also want to
persist the outgoing coins at the servers in order to
provide data availability, which is the ability of any
party to read the signed outgoing coins. The user
sends the signed transaction back to the servers and
waits for n− f confirmations that the servers stored
it. When a server received a signed transaction, it lo-
cally stores it and returns and acknowledgment back.
Once the user receives n − f acknowledgements, it
has a cryptographic proof that the signed transac-
tion is available: anyone can query the servers and
by waiting for just n − f responses will receive at
least one honest server with the signed transaction
(due to quorum intersection).

Note that Byzantine Consistent Broadcast is in-
herently parallel. The only sequential (atomic) part
is when checking the nullifier list for double spend.
In terms of latency, the BFT SMR approach requires
waiting for a block of commands and needs additional
round trips for consensus. Hence we expect the BCB
approach to have better latency. On the other had,
BCB does not provide total ordering, this may add
challenges to cross-server backup-and-restore proce-
dures, and in the future for smart contracts that need
total ordering.

Fast path for Byzantine Consistent Broadcast

As in many other fault tolerant protocols [73], it is
possible to have a fast path which reduces latency and
message complexity in the optimistic case where all
servers are non-faulty and the system is synchronous.
For Byzantine Consistent Broadcast we observe that
obtaining n-out-of-n signatures from the first round
(instead of just n−f -out-of-n) guarantees data avail-
ability without needing an additional round: any
later read will eventually see n− f responses for the
same signed transaction. Similar to SBFT, we use a
fast path single-round BCB, wait for n responses with
a timeout to revert to the regular two round protocol
that waits for n− f responses each round.

5.3 Horizontal scaling via bank shard-
ing

In the previous two subsections we described two
ways to decentralize a single logical bank. In many
cases one would want to scale beyond just one bank,
by partitioning the bank into several bank shards.
The high level idea is that logically each bank shard
will responsible for a different part of the nullifier
space. This will allow to increase throughput by
adding more bank shards. Operationally, to obtain
decentralized trust, each bank shard will be decen-
tralized via a separate sub-system of multiple servers
(each such sub-system has a disjoint set of servers
implementing it).

Sharding the bank The key observation is that we can
split the UTT payment into two separate phases:

(i) burn phase, where the nullifiers are marked as
spent and the transaction is verified, and

(ii) mint phase, where new coins are signed.

Given a set of logical bank shards, we use a stan-
dard consistent hashing approach that deterministi-
cally map the space of a hash function on the nulli-
fiers to the bank shards. Each bank shard is decen-
tralized via a separate BCB system of 3f +1 servers,
hence a system with k bank shards will need a total of
k(3f+1) servers. All bank shards use the same secret
signing key, but each sub-system secret shares this
secret key independently in such a way that secrets
shares from different sub-systems are completely in-
dependent. Thus, the security of the system is main-
tained as long as for any sub-system the adversary
does not control more than f severs out of the 3f +1
servers that are used to decentralize each sub-system.

Logically, a user first executes the burn phase by
sending the transaction to all the bank shards that
are responsible for the nullifiers in the transaction.
Each such bank shard verifies the transaction and
that the nullifiers it is responsible for have not been
double spent and sends a signed hash of the transac-
tion back to the user. Since UTT transaction have
three incoming coins that need to be burned, this
means the user needs to communicate with at most
three bank shards. The user can then execute the
mint phase by sending the signed hash from all the
bank shards responsible to the nullifiers in the trans-
action to any bank shard. The receiving bank shard
checks that the signatures are valid and from the cor-
rect bank shards and signs the new outgoing coins.
To improve load balancing, we force the mint phase
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to happen only on a designated shard (as a function
of the hash of the transaction).

5.4 Decentralizing the bank shards
via Crusader Broadcast and
Byzantine Consistent Broadcast

In order to decentralize the burn phase and mint
phase of a UTT transaction we make the observa-
tion that while the mint phase may need the full
two-round Byzantine Consistent Broadcast for non-
equivocation and data availability, the burn phase
only needs a proof of non-equivocation - there is no
need to have a proof that the certificate of burn is
available on each of the bank shards responsible for
the burn, because this certificate will be made avail-
able on the shard that executes the mint phase during
the mint phase.

Therefore we can optimize the decentralized imple-
mentation as follows. We implement the mint phase
using Byzantine Consistent Broadcast with a fast
path: for the first round of BCB each server in the
minting bank shard locally checks that n− f servers
from each of the sub-systems responsible for burning
the incoming coins have indeed burned them, and
then signs the outgoing coins with its threshold sig-
nature. If n responses are returned then the protocol
is complete (fast path BCB). Otherwise the n − f
signatures are persisted in the second round of BCB.

For the burn phase, users run a single round pro-
tocol (which we call Crusader Broadcast) waiting for
n− f signatures. A server locally checks that the in-
coming coin’s nullifier is indeed in its responsibility
and is not in its nullifier list. It then sends back a sig-
nature of the transaction. So n − f such signatures
guarantees that the coins that are in the responsibil-
ity of this sub-system cannot participate in any other
transaction (because that requires n − f signatures
which is impossible due to quorum intersection).

For the burn phase, the user sends a one round trip
(Crusader Broadcast) to at most three sub-systems
(in parallel) and once each of these sub-systems re-
turns n − f signatures. Then, for the mint phase
the user runs Byzantine Consistent Broadcast with a
fast path, so requires two round trips (just one in the
optimistic case). In total, each transaction requires
three round trips (just two in the optimistic case) of
latency and interacting with at most 4 different bank
shards.

6 Implementation and Experi-
mental Evaluation

We evaluate our open-source implementation2 of our
accountable transaction from §4.6. We first con-
duct microbenchmarks of our cryptographic imple-
mentation on a single machine. The remaining of
our experiments are performed on a real cloud-based
distributed system (AWS). Unless otherwise noted,
we use separate machines for users and a separate
machine for each server. machines (c5.4xlarge run-
ning Ubuntu 18.04) use 16 cores and deployed to the
same AWS region (us-east2). Our default setup is for
n = 4, f = 1 (but see later for higher sizes of n, f ,
and more cores). All transactions use the accountable
privacy payments described in the previous section.

Under these experimental conditions, we formulate
the following hypothesis and experimental questions.

1. What is the performance profile of a UTT trans-
action in terms of its size and cryptographic la-
tency overhead. We conduct micro benchmarks.

2. What is the latency throughout trade-off ob-
tained when decentralizing the system using
BFT SMR? What component is bottlenecking
the throughout?

3. What is the latency throughout trade-off ob-
tained then decentralizing the system using
BCB? The theory leads us to conjecture that the
latency should be better than SMR BFT.

4. How does the performance scale when we in-
crease the fault tolerance to f ∈ {1, 3, 5, 10}?
The theory leads us to conjecture that both
throughput and latency should not be effected
drastically since the main bottleneck is the local
execution (cryptographic verification and signa-
ture generation).

5. How does the performance improve due to verti-
cal scaling (adding more cores to the servers)?
Our conjecture is that CPU is the bottleneck
for throughput, hence increasing the number of
cores should near-linearly increase throughput.

6. How does the performance improve when the
Bank is sharded and each bank shard is decen-
tralize via a separate distributed set of servers?
The theory leads us to conjecture that we pay a

2https://github.com/definitelyNotFBI/utt
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constant factor overhead for moving to a shaded
protocol, and increase latency by another round
trip, but after that the throughput should scale
near-linearly as a function of the number of
shards.

6.1 Micro-benchmarks

We implemented our accountable transaction in a
C++ library called libutt based on BN254 elliptic
curve groups [74] implemented in libff [75]. Here,
we microbenchmark libutt on our default AWS ma-
chines and summarize our results in Table 1.

We measured the size of transactions, the time to
create a TXN for Alice, the time to validate a TXN
by the BCB servers (i.e., “BCB TXN validation” col-
umn), the time for a bank server to fully validate a
TXN, the time for Bob to check if a transaction is
paying him (i.e., “Check TXN is mine” column), and
the time for Bob to actually decrypt his coin details
from the TXN and aggregate his coin signature (i.e.,
“Claim TXN” column).

Analysis. Not surprisingly, we observe that TXN
validation is the biggest bottleneck that will affect the
throughput and latency of the system. Our prototype
implementation as well as our cryptographic design
could be further accelerated (see §8).

Table 1: Accountable transaction microbenchmarks
(on the default AWS machines).

Name Measurement

TXN size 14.4 KiB
TXN creation 60.45 ms
BCB Quick TXN validation 14.56 ms
Bank TXN validation 34.11 ms
Bank Sign 2.70 ms
Check TXN is mine 0.65 ms
Claim TXN 4.53 ms

6.2 BFT-SMR Performance

We experiment with a BFT SMR bank of n = 4
servers as per §5. We evaluated throughput in terms
of the number of transactions processed by the sys-
tem (measured on the primary server) and latency
in terms of the end-to-end transaction confirmation
time as measured by the sender and recipient (clients
of the BFT-SMR).

Experimental setting. We run our macrobench-
mark on the default AWS machines (16 core, 16
GiB RAM). We start with the default f = 1 and
n = 3f + 1 = 4 servers for the BFT SMR bank, with
one machine per server connected, all in the same
AWS region.

BFT implementation. For a BFT SMR based
Bank we use concord-bft [76], an open-source pro-
duction implementation, based on SBFT [73], which
implemented the pre-execution protocol in January
2020 [77]. The servers use RocksDB to persistently
store nullifer sets [78]. The pre-execution is used to
validate (or reject) transactions that are not crypto-
graphically valid and transactions that contains coins
that are already spent. After a batch of transactions
is committed, the servers execute each transaction in
the batch serially. In each transaction execution, the
servers verify (or reject) that the nullifiers are not in
the nullifier list. If this is the case, then and add
them to the nullifier list and issue partial signatures
to every client.

Methodology. Each client sends a UTT account-
able transaction to the servers and waits for n − f
servers to respond. At least n − 2f responses are
guaranteed to be valid and can be used to recover
the newly minted coins. Every 7s we measure the
average throughput in a 1s interval at the primary.
We then report the throughput as the median of these
averages. For end-to-end latency, we maintain a his-
togram at each client and report the median end-to-
end latency over 400 operations. We then report the
latency as the median over the client reported median
latency. The BFT SMR uses an automated batching
policy, and we observe an average batch sizes of 20
transactions per consensus unit.

Table 2: Throughtput and latency of payments on
a BFT SMR bank with n = 4 servers on AWS
c5.4xlarge.

# Clients Throughput Latency

4 56.00 tx/s 110.49 ms
8 96.98 tx/s 125.44 ms
16 129.16 tx/s 162.88 ms
32 165.28 tx/s 231.04 ms
64 173.93 tx/s 460.00 ms

Analysis. Table 2 shows that a BFT bank can
process about 10 transactions per second per core
(extracted from the second to the last row with
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32 clients). However, when measuring the average
times to handle a transaction inside a BFT server for
pre-execution and execution after consensus, we get
62.23 ± 4.44 ms and 7.2 ± 4.44 ms leading to theo-
retical maximum throughput of ≈ 230 tx/s. Instead,
we observe an actual throughput of 174 tx/s which
arises due to the serial execution of the transactions
after consensus. We believe further tuning and op-
timizations like parallelizing the post-execution will
improve the BFT throughput. Indeed, removing only
the signature generation in the execution after con-
sensus for the last row in Table 2 gives a median
throughput of 272.14 tx/s and latency of 289.23 ms.

6.3 BCB Performance

For a BCB based Bank we implemented the BCB
with fast path (See Section 5.3), based on concord-
bft codebase in C++ and use the same RocksDB
database [78] to store the nullifier sets. In this set
of experiments, we use the default n = 4 servers, and
the same experimental settings as §6.2.

Methodology. Each client sends a UTT account-
able transaction to the servers using the BCB with
fast path protocol. For throughput, we measure the
average throughput every second on every server. We
then take the mediation on each server and then me-
dian over all servers. For end-to-end latency, as in
§6.2, we maintain a histogram at each client dur-
ing 400 operations and report the median between
all clients of the medians at each client as our mea-
surement.

Table 3: Throughput and latency of payments on
a BCB-based bank with n = 4 servers on AWS
c5.4xlarge.

# Clients Throughput Latency

4 64, 40 tx/s 48.04 ms
8 111.60 tx/s 58.00 ms
16 233.09 tx/s 65.23 ms
32 235.39 tx/s 129.90 ms
64 235.36 tx/s 274.81 ms

Analysis. Table 3 shows that a BCB based bank can
process 15 transactions per core. The lowest median
latency observed among all the clients was 46.53 ms.
The throughput of the BCB based bank is 1.35 times
more than the BFT SMR, and the median latency ob-
served by the clients are also 67.4 % lower than the

latency observed by the clients using BFT SMR based
banks. When disabling the post-execution bottleneck
in the BFT-SMR, we observed that BCB still pro-
vides 5% better latency. These experiments clearly
show that BCB based solutions can significantly im-
prove the payment latency experienced by the users.

6.4 Server Scalability

In this section, we evaluate the scalability of our pay-
ment systems based on BFT SMR §6.2 and BCB §6.3
as n increases.

Methodology. We use f = 1, 3, 5, 10 and the corre-
sponding values for n = 4, 10, 16, 31. As we observed
in the stand-alone measurements for BFT-SMR and
BCB, the latency generally increase with increasing
number of clients before saturating the throughput.
Therefore, we report the saturated throughput as sat.
throughput with 64 clients and report low latency as
the median latency with 4 clients.

Table 4: Scalability of payments on a BFT SMR bank
with n = 4 servers on AWS c5.4xlarge.

# servers Sat.
Throughput

Low Latency

4 172.86 tx/s 107.84 ms
10 170.71 tx/s 107.71 ms
16 168.93 tx/s 110.00 ms
31 168.57 tx/s 110.05 ms

Table 5: Scalability of payments on a BCB based
bank with n = 4 servers on AWS c5.4xlarge.

# servers Sat.
Throughput

Low Latency

4 235.98 tx/s 40.71 ms
10 235.42 tx/s 39.46 ms
16 234.40 tx/s 49.83 ms
31 229.28 tx/s 53.71 ms

Analysis. Table 4 and Table 5 show the scalability
of the BFT SMR based system and the BCB based
system as n increases. In general, the throughput
and latency remain nearly constant. This is because
the system is mainly bottlenecked by cryptographic
operations.
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6.5 Vertical scalability

We evaluate the vertical scalability of the BCB sys-
tems as we increase the number of cores of the indi-
vidual servers.

Methodology. For this we use the following
AWS machines: c5.4xlarge (16 cores), c5.9xlarge (36
cores), c5.12xlarge (48 cores), c5.16xlarge (64 cores),
c5.18xlarge (72 cores), and c5.24xlarge (96 cores).
For the rest of the setup we use the same method-
ology as §6.4.

Table 6: Vertical scalability of payments on a BCB
based bank with n = 4 servers on AWS c5 machines

#
cores

Sat.
Tput.

Low Lat. Tput./core

16 235.36 tx/s 43.01 ms 14.75
36 498.32 tx/s 44.06 ms 11.58
48 636.60 tx/s 38.77 ms 13.26
72 788.00 tx/s 43.49 ms 10.94
96 974.54 tx/s 38.6 ms 10.15

Analysis. Table 6 shows the scalability of the BCB
system, as we increase the number of cores. We ob-
serve that the median saturated throughput scales
nearly linearly as the number of cores increase. Com-
paring the throughput of the 16 core machine and the
96 core machine, we expect a 6 time performance im-
provement. However, we find that the throughput
increases only by ≈ 4.1 times. This arises due to
synchronization overheads across the threads. Fur-
ther optimizations such as lock-free and wait-free al-
gorithms can improve the performance of the system
and we leave it as future work.

6.6 Horizontal Scaling using Sharding

We evaluate the UTT sharding as described in §5.3.

Implementation. We implement each shard as
n = 4 BCB servers, and use a total of s ∈
{1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60} shards. Clients cre-
ate a burn request that contains the transaction and a
target shard where the coin will be minted. For every
nullifier in the transaction, the client derives the re-
sponsible shard (modulo number of shards) and sends
the burn request to all n servers in the shard. Upon
collecting the required signatures from all the respon-
sible shards (upto 3n signatures), the client sends a
mint request to the target shard specified in the burn

request. The servers validate the embedded trans-
action TXN and verify all the signatures, and then
send partial coin signatures to the client. The client
collects at most n partial coin signatures before ter-
minating.

The BCB servers do not need to perform a full
UTT payment validation when validating the burn
request as it will be performed by the shard that ex-
ecutes the mint request. We use RSA signatures as
responses to the burn request which is also validated
when executing the mint request.

6.6.1 Microbenchmarks

In this section, we evaluate the performance of shard-
ing with a non-fault tolerant f = 0 setting using one
server (n = 1) per shard and compare that to the
f = 1 fault tolerant case with n = 4 servers per
shard. In both configurations, we vary the number
of shards s ∈ {1, 2, .., 5} and report throughput and
latency in Table 7.

Methodology. Clients generate transactions as in
our previous SMR macrobenchmark from §6.2, and
measure the end-to-end latency until the client col-
lects the last response for the mint request. We mea-
sure latency as described in §6.5. We use 4 clients to
measure latency under low load. We use 160 − 320
clients to measure throughput. For load balancing,
each client is deterministically assigned a target shard
to get its coins minted.

The BCB servers track the number of mint re-
quests processed as throughput. We use the median
throughput across all the servers in a shard as the
throughput per shard and compute the sum of these
throughput measurements as the total throughput of
the system.

Table 7: Microbenchmarks of sharding performance
with n = 1, 4, and number of shards s = 1, 2, .., 5 on
c5.4xlarge machines.

s
n=1 n=4

Tput. Lat. Tput. Lat.

1 221.59 tx/s 43.68 ms 206.92 tx/s 53.68 ms
2 417.09 tx/s 42.87 ms 406.92 tx/s 47.71 ms
3 605.82 tx/s 43.79 ms 609.90 tx/s 46.90 ms
4 811.08 tx/s 44.31 ms 789.60 tx/s 43.55 ms
5 999.13 tx/s 42.58 ms 984.56 tx/s 42.58 ms

Analysis. Table 7 shows the throughput and latency
between n = 1 and n = 4 servers per shard, as the
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number of shards increase slowly.

The latency observed by the clients is close to the
latency of the Bank validation (see Table 1) along
with an additional ≈ 2 − 3 ms overhead (from other
computations). Importantly, the latency remains
constant as the number of shards increases. This con-
firms that the bottleneck is computational and that
the communication cost is constant.

The throughput scales almost linearly with the
number of shards, since the load is uniform and
there is no cross-shard communication. Compared
to the performance measurements observed in §6.3,
the throughput is slightly lower. This is because the
servers need to process burn requests that are not
counted toward the throughput measurements, de-
creasing the amount of CPU available to process the
mint requests which are measured for throughput.

We also observe that the latency measured at the
clients during the throughput experiments drops as
the number of shards increases. For example, for
n = 4, when s = 2 with 160 clients, the median la-
tency was 750.13 ms, which drops to 322.05 ms when
s = 5 with 320 clients, further proving the benefits
of sharding in reducing payment latency. We believe
additional tuning may reduce latency under load and
leave this as future work.

6.6.2 Large scale horizontal scaling

Our main conclusion from observing Table 7 is that
the n = 1 based shard can act as a reasonable per-
formance proxy for the fault tolerant n = 4 shard
in terms of both throughput and latency Said differ-
ently, the slowdown of n = 4 compared to n = 1 is
less than %5 for throughput.

Methodology. Our AWS account allows only 1920
vCPUs. In order to evaluate higher numbers of
shards, we use 1 server per shard as a proxy, for the
large scale sharding experiments of this section. We
measure the median throughput per shard and re-
port the median among all medians as Throughput
per shard (Tput./shard). We sum the medians and
report them as Total throughput (Tot. Tput.).

We start with 640 clients and increase the number
of clients as the number of shards until we observe a
saturation in the throughput in every shard.

Analysis. Table 8 shows the throughput as a func-
tion of the number of shards. As expected from the
share nothing design, we observe that the throughput

Table 8: Macrobenchmarks of sharding performance
with n = 1, and number of shards s = 10, 20, 40, 60
on c5.4xlarge machines.

# Shards Tput./shard Tot. Tput.

10 200.89 tx/s 1, 996.90 tx/s
20 196.77 tx/s 3, 726.34 tx/s
30 196.05 tx/s 5, 770.50 tx/s
40 198.65 tx/s 7, 632.56 tx/s
50 195.56 tx/s 9, 601.01 tx/s
60 196.36 tx/s 11, 351.38 tx/s

of a single shard is nearly constant and the through-
put of the entire system scales almost linearly with
the number of shards.

Our experiments confirm that UTT can scale hor-
izontally to tens of thousands of accountable privacy
transactions per second.

7 Formalizing and Proving Se-
curity

It is nontrivial to formally capture the security prop-
erties that an ecash system should provide. No-
tions like Balance (e.g., preventing/detecting double-
spending), and Privacy/Anonymity that were origi-
nally stated somewhat informally [1–5] have evolved
into more formal game-based definitions (e.g., [7,16]).
These definitions typically capture the different re-
quirements (balance and privacy) via separate games,
and, as discussed by Garman et al. [21], they tend to
miss some critical desired properties.

A natural remedy is to define security by compar-
ing the system to an ideal functionality and arguing
indistinguishability via a suitable MPC framework.
This approach allows one to define security without
having to identify and specify concrete desired prop-
erties. (As a byproduct, this also leads to technically
stronger notions of simulation-based security.) Con-
tinuing a recent line of research [21,25,79], we formal-
ize the security of our system via an MPC-based defi-
nition and, within this framework, explore new trade-
offs between security and performance. Let us elab-
orate on some aspects of our definitions and proofs.

Defining the ideal functionality. There are
many reasonable ways to model ecash as an ideal
functionality. Since the exact choice may depend on
the concrete application, we provide a minimal spec-
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ification that mainly strives for simplicity. In a nut-
shell, our ideal functionality, denoted by Futt, main-
tains for each “coin” a record that contains fields like
value, owner-id, and coin identifier. The function-
ality supports 2 operations: A “Payment” that can
be issued by any client, and a “Minting” that can
be issued by a special minting authority. This al-
lows us to leave the conditions under which Minting
happens to an external mechanism. Whenever an
operation takes place, the functionality updates its
state, sends an announcement to the relevant par-
ties and leaks to the Banks only the fact that an
operation happened (or failed). Notably, our ideal
functionality does not involve any cryptographic ob-
jects (e.g., commitments/signatures). Indeed, since
cash is a non-cryptographic notion, we believe that
its modeling should be cryptography-free.3 The ba-
sic structure of Futt is easily extendable in various
ways. Specifically, one can easily support anonymity
budgets by slightly tweaking the functionality. This
extension, as well as other variants of Futt, are dis-
cussed in Appendix C. Jumping ahead, our protocol
and its proof are also modular and can easily extend
to support these variants.

Defining the MPC model. Since our ideal func-
tionality is reactive (i.e., it maintains a state), special
care is needed in order to define security. Specifically,
an important aspect that should be captured is the
ability of the adversary to adaptively inject “inputs”
to the system based on the view that was gathered
so far. Here “inputs” refers to the actions of the cor-
rupted parties and to the inputs of the honest par-
ties.4

Garman et al. [21] suggest using a simplified MPC
model in which the “strategies” of the honest par-
ties are fixed in advance. As a result, the security
definition does not take into account the ability of
the adversary to inject online inputs to the honest
parties based on its evolving view of the system. (In-
deed, one can design a contrived system whose secu-
rity completely breaks under such a attack; see Ap-
pendix C.2.) On the other extreme, security can be
defined in the UC model [80] as done by [25,79], how-

3This should be contrasted, for example, with [25] that
models “token payments” via an ideal functionality that refers
to commitments.

4Indeed, it is now widely accepted in both practice and the-
ory, that the possibility of adversarial influence on the inputs
of honest parties is a real concern. Typical cryptographic def-
initions (e.g., CPA or CCA security) are tailored to cope with
such scenarios.

ever, this leads to various complications (e.g., [81])
and seems to incur some inherent cost in performance
due to the use of UC-secure building blocks. We sug-
gest a new intermediate solution by presenting a lim-
ited version of the UC definition. Our definition can
be viewed as a “standalone MPC security” for reac-
tive functionalities, and so it fills an important gap
in the MPC literature.5

In a nutshell, we assume a synchronous setting
(like [83–85]), and assume that the protocol is invoked
in “phases”. In the beginning of each phase, the ad-
versary and the honest parties receive inputs from the
environment Env, then they participate in the proto-
col, and, at the end of the phase, they send their out-
puts to the environment. We emphasize that, while
our definition is inspired by UC, composability is not
our central concern, rather our main goal is to cap-
ture the adaptive choice of inputs. Indeed, since the
adversary does not communicate with the environ-
ment during a phase, this framework allows, for ex-
ample, to rewind the adversary to the beginning of
the current phase and can be easily extended with
ideal oracles if needed. See Appendix C.2 for more
details.

Realizing the functionality via practical proto-
col. Our proof reduces the security of the protocol
to the standalone security of the underlying cryp-
tographic building blocks. This includes standard
primitives like PRFs, anonymous identity-based en-
cryption scheme, and non-interactive zero-knowledge
proofs of knowledge, as well as a new notion of reran-
domizable signatures over (homomorphic) commit-
ments. Roughly speaking, this primitive allows us to
take a signed commitment and randomize both the
signature and the commitment in a way that main-
tains the validity of the signature. This notion may
be of independent interest.

Our proof is modular in the sense that one can re-
place the instantiation of the underlying primitives
without affecting security. The concrete instantia-

5For standard (non-reactive functionalities), the MPC liter-
ature consists of 2 main frameworks, the classical stand-alone
model (as formalized in [82], and Canetti’s UC model. While
the latter provides stronger composability advantages, the for-
mer model is simpler to work with and, in many cases, provides
sufficiently good security. Furthermore, even if one strives for
full UC security, proving security in the standalone model pro-
vides a necessary intermediate goal, and in some cases, one
can upgrade security to UC almost automatically (e.g., [83]).
To the best of our knowledge, a standalone MPC definition
that is tailored to the setting of reactive functionalities has
not appeared in the MPC literature so far.
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tions that we use sometimes employ idealized models
(e.g., Random Oracle and AGM) and so our proto-
col inherits these assumptions from the concrete im-
plementations. It seems likely that our proof yields
a UC-secure protocol if all the underlying primitives
are instantiated with UC-secure building blocks. Ver-
ification of this intuition is left for future research.

Remark 7.1. In Part I, we formalize the MPC
framework, define the underlying primitives, re-
present the protocol in more abstract terms, and
prove its security. Apart from space limitations, this
separation into “cryptographic analysis” and “main
text” reflects the different roles of the two parts (vali-
dating formal security vs. presenting the architecture
in an easy-to-follow intuitive way) and allows us to
tailor the presentation and terminology to the pur-
pose of the text.

8 Discussion

Security against adversaries controlling more
than f servers. A known disadvantage of the blind
signature-based approach for anonymity is that an at-
tacker who steals the bank’s bsk can mint coins unde-
tectably! While BFT mitigates against this, we could
further strengthen security using evolving-committee
proactive secret sharing (ECPSS) techniques [86] at
a larger-scale. Another idea is to make coin issuance
transparent using an accumulator [87] over all minted
coins’ serial numbers (not values or pid’s). Then, each
transaction input would additionally prove that its
coin’s sn is on this list. This would force attackers
to add their maliciously-minted coins to the list too,
which is now evident to an auditor. This requires
a novel accumulator design, with logarithmic-sized
zero-knowledge proofs which are updatable in time
logarithmic in the number of changes to the accumu-
lator. Importantly, this would not require a circuit-
based ZK proof as in Zcash, which must prove knowl-
edge of an opening of a coin commitment in their
(Merkle) accumulator (among other things). We see
this as an interesting design point that combines the
advantages of ecash schemes [1] with the advantages
of accumulator-based schemes [4, 12,16,51].

Key loss and theft. In case a user loses their IBE
decryption secret key dsk, they can recover it by re-
engaging with the registration authority (RA) as per
§4.2. The same can be done for a lost PRF key s,
if it is secret-shared with the RA during registration.

In contrast, key theft of dsk or of s requires keep-
ing a revocation list of compromised pid’s. To allow
reusing pid’s, we actually extend them with a version
number and revoke by version. When paying Bob,
Alice will update her view of this revocation list and
use Bob’s latest pid. Alice can retrieve this item from
the revocation list using private information retrieval
(PIR). If a revocation list is undesirable due to other
privacy concerns, normal PK encryption can be used
as a fallback. We hope to improve the privacy of this
approach in future work.

Permissionless setting. Although our approach
relies on a permissioned proof-of-membership BFT
committee that maintains secrets in a threshold fash-
ion, such a committee can also be implemented in a
permissionless proof-of-stake setting by periodically
refreshing the committee and handing over secrets,
similar to DFINITY [88], Algorand [89] and the re-
cent line of work by Benhamouda et al. [86].

On accountability. First, we can imagine other
accountability rules that might create a better bal-
ance between anonymity and accountability. For ex-
ample, anonymously purchasing prescription drugs
from pharmacies could be allowed even without an
anonymity budget. We could implement such a rule
efficiently via a Σ-protocol that argues in ZK that
the pid committed in the recipient’s icm is in an al-
lowed list. Another interesting example would be pay-
ing taxes in a batched manner without leaking each
transaction’s tax amount. Second, our anonymity
budgets only limit outgoing payments. Limiting in-
coming payments could also be done using techniques
from [31], although at the cost of adding interaction
between Alice and Bob during a payment.

On transacting. First, our accountable transac-
tions are serial. Specifically, since Alice has a sin-
gle budget coin, she must wait for her current ac-
countable transaction to be added to the ledger, be-
fore she can get back her budget coin change for her
next transaction. However, this is not inherent in our
design, which could be adapted to support multiple
budget coins as input and give multiple budget coins
as change, although at the cost of higher complexity.

Second, Bob cannot be easily informed by the bank
when he is paid, since the bank is oblivious to this.
This is similar to other DAPs [16, 64]. However, Al-
ice could easily inform Bob she paid him by pointing
him to the TXN on the ledger. Alternatively, Bob
could manually inspect every TXN to check if it cor-
responds to a payment for him. Although inspecting
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one TXN is fast (1.3 ms), having all users inspect all
TXNs would be expensive. Ideally, Bob would del-
egate this task to an untrusted third party, but we
leave this as future work.
Third, it would be interesting to design ZK proofs

for Alice to convince a third party that she paid Bob,
as well as for Bob to convince others that Alice did
not pay him.

Black market for anonymity budgets. One
might be worried about the possibility of a black mar-
ket for anonymous transactions. For example, if Al-
ice runs out of her privacy budget and still wishes
to anonymously pay Bob, she might attempt to pay
Carol in an accountable way and ask her to transfer
this money to Bob anonymously (perhaps after Carol
takes a cut for her service).
This issue is relevant to all systems which com-

bine privacy with accountability. Our system has
two properties which greatly limit the effect of such
attacks: (1) Alice can only exceed her privacy bud-
get by paying intermediaries in an accountable way,
which is visible to auditors. And, (2) this type of at-
tack cannot be amplified by Sybil attacks, since the
registration process (Section 4.2) ensures that each
user corresponds to a verified identity.

Payment disputes. There is currently no support
for resolving “payment not received” disputes, but
this can be done in principle using a Σ-protocol. For
example, looking at our transaction format from Fig-
ure 2, the sender could easily prove in ZK that such a
transaction on the ledger has (1) an input coin com-
mitment whose PID is Alice, (2) an output identity
commitment icmB which opens to Bob’s identity and
(3) an output value commitment vcmB which opens
to v coins.

Faster validation. We see several avenues for
speeding up our transaction validation. First, we
can combine our many Σ-protocols into a single
one which will save both time and space. Second,
we can apply batch verification techniques to our
range proofs, our signatures and our exponentiations,
both within one TXN and across many. Third, we
can investigate using Bulletproofs over value com-
mitments that are (provably) computed in a faster
prime-order group without pairings. Lastly, to speed
up our pairing-and-exponentiation-based verification,
we could use generalized inner product arguments
(GIPA) [90] (and potentially reduce transaction size).

k-to-m TXNs Our unaccountable transactions
from §4.4 allow Alice to “split” two coins of value

v1 and v2 amongst Bob and herself. But what if Al-
ice has only one coin of denomination v to spend? In
that case, she cannot create such a 2-to-2 transaction.
One way to fix this is to allow 1-to-2 transactions that
can split a single coin of value v into two coins. In
general, we can allow arbitrary k-to-m transactions
by simply adding more inputs and outputs and ex-
tending our cryptographic checks over all of them.

9 Conclusion

This paper makes progress on a novel design, security
proof, and implementation of a decentralized ecash
system with accountable privacy. Our design emu-
lates physical cash and offers strong privacy as long
as the total payments are below a privacy budget. We
provide a security definition and proof for UTT in the
framework of multi-party computation (MPC). Our
experiments over a real-world distributed implemen-
tation confirm our hypothesis on scalability and ap-
plicability as a digital infrastructure for several tens
of millions of active users (tens of thousands of ac-
countable privacy transactions per second). We be-
lieve that significant additional performance can be
obtained with further tuning. As detailed in the dis-
cussion section, our work is by no means a complete
solution, and we expect follow-up work to explore
additional challenges. In particular, scaling beyond
hundreds of thousands of privacy-preserving transac-
tions per second will most likely require a hierarchical
approach.
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CM.Setup(1λ, ℓ;y)→ ck // y is uniform in Zℓ
p

(g, g̃)←$ G1 ×G2 g← gy g̃← g̃y ck← (g,g, g̃, g̃)

CM.Comck(m = (m1, . . . ,mℓ); r)→ (cm, c̃m)

Parse ck as (g,g, g̃, g̃) (cm, c̃m)← (gmgr, g̃mg̃r)

CM.Rerandck((cm, c̃m); r)→ (cm′, c̃m′) ∈ G1 ×G2

Parse ck as (g, ·, g̃, ·) and (cm′, c̃m′)← (cm · gr, c̃m · g̃r)

Figure 3: Algorithms for Pedersen commitments to
ℓ messages, parameterized by the commitment key
(CK) ck. We sometimes abuse notation and do not
specify the CK; or only specify a Gi CK for non-dual
commitments in Gi.

A Transaction fees and change

To support fees, we adjust our value preservation in-
variant to be v1 + v2 = vB + vC + vfee, where vfee is
the transaction fee. Note that the replicas can verify
the fee was paid by multiplying the right-hand side
of Eq. 17 by gvfee3 :∏

i∈{1,2}

vcmi = gvfee3 ·
∏

j∈{A,B}

vcmj ⇔ (33)

v1 + v2 ≡ vfee + vA + vB (mod p) (34)

Note that vfee cannot depend on the transferred
amounts, since that would break anonymity. To
deal with this, we simply enforce the same fee for
all anonymous transactions, similar to existing sys-
tems [91].

B Cryptography Background

Notation. gx = [gx1 , . . . , gxℓ ], where g ∈ G, and
x ∈ Zℓ

p.

Re-randomizable signatures over commit-
ments. We describe our dual Pedersen commit-
ments in Fig. 3. We give our threshold variant of
Pointcheval-Sanders in Fig. 5. For completeness, the
single-signer version is in Fig. 4.

How to verify signature shares. To see why the
RS.ShareVer share verification algorithm from Fig. 5
works, consider the left-hand side (LHS) of the veri-

RS.KeyGen(1λ, ck)→ (sk, vk)

Parse ck as (g, ·, g̃, ·) and x←$ Zp (sk, vk)← (gx, g̃x)

RS.Signck(sk, cm;u)→ σ

// Assuming previously-checked ZKPoK of opening on cm w.r.t. ck

Parse ck as (g, ·, g̃, ·) and σ ← (gu, (sk · cm)u)

RS.Verck(vk, (cm, c̃m), σ)→ {0, 1}
// Implicitly verifies ZKPoK for cm = gr

∏
k∈[ℓ] g

mk
k

Parse ck as (g, ·, g̃, ·) and assert e(cm, g̃) = e(g, c̃m)
Parse σ as (h, σ2) and assert e(σ2, g̃) = e(h, vk · c̃m)

RS.Rerand(σ; r∆, u∆)→ σ′

Parse σ as (h, σ2) and σ
′ ← (hu∆ , (σ2 · hr∆)u∆)

Figure 4: Algorithms for Pointcheval-Sanders (PS)
signatures over Pedersen commitments from Fig. 3.
(For the threshold variant, see Fig. 5.)

fication equation:

lhs = e([σ∗]i,2, g̃) =

(35)

= e(h[x]i+
∑

k∈[ℓ] mk[yk]i · g
∑

k∈[ℓ] rk[yk]i , g̃) =
(36)

= e(h[x]i , g̃)e(h
∑

k∈[ℓ] mk[yk]i · g
∑

k∈[ℓ] rk[yk]i , g̃) =
(37)

= e(h, g̃[x]i)e(
∏
k∈[ℓ]

hmk[yk]i ·
∏
k∈[ℓ]

grk[yk]i , g̃) =

(38)

= e(h, g̃[x]i)e

∏
k∈[ℓ]

(
hmk[yk]i · grk[yk]i

)
, g̃

 =

(39)

= e(h, g̃[x]i)
∏
k∈[ℓ]

e
(
hmk[yk]i · grk[yk]i , g̃

)
=

(40)

= e(h, g̃[x]i)
∏
k∈[ℓ]

e
(
(hmkgrk)

[yk]i , g̃
)
=

(41)

= e(h, g̃[x]i)
∏
k∈[ℓ]

e
(
cmk, g̃

[yk]i
)
= rhs

(42)

Identity-based encryption (IBE). We thresh-

oldize an anonymous, CCA-secure variant of Boneh-
Franklin IBE in Fig. 6.
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Range proofs. In our protocol, we often need to
prove that cm = gv1g

r is a commitment to a value
v ∈ [0, 2N ) for some positive integer N . For this, we
use zero-knowledge range proofs (ZKRPs) [44] and,
in particular, we use the protocol by Boneh et al [69]
from Fig. 7.

B.1 Σ-protocols

As explained in §§4 and 5, UTT uses Σ-protocols to
prove certain relations hold over the discrete log of
group elements.

ZKPoK of Pedersen openings. We often use
πzkpok = ZK.ProvePedOpen(ck, cm, [m1, . . . ,mℓ], r) to
prove knowledge of an opening of cm =

∏
i g

m
i gr un-

der commitment key ck = (g, (g1, . . . , gℓ)). A verifier
can check this proof via ZK.VerPedOpen(ck, cm, πzkpok).
We often use this as a tool to prove that one (or
more) of the mi’s are zero, by running the prover
and verifier with an adjusted ck′ that does not have
the corresponding gi’s from ck. We refer to this as a
ZKPoK “for zeros”

ZKPoK during registration and budget is-
suance. When first registering, Alice has to send
cm = CM.Comrck([0, s]; a) to the RA and prove knowl-
edge of an opening [pid, s] of cm such that pid = 0
(see §4.2). She can do so using the ZKPoK “for
zeros” from above. Similarly, when asking for her
budget Alice has to prove her rcm contains her pid,
which she can do using a ZKPoK for “zeros” on
rcm∗ = rcm ·CM.Com([−pid, 0]; 0). Then, the auditor
can reconstruct rcm from rcm∗ and pid and verify its
registration signature rs.

ZKPoK for identity commitments. When
creating a TXN, Alice has to compute πzkpok

j ’s
proofs of knowledge of opening for the recipients’
icmj ’s from Eq. 32. She can do so easily using

πzkpok
j ← ZK.ProvePedOpen(tck, icmj , [pidj ], t

′
j), where

tckj = (hj , g) is the commitment key pre-agreed upon
by Alice and the bank for the current transaction.
(Recall from §5, that Alice must use a different com-
mitment key for the purpose of accommodating our
threshold PS signatures.)

Pedersen equality proof. Recall from §5
that, when creating a TXN, Alice has to compute
πpedeq
j ’s proofs that the recipients’ (vcmj , vcm

∗
j ) from

Eq. 32 both commit to the same value vj . This
can be done using a Σ-protocol for the relation

Rpedeq(ck1, cm1, ck2, cm2) holding when:(
cm1 = CM.Comck1(v; r1)
cm2 = CM.Comck2(v; r2)

)
(43)

We will give details in the extended version of this
paper.

ZKPoK on expiration date. Alice can easily
prove her budget coin has expiration date zero us-
ing the ZKPoK “for zeros” from above. Note that
Alice only proves this for ccm ∈ G1 since the pairing-
based check in RS.Ver, which the bank performs when
verifying the coin signature, implies this holds for
c̃cm ∈ G2.

Splitproof. Recall that our split relation Rsplit was
decomposed into a randomized nullifier check (see
Eq. 28) and an inner split relation R∗

split (see Eq. 31).
Since R∗

split only reasons about the discrete logs of
group elements, we can use a Σ-protocol to prove
it. Importantly, recall from “Step 4” in §4.4, that
we compute this proof as ZK signature of knowledge
(ZKSoK). For this, we additionally hash all transac-
tion outputs when deriving the Σ-protocol challenge
using the Fiat-Shamir transform [53]. For brevity, we
will give details in the extended version of this paper.

Budget proof. The proof for the budget relation
in Eq. 24 consists of two Pedersen equality proofs,
which we gave in Eq. 43

Pedersen-KZG agreement proof. Our range
proofs from Fig. 7 require proving, in ZK, that a
KZG committed polynomial γ evaluated at a point i
equals a Pedersen-committed value v with random-
ness r. Kate et al. give such a protocol in [92],
which we reuse in our work. The proof is computed
via πpedkzg ← PPedKZG(kpp, ck, v, r, γ, 1) and and ver-
ified as VPedKZG(kpp, ck, cm, cγ , 1, πpedkzg), where kpp
are the KZG public parameters and ck is the com-
mitment key of the Pedersen commitment. We will
give its details in the extended version of this paper.

B.2 Nullifier soundness and ZK

In this subsection, we argue our randomized nullifier
verification from Eq. 28 is sound (i.e., proves the nul-
lifier is correctly computed) and zero-knowledge (i.e.,
does not leak anything about s or sn).

Soundness. Recall that a nullifier on serial number
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sn under PRF key s is computed as:

nullif = h1/(s+sn) (44)

vk = h̃s+snw̃t (45)

y = e(nullif, w̃)t (46)

Here, t is secret randomness from Zp and (h̃, w̃) ∈ G2
2

are part of the public parameters. The bank checks
the nullifier as:

e(nullif, vk) = e(h, h̃) · y ⇔ (47)

e(nullif, h̃s+snw̃t) = e(h, h̃) · e(nullif, w̃t)⇔
(48)

e(nullif, h̃s+sn) · e(nullif, w̃t) = e(h, h̃) · e(nullif, w̃t)
(49)

We can show that, when s ̸= sn, this implies nullif =
h1/(s+sn). Assume nullif = ha, for some a ∈ Zp. Then,
since the check above holds, we have:

e(ha, h̃s+sn) · e(ha, w̃t) = e(h, h̃) · e(ha, w̃t)⇔ (50)

e(h, h̃)a(s+sn) = e(h, h̃)⇔ (51)

a(s+ sn) = 1⇔ (52)

a = 1/(s+ sn) (53)

Thus, nullif = ha = h1/(s+sn) as desired, which means
our randomized verification is sound.

Zero-knowledge. Regarding why this is zero knowl-
edge, there exists a simulator that given any nullif ∈
G1, can simulate a proof as:

• Pick random vk ∈ G2,

• Let y = e(nullif, vk)/e(h, h̃) ∈ GT ,

• Simulate a Σ-protocol proof that argue correct-
ness of vk and y.

// t is the corruption threshold

RS.DistKeyGen(1λ, t+ 1, n, ℓ)→ (ck, vk, (ski, vki)i∈[n])

χ←$ Zp[X], ψk ←$ Zp[X] be degree t polynomials, ∀k ∈ [ℓ]
x← χ(0) yk ← ψk(0), ∀k ∈ [ℓ]
[x]i ← χ(i) [yk]i ← ψk(i), ∀k ∈ [ℓ], ∀i ∈ [n]
// Note that gk = gyk and g̃k = g̃yk

vk← g̃x ck← CM.Setup(1λ, ℓ;y) and parse as (g,g, g̃, g̃)

ski ← ([x]i, ([yk]i)k∈[ℓ]) vki ←
(
g̃[x]i , (g̃[yk]i)k∈[ℓ]

)
, ∀i ∈ [n]

return ck, vk, (ski, vki)i∈[n]

RS.ShareSignck(ski, (cmk, π
zkpok
k )k∈[ℓ];h)→ [σ∗]i

// Assumes h uniform in G1; picked pseudo-randomly in practice

Parse ck as (g, ·, ·, ·)
// Check πzkpok

k of opening cmk = hmkgrk

assert ZK.VerPedOpen((h, g), cmk, π
zkpok
k ) // see App. B.1

Parse ski as [x]i, ([yk]i)k∈[ℓ]

[σ∗]i ← (h, h[x]i
∏

k∈[ℓ] cm
[yk]i
k )

// i.e., return (h, h
[x]i+

∑
k∈[ℓ] mk[yk]i · g

∑
k∈[ℓ] rk[yk]i )

RS.ShareVerck(vki, (cmk, π
zkpok
k )k∈[ℓ], [σ

∗]i;h)→ {0, 1}
Parse [σ∗]i as ([σ

∗]i,1, [σ
∗]i,2) and assert h = [σ∗]i,1

Parse ck as (g, ·, g̃, ·)
// Check πzkpok

k of opening cmk = hmkgrk

assert ZK.VerPedOpen((h, g), cmk, π
zkpok
k ) // see App. B.1

Parse vki as
(
g̃[x]i , (g̃[yk]i)k∈[ℓ]

)
assert e([σ∗]i,2, g̃) = e(h, g̃[x]i) ·

∏
k∈[ℓ] e(cmk, g̃

[yk]i)

// i.e., see Eq. 35 for why this works

RS.Aggregateck(([σ
∗]i)i∈S , (rk)k∈[ℓ])→ σ

Parse ck as (·,g, ·, ·) and, ∀i ∈ S, parse [σ∗]i as (h, [σ
∗]i,2)

Li ←
∏

j∈S,j ̸=i
0−j
i−j

,∀i ∈ S
// Lagrange interpolate the signature from the |S| = t+ 1 sigshares

σ2 ←
∏

i∈S ([σ∗]i,2)
Li

// i.e., (h, h
x+

∑
k∈[ℓ] mkyk · g

∑
k∈[ℓ] rkyk ), where gk = gyk

σ ← (h, σ2/
∏

k∈[ℓ] g
rk
k ) // i.e., (h, h

x+
∑

k∈[ℓ] mkyk )

Figure 5: Algorithms for Pointcheval-Sanders (PS)
threshold signatures over Pedersen commitments
from Fig. 3.
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IBE.Setup(1λ, t+ 1, n)→ mpk, (mski,mpki)i∈[n]

Let HIBE,id : P → G2,

HIBE,r : G2 × P × {0, 1}M × {0, 1}R → Zp, and

HIBE,T : GT → {0, 1}M+R be CRHFs
ϕ←$ Zp[X] be a degree t polynomial
G1 ←$ G1

mpk← G
ϕ(0)
1 ∀i ∈ [n],mski ← ϕ(i) mpki ← Gmski

1

IBE.ExtractShare(mski, pid)→ ski
ski ← HIBE,id(pid)

mski ∈ G2

// Note: IBE.Extract(msk, pid) = IBE.ExtractShare(msk, pid)

IBE.VerShare(mpki, ski, pid)→ {0, 1}
assert e(G1, ski) = e(mpki,HIBE,id(pid))

IBE.Aggregate((ski)i∈S)→ sk

// Lagrange interpolate the sk from the |S| = t+ 1 ski’s

Li ←
∏

j∈S,j ̸=i
0−j
i−j

, ∀i ∈ S
sk←

∏
i∈S (ski)

Li

IBE.Enc(mpk, pid,m)→ ctxt

σ ←$ {0, 1}R r ← HIBE,r(mpk, pid,m, σ) ∈ Zp

T ← e(mpk,HIBE,id(pid))
r ∈ GT

ctxt← (Gr
1, (m||σ)⊕HIBE,T(T )) ∈ G1 × {0, 1}M+R

IBE.Dec(sk, ctxt)→ {0, 1}M ∪ {⊥}
Parse ctxt as (c1, c2) ∈ G1 × {0, 1}M+R

T ← e(sk, c1) ∈ GT // i.e., e(mpk,HIBE,id(pid))
r

Parse c2 ⊕HIBE,T(T ) as (m,σ) ∈ {0, 1}M × {0, 1}R

return m if c1 = G
HIBE,r(mpk,pid,m,σ)

1

otherwise, return ⊥

Figure 6: Algorithms for threshold-issuance, anony-
mous, CCA-secure IBE by Boneh-Franklin [66, 67]
over PID space P, message space {0, 1}M and ran-
domness space {0, 1}R. Here, ⊕ denotes the “bitwise”
exclusive OR operation.

ZKRP.Prove(rpp, v, r)→ π

Parse rpp as (vck, kpp, N) and v as
∑

i∈[0,N) vi2
i

cm← CM.Comvck(v; r)
(ω′, ω′′)← Z2

p \H and let S = Zp \ (H ∪ {ω′, ω′′})
Interpolate γ(X) ∈ Zp[X] of deg-(N + 1) such that:

γ(ωN−1) = vN−1

γ(ωi) = 2γ(ωi+1) + vi, ∀i ∈ [0, N − 1)
γ(ω′)←$ Zp γ(ω′′)←$ Zp // for ZK

// ZK proof that γ(1) = v is committed in cm = gv3g
r

πpedkzg ← PPedKZG(kpp, vck, v, r, γ, 1) // see App. B.1

// w2(X) = 0 over H ⇔ vN−1 ∈ {0, 1}
w2(X)← γ · (1− γ) · XN−1

X−ωN−1

// w3(X) = 0 over H ⇔ vi ∈ {0, 1}, ∀i ∈ [0, N − 2]

w3(X)← [γ(X)− 2γ(Xω)] · [1− (γ(X)− 2γ(Xω))] ·
· (X − ωN−1)

// Randomness picked via Fiat-Shamir transform

τ ← Hzkrp(cm, 1) ρ← Hzkrp(cm, 2)
Compute q ∈ Zp[X] such that w2 + τw3 = q · (XN − 1)
cq ← KZG.Commit(kpp, q) cγ ← KZG.Commit(kpp, γ)
πq(ρ) ← KZG.Prove(kpp, q, ρ) πγ(ρ) ← KZG.Prove(kpp, γ, ρ)
πγ(ρω) ← KZG.Prove(kpp, γ, ρω)
return cγ , cq, πpedkzg, γ(ρ), πγ(ρ), γ(ρω), πγ(ρω), q(ρ), πq(ρ)

ZKRP.Setup(1λ, 2N )→ {rpp}
(vck, ṽck)←$ CM.Setup(1λ, 2)
kpp← KZG.Setup(1λ, 3N + 1)
rpp← (vck, kpp, N)

ZKRP.Ver(rpp, cm, π)→ {0, 1}
Parse rpp as (vck, kpp, N)

Parse π as

(
cγ , cq, πpedkzg, γ(ρ), πγ(ρ),
γ(ρω), πγ(ρω), q(ρ), πq(ρ)

)
// verify ZK proof that γ(1) = v is committed in cm = gv3g

r

assert VPedKZG(kpp, vck, cm, cγ , 1, πpedkzg) // see App. B.1

// Randomness picked via Fiat-Shamir transform

τ ← Hzkrp(cm, 1) ρ← Hzkrp(cm, 2)
assert KZG.Ver(kpp, cγ , ρ, γ(ρ), πγ(ρ))
assert KZG.Ver(kpp, cγ , ρω, γ(ρω), πγ(ρω))
assert KZG.Ver(kpp, cq, ρ, q(ρ), πq(ρ))

w2(ρ)← γ(ρ) · (1− γ(ρ)) · ρN−1
ρ−ωN−1

w3(ρ)← [γ(ρ)− 2γ(ρω)] [1− (γ(ρ) + 2γ(ρω))] (ρ− ωN−1)
assert w2(ρ) + τw3(ρ) = q(ρ)(ρN − 1)

Figure 7: Boneh et al’s [69] range proofs for
Pedersen commitments gv1g

r to v. Here, H =
{ω0, ω1, . . . , ωN−1} are all the Nth roots of unity and
Hzkrp is a CRHF.
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Part I

A Cryptographic
Analysis of the UTT
system
We analyze the UTT system in the framework of
secure multiparty computation (MPC). We present
an ideal functionality Futt that captures the task of
decentralized anonymous payment, and show that
the UTT system securely realizes this functionality
against an active adversary that may corrupt an ar-
bitrary number of clients that are chosen at the begin-
ning of the execution. We limit our analysis to a fully
synchronous setting. Along the way, we present a new
model of standalone MPC for reactive (aka stateful)
functionalities that captures the ability of the adver-
sary to adaptively select the inputs of the parties,
without resorting to the full-fledged UC model of [80].
We reduce the security of the protocol to the security
of the underlying cryptographic building blocks. Our
analysis holds in the standard model. Though the
protocol inherits some ideal model assumptions (RO
and AGM) from the concrete instantiations of some
of the underlying cryptographic building blocks.

Organization. In Section C we present the secu-
rity model and the ideal Futt functionality. Section D
presents the cryptographic ingredients needed for our
protocol and their instantiations. (Some details are
deferred to the Appendices). While most of the ma-
terial is standard, the reader is advised to read about
our somewhat non-standard notion of committed sig-
nature schemes (Section D.2). Our protocol appears
in Section E and some extensions are presented in
Section F. In Sections G and H we describe the sim-
ulator and analyze it.

C The Ideal Functionality and
the MPC model

In this Section, we describe the ideal Futt functional-
ity and describe some aspects of the MPC model and
our security proofs. For simplicity, our basic formula-
tion does not include anonymity budgets, which are
added later as a simple extension (See Remark C.3
and Section F.2.)

C.1 The ideal functionality

Notation The functionality interacts with n banks,
a minterM, a set ofN clients C and an adversary Adv.
Each client is identified by a unique public identifier
pid ∈ {0, 1}∗ and we let Cpid denote the client whose
identifier is pid. The functionality is parameterized
with a set of legal coin values V which, by default,
is taken to be integers in the range [0,Vmax] where
Vmax is some positive integer. The functionality ini-
tializes the counter T = 0 that keeps track of the
number of coins that were generated so far. That
is, whenever a coin is generated (either via a suc-
cessful Mint operation or a successful Pay operation)
the counter is increased, and we use this value as
the (ideal) identifier of the generated coin. The func-
tionality also maintains a dictionary coins that maps
a coin id t to the coin’s value and owner. Specifi-
cally, coins : N→ (V × {0, 1}∗) ∪ {⊥}. We denote by
val(t) ∈ V and owner(t) ∈ {0, 1}∗ the value and owner
associated with a coin id t and view these values as
undefined if coins(t) = ⊥. Our payment mechanism
supports 2-to-2 coin transaction, where the two “in-
put” coins are both owned by Sender and the one
“output” coin is delivered to a client pid1 and the
second output coin is delivered to a (possibly differ-
ent) client pid2.

34



FUNCTIONALITY C.1.
(
Functionality Futt

)
The functionality supports two types of operations
Mint and Pay.

• Mint. Upon receiving the message
(mint, v, pid) from the minter, where v ∈ V is
the desired value and pid is the public identifier
of the client to which the coin is destined, set
T← T+1 and assign coins[T] = (v, pid). Send
(minted, v, pid,T) to the client Cpid and send
(minted,T) to everyone else.

• Pay. Upon receiving the message
(pay, t1, t2, pid1, v1, pid2, v2) from a client
Sender identified by pid, initialize all error
flags to false, and verify that the following
conditions hold:

– (legal incoming coins) Sender owns in-
put coins. Namely, for i ∈ {1, 2}, if
owner(ti) ̸= pid set the error flag err-ini
to true.

– (legal values) The values of the output
coins are legal. Namely, for j ∈ {1, 2}, if
vj /∈ V set the error flag err-valj to true.

– (legal sum) The sum of the input values
and the output values is equal. Namely, if
val(t1)+val(t2) ̸= v1+v2 set the error flag
err-sum to true. (By convention, if val(t1)
or val(t2) are undefined, we set err-sum to
true.)

(Report error if needed:) If at least one of the
error flags is on, broadcast to all parties the
error flag err = true together with the current
value of T and terminate the current operation.
Otherwise (verification succeeds), “burn” the
incoming coins by setting coins[t1] and coins[t2]
to ⊥, and do the following for each j ∈ {1, 2}:

– Increase T ← T+ 1, set owner(T) = pidj
and val(T) = vj . If there exists a client
whose public identifier is pidj , send her
the message (paid,T, vj). Send (paid,T)
to all the other parties.

Our specification of the Futt functionality mainly
strives for simplicity. Naturally, one can consider
several other variants of the functionality that may
suit concrete applications. Below we elaborate on our
choices and list some natural variants that can be eas-
ily supported by applying minor modifications to our
protocol.

1. (The Minter) The use of a minter models the fact

that money is injected to the system via some
external process (e.g., central Bank.) Jumping
ahead, the Minter will always be assumed to be
honest, though, as usual in MPC, the adversary
has the power to select the inputs of the Minter
and this way to inject money to the system.

2. (Error handling) We release a single error flag if
either the incoming coins are not owned by the
sender or the outgoing coins have illegal values
or if the sum of the values of the incoming coins
do not match the sum of the values of the outgo-
ing coins.6 This single error flag is being sent to
all the parties for the sake of transparency. But
could be sent, in principle, only to the Banks
and the Sender. Also, one could send a more de-
tailed error report by sending the vector of error
flags (err-in1, err-in2, err-val1, err-val2, err-sum) ei-
ther to all the parties or only to the Banks. One
may further decide to “burn” the ith incoming
coin if it is legal (i.e., err-ini = false) regardless
of the validity of the whole transaction.

3. (Other coin identifiers) The use of the counter
T as a coin identifier is somewhat arbitrary and
can be replaced by any other reference mecha-
nism. (e.g., random identifiers). It should be
noted that the counter T counts the number of
“generated coins” as opposed to the number of
“valid” coins. (Indeed, we count coins that are
designated for “invalid receivers” and do not de-
crease the counter when a coin is transferred to
a new use). Consequently, the current value of
T can be always inferred based on the history of
successful transactions. Still, we find it conve-
nient to deliver the current value of T as part of
the output.

4. (Static vs dynamic set of parties) We assume
that the functionality is implicitly parameterized
by a fixed set of clients. One can consider a dy-
namic version in which parties are being added
on the fly via a special registration command.

5. (k-to-ℓ transactions) For simplicity, we support
2-to-2 transactions which are essentially univer-
sal. One can naturally extend the functionality
(and the protocol) to deal with a more rich fam-
ily of k-to-ℓ transactions.

6Note that We do allow a payer to pay her money to a non-
existing payee without raising an error flag, which is analogous
to the act of “throwing away” money.
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Remark C.2 (The generalized Futt functionality).
In some cases it may be useful to assume that coins
carry additional “type” information that can be taken
to be a vector of attributes. One can then define ap-
propriate rules that determine whether a set of in-
coming coins is allowed to be converted into a set
of outgoing rules as a function of the coins owners,
values, and types. The Futt functionality can be nat-
urally extended to support this more general notion
by changing the error checks accordingly. Indeed, the
anonymity budget mechanism can be captured under
this abstraction as described below. In Section F.2
we briefly explain how to adopt the protocol to this
more general setting.

Remark C.3 (Supporting anonymity budgets). One
can naturally extend Futt to support anonymity bud-
get as follows. The coin dictionary is augmented with
an additional expi field that can be set to either 0 (for
“regular” coins) or to some positive integer to indi-
cate that this is an “anonymity-budget” coin whose
expiration date is expi. The Mint operation takes expi
as an additional input and sets the expi field of the
generated coin accordingly. Depending on the con-
text, we may add a special party, “the Auditor”, that
is responsible for minting anonymous-budget coins,
and disallow other parties to issue such a mint oper-
ation. (Alternatively, we can let the Minter also take
the role of the Auditor.)
We move on to describe the modified Pay opera-

tion. (To be aligned with the main text, we assume
that the first target coin is always delivered to the
Sender, i.e., pid1 = pid.) The Pay operation takes,
as an additional input, an identifier t3 of a budget
coin, and checks the following conditions (in addi-
tion to the original ones): (1) t3 is owned by Sender,
i.e., owner(t3) = pid; (2) The coins t1, t2 are regu-
lar and the coin t3 is an anonymity-budget coin, i.e.,
expi(t1) = expi(t2) = 0 and expi(t3) ̸= 0; (3) The
budget coin has not expired date ≤ expi(t3) where
date is a “public clock” that is available to all the
parties;7 (3) (Enough Budget) The money that is be-
ing delivered to the receiver pid2 does not exceed the
current anonymity budget, i.e., v2 ≤ val(t3). If any
of these conditions fail, we broadcast a failure no-
tification. Otherwise, we complete the operation as
described in Figure C.1, except that we issue a new
anonymous budget coin of value vC := val(t3) − v2
(a “change”) with expiration date of expi and deliver

7Formally, this can be captured by an external ideal (reac-
tive) functionality that takes no input and returns the “current
time”.

it to the sender (i.e., set its owner id to pid). The
counter is increased accordingly.

C.2 The MPC Model

Modeling adaptive inputs. Following the stan-
dard REAL/IDEAL paradigm we would like to say
that a protocol Π securely realizes an ideal function-
ality F if any efficient adversary Adv that attacks the
protocol Π can be translated into an efficient adver-
sary S (simulator) that attacks the ideal implemen-
tation in which parties have an access to the ideal
functionality. However, since our ideal functionality
is reactive (i.e., it maintains a state), a special care
is needed in order to define security. Specifically, an
important aspect that should be captured is the abil-
ity of the adversary to adaptively inject “inputs” to
the system based on the view that was gathered so
far. Here “inputs” refers to the actions of the cor-
rupted parties and to the inputs of the honest par-
ties.8 In a non-reactive setting, this concern is easily
taken care of by quantifying security over all possible
inputs. For reactive functionalities, such a universal
quantification fails to capture the adaptive power of
the adversary.9 Following the UC model of [80], we
capture such an adaptive choice of inputs via the use
of an external environment Env, and present a lim-
ited version of the UC definition that, in our opinion,
provides a sound model for “standalone MPC secu-
rity” for reactive functionalities. In a nutshell, we
assume a synchronous setting (like [83–85]), and as-
sume that the protocol is invoked in “phases”, in the
beginning of each phase, the adversary (Adv or S)
and the honest parties receive inputs from the en-
vironments Env, participate in the protocol, and at
the end of the phase send their outputs to the envi-
ronment. We emphasize that, while our definition is

8Indeed, it is now widely accepted both in practice and the-
ory, that the possibility of adversarial influence on the inputs
of honest parties is a real concern and typical cryptographic
definitions (e.g., CPA or CCA security) are tailored to cope
with such scenarios.

9To illustrate this point, consider a (contrived) system that
leaks to the adversary, after the first call, a sequence of N
random operations, R1, . . . , RN . The system operates securely,
but if the next N calls follow the pattern R (i.e., the ith client
makes the ith call with inputRi), the system completely breaks
down (e.g., reveals all secrets and deliver the “money” to the
adversary). Since the probability of failure is tiny for any fixed
predetermined sequence of inputs, such a protocol is secure
with respect to a static choice of inputs. Of course, security
is violated when the inputs are chosen adaptively. While this
example is somewhat contrived, we note that properly dealing
with such scenarios leads to complications both in the proofs
and in the definitions.
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inspired by UC, composability is not our central con-
cern, rather our main goal is to capture the adaptive
choice of inputs. Indeed, since the adversary does not
communicate with the environment during a phase,
we can, for example, rewind it to the beginning of
the phase (though we do not exploit such rewinding
in our proof). We proceed with a formal definition.

Definition C.1 (stand-alone MPC for reactive func-
tionalities). For an environment Env, real adversary
Adv, ideal adversary S (aka the simulator), and a col-
lection of subsets of partiesM (aka adversary struc-
ture), we define the ideal execution of the function-
ality F and the real execution of the protocol Π as
follows.
At the beginning, the environment Env, that is

given the security parameter, 1λ, and an auxiliary
input z, chooses which subset M ∈ M of the par-
ties to corrupt. The game now proceeds in “phases”.
In each phase, based on the information gathered so
far, Env sends inputs to the honest parties and to the
adversary who controls the parties in M .10 The cor-
responding parties then execute the current phase,
either by running the protocol Π with their inputs,
or by making a single call to the ideal functionality
F which delivers outputs and updates its state. Of
course, when the adversary is active (as is the case
in our setting) she is allowed to arbitrarily deviate
from the protocol’s instructions and to submit arbi-
trary values to the ideal functionality. At the end
of the phase, the honest parties deliver their outputs
to Env, and the adversary delivers to Env its out-
put, which, wlog, contains its entire view. At the
end of the execution the environment terminates with
an output that, wlog, can be taken to be a single
bit attempting to distinguish whether the real exe-
cution takes place or the ideal execution. We denote
by ExecΠ,Adv,Env(1

λ, z) the random variable that de-
scribes the output of Env in the real execution, and by
ExecF,S,Env(1

λ, z) the random variable that describes
the output of Env in the ideal execution.
We say that a protocol Π securely realizes the func-

tionality F with respect to the collection M, if for
every polynomial-time adversary Adv, there exists
a polynomial-time simulator S, such that for every
computationally-bounded environment Env the en-
semble {

ExecΠ,Adv,Env(1
λ, z)

}
λ∈N,z∈{0,1}∗ (54)

10This implicitly means that when the functionality receives
an input from a single party at a time (like in our case) Env
chooses which party speaks in the current phase.

is indistinguishable from the ensemble of random
variables {

ExecFutt,S,Env(1
λ, z)

}
λ∈N,z∈{0,1}∗ . (55)

The use of idealized oracles. Our standalone
model can be easily extended to work with ideal or-
acles such as Random Oracles (RO) [93] or the al-
gebraic group model (AGM) [94], that are available
only to the adversary but not to the environment.
Indeed, some of our building blocks are proved to be
secure in the RO or AGM model, and so these models
are carried to our protocol. We emphasize that the
analysis of the protocol does not make a direct use of
these models. Accordingly, the protocol’s “standard-
model” security follows from a “standard-model” of
the underlying building blocks.

The adversarial model. We consider an active
adversary that corrupts any number of clients that
are selected non-adaptively at the beginning of the
execution. The main protocol is described with re-
spect to a single Bank that is assumed to be hon-
est, though the adversary can listen to all the incom-
ing/outgoing communication from the Bank. In Sec-
tion F.1, we explain how to extend the protocol and
its analysis to a threshold setting, in which there are
multiple Banks, and the adversary can actively cor-
rupt up to 1/3 of them. (For more details about the
adversarial model and the network setting, see E.)

D Cryptographic Primitives

Global Setup. We present here the definition of
the cryptographic primitives used by our construc-
tion: commitment, committed signature and anony-
mous encryption schemes. All these algorithms will
make use of some global public parameters pp (e.g.,
a description of a bilinear group, a CRS, etc.) that
are generated by a PPT algorithm Setup that takes
as input the security parameter 1λ (and some ran-
domness). The public parameters pp will be given as
inputs to all cryptographic algorithms and to the ad-
versary. We further assume (WLOG) that pp implic-
itly contains the security parameter 1λ and therefore
there is no need to explicitly send the security param-
eter to the following cryptographic algorithms. We
further assume that the message space, randomness
space and output space, of all the cryptographic algo-
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rithms are determined by the public parameters.11 In
later sections, we will typically omit the dependency
in pp from the cryptographic algorithms for ease of
notation.

Instantiation. Our setup algorithm samples the
description (p,G1,G2,GT , e) of a bilinear map of type
III [95], together with a random generator h ←$ G1

(to be used later as a public bases for the Dodis-
Yampolskiy PRF [72], see Section D.4).

D.1 Homomorphic Commitment
Scheme

We will consider non-interactive homomorphic com-
mitments in which the hiding property holds infor-
mation theoretically.

Definition D.1 (Homomorphic Commitments). A
commitment scheme consists of the following algo-
rithms:

1. CM.Setup(pp) → ck. Given public parameters
pp and random coins the algorithm outputs a
commitment key ck.

2. CM.Com(pp, ck,m; r) → cm. Given public pa-
rameters pp, a commitment key ck, a message
m ∈ M and randomness r ←$ R, outputs the
commitment cm ∈ C. Recall that pp determines
the message space M, the randomness space R
and the commitment space C.

The algorithms should satisfy the following prop-
erties:

• Perfect hiding For every possible pp, ck and ev-
ery pair of messages m0,m1 ∈ M, it holds that
the pair (pp, ck, cm0 = CM.Com(pp, ck,m0; r))
and (pp, ck, cm1 = CM.Com(pp, ck,m1; r)) are
identically distributed where r is uniformly sam-
pled from R.

• Strong binding For every efficient adversary
Adv, the probability, over random choice of the
public parameters pp ←$ Setup(1λ) and the
commitment key ck ←$ CM.Setup(pp), that
Adv(pp, ck) outputs a tuple (m0, r0,m1, r1) for
which

CM.Com(pp, ck,m0; r0) = CM.Com(pp, ck,m1; r1)

11This convention is taken mainly for the sake of simplicity
and since all our instantiations satisfy it.

and
(m0, r0) ̸= (m1, r1)

is negligible in λ.

We say the scheme is homomorphic if the mes-
sage space M and the randomness space R are
abelian groups and there is a special operation that
given pp, ck and cm1, cm2 ∈ C outputs a commit-
ment cm with the following guarantee: If there exists
m0, r0,m1, r1 for which

cm0 = CM.Com(pp, ck,m0; r0)

and
cm1 = CM.Com(pp, ck,m1; r1)

then

cm = CM.Com(pp, ck,m0 +m1; r0 + r1)

where “+” stands for the group operation. By abuse
of notation, we sometimes omit the dependency in
pp, cm and denote the homomorphic combination by
cm0 ⊞ cm1.

Remark D.1 (Opening a commitment). We adopt
the convention that in order to “open” a commitment
cm with respect to public parameters pp and a com-
mitment key ck, the committer sends the message m
and the randomness r and the verifier checks that
CM.Com(ck,m; r) = cm.

Remark D.2 (Rerandomizing a commitment). A
homomorphic commitment can be perfectly reran-
domized as follows. Given public parameters pp,
a commitment key ck, a commitment cm and
a random shift r∆ ∈ R, define the procedure
CM.Rerand(pp, ck, cm; r∆)→ cm′ by setting

cm′ = cm⊞ CM.Com(pp, ck, 0; r∆).

Observe that if cm = CM.Com(pp, ck,m; r0) for
some message m and randomizer r0, then cm′ =
CM.Com(pp, ck,m; r0+r∆). Since we will be employ-
ing only homomorphic commitments, we will always
assume the availability of such CM.Rerand procedure.

Remark D.3 (Vector commitments). Our message
space will always be of the from Z4

p. That is, our
messages are quadruplets where each entry represents
a different data item. The homomorphic operation is
the standard component-wise addition over Zp, and
therefore one can add a value to a single entry without
changing the other entries (by adding zeroes in all
other locations).
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Instantiation. We use a dual “bilinear” version of
the well-known Pedersen commitment [96]. The bind-
ing property holds under the SDL assumption of [97]
which follows from 1-SDH of [98]. (See Section I for
details.) As already mentioned, the hiding property
hold information theoretically.

D.2 Committed Signature Scheme

Our protocol makes extensive use of signatures over
commitments schemes. The signatures should be
rerandomizable and, in addition, one should be able
to rerandomize a commitment while maintaining the
validity of the signature. This means that the signa-
ture should be somewhat non-malleable – a property
that inherently contradicts the unforgeability prop-
erty. The following definition formalizes the desired
notion of unforgeability for such signatures. Roughly
speaking, we count a forgery as valid if the forger can
generate a signed commitment together with a corre-
sponding opening so that the corresponding message
did not appear before as a query.

Definition D.2 (Rerandomizable Signatures
over Commitments). A rerandomizable signature-
commitment scheme is defined with respect to a
given Commitment scheme (CM.Setup,CM.Com)
that is equipped with a rerandomization procedure
CM.Rerand (see Definition D.1 and Remark D.2) and
consists of the following additional algorithms:

1. RS.KeyGen(pp, ck) → (sk, pk = (pp, vk, ck)).
Given public parameters pp, a commitment key
ck, and randomness, the key-generation algo-
rithm computes a private signing key, sk, a pub-
lic verification key vk and outputs (sk, pk =
(pp, vk, ck)).

2. RS.Sign(sk, cm;u) → σ. Given a signing key,
sk, a commitment cm taken from the commit-
ment space C, and random coins u sampled uni-
formly from the randomness space of the signa-
ture scheme, output the signature σ.

3. RS.Rerand(pk, σ; r∆, u∆) → σ′. Given a
public key pk = (ck, vk) a signature σ,
and randomizers r∆, u∆ the algorithm out-
puts a new signature σ′ such that if σ =
RS.Sign(sk,CM.Com(ck,m; r);u) for some mes-
sage m and randomizer r then σ′ =
RS.Sign(sk,CM.Com(ck,m; r+r∆);u+u∆) where
we assume that the randomness space of the sig-
nature and the randomness space of the com-

mitment can be viewed as groups with efficiently
computable group operation “+”.

4. RS.Ver(pk, cm, σ) → {0, 1}. The algorithm is
given the verification key, vk, the commitment
cm ∈ C and the signature σ and outputs 1 if
verification is successful (and 0 otherwise). The
algorithm should satisfy the perfect correctness
property, i.e., for every keys (sk, pk), every com-
mitment cm ∈ C and every randomness u it holds
that RS.Ver(pk, cm,RS.Sign(sk, cm;u)) = 1.

The scheme should satisfy Existential unforge-
ability under chosen commitment attack. That
is, every efficient adversary Adv cannot win in the fol-
lowing game, GAMEEU−CCA,Adv, with more than neg-
ligible probability in λ:

1. The Challenger samples Setup(1λ) → pp,
CM.Setup(pp) → ck and RS.KeyGen(pp, ck) →
(sk, pk) and sends pk to the adversary Adv.

2. The adversary has a signing oracle that given
a message m and commitment randomness
r, samples a fresh u and returns a signa-
ture σ = RS.Sign(sk, cm;u) where cm =
CM.Com(ck,m; r). Let M denote the set of all
messages that were sent to the oracle.

3. The adversary outputs a tuple (m∗, r∗, σ∗) and
wins if RS.Ver(pk,CM.Com(ck,m∗; r∗), σ∗) = 1
and m∗ /∈M .

Instantiation. We use a variant of the Pointcheval-
Sanders signature scheme [34] over dual-Pedersen
commitments. In Section J we describe the construc-
tion (Figure 9) and prove the following lemma.

Lemma D.4. Under Assumption 1 of [34], the
scheme presented in Figure 9 is a rerandomizable
signature-commitment scheme.

D.3 Anonymous Identity-Based En-
cryption Scheme

We need an identity-based encryption (IBE) scheme
that satisfies the standard notion of ciphertext-
indistinguishability. In addition, we will need a less
standard key indistinguishability (KI) property [99]
that asserts that it is hard to relate a ciphertext to
the corresponding public key. Both properties should
hold under Chosen-Ciphertext Attacks (CCA). This
combined notion of security is nicely captured via the
notion of IND-RA-CCA security [100] defined below.
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Definition D.3 (IND-RA-CCA IBE). An IBE
scheme consists of the following algorithms:

1. (msk,mpk) ←$ IBE.Setup(pp). Given public pa-
rameters pp, and randomness, the IBE-setup al-
gorithm, IBE.Setup, computes a master secret
key, msk, and a master public key mpk.

2. skid = IBE.Extract(msk, id). Given an identifier
id and a master secret key msk the determinis-
tic extraction algorithm, IBE.Extract, computes
a secret key skid that is associated with the iden-
tifier sk.

3. c ←$ IBE.Enc(id,m). Given an identifier id and
a message m, the randomized encryption algo-
rithm, IBE.Enc, outputs a ciphertext c.

4. m = IBE.Dec(skid, c). Given a secret-key skid
and a ciphertext c, the decryption algorithm,
IBE.Dec, outputs a plaintext m.

We require correctness namely, for every pp in the
support of Setup, every (msk,mpk) in the support of
IBE.Setup(pp), every identifier id and every message
m it holds that

Pr[m = IBE.Dec(skid, IBE.Enc(id,m))] = 1,

where skid = IBE.Extract(msk, id).12

An IBE scheme is IND-RA-CCA secure [100, Sec-
tion 2.8.3] if every efficient adversary Adv cannot win
in the following game with probability better than
0.5 + negl(λ):

1. The challenger samples public parameters pp←$
Setup(1λ) and a pair of master public/secret
keys (msk,mpk) ←$ IBE.Setup(pp) and sends
(pp,mpk) to the adversary Adv.

2. The adversary is given an access to two oracles:
(1) Key-extraction oracle that given an identity
id returns the corresponding secret key skid =
IBE.Extract(msk, id); (2) Decryption oracle that
given (id, c) returns m = IBE.Dec(skid, c) where
skid = IBE.Extract(msk, id).

3. The adversary can send a single challenge query
of the form (id0,m0), (id1,m1). In response,
the challenger tosses a coin b ←$ {0, 1} and
returns a fresh challenge ciphertext c∗ ←$
IBE.Enc(idb,mb).

12One can also consider a variant in which decryption er-
ror may occur with negligible probability over the random-
ness of the encryption, and/or over a random choice of pp and
(msk,mpk). Such a variant also suffices for our purposes.

4. At the end, the adversary outputs b′.

The adversary wins in the game if and only if
(1) neither id0 nor id1 were sent as queries to the
Key-extraction oracle; AND (2) neither (id0, c

∗) nor
(id1, c

∗) were sent as queries to the decryption oracle
after the challenge phase; AND (3) b′ = b.

Remark D.5. We note that for our static version of
the protocol (where all parties register at the begin-
ning), it suffices to consider a weaker game in which
the adversary makes all the key-extraction queries at
the beginning of the protocol in a non-adaptive way.
That is, the adversary sends a single vector of identi-
ties (id1, . . . , idm) and gets the answers once and for
all. Furthermore, these identities are chosen before
seeing mpk and pp.

Instantiation. It is shown in [100, Chapter 4] that
if one applies a variant of the Fujisaki-Okamoto trans-
form [101, 102] to the basic (CPA-secure) variant of
the Boneh-Franklin IBE [103] the resulting IBE is
IND-RA-CCA under the BDH assumption in the
Radnom-Oracle model. We use this instantiation in
our protocols.

D.4 Pseudorandom Functions

We make use of standard pseudorandom functions.
In the following, we say that an infinite sequence of
sets X = {Xpp}pp∈{0,1}∗ is efficiently indexed by pp, if

given pp one can efficiently sample a uniform element
from Xpp and efficiently decide membership in Xpp.

Definition D.4. A PRF over key space K =
{Kpp}pp∈{0,1}∗ , input space X = {Xpp}pp∈{0,1}∗ and

output space Y = {Ypp}pp∈{0,1}∗ which are all effi-

ciently indexed by pp, is an efficiently computable
function PRF(pp, k, x) that maps public parameters
pp, a key k ∈ Kpp, and input x ∈ Xpp to an output
y ∈ Ypp such that for every efficient adversary Adv, it
holds that∣∣∣Pr[AdvPRF(pp,k,·)(pp) = 1]− Pr[AdvF(·)(pp) = 1]

∣∣∣
is negl(λ), where pp ←$ Setup(1λ), k ←$ Kpp and F
is a random function from Xpp to Ypp.

We typically abuse notation and write PRFk(x) to
denote PRF(pp, k, x).
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Regularity properties. For technical reasons we
further require that the PRF has no self-collisions
nor pairwise collisions. The former property asserts
that for every pp ∈ Setup(1λ), k ∈ Kpp, the function
PRF(pp, k, ·) is injective, and the latter property as-
serts that for every pp ∈ Setup(1λ), k ̸= k′ ∈ Kpp

and input x ∈ Xpp, it holds that PRF(pp, k, x) ̸=
PRF(pp, k′, x). Both requirements can be signifi-
cantly relaxed13 or even completely removed (at the
expense of slightly modifying the protocol). Since
our concrete instantiation satisfies these properties,
we keep them for simplicity.

Instantiation. We use a well-known PRF by Dodis
and Yampolskiy [72] that takes retrieves from the
public parameters a public element h ←$ G1 and
maps a key k ∈ Zp and an input x ∈ Zp to the group
element h1/(k+x) ∈ G1. Observe that this PRF has
no self-collisions nor pairwise collisions.

D.5 Zero-Knowledge Proofs

We employ Zero-Knowledge Proofs of Knowledge
(ZKPOK) which are, by default, non-interactive.

Definition D.5 (non-interactive ZKPOK (Syntax
and Completeness)). For an NP-relation Rpp(x,w),
a non-interactive ZKPOK proof system consists of
the following PPT algorithms which may be oracle
aided:

• ZK.Setup(pp) → zkpp. Given the global pub-
lic parameters the randomized algorithm outputs
the ZK public parameters zkpp.

• ZK.Prove(pp, zkpp,x,w; ρ) → Π. Given public
parameters pp, zkpp, a statement x and a valid
witness w that satisfy the relation R, and ran-
dom coins ρ sampled from the randomness space,
the algorithm outputs a proof Π.

• ZK.Ver(pp, zkpp,x,Π) → v. Given public pa-
rameters pp, zkpp, a statement x, a proof Πthe
(deterministic) verification algorithm outputs a
Boolean flag that asserts whether the the proof
Π is accepted or rejected.

We require perfect completeness,14 namely for every

13E.g., by relaxing the requirement to hold whp over a ran-
dom choice of (pp, k, k′) and by allowing some bounded num-
ber T of self collisions and pairwise collisions. (Furthermore, it
suffices to assume that finding more than T self/pairwise col-
lisions is computationally intractable.) The protocol and the
proof essentially remain the same and we suffer from a loss in
the distinguishing advantage that is linear in T .

14Though we can tolerate negligible errors as well.

(x,w) ∈ Rpp,

Pr
pp,zkpp,ρ

[ZK.Ver(pp, zkpp,x,ZK.Prove(pp, zkpp,x,w; ρ)) = true] = 1.

If the parties make calls to an oracle, then the prob-
ability is taken over the internal randomness of the
oracle as well.

Zero-knowledge. We require the existence of an
efficient probabilistic (stateful) simulator, ZK.Sim,
such that no efficient adversary Adv can win in the
following distinguishing game with more than negli-
gible probability in λ:

• Sample pp ←$ Setup(1λ) and a secret chal-
lenge bit b ←$ {0, 1}. If b = 0 let
zkpp ←$ ZK.Setup(pp), otherwise let zkpp ←$
ZK.Sim(pp).
Send (pp, zkpp) to Adv.

• Adv sends a query of the form (x,w) ∈ Rpp

and receives back a proof Π where Π ←$
ZK.Prove(pp, zkpp,x,w) if b = 0, and Π ←$
ZK.Sim(x) if b = 1.

• Adv terminates with an output b′ and wins if
b′ = b.

If the scheme assumes an access to an ideal oracle O
(e.g., RO) then the adversary is allowed to query the
oracle O. If b = 1 the same oracle is being used by
the prover ZK.Prove, and if b = 0 the simulator an-
swers the oracle queries of Adv, i.e., to “program the
oracle”. (See the discussion below on the actual use
of this convention in our proof.) Note that the above
definition does not allow the simulator to “rewind”
the adversary.15

Knowledge extraction. The soundness follows
from the following (stronger) notion of straight-line
proof of knowledge relative to an oracle which is
adopted from [104, Def. 3]. Specifically, we require
that for every prover Adv there exists an efficient
knowledge-extractor ZK.KE such that the probabil-
ity that Adv wins in the following game is negligible
in λ:

15Recall that our MPC model allow some limited form of
rewinding and so the current definition is, in a sense, too re-
strictive than needed. Furthermore, due to the use of trapdoor
perfectly hiding commitments (i.e., Pedersen’s commitments),
we can use witness-hiding proofs. Regardless, we keep the cur-
rent formulation for the sake of simplicity.
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• Sample pp ←$ Setup(1λ), zkpp ←$
ZK.Setup(pp), and send (pp, zkpp) to Adv.

• Adv may send queries to the oracle O, and ter-
minates with (x,Π).

• ZK.KE gets tuple (pp, zkpp,Π) together with the
randomness ρ that was used in order to sample
zkpp, the list of queries that were sent by Adv
to her oracle O, and an oracle access to O. The
extractor ZK.KE outputs w.

• The adversary wins if the proof Π pass verifica-
tion but w is not a valid witness. That is, if

ZK.Ver(pp, zkpp,x,Π) = true ∧ (x,w) /∈ Rpp.

We say that the knowledge extractor is universal if
the same extractor works for every adversary Adv.
Our instantiations achieve this notion.

Instantiation. We employ non-interactive
ZKPOK for several natural algebraic relations.
Our constructions are obtained by taking an inter-
active proofs of knowledge that has a straight-line
knowledge extractor in the Algebraic Group Model
(AGM), and collapsing them to non-interactive
zero-knowledge proofs via the Fiat-Shamir trans-
form [105]. The resulting proof systems still have a
straight-line knowledge extractor (by keeping track
of the AGM queries) and a straight-line simulator
(that programs the random oracle).16

Let us further mention that our MPC simulator
does not call the ZK-simulator, and that the latter
algorithm is only employed as part of the analysis.
Hence, it seems likely that the analysis can be car-
ried to a “non-programmable” random oracle model.
Furthermore, one can trade AGM with appropriate
discrete-log related knowledge assumptions. In fact,
most of the underlying protocols (with the exception
of the range proofs [69]) are Schnorr-like Sigma proto-
cols that satisfy the special soundness property. (See
Section K.) It seems likely that, at least for these
proofs, one can completely get rid of knowledge as-
sumptions/AGM and rely solely on random oracles.

16To avoid rewinding, we let the prover sample a random
NONCE (aka a “session identifier”) in each invocation, and
use it as part of the input to the random oracle. Consequently,
the RO queries of an honest prover are unpredictable, and the
adversary is unlikely to guess them ahead of time.

E The Protocol

Network model. For the sake of initialization, we
assume that each client is connected to the Bank via
an authenticated (private or public) channel that is
associated with its public identifier pid. (This mod-
els the registration procedure in which parties should
identify themselves, e.g., via physical means.) After
initialization, we assume that each client (and the
minter) is connected to the Bank via an untampera-
ble anonymous channel. For the sake of transparency,
we further assume that this channel is public and
that everyone can listen to it.17 We assume, for sim-
plicity, a fully synchronous model and that in each
round only a single client, that is chosen by the en-
vironment on-the-fly, can send her message. This is
essentially equivalent to allowing the environments
to drop/delay unwanted messages without looking at
their content. This in particular, means that the ad-
versary’s message in a given round can depend only
on messages that were sent before this round. (In
particular, “front running” is prevented.) We men-
tion that the actual protocol (as described in the
main body of the paper) deals with front-running sce-
narios via the use of additional layer of “signatures-
of-knowledge”. The Formalization of this additional
layer is left for future works.

We model the ledger as a public bulletin board
whose content can be (anonymously) accessed by all
the parties, but only the Bank has a write access to
it. (Again, this is mainly a feature, and the protocol
can be adopted to the case where all parties can write
on the ledger; just ask the Bank to authenticate its
ledger messages by signing them.) The current de-
scription assumes a single incorruptible Bank (and
an arbitrary number of possibly corrupted clients).
We will later explain in Section F.1 how to extend
the protocol to the threshold setting in which there
are n Banks, and where the adversary may actively
corrupt at most t of them.

In the following subsections, we provide a formal
description of the protocol. For a high-level intu-
itive explanation the reader is referred to the main
body of the paper. It may be useful to keep in mind
that coins are represented by signed-commitments
whose underlying message can parsed as a quadru-
ple (pid, sn, val, s) where pid is the public identifier of
the “owner” of the coin, sn is the coin’s serial number,

17The ability to use a public channel is a feature and we do
not rely on it. In particular, the protocol can be used over a
private channel without any modification.
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val is the value of the coin, and s is a private PRF-key
that is associated by the owner. We often use com-
mitments in which only some of these elements are
defined, and in this case the “empty fields” are filled
with zeroes. (See also Remark D.3.)

E.1 Initialization

Trusted setup. We assume a trusted setup, which
consists of generating the public parameters pp and
and placing them in a public repository (i.e., the
ledger). Formally, a trusted party calls pp ←$
Setup(1λ). In addition, the trusted set-up samples
a pair of master secret-key/public-key (msk,mpk) for
an Identity-Based Anonymous Encryption Scheme,
and privately sends to each client who holds a public
identifier pid a corresponding secret key skibe. The
master public-key, mpk, is being added to the ledger
together with pp. If the underlying ZK protocols use
some setup parameters, then these strings are also
generated and published as part of the setup. (In an
actual realization this step is implemented via a one-
time MPC protocol over several trusted authorities.)

The Bank. After the trusted setup, the Bank calls
sample ck ←$ CM.Setup(pp) where ck is a com-
mitment key for a homomorphic commitment (as
per Definition D.1) whose message space consists of
quadruple of elements in Z4

p where p is a large prime
that is determined by pp. We denote by R the
randomness space of the commitment scheme. In
addition, the Bank calls to RS.KeyGen(pp, ck) twice
and generates two pairs of signing/verification keys
(bsk, bvk) and (rsk, rvk) where the former keys (re-
ferred to as “Bank’s secret key”) will be used for sign-
ing standard coins and the latter keys (referred to as
“registration keys”) will be used only for registration
(i.e., for binding together the user’s public identifier
with its public identifier). The signing keys are being
added to the Bank’s private state, and the verifica-
tion keys and the commitment key ck are being added
to the ledger. A global counter T is initialized to zero
and is also published in ledger.

Clients. Each client Ci with public identifier pid,
gets her IBE secret-key skibe from the trusted set-
up. In addition, she samples a random PRF key
s0 ←$ Kpp, and computes a “temporary” registration
commitment

rcm0 = (CM.Com(ck, (pid, 0, 0, s0); a)

where a ←$ R is fresh randomizer for the commit-
ment scheme. The client sends to the Bank the val-
ues (pid, rcm0) together with a non-interactive zero-
knowledge proof of knowledge ΠInit for the knowl-
edge of (a, s0) that satisfies the relation rcm0 =
CM.Com(ck, (pid, 0, 0, s0); a). The Bank then verifies
the proof.

• If verification passes, the Bank samples a random
shift ∆ ←$ Kpp, computes a registration com-
mitment rcm = rcm0+CM.Com(ck, (0, 0, 0,∆); 0)
(supposedly rcm = (CM.Com(ck, (pid, 0, 0, s0 +
∆); a)), and sends back the tuple

(∆, rcm, rs = RS.Sign(rsk, rcm; b))

where b is chosen at random. The client sets her
PRF-key to s = s0+∆, and records her “address
secret key” as ask = (s, skibe, rcm, rs, a).

• If verification fails, the Bank chooses the cor-
responding values for the client. Formally, the
Bank samples fresh values s ←$ Kpp, a ←$ R,
and sends back the tuple

(s, a, rcm, rs),

where rcm = (CM.Com(ck, (pid, 0, 0, s); a), rs =
RS.Sign(rsk, rcm; b) and b is chosen at random.
The client records her “address secret key” as
ask = (s, skibe, rcm, rs, a).

E.2 The client’s state

Throughout the protocol, each client with public
identifier pid maintains a state that consists of ask
as defined by the initialization process, and a list L
of tuples. Specifically, for each unspent coin that is
owned by the client, the client holds

(ccmi, σi, sni, ri, vali, ti),

where

ccmi = CM.Com(ck, (pid, sni, vali, 0); r) (56)

and σi = RS.Sign(bsk, ccmi;ui))

for some (unknown but rerandomized) ui, and ti is
the “ideal identifier” of the coin, which is the value of
the global counter as recorded in the round in which
the coin was obtained. We sometimes refer to the
tuple (sni, ri, vali, ti) as the handles of the signed coin
(ccmi, σi) since one has to know these values in order
to be able to spend the coin. In addition, the client
has an access to the ledger including the current value
of the global counter T.
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E.3 The payment sub-protocol

A client Sender who wishes to invoke a “pay” oper-
ation of the form (pay, t1, t2, pidB , vB , pidC , vC) does
the followings.18

1. (Check validity and nullify) For i ∈ {1, 2}:
If the client’s list L contains a tuple whose
time identifier is ti, denote the tuple by hi =
(ccmi, σi, sni, ri, vali, ti). If this condition fails,
set err-ini = true. For j ∈ {B,C}, if vj /∈
[0,Vmax] set err-valj = true. If err-in1 = err-in2 =
false verify that val1 + val2 = vB + vC , and turn
err-sum = true if verification fails. If any of the
error flags is on, send the error flag err = true to
the Bank and terminate. Else, remove from L
the tuples h1 and h2, and continue.

2. (Split incoming coins) The client splits each of
these two coins into a value-commitment and a
nullifier. That is, for i ∈ {1, 2}, she generates
the values

vcmi = CM.Com(ck, (0, 0, vali, 0); zi)

and

nullifi = PRFsSender(sni),

where zi is a fresh randomizer and sSender is the
PRF key of Sender.

3. (Randomize registration signatures) In addition,
the client fully rerandomizes the registration sig-
nature (rcm, rs) into (rcm′, rs′). This is done, by
letting

rcm′ = CM.Rerand(ck, rcm; a∆)

and

rs′ = RS.Rerand(pk, σ; a∆, u∆)

where pk = (pp, rvk, ck) and a∆, u∆ are freshly
chosen randomizers. Note that the randomizer
of rcm′ is simply a′ = a+ a∆.

4. (Prove consistency of splitting) For each i ∈
{1, 2}, the client generates ZKPOK ΠSpliti for the
split relation Rsplit that contains

x = (ccmi, vcmi, rcm
′, nullifi), (57)

w = (sSender, pidSender, sni, vali, ri, zi, a
′) (58)

18By convention, we index the outgoing coins by B and C.

for which the following conditions hold

ccmi = CM.Com(ck, (pidSender, sni, vali, 0); ri)

vcmi = CM.Com(ck, (0, 0, vali, 0); zi) (59)

rcm′ = CM.Com(ck, (pidSender, 0, 0, sSender); a
′)

nullifi = PRFsSender(sni).

5. (Generate coin requests) The client prepares two
coin requests for the payees (identified by) pidB
and pidC with values vB and vC , respectively.
That is, for j ∈ {B,C}, she samples an iden-
tity commitment to the identity pidj , and a value
commitment to vj as follows

icmj = CM.Com(ck, (pidj , 0, 0, 0); tj)

(60)

and vcmj = CM.Com(ck, (0, 0, vj , 0); ρj),

where tB , tC and ρB , ρC are fresh randomizers.

6. (Prove validity of coin requests) For each coin
request j ∈ {B,C}, the client generates a
ZKPOK of opening for icmj denoted by Πicmj ,
and ZKPOK ΠRangej for the knowledge of (vj , ρj)
that satisfies the range relation

Rrange = {(x = vcmj ;w = (vj , ρj)) : (61)

vcmj = CM.Com(ck, (0, 0, vj , 0); ρj)

∧ vj ∈ [0,Vmax]}.

In addition, the client computes a ZKPOK ΠSum

that shows that the sum of values in the incom-
ing coins is equal to the sum of values of the
outgoing coins, i.e., for the relation Rsum that
contains all

x = (vcm1, vcm2, vcmB , vcmC),

w = (val1, z1, val2, z2, vB , ρB , vC , ρC)

for which the following conditions hold

vcmi = CM.Com(ck, (0, 0, vali, 0); zi), i ∈ {1, 2}
vcmj = CM.Com(ck, (0, 0, vj , 0); ρj), j ∈ {B,C}

val1 + val2 = vB + vC . (62)

The sum can be computed either over the inte-
gers or modulo some (public) prime p which is
larger than Vmax. (In our instantiation, we will
take p to be the order of the underlying bilinear
group. )
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7. (Append coin handles for the payee and send to
Bank) The client prepares a ciphertext ctxtj ←$
IBE.Enc(pidj , (vj , ρj + tj)) for each recipient j ∈
{B,C} and passes to the Bank all the above in-
formation, i.e.,

((ccmi, σi, vcmi, nullifi,ΠSpliti)i∈{1,2}, rcm
′, rs′),

(icmj , vcmj ,Πicmj ,ΠRangej , ctxtj)j∈{B,C}, ΠSum

(63)

(Note that the first tuple corresponds to the in-
coming coins, and the second tuple corresponds
to the outgoing coins.)

The Bank proceeds as follows:

1. If the Bank receives from the client an error flag
err = true, the Bank broadcasts it and termi-
nates. Otherwise, the Bank initializes all the er-
ror flags to false, and verifies the following con-
ditions:

• (legal incoming coins + nullification) For
i ∈ {1, 2}: If (a) σi is a valid signatures
over the committed coin ccmi with respect
to the Bank’s verification key bvk; and (b)
the split-proof ΠSpliti (together with the rel-
evant tuples) passes verification and (c) rs′

is a valid signature on rcm′ with respect to
the registration key rvk; and (d) nullifi is not
in the in the list of spent coins; Else, set the
error-flag err-ini to true and err-sum = true.

• (legal values) For j ∈ {B,C}: If either
the range proof ΠRangej or the knowledge-
of-committed-identity proof Πicmj do not
pass verification, set the error-flag err-valj
to true.

• (legal sum) If the sum-proof ΠSum does not
pass verification set the error-flag err-sum
to true.

If at least one of the error flags is on, broadcast
(e.g., via the ledger) to all parties the error flag
err = true and terminate the operation. Else,
the Bank appends the nullifier nullifi to the pub-
lic list of used coins and continue.

2. (Validating the new coins) The Bank chooses
two new serial numbers snB and snC by set-
ting snB = H(nullif1, nullif2, 1) and snC =
H(nullif1, nullif2, 2) where H is a hash function
that is modeled, for simplicity, as a random or-
acle. (Alternatively, we can use a correlation-
robust hash function; see footnote 28.). For

j ∈ {B,C}, the Bank approves the jth coin re-
quest as follows:

(a) The Bank Homomorphically computes the
commitment

ccmj = icmj ⊞ sncmj ⊞ vcmj ,

where

sncmj = CM.Com(ck, (0, snj , 0, 0); 0).

(Supposedly, ccmj equals to
CM.Com(ck, (pidj , snj , vj , 0); ρj + tj).)

(b) The Bank signs the commitment ccmj

using the Bank’s signing key bsk with
fresh private randomness uj . Let σj =
RS.Sign(bsk, ccmj ;uj) denote the signature.

The Bank appends to the ledger the entries

(t, nullif1, nullif2), (ccmj , σj , ctxtj) j ∈ {B,C} ,
(64)

where t is the current value of the counter T. In
addition, the Bank increases the global counter
T by 2 and publishes its state on the ledger. The
Bank terminates this operation with the output
paid.

Finally, each client Rec with the public identifier pid
retrieves the new entry from the ledger. If this is an
err message, then the client outputs err. Otherwise,
the client parses the ledger’s new entry as

(t, nullif1, nullif2), (ccmj , σj , ctxtj)j∈{1,2}.

For each j ∈ {1, 2}, the client retrieves the ith tuple,
(ccmj , σj , ctxtj), in this entry and applies the follow-
ing Claim operation:

1. (Recovering the coin handles) Check that ctxtj
did not appear in any previous entry of the
ledger, and if this is the case try to decrypt the
ciphertext ctxtj by using the client’s private key
sk. If decryption succeeds, parse the plaintext as
(v, r) and check that

ccmj = CM.Com(ck, (pid, sn, v, 0); r)

and sn = H(nullif1, nullif2, j). Also, verify that
the signature σ is a valid Bank’s signature on
ccmj . If any of the above tests fail, abort the
claim procedure for this entry with an output
(paid, t+ j).
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2. (Rerandomizing the coin) Sample a new com-
mitment randomizer r′, and a signature random-
izer u′, rerandomize the signed committed coin
(ccmj , σj) into (ccm′, σ′) where

ccm′ = CM.Rerand(pp, ck, ccmj ; r
′),

and

σ′ = RS.Rerand((pp, bvk, ck), σj ; r
′, u′).

3. Append the coin (ccm′, σ′, sn, r + r′, v, t + j) to
the private state and output (paid, t+ j, vj).

E.4 The minting sub-protocol

The minting protocol can be viewed as a degenerate
version of the payment protocol.

The Minter: Given an input (mint, v, pid), where
v ∈ V , the minter prepares a coin commitment for
the payee Cpid with value v:

ccm = CM.Com(ck, (pid, sn, v, 0); r),

where r is a fresh randomizer and sn = H(T, z) were
z is a random nonce. The minter also computes a
ciphertext ctxt ←$ IBE.Enc(pid, (v, r)) for the payee
and sends the tuple (sn, ccm, ctxt) to the Bank.

The Bank: The Bank signs the commitment ccm
using the signing key bsk with fresh private random-
ness u. Let σ = RS.Sign(bsk, ccm;u) denote the sig-
nature. The Bank appends to the ledger the entry

t, (sn, ccm, σ, ctxt) (65)

where t is the current value of the counter T. In
addition, the Bank increases the global counter T by
1 and publishes its state on the ledger.

Each potential Payee Rec: Retrieves the last tu-
ple from the ledger, and claim the coin according to
the “Claim” procedure defined in the payment proto-
col. (With the modification that sn is recovered from
the ledger and in the output paid is replaced with
minted.)

F Extending the Protocol

F.1 The Threshold Setting

Let us briefly explain how to extend the protocol to
the threshold setting in which there are n Banks,

bank1, . . . , bankn, and where the adversary may ac-
tively corrupt at most t of them. Intuitively, the idea
is to replace each operation of the “single Bank” in
the protocol by a corresponding MPC sub-protocol
that is distributively executed by the group of n
Banks. Formally, let us think of the Bank in the
above protocol as a trusted-party Virtual Bank, and
view the protocol as operating in a hybrid model. We
analyze the protocol in this hybrid model (Sections G
and H), and so, by using proper MPC composition
theorems (e.g., [80,106]), one can conclude that when
the trusted party is replaced by a t-out-of-n secure
protocol over the actual banks, bank1, . . . , bankn, the
resulting protocol remains secure.

Realizing Virtual Bank. Let us take a closer look
at the Virtual Bank. During Initialization, the Vir-
tual Bank samples two sets of signature/verification
keys by calling RS.KeyGen(pp, ck) and keeps the veri-
fication keys as part of the secret state of the Virtual
Bank. This is the only secret state that is kept by the
Virtual Bank. All the other operations of the Virtual
Bank take the following simple form: The Virtual
Bank gets some public input (by receiving a message
from a client and/or reading some part of the pub-
lic ledger), checks that the input satisfies some pre-
defined public condition, applies some deterministic
public computation, and, in some cases (depending
on the public information) issues a signature on some
committed value, and publishes the final results.

Consequently, in order to securely realize this pro-
cess by the banks, bank1, . . . , bankn, all that is needed
is an appropriate protocol for threshold signing a
commitment, and some form of broadcast channel
from clients to Banks that guarantees that all Banks
receive the same message. The latter mechanism is
instantiated by a BFT system. Let us briefly expand
on the notion of threshold signatures that suffices for
our needs.

Fix a committed signature scheme (as per Def-
inition D.2), and consider the initialization func-
tionality that given pp samples a commitment
key CM.Setup(pp) → ck and 2 pairs of signa-
ture/verification keys RS.KeyGen(pp, ck)→ (bsk, bvk)
and RS.KeyGen(pp, ck) → (rsk, rvk), and delivers t-
out-of-n secret sharing of the secret keys bsk and rsk
to the Banks, bank1, . . . , bankn, and broadcasts the
values (ck, bvk, rvk) to everyone. In addition, we need
a signing functionality that takes from the Banks
n shares of the secret-signing key out of which at
least t are valid, and takes from a client a commit-
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ment cm together with its opening m, r such that
cm = CM.Com(pp, ck,m; r), delivers to the client a
valid signature σ over cm. In the main body of the pa-
per (Section 3) we present information-theoretic pro-
tocols that realize these functionalities with respect
to a variant of the PS signatures [34] over “dual”
Pedersen commitments. The protocol has 3 rounds
where at the first round, the client sends some mes-
sage a = A(m, r; η) where ρ is some private ran-
domness, the Banks respond with some public val-
ues b = (b1, . . . , bn) that are computed based on their
private shares and on a, and finally, the client com-
putes the signature σ by applying some procedure
C(m, r, η, b). This sub-protocol can be integrated into
the protocol without increasing the round complex-
ity as follows. Upon payment, the client appends a
to its transaction and publicly sends it to the Banks
in addition the client appends the private random-
ness η to the corresponding ciphertext ctxt that is
addressed to the payee. The Banks compute their
response just like Virtual Bank and if signature is
required they place their “sub-signature” bi on the
ledger. The payee can then apply an extended-Claim
operation in which the values m, r, η are recovered
from the ciphertext and the signature σ is obtained
by completing the C-step of the sub-protocol. 19

F.2 Realizing the generalized Futt

functionality

Recall that in Remark C.2 we mentioned a general-
ized form of Futt that supports coins that carry with
them a “type” (vector of attributes) and where the
notion of a legal payment depends on rules that take
into account the types. We note that our protocol
can be naturally extended to work in such a setting
by using vector commitments with more “slots” (say
by adding more public generators to Pedersen’s com-
mitments) and by designing ZKPOK that can verify
the validity of the generalized payment rules.

Furthermore, the variant of Futt that supports
anonymity-budget (as outlined in Remark C.3) can
be realized by a simple extension of the protocol as
described in Section 4. It can be verified that our se-
curity proof (Sections G and H) naturally extends to
this generalized version of the protocol provided that
the corresponding ZK building blocks are sound.

19Additionally, in our implementation the Banks are in
charge of generating the IBE secret keys. Here too, an appro-
priate (simpler) information-theoretic MPC protocol is being
employed (taken from the Boneh-Franklin paper [103]).

G Simulation

Fix an adversary Adv that actively corrupts a subset
M ⊂ C (for malicious) of the clients and recall that
Adv also passively listens to all the communication of
the Bank, which includes all incoming messages and
all the outgoing messages (that are directed to the
ledger anyway). We define a corresponding simulator
S that treats Adv in a black-box straight-line manner
and interacts with the Futt functionality while taking
the role of parties corrupted by the adversary in the
real execution. Recall that the inputs are injected
to the system in an online manner by the environ-
ment. That is, in each round the environment sends
either a mint operation to the minter, or a payment
operation to an honest client, or some message to
the adversary that results in a payment operation by
some corrupted client. Each of the following sub-
sections is devoted to one of these cases. Following
the discussion in Section F.1, the simulator treats the
Virtual Bank as an ideal functionality. This func-
tionality can be trivially instantiated given a single
honest Bank and can be realized with an appropri-
ate MPC protocol among n banks out of which t are
honest. The simulation will run the adversary Adv
internally while maintaining a simulated ledger that
will be always available to Adv.
The simulator S is described in the following sub-

sections.

G.1 Initialization

The simulator proceeds as follows:

1. Samples public parameters pp ←$ Setup(1λ),
and a pair of master secret-key/public-key
(msk,mpk) for an Identity-Based Anonymous
Encryption Scheme, and sends to each corrupted
client a secret key skibe that corresponds to her
public identifier pid. The tuple (pp,mpk) is be-
ing added to the ledger and msk is being kept as
part of the simulator’s private state.

2. The Virtual Bank initializes its state just like
in the protocol. That is, it samples ck ←$
CM.Setup(pp), and calls RS.KeyGen(pp, ck) twice
generating two pairs of signing/verification keys
(bsk, bvk) and (rsk, rvk). The private signing keys
are being kept as part of its private state and the
verification keys bvk and rvk are appended to the
ledger together with the commitment key ck, and
a counter T = 0.
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3. The simulator mimics the behavior of every hon-
est party Cpid in the initialization step. That is,
for every honest client Cpid /∈ M , whose public
identifier is pid, the simulator samples an initial
random PRF key s0 ←$ Kpp, and computes a
commitment

rcm0 = (CM.Com(ck, (pid, 0, 0, s0); a)

where a ←$ R is fresh randomizer for the
commitment scheme. The simulator sends to
the Virtual Bank the values (pid, rcm0) to-
gether with a non-interactive zero-knowledge
proof of knowledge ΠInit for the knowledge
of (a, s0) that satisfies the relation rcm0 =
(CM.Com(ck, (pid, 0, 0, s0); a). The Virtual Bank
proceeds as in the protocol, i.e., sends

(∆, rcm, rs = RS.Sign(rsk, rcm; b)),

where ∆ ←$ Kpp, rcm = rcm0 +
CM.Com(ck, (0, 0, 0,∆); 0) and b is cho-
sen at random. The simulator sets the
address secret key of this client to be
askpid = (s = s0 + ∆, skibe, rcm, rs, a) and
appends it to its private state.20

4. For each corrupted client Cpid ∈ M , the adver-
sary responds with an initialization information
(pid, rcm0,ΠInit). The simulator uses msk to com-
pute the secret decryption key, skibe, that is as-
sociated with pid. The simulator checks if the
ZK verification passes.

(a) If verification succeeds, S extracts from
ΠInit the secret PRF key s0 and the commit-
ment randomizer a. Given (pid, rcm0,ΠInit),
the Virtual Bank, who follows the protocol,
sends back to the simulator the tuple

(∆, rcm, rs = RS.Sign(rsk, rcm; b)),

where ∆ ←$ Kpp, rcm = rcm0 +
CM.Com(ck, (0, 0, 0,∆); 0) and b is chosen
at random. The simulator passes the tu-
ple to the adversary, sets the address se-
cret key of Cpid to be askpid = (s = s0 +

∆, skibe, rcm, rs, a) and appends it to its pri-
vate state.

20We note that in principle rcm and rs can be public. Indeed,
these values are transferred over a public channel and so they
are available to all parties.

(b) If verification fails, the Virtual Bank follows
the protocol and sends back to S the tuple

(s, a, rcm = (CM.Com(ck, (pid, 0, 0, s); a),

and
rs = RS.Sign(rsk, rcm; b)),

where s, a, and b are sampled uniformly.
The simulator passes the tuple to the adver-
sary, sets the address secret key of Cpid to

be askpid = (s, skibe, rcm, rs, a) and appends
it to its private state.

G.2 Minting operation

Assume that the environment sends the input
(mint, v, pid) to the Minter who passes this input
to Futt. The simulator gets from Futt the value
(minted,T).

1. If the payee is corrupted (Cpid ∈ M), the Futt

functionality sends to the simulator also the
identity pid of the payee and the value v. Set
pid0 = pid and v0 = v.

2. If the payee is honest (Cpid /∈M), then the simu-
lator arbitrarily selects an identity pid0 of some
honest user Cpid0 /∈M , e.g., the lexicographically
first honest user, and sets v0 to some arbitrary
value, e.g., v0 = 1.

Next, the simulator performs the minting operation
exactly as in the protocol by playing the role of the
Minter with respect to the value v0 and receiver pid0.
That is, the simulator sends to the Virtual Bank the
values

ccm = CM.Com(ck, (pid0, sn, v0, 0); r),

where r is a fresh randomizer and sn = H(T, z) were
z is a random nonce. The minter also computes a
ciphertext ctxt ←$ IBE.Enc(pid0, (v0, r)) for the re-
ceiver, and sends the tuple (sn, ccm, ctxt) to the Vir-
tual Bank. The Virtual Bank continues just as in the
protocol. That is, the Virtual Bank appends to the
ledger the entry

t, (sn, ccm, σ, ctxt)

where t is the current value of the counter according
to the ledger, and σ = RS.Sign(bsk, ccm;u) for some
randomly chosen u. In addition, the Virtual Bank
increases the ledger’s counter by 1 and publishes its
state on the ledger.
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G.3 Payment operation by an honest
client

Assume that the environment sends the input
(pay, t1, t2, pidB , vB , pidC , vC) to some honest client
Sender /∈ M who passes this command to Futt. We
may assume WLOG that the honest party performs a
legal operation and so the simulator gets from Futt a
“success” paid message. (If this is not the case, and
the simulator receives an error message from Futt, the
simulator simply passes it to the Virtual Bank who
passes it forward to the adversary.)

• For j ∈ {B,C}:
If the payee (identified by) pidj is corrupted, the
Futt functionality also sends to the simulator the
identity pidj and the value vj together with the
corresponding state of the counter Tj . Set v′j =

vj , and pid′j = pidj .

Else (i.e., the payee pidj is honest) set pid′j to be
the identifier of some arbitrary honest user (say
the lexicographically first honest user) and set
v′j = 1. (The value 1 can be replaced with some
other default value in [0,Vmax].)

• The simulator then sends to the Virtual Bank a
“fake” payment request:

((ccmi, σi, vcmi, nullifi,ΠSpliti)i∈{1,2}, rcm
′, rs′),

(icmj , vcmj ,Πicmj ,ΠRangej , ctxtj)j∈{B,C}, (66)

ΠSum

which is computed as follows.

1. (Generate a fake honest sender) Select a
random identity pid0 (that does not be-
long to any existing client). Sample a ran-
dom PRF key s0 ←$ Kpp for this fake user
and compute a fresh commitment rcm =
(CM.Com(ck, (pid, 0, 0, s); a). The adver-
sary locally generates a fresh signature rs =
RS.Sign(rsk, rcm; b) where b is chosen at ran-
dom.21

2. (Generate fake incoming coins) Set
(v1, v2) = (v′B , v

′
C). For i ∈ {1, 2} generate

a fake coin, by computing

ccmi = CM.Com(ck, (pid0, sni, vi, 0); ri),

21Recall that during initialization the simulator receives
from the ideal Virtual Bank all the signing-key shares that be-
long to the honest Banks. Since the secret-sharing threshold
t is smaller than the number of honest parties, the simulator
holds the signing keys and can locally sign messages.

where ri is a fresh randomizer and sni is
uniformly distributed over the range of the
PRF. Then locally generate a fresh signa-
ture σi over ccmi under the key bsk. (See
Footnote 21.)

3. (Split incoming coins) For i ∈ {1, 2}, set

vcmi = CM.Com(ck, (0, 0, vi, 0); zi)

and

nullifi = PRFs0(sni),

where zi is a fresh randomizer.

4. (Randomize registration signatures) Reran-
domize the registration signature (rcm, rs)
into (rcm′, rs′).22

5. (Prove consistency of splitting) For each
i ∈ {1, 2}, the simulator honestly gen-
erates a proof ΠSpliti for the statement
“x = (ccmi, vcmi, rcm

′, nullifi) is in the
split-relation” which is defined in Eq. (59).
Note that this can be done efficiently since
the simulator holds the corresponding wit-
nesses.

6. (Generate coin requests) Prepare two coin
requests for the payees (identified by) pid′B
and pid′C with values v′B and v′C , respec-
tively, by following Step 5 of the real proto-
col. That is, for j ∈ {B,C}, set an identity
and value commitments via

icmj = CM.Com(ck, (pid′j , 0, 0, 0); tj)

(67)

and vcmj = CM.Com(ck, (0, 0, v′j , 0); ρj),

where tB , tC and ρB , ρC are fresh random-
izers.

7. (Prove validity of coin requests) For each
coin request j ∈ {B,C}, the simulator uses
the honest prover algorithms to generate
the POK of opening for icmj denoted by
Πicmj , and to generate a ZKPOK ΠRangej
for the statement “vcmj satisfies the range
relation”, as defined in Eq. (61). In addi-
tion, the simulator uses the honest prover
algorithm to generate the sum-proof ΠSum

for the statement that asserts that the sum
of values in the incoming coins is equal to

22This step is actually redundant since (rcm, rs) were gener-
ated as fresh values, but we add it here for the sake of clarity.
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the sum of values of the outgoing coins, i.e.,
that

x = (vcm1, vcm2, vcmB , vcmC),

and

w = (val′1, z1, val
′
2, z2, v

′
B , ρB , v

′
C , ρC)

satisfy the relation Rsum as de-
fined in Eq. 62. (Note that
ΠicmB ,ΠicmC ,ΠRangeB ,ΠRangeC ,ΠSum

are all proofs for “valid” statements that
are being generated by running the honest
prover’s algorithm. Indeed, the simulator
holds the witnesses for all these assertions.)

8. (Append coin handles for the payee) The
client prepares a ciphertext ctxtj ←$
IBE.Enc(pid′j , (v

′
j , ρj+tj)) for each recipient

j ∈ {B,C}.

Next, the Virtual Bank processes the request exactly
as in the real protocol and updates the ledger accord-
ingly. By construction, the Virtual Bank approves
the transaction.

G.4 Payment operation by a cor-
rupted client

Assume that the environment sends the input χ to
the adversary. The simulator passes this command
to the adversary Adv who responds on behalf of some
corrupted client with some (possibly malformed) mes-
sage to the Virtual Bank

((ccmi, σi, vcmi, nullifi,ΠSpliti)i∈{1,2}, rcm
′, rs′),

(icmj , vcmj ,Πicmj ,ΠRangej , ctxtj)j∈{B,C}, (68)

ΠSum.

The simulator passes (68) to the Virtual Bank
and translates this command to an Futt payment
command (pay, t′1, t

′
2, pid

′
B , v

′
B , pid

′
C , v

′
C) on behalf of

some corrupt client Sender′ ∈M defined as follows.

1. (legal incoming coins ) For i ∈ {1, 2} do:

• Check if (a) σi is a valid signatures over
the committed coin ccmi with respect to
the Virtual Bank’s verification key bvk; and
(b) the split-proof ΠSpliti (together with the
relevant tuples) passes verification and (c)
rs′ is a valid signature on rcm′ with respect
to the registration key rvk; and (d) nullifi is
not in the in the list of spent coins that is
maintained in the ledger.

• If any of the conditions (a–d) fails: The sim-
ulator sets t′i to some illegal value (e.g., -1),
, and sets Sender′ to some arbitrary (e.g.,
the lexicographically first) corrupted party.

• If conditions (a–d) pass: the Simulator
searches the ledger for a (successful) trans-
action whose outgoing coin has a serial
number23 of sn for which there exists a
client C whose PRF key s satisfies

nullifi = PRFs(sn).

If such an entry is found, set t′i to be the cor-
responding counter’s state, sni := sn, and
Sender′i := C.
Else, the simulation aborts with “simula-
tion failure” symbol.

If Sender′1 ̸= Sender′2 or Sender′1 /∈ M , the simu-
lation aborts with an error. Else, set Sender′ :=
Sender′1.

2. (legal values) For j ∈ {B,C} check that
the range proof ΠRangej and the knowledge-of-
committed-identity proof Πicmj pass verification.

• If any of these conditions fail: The simula-
tor sets v′j to some illegal value (e.g., -1),

, and sets pid′j to some arbitrary (possibly
illegal) value.

• If both conditions pass, use the knowledge
extractor to extract from ΠRangej the value

v and from Πicmj the identifier pid. Set v
′
j =

v and pid′j = pid.

3. (legal sum) Check if the sum-proof ΠSum passes
verification.

• If verification fails update v′1 to some illegal
value

4. (Validating honest payees) If conditions (1–3)
are satisfied, the simulator tests whether, in
a real execution, the outgoing coins can be
claimed successfully by an honest payee. Specif-
ically, for each j ∈ {B,C} such that Cpid′j
is honest, we do the following: Verify that
ctxtj does not appear in any previous entry on
the ledger and if this is the case, try to de-
crypt this ciphertext by using the private key

23Recall that the serial number of the outgoing coins either
appear explicitly on the ledger in a mint operation, or can be
computed publicly based on the incoming nullifiers.
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sk associated with Cpid′j
. If decryption suc-

ceeds, parse the plaintext as (v, r) and check
that ccmj = CM.Com(ck, (pid′j , snj , v, 0); r)
where snB = H(nullif1, nullif2, 1) and snC =
H(nullif1, nullif2, 2). If the test fails, change pid′j
to some arbitrary string that does not match any
of the existing identifiers.

The simulator sends the payment command

(pay, t′1, t
′
2, pid

′
B , v

′
B , pid

′
C , v

′
C)

to the ideal functionality Futt on behalf of Sender′. In
addition, the Virtual Bank processes the request (68)
as in the real protocol and updates the ledger accord-
ingly.

H Analysis of the Simulator

Reminder: Fix a computationally-bounded envi-
ronment Env and let 1λ and z denote its inputs.
Recall that in each round the environment sends
either a mint/payment command to the (honest)
minter/some honest client or an arbitrary message
to the adversary who translates it into a message of
some corrupted client. After each such round, the
environment Env gets back the view of all the cor-
rupted parties which includes (1) their private state,
(2) the (public) state of the ledger, and (3) the con-
tent of all messages that are being sent to the Bank
by the honest parties. The environment also receives
the outputs that are generated by all the honest par-
ties. Based on all this information, the environment
chooses the content and recipient of the next com-
mand. At the end, the environment outputs a single
bit and halts.
Our goal is to prove that the ensemble of binary

random variables defined in (54) and (55) are indis-
tinguishable.
Fix a sequence {zλ}λ∈N of inputs for the environ-

ment. Let ∆(λ) denote the statistical distance be-
tween (54) and (55), and let µ := µ(λ) be a negligible
function that upper-bounds the success probability
of any polynomial-time adversary in breaking each
of the underlying primitives.24 We further assume
that µ upper-bounds the quantities N2Q2/|Xpp| and
N2/|Kpp| where Kpp is the key-space of the PRF, Xpp

and is the domain of the PRF, N is the number of

24In fact, it suffices to consider adversaries whose running
time is a fixed polynomial in the complexity of Env and Adv
and the complexity of all the underlying primitives.

clients, and Q upper-bounds the number of queries
that the adversary makes to the random oracle.25

We show that ∆(λ) is upper-bounded by the neg-
ligible function (µ(λ) · p(λ))c where c ≥ 1 is some
universal constant, and p(λ) upper-bounds the num-
ber of commands that is sent by Env(1λ, zλ). The
proof is based on a hybrid argument.

Hybrid experiment. Fix some security parame-
ter λ, let z = zλ, ∆ = ∆(λ), and let p = p(λ) denote
the maximal number of commands that Env(1λ, z) is-
sues. For ℓ ∈ [p], we define a hybrid experiment Hℓ,
in which we run in parallel the real execution (at-
tacked by Adv) and an idea execution (attacked by
the simulator), where in the first phase (that consists
of the first ℓ commands) the environment Env(1λ, z)
interacts with the real execution and in the second
phase environment communicates with the ideal exe-
cution. Details follow.

1. (Initialization) Given a list of the identifiers
of the participating parties (that is given as
part of the specification of the functionality and
may also be chosen adversarially), the envi-
ronment declares chooses which parties to cor-
rupt. We run the initialization procedure of
the real protocol. We also initialize the simula-
tor consistently with the same public parameters
(pp, ck,mpk, bvk, rvk), and the same private ini-
tialization values (i.e., the same msk, bsk, rsk and
the same address secret keys of all clients). We
initialize the Futt functionality with the same set
of clients.

2. (First Phase: Ideal execution) We pass the view
of Adv (after initialization) to the environment.
Then, each of the first ℓ commands generated by
the environment is handled as in the real execu-
tion attacked by Adv. In parallel, each of these
command is also executed in the ideal execution
attacked by the simulator. That is, a command
that is issued by an honest party is forwarded to
Futt and to the simulator, and a command that is
issued by a corrupted party controlled by Adv, is
translated into an Futt command via the help of
the simulator. In this phase, we do not let the
simulator write on the ledger and whenever the
simulator wishes to read the ledger (i.e., when

25As usual, Q is upper-bounded by the running time of the
adversary and is therefore polynomially bounded. We mention
that we did not try to optimize the concrete bound on the
distinguishing advantage, and we believe that it can be tighten.
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checking the nullifier list) it uses the ledger that
is maintained by the real execution. After the
command terminates, the view of Adv and the
output of the honest parties in the real execu-
tion is being forwarded to the environment who
may use it to select its next command. (Note
that, in this phase, the ideal execution has no
effect on the environment’s view.)

3. (Second Phase: Ideal execution) The remaining
p−ℓ commands are handled in the ideal protocol.
That is, at the beginning of this phase, we pass
to the simulator the ledger as defined by the real
execution in the first phase, and continue as be-
fore except that now after each command, we let
the simulator update the ledger, and pass to the
environment the simulated view of the corrupted
parties, and the output of the honest parties in
the ideal execution.

4. (Output) The final output of the game is the
output if the environment.

By definition, Hp is is identical to the real execu-
tion ExecΠ,Adv,Env(1

λ, z). Also, it is not hard to see
that the game H0 is identical to an ideal execution
ExecFutt,S,Env(1

λ, z). (Indeed, this follows by noting
that the initialization procedure in an ideal execution
and real execution is performed identically.) There-
fore it suffices to prove that |Pr[Hℓ+1 = 1]−Pr[Hℓ =
1]| is upper-bounded by O(ℓµ). In fact, it will be con-
venient to embed the two experiments in the same
probability space, and assume that the same random
tape R is being used for both experiments. That is,
we prove the following lemma.

Lemma H.1. For every ℓ, the gap ∆ℓ :=
PrR[Hℓ+1(R) ̸= Hℓ(R)] is upper-bounded by O((ℓ +
1)µ).

The use of a common random tape R ensures that
all the internal variables computed during the first ℓ
iterations are identical in both experiments. (During
the (ℓ+1)th iteration, different parts of the tapes are
being read.) We can naturally define the intersecting
probability of a “successful distinguishing” AND an
event E, via

∆ℓ,E := Pr
R
[Hℓ+1(R) ̸= Hℓ(R) ∧ E(R)].

Specifically, we will prove Lemma H.1 by induction
on ℓ and analyze ∆ℓ,E seperately for the event Em in
which the (ℓ+1)th command is a mint (Section H.1),
the event Eh in which the (ℓ + 1)th command is a

payment of an honest party (Section H.2), and the
event Ec in which the the (ℓ + 1)th command is a
payment of a corrupted party (Section H.3).

H.1 Mint command

Fix some ℓ. We begin with the following observation
that will also be useful in the subsequent sections.

Observation H.1. Consider the first ℓ iterations of
Hℓ and let T denote the number of iterations in which
the public output of the protocol (as generated by the
Bank) is successful. Let T′ denote the number of it-
erations in which the simulated output (as computed
the ideal functionality) is successful. Then, except
with probability O(ℓµ), it holds that T′ = T.

Proof. Indeed, when ℓ = 0, this is true since T =
T′ = 0, and for ℓ > 0, this follows from the induction
hypothesis. Specifically, T and T′ are available to
the environment in Hℓ and Hℓ−1, respectively, and
therefore, by Lemma H.1 for ℓ′ = ℓ− 1, these values
can differ with probability at most O(ℓµ).

Consider the event Em (for minting) that at the
(ℓ+ 1)th round the environment sends to the minter
a minting command, denoted by (mint, v, pid). Our
goal is to upper-bound ∆ℓ,Em

by O((ℓ + 1)µ). By
Observation H.1, it suffices to show that, conditioned
on the event that T′ = T, the probability ∆ℓ,Em

is
upper-bounded by 2µIBE + µCOM where µIBE upper-
bounds the probability that an efficient IBE adver-
sary wins at the IND-RA-CCA game, and µCOM

upper-bounds the probability that an efficient adver-
sary breaks the hiding property of the commitment.

Since the minting operation always succeeds, the
output of the honest party both in the Hℓ and Hℓ+1

is paid. Hence, the only difference in the view of
the environment is in the message (ccm, ctxt) that the
simulator/minter sends to the Bank and in the Bank’s
response as written on the ledger. Recall that the
Bank’s response consists of the value of the counter T,
and a signature on the Minter’s message. Therefore,
it suffices to show that the Minter’s message in Hℓ is
indistinguishable from its message in Hℓ+1, even with
respect to an adversary who holds the Bank’s private
signing key. We show that this is indeed the case.

If the payee is corrupted then the simulator com-
putes this message exactly as in the real protocol and
in this case the view is identically distributed and
∆ℓ,Em

= 0. We move on to the case where the payee
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is honest. In Hℓ the message (sn, ccm, ctxt) is gener-
ated by

sn = H(T+ 1, z), (69)

ccm = CM.Com(ck, (pid0, sn, v0, 0); r),

ctxt←$ IBE.Enc(pid0, (v0, r, sn)),

where pid0 is some fixed honest identity, v0 is some
default value, r is a fresh randomizer, and T is the
number of coins that were successfully generated so
far. In Hℓ+1 the pair (ccm, ctxt) is generated by

sn = H(T′ + 1, z), (70)

ccm = CM.Com(ck, (pid, sn, v, 0); r),

ctxt←$ IBE.Enc(pid, (v, r, sn)),

where, again, r is a fresh randomizer and sn is defined
as above. By assumption, T = T′. Let us further con-
dition on the event that the same public randomizer
z is chosen in both cases and so the serial number sn
is also equal. We can therefore focus on the marginal
distribution of (ccm, ctxt), and show that (69) is in-
distinguishable from (70) even with respect to an ad-
versary who holds all the private signing keys of the
Bank(s).
Consider the sub-hybrid H′

ℓ in which ccm is com-
puted as in (69) but ctxt ←$ IBE.Enc(pid, (v, r′, sn))
where r′ is an independently chosen randomizer.
We begin by proving that H′

ℓ is indistinguishable
from Hℓ by describing an efficient adversary B that
breaks the security of the IBE scheme with advan-
tage δ = |Pr[Hℓ = 1]−Pr[H′

ℓ = 1]|. The adversary B
plays the IND-RA-CCA game as follows. First, B ini-
tializes Hℓ where the IBE public-key mpk is taken to
be the one that is given by the IND-RA-CCA game.
Moreover, B uses the key-extraction oracle to learn
the private keys of all the parties that are controlled
by the adversary. The other initialization values are
sampled locally. Then, B emulates Hℓ for the first i
steps. During these iterations whenever an encryp-
tion of an honest party is performed, B just uses the
encryption algorithm with the corresponding identity,
and whenever a decryption is performed B uses the
decryption oracle. At the (ℓ + 1)th step, B makes a
challenge query

(pid0,m0 = (v0, r, sn)), and (pid,m1 = (v, r′, sn))

in the IND-RA-CCA game. Given the oracle’s re-
sponse, ctxt, the adversary B sets (ccm, ctxt) as the
message from the minter to the Bank, where ccm
is computed as in (69). Then, B proceeds with the

rest of the emulation as in Hℓ+1. Again, decryption
queries are needed in order to emulate the simula-
tor’s behavior for a payment operation by a corrupted
client. We claim that B wins with advantage δ. In-
deed, we never extract the keys of sn0 and sn, and, by
design, we never issue the challenge ctxt as a decryp-
tion query during the second phase. (Since the sim-
ulator never decrypts a ciphertext that has already
appeared on the ledger.) We conclude that δ ≤ µIBE.

Next, consider the sub-hybridH′
ℓ+1 which is identi-

cal to (70) except that ctxt←$ IBE.Enc(pid, (v, r′, sn))
where r′ is a fresh randomizer that is chosen indepen-
dently of the randomizer r. By repeating the previous
argument (this time withm0 = (v, r, sn)) we conclude
that δ′ = |Pr[Hℓ+1 = 1] − Pr[H′

ℓ+1 = 1]| is upper
bounded by µIBE as well.

Finally, it is left to show that H′
ℓ+1 and H′

ℓ are
indistinguishable. Since the difference boils down to
distinguishing between

CM.Com(ck, (pid0, sn, v0, 0); r)

and
CM.Com(ck, (pid, sn, v, 0); r),

where r is a fresh randomizer that is not used any-
where else, this statement can be reduced to the hid-
ing property of the commitment in a straightforward
way. It follows that in this case ∆ℓ,Em

is at most

2µIBE + µCOM ≤ 3µ,

which completes the proof of Lemma H.1 for the case
where the (ℓ+1)th command is a minting command.

H.2 Payment by an honest client

Consider the event Eh (for honest) that at the (ℓ +
1)th round the environment sends the input

(pay, t1, t2, pidB , vB , pidC , vC)

to some honest client Sender /∈ M . We show that
∆ℓ,Eh

= O((ℓ+ 1)µ).
From now on, we refer to the (ℓ + 1)th command

as the current command. We begin by showing that
the public output of the current command (hereafter
referred to as the current public output) as computed
in Hℓ (by the ideal functionality) is indistinguishable
from the output that is generated in Hℓ+1 (as com-
puted by the real protocol). Recall that the output is
either an error message err or a payment notification
paid. It will be convenient to treat the latter case
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as false error message. Denote by errℓ and by errℓ+1

the error message that is computed in Hℓ and Hℓ+1,
respectively. We prove the following claim.

Claim H.1 (public error message). Pr[errℓ ̸= errℓ+1∧
Eh] ≤ O((ℓ+ 1)µ).

Proof of Claim H.1. We prove a stronger statement:
Except with negligible probability, the error flags
(err-in1, err-in2, err-val1, err-val2, err-sum) as defined in
Hℓ agree with the error flags in Hℓ+1. (The latter
flags are defined by taking the disjunction of the lo-
cal flags that are computed by the honest payer and
the flags computed by the Bank.)

err-valj. If vj /∈ V then both in Hℓ (where the cur-
rent command is handled as in the ideal protocol)
and in Hℓ+1 (where the current command is han-
dled as in the real protocol) the flag err-valj is being
raised (by the functionality or by the honest payer).
If vj ∈ V then in Hℓ the flag err-valj = false, and
in Hℓ+1 the payer does not raise the flag err-valj .
Moreover, the Bank raises this flag only if the range
proof or the knowledge-of-committed-identity proof
are being rejected. Since both proofs are computed
honestly for valid statements, perfect completeness
guarantees that such an event never happens.

err-ini. We move on and analyze the flag err-ini
for i ∈ {1, 2}. When the current command is
handled as in the real protocol (in Hℓ+1), the flag
err-ini is false if and only if an entry of the form
(ccmi, σi, sni, ri, vali, ti) appears in the Sender’s pri-
vate list of coins L. By the definition of the pro-
tocol, this means that (1) In the iteration k(ti) <
ℓ + 1 in which the tith coin was generated, a mint-
ing/payment command whose corresponding payee is
Sender was processed by the Bank and was claimed
successfully by Sender; and (2) the honest Sender did
not issue another payment operation with incoming
coin ti during any of the subsequent iterations in the
period (k, ℓ+ 1).
When the current command is handled by the ideal

protocol (in Hℓ), the flag err-ini is false iff the state of
Futt after the first ℓ iterations satisfies (*) owner(ti) =
Sender. We show that, except with a negligible error
probability of O(ℓµ), (*) happens iff conditions (1)
and (2) hold.
For ℓ > 0, this equivalence follows from the induc-

tion hypothesis. Specifically, let us bound the proba-
bility of the event that (1) and (2) hold but (*) does
not hold. (The other direction is handled similarly.)

By the correctness of Lemma H.1 for ℓ′ = k(ti) − 1
(which is smaller than ℓ), it follows that, except with
probability O((ℓ′ +1)µ), the coin that was generated
in the k(ti)th iteration and was received by the hon-
est Sender in the real execution was also received by
the same honest party in the ideal execution. (Since
the output of Sender in this iteration was delivered
to the environment.) Now let us condition on the
event that at end of the k(ti)th iteration the state of
Futt satisfied (*). If (*) does not hold at the current
iteration, there exist an iteration k′ ∈ (k(ti), ℓ + 1)
in which Sender issued a payment command with in-
coming coin ti to Futt. Since this command is also
processed in the real execution, this contradicts (2).

When ℓ = 0, the equivalence holds since in both
cases (the ideal and real executions) the error flag will
always be raised when a payment command is issued
as the first command. (Recall that after initialization,
the Sender’s list of coins and the state of Futt are both
empty.)

err-sum. Finally, we move on to the flag err-sum.
Recall that both in the real and ideal executions if
any of the flags err-in1 or err-in2 are true, then err-sum
is also taken to be true. Hence, we may condition on
the event that err-in1 = err-in2 = false in both execu-
tions. Let us further condition on the event that, for
i ∈ {1, 2}, the value vali defined above equals to the
value val(ti) as recorded in the state of Futt before the
current command. Observe that the above argument
shows that this is the case, except with probability
O(ℓµ). In the ideal execution, the flag err-sum is be-
ing raised iff val1 + val2 ̸= vB + vC , which is also the
case in the real execution (due to the perfect com-
pleteness of the proof system). This completes the
proof of the claim.

From now on we condition on the event that errℓ =
errℓ+1. Recall that if these flags are true, all the hon-
est parties output the error message. Moreover, the
proof of Claim H.1 shows that in this case, except
with negligible probability, in Hℓ+1 the message sent
from Sender to the bank is an error message. Thus,
in this case the view of the corrupted parties consists
of an error message which is perfectly simulated by
the simulator. We conclude that the lemma holds in
this case.

From now on, we condition on the event that no
error flags are being raised both in the ideal and in
the real executions. Under this assumption, let us
record the values (ccmi, σi, sni, ri, vali, ti),∀i ∈ {1, 2}
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as defined in the proof of the above claim. By Obser-
vation H.1, we may further assume that T = T′ where
T and T′ denote the number of coins generated dur-
ing the first ℓ iterations in the ideal execution and
real execution, respectively.

The private output of an honest payee. For
j = B, consider the case that the client Cpidj is hon-
est. (The case of j = C is proved analogously.) In
the ideal execution (Hℓ) the current private output
of CpidB is (paid,T+ 1, vB). We claim that the out-
put in the real execution (Hℓ+1) is identical. Indeed,
since the honest payer generates an honest transac-
tion, this transaction is being signed by the bank,
added to the ledger, and successfully claimed by the
honest payee. It follows that the output of the payee
is (paid,T′ +1, vB). Since T = T′, the claim follows.

The view of the corrupted parties. We show
that the view of the corrupted parties in Hℓ+1

is O(µ)-computationally indistinguishable from the
simulated view of the corrupted parties in Hℓ. We
begin by showing that the message sent by Sender to
the Bank in Hℓ is indistinguishable from the corre-
sponding message in Hℓ+1. In both cases, this mes-
sage is of the form

((ccmi, σi, vcmi, nullifi,ΠSpliti)i∈{1,2}, rcm
′, rs′),

(icmj , vcmj ,Πicmj ,ΠRangej , ctxtj)j∈{B,C}, ΠSum

(71)

where in the real protocol it is distributed as in (63),
and in the ideal protocol it is distributed as in (66).
We show that the difference is indistinguishable even
for an adversary who holds the Bank’s private sign-
ing key.We gradually move from Hℓ to Hℓ+1 via the
following sequence of hybrids.

The hybrid H′
0 is defined just like the simulated

distribution Hℓ except that all the zero-knowledge
proofs are generated by using the simulators. That
is, for i ∈ {1, 2}, the split proofs ΠSpliti is generated
by running the ZK-Simulator over the Rsplit state-
ment (ccmi, vcmi, rcm

′, nullifi). The sum-proof ΠSum

is generated by applying the ZK-simulator over the
Rsum statement (vcm1, vcm2, vcmB , vcmC), and for
j ∈ {B,C}, the proofs Πicmj and ΠRangej are sampled
by applying the corresponding simulators on icmj and
on vcmj . Since in Hℓ these proofs are generated hon-
estly, H′

0 is 7µZK-indistinguishable from Hℓ where
µZK upper-bounds the probability that an efficient

adversary breaks the zero-knowledge property of the
simulator.

The hybrid H′
1 is defined just like in H′

0 except
that the commitments ccmi, i ∈ {1, 2} are computed
like in the real execution, i.e.,

ccmi = CM.Com(ck, (pid, sni, vali, 0); ri)

where pid is the Sender’s public identifier and ri is
a fresh randomizer.26 By the hiding property of the
commitment, H′

1 is 2µCOM-indistinguishable fromHℓ

where µCOM upper-bounds the probability that an
efficient adversary breaks the hiding property of the
commitment.

The hybrid H′
2 is defined just like H′

1 except that
the commitments vcmi, i ∈ {1, 2} are computed like
in the real execution, i.e.,

vcmi = CM.Com(ck, (0, 0, vali, 0); zi),

where zi is fresh randomizer. Again, by the hid-
ing property of the commitment, H′

2 is 2µCOM-
indistinguishable from H′

1.

The hybrid H′
3 is defined just like H′

2 except that
the registration commitment rcm′ by

rcm′ = (CM.Com(ck, (pid, 0, 0, s); a)

where a is a fresh randomizer and s is the PRF key
of the Sender. (Correspondingly, rs′ is computed
by generating a fresh signature over rcm′ with the
Bank’s registration signing key rsk.) Again, by the
hiding property of the commitment, H′

3 is µCOM-
indistinguishable from H′

2.

The hybrid H′
4 is defined just like H′

3 except
that the registration commitment rcm′ and its sig-
nature rs′, are computed just like in the real execu-
tion, i.e., by refreshing the registration entry (rcm, rs)
of Sender. By the rerandomization property of the
rerandomizable signatures over commitments, H′

4 is
identically distributed to H′

3.

26We further assume that all the values that are computed
based on the commitments is computed based on the new
commitments. (This convention applies to all the subsequent
hybrids.) Specifically, in H′

1, the simulators of the zero-
knowledge proofs are applied to the new commitments, and
the signature σi is computed by generating a fresh signature
over ccmi with the Bank’s signing key bsk.
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The hybrid H′
5 is defined just like H′

4 except
that we sample the nullifiers nullifi, i ∈ {1, 2} uni-
formly at random from the range of the PRF. Recall
that in the previous hybrids, it holds that nullifi =
PRFsSender0

(sn′i) where sn
′
i is uniformly distributed and

Sender0 is a fresh random PRF key. Therefore, a dis-
tinguisher between H′

5 and H′
4 can be easily trans-

lated into a distinguisher that breaks the pseudo-
randomness of PRFsSender0

(·) (crucially all other values
in H′

5 and H′
4 do not depend on sSender0). Overall,

H′
5 is µPRF-indistinguishable from H′

4, where µPRF

upper-bounds the probability that an efficient adver-
sary breaks the pseudorandom function.

The hybrid H′
6 is defined just like H′

5 except that
the nullifiers nullifi, i ∈ {1, 2} are computed just like
in the real execution, i.e.,

nullifi = PRFsSender(sni),

where sSender is the PRF key of the Sender. By
the pseudorandomness of the PRF, H′

6 is µPRF-
indistinguishable from H′

5. (Crucially all other values
in H′

6 and H′
5 can be sampled given an oracle access

to sSender0 .)

The hybrid H′
7 is defined just like H′

6 except that,
for j ∈ {B,C}, the commitment. icmj , to the iden-
tifier of the jth payee and the commitment vcmj to
the corresponding paid value, are computed just like
in the real execution, i.e.,

icmj = CM.Com(ck, (pidj , 0, 0, 0); tj) and

vcmj = CM.Com(ck, (0, 0, vj , 0); ρj), (72)

where tB , tC and ρB , ρC are fresh randomizers. Re-
call that if pidj is corrupted then this new value
of (icmj , vcmj) is distributed identically to the cor-
responding entry in H′

6 (conditioned on all other
values). If this is not the case, then these values
are 2µCOM-indistinguishable. It follows that H′

7 is
4µCOM-indistinguishable from H′

6.

The hybrid H′
8 is defined just like H′

6 except that,
for j ∈ {B,C}, we compute the ciphertext ctxtj just
like in the real execution, i.e.,

ctxtj ←$ IBE.Enc(pidj , (vj , ρj + tj)).

Recall that if pidj is corrupted then ctxtj is dis-
tributed identically to the corresponding entry in
H′

7 (conditioned on all other values). If this is

not the case, then in H′
7, it holds that ctxtj ←$

IBE.Enc(pid′j , (v
′
j , ρj + tj)) where v′j = 1 and pid′j

is an identifier of some arbitrary honest user. It
follows that these two versions of ctxtj are µIBE-
indistinguishable. Indeed, a distinguisher can be
translated into an adversary B that wins the IND-
RA-CCA game with similar advantage. The reduc-
tion is similar to the one that is explained in Sec-
tion H.1. Overall, H′

8 is 2µIBE-indistinguishable from
H′

7.

The hybrid H′
9 is similar to H′

8 except that all the
zero-knowledge proofs, ΠSplit1,ΠSplit2,ΠicmB ,ΠRangeB ,
ΠicmC ,ΠRangeC and ΠSum, are generated just like in
the real execution by running the honest prover’s al-
gorithms on the corresponding statements and their
witnesses. The zero-knowledge property implies that
this hybrid is 7µZK-indistinguishable from H′

9. More-
over, the hybridH′

9 is identically distributed toHℓ+1.
Overall, we conclude that Hℓ+1 cannot be efficiently
distinguished from Hℓ with advantage better than

O(µZK + µCOM + µPRF + µIBE) = O(µ).

The Bank’s response. Finally, we mention that,
in addition to the Sender’s message to the the Bank,
the adversary also sees the Bank’s response (ap-
pended to the ledger) but this response can be com-
puted efficiently based on the Sender’s message and
given an oracle access to the Bank’s signing algo-
rithm. Since (63) and (66) remain indistinguishable
even given the signature’s key, the entire view of
the adversary remains indistinguishable. This com-
pletes the proof of Lemma H.1 for the case where
the (ℓ + 1)th command is an honest payment com-
mand.

H.3 Payment by a corrupted client

Denote by Ec (c for “corrupt”) the event that at the
(ℓ+ 1)th round the environment sends some instruc-
tion χ to the adversary who responds by sending, on
behalf of some corrupted client, the following message
to the Bank

((ccmi, σi, vcmi, nullifi,ΠSpliti)i∈{1,2}, rcm
′, rs′),

(icmj , vcmj ,Πicmj ,ΠRangej , ctxtj)j∈{B,C}, ΠSum.

(73)

We show that ∆ℓ,Ec
is upper-bounded by O(ℓµ). As

in Section H.2, we refer to the (ℓ+ 1)th command as
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the current command. We begin by showing that the
public error message, errℓ, of the current command as
computed in Hℓ (by the ideal functionality) is com-
putationally indistinguishable from the public error
message, errℓ+1, that is generated in Hℓ+1 (by the
real protocol). Specifically, we prove the following
claims.

Claim H.2. Conditioned on Ec, if any of the error
flags in Hℓ+1 is set to true then the corresponding
flag in Hℓ is also set to true.

Proof. By design of the simulator, if the Bank raises
a flag in response to the message (73), then the sim-
ulator sends to Futt a command that issues the same
error.

The other (less trivial) direction follows from the
next lemma that makes use of the following notation.

Notation H.1. For every iteration k ≤ ℓ+1 denote
by txk the message sent to the Bank and let Pk de-
note the party that issues this command. If the kth
command is a corrupted payment command that is
accepted by the Bank, we define the values

(sk,i, pidk,i, snk,i, valk,i, rk,i, zk,i, a
′
k,i)

to be the witness that is extracted by the knowledge
extractor from the ith split proof ΠSplitk,i that ap-

pears in txk. Similarly, for j ∈ {B,C}, let

(pidk,j , snk,j , vk,j , ρk,j , tk,j)

be the witnesses extracted by the knowledge-
extractor from the proofs ΠRangek,j and Πicmk,j that

that appears in txk. Let rk,j = ρk,j + tk,j . (If some
of the extractions fail to find a value that satisfy the
corresponding relation, set the corresponding values
to ⊥.)

If the kth command is an honest payment com-
mand then all the above values are defined by taking
the corresponding values as computed by the corre-
sponding honest party.
If the kth command is a minting command

with txk = (snk,B , ccmk,B , ctxtk,B) then let
(pidk,B , snk,B , vk,B , rk,B) denote the values for which
ccmk,B = CM.Com(ck, (pidk,B , snk,B , vk,B , 0); rk,B).
Observe that these values are well defined since we
explicitly compute them during the experiment when
we emulate the minter.27

27the subscript “B” in a minting command is redundant
(since it generates a single coin) and we add it in order to
unify the treatment of minting and payment.

We prove the following key lemma in Section H.4.

Lemma H.2 (key lemma). Except with probability
of O((ℓ+1)µ), the event G (for “good”) holds, where
G asserts that for every iteration k ≤ ℓ+1 in which a
payment command is processed successfully the fol-
lowings hold.

1. For i ∈ {1, 2}, sk,i is the PRF key associated with
pidk,i (i.e., appears as the first entry in askpid
as defined by the simulator) and (pidk,1, sk,1) =
(pidk,2, sk,2).

2. For i ∈ {1, 2}, there exists an iteration k′(k, i) <
k and an index j(k, i) ∈ {B,C} such that the ith
incoming coin in the (successful) kth transaction
is consistent with the jth outgoing coin in k′th
transaction, formally,

(pidk,i, snk,i, valk,i) = (pidk′,j , snk′,j , vk′,j),

where k′ = k′(k, i) and j = j(k, i).

3. The simulator’s kth command to the ideal func-
tionality cmdk is a payment command that is
sent on behalf of the client whose identifier
is pidk,1 and the addresses of the incoming
coins are Tk,1 := T[k′(k, 1), j(k, 1)] and T2,k :=
T[k′(k, 2), j(k, 2)] where T[x, y] denotes the num-
ber of coins generated by the ideal functionality
until the generation of the coin y in iteration x.

4. In cmdk the payees and the paid values are
(pid′k,j , vk,j)j∈{B,C} where pid′k,j = pidk,j , except
for the case where the simulator modifies this
value during Step 4 which may happen only if
the kth operation is performed by a corrupted
payer and pidk,j is an honest party.

5. (a) Before the kth iteration, the state of
the ideal functionality satisfies coins[Tk,1] =
(valk,1, pidk,1) and coins[Tk,2] = (valk,2, pidk,1).
(b) Moreover, at the end of the kth iteration,
the ideal functionality outputs paid, and its
state satisfies coins[Tk + 1] = (vk,B , pid

′
k,B) and

coins[Tk+2] = (vk,2, pid
′
k,C) where Tk is the num-

ber of coins that were generated till the kth it-
eration.

The last item (applied to k = ℓ + 1) implies that
if the current transaction is approved by the Bank as
a successful transaction, then, except with negligible
probability, it is also accepted by the ideal function-
ality. By combining this with Claim H.2, we conclude
that Pr[errℓ ̸= errℓ+1 ∧ Ec] ≤ O((ℓ+ 1)µ). From now
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on, let us condition on the event G (and therefore
errℓ = errℓ+1) and on event that T = T′, as defined
in Observation H.1.

The private output of an honest payee. If an
error flag is issued, then all honest parties output
an error both in Hℓ+1 and in Hℓ. We can therefore
focus on the event that the current command does
not issue an error flag. Fix some honest client Cpid.
We analyze the output of an honest client Cpid with
respect to the first outgoing coin. (The case of the
second coin is similar.) It suffices to show that, except
with negligible probability, Cpid outputs a message of
the form (paid,T + 1, v) in Hℓ+1 if and only if it
outputs the same message in Hℓ.
We begin with the “only if direction”. Assume

that Cpid successfully claims the first outgoing coin
and outputs (paid,T + 1, v′j). (The case of the sec-
ond coin is similar.) This means that client recov-
ers from the Bank’s outputs (ccmB , ctxtB) the values
(pid, sn, v, 0); r for which

ccmB = CM.Com(ck, (pid, sn, v, 0); r),

where sn = H(nullif1, nullif2, j).

By the construction of ccmB , it also holds that

ccmB = CM.Com(ck, (pidℓ+1,B , snℓ+1,B , vℓ+1,B , 0); rℓ+1,B).

We conclude that

(pid, sn, v) = (pidℓ+1,B , snℓ+1,B , vℓ+1,B), (74)

unless we can break the binding property of the
commitment, which can happen with probability at
most µBCOM ≤ µ. Conditioned on (74), the first
payee/paid-value in the simulator’s command to the
ideal functionality is (pidℓ+1,B , vℓ+1,B) = (pid, sn).
This follows from G and from the fact that the simu-
lator keeps the payee unchanged in Step 4 (since the
“Claim” operation on behalf of Cpidℓ+1,B

= Cpid suc-
ceeds). We conclude that in Hℓ the current output
of the honest party Cpid is also (paid,T + 1, v′j), as
required.
We move on to prove the other direction. Sup-

pose that Cpid receives from the ideal functionality
the message (paid,T+ 1, v). Let pid′ℓ+1,1 denote the
identifier of the first payee in the simulator’s submit-
ted command. By the definition of the simulator,
pid′ℓ+1,1 has not been changed in Step 4. (Since it be-
longs to an existing honest client.) By relying on G
with pid′ℓ+1,1 = pidℓ+1,1, we conclude that (74) holds.

Consequently, when Cpid applies the claim operation
to the message sent by the Bank in Hℓ+1, the oper-
ation succeeds and the output is (paid,T + 1, v), as
required.

The view of the corrupted parties. The view of
the corrupted parties consists of the Bank’s message
which is identically distributed in both experiments.
This completes the proof of Lemma H.1 for the case
where the (ℓ+1)th command is a corrupted payment
command.

H.4 Proof of Lemma H.2

Throughout the proof, we condition on the event
that during the first ℓ+1 iteration, whenever a zero-
knowledge proof passes verification, the correspond-
ing knowledge extractor extracts witnesses. This
event happens, except with probability (ℓ+1)µKE ≤
O((ℓ+ 1)µ)

Item 1. We show that if (1) does not hold then
there exists an adversary B that either breaks the EU-
CCA security of the registration signature scheme
or breaks the binding property of the commitment.
The adversary B is given pk = (pp, vk, ck) sampled
using the global setup algorithm, commitment set-
up algorithm and the signature key-generation al-
gorithm (as defined in Definition D.2), and places
these values as the initialization values in the hy-
brid Hℓ where vk takes the role of the Bank’s reg-
istration verification key rvk. The other initializa-
tion values (e.g., the IBE msk and the Bank’s sig-
nature keys (bsk, bvk)) are sampled locally based on
pp and ck. The adversary can now emulate the ini-
tialization phase with the aid of the commitment-
signing oracle that given a message m and a ran-
domizer r, signs the commitment CM.Com(ck,m; r)
under the key rsk. Indeed, whenever a client reg-
isters with a message (pid, rcm,ΠInit) the adversary
extracts from ΠInit the values (pid, s, a) for which
rcm = CM.Com(ck, (pid, 0, 0, s); a), queries the oracle
with m = (pid, 0, 0, s) and a, and receives back the
signature rs ←$ RS.Sign(rsk, rcm). Next, B perfectly
emulates the first ℓ + 1 iterations of hybrid Hℓ, and
in each iteration k ≤ ℓ+ 1 in which a successful pay-
ment command is performed, the adversary B com-
putes the values (sk,i, pidk,i, snk,i, valk,i, rk,i, zk,i, a

′
k,i)

for i ∈ {1, 2} (either directly by the honest payer or
via the knowledge extractor). If (a) sk,i is not the
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PRF key associated with pidk,i, the adversary B out-
puts the forgery (m∗, a′k,i,←$′k) where

m∗ = (pidk,i, 0, 0, sk,i).

Note that in this case, this is indeed a valid forgery
since the message m∗ was not queried before (at the
registration phase) and ←$′k is a valid rsk-signature
over CM.Com(ck,m∗; a′k,i). If (a) does not hold, but
(pidk,1, sk,1) ̸= (pidk,2, sk,2) the adversary outputs the
commitment collision

[m1 = (pidk,1, 0, 0, sk,1), a′k,1)] ̸=
[m2 = (pidk,2, 0, 0, sk,2), a′k,2], (75)

for which CM.Com(ck,m1; a
′
k,1) =

CM.Com(ck,m2; a
′
k,2). Assuming that the knowledge

extractor does not fail in the first ℓ + 1 iterations,
if (1) does not hold then either (a) or (b) hap-
pen. Therefore, (1) holds except with probability
µSIG + µBCOM ≤ O(µ), where µBCOM (resp., µSIG)
denote an upper-bounds on the probability of break-
ing the binding of the commitment (resp., breaking
the EU-CCA security of the signature scheme).

Item 2. Next, we show that if (2) does not hold
then there exists an adversary B that breaks the EU-
CCA security of the Bank’s signature scheme. The
forger B is given pk = (pp, vk, ck) sampled using the
global setup algorithm, commitment set-up algorithm
and the signature key-generation algorithm (as de-
fined in Definition D.2), and places these values as the
initialization values in the hybrid Hℓ where vk takes
the role of the Bank’s verification key bvk. The other
initialization values (e.g., the IBE msk and the regis-
tration keys (rsk, rvk)) are sampled locally based on
pp and ck. The adversary can now emulate the first ℓ
steps of the hybrid Hℓ with the aid of a commitment-
signing oracle that, given a message m and a ran-
domizer r, signs the commitment CM.Com(ck,m; r)
under the key bsk. Specifically, for every iteration
k ≤ ℓ that is approved, the adversary B computes all
the transaction entries as defined in Notation H.1. If
these entries satisfy condition (2), then the adversary
B generates the Bank’s response where the signature
on

ccmk,j = icmk,j⊞CM.Com(ck, (0, snk,j , 0, 0); 0)⊞vcmk,j ,

j ∈ {B,C}

is computed by making a call to the signing oracle
with mk,j := (pidk,j , snk,j , valk,j , 0) and rk,j = ρk,j +

tk,j . If the kth transaction does not satisfy (2) with
respect to the ith incoming coin for some i ∈ {1, 2},
then B outputs the forgery (mk,i, rk,i, σi) where

mk,i = (pidk,i, snk,i, valk,i, 0).

Finally, if we reached to the (ℓ + 1)th iteration and
the transaction satisfies the split relations but (2)
does hold with respect to the ith incoming coin
for some i ∈ {1, 2}, then B outputs the forgery
(m∗

ℓ+1,i, rℓ+1,i, σℓ+1). Otherwise, B terminates with
failure.

To analyze B, first observe that assuming that the
knowledge-extractor does not fail, as long as B does
not halt, it perfectly emulates the hybrid Hℓ. More-
over, if (2) does not happen, then B terminates with
a forgery mk,i that, by definition, differs from all the
previous queries {mk′,j : k

′ < k, j ∈ {B,C}}. It fol-
lows that in this case B wins the EU-CCA game,
which means that (2) fails with probability of at most
µSIG ≤ µ.

Item 3. Let us assume that (1) and (2) hold, and
upper-bound the probability that in some iteration k
item (3) fails to hold. By the definition of the simu-
lator, it must be the case that in the kth iteration, a
corrupted payment command is issued. Recall that in
this case the simulator searches the ledger for trans-
actions q1, q2 < k, indices g1, g2 ∈ {B,C} and PRF
keys PRF1,PRF2 associated with some public identi-
fiers pid1, pid2 such that, for i ∈ {1, 2} the ith nullifier
of the kth transaction, nullifk,i, equals to PRFsi(sni)
where sni is the serial number associated with the
gith outgoing entry of the qith transaction. Since (1)
and (2) hold, we conclude that the simulator finds
such entries. Recall that if pid1 = pid2, the simula-
tor submits to Futt a payment command on behalf
of pid1 whose incoming coin identifiers are T[q1, g1]
and T[q2, g2]. Therefore, assuming that (1) holds for
this iteration, it suffices to show that for i ∈ {1, 2} it
holds that

qi = k′(k, i) gi = j(k, i) (76)

and that

pidi = pidk,i. (77)

If (76) does not hold, then nullifk,i can be written
both as PRFs(sn) and as PRFs′(sn

′) where sn and sn′

are obtained by hashing two different inputs via the
random oracle (RO) H and s and s′ are the PRF keys
associated with pidi and pidk,i (which may be equal or
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not). We show that such an event is unlikely to hap-
pen due to the correlation robustness of the RO H.
Indeed, assuming that PRFs(·) and PRFs′(·) are injec-
tive (have no self collisions), the probability of find-
ing a pair of Hash inputs that map into different sn
and sn′ that satisfy PRFs(sn) = PRFs′(sn

′) is at most
O(Q2

ℓ+1/|Xpp|) where Xpp is the domain of the PRF
and Qℓ+1 is the number of RO queries that the adver-
sary makes during the first ℓ+1 iterations. Taking a
union-bound over all pairs of registered PRF-keys,
we get an upper-bound of O(N2Q2

ℓ+1/|Xpp|) ≤ µ.
We move on to establish (77) conditioned on (76).
Suppose that (77) does not hold. Then, for a pair
of registered PRF keys s and s′ (associated with
pidi ̸= pidk,i), the adversary finds a hash input x that
hashes by H to sn for which PRFs(sn) = PRFs′(sn).
Since our collection has no pairwise collisions this
can happen only if 2 of the registered PRF keys
agree. Since we randomize the PRF keys on regis-
tration, this event happens except with probability
O(N2/|Kpp|) ≤ µ where Kpp is the key-space of the
PRF.28

Item 4. If the kth command is an honest payment,
the statement holds trivially (by the definition of the
simulator). If (4) is violated in some iteration for
which the payer is corrupt, we break the binding of
the commitment (as indicated in the error message of
the simulator). This can happen with probability of
at most µBCOM ≤ µ.

Item 5 Let k denote the first iteration for which
the statement does not hold. If k is an honest “pay-
ment iteration” the statement follows from the upper-
bound on ∆k,Eh

. (For k = ℓ+1 this is established in
Section H.2 and for k < ℓ+1 this is established as part
of the induction hypothesis, i.e., Lemma H.1 for k.)
We can therefore focus on the case where a corrupted
payer performs the kth iteration. Specifically, let us
first consider the case where (a) fails. Namely, before
the ideal functionality processes the kth command,
its state does not satisfy coins[Tk,1] = (valk,1, pidk,1)
and coins[Tk,2] = (valk,2, pidk,1). Without loss of gen-
erality, let us assume that the first equality does not
hold. (The other case is proved similarly.) Consider

28This is the only case where we directly exploit the random
oracle assumption on H. We mention that the above analysis
can be extended beyond the random oracle model, by assuming
that the hash function H is correlation robust with respect to a
concrete efficiently commutable relation that is induced by the
above proof (and depends on the underlying PRF). Detailed
omitted.

the iteration k′ := k′(k, 1) < k. We first claim that
at the end of iteration k′ it must hold that

coins[Tk,1] = (valk,1, pidk,1). (78)

Indeed, by item (2), it holds that the corresponding
transaction txk′ is successful and its j = j(k, 1)th
outgoing entry satisfies

(pidk,1, snk,1, valk,1) = (pidk′,j , snk′,j , vk′,j).

We conclude that in the corresponding command of
the simulator cmdk′ the jth outgoing coin has the en-
tries (valk,1, pidk,1). If the iteration k′ is an “hon-
est” iteration, this follows directly from the defi-
nition of the simulator, and otherwise this follows
from item (4). Note that, by assumption, the payee
pidk′,j = pidk,1 is corrupted, and therefore the excep-
tion in (4) does not apply. Finally, by the induction
hypothesis (Lemma H.1 for k′), the corresponding
command of the simulator is processed successfully
by the ideal functionality. We can therefore conclude
that at the end of iteration k′, Eq. 78 holds. Next,
assume towards a contradiction that Eq. 78 is vio-
lated in some iteration k′′ ∈ (k′, k). This may happen
only if, on iteration k′′ the simulator issues a pay-
ment command with address Tk,1 on behalf of the
corrupted payer pidk,1. By the design of the simula-
tor, this happens only of the corresponding transac-
tion txk′′ is accepted. By items (1)–(3), it must be
the case that txk′′ contains the nullifier PRFsk,1

(snk,1),
and therefore kth transaction cannot be approved –
a contradiction.

Item (5b) follows directly from items (5a) and (4).
This completes the proof of the lemma.

I Dual Pedersen Commitments
over Bilinear Groups

For the sake of self-containment, we describe and
analyze the “dual” version of Dual Pedersen Com-
mitments. For simplicity, we focus on the version in
which the message space is a vector of length 2. The
proof naturally generalizes to longer vectors.

The commitment key ck (output from
CM.Setup(1λ)) consist of two sub-keys, over
two different groups: the first sub-key (g1, g2, g)
is over G1 and the sub-key (g̃1, g̃2, g̃) is over G2.
Note that the sub-keys are correlated, that is,
logg g1 = logg̃ g̃1 = k1 and logg g2 = logg̃ g̃2 = k2.
The commitment algorithm, CM.Com consists of
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two instances of the Pedersen (vector) commitment
algorithm, using each of the sub-keys. in (See
Figure 8.)

It is not hard to verify that the scheme is perfectly
hiding and homomorphic, just like standard Pedersen
commitments. We reduce the binding of the scheme
to the symmetric discrete log assumption (SDLP) [97,
Assumption 2] that asserts that, given

g, gµ ∈ G1, and g̃, g̃µ ∈ G2, where µ←$ Zp,

an efficient adversary cannot recover µ with more
than negligible probability in the security parameter.

The reduction proceeds as follows. Let Adv be an
adversary that on input ck = ((g1, g2, g), (g̃1, g̃2, g̃))
outputs ((m1,m2, r), (m

′
1,m

′
2, r

′)) such that
(cmG1 , cmG2) = (cm′

G1
, cm′

G2
) with probability

ε, where

cmG1
= gm1

1 gm2
2 gr , cm′

G1
= g

m′
1

1 g
m′

2
2 gr

′
, and

cmG2
= g̃m1

1 g̃m2
2 g̃r , cm′

G2
= g̃

m′
1

1 g̃
m′

2
2 g̃r

′
.

We construct an adversary Adv′ that solves the
SDLP: Adv′ is given (g, g̃, h, h̃), where h = gµ and
h̃ = g̃µ, and do as follows:

1. Pick i ∈ {1, 2} uniformly and let j = 3 − i. Set
gi = g and g̃i = g̃. In addition, set gj = hα and

g̃j = h̃α, where α is chosen uniformly from Zp.

2. Sends Adv the commitment key ck =(
(h, g1, g2), (h̃, g̃1, g̃2)

)
. Observe that the

commitment key ck and the commitment
key output by CM.Setup(1λ) are identically
distributed.

3. With probability ε the adversary Adv re-
sponds with ((m1,m2, r), (m

′
1,m

′
2, r

′)) such that
(m1,m2) ̸= (m′

1,m
′
2) and cmG1 = cm′

G1
, that is,

gm1
1 gm2

2 hr = g
m′

1
1 g

m′
2

2 hr′ (in fact, with probabil-
ity ε it holds that (cmG1

, cmG2
) = (cm′

G1
, cm′

G2
),

but we focus only on the first entry of the com-
mitment). If the above does not hold (i.e. the
commitments are not equal) or mi ̸= m′

i then
halt. Note that since i was chosen uniformly and
is secret from Adv, we have that mi ̸= m′

i with
probability ε/2.

4. Let β = αmj and β′ = αm′
j . We have

gm1
1 gm2

2 hr = g
m′

1
1 g

m′
2

2 hr′

=⇒ gmi
i g

mj

j hr = g
m′

i
i g

m′
j

j hr′

=⇒ gmi
i hβhr = g

m′
i

i hβ′
hr′

=⇒ g
mi−m′

i
i = hβ′−β+r′−r

=⇒ g
(mi−m′

i)(β
′−β+r′−r)−1

i = h

where gi = g,

5. Output µ = (mi −m′
i)(β

′ − β + r′ − r)−1.

It follows that Adv′ solves SDLP with probability ε/2.

J Security of PS-based
rerandomizable signature-
commitment scheme

The PS-based rerandomizable signature-commitment
scheme is given in Figure 9.

Proof of Lemma D.4 We prove Lemma D.4. We
begin by recalling Assumption 1 of [34] (hereafter re-
ferred to as the PS assumption). For a Type III bilin-
ear pairings e : G1 × G2 → GT over groups of prime
order p with generators of (g, g̃) ∈ G1×G2, Assump-
tion 1 of [34] asserts that every efficient algorithm
Adv cannot win the following “PS” game with more
than negligible probability in the security parameter:

1. The Challenger samples x, y ←$ Zp and pub-

lishes X̃ = g̃x, Y = gy and Ỹ = g̃y. (As usual
we also assume that the adversary is also given
the public parameters (p, g, g̃, e) as an auxiliary
input.)

2. The adversary is allowed to send queries of the
form m ∈ Zp on which the Challenger replies
with the pair (gu, XuY mu) for a randomly cho-
sen u←$ Zp. The adversary wins if it terminates
with an output of the form gu, XuY m∗u for some
non-zero u and a new m∗ that was not queried
before.

We prove Lemma D.4 by showing that the scheme
in Figure 9 is a rerandomizable signature over the
commitment scheme in Figure 8, based on the above
assumption. First observe that the underlying com-
mitment scheme is a standard (2-slot) generaliza-
tion of Pedersen commitments which is known to
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CM.Setup(1λ)→ ck

(g, g̃)←$ G1 ×G2

(k1, k2)←$ Z2
p

g1 ← gk1 g2 ← gk2

g̃1 ← g̃k1 g̃2 ← g̃k2

return ((g1, g2, g), (g̃1, g̃2, g̃))

CM.Com(ck, (m1,m2); r)→ cm

Parse ck as ((g1, g2, g), (g̃1, g̃2, g̃))
cmG1

← gm1
1 gm2

2 gr

cmG2 ← g̃m1
1 g̃m2

2 g̃r

return (cmG1 , cmG2)

CM.Rerand(ck, cm; r)→ cm′

Parse ck as (·, ·, g), (·, ·, g̃)
Parse cm as (cmG1

, cmG2
)

return (cmG1 · gr, cmG2 · g̃r)

Figure 8: The commitment scheme.

RS.KeyGen(pp, ck)→ (sk, pk)

Parse ck as ((g1, g2, g), (g̃1, g̃2, g̃))
x←$ Zp

X ← gx, X̃ = g̃x

return
(
(g,X), (ck, X̃)

)
RS.Sign(sk, cm;u)→ σ

Parse sk as (g,X)
Parse cm as (cmG1

, cmG2
)

u←$ Zp

return (gu, (X · cmG1
)u)

RS.Ver(pk, cm, σ)→ {0, 1}
Parse pk as (ck, X̃)
Parse ck as (·, ·, g), (·, ·, g̃)
Parse cm as (cmG1

, cmG2
)

Parse σ as (σ1, σ2)

assert e(σ2, g̃) = e(σ1, X̃ · cmG2
)

RS.Rerand(pk, σ; r∆, u∆)→ σ′

Parse σ as (σ1, σ2)
return (σu∆

1 , (σ2 · σr∆
1 )u∆)

Figure 9: The rerandomizable signatures over the commitment scheme in Figure 8.

be perfectly hiding, perfectly rerandomizable and
computationally-binding under the DLOG assump-
tion (which must hold in both groups as otherwise
the PS assumption does not hold). The correctness
of the signature scheme can be easily verified and so
it remains to be seen that the scheme is unforgeable.
Given an adversary Adv that breaks the signature

scheme with probability ϵ, we construct two adver-
saries Adv0 and Adv1 with similar complexity such
that Adv0 wins the PS game with probability ϵ0 and
Adv1 breaks the binding property of Pedersen’s com-
mitment with probability ϵ1 where ϵ1 + ϵ2 ≥ ϵ.

For the sake of analysis, it will be convenient to de-
scribe Adv0 and Adv1 together, although Adv0 plays
the SP game whereas Adv1 plays the binding game.
On a first reading, the reader may want to skip Adv1
parts of the description.

1. (a) Adv0: Given the initial input in the PS
game, pp = (p, g, g̃, e), X̃ = g̃x, Y = gy and
Ỹ = g̃y, we sample, for each slot i ∈ {1, 2}
of the commitment a pair of random ele-
ments (αi, βi) ←$ Z2

p, and set gi = Y αigβi

and g̃i = Ỹ αigβi for i ∈ {1, 2}.
(b) Adv1: Given the public parameters pp =

(p, g, g̃, e) and the parameters to (extended)

Pedersen scheme (g1, g2, g̃1, g̃2) we sample
x←$ Zp, and set X ← gx, X̃ = g̃x.

Send to the signature adversary Adv the elements
X̃, g1, g2, g̃1, g̃2 and forward the public parame-
ters pp.

2. When the adversary Adv issues a signature query
(m1,m2, r), we proceed as follows.

(a) Adv0: Send the query m = α1m1 +
α2m2 to the PS-oracle. Given the answer
(gu, XuY um) we return to the adversary
the pair

(gu, XuY um · (gu)β1m1+β2m2+r)

= (gu, Xu(gm1
1 gm2

2 gr)u).

Note that the second entry can be com-
puted by raising the first entry to the power
of β1m1+β2m2+r, and by multiplying the
result by XuY um.

(b) Adv1: Compute the (first part of the) com-
mitment cmG1

= (gm1
1 gm2

2 gr), sample u←$
Zp, sign the commitment by σ = (gu, (X ·
cmG1

)u) and send σ to Adv.
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3. When the adversary terminates with a pair
(m∗

1,m
∗
2), commitment randomizer r∗ and a

“candidate signature” (U,B) we proceed as fol-
lows:

(a) Adv0: output the pair
(U,B/Uβ1m

∗
1+β2m

∗
2+r∗).

(b) Adv1: If there exists a previous query
(m1,m2) ̸= (m∗

1,m
∗
2) for which (gm1

1 gm2
2 ) =

(g
m∗

1
1 g

m∗
2

2 ), then the adversary terminates
with (m1,m2, r) and (m∗

1,m
∗
2, r) for some

arbitrary r.

Analysis. Observe that, both for Adv0 and Adv1,
the signature’s public key (X̃, g1, g̃1, g2, g̃2) is dis-
tributed properly. Moreover, for every valid fixing
of the public key, both Adv0 and Adv1 answer the
queries of Adv perfectly according to the distribution
of the real forgery game. Fix a public key and ran-
domness for the adversary and let us consider the
case that Adv wins the forgery game with the values
(m∗

1,m
∗
2, r

∗, U,B). We will show that at least one of
the adversaries, Adv0 and Adv1, wins as well.
Recall that when Adv wins the forgery game, the

pair (m∗
1,m

∗
2) must be a new pair that has not been

queried before. We distinguish between two cases.

• The value m∗ = α1m
∗
1 + β1m

∗
2 is “new” in the

sense that for every previous query (m1,m2) it
holds that m∗ ̸= α1m1 + α1m2. In this case, we
show that the adversary Adv0 wins the PS game.
Indeed, since Adv wins the forgery game it holds

that e(B, g̃) = e(U, X̃ · g̃m
∗
1

1 g̃
m∗

2
2 g̃r

∗
). Letting B =

gb and U = gu, it follows that

b = u(x+m∗
1(yα1 + β1) +m∗

2(yα2 + β2) + r∗),

and therefore

(U,B/Uβ1m
∗
1+β2m

∗
2+r∗) = (gu, gb−u(β1m

∗
1+β2m

∗
2+r∗))

= (gu, XuY m∗u).

We conclude that Adv0 generated a “valid” pair
(gu, XuY m∗u) with respect to a new value of m∗

on which the PS oracle was not queried, and so
Adv0 wins the PS game.

• The value α1m
∗
1 + α1m

∗
2 equals to α1m1 +

α1m2 for some previous query (m1,m2). Since
(m∗

1,m
∗
2) is a new pair, it holds that (m1,m2) ̸=

(m∗
1,m

∗
2) and so the adversary Adv1 finds a col-

lision. Indeed, for every r ∈ Zp, we have that

(gm1
1 gm2

2 gr) = (g
m∗

1
1 g

m∗
2

2 gr)

and
(g̃m1

1 g̃m2
2 g̃r) = (g̃

m∗
1

1 g̃
m∗

2
2 g̃r),

in contradiction to the binding property of the
commitment.

Lemma D.4 follows.

K Zero-Knowledge Proofs

In this section, we describe some concrete instan-
tiations of our zero-knowledge proofs. Recall that
these proofs are compiled to the non-interactive set-
ting via the Fiat-Shamir transform as described in
Section D.5. For compatibility with previous ver-
sions, we have that the commitment basis is denoted
by (g1, g2, g3, g6, g).

K.1 Consistency of Splitting

For each i ∈ {1, 2}, the client generates ZKPOK
ΠSpliti for the split relation Rsplit that contains

x = (ccmi, vcmi, rcm
′, nullifi),w = (sSender, pidSender, sni, vali, ri, zi, a

′)

for which the following conditions hold

ccmi = CM.Com(ck, (pidSender, sni, vali, 0); ri) = g
pidSender
1 gsni2 gvali3 gri

vcmi = CM.Com(ck, (0, 0, vali, 0); zi) = gvali3 gzi

rcm′ = CM.Com(ck, (pidSender, 0, 0, sSender); a
′) = g

pidSender
1 gsSender6 ga

′

nullifi = PRFsSender(sni) = h1/(sSender+sni)

The proof is a Σ-protocol of the form
(init, challenge, response) where challenge = c ← Zp

(where p is the groups order) is chosen by the verifier.

K.1.1 Prover

Message init. The prover picks random {xj}j∈[5]

and {ti}i∈[2] from Zp, and computes:

vki = h̃(sSender+sni)w̃ti

yi = e(nullifi, w̃)
ti

X1 = gx1
1 gx2

2 gx3
3 gx4

X2 = gx3
3 gx5

X3 = gx1
1 gx6

6 gx7

X4 = h̃x6 h̃x2w̃x8

X5 = qx8
i //qi ≜ e(nullifi, w̃) ∈

Here, ti is secret randomness from Zp and (h̃, w̃) ∈
G2

2 are part of the public parameters. The values yi
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and vki are used in order to prove that nullifi is con-
sistent (i.e. that it uses sSender and sni as in ccmi and
rcm′). However, before we can use yi and vki to prove
consistency of nullif, it has to be verified that yi and
vki are consistent on their own, that is, that both use
the same randomizer ti and that vki is a commitment
to sSender+ sn using the commitment key (h̃, w̃). This
verification is done using the values X4, X5. Finally,
we verify that the rest of the conditions in the state-
ment using the values X1, X2, X3.

Message response. Upon receiving the challenge e
from the verifier, the prover sends {αj}j∈[8] as follows:

α1 = x1 + c · pidSender
α2 = x2 + c · sni
α3 = x3 + c · vali
α4 = x4 + c · ri
α5 = x5 + c · zi
α6 = x7 + c · a′

α7 = x6 + c · sSender
α8 = x8 + c · ti

K.1.2 Verifier

The verifier outputs ‘accept’ if all the below state-
ments hold, and ‘reject’ otherwise.

e(nullifi, vki) = e(h, h̃) · yi (79)

ccmc
i ·X1 = gα1

1 gα2
2 gα3

3 gα4 (80)

vcmc
i ·X2 = gα3

3 gα5 (81)

rcm′c ·X3 = gα1
1 gα7

6 gα6 (82)

vkci ·X4 = h̃α7 h̃α2w̃α8 (83)

yci ·X5 = qα8
i (84)

K.1.3 Completeness

For a honest prover, all statements in Eq. (79) hold:

ccmc
i ·X1

= (g
pidSender
1 gsni2 gvali3 gri)c · gx1

1 gx2
2 gx3

3 gx4

= g
x1+c·pidSender
1 gx2+c·sni

2 gx3+c·vali
3 gx4+c·ri

= gα1
1 gα2

2 gα3
3 gα4

vcmc
i ·X2

= (gvali3 gzi)c · gx3
3 gx5

= gx3+c·vali
3 gx5+c·zi =gα3

3 gα5

rcm′e ·X3

= (g
pidSender
1 gsSender6 ga

′
)c · gx1

1 gx6
6 gx7

= g
x1+c·pidSender
1 gx6+c·sSender

6 gx7+c·a′

= gα1
1 gα7

6 gα6

vkc1 ·X4

= (h̃(sSender+sni)w̃ti)c · h̃x6 h̃x2w̃x8

= h̃x6+c·sSender h̃x2+c·sniw̃x8+c·ti

= h̃α7 h̃α2w̃α8

yci ·X5

= qc·tii · qx8
i

= qx8+c·ti
i =qα8

i

And,

e(h, h̃) · yi = e(h, h̃) · e(nullifi, w̃)ti

= e(h1/(sSender+sni), h̃(sSender+sni)) · e(nullifi, w̃)ti

= e(nullifi, h̃
(sSender+sni)) · e(nullifi, w̃ti)

= e(nullifi, h̃
(sSender+sni)w̃ti)

= e(nullifi, vki)

K.1.4 Soundness

Consider two accepting executions of the pro-
tocol above: (init, challenge1, response1) and
(init, challenge2, response2). Denote by init =
(vki, yi, {Xj}j∈[5]), challenge1 = c, challenge2 = c′,
response1 = {αj}j∈[8] and response2 = {α′

j}j∈[8].
Then, we first show knowledge extraction of the val-
ues w = (sSender, pidSender, sni, vali, ri, zi, a

′) and that
these values are consistent in ccmi, vcmi, rcm

′, vki and
yi. Later we show that these values are consistent
within nullifi as well.
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From the verification procedure it follows that:

ccmc−c′

i = g
α1−α′

1
1 g

α2−α′
2

2 g
α3−α′

3
3 gα4−α′

4 (85)

vcmc−c′

i = g
α3−α′

3
3 g

α5−α′
5

5 (86)

rcm′c−c′ = g
α1−α′

1
1 g

α7−α′
7

6 gα6−α′
6 (87)

yc−c′

1 = q
α8−α′

8
1 (88)

vkc−c′

i = h̃α7−α′
7 h̃α2−α′

2w̃α8−α′
8 (89)

Define exp(gk, C =
∏

j g
exj
j ) ≜ exk, where {exj}j

are known by the prover, then,

(85, 87) =⇒ exp(g1, ccmi) = exp(g1, rcm
′)

= (α1 − α′
1)/(e− e′) = pid

(85, 86) =⇒ exp(g3, ccmi) = exp(g3, vcmi)

= (α3 − α′
3)/(e− e′) = vali

(85, 87, 89) =⇒ exp(g2, ccmi) + exp(g6, rcm
′)

= exp(h̃, vki)

= (α2 + α7 − α′
2 − α′

7)/(e− e′)

= sSender + sni

(89, 88) =⇒ exp(qi, yi) = exp(w̃, vki) = t

It is shown that ccmi and rcm′ use the same pid,
that ccmi and vcmi use the same value vi, that the
sum sSender + sni is indeed the sum of the values sni
and sSender in ccmi and rcm′, respectively, and that
the value t is used in both yi and vki.

It remains to show that nullifi is computed cor-
rectly. Assume nullifi = ha. Then, since the verifica-
tion succeeds, we have:

e(nullifi, vki) = e(h, h̃) · yi ⇔
e(ha, h̃sSender+sni) · e(ha, w̃ti) = e(h, h̃) · e(ha, w̃ti) ⇔

e(h, h̃)a(sSender+sni) = e(h, h̃) ⇔
a(sSender + sni) = 1 ⇔

a = 1/(sSender + sni)

Thus, nullifi = ha = h1/(sSender+sni) as desired.

K.1.5 Zero-Knowledge

Given the statement x = (ccmi, vcmi, rcm
′, nullifi),

the simulator picks a random challenge ĉ, random
responses {α̂j}j∈[8] and a random v̂ki and computes:

ŷi = e(nullifi, v̂ki)/e(h, h̃)

and

X̂1 = gα̂1
1 gα̂2

2 gα̂3
3 gα̂4 · ccm−ĉ

i

X̂2 = gα̂3
3 gα̂5 · vcm−ĉ

X̂3 = gα̂1
1 gα̂6

6 gα̂7 · rcm′−ĉ

X̂4 = h̃α̂7 h̃α̂2w̃α̂8 · v̂k
−ĉ

i

X̂5 = qα̂8
i · ŷ

−ĉ
i

The simulator outputs the transcript
( ˆinit, ˆchallenge, ˆresponse) where

ˆinit = (v̂ki, ŷi, {X̂j}j∈[5])

ˆchallenge = ĉ

ˆresponse = {α̂j}j∈[8]

We argue that ( ˆinit, ˆchallenge, ˆresponse) is distributed
identically as (init, challenge, response) in the real ex-
ecution. Note that in the real execution vki is uni-
form in G2 (since ti is uniform) and c, {αj} are uni-
form in Zp (since {xj} are uniform). Given that, the
values yi, {Xj} are fully determined, as a function
of vki, c, {xj} (and the commitment basis). We ob-

serve that ( ˆinit, ˆchallenge, ˆresponse) is distributed ex-

actly the same. v̂ki, ĉ and {α̂j} are uniform in G2 and
Zp respectively. Then, the values yi, {Xj} adhere the
same conditions as in the real execution, as the veri-
fication outputs ‘accept’ on ( ˆinit, ˆchallenge, ˆresponse):

e(h, h̃) · ŷi = e(h, h̃) · e(nullifi, v̂ki)/e(h, h̃) = e(nullifi, v̂ki)

ccmĉ
i · X̂1 = ccmĉ

i · g
α̂1
1 gα̂2

2 gα̂3
3 gα̂4 · ccm−ĉ

i = gα̂1
1 gα̂2

2 gα̂3
3 gα̂4

vcmĉ
i · X̂2 = vcmĉ

i · g
α̂3
3 gα̂5 · vcm−ĉ = gα̂3

3 gα̂5

rcm′ĉ · X̂3 = rcm′ĉ · gα̂1
1 gα̂6

6 gα̂7 · rcm′−ĉ = gα̂1
1 gα̂7

6 gα̂6

v̂k
ĉ

i · X̂4 = v̂k
ĉ

i · h̃α̂7 h̃α̂2w̃α̂8 · v̂k
−ĉ

i = h̃α̂7 h̃α̂2w̃α̂8

ŷĉi · X̂5 = ŷĉi · q
α̂8
i · ŷ

−ĉ
i = q̂α8

i ■

K.2 KZG-Pedersen agreement

The prover wants to prove the following statement:

x = (c, c′, cm, Y ) (90)

w = [r, z, a] (91)

R(x,w) =

 c′ = cr ∧
cm = ga3g

z ∧
Y = qar //q = e(G, G̃)


(92)

Where r ← Zp, c is a KZG commitment, cm is a
Pedersen commitment (with a randomizer z) and a =
ϕ(i) where ϕ(x) is a polynomial.
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K.2.1 Prover

The prover picks uniformly random {xi}i∈[5] from Zp

and sends init:

cm′ = cmr = (ga3g
z)r = gar3 gzr

X1 = cx1

X2 = gx2
3 gx3

X3 = qx4

X4 = gx4
3 gx5

X5 = cmx1

Upon receiving the challenge e, the prover sends
response:

α1 = x1 + e · r
α2 = x2 + e · a
α3 = x3 + e · z
α4 = x4 + e · ar
α5 = x5 + e · zr

K.2.2 Verifier

c′
e ·X1 = cα1 (93)

cme ·X2 = gα2
3 gα3 (94)

Y e ·X3 = qα4 (95)

cm′e ·X4 = gα4
3 gα5 (96)

cm′e ·X5 = cmα1 (97)

K.2.3 Completeness

(93) : c′
e ·X1 = ce·r · cx1 = cx1+e·r = cα1

(94) : cme ·X2 = (ga3g
z)e · gx2

3 gx3 = gx2+e·a
3 gx3+e·z = gα2

3 gα3

(95) : Y e ·X3 = qe·arqx4 = qα4

(96) : cm′e ·X4 = ge·ar3 ge·zr · gx4
3 gx5 = gx4+e·ar

3 gx5+e·zr = gα4
3 gα5

(97) : cm′e ·X5 = ge·ar3 ge·zr · cmx1

= ge·ar3 ge·zr · gax1
3 gzx1

= (ga3 )
x1+er(gz)x1+er

= (ga3g
z)x1+er = cmα1

K.2.4 Soundness

Consider equations (98)-(102), which are implied by
equations (93)-(97) above.

• From equation (98) we can extract logc(c
′) =

(α1 − α′
1)/(e− e′).

• From equation (99) we can extract logcm(cm
′) =

(α1 − α′
1)/(e − e′). Notice that logc(c

′) =
logcm(cm

′) as required, denote this value by r.

• From equation (100) we can extract [a, z] ≜
log(g3,g)(cm) = [(α2−α′

2)/(e−e′), (α3−α′
3)/(e−

e′)].

• From equation (101) we get that m ≜ logq(Y ) =
(α4−α′

4)/(e− e′). We show later that m = a · r.

• Finally, from equation (102) we get [a′, z′] ≜
log(g3,g)(cm

′) = [(α4−α′
4)/(e−e′), (α5−α′

5)/(e−
e′)]. The fact that r = logcm(cm

′) implies that
[a′, z′] = r · [a, z] = [ra, rz].

• Notice that m = a = ra as required.

(93) =⇒ c′e−e′ = cα1−α′
1 (98)

(97) =⇒ cm′e−e′ = cmα1−α′
1 (99)

(94) =⇒ cme−e′ = g
α2−α′

2
3 gα3−α′

3 (100)

(95) =⇒ Y e−e′ = qα4−α′
4 (101)

(96) =⇒ cm′e−e′
= g

α4−α′
4

3 gα5−α′
5 (102)

K.2.5 Zero-Knowledge

First, notice that in the real execution the values
{xi}i∈[5] and e are uniformly random and the values
cm′ and {Xi}i∈[5] are correlated by (a, r, z, {xi}i∈[5]).
We show a simulator that outputs a distribution that
is indistinguishable from the above.
The simulator picks challenge′ = e and response′ =
{αi}i∈[5] at random from Zp. Then, it computes init′

as:

cm′ ←R G1

X1 = cα1 · c′−e

X2 = gα2
3 gα3 · cm−e

X3 = qα4 · Y −e

X4 = gα4
3 gα5 · cm′−e

X5 = cmα1 · cm′−e

All verification condition hold, as:

(93) :c′
e ·X1 = c′

e · cα1 · c′−e
= cα1

(94) :cme ·X2 = cme · gα2
3 gα3 · cm−e = gα2

3 gα3

(95) :Y e ·X3 = Y e · qα4 · Y −e = qα4

(96) :cm′e ·X4 = cm′e · gα4
3 gα5 · cm′−e

= gα4
3 gα5

(96) :cm′e ·X5 = cm′e · cmα1 · cm′−e
= cmα1
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