
Protecting Distributed Primitives against Leakage:

Equivocal Secret Sharing and More

Carmit Hazay

Bar-Ilan University

carmit.hazay@biu.ac.il

Muthuramakrishnan Venkitasubramaniam

Georgetown University

vmuthu@gmail.com

Mor Weiss

Bar-Ilan University

mor.weiss@biu.ac.il

Abstract

Leakage-resilient cryptography aims to protect cryptographic primitives from so-called �side
channel attacks� that exploit their physical implementation to learn their input or secret state.
Starting from the works of Ishai, Sahai and Wagner (CRYPTO`03) and Micali and Reyzin
(TCC`04), most works on leakage-resilient cryptography either focus on protecting general com-
putations, such as circuits or multiparty computation protocols, or on speci�c non-interactive
primitives such as storage, encryption and signatures. This work focuses on leakage-resilience
for the middle ground, namely for distributed and interactive cryptographic primitives.

Our main technical contribution is designing the �rst secret-sharing scheme that is equivocal,
resists adaptive probing of a constant fraction of bits from each share, while incurring only a
constant blowup in share size. Equivocation is a strong leakage-resilience guarantee, recently
introduced by Hazay et al. (ITC`21). Our construction is obtained via a general compiler
which we introduce, that transforms any secret-sharing scheme into an equivocal scheme against
adaptive leakage. An attractive feature of our compiler is that it respects additive reconstruction,
namely, if the original scheme has additive reconstruction, then the transformed scheme has linear
reconstruction.

We extend our compiler to a general paradigm for protecting distributed primitives against
leakage, and show its applicability to various primitives, including secret sharing, veri�able
secret sharing, function secret sharing, distributed encryption and signatures, and distributed
zero-knowledge proofs. For each of these primitives, our paradigm transforms any construction
of the primitive into a scheme that resists adaptive party corruptions, as well as adaptive probing
leakage of a constant fraction of bits in each share when the share is stored in memory (but not
when it is used in computations). Moreover, the transformation incurs only a constant blowup
in the share size, and respects additive reconstruction � an important feature for several of these
primitives, such as function secret sharing and distributed encryption.

Contents

1 Introduction 1
1.1 Our Results . 5
1.2 Applications . 6

1.2.1 Deniable Secret Sharing Schemes . 6
1.2.2 MPC Resilient to Leakage of �Data at Rest� 7

1.3 Future Directions and Open Questions . 8
1.4 Techniques . 9

1.4.1 Equivocation from RPEs and Standard Secret Sharing 9
1.4.2 Share-then-Encode: A General Paradigm for Leakage- and Tampering-Resilience 10

1.5 Related Work . 14
1.5.1 Leakage-Resilience for Data at Rest . 14
1.5.2 Leakage-resilient Secret Sharing . 15
1.5.3 Leakage-Resilient Memory and Storage . 16
1.5.4 Leakage-Resilient Distributed Primitives . 17
1.5.5 Leakage-Resilient MPC and General Computations 18
1.5.6 Tampering-Resilience . 18

2 Preliminaries 18
2.1 Leakage Classes . 19
2.2 Secret Sharing Schemes (SSSs) . 19

2.2.1 Resampleable Secret Sharing Schemes . 20
2.2.2 Probing-Resilient SSSs . 22
2.2.3 Equivocal Secret Sharing . 22

3 Reconstructible Probabilistic Encodings (RPEs) 23
3.1 Adaptive Take on RPEs . 25

4 Equivocal SSS from SSSs and RPEs 29
4.1 The Equivocal SSS Construction . 29
4.2 Deniable Secret Sharing Schemes . 33

5 Leakage-Resilient and Tampering-Resilient Distributed Primitives 34
5.1 Veri�able Secret Sharing (VSS) . 35
5.2 Distributed ZK (dZK) . 38
5.3 Function Secret Sharing (FSS) . 44
5.4 Threshold Cryptography . 51

A Adaptive Zero-Knowledge of the dZK proof of [BBC+19b] 64

1 Introduction

Starting with the works of Kocher et al. [Koc96, KJJ99], and more recently in works on Meltdown and
Spectre attacks [LSG+18, KHF+19]), it has been demonstrated time and again that cryptographic
primitives are susceptible to side-channel attacks.

The goal of leakage-resilient cryptography is to protect against such attacks. The focus of this
work is on constructing lightweight leakage-resilient variants of central distributed and interactive
cryptographic primitives. We �rst survey the main results in the �eld.

There has been a long and successful line of works on protecting either general computations
(initiated by Ishai, Sahai and Wagner [ISW03], and Micali and Reyzin [MR04]), or speci�c non-
interactive primitives such as storage (e.g., in [Dzi06, CLW06, AGV09]), signatures [BSW11], and
encryption schemes [DKL09, AGV09, NS09, DGK+, BG10, BS11]. (We refer the interested reader
to the excellent survey by Kalai and Reyzin [KR19] for a discussion of works in the �eld.)

Previous works on leakage-resilience. Works protecting general computations from leakage
constrain the permissible leakage in various ways, either restricting the complexity class from
which leakage functions can be chosen [ISW03, FRR+10, Rot12, MV13, Mil14, ADF16], or as-
suming leakage functions operate on disjoint sets of wires of the circuit [GR10, JV10, GR12, DF12,
DLZ15, DDN15, GIM+16] (the so called �Only Computation Leaks� � or OCL � model). Due
to their generality, these works are usually complex, rely on additional computational assump-
tions (such as public-key cryptography [GR10, JV10, GIM+16] or even indistinguishability obfus-
cation [GIM+16]), or incur high (polynomial) overheads. There are also works on leakage-resilient
Multi-Party Computation (MPC) protocols [BGJK12], as well as works on interactive protocols
(such as MPC [BCH12, BGJ+13, BDL14] and zero-knowledge proofs [GJS11, BCH12]) that achieve
a weaker leakage-resilience guarantee known as leakage tolerance, which allows the ideal-world ad-
versary to obtain leakage on the inputs of the honest parties.

On the other extreme, there are leakage-resilient constructions of storage [Dzi06, CLW06, AGV09,
DKL09, BKKV10, DHLW10]), signatures [BSW11], and encryption schemes [DKL09, AGV09, NS09,
DGK+, BG10, BS11]. While focusing on these primitives admits simpler and more e�cient con-
structions than in the general case, these constructions are naturally more limited since they o�er
solutions for speci�c (and non-interactive) tasks only, and do not readily extend to the distributed
setting in which multiple parties wish to jointly compute on their inputs in a leakage-resilient manner.

There are only a handful of works on the middle ground, namely on protecting distributed (and
interactive) primitives from leakage, despite the centrality of such primitives in designing cryp-
tographic protocols.1 Speci�cally, Boyle et al. [BGK11] use randomness extractors to construct
coin-tossing and veri�able secret sharing secure against a single leakage query (i.e., non-adaptive
leakage), and [GJS11, BCH12] design leakage-tolerant zero-knowledge proofs (as noted above, leak-
age tolerance is a weaker notion than leakage-resilience).

Leakage-resilient secret sharing. Unlike other distributed primitives, the leakage-resilient no-
tion of secret sharing � an important cryptographic primitive with various applications in dif-
ferent areas of cryptography � has received extensive attention from the community in recent
years [DP07, DDV10, GK18a, GK18b, BDIR18, SV19, BS19, KMS19, ADN+19, CGG+20, LCG+20,
MNP+21, MPSW21, TX21, CKOS21]. Focusing on secret sharing, which only protects information

1We note that one could protect such primitives from leakage using works protecting general computations, or by
employing generic leakage-resilient MPC protocols. However, as discussed above these are complex, and either incur
high costs or require additional computational assumptions.

1

(as opposed to protecting computation, as in the works on general leakage-resilient computation
discussed above) allows to obtain simpler and more e�cient constructions.

Works on Leakage-Resilient Secret Sharing Schemes (LR-SSSs) can be roughly divided into two
categories. The �rst category, initiated by [BDIR18] (though some results appeared already in
earlier works, e.g., [BIVW16]), analyzes the leakage-resilience properties of existing secret-sharing
schemes. They show that linear secret sharing schemes2 resist non-adaptive local leakage, namely
the adversary can make a single leakage query, which returns few leakage bits computed on each
share independently.

Proving leakage-resilience of existing primitives has several advantages. First, applications can
still exploit speci�c design features or additional properties, such as additivity or linearity of recon-
struction (which are very useful, as discussed in Section 1.4 below). Moreover, classic cryptographic
primitives are usually more e�cient than special-purpose leakage-resilient schemes. However, re-
stricting oneself to existing primitives has a major disadvantage: we are restricted by the leakage-
resilience properties of a scheme, which was not designed with the goal of protecting against leakage.
In some cases, it is unknown whether leakage resilience can be enhanced (e.g., to allow adaptive
leakage in which the adversary makes several leakage queries, each depending on the answers to
previous queries). There are also inherent limitations to the leakage-resilience of some schemes, in
terms of the leakage bound and reconstruction threshold (see Section 1.5). For example, Shamir's
secret sharing scheme over �elds of characteristic 2 does not resist leakage of even a single bit from
each share [GW16].

These limitations of existing secret sharing schemes have motivated the second category of LR-
SSSs which focuses on designing new schemes � thus o�ering the possibility to overcome the inherent
limitations of existing schemes. The goal of this line of works is to resist leakage from a wide
range of leakage functions and arbitrary thresholds [ADN+19, SV19, KMS19, CGG+20, LCG+20,
CKOS21]. The advantage of designing new schemes is clear: we can (potentially) protect against
a wide range of leakage classes, and in particular ones against which classic secret sharing schemes
are insecure, such as adaptive leakage queries [KMS19, CGG+20, LCG+20, CKOS21], or global
leakage (for restricted classes of permissible leakage functions) [BIVW16, LCG+20]. Unfortunately,
the stronger leakage-resilience guarantee does not come without a price: these constructions are
typically complex [KMS19, CGG+20, LCG+20, CKOS21]; some works are considerably less e�cient
than standard (non-LR) schemes [GK18a, GK18b, CGG+20]; and most (if not all) works do not
maintain the design bene�ts of classic constructions (such as linear reconstruction) and thus cannot
be used in many applications of standard secret sharing [DP07, DDV10, GK18a, GK18b, ADN+19,
SV19, BS19, KMS19, CGG+20, LCG+20, CKOS21]. Some of these works describe a general compiler
that transforms any secret sharing schem into a leakage-resilient one [SV19, ADN+19, CGG+20],
while others describe specially-tailored constructions [GK18a, KMS19, LCG+20, CKOS21].

The literature on LR-SSSs can be viewed as studying two extremes: either focusing on existing
schemes and analyzing their leakage-resilience guarantees, or alternatively pushing leakage-resilience
�to the limit�, mostly by designing new specialized (and often also complex and signi�cantly less e�-
cient) schemes.3 But what can we obtain by only slightly modifying existing schemes? In particular,

Can we obtain LR-SSSs that surpass the leakage-resilience of classic schemes while maintaining
their structural features?

More generally, we study the leakage-resilience of distributed cryptographic primitives such

2Roughly, in a linear secret sharing over a �nite �eld each share is a linear combination of the secret and random
�eld elements.

3As noted above, the works of [SV19, ADN+19, CGG+20] construct general compilers. However, [SV19, ADN+19]
resists only non-adaptive leakage and the construction of [CGG+20] has low rate.

2

as Veri�able Secret Sharing (VSS), Function Secret Sharing (FSS), Threshold Encryption (TES),
threshold signatures, and distributed Zero-Knowledge (dZK) proofs, asking the following:

Do there exist simple leakage-resilient variants of distributed cryptographic primitives such as VSS,
FSS, TES, threshold signatures, and dZK?

We focus on a setting in which the adversary can maliciously and adaptively corrupt parties (i.e.,
the adversary does not need to commit ahead of time to the set of corrupted parties). Similar
to the case of secret sharing, our goal is to devise simple schemes that preserve the main design
features of existing (non-LR) schemes. To the best of our knowledge, there are no leakage-resilient
constructions of FSS, TES, distributed signatures, and dZK proofs, even disregarding the desiderata
of simple schemes. Existing leakage-resilient VSS schemes [BGK11] are only secure against static
corruptions (i.e., when the set of corrupted parties is determined at the onset of the computation),
and employ randomness extractors that do not preserve linearity, which � as explained below � is
one of our main goals in this work. (See Section 1.5 for a detailed discussion of the VSS scheme
of [BGK11], and a comparison with our results.)

Considering leakage-resilience in the more general context of distributed primitives also helps in
identifying the important structural features of existing schemes which we should strive to preserve.
For example, applications of FSS require linear sharing (namely, that the reconstruction procedure
is linear), and applications of TES in MPC require that parties hold additive shares of a secret
key.4 Thus, in this work we focus on designing leakage-resilient secret sharing schemes � and more
generally, distributed primitives � with linear reconstruction.

Our leakage model: adaptive probing-resilience for data at rest. We focus on protecting
cryptographic primitives against local probing leakage (as discussed in Section 1.5, similar models
have been considered in the past). We provide information-theoretic security against adversaries that
can adaptively probe the shares, as well as corrupt any unauthorized set (i.e., a subset of parties
such that their collective shares reveal nothing about the shared secret).5 Our focus on probing
resilience stems from our goal of preserving linear reconstruction, which implies we cannot hope to
protect against leakage classes that are signi�cantly more general than probing.

For distributed primitives beyond secret sharing, we focus on protecting data at rest. That is,
we protect the shares from leakage throughout the lifetime of the process, except when they are
directly computed on. Our leakage model is related to several leakage models (in particular, that
of [BDIR18]), and can be seen as a combination of the leakage model of [ISW03] that restricts the
function class from which leakage functions can be chosen, and the �Only Computation Leaks� (OCL)
model of [MR04] which assumes that di�erent memory components leak separately. (As noted in
Section 1.1 below, our constructions actually achieve a stronger notion known as OCL+ [BCG+11].)

Our focus on protecting data at rest is motivated by many application scenarios in which following
a short sharing phase � in which one party locally generates and distributes shares to the other
parties � the shares are stored in memory for extended time periods, during which the adversary
can adaptively leak on them. Since leakage may accumulate over time, and the adversary might
be able to in�ltrate the devices of certain parties (in e�ect making them � passively or actively �
corrupted), it is important to incorporate party corruptions into the security model. We expect the

4For example, in the TES based on Di�e-Helman, parties hold public-key shares of the form gsk1 , . . . , gskm , where
g is a public group generator, and sk1, . . . , skm are the secret-key shares. In this case, the public key is g

∑
i ski and

the secret key sk =
∑

i ski is unknown to any party. See Section 5 for further details.
5For primitives with computational security (such as FSS and TES), we provide the best possible security, namely

computational security for party corruptions, and information-theoretic for leakage. See Sections 1.4 and 5 for further
details on the security de�nition.

3

periods of time during which shares are computed on � which involve fast local computations, or fast
interactive protocols requiring all parties to be online simultaneously � to be much shorter than the
lifetime of the system (indeed, state-of-the-art practical secure multi-party computation protocols
last milliseconds [YWZ20]). Therefore, an adversary would not be able to launch a meaningful
leakage attack during these short computation phases.

Example: Function Secret Sharing (FSS). We demonstrate our leakage model and its motivation
through the example of FSS. FSS consists of a generation phase in which a function f is shared
between multiple parties by generating function keys; and a local evaluation phase � whose duration
we expect to typically be marginal compared to the lifetime of the system � in which each party can
locally compute from its function key a share of the output f (x), for any input x. These output
shares form an additive (or, more generally, linear) secret sharing of f (x). During this process,
we protect the function keys and output shares from leakage, except during the evaluation phase in
which the output shares are (locally) computed from the function keys. (We stress that once the
evaluation phase terminates, function keys and output shares are again protected from leakage.)

In FSS applications, the function and output shares are often stored in memory for extended
time periods, thus naturally necessitating leakage-resilience for data at rest. Indeed, in one FSS
application, statistics (such as website tra�c statistics [BGI16]) � in the form of output shares �
are accumulated over time. In particular, output shares are stored in memory for long periods of
time. Another application is �FSS as a service�, namely when the function keys are distributed
between multiple servers (each server holds a single function key), and users can ask the servers to
evaluate the function on inputs of their choice. More speci�cally, a data-owner generates function
keys k1, . . . , km for a secret function f , and stores ki on server i. Users can then ask the servers for
the value f (x) by sending x to each server i, who locally evaluates its function key ki on x (using
the FSS-evaluation procedure), and sends the output share yi back to the user, who can then recover
f (x) from the output shares y1 . . . , ym. Thus, the user learns f (x) but does not learn f , and none of
the servers learn f or f (x). In this scenario, function keys may be stored on the servers inde�nitely,
and output shares yi might likewise be stored for extended time periods, e.g., for backup purposes,
so it is important to protect both from leakage.

Our leakage model is further motivated by other situations in which shares are stored in memory
for a long time, e.g., when using Beaver triples [Bea91] that are generated in an o�ine phase and
later consumed during the execution of an MPC protocol. We describe further applications (e.g.,
for TES) in Sections 1.4 and 5, and note that in some cases (e.g., for certain TES constructions) we
are able to protect the entire process � including computation � from leakage.

Beyond leakage-resilience. In the context of secret sharing, we also explore a stronger leakage-
resilience guarantee known as equivocation, recently introduced by [HVW21] and employed towards
constructing zero-knowledge proof systems. Roughly, equivocation guarantees that there exists an
e�cient simulator that can answer adaptive leakage queries, as well as adaptively simulate the
views of corrupted parties. Moreover, at some point during the simulation, the simulator is given an
arbitrary secret, and is then able to generate an entire secret sharing of this secret which is consistent
with the leakage and the views of corrupted parties. That is, the leakage can be e�ciently �explained�
as leakage on the shares of any arbitrary secret. More speci�cally, we consider semi-honest adversaries
that can adaptively obtain the shares of any unauthorized set, as well as adaptively probe a constant
fraction of bits from the shares of every other party.

Unfortunately, the existing equivocal SSS [HVW21] is a degenerate one-party scheme,6 so the
adversary cannot obtain the share in full. Therefore, we ask:

6In such schemes there is a single party and only one share. Secrecy holds under the supported leakage class, but
not if the share is revealed in full. This is a degenerate scheme since it is not useful as a secret-sharing mechanism,

4

Can we construct multiparty equivocal SSSs secure against probing leakage?

1.1 Our Results

We construct the �rst multiparty equivocal secret sharing scheme. Our scheme can withstand any
number of corrupted parties, as well as leakage of a constant fraction of bits from each of the other
shares. Our scheme is also tamper-resilient against arbitrary tampering of every share that modi�es
a constant fraction of bits (below the error-correction bound) in the share. We then extend our
technique to obtain leakage-resilience and tampering-resilience for other distributed primitives.

Equivocal secret-sharing. We design a compiler that transforms standard (possibly non-leakage-
resilient) SSSs into LR-SSSs with the following features. First, it obtains the stronger guarantee of
equivocation. Second, it respects additive reconstruction, namely if the underlying SSS has additive
reconstruction, then the resultant LR-SSS will have linear reconstruction. Third, our compiler
guarantees leakage-resilience against any access structure, in the following sense. Given any SSS for
an access structure Acc, the resultant LR-SSS is leakage-resilient against an adversary obtaining the
shares of an unauthorized set T /∈ Acc, as well as the answers to adaptive probing queries that can leak
a constant fraction of bits from each share. Finally, the resultant scheme is also tampering-resilient
in the following sense: the correct secret will be reconstructed, even if an external adversary can
arbitrarily modify a constant fraction of bits in each share. In fact, we obtain the stronger guarantee
that the original share can be e�ciently recovered from the modi�ed share. (Thus, necessarily, we can
only handle tampering of a fraction of bits which is below the error-correction bound. See Section 1.5
for a comparison with other tampering-resilient notions.) Our compiler is also conceptually simple:
roughly, it protects the shares by encoding them using a linear code with equivocation properties
(known as an RPE [CDMW08, BDKM16, CDMW18, BDG+18], see Section 1.4).

Our construction is summarized in the following theorem, where (Acc, ℓ)-equivocation means the
adversary can adaptively obtain the shares of any unauthorized set T /∈ Acc, as well as adaptively
probe ℓ bits from every other share, and τ -tampering-resilience guarantees that the correct secret
will be reconstructed even if an external adversary can arbitrarily modify τ bits in every share. (See
Theorem 4.1 for the formal statement.)

Theorem 1.1 (Equivocal SSS from standard SSS � informal). Let SSS be an m-party secret sharing
scheme for secrets in S and an access structure Acc, with shares of length N . Then there exists
an ℓ = Ω(N) for which there exists an m-party secret sharing scheme SSS′ for secrets in S and
access structure Acc, with ℓ-tampering-resilience, and (Acc, ℓ)-equivocation. Moreover, the secret
shares have length O (N). Furthermore, if SSS has additive reconstruction, then SSS′ has linear
reconstruction.

In Table 1 (Page 17) we compare our equivocal SSS with existing LR-SSSs. Applying Theorem 1.1
to Shamir's secret sharing, we obtain the following (see Corollary 4.2 for the formal statement).

Corollary 1.2 (Equivocal SSS � informal). There exists an ℓ ∈ N such that for any t < m ∈ N
there exists an m-party (Acc, ℓ)-equivocal and ℓ-tampering-resilient secret sharing scheme, where Acc

consists of all subsets of [m] of size more than t. Moreover, ℓ = Ω(N), where N is the share length.

Corollary 1.2 demonstrates that by applying our transformation to Shamir's secret sharing
scheme, we can circumvent the impossibility result of [GW16] on the leakage-insecurity of Shamir's
scheme over �elds of characteristic 2, as well as the lower bounds of [BDIR18] and [NS20] (which
are discussed in Section 1.5), while still preserving the main features of Shamir's scheme.

but has application to, e.g., construction of zero-knowledge probabilistic proof systems.

5

Leakage-resilient distributed primitives. We extend our compiler to a general paradigm for
securing cryptographic primitives against adaptive probing leakage, and show its applicability to
a wide range of primitives in which a secret is distributed between multiple parties. Speci�cally,
we obtain leakage-resilient variants of veri�able secret sharing, function secret sharing, threshold
encryption and signatures, and distributed zero-knowledge proofs. In all our constructions, the
blowup in the share size is constant (compared to the original, non-leakage-resilient scheme), and
the resultant scheme is secure against adaptive probing of a constant fraction of bits from each share
separately even if the adversary adaptively corrupts parties. (We note that in certain primitives
� such as TES and FSS � each party may store several shares of di�erent secrets, in which case
we assume that each share leaks separately. As discussed above, this is similar to the restriction
on leakage in the OCL model. However, our constructions satisfy a stronger guarantee known as
OCL+ [BCG+11] which allows to alternately leak from the shares, where each leakage query might
depend on the responses to previous queries. In particular, the leakage on di�erent shares is not
necessarily independent.) All our constructions are also tamper-resilient against tampering of a
constant fraction of bits in each share. The constructions and formal theorem statements appear in
Section 5.

We note that de�ning leakage-resilience for these primitives is highly non-trivial. This is espe-
cially true for computational primitives such as TES and FSS, in which we need to combine the
computational security guarantee for fully-revealed shares, with an information-theoretic guarantee
for leakage on the other shares.7 Even for information-theoretic objects such as dZK proofs, we
encounter subtleties since standard de�nitions are only statically-secure. As an additional contribu-
tion, we generalize these de�nitions to the adaptive setting, and prove that existing protocols (e.g.,
a protocol of [BBC+19a]) are adaptively-secure, a result which may be of independent interest. See
Section 1.4, and the formal de�nitions in Section 5, for a discussion of the subtleties of the de�nitions.

1.2 Applications

In this section we describe several applications of equivocal SSSs.

1.2.1 Deniable Secret Sharing Schemes

Deniability in the context of encryption. The notion of deniable encryption, introduced by Canetti
et al. [CDNO97], ensures private communication in the presence of attackers that are also provided
with all the private information: the plaintext, the random bits used for encryption, and any secret
keys the parties have. Speci�cally, deniable encryption introduces an additional e�cient �faking�
algorithm that is not part of the standard secure communication de�nitions. This new algorithm
generates �fake� internal states for the participating parties, that are indistinguishable from the
real states, and are consistent with the (public) communication transcript and any plaintext of
the parties' choice. In addition to being an interesting object, deniable encryption has important
applications, the most immediate one being preventing vote-buying in electronic voting schemes.
Deniability is a very strong security guarantee. Speci�cally, deniable encryption schemes require
stronger hardness assumptions than classic encryption schemes [SW14, CPP20].8

7We note that similar security models � with information-theoretic security against leakage, and computational
security for the underlying primitive itself � have been considered in the leakage resilience literature, e.g., for public-key
primitives in the bounded retrieval model [Dzi06, CLW06]. However, due to the distributed nature of the primitives
we consider, our security de�nitions are more intricate than in these aforementioned works.

8We note that information-theoretic symmetric-key encryption schemes are easily deniable as every ciphertext can
be explained with respect to every plaintext. However, symmetric-key encryption requires the parties to agree on the
secret key, i.e., a-priori agree on common randomness, and it is unclear how to do so in a deniable way.

6

Deniable secret-sharing. The notion of deniability can be highly useful in applications using
secret sharing, where a dealer distributes the shares of a sensitive database � e.g., a clinic sharing
a database containing the medical records of its patients � amongst a set of parties or servers.9

Clearly, if the attacker obtains su�ciently many shares (speci�cally, of an authorized set), it can
fully recover the secret. On the other hand, obtaining only the shares of an unauthorized set implies
deniability since the secret is information-theoretically hidden. (We stress, however, that even in this
case the �faking� algorithm may not be e�cient.) Deniable secret sharing explores an intermediate
scenario where the adversary holds the shares of some unauthorized set, and additionally obtains
partial knowledge of the honest parties' shares. This model is motivated by the fact that an attacker
may attack servers in various ways, in some cases succeeding in extracting the entire share, while in
other cases it may only be able to gather (through physical observations) some leakage on the share.

Formally de�ning deniable secret sharing requires some care, in particular in deciding what
information is available to the faking algorithm. In the context of public-key deniable encryption,
the faking algorithm knows the ciphertext it is trying to �explain�, so a natural adaptation to
secret sharing is to give the faking algorithm the secret shares it is trying to equivocate. This,
however, is useless � it should be intuitively clear that the faking algorithm cannot successfully
explain the leakage without knowing which parts of the secret shares had leaked. Therefore, we
de�ne deniability by giving the faking algorithm the leakage, rather than the entire secret sharing.
Speci�cally, the faking algorithm is given the leakage queries and responses (but not the secret
shares in their entirety), and using them �explains� the sharing as a sharing of an arbitrary (possibly
di�erent) secret, by providing �fake� randomness for the sharing algorithm. This notion of �public
leakage� arises naturally in many settings, since oftentimes leaked data becomes public (e.g., via
social or other forms of media). For example, in the application scenario described above where a
clinic A shares its database of patient medical records, this database might contain medical records
of celebrities. A competing clinic B might be able to obtain leakage on the shares, allowing it
to learn the identity and medical history of some celebrity patients. Clinic B might publish this
information with the hopes of ruining the reputation of clinic A. Deniability allows clinic A to
give an alternative explanation for the shares � in particular, replacing the identities of all celebrity
patients � and publish it to dismiss the leaked information.

Our deniable secret-sharing scheme. We design deniable secret sharing schemes based on equiv-
ocal SSSs, where the faking algorithm emulates the equivocal SSS simulator. We note that to
equivocate the shares, the equivocal SSS simulator needs to know the leakage queries and responses,
and these are indeed available to the faking algorithm. Using the equivocated secret shares, the
dealer can convincingly renounce the original secret, where the equivocated shares serve as a �proof�
that validates an arbitrary secret, even given the adversary's view. Denying the secret provides a
strong guarantee against coercing the dealer, especially since our focus is on e�cient deniability. We
further elaborate on this application in Section 4.2.

1.2.2 MPC Resilient to Leakage of �Data at Rest�

Equivocal SSSs are useful towards designing Multiparty Computation (MPC) protocols which guar-
antee leakage-resilience of private inputs (alternatively, secret local states) when they are stored in
memory. That is, MPC with leakage-resilience in the same �data at rest� leakage model described
above. More speci�cally, we consider protocols in which following a leak-free Sharing phase, in which
each party locally secret-shares its input (either sending them to other parties, or storing them lo-
cally until they will be communicated at a later point), the shares are stored in memory until a later
leak-free Computation phase, in which parties run an MPC protocol on the secret shares to compute

9We assume no a-priori common randomness between the dealer and the parties.

7

the outcome. We stress that the sharing phase is function oblivious, namely it can be executed
before parties even know which function they wish to jointly compute on their inputs.

Similar to the other primitives considered in this work, this model is motivated by realistic
application scenarios in which the (short) computation phase might be executed well after the
(short) sharing phase. In particular, the leak-free assumption for the sharing phase is justi�ed by
situations in which parties obtain their secret inputs (e.g., bank account balance when the input is
for the Millionaire's problem) while in their own homes, i.e., in locations which are less vulnerable
to side-channel attacks; or because once they are given their private inputs, parties are likely to
quickly �protect� them by performing a fast local computation (i.e., sharing, similar to how one
would protect a sensitive word document by adding a password). The leak-free assumption for the
computation phase is likewise justi�ed because interactive protocols that require all parties to be
online at the same time, and for the duration of the execution, are expected to be fast.

However, between the sharing and computation phases, the secret shares are stored in the internal
state of the parties, e.g., on their laptops. Thus, the shares might be subjected to various side
channel attacks (as laptop would most likely be carried around by their owners), especially since the
computation phase might be executed long after the sharing phase had ended. Moreover, during this
time leakage on one party's state might accumulate, up to the point that its internal state might leak
entirely. Alternatively, an adversary might be able to in�ltrate the party's laptop, thus obtaining
its entire internal state.

Equivocal SSSs naturally give a leakage-resilient solution for MPC protocols in this leakage model,
against adaptive leakage, by having parties share their inputs using an equivocal SSS. Speci�cally,
leakage on the shares can be adaptively simulated, where if the actual amount of leakage on a party
passes some a-priori bound then we consider the party as being (semi-honestly) �corrupted�, which is
supported by the equivocal SSS (that allows for adaptively leaking full shares). If, at the onset of the
computation phase, a party is corrupted, we can equivocate the shares consistently with its actual
input. (We note that if the MPC protocol run during the computation phase is adaptively-secure,
then we can also handle adaptive corruptions during the computation phase.) Thus, equivocal
SSSs can be used to protect MPC protocols from adaptive leakage and adaptive semi-honest party
corruptions. We note that LR-SSSs which are not equivocal provides no guarantees against adaptive
party corruptions (and sometimes not even against adaptive leakage queries).

1.3 Future Directions and Open Questions

We initiate the study of designing leakage-resilient cryptographic primitives by applying a light-
weight procedure which respects additive reconstruction. We demonstrate the usefulness of our
paradigm by applying it to various cryptographic primitives.

Our work still leaves several interesting research directions to explore. First, it would be interest-
ing to explore which other primitives could be protected from probing leakage using our paradigm.
Second, our constructions �respect� additive reconstruction, in the sense that applications relying on
additive reconstruction can use our leakage-resilient primitives. As discussed above, this is helpful
in the context of FSS and TES. Extending our paradigm to respect general linear reconstruction
procedures will allow using our leakage-resilient constructions in an even wider array of applications.
Moreover, devising an equivocal SSS with a multiplicity property (which enables multiplying shared
secrets by operating locally on the shares, and then executing some simple �correction� protocol),
would yield leakage-resilient MPC which resists leakage even during computation, thus extending
our results beyond the �data at rest� model. Finally, it is natural to ask whether our results extend
to more general leakage classes.

8

1.4 Techniques

In this section we describe our paradigm and the resultant constructions in more detail. We start
by describing our compiler for SSSs.

Recall from Section 1.1 that our goal is to obtain simple SSSs with linear reconstruction and
probing resilience against an adaptive adversary that can probe a constant fraction of bits from
each share. More generally, we wish to design a general compiler from SSSs to LR-SSSs which
preserves e�ciency and respects additive reconstruction (namely, if the original scheme has additive
reconstruction then the resultant LR scheme will have linear reconstruction). A natural starting
point would be to use some sort of encoding, similar to how leakage-resilient compilers for general
computations �rst encode the input for the computation. This encoding can either apply to the
vector of secret shares, or to each share separately. To obtain leakage-resilience, it should posses
some leakage-resilience guarantees. Moreover, to achieve linear reconstruction, this encoding should
have linear reconstruction (i.e., be a linear code). However, to obtain equivocation, as needed by
our main application of equivocal SSSs, the linear code should posses an additional equivocation
property which, roughly, guarantees that given the leakage on the encoding of any message msg,
and given any arbitrary message msg′, the leakage can be �explained� in retrospect as the leakage on
an encoding of msg′. We note that such leakage-resilience and equivocation properties necessitate
randomized encoding. Fortunately, such encodings exist.

Main building block: Reconstructible Probabilistic Encodings (RPEs). RPEs [CDMW08,
BDKM16, CDMW18, BDG+18] are, roughly, linear codes with an equivocation property. More
speci�cally, an RPE consists of a randomized encoding procedure Encode, a deterministic linear
decoder Decode, and a randomized resampler algorithm Rec, where Encode (msg) outputs a random
codeword from a set of possible codewords for msg. (For example, this set can consist of all code-
words obtained by applying the generator matrix of a linear code to msg ◦ s, namely to the string
obtained by concatenating an arbitrary su�x s to msg.) An RPE satis�es the following properties.
First, it has error correction from a constant fraction of errors. Second, it has probing resilience
for a constant fraction of probed bits, in the sense that for every msg,msg′, the leakage on random
encodings of msg,msg′ are statistically close. Finally, it is equivocal in the sense that for any mes-
sage msg, any subset I of probed bits leak from a random encoding c ← Encode (msg) of msg, and
any message msg′, Rec (I, leak,msg′) outputs an encoding c′ of msg′ which is statistically close to
an encoding of msg′ that is random subject to being consistent with the leakage.10 We note that
RPEs resist non-adaptive leakage (also in the equivocation property), but since all properties are
statistical, this naturally extends to resisting adaptive leakage, as we show in Section 3.1.

1.4.1 Equivocation from RPEs and Standard Secret Sharing

There is a natural connection between RPEs and equivocal secret sharing, since both o�er a method
of encoding a message in a way that can later be equivocated. This connection was recently used
in [HVW21], who used the equivocation of RPEs to construct zero-knowledge probabilistic proof
systems. More speci�cally, Hazay et al. [HVW21] interpreted RPEs as a degenerate form of equivocal
secret sharing, in which there is a single share, which the adversary can probe. This, of course, does
not provide any meaningful way of distributing (i.e., sharing) the data, which is the main purpose

10We note that RPEs are usually de�ned with perfect security, in the sense that leakage-resilience guarantees that
the bits leaked from a random encoding of any message msg are uniformly distributed, and the output of Rec is
distributed identically to a random encoding of msg′ subject to being consistent with the leakage. We chose to present
a relaxed version of RPEs because it su�ces for our needs, and allows us to quantify exactly how errors in the RPE
carry over to the resultant constructions.

9

of a SSS (but it does give a meaningful notion of equivocal encoding of the data). Moreover,
equivocal SSSs can provide a much stronger LR guarantee � the secret remains protected even if
an (unauthorized) subset of shares are leaked in full. In particular, equivocal SSSs can potentially
obtain a much larger leakage rate than RPEs.

Our main observation in this work is that instead of interpreting RPEs as equivocal SSSs, one
can use them to transform essentially any standard SSS into an equivocal one. The transformation
is conceptually simple: to share a secret, �rst share it using the underlying SSS, then encode each
share separately using the RPE. To reconstruct the secret, �rst decode each RPE encoding, then
recover the secret using the reconstruction procedure of the underlying SSS. The resultant scheme
resists adaptive probing leakage, since leakage can be simulated by answering queries using encodings
of 0 (or any arbitrary message). Moreover, a combination of the equivocation of the RPE and the
secrecy of the underlying SSS guarantees that the resultant SSS is equivocal. Indeed, a simulator can
initially answer leakage queries according to an honestly-generated sharing of 0. At some point, the
simulator is given an arbitrary secret msg′. At this point, secrecy of the underlying SSS guarantees
the simulator can generate a secret sharing of msg′ which is consistent with the subset of shares
that were revealed in full to the adversary. Then, the resampler algorithm of the RPE can be used
to equivocate encodings for the remaining shares, consistently with the leakage already provided on
them. (We note that the actual analysis � which appears in Section 4 � is more complex.) Finally,
tampering-resilience follows from the error-correction of the RPE.

The equivocal SSS described in Corollary 1.2 is obtained by applying our compiler to Shamir's
secret sharing and the RPE of [DGR97, DGR99]. More speci�cally, Decatur et al. [DGR97, DGR99]
construct a linear code with constant rate, and leakage resilience against a constant fraction of leaked
bits. Linearity of the code implies it is also equivocal due to its large dual distance (see [BDG+18,
Lemma 2]).

1.4.2 Share-then-Encode: A General Paradigm for Leakage- and Tampering-Resilience

We show that our technique is applicable to a wide range of distributed cryptographic primi-
tives, constructing leakage-resilient primitives against probing leakage of data at rest, that are also
tampering-resilient. For the primitives discussed below, we identify distinct sharing and reconstruc-
tion procedures, and protect the shares by RPE-encoding each share separately. These primitives
include protocols and procedures during which the shares are computed on. To execute these proto-
cols/procedures, parties �rst RPE-decode their share, perform the computation on it, RPE-encode
the result, and �nally erase the intermediate values of the computation. We note that several of the
applications described below crucially rely on the linear reconstruction property of the underlying
primitive.

In all our constructions, the blowup in share size (compared to the underlying non-leakage-
resilient scheme) is constant, and the resultant scheme resists adaptive probing and tampering of a
constant fraction of bits from each share separately. We stress that security is maintained even if the
adversary simultaneously corrupts parties and obtains leakage on the shares of the honest parties.
By default, we allow for adaptive corruptions as well as adaptive leakage queries. With the exception
of veri�able secret sharing, the primitives we study below are usually de�ned with static security.
Thus, to obtain security in the presence of leakage with adaptive party corruptions, we need to �rst
de�ne adaptive security for these primitives (without leakage), which we then extend to adaptive
security in the presence of leakage. As we explain below, de�ning adaptive leakage-resilience is quite
subtle, especially for primitives (such as threshold encryption and function secret sharing) with
computational security. We note that if one is willing to settle for security against adaptive leakage
queries but with static party corruptions, then we can simplify our de�nitions to only handle static

10

corruptions (and rely on the standard static-security of the underlying primitives), however de�ning
security in the presence of leakage remains quite intricate also in this case.

Veri�able Secret Sharing (VSS). A VSS scheme strengthens standard SSSs to protect against a
scenario in which the entity generating the shares (called the �dealer�) is corrupted. More speci�cally,
a VSS scheme consists of sharing and reconstruction procedures as in standard SSSs, but is also
associated with a Veri�cation protocol in which parties verify their shares are consistent.11 VSS
has secrecy and correctness as in standard secret sharing, and guarantees an additional commitment
property, stating that even if a small subset of corrupted parties collude with a corrupted dealer, then
following the veri�cation phase the dealer is committed to some secret which will be reconstructed,
regardless of the behavior of the corrupted parties during reconstruction.

We de�ne leakage-resilient VSS as VSS schemes with a stronger secrecy guarantee that holds even
in the presence of leakage on the shares. This is formalized through a distinguishing game between
the adversary and a challenger, in which the adversary can adaptively corrupt parties throughout the
sharing and veri�cation phases (as in standard VSS), but once veri�cation ends, it can additionally
adaptively probe a constant fraction of bits from the share of every honest party. (Our construction
also generalizes to protect against leakage between the sharing and veri�cation phases.) We require
that the adversary obtains only a negligible advantage in distinguishing between any two secrets
shared by the dealer.

We obtain LR-VSS similarly to our equivocal SSS described above. Roughly, we transform
a standard VSS scheme VSS into a Leakage-Resilient VSS (LR-VSS) VSS′ by having the dealer
generate the shares as in VSS, and then the parties verify the shares by running the veri�cation
protocol of VSS. Once veri�cation ends, each party RPE-encodes its updated share and erases all
information except for this (encoded) updated share.

Given that VSS is oftentimes used as a building block in constructing general multiparty compu-
tation protocols, as well as speci�c distributed tasks (e.g., coin tossing), we believe that our LR-VSS
could be useful towards constructing future leakage-resilient protocols.

Distributed Zero-Knowledge (dZK) Proofs. Distributed ZK proofs [BBC+19b] generalize the
notion of standard ZK proofs to a setting in which the prover interacts with a set of veri�ers, where
the input statement to be veri�ed is distributed between the veri�ers, and the prover holds the
input statement and the corresponding witness (in cases when such a witness exists). throughout
the protocol execution, the prover distributes proof shares between the veri�ers, which the veri�ers
then use to determine their output (either accept or reject). Our paradigm can be used to protect
the proof shares, except when they are directly computed on. We note that in existing dZK proofs
(e.g., [BBC+19b]) there are extended time periods during which parties perform computations that
are independent of the proof shares (e.g., running a coin-tossing sub-protocol). During such times,
our paradigm protects the proof shares from leakage.

More speci�cally, we de�ne leakage-resilient dZK by comparing a real-world execution, in which
the adversary A interacts with a challenger C, to an ideal execution in which A interacts with
a simulator Sim. The adversary is allowed to adaptively corrupt veri�ers, as well as adaptively
probe proof shares of honest veri�ers. In both executions, the challenger and simulator emulate the
honest parties, whereas A assumes full control of the corrupted parties. We note that the standard
security notion for dZK proofs is for static corruptions. Our constructions can be instantiated with

11We note that standard VSS schemes consider only a sharing protocol (which includes the veri�cation protocol)
and a reconstruction procedure. We chose to separate the sharing algorithm and the veri�cation protocol, since this
enables us to more clearly capture the leakage-resilience guarantees of our VSS protocols.

11

such statically-secure dZK proofs, in which case LR holds for static party corruptions and adaptive
leakage queries. To obtain fully-adaptive LR-dZK proofs � in which the adversary can also adaptively
corrupted veri�ers � we extend the ZK de�nition of dZK to adaptive corruptions, and prove that
a protocol of [BBC+19a] is adaptively-secure (See Section 5.2 and Appendix A for further details).
This could be of independent interest.

The high-level idea of our dZK proofs is similar to the VSS scheme described above: we employ
a standard dZK proof Π as follows. The prover in our LR-dZK proof emulates the prover of Π, and
RPE-encodes the proof shares before sending them to the veri�ers. The veri�ers store these encoded
proof shares, except when Π requires that they compute on them. In this case each veri�er locally
decodes the proof shares needed for the computation, performs the computation, RPE-encodes the
proof shares and the outcome (if needed) and erases all intermediate values generated during the
computation.

Function Secret Sharing (FSS). Function Secret Sharing (FFS) [BGI16, BCG+21] is a crypto-
graphic building block that enables evaluation of a function f in a distributed manner. An FSS con-
sists of two algorithms Gen and Eval. The former algorithm outputs secret function keys (k0, . . . , km),
one for each party . The latter algorithm is run locally by each party. Given a public input x, and
the party's secret key ki, it computes an output share fi(x) such that f(x) =

∑
i∈[m] fi(x). The

security requirement ensures that the individual keys do not disclose (to a computationally-bounded
adversary) any information about the function description.

Current FSS constructions are motivated by applications that involve private and distributive
access to a large database, and crucially rely on the fact that FSS has linear reconstruction. (In fact,
existing FSS schemes have additive reconstruction.) Two notable applications of FSS are Private
Information Retrieval (PIR) or keyword search, and statistics collection. (See [BGI16] for further
discussion of these applications.) In both cases (a set of) clients generate the keys, and upload them
to corresponding servers, where the keys are then used to repeatedly execute the desired operation
(e.g., keyword search). Since multiple executions are performed, this also requires aggregating the
output shares fi (x) which strongly relies on the linearity of the FSS reconstruction algorithm.

De�ning leakage-resilience for FSS is subtle. This is because on the one hand, our goal is to obtain
leakage-resilience against the strongest type of adversarial attacks � namely against computationally
unbounded adversaries, while on the other hand, FSS is a computational primitive which only
guarantees computational indistinguishability in the real/ideal paradigm. Thus, a main challenge
which one faces when modeling security of leakage-resilient FSS is to decouple FSS-secrecy from
leakage-resilience. We capture this separation by splitting the adversary into two algorithmic entities,
one that attacks the scheme via queries to a leakage oracle, and another that receives the state of the
former adversarial entity and attacks the secrecy of the underlying FSS. We stress that the former
adversarial entity may be computationally unbounded. Another obstacle is that we need to maintain
consistent answers (e.g., to repeated leakage queries on output shares generated for the same input
x). That is, we need to ensure all responses are consistent with prior responses. This is achieved
by maintaining a list which, for every input queried to the function, speci�es the randomness used
to generate the corresponding output shares in Eval. This randomness is used to answer all leakage
queries related to this input. (We note that when an input is queried for the �rst time, a new entry
is added to the list.)

At a high level, our construction modi�es the key generation algorithm, where function keys are
generated using the FSS generation algorithm, and then RPE-encoded. Similarly, to compute the
output shares from the function key shares, each party locally RPE-decodes the key share, generates
the output share using the evaluation algorithm Eval of the underlying FSS, and then RPE-encodes
it. Since the original FSS has additive reconstruction, and the RPE has linear decoding, the resultant

12

scheme has linear reconstruction. Thus, clients can remotely operate on the encoded output shares
as in the original FSS scheme, and can decode the outcome f(x) after it was reconstructed from
the output shares. Thus, function and output shares can still be aggregated as required by FSS
applications.

Threshold Encryption Schemes (TES) and Threshold Signatures. Lastly, we study the
usefulness of our paradigm in the context of threshold cryptography [DH76, LN18, FLOP18, HMR+19]
where the secret key underlying some cryptographic task (e.g., encryption or signing), is used in a
distributed manner. Namely, a set of parties mutually choose the secret key, where each party picks
a random share and neither party (or a strict subset) can reconstruct the secret. Furthermore, each
secret key share has a corresponding public key share. The latter shares are combined into the public
key of the underlying object. Consequently, each party can encrypt or verify a signature as these
operations are public, but decrypting (or, alternatively, signing) a message can be performed in a
distributed manner by running a secure computation protocol. A notable example is an extension of
the Di�e-Hellman key exchange protocol to the multiparty setting [DH76] that serves as a threshold
public key encryption scheme for El Gamal [Gam85]. (We elaborate on this scheme in Section 5.4.)

Threshold encryption is a more involved computational object than FSS since it needs to preserve
the secrecy of the secret key as well as the semantic security of the underlying encryption scheme. The
scheme consists of a key generation protocol which generates the secret key shares in a distributed
manner, an encryption algorithm which is similar to the encryption algorithm in standard encryption
schemes, and a decryption protocol in which the parties use their secret key shares (from the key
generation phase) to decrypt a ciphertext. Existing security de�nitions come in di�erent �avours
depending of whether security is game-based or simulation-based, and are typically specially-tailored
to the speci�c underlying encryption scheme. We thus �rst provide a uni�ed security de�nition that
captures the security properties of any threshold encryption scheme. This de�nition � which might be
of independent interest � will later be used as the starting point for our de�nition of leakage-resilience
for threshold encryption. Our security de�nition for threshold encryption is simulation-based against
adaptive corruptions, but can be easily adapt to the static setting. It additionally captures the fact
that the adversary can observe the decryption results of the honest parties � which is needed, for
instance, to guarantee that security is preserved even when all parties learn the decryption for some
plaintext � by giving the adversary access to a reveal oracle that discloses the decryption shares of
a speci�c (valid) cipherext of the adversary's choice.12

Next, we extend this de�nition to obtain leakage-resilience by equipping the adversary with an
additional leakage oracle. This oracle takes as input a leakage function, and returns its output on the
key and decryption shares of the honest parties. Our leakage model protects the secret key shares
of the honest parties (and of corrupted parties prior to their corruption), as well as the plaintext
shares of honest parties prior to their decryption. This raises a similar challenge to the one described
above in the context of FSS � we wish to protect the shares from leakage against computationally
unbounded adversaries, while TES is computationally-secure. The assumption of separate leakage
on ciphertext and key shares is motivated by the fact that these are physically separated in natural
application scenarios. Indeed, di�erent secret key shares are stored on di�erent parties, and in many
cases are also physically separated from ciphertexts. For example, a remote server (that does not
know any secret key share) may generate a ciphertext c (this is possible because TES is a public
key object). An adversary that is able to leak on the internal states of the parties will then obtain
separate leakage on the ciphertext c, as well as on the key shares, and might also obtain several key

12We note that the actual formulation is more involved as it needs to eliminate chosen ciphertext attacks, see
Section 5.4 for details.

13

shares in full. In this case, our de�nition guarantees that the plaintext, as well as the secret key
shares that were not fully revealed, remain information-theoretically hidden.

To achieve information-theoretic security against leakage queries, we separate the secrecy of
TES from the leakage-resilience property by splitting the adversary into three entities. The �rst
entity is computationally-bounded and has access to an encryption oracle. The second entity is
computationally-unbounded, and has access to a leakage oracle. We stress that these two entities
must be kept separated, since the unbounded adversary can break the computational security of TES.
Therefore, these adversarial entities do not share a state. Finally, the third adversarial entity takes
the states of the former adversaries as input, and has access to corruption and reveal oracles. (The
reveal oracle provides decryption shares of the honest parties on valid ciphertexts.) We note that
the need to handle reveal queries makes the de�nition of leakage-resilient TES even more involved
than that of leakage-resilient FSS.

Our de�nition captures both semi-honest and malicious adversaries, and can be adapted to
signature schemes as well, where the property of indistinguishability of ciphertexts is replaced with
unforgeability.

At a high-level, our TES construction works as follows. Key shares are generated by �rst gen-
erating TES key shares (by running the key generation protocol of the underlying TES), and then
RPE-encoding each key share separately. Encryption is identical to the underlying TES. Finally, the
decryption algorithm, given a key share and ciphertext, �rst RPE-decodes the key, then computes
the decryption share using the decryption algorithm of the underlying TES, and then RPE-encodes
the decryption share.

1.5 Related Work

There is a vast body of works on leakage-resilient cryptography. In this section we review the
works which are most relevant to our model and results, in most cases only citing the �rst papers
introducing the leakage model or LR construction. (See [KR19], and references therein, for a more
detailed discussion of these models and various works in the �eld.) In the following, m denotes the
number of parties, and t denotes the reconstruction threshold (in secret sharing schemes).

1.5.1 Leakage-Resilience for Data at Rest

Our leakage model is related to several leakage models considered in the past. In the context of secret
sharing, the model most relevant to ours is that of [BDIR18], who also consider a computationally-
unbounded adversary that can obtain the shares of an unauthorized set, as well as leakage computed
separately on every other share. However, there are several notable di�erences. Speci�cally, in their
model leakage is non-adaptive (whereas we protect against adaptive leakage), but can compute any
function that is (1) su�ciently shrinking (i.e., the output is su�ciently shorter than the input) and
(2) operates on each share separately, whereas our focus is on probing-resilience.

More generally, our model can be seen as a combination of the leakage model of [ISW03] (that
restricts the function class from which leakage functions can be chosen), and the �Only Computation
Leaks� (OCL) model of [MR04] (which assumes that di�erent memory components leak separately),
though, as noted above, our constructions achieve the stronger OCL+ property [BCG+11]. We
note that similar to standard OCL, our model is likewise motivated by scenarios in which physical
separation of the shares, which are stored in di�erent locations � e.g., on di�erent remote servers
� guarantees that leakage will indeed apply to each share separately. We note that the notion of
protecting data at rest was studied in the past in the context of the bounded retrieval model [Dzi06,
CLW06], bounded memory leakage [AGV09], and several other models (see [KR19] and references

14

therein). We elaborate more on these works, and their connection to our model, in Section 1.5.3
below.

1.5.2 Leakage-resilient Secret Sharing

Most relevant to our work is the notion of Leakage-Resilient Secret-Sharing Schemes (LR-SSSs),
which were �rst implicitly studied by Dziembowski and Pietrzak [DP07] (under the name �intrusion-
resilient secret-sharing�), and explicitly (and independently) de�ned by [GK18a, BDIR18]. Follow-
ing [GK18a, BDIR18], there has been a long line of works exploring various aspects of leakage-
resilient secret-sharing [DP07, DDV10, GK18a, GK18b, BDIR18, SV19, BS19, KMS19, ADN+19,
SV19, CGG+20, LCG+20, MNP+21, MPSW21, CKOS21]. These works consider di�erent leakage
models, as we now explain.

Local Leakage Model. The intrusion-resilient secret-sharing of [DP07] designed an n-out-of-
n secret sharing scheme that resists adaptive leakage queries applied separately on each share,
where each query is de�ned by an arbitrary polynomial-time computable function, and there are
a-priori bounds on the total number of queries and leakage bits. Their scheme required interactive
reconstruction. A subsequent work by Davi et al. [DDV10] designed a 2-out-of-2 secret-sharing
scheme with non-interactive reconstruction. (We note that [Dzi06] allowed leakage of full shares,
but [DDV10] do not.)

More recently, the works of [GK18a, BDIR18] independently (formally) introduced the notion of
LR-SSSs, and studied leakage-resilience in the presence of non-adaptive local leakage, namely when
the adversary can make a single leakage query that leaks from each share independently of the other
shares. These works were motivated by di�erent goals, and focus on di�erent aspects of LR-SSSs.
Speci�cally, Goyal and Kumar [GK18a] used LR-SSSs as a stepping stone toward constructing
non-malleable secret sharing, and designed m-party 2-out-of-m LR-SSSs. LR-SSSs for arbitrary
thresholds were later constructed by Srinivasan and Vasudevan [SV19], who achieve constant rate
and leakage rate, through a general compiler that employs an extractor and Shamir's secret sharing
scheme as building blocks. In particular, their scheme does not have linear reconstruction. On the
other hand, Benhamouda et al. [BDIR18] focused on analyzing leakage resilience of standard schemes
� such as additive secret sharing, and Shamir secret-sharing over large prime �elds. Their motivation
was the attacks of Guruswami and Wooters [GW16] on secret sharing over �elds of characteristic
2.13 Speci�cally, [BDIR18] proved that Shamir's scheme has constant leakage rate for thresholds
t = m − o(m). This was recently improved by Maji et al. [MPSW21] who extended the analysis
of [BDIR18] to arbitrary thresholds (by analyzing random linear codes), with the caveat that they
instantiate Shamir's scheme over random (as opposed to �xed) evaluation points.

Limitations of standard secret-sharing schemes. The aforementioned works show some limi-
tations to the leakage-resilience properties of existing schemes. As noted above, Shamir's secret
sharing scheme over �elds of characteristic 2 does not resist leakage of even a single bit from each
share [GW16], and similar insecurities hold more generally for �elds of small characteristic (not
necessarily 2) [BDIR18]. In terms of the reconstruction threshold t in m-party schemes, the analysis
of Benhamouda et al. [BDIR18] holds only for certain parameter regimes (either t ≥ 0.85m when
leaking a constant number of bits from each share, or t = m − 4

√
m when leaking a quarter of the

bits). There are also known lower bounds on the values of t for which Shamir's scheme resists leak-
age (even of a single bit) [NS20], which can be circumvented by instantiating Shamir's scheme using
random evaluation points [MPSW21].

13We note that [BDIR18] extended this result by showing attacks on secret sharing over �elds of small characteristic
(not necessarily 2).

15

Joint Leakage Model. Kumar et al. [KMS19] extend the works of [GK18a, GK18b, BDIR18] in
a di�erent direction, focusing on a stronger leakage resilience guarantee, namely against adaptive
leakage queries that depend jointly on shares of multiple parties. Speci�cally, they introduce the
Bounded Collusion Protocol (BCP) leakage model, in which the adversary can adaptively leak an
a-priori bounded number of bits, where each leakage bit is computed jointly from the shares of a
subset of at most p parties, for an a-priori bound p. Roughly, BCP leakage models the leakage as
a communication protocol run by the leaking adversary, where in each round the adversary chooses
a set P of at most p parties that compute a �message� based on their shares and the previous
protocol messages. The leakage consists of the transcript of this protocol. The schemes of [KMS19]
support any threshold, but can only withstand joint leakage of p = O(logm) shares.14 This result
was further re�ned recently by Chattopadhyay et al. [CGG+20], who design LR-SSSs withstanding
larger collusion bounds of up to p = t/ log t parties, where t is the secrecy threshold of the scheme.
They also consider a weaker leakage model in which the (adaptive) leakage queries are restricted
to using disjoint sets of parties, namely, no share can be accessed by two leakage queries. In this
restricted leakage model, they obtain leakage-resilience for any collusion bound p ≤ t, with O(1/m)
rate and leakage rate. This was recently improved by Chandran et al. [CKOS21], who obtain constant
rate and leakage rate in this restricted leakage model.

Global Leakage Model. Another line of works [BIVW16, LCG+20] consider global leakage which
is computed jointly on all shares, but restrict the class of permissible leakage functions. Bogdanov
et al. [BIVW16] proved that Shamir's scheme over �nite �elds of characteristic 2 is leakage-resilient
against constant-depth polynomial-sized circuits (i.e., AC0 circuits), and sign polynomials of degree
2,15 so long as the threshold t = ω (polylog (m)). The work of [LCG+20] designed LR-SSSs that
are secure against a�ne leakage functions over F2. These works are somewhat orthogonal to ours
since they allow for global leakage (i.e., on all shares) but obtain a very low leakage rate, which, in
particular, does not even allow leaking a single bit (on average) from each share.

All the works mentioned above, except for [KMS19, CGG+20, CKOS21, LCG+20], only support
non-adaptive queries, and the constructions secure against adaptive leakage queries do not admit
e�cient equivocation or linear reconstruction. In Table 1 we provide a curated list of works that
are closest to our work, and identify the properties satis�ed by the leakage-resilient schemes they
construct.

1.5.3 Leakage-Resilient Memory and Storage

There is a vast body of works on protecting memory from leakage in di�erent models, such as
the bounded-retrieval model [Dzi06, CLW06], bounded memory leakage [AGV09], auxiliary-input
memory leakage [DKL09], and continual memory leakage [BKKV10, DHLW10]. These models can
be seen as protecting against leakage of data at rest (e.g., protecting the secret key while stored in
memory), but di�er signi�cantly from our model in the security guarantees (they permit information
leakage on the secret state as long as the security of the scheme using the key is not compromised,
whereas our goal is to hide the secret), the security quality (usually computational, whereas we pro-
tect against computationally-unbounded leaking adversaries), and the permitted leakage functions
(usually arbitrary shrinking functions computable in polynomial time, whereas we focus on probing
leakage). The model of leakage-resilient storage [DDV10] � which aims to protect (properly encoded)
storage � is similarly a model of leakage-resilience for data at rest. Similar to our model, the goal

14We remark that the adversary can choose a di�erent subset of O(logm) shares for each adaptive query, as long
as the total number of leaked bits is bounded.

15A sign polynomial is a function f(x) = sgn(p(x)) for some polynomial p(·), where sgn is the sign function.

16

Scheme Equiv. Adaptive Linear Rate Leakage Leakage

Queries Recon. Rate Model

S
p
ec
ia
li
ze
d

[GK18a, GK18b] No No No O(1
m) O(1

m) Local

[BDIR18] No No Yes O(1) O(1) Local

[KMS19] No Yes No O(1
poly(m)) O(1

poly(m)) Joint

[CKOS21] No Yes No O(1) O(1) Restricted

Joint

G
en
er
al

[SV19] No No No O(1) O(1) Local

[CGG+20] No Yes No O(1
poly(m)) O(1

poly(m)) Joint

This work Yes Yes Yes O(1) O(1) Probing

(Thm. 4.1/Cor. 4.2)

Table 1: Comparison of Existing Leakage-Resilient Secret Sharing Schemes.
Here, �Equiv.� denotes whether the scheme is equivocal, �adaptive queries� states whether the scheme is
secure against adaptive leakage queries, �linear recon.� describes whether the reconstruction procedure of the
SSS is linear, m is the number of parties, and the �restricted joint� leakage model refers to the joint leakage
model in which each share can be queried by a single leakage query. The �rst four rows construct speci�c
LR-SS schemes while the last three rows give a general compiler that transforms any SS to a LR one.

is to prevent any information leakage on the stored secret. Constructions in this model usually rely
on complex primitives such as extractors, which do not result in linear reconstruction procedures.

1.5.4 Leakage-Resilient Distributed Primitives

Boyle et al. [BGK11] introduce and study the notions of leakage-resilient coin-tossing and leakage-
resilient VSS. Similar to our work, their constructions are secure against a computationally un-
bounded, malicious adversary that corrupts t parties, as well as obtains adaptive �local� leakage,
namely the leakage function applies to each party separately. However, there are a few notable
di�erences between our leakage model and results, and those of [BGK11], which make them incom-
parable. First, their corruption model is non-adaptive, and this is inherent to their results since
they delegate certain computations to committees (a-la [Bra84]), whereas we allow for adaptive
corruptions. Unlike our schemes, their constructions rely on (2-source and multi-source) random-
ness extractors with an additional robustness guarantee,16 and therefore do not preserve algebraic
properties of the original primitives (e.g., linear reconstruction). However, they allow for general
leakage of up to ℓ information bits throughout the entire lifetime of the system, where ℓ is a constant
fraction of the view size, whereas we focus on probing resilience for data at rest and can handle a
constant fraction of leaked bits from each share. There are also works obtaining zero-knowledge
protocols [GJS11, BCH12] as well as MACs, commitment schemes, and OT [BCH12] with a weaker
leakage-resilience guarantee known as leakage-tolerance, in which the ideal-world adversary obtains
leakage on the witness/secret. Thus, these works guarantee graceful degradation of security � instead
of full security � against leakage.

16We note that they do have a VSS protocol that does not use extractors, but it only achieves a weaker LR guarantee
in which the secret retains some min-entropy given the leakage.

17

1.5.5 Leakage-Resilient MPC and General Computations

Following the works of [ISW03, MR04], there has been a long line of works on protecting general
computations against leakage (see [KR19] and references therein). These constructions usually
consider a continuous leakage model in which the adversary observes repeated executions of the
computation on inputs of its choice. Due to their generality, these constructions are less e�cient
(incurring polynomial blowups), complex, and in particular do not preserve the structure of the
original computation (e.g., linear reconstruction). There are also works on protecting MPC protocols
from leakage, either with full security against leakage [BGJK12, BDIR18], or allowing some leakage
in the ideal world [BCH12, BGJ+13, BDL14]. The latter protocols achieve only a weaker leakage-
resilience guarantee (since the ideal-world simulator also obtains leakage), whereas the former either
achieve only computational security [BGJK12], or a poor leakage rate [BDIR18].

1.5.6 Tampering-Resilience

The notion of tampering-resilience for secret-sharing, also known as non-malleable secret-sharing [GK18a],
has received a lot of attention lately [GK18a, GK18b, SV19, BS19, FV19, ADN+19, BFV19, KMS19,
LCG+19, CGG+20, CKOS21, KOST21]. Roughly speaking, non-malleable secret-sharing guaran-
tees that even if an adversary tampers with all the shares, reconstruction either outputs the original
secret, or a completely independent secret which is unrelated to the original secret. This should be
contrasted with our notion of tampering-resilience, which guarantees that the original secret will
be reconstructed. On the other hand, non-malleable secret-sharing can withstand higher tamper-
ing rates, in particular ones exceeding the error-correction bound for which unique recovery of the
underlying secret is possible.

We note that another � very di�erent � notion of tampering-resilience appeared in the literature
in the context of protecting secrecy (e.g., of the input or internal state of a cryptographic scheme)
in the presence of a tampering adversary. These works, originating from [IPSW06], are unrelated
to our notion of tampering since they aim at protecting secrecy, whereas our goal is to maintain
correctness.

2 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is
negligible if for every positive polynomial p(·) and all su�ciently large κ's it holds that µ(κ) < 1

p(κ) .

We denote the set of all negligible functions by negl (κ). We use the abbreviation PPT to denote
probabilistic polynomial-time, and denote by [n] the set of elements {1, . . . , n} for some n ∈ N. For
a string s of length n, and a subset I ⊆ [n], we denote by s|I the restriction of s to the coordinates
in I. For an NP relation R, we denote by Rx the set of witnesses of x, and by LR its associated
language. That is, Rx = {w | (x,w) ∈ R} and LR = {x | ∃ w s.t. (x,w) ∈ R}.

Let Σ be an alphabet, and let x, y be strings over Σn. We denote by Ham (x, y) = |{i : xi ̸= yi}|
the Hamming distance of x, y.

De�nition 2.1. Let Xκ and Yκ be random variables accepting values taken from a �nite domain Ω.
The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
w∈Ω

∣∣Pr[Xκ = w]− Pr[Yκ = w]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most ε(κ). We say that Xκ and
Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

18

We use the asymptotic notation O (·) and Ω (·). We will sometimes disregard polylogarithmic
factors, using Õ (n) and Ω̃ (n) to denote n · poly log n and n/poly log n, respectively.

2.1 Leakage Classes

In the following sections we will discuss leakage-resilience of di�erent cryptographic primitives.
Leakage-resilience is de�ned with relation to a class of leakage functions. We now de�ne two such
classes, which we will focus on. Both classes consider local probing leakage with relation to a dis-
tributed primitive which involves m parties, where each party holds a secret share. The primitive is
associated with an access structure de�ning the authorized sets (which are the sets of parties that
can learn the underlying secret by pooling together their shares) and unauthorized sets (which learn
nothing about the secret even given all their shares). Roughly, the local probing leakage classes
consist of all functions that, given the m shares, output the shares of an unauthorized set in their
entirety, as well as ℓ bits from each of the other shares. The two classes di�er only in the access
structure they consider.

The �rst class of leakage classes considers the t + 1-threshold access structure (de�ned more
formally in Section 2.2 below), in which all (and only) subsets of size ≥ t + 1 are authorized.
Formally:

De�nition 2.2 ((t, ℓ)-local probing leakage). Let S1×S2×· · ·×Sm be the domain of shares for some
secret sharing scheme. For a subset G ⊆ [m] and a sequence (I1, . . . , Im) of subsets, the function
fG,I1,...,Im on input (s1, . . . , sm) outputs si for every i ∈ G, and outputs si|Ii for every i /∈ G. The
(t, ℓ)-local probing function family corresponding to S1 × S2 × · · · × Sm is de�ned as follows:

Lt,ℓ = {fG,I1,...,Im : G ⊆ [m], |G| ≤ t,∀i /∈ G, |Ii| ≤ ℓ} .

The second class of leakage functions generalizes the previous de�nition to general access struc-
tures.

Remark 2.1 (Local probing leakage: general access structures). We will sometimes consider a gen-
eralization of De�nition 2.2 to arbitrary access structures. Speci�cally, for an access structure Acc,
and a domain S1×S2× . . .×Sm of secrets, the (Acc, ℓ)-local probing function family corresponding
to S1 × S2 × . . .× Sm is de�ned as follows:

LAcc,ℓ = {fG,I1,...,Im : G ⊆ [m], |G| /∈ Acc,∀i /∈ G, |Ii| ≤ ℓ} .

2.2 Secret Sharing Schemes (SSSs)

A Secret-Sharing Scheme (SSS) allows a dealer to distribute a secret among m parties. Speci�cally,
during a sharing phase each party receives a share from the dealer, and the secret can then be
recovered from the shares during a reconstruction phase. The scheme is associated with an access
structure which de�nes subsets of authorized and unauthorized parties, where every authorized set
can recover the secret from its shares, whereas unauthorized sets learn nothing about the secret even
given all their shares. A Leakage-Resilient SSS (LR-SSS) guarantees this latter property holds even
if the unauthorized set obtains some leakage on the other shares.

We will mainly be interested in t-threshold secret sharing schemes, in which all (and only) subsets
of size at least t+1 are authorized to reconstruct the secret. We �rst de�ne secret sharing schemes.

De�nition 2.3 (Secret Sharing Scheme). An m-party Secret Sharing Scheme (SSS) for secrets in
S consists of the following pair of algorithms.

19

Sharing algorithm Share: Takes as input a secret s ∈ S and outputs shares (s1, · · · , sm) ∈ S1 ×
· · · × Sm, where si is called the share of party i, and Si is the domain of shares of party i.

Reconstruction algorithm Reconst: Takes as input a description G of an authorized set, and
shares {si : i ∈ G} and outputs s′ ∈ S.

The scheme is required to satisfy the following properties:

Correctness: For every s ∈ S, and every authorized set G,

Pr [Reconst (G,Share (s) |G) = s] = 1

where Share (s) |G denotes the shares of the parties in the authorized set G.

ε-Secrecy: For any pair of secrets s, s′ ∈ S, and any unauthorized set G,

SD
(
Share (s) |G , Share

(
s′
)
|G
)
≤ ε.

In our constructions, we will use Shamir's secret sharing scheme [Sha79], which we review next.

De�nition 2.4 (Shamir's SSS). Let F be a �eld.

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the
polynomial-�eld F[x] with the condition that p(0) = s, and output p(1), . . . , p(m).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, com-
pute a polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange
interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

2.2.1 Resampleable Secret Sharing Schemes

Our equivocal SSS (described in the next section) will use the underlying SSS as a black box, but will
require that it posses the additional property of being resampleable. Roughly, a SSS is resampleable
if given the shares of an unauthorized set T , and the secret x, one can e�ciently sample shares for
the other parties which, together with the shares of the parties in T , are distributed statistically
close to a (random) sharing of x. We note that if we allow for ine�cient resampling then any SSS
is resampleable because the resampler can simply recover the original sharing of x. Furthermore,
Shamir's SSS (De�nition 2.4) is perfectly resampleable.

De�nition 2.5 (Resampleable SSS). We say that a secret sharing scheme (Share,Reconst) is ε-
resampleable, if it is associated with an additional PPT algorithm Resample such that the following
holds.

Syntax. Resample takes as input a secret x′, a subset of parties T ⊆ [m], and shares (Shi)i∈T
for the parties in T , and outputs shares

(
Sh′1, . . . , Sh

′
m

)
.

Semantics. For every secret x, any adversary A obtains at most an ε distinguishing advantage
in the following game.

20

� The challenger C samples b← {0, 1} and (Sh1, . . . , Shm)← Share (x).

� Repeat: A adaptively picks i ∈ [m], sends i to C, and obtains Shi from C.

� Let T ⊆ [m] denote the set of share indices which A obtained in the previous step of the game.
If T is an authorized set then the game aborts, and A's advantage is 0.

� If b = 0, then C sends (Sh1, . . . , Shm) to A. Otherwise, C compute
(
Sh′1 . . . , Sh

′
m

)
←

Resample
(
x, T, (Shi)i∈T

)
, and sends

(
Sh′1, . . . , Sh

′
m

)
to A.

� A outputs a bit b′.

� The advantage of A in the game is |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|.

If a secret sharing scheme is 0-resampleable, then we simply say it is resampleable.

Remark 2.2 (Shamir's scheme is resampleable). For any t ∈ N, Shamir's secret sharing scheme
with threshold t is resampleable, with the following Resample algorithm: given an unauthorized set T
of size |T | ≤ t, the shares (Shi)i/∈T of parties in T , and a secret x, the Resample algorithm operates
as follows. Let |T | = t′, and let i1, . . . , it−t′ denote the t − t′ smallest indices which are not in T .
Then Resample picks Shi1 , . . . , Shit−t′ uniformly at random, and uses these, together with (Shi)i∈T
and x to determine the unique polynomial p (·) of degree ≤ t + 1 which is consistent with all these
shares. Then, it uses p (·) to determine the remaining shares.

We will also need an adaptive version of secrecy of secret sharing schemes, which allows the
adversary to adaptively choose the participants of the unauthorized set of parties whose shares it
will obtain. We note that if the secret sharing scheme has perfect secrecy, then our adaptive notion
of secrecy is equivalent to the standard notion of secrecy (De�nition 2.3). If the secret sharing
scheme has statistical secrecy, then it implies adaptive secrecy, but with an exponential loss in the
statistical distance. This is formalized in Lemma 2.3 below, and follows using a standard adaptive-
to-non-adaptive reduction, in which the non-adaptive adversary attempts to guess the set chosen by
the adaptive adversary ahead of time.

De�nition 2.6 (Adaptive secrecy of SSS). We say that a SSS (Share,Reconst) has ε-adaptive secrecy
if every adversary A wins the following game with probability at most ε.

� A picks a pair of secrets x0, x1 and sends them to C.

� The challenger C samples b← {0, 1} and (Sh1, . . . , Shm)← Share
(
xb
)
.

� Repeat: A adaptively picks i ∈ [m], sends i to C, and obtains Shi from C.

� Let T ⊆ [m] denote the set of share indices which A obtained in the previous step of the game.

� A outputs a bit b′.

� A wins the game if T is unauthorized, and b = b′.

Lemma 2.3 (Standard secrecy implies adaptive secrecy). Let (Share,Reconst) be an m-party ϵ-secret
SSS. Then (Share,Reconst) has 2m · ε-adaptive secrecy.

In particular, if (Share,Reconst) has perfect secrecy, then it has perfect adaptive secrecy.

21

2.2.2 Probing-Resilient SSSs

In this section we describe a notion of probing-resilience for SSSs, and more generally for distributed
primitives and protocols in which some secret is shared among a set of parties. This is formalized
in the following de�nition:

De�nition 2.7 (Tampering-Resilience (TR)). Let P denote an n-party primitive that includes a
sharing phase that distributes a secret among the parties (the sharing phase could potentially be
executed several times throughout the execution of P) and a reconstruction procedure Reconst which
recovers a secret from the shares. Assume that P is secure against a set Acc of adversaries.17 Let
Sh1, . . . , Shn denote the outcome of the sharing phase. We say that P is τ -tampering-resilient (TR) if
for every adversary A ∈ Acc which corrupts a subset T of parties, every set

{
Sh′i : i ∈ T

}
of shares

which A chooses for the corrupted parties, and any
{
Sh′i : i /∈ T

}
such that Ham

(
Shi, Sh

′
i

)
≤ τ for

every i /∈ T , Reconst
(
Sh′1, . . . , Sh

′
n

)
= Reconst (Sh1, . . . , Shn).

Remark 2.4 (Tamper-resilience for SSSs.). De�nition 2.7 discusses a general distributed primitive
P. We note that when P is a secret-sharing scheme, then by default we assume the adversary is
semi-honest (though we also discuss the more general case of a malicious adversary in Remark 4.2).

2.2.3 Equivocal Secret Sharing

In this section, we de�ne the notion of equivocal SSSs, which was introduced in [HVW21]. We
provide a short high-level description of the de�nition, and refer the interested reader to [HVW21]
for further details.

Intuitively, equivocation enhances the leakage-resilience guarantee such that even after some
bits were leaked, one can still �explain� the sharing (by providing the entire secret sharing) as the
sharing of any secret, consistently with the leakage. This is formalized by comparing the real world
experiment with an ideal experiment. The real and ideal experiments have two phases: a leakage
phase and a guessing phase. This is captures by having the adversary and simulator consist of two
separate algorithms (A1,A2) and (Sim1, Sim2), respectively. Equivocation is against a family F of
leakage functions and a leakage bound ℓ.

In the real world, the secret s is secret shared into n shares Sh1, . . . , Shn. The adversary A1 is
then given oracle access to a SHARE oracle � which returns full shares, and updates the set T of
�corrupted� parties whose shares the adversary has obtained � and a LEAK oracle which applies a
leakage function g ∈ F (specifying, for each honest share Shi, a leakage function gi) to the shares of
the honest parties. LEAK also maintains leakage counters ℓi of the number of leakage bits obtained
on Shi. T and ℓ1, . . . , ℓn are treated as global variables that can be accessed and updated by all
oracles. At the end of the �rst phase of the experiment, A1 outputs a bit bR specifying whether it
wishes to learn the entire secret sharing of s (by calling the REV oracle). Otherwise, the adversary
obtains no further information beyond what it obtained during the leakage phase. Then, in the
second phase of the game, the adversary A2 outputs a guess b′R as to whether it is in the real or
ideal experiments. This adversarial guess is only taken into account if the adversary did not violate
the leakage restrictions, i.e., T is unauthorized, and ℓi ≤ ℓ for every honest i. These checks are
performed by calling the VALID oracle, where if the tests fail then the adversary automatically
looses the game (by setting its �guess� to 0). The ideal experiment is similar to the real experiment,
except that the SHARE ,LEAK, and REV oracles are emulated by the simulator. Any equivocal
SSS is also a LR-SSS as the adversary in the equivocal SSS game can choose not to receive the entire
secret sharing of s at the end of the �rst phase (see Remark 2.5 below).

17The exact meaning of �security�, as well as the set of permissible adversaries, depend on the primitive.

22

De�nition 2.8 (Equivocal SSS). Let ε ∈ [0, 1). We say that an m-party secret sharing scheme
(Share,Reconst) for secrets in S is ε-equivocal for leakage class F , leakage bound ℓ and access
structure Acc if for every adversary (A1,A2) there exists an e�cient simulator (Sim1, Sim2) such
that for every s ∈ S,

|Pr [REALF,ℓ,Acc (s) = 1]− Pr [IDEALF,ℓ,Acc (s) = 1]| ≤ ε

where REALF,ℓ,Acc (s) , IDEALF,ℓ,Acc (s) are de�ned in Figure 1, and the probability is over the
random coin tosses of SET UPR, (A1,A2) and (Sim1, Sim2).

We note that De�nition 2.8 naturally generalizes to the asymptotic setting, where ε is a function
of, e.g., the length of secrets in S.

Remark 2.5 (On the connection to adaptive LR secret sharing). We note that equivocal secret
sharing generalizes the notion of an adaptive LR Secret Sharing Scheme (LR-SSS) as follows. The
de�nition of an adaptive LR-SSS can be obtained by overwriting the bits bR, bI in Figure 1 with 0. In
this case, the REV oracle is not called in Figure 1, in which case the adversary does not receive the full
secret shares, and the simulator does not receive the secret s. Consequently, statistical closeness of
the real and ideal experiments implies that adaptive leakage queries of the adversary can be simulated
without knowing the secret, as long as these queries lie in the supported class of leakage functions.
This is exactly the de�nition of an adaptive LR-SSS.

3 Reconstructible Probabilistic Encodings (RPEs)

The main building block underlying our constructions are Reconstructible Probabilistic Encodings
(RPEs). Roughly, these are a generalized notion of error-correcting codes that have a randomized
encoding procedure, with the following useful properties. First, a small subset of symbols from a
random encoding of a secret x reveals no information on s. Second, this subset of symbols can
be �explained� as the encoding of any arbitrary secret x′, in the sense that there exists an e�cient
resampler algorithm Recon that, given the symbols and x′, samples an encoding of s′ that is random
subject to being consistent with these symbols. This is foramlized in the following de�nition.

De�nition 3.1 (Reconstructible Probabilistic Encoding (RPE)). Let k, n, ℓ, τ ∈ N and ε ∈ (0, 1).
An (ε, ℓ, τ)-Reconstructible Probabilistic Encoding (RPE) is a triple (Encode,Decode,Rec) where
Encode,Rec are PPT algorithms, and Decode is a polynomial-time algorithm, that satisfy the follow-
ing.

� Syntax. Encode on input a secret x ∈ {0, 1}k outputs a codeword c ∈ {0, 1}n. Decode on
input c ∈ {0, 1}n outputs x ∈ {0, 1}k or a special error symbol ⊥. Rec on input a secret x, a
set I ⊂ [n] of size |I| ≤ ℓ, and ℓ bits (ci)i∈I , outputs c′ ∈ {0, 1}n.

� τ-Error correction. For every x ∈ {0, 1}k, and every c ∈ {0, 1}n, if there exists cx ∈
Supp (Encode (x)) such that Ham (c, cx) ≤ τ then Decode (c) = x, otherwise Decode outputs ⊥.

� (ε, ℓ)-Secrecy of partial views. For every pair of secrets x, x′, and any subset I ⊆ [n] such
that |I| ≤ ℓ, SD (Encode (x) |I ,Encode (x′) |I) ≤ ε.

� (ε, ℓ)-Reconstruction from partial views. For any pair of secrets x, x′, any subset I ⊆ [n]
of size |I| ≤ ℓ, and any set (c′i)i∈I ∈ Supp (Encode (x′)) of bits, Rec

(
x, I, (c′i)i∈I

)
is ε-

statistically close to an encoding c ∈ Supp (Encode (x)) that is random subject to being consis-
tent with (c′i)i∈I .

23

Equivocal SSS Security

SET UPR (s):
pick a random string r for Share a

(Sh1, . . . ,Shm)← Share (s; r)
output (Sh1, . . . ,Shm)

SHARER (s, r, i):
T1 ← T1 ∪ {i}
output Shi

LEAKR (s, r, g, T):
if g /∈ F then return
T1 ← T1 ∪ T
(outputi)i/∈T1

← g
(
(Shi)i/∈T1

)
for every i /∈ T1

ℓi ← ℓi + |outputi|
output

(
(outputi)i/∈T1

, (Shi)i∈T

)
REVR (s, r):
output (Sh1, . . . ,Shm)

VALID (ℓ,Acc):
if T1 /∈ Acc and ℓi ≤ ℓ for every i ∈ [m]
then output true

else
output false

SET UPI ():
initialize St to the empty string
St← Sim1 (St)
output St

SHAREI (i):
Shi ← Sim1 (St, i)
T1 ← T1 ∪ {i}
output Shi

LEAKI (g, T):
if g /∈ F then return
T1 ← T1 ∪ T(
(outputi)i/∈T1

, (Shi)i∈T , St
)
← Sim (St, g, T)

for every i /∈ T1

ℓi ← ℓi + |outputi|
output

(
(outputi)i/∈T1

, (Shi)i∈T

)
REVI (s):
rev← Sim2 (St, s)
output rev

REALF,ℓ,Acc (s):
ℓ1, . . . , ℓm ← 0
T1 ← ∅
(Sh1, . . . ,Shm)← SET UPR (s)

(StA, bR)← ASHARER(s,r,·),LEAKR(s,r,·,·)
1

if bR = 1 then(
Sh

′
1, . . . ,Sh

′
m

)
← REVR (s, r)

StA ← StA ◦
(
Sh

′
1, . . . ,Sh

′
m

)
b′R ← A2 (StA)
if VALID (ℓ,Acc) then output b′R
else output 0

IDEALF,ℓ,Acc (s):
ℓ1, . . . , ℓm ← 0
T1 ← ∅
St← SET UPI ()

(StA, bI)← ASHAREI(·),LEAKI(·,·)
1

if bI = 1 then
output← REVI (s)
StA ← StA ◦ output

b′I ← A2 (StA)
if VALID (ℓ,Acc) then output b′I
else output 0

aWe think of the randomness r for Share, the secret s, and the simulator state St as global variables,
which certain oracles can access freely (e.g., all the ideal-world oracles can access St, and REVI can also
access s).

Figure 1: The Security Experiments of Equivocal SSS

24

Remark 3.1 (Perfect RPEs.). We note that standard RPEs [CDMW08] have perfect secrecy of
partial views and reconstruction from partial views (i.e., ε = 0). We chose to present a relaxed notion
in De�nition 3.1 because it su�ces for our constructions (the fact that our constructions can use non-
perfect RPEs makes them stronger), and allows us to explicitly quantify how privacy/reconstruction
error in the RPE propagates to simulation error in the resultant primitives.

Moreover, in standard RPEs the reconstruction from partial views property holds for any set
(c′i)i∈I of bits (not necessarily ones corresponding to an encoding of some secret x′). The weaker
property de�ned in De�nition 3.1 su�ces for our constructions, and will allow us to easily obtain
RPEs from random linear codes (see Lemma 3.9).

Remark 3.2 (On the role of error-correction.). The error-correction property of the RPE is used
in our constructions only for tampering-resilience. In particular, instantiating our constructions
with an RPE that does not have error-correction would give a leakage-resilient primitive without
tampering-resilience.

Remark 3.3 (Families of codes). De�nition 3.1 discusses a single message length k, but it generalizes
naturally to families of codes, where for every k ∈ N there exists a code with block length n = n (k),
and there exists a uniform algorithm that generates the encoding procedure for message length k. (For
example, for linear codes � in which encoding simply multiplies by a public generator matrix � this
algorithm given input 1k outputs the generator matrix for message length k.) We will only consider
(e�ciently encodable and decodable) families of codes in this work. For simplicity and clarity of the
de�nitions, we do not explicitly refer to a family of codes, but k should be understood as a general
input length parameter. (This is standard in the literature.)

Remark 3.4 (RPEs over general �elds and the connection to linear codes). Recall that we de�ned
RPEs as binary codes. This was done to simplify the presentation (and since such codes su�ce for
our main application of equivocal SSSs), but the notion naturally extends to general �elds. Moreover,
RPEs are closely related to linear codes. Indeed, any linear code over a �eld F with dual distance
ℓ has (0, ℓ)-secrecy of partial views (when this notion is generalized in the natural way to hold for
F).18 Consequently, the code has (0, ℓ)-reconstruction from partial views, since the reconstructor can
e�ciently solve the linear set system (because this set system necessarily has a solution).

3.1 Adaptive Take on RPEs

In this section we present the alternative de�nitions of RPE properties which we will use. These def-
initions phrase RPE properties in terms of adaptive adversaries, describing security games between
an adversary A and a challenger C. As we show below, these �adaptive� de�nitions are satis�ed by
any RPE.

De�nition 3.2 (RPE - adaptive secrecy of partial views). Let RPE = (Encode,Decode,Rec) be
an RPE scheme, with Encode : {0, 1}k → {0, 1}n. We say that RPE has (ε, ℓ)-adaptive secrecy of
partial views if for any adversary A, the distinguishing advantage of A in the following game with a
challenger C is at most ε.

� A picks a pair of secrets x0, x1 and sends them to C.

� C draws b← {0, 1}, and encodes c← Encode
(
xb
)
.

18Indeed, we can set the encoding procedure, on input x, to apply the generator matrix to (x, r) for r ← Fℓ,
yielding a randomized encoding procedure. Then for any x, x′, any ℓ codeword symbols in a random encoding of x
are identically distributed to the corresponding ℓ codeword symbols in a random encoding of x′.

25

� For i = 1, . . . , ℓ:

� A picks i ∈ [n] and sends i to C.
� C sends ci to A.

� A outputs a bit b′.

� The advantage of A in the game is |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|.

We say that an RPE has ℓ-adaptive secrecy of partial views if it has (0, ℓ)-adaptive secrecy of
partial views.

We will sometimes omit the parameters ℓ, ε, simply saying �an RPE scheme with adaptive secrecy
of partial views�.

The following lemma follows by a standard adaptive-to-non-adaptive reduction, in which the
reduction guesses the queries of the adaptive adversary ahead of time, and asks its (static) challenger
for the answers, where if the guess is correct then the reduction can successfully emulate the adaptive
secrecy game for the adaptive adversary.

Lemma 3.5 (RPEs have adaptive secrecy of partial views). Let RPE = (Encode,Decode,Rec) be an
(ε, ℓ)-RPE scheme, with Encode : {0, 1}k → {0, 1}n. Then RPE has

(
2
(
n
ℓ

)
· ε, ℓ

)
-adaptive secrecy of

partial views.

De�nition 3.3 (RPE - adaptive reconstruction from partial views). Let RPE = (Encode,Decode,Rec)
be an RPE scheme, with Encode : {0, 1}k → {0, 1}n. We say that RPE has (ε, ℓ)-adaptive reconstruc-
tion from partial views if for any adversary A, the distinguishing advantage of A in the following
game with a challenger C is at most ε.

1. A picks x ∈ {0, 1}k and sends x to C.

2. C draws b← {0, 1}, and encodes c← Encode (x).

3. For i = 1, . . . , ℓ:

(a) A picks i ∈ [n] and sends i to C.
(b) C sends ci to A.

4. If b = 1 then C sends c to A. Otherwise, let I denote the set of indices which A queried in
Step 3. Then C computes c′ ← Rec

(
x, I, (ci)i∈I

)
and sends c′ to A.

5. A outputs a bit b′.

6. The advantage of A in the game is |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|.

We say that an RPE has ℓ-adaptive reconstruction from partial views if it has (0, ℓ)-adaptive
reconstruction from partial views.

We will sometimes omit the parameters ℓ, ε, simply saying �an RPE scheme with adaptive re-
construction from partial views�.

The following lemma follows by a standard adaptive-to-non-adaptive reduction.

Lemma 3.6 (RPEs have adaptive reconstruction from partial views). Let RPE = (Encode,Decode,Rec)
be an (ε, ℓ)-RPE scheme, with Encode : {0, 1}k → {0, 1}n. Then RPE has

((
n
ℓ

)
· ε, ℓ

)
-adaptive recon-

struction from partial views.

26

De�nition 3.3 guarantees that for every secret x, no adversary can distinguish between an encod-
ing of x and an encoding that was resampled consistently with (adaptive) leakage on the encoding.
However, for our equivocal SSS construction we will need the stronger guarantee that an adversary
cannot distinguish between an encoding of x, and an encoding that was resampled consistently with
(adaptive) leakage on an encoding of some arbitrary x′ (possibly di�erent from x). This property,
which we formalize next, follows from a combination of secrecy and reconstruction of RPEs. (In
fact, our constructions will not directly use the adaptive reconstruction property of RPEs, it will
only be used to prove the adaptive reconstruction* property in Lemma 3.7 below.)

De�nition 3.4 (RPE - adaptive reconstruction* from partial views). Let RPE = (Encode,Decode,Rec)
be an RPE scheme, with Encode : {0, 1}k → {0, 1}n. We say that RPE has (ε, ℓ)-adaptive reconstruc-
tion* from partial views if for any adversary A, the distinguishing advantage of A in the following
game with a challenger C is at most ε.

1. A picks x0, x1 ∈ {0, 1}k and sends x0, x1 to C.

2. C draws b← {0, 1}, and encodes c0 ← Encode
(
x0

)
and c1 ← Encode

(
x1

)
.

3. For i = 1, . . . , ℓ:

(a) A picks i ∈ [n] and sends i to C.
(b) C sends cbi to A.

4. If b = 1 then C sends c1 to A. Otherwise, let I denote the set of indices which A queried in

Step 3. Then C computes c0′ ← Rec
(
x1, I,

(
c0i
)
i∈I

)
and sends c0′ to A.

5. A outputs a bit b′.

6. The advantage of A in the game is |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|.

We say that an RPE has ℓ-adaptive reconstruction* from partial views if it has (0, ℓ)-adaptive
reconstruction* from partial views.

We will sometimes omit the parameters ℓ, ε, simply saying �an RPE scheme with adaptive re-
construction* from partial views�.

Lemma 3.7 (RPEs have adaptive reconstruction* from partial views). Let RPE = (Encode,Decode,Rec)
be an RPE scheme with (ε, ℓ)-secrecy of partial views and (ε′, ℓ)-reconstruction from partial views,
where Encode : {0, 1}k → {0, 1}n. Then RPE has (ε′′, ℓ)-adaptive reconstruction* from partial views,
where ε′′ =

(
n
ℓ

)
· (2ε+ ε′).

Proof: We prove the claim using a sequence of hybrids.

H0: this is the output of the adversary in the distinguishing game of De�nition 3.4, with b = 1.

H1: in H1, in Step 4 of the game of De�nition 3.4, instead of returning c1 to A, we compute

c′ ← Rec
(
x1, I,

(
c1i
)
i∈I

)
and provide c′ to A as the answer of the challenger C.

Then SD (H0,H1) ≤
(
n
ℓ

)
ε′ by the reconstruction from partial views of the RPE and Lemma 3.6.

Indeed, H0 is the output of A in the adaptive reconstruction from partial views game of De�-
nition 3.3 with x = x1 when the challenger picks bit 0, and H1 is its view when the challenger
picks bit 1. Since the RPE has (ε′, ℓ)-reconstruction from partial views, by Lemma 3.6 it has((

n
ℓ

)
ε′, ℓ

)
-adaptive reconstruction from partial views, namely SD (H0,H1) ≤

(
n
ℓ

)
ε′.

27

H2: this is the output of the adversary in the distinguishing game of De�nition 3.4, with b = 0.
Notice that the only di�erence between H1,H2 is that in H1 we answer queries in Step 3
according to an encoding of x1, whereas in H2 we answer according to an encoding of x0.

SD (H1,H2) ≤ 2
(
n
ℓ

)
ε by the secrecy of partial views of the RPE and Lemma 3.5. Indeed,

Lemma 3.5 guarantees that the RPE has
(
2
(
n
ℓ

)
ε, ℓ

)
-adaptive secrecy of partial views. Moreover,

given an adversary A that obtains advantage ε∗ in distinguishingH1 fromH2, we can construct
an adversary A′ that obtains ε∗ distinguishing advantage in the security game of De�nition 3.2,
which implies that ε∗ ≤ 2

(
n
ℓ

)
ε as claimed. A′ will play the role of the challenger for A: it will

send x0, x1 to its own challenger C′, and forward queries i from A to C′. Let I denote the
set of queries which A made throughout the game, and let (ci)i∈I denote the answers of C′
to the queries. At the end of the game, A′ computes c′ ← Rec

(
x1, I, (ci)i∈I

)
and gives c′ to

A. Then, A′ outputs the bit b′ which A outputs. Notice that if b = 1 in the security game of
De�nition 3.2 for A′, then A is emulated with H1, whereas if b = 0 in the security game of A′

then A is run with H2.

In the next sections we will use the following notation:

Notation 1 (RPEs.). An adaptive (ε, ℓ, τ)-RPE scheme is an RPE scheme (As in De�nition 3.1)
with τ -error-correction, (ε, ℓ)-adaptive secrecy from partial views, (ε, ℓ)-adaptive reconstruction from
partial views, and (ε, ℓ)-adaptive reconstruction* from partial views.

Gammel and Mangard [GM10] and Ball et al. [BDG+18, Lemma 2] show that the existence of
linear codes implies the existence of RPEs. Speci�cally, they prove the following, where a code
C ⊆ {0, 1}n is linear if its encoding procedure simply multiplies the input with a public generator
matrix, and the distance of the code is minc∈C Ham (c, 0n) (i.e., the minimal weight of a non-zero
codeword):

Lemma 3.8 (RPEs from linear error-correcting codes [GM10, BDG+18]). If there exists a linear
error-correcting code C ⊆ {0, 1}n with messages in {0, 1}k and distance d, then there exists an
(0, d− 1, d− 1)-RPE for messages in {0, 1}k and codewords in {0, 1}n.

To obtain an RPE with good parameters, we apply Lemma 3.8 to any explicit family of linear
codes with constant rate and constant relative distance (e.g., the codes of [DGR99, Thoerem 2.1],
which already posses secrecy from partial views)19, and using Lemmas 3.5-3.7, we deduce that
adaptive RPEs with good parameters exist:

Corollary 3.1 (Adaptive RPEs). For every message length k ∈ N, there exists an adaptive (0,Ω (k) ,Ω (k))-
RPE for messages in {0, 1}k with codewords of length O (k).

Finally, we note that one can obtain an RPE over an arbitrary �eld F by generating a random
linear code. Indeed, a random linear code C ⊆ Fn will have Ω (n) dual distance except with negligible
probability, and by Remark 3.4, such a code is an RPE. This is summarized in the following lemma:

Lemma 3.9 (RPEs from random linear codes). For any �eld F and every message length k ∈ N,
there exists an adaptive (0,Ω (k) ,Ω (k))-RPE for messages in Fk with codewords of length O (k).
Moreover, a generator matrix for the code can be constructed in probabilistic polynomial time, except
with negligible failure probability.

We note that while Corollary 3.1 gives a fully-explicit construction, Lemma 3.9 gives a semi-
explicit construction.

19We note that the construction of [DGR99] relies on Toeplitz matrices generating codes with good parameters,
such a matrix can be e�ciently found by traversing all these matrices by some pre-de�ned order, and using the �rst
matrix satisfying the desired properties.

28

An Equivocal SSS from Resampleable Secret Sharing and RPEs

Building blocks: a resampleable m-party SSS
(
Sharein,Reconstin

)
, and an RPE scheme

(Encode,Decode,Rec).

Share on input a secret x:

� Computes
(
Sh

in
1 , . . . ,Sh

in
m

)
← Sharein (x).

� For every i ∈ [m], encodes Shi ← Encode
(
Sh

in
i

)
.

� Outputs the secret shares (Sh1, . . . ,Shm).

Reconst on input shares (Shi)i∈T of an authorized set T ⊆ [m]:

� For every i ∈ T , decodes Sh
in
i = Decode (Shi).

� Reconstructs x = Reconst

((
Sh

in
i

)
i∈T

)
, and output x.

Figure 2: An Equivocal SSS

4 Equivocal SSS from SSSs and RPEs

In this section we describe a general transformation from standard SSSs and RPEs to equivocal SSS.
Our schemes will also be tampering-resilient.

4.1 The Equivocal SSS Construction

In this section we describe and analyze our equivocal SSS from (non-leakage-resilient) SSS and RPEs.
Our construction is presented in Figure 2, and uses a resampleable SSS and an RPE as building
blocks.

The next theorem summarizes the properties of the construction.

Theorem 4.1 (Equivocal SSS from Resampleable SSS and RPE). Assume that Construction 2 is
instantiated with:

� An ε-resampleable ε′-adaptively secret SSS for access structure Acc.

� An adaptive (ε′′, ℓ, τ)-RPE scheme.

Then Construction 2 is a τ -tampering-resilient and ε + ε′ + m · ε′′-equivocal SSS for the class of
(Acc, ℓ)-local probing leakage.

Moreover, if the SSS has shares of length k, and the RPE maps messages of length k to codewords
of length nk, then the shares in Construction 2 have length nk.

Remark 4.1 (The role of resampleability). We could also use a standard, not resampleable SSS
in Construction 2, to obtain an equivocal SSS with an ine�cient simulator. Indeed, as noted in
Section 2.2.1, any secret sharing scheme is resampleable with an ine�cient resampling algorithm,
and this resampling algorithm could be used by an ine�cient simulator to equivocate the secret shares.

Remark 4.2 (Tampering-resilience against malicious corruptions). We note that if the construction
of Figure 2 is instantiated with a robust SSS for some access structure Acc, then it is also τ -
tampering-resilient (as in De�nition 2.7) against any malicious adversary in Acc.

29

Proof (of Theorem 4.1): The claim regarding the share length follows immediately from the
construction. Correctness of the scheme follows directly from the correctness properties of the un-
derlying SSS and RPE. Secrecy and leakage resilience of the scheme will follow from the equivocation
property, which we prove below. (However, we note that secrecy also follows directly from the secrecy
of the underlying SSS because the RPE operates on each share separately.)

As for tampering-resilience, it follows directly from the error-correction of the RPE, and from
the fact that each share is encoded separately. Indeed, modifying an RPE encoding in at most τ
bits does not a�ect the recovered message, and therefore the adversary has no a�ect on the shares,
and so the correctness of the underlying secret sharing scheme guarantees that the (correct) secret
will be reconstructed (we can use the correctness of the secret sharing scheme since the adversary is
semi-honest).20

We now show that the scheme is equivocal. Let A be an adversary in the equivocation experiment
of Figure 1, and we describe a simulator Sim which emulates the oracles of A. We assume that each
LEAK query of A leeks a single bit from a single share (and, in particular, full shares are leaked
only through SHARE queries). This assumption is without loss of generality, and will simplify the
description of the simulator. Sim operates as follows.

1. Generates a secret sharing of 0⃗ by computing
(
Shin1 , . . . , Sh

in
m

)
← Sharein

(
0⃗
)
and then encoding

each Shini as Ŝhi ← Encode
(
Shini

)
.

2. In the �rst phase of the experiment, Sim answers leakage queries as follows:

(a) LEAKI queries are answered according to
(
Ŝh1, . . . , Ŝhm

)
.

(b) A SHAREI (i) query is answered as follows. Let Li denote the set of coordinates of

Ŝhi that have already been leaked through LEAKI queries. Then Sim samples Ŝh
′
i ←

Rec

(
Shini , Li,

(
Ŝhi,j

)
j∈Li

)
, where Ŝhi,j denotes the j'th bit of Ŝhi, and returns Ŝh

′
i as the

oracle answer.

3. At the onset of the second phase, let T denote the set of indices i such that A queried
SHAREI (i) in the �rst phase of the experiment. For every i /∈ T , let Li denote the set of
coordinates of the i'th share that were leaked through LEAKI queries.

When the experiment enters its second phase, Sim obtains a secret x. If T is not an unautho-
rized set, or |Li| > ℓ for some i /∈ T , then Sim aborts.

4. Sim resamples a secret sharing of x under the inner SSS by computing
(
S̃h

′
1, . . . , S̃h

′
m

)
←

Resample
(
x, T,

(
Shini

)
i∈T

)
. Then, for every i /∈ T , Sim samples the i'th share as S̃h

′′
i ←

Rec

(
S̃h

′
i, Li,

(
Ŝhi,j

)
j∈Li

)
.

5. For every i ∈ [m], if i ∈ T then Sim sets S̃hi = Ŝhi, otherwise Sim sets S̃hi = S̃h
′′
i .

6. Sim outputs the secret shares
(
S̃h1, . . . , S̃hm

)
.

20As noted above, if the underlying SSS is robust against some access structure Acc then reconstruction is guaranteed
to recover the shared secret even in the presence of a malicious adversary in Acc that can additionally arbitrarily
modify τ bits in the share of every honest party.

30

Next, we bound the distance between the outputs of the ideal and simulated experiments. We
will condition on the event that Sim did not abort. This is without loss of generality because
whenever Sim aborts, VALID would return false and the output would be 0 in both experiments.
To prove the claim, we will bound the statistical distance between the adversarial views in the real
and ideal experiments, by a sequence of hybrids. In all hybrids, the distributions are generated
through interaction with the adversary (and depend on its queries). The hybrids di�er in how they
generate the answers to the adversary.

H0: this is the adversarial view in the real world, where a secret x is secret shared into shares

(Sh1, . . . Shm) ← Share (x) with underlying shares
(
Shin1 , . . . , Sh

in
m

)
of the internal SSS. (That

is, Shi is obtained by encoding Shini using the RPE scheme.)

H1: Intuitively, in H1 we answer LEAK queries using a sharing of 0⃗ (instead of the sharing of x
as in H0). Moreover, to answer SHARE queries, and to reveal the remaining shares in the
second phase of the experiment, we generate (using Rec) fresh RPE-encodings of the secret
shares of x, consistently with the leakage. We note that regenerating the RPE-encodings is
necessary since the bits leaked through LEAK queries were of encodings of shares of 0⃗, and
might not be consistent with the encodings we wish to reveal (which are encodings of shares
of x).

Speci�cally, in H1, we generate a random encoding of 0⃗ by computing
(
Sh

in
1 , . . . , Sh

in
m

)
←

Sharein
(
0⃗
)
, and then encoding each share as Shi ← Encode

(
Sh

in
i

)
. Then, we answer LEAK

queries according to
(
Sh1, . . . , Shm

)
(i.e., according to RPE-encodings of secret shares of 0⃗).

Additionally, we answer SHARE (i) queries as follows. Let Li denote the coordinates of

the i'th share that were already queried through LEAK queries. Then we resample Sh
′
i ←

Rec

(
Shini , Li,

(
Shi,j

)
j∈Li

)
, where Shi,j denotes the j'th bit of Shi.

21 Then, we output Sh
′
i

as the answer of the oracle. (Subsequent SHARE or LEAK queries to the i'th share will be

answered according to Sh
′
i.) Finally, in the second phase of the game, for every i such that no

SHARE (i) query was made in the �rst phase, we resample Sh′i ← Rec

(
Shini , Li,

(
Shi,j

)
j∈Li

)
and provide Sh′i as the opening of the i'th share.

We claim that SD (H0,H1) ≤ mε′′. Indeed, this follows from the adaptive reconstruction*
from partial views of the RPE, using a union bound. Speci�cally, we de�ne a sequence of
hybrids H0

0 = H0,H1
0, . . . ,Hm

0 = H1 where in the j'th hybrid we: (1) answer LEAK queries

on the �rst j shares using
(
Sh1, . . . , Shm

)
; (2) answer LEAK queries to the other shares using

(Sh1, . . . Shm); and (3) for each k ≤ j, resample an encodings of the k'th share (by applying
Rec to Shink) before revealing it. Then every pair of adjacent hybrids are ε′′-statistically close
by adaptive reconstruction* from partial views (and the claim follows from a union bound over
all such pairs). Indeed, given an (adaptive)22 distinguisher D between some pair Hj−1

0 ,Hj
0 we

can build an adversary A′ that wins the game of De�nition 3.4: A′ has x hard-wired into it,
and can emulate the oracles of D on all shares except the j'th one. For the j'th share it uses

21Notice that here, and in the second phase of the experiment, we use Rec to generate encodings of secret shares
of x. These encodings are sampled to be consistent with the leakage obtained through LEAK queries (which leaked
from encodings of secret shares of 0⃗).

22The distinguisher is adaptive in the sense that it can �play� the part of the adversary in the experiment, i.e., make
adaptive leakage queries.

31

its challenger C (with secrets Sh
in
j , Sh

in
j), and when D outputs a bit b′, A′ outputs b′. Then if

b = 1 in the security game of A′, then D is emulated with Hj−1
0 , otherwise it is emulated with

Hj
0, so A′ obtains the same distinguishing advantage as D.

H2: Intuitively, in H2 we change the secret shares which are revealed in the second phase of the
experiment. Instead of re-encoding the (original) shares Shini of x, we resample a fresh secret
sharing of x, conditioned on the shares that were already revealed (through SHARE queries)
in the �rst phase of the experiment. This e�ectively decouples the remaining secret shares,
which were not revealed in the �rst phase of the experiment, from the secret shares already
revealed through SHARE queries, and will allow us to use the secrecy of the secret sharing
scheme in the subsequent hybrid.

Speci�cally, let T denote the set of shares i for which the adversary made SHARE (i) queries.
In H2, in the second phase of the experiment, we compute the shares of i /∈ T as follows.

We resample
(
Ŝh

′
1, . . . , Ŝh

′
m

)
← Resample

(
x, T,

(
Shini

)
i∈T

)
, then reconstruct encodings of(

Ŝh
′
i

)
i/∈T

(instead of
(
Shini

)
i/∈T

).

We claim that SD (H1,H2) ≤ ε because the underyling SSS is resampleable. Speci�cally, given
an (adaptive) distinguisher D with ε̂ distinguishing advantage between H1,H2, we describe
an adversary A′ winning the resampleability game of De�nition 2.5 for secret x with the same
probability ε̂. A′ has x hard-wired into it, and emulates the oracles for D as follows. During

the �rst phase of the experiment, A′ answers LEAK queries according to
(
Sh1, . . . , Shm

)
.

It answers SHARE (i) queries by sending i to its challenger, to obtain a share Shin′i . Let Li

denote the coordinates of the i'th share that were already queried through LEAK queries, then

A′ samples Sh′i ← Rec

(
Shin′i , Li,

(
Shi,j

)
j∈Li

)
, and sends Sh′i to D as the oracle answer. In the

second phase of the game, A′ obtains shares
(
Shin′′1 , . . . , Shin′′m

)
from its challenger. For every

i which was not queried as a SHARE (i) query in the �rst phase of the game, it resamples

Sh′′i ← Rec

(
Shin′′i , Li,

(
Shi,j

)
j∈Li

)
, where Li denotes the set of coordinates that were queried

from the i'th share through LEAK queries in the �rst phase of the game. It provides Sh′′i to
D. When D outputs a bit b′, A outputs b′. Notice that if b = 0 in the game of A′ then D
is emulated with H1, otherwise it is emulated with H2, so A′ obtains the same distinguishing
advantage as D.

H3: In H3, the shares (Sh1, . . . , Shm) are computed as a sharing of 0⃗ (instead of x). The di�erence
between the hybrids is that in H2, SHARE queries are answered with secret shares of x,
whereas in H3 they are answered with secret shares of 0⃗. (We stress that when resampling the
secret shares in the second phase of the game in H3, they are resampled as shares of x.)

We claim that SD (H2,H3) ≤ ε′ from the adaptive secrecy of the underlying secret shar-
ing scheme (De�nition 2.6). Indeed, given a distinguisher D between H2,H3 we construct
a (possibly adaptive) distinguisher A′ between secret shares of x, 0⃗ for some unauthorized
set. Speci�cally, A′ has x hard-wired into it. It emulates the oracles of D as follows.

At the onset of the emulation it generates secret shares
(
Sh1, . . . , Shm

)
← Share

(
0⃗
)
, and

uses these secret shares to answer LEAK queries of D. For every SHARE (i) query of D,
it forwards i to its challenger, and obtains a secret share Sh′i. Let Li denote the coordi-
nates of the i'th share that were already leaked through LEAK queries, then A′ samples

32

Shi ← Rec

(
Sh′i, Li,

(
Shi,j

)
j∈Li

)
, and provides Shi to D as the answer of the oracle. Let T

denote the set of parties whose shares D obtained in the �rst phase of the experiment through
SHARE queries. At the onset of the second phase of the experiment, A′ generates a fresh

secret sharing
(
S̃h

′
1, . . . S̃h

′
m

)
← Resample

(
x, T,

(
Sh′i

)
i∈T

)
. Then, for every i /∈ T it samples

S̃hi ← Rec

(
S̃h

′
i, Li,

(
Shi,j

)
j∈Li

)
, where Li denote the coordinates that were leaked from the

i'th share in the �rst phase of the experiment. Finally, it provides
(
Sh′i

)
i∈T ,

(
S̃hi

)
i/∈T

to D
as the secret sharing. Notice that if in the security game of A′ it obtained secret shares of
0⃗, then it emulates H3 for D. Otherwise, it emulates H2. Therefore, A′ obtains the same
distinguishing advantage as D.

We conclude the proof by noting that H3 is the view of the adversary in the ideal experiment.

The following corollary is obtained by instantiating Theorem 4.1 with Shamir's secret sharing
(De�nition 2.4) and the RPEs of Corollary 3.1:

Corollary 4.2. For any natural length parameter N , number of parties m, and threshold t < m,
there exist an m-party SSS for secrets in {0, 1}N that is ℓ-tampering-resilient and perfectly equivocal
for leakage class Lt,ℓ, where ℓ = Ω(N). Moreover, the shares have length O (N).

Proof: We instantiate Construction 2 with Shamir's scheme for secrets in the �eld F2N , and the
RPEs of Corollary 3.1 with k = N . Shamir's scheme has perfect secrecy and perfect resampleability
(see Remark 2.2). Moreover, by Corollary 3.1 the RPE is an adaptive (0,Ω (N) ,Ω (N))-RPE for
messages in {0, 1}N with codewords of length O (N). Consequently Theorem 4.1 guarantees that
the resultant SSS is Ω (N)-tampering-resilient and perfectly equivocal for the class of (t,Ω (N))-local
probing leakage. Moreover, since the shares in Shamir's scheme are also in F2N , and the RPE has
constant rate, we obtain in Construction 2 shares of length O (N).

4.2 Deniable Secret Sharing Schemes

In this section we elaborate on the technical side of obtaining a deniable SSS based on an equivocal
SSS, staring with formally de�ning the primitive. Towards de�ning deniable secret sharing schemes
we de�ne the notion of a (t, ℓ)-transcript, which captures the information obtained by the adversary
while attacking the secret sharing scheme.

De�nition 4.1 ((t, ℓ)-transcript). A (t, ℓ)-transcript with respect to a t-threshold secret sharing
scheme consists of the shares of the parties in an unauthorized set G of size |G| ≤ t, and a sequence
of m− t subsets (Ii)i/∈G such that |Ii| ≤ ℓ for every i /∈ G.

Next, we formalize the notion of deniable secret sharing as follows.

De�nition 4.2. An m-party Deniable Secret Sharing Scheme (DSSS) for secrets in S is a secret
sharing scheme associated with an additional PPT algorithm Fake that takes as input a secret in S
and a (t, ℓ)-transcript, such that for every pair of secrets s, s∗ ∈ S, and any (t, ℓ)-transcript trans of
a sharing of s, it holds that

Pr
[
Share(s∗; r)|(G,ℓ) = trans : r ← Fake(s∗, trans)

]
= 1

where the probability is over the coin tosses of Fake, and Share (s) |(G,ℓ) denotes the restriction of the
shares output by Share to the shares of the parties in the unauthorized set G, and for every share of
party i /∈ G, the restriction of its share to the bits in Ii.

33

Our construction requires a strongly-equivocal SSS which, roughly, is an equivocal SSS with the
following additional guarantee: the equivocation simulator consists of two simulators (Sim1, Sim2)
which operate as follows: Sim1 is given a secret x, it honestly secret shares x and answers the leakage
queries according to these shares. Next, Sim2 is given a new secret x′, and the leakage from the
previous phase � namely the leakage queries and the responses of Sim1, but not the state of Sim1 �
and equivocates a secret sharing of x′, consistently with the leakage.

Given such a scheme, we construct a deniable SSS as follows: to share x, run the sharing
algorithm of the strongly-equivocal SSS (notice that this is equivalent to running Sim1). Then, to
�explain� the adversary's view, given the leakage, as the sharing of a desired secret x′, run Sim2

with x′. We note that our equivocal SSS (Construction 2) satis�es this property. Indeed, in the
proof of Theorem 4.1 we describe a simulator that, in the �rst phase of the game, honestly shares
0⃗ and answers leakage queries according to these shares. Then, in the second phase of the game,
it equivocates a sharing consistently with the given secret and previous leakage. The choice of 0⃗ in
our proof was arbitrary, and can be replaced with any other value. Moreover, the simulation in the
second phase of the game depended only on the leakage queries, the simulated responses, and the
given secret. In particular, we can generalize our simulator to take a secret x as input, and use it
(instead of 0⃗) in the �rst phase of the game, and then continue the simulation using these shares, as
described in the proof of Theorem 4.1.

In summary, for any threshold t, using the (strongly) equivocal SSS implied by Corollary 4.2
for threshold t, the deniable SSS described above has constant rate, and resists (t, ℓ)-local probing
leakage, and where ℓ is a constant fraction of the share size. More formally,

Corollary 4.3 (Leakage-Resilient and Tampering-Resilient DSSS). For any natural length parame-
ter N , number of parties m, and threshold t < m, there exist an m-party DSSS for secrets in {0, 1}N
for leakage class Lt,ℓ, where ℓ = Ω(N). Moreover, the shares have length O (N).

5 Leakage-Resilient and Tampering-Resilient Distributed Primitives

In this section we explore the applicability of our paradigm beyond secret sharing schemes and
demonstrate its usefulness for a broad class of cryptographic building blocks. Applying our paradigm
to each of these primitives gives a leakage- and tampering-resilient variant of the primitive. The
high-level idea of the paradigm is to individually encode each share using an RPE. This ensures that
the resulting share resists probing leakage (when stored in memory) due to the probing resilience of
the RPE. To obtain tampering-resilience, we exploit the error-correction properties of RPE which
guarantees that RPE decoding can correct a constant fraction of errors in the codeword. One of the
main challenges is to de�ne a meaningful notion of leakage-resilience for each such object, since we
need to provide information-theoretic security against adaptive leakage queries, whereas the original
primitives are sometimes only statically and non-adaptively secure (meaning we need to generalize
their security notions). We elaborate more on these challenges in the following sections, when we
de�ne the leakage model for each primitive.

The leakage model. Our constructions provide adaptive leakage-resilience for data at rest. Namely,
we consider distributed primitives in which the parties hold shares of some secret. These shares are
protected against adaptive leakage while they are being stored in memory, but not when they are
computed on. This model is motivated by the fact that the secret shares may be stored for extended
time periods before, and following, the phase in which they are computed on. Indeed, the primitives
we consider involve a fast (local) computation phase, or a short interactive protocol (during which

34

parties compute over their shares) which requires all parties to be online at the same time. The
duration of these phases is expected to be much shorter than the lifetime of the entire process.

In the following sections, we de�ne leakage-resilience explicitly for each primitive. We note that
in all cases, the leakage class we consider is that of (t, ℓ)-local probing leakage (cf. De�nition 2.2),
but our de�nitions naturally extend to more general classes of leakage functions. Furthermore, if
the underlying building block maintains adaptive security (where the adversary adaptively corrupts
the parties throughout the protocol execution), then our transformation supports this security level,
and enhances it to allow the adversary to adaptively probe a constant fraction of each share.

5.1 Veri�able Secret Sharing (VSS)

In this section, we apply our paradigm to Veri�able Secret Sharing (VSS) schemes, to obtain a
leakage- and tampering-resilient VSS. Intuitively, a VSS scheme is an enhanced SSS with the added
guarantee that after the sharing phase, even a corrupted dealer is committed to some secret. This
should be contrasted with standard SSSs in which a dealer might distribute shares that are inconsis-
tent with any secret, and this will only become known during the reconstruction phase. To achieve
this added feature, VSS schemes have an additional veri�cation phase as part of the sharing phase,
which is an interactive sub-protocol in which all parties can communicate to verify global consistency
of their shares.23

We protect against leakage of �data at rest� - meaning the shares are protected while being
stored in the memory of each of the parties, and up until they are used to recover the secret during
reconstruction. We do not protect the shares when they are being computed on, i.e., during the
veri�cation sub-protocol.

De�nition 5.1 (Veri�able Secret Sharing (VSS)). An ε-secure (m, t)-Veri�able Secret Sharing (VSS)
scheme is a three-phase protocol between n parties P1 . . . , Pm with a designated party D = P1 called
the dealer. The scheme consists of the following phases

� The sharing phase is a procedure run by the dealer D on input s (the secret). D generates
secret shares Sh1, . . . , Shm, and sends Shi to party Pi.

� The veri�cation phase is an interactive protocol during which each party can send private
messages to every other party, as well as broadcast messages. The input of party Pi is its share

Shi from the sharing phase. Its output is a share S̃hi.

� The reconstruction phase consists of applying a reconstruction function Reconst to the

shares S̃h1, . . . , S̃hm.

A VSS scheme has the following semantics.

� ε-Privacy. If D is honest, then for every adversary that adaptively corrupts a subset T ⊂ [m]
of parties of size |T | ≤ t, and any pair of secrets s, s′, SD (ViewT (s) ,ViewT (s′)) ≤ ε, where
ViewT (s) denotes the joint view of all parties Pi, i ∈ T during the sharing and veri�cation
phases, when the dealer has input s.

� Correctness. If D is honest then for every secret s, any adversary that adaptively corrupts a

subset T ⊂ [m] of parties of size |T | ≤ t, and any shares S̃h1, . . . , S̃hm output by the veri�cation

23We note that VSS de�nitions usually do not distinguish between the sharing and veri�cation phases. However,
to enable us to capture the leakage-resilience guarantees of our VSS protocols, we distinguish between the sharing
algorithm and the veri�cation sub-protocol.

35

phase, Pr
[
Reconst

(
S̃h1 . . . , S̃hm

)
= s

]
≥ 1−ε, even if the corrupted parties arbitrarily deviate

from the protocol.24

� Commitment. For any adversary A that adaptively corrupts up to t parties (including the
dealer), except with probability ε the execution of the sharing and veri�cation phases determine
a unique value s∗ which will be reconstructed during the reconstruction phase, even if the
corrupted parties arbitrarily deviate from the protocol.25

VSS leakage model. As discussed in the beginning of Section 5, our leakage-resilient VSS scheme
protects the secret shares against probing leakage when they are being stored. That is, we protect
the secret shares throughout the lifetime of the VSS process, and up until the secret is reconstructed
from the shares, except during the veri�cation phase. This is formalized in De�nition 5.2 below.

De�nition 5.2 (Leakage-Resilient VSS (LR-VSS)). We say that a VSS scheme is ε-Leakage-
Resilient (LR) for the class of (t, ℓ)-local probing leakage if the distinguishing advantage of any
adversary A in the following game with a challenger C is at most ε.

� A picks a pair of secrets s0, s1, and sends s0, s1 to C.

� C draws b← {0, 1}, and emulates the sharing and veri�cation phases together with A. Through-
out this emulation, C emulates the dealer D with secret sb, as well as all honest parties. During
the emulation, A can adaptively corrupt parties by sending their index to C. Upon receiving
a party index j from A, the challenger C sends to A the view of Pj up to that point of the
emulation. Following the corruption of Pj, the challenger C also sends to A the messages
which honest parties send to Pj during the remainder of the emulation. Let T denote the set
of parties which A corrupted throughout this process, and let ViewT denote the joint view of
the parties in T during the sharing and veri�cation phases. Let (Shj)j /∈T denote the shares the
honest parties hold when the veri�cation phase terminates.

� Repeat:

� A picks i ∈ [n] and j ∈ [m] \ T , and sends i, j to C.
� C sends the i'th bit of Shj to A.

� A outputs a bit b′.

� If for some j ∈ [m]\T , A made more than ℓ distinct leakage queries to Shj, then the advantage
of A is set to 0. Otherwise, the advantage of A in the game is |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|.

Remark 5.1 (Stronger LR). We note that De�nition 5.2 can be further strengthened to allow for
leakage between the sharing and veri�cation phases, where the challenger �rst emulates the sharing
phase with A, then A is allowed to leak on the shares, then the veri�cation phase is emulated,
and �nally A can again leak on the shares. We chose to present the weaker de�nition because it is
simpler. However, we note that a slight variation of our LR-VSS of Figure 3 guarantees this stronger
LR property. Speci�cally, at the end of the sharing phase, the dealer �rst RPE-encodes each share
before sending the shares to the parties, and the �rst step during veri�cation is for all parties to �rst
RPE-decode their shares, where veri�cation is executed with the decoded shares. The security proof

24We note that the parties in T might provide invalid or modi�ed shares for reconstruction. To simplify the notation,
we assume that in this case the parties in T output these modi�ed shares already in the veri�cation phase.

25We note that the commitment property should hold even if D is corrupted.

36

then follows similarly to the proof of the equivocation property of the construction of Figure 2, where
we add another hybrid in which each share is resampled (using the resampling algorithm of the RPE)
consistently with the leakage before it is given to the adversary.

Our Construction. Our scheme combines together a (standard, non-LR) VSS scheme VSS with
an RPE scheme. Sharing emulates the sharing procedure of the underlying VSS scheme. The veri�-

cation phase is carried out by running the veri�cation protocol of VSS to obtain shares S̃h
in

1 , . . . , S̃h
in

m,

and �nally having each party locally RPE encode its share to obtain shares S̃h1, . . . , S̃hm. Upon
termination of the veri�cation phase, all parties erase all information generated during the veri�-

cation phase, except for the encoded shares S̃h1, . . . , S̃hm. Reconstruction is performed by having

all parties provide their shares, which are then RPE decoded to obtain S̃h
in

1 , . . . , S̃h
in

m, and then the

reconstruction procedure of VSS is executed on S̃h
in

1 , . . . , S̃h
in

m. This construction is formalized in
Figure 3, and its properties are summarized in Theorem 5.1 below.

Theorem 5.1 (Tampering-resilient LR-VSS). Assume that Construction 3 is instantiated with:

� An ε-secure (m, t)-VSS.

� An adaptive (ε′, ℓ, τ)-RPE scheme.26

Then Construction 3 is an ε-secure (m, t)-VSS that is τ -TR and (ε+ 2 (m− t) ε′)-LR for the class
of (t, ℓ)-local probing leakage.

The following corollary is obtained by instantiating the construction of Figure 3 with the RPEs
of Corollary 3.1.

Corollary 5.2 (Leakage-Resilient and Tampering-Resilient VSS). Any ε-secure (m, t)-VSS VSS can
be transformed into an Ω (N)-TR VSS which is also ε-LR for the class of (t,Ω (N))-local probing
leakage, where N denotes the share length in VSS. Moreover, this transformation only causes a
constant blowup in the share length.

Proof sketch (Theorem 5.1): We argue that Construction 3 satis�es the properties of De�ni-
tion 5.1, the leakage-resilience guarantee of De�nition 5.2, and the tampering-resilience property of
De�nition 2.7.

Correctness. Follows directly from a combination of the correctness of the underlying VSS and
RPE schemes. Indeed, the RPE encoding has no e�ect in this case, because corrupted parties can
overwrite their shares with arbitrary values.

Commitment. Notice that the �rst step of the veri�cation phase determines some secret shares

S̃h
in

1 , . . . , S̃h
in

m, which will be used in the veri�cation protocol of VSS. These values could have been
used by the parties in VSS. Indeed, a corrupted party in VSS can anyway overwrite its share with
any value that it wants, and use the new value for the veri�cation protocol. For honest parties, every
dealer strategy determines which share they will use during veri�cation (in particular, providing Pi

with an invalid RPE encoding - i.e., one for which decoding fails - corresponds to a dealer strategy
in VSS which gives si to Pi as its share). Therefore, commitment reduces to the commitment of
VSS.

26As will be evident from the proof, we do not need the reconstruction property of the RPE, and it su�ces for the
RPE to only have (ε′, ℓ)-adaptive secrecy of partial views.

37

Privacy. Follows directly from the privacy of VSS, since the RPE encoding is applied separately to
each secret share.

TR. Follows from the error-correction of the RPE (since each share is encoded separately), and from
the correctness and commitment of VSS, using similar arguments to the proof of Theorem 4.1. (We
note that since the underlying VSS scheme VSS is secure against malicious parties, the resultant
VSS scheme is also TR against malicious parties.)

LR. Follows from a combination of the privacy of VSS and the LR of the RPE scheme, using a
hybrid argument. Notice that if the adversary makes more than ℓ leakage queries to some share Shj
then its advantage in the game is 0. Therefore, we can condition on the event that the adversary
leaks at most ℓ bits from each share. We denote by leak (Sh1, . . . , Shm) the bits of the secret shares
Sh1, . . . , Shm of s which the adversary queried throughout the game. We now sketch the hybrids.

H0: This is the joint distribution of ViewT (s) and leak
(
Sh01, . . . , Sh

0
m

)
in an execution with secret

s0 (in particular,
(
Sh01, . . . , Sh

0
m

)
is a random secret-sharing of s0).

H1: InH1, we replace leak
(
Sh01, . . . , Sh

0
m

)
with leak (Sh1, . . . , Shm), where (Sh1, . . . , Shm) is a random

sharing of an arbitrary valid secret s (e.g., 0⃗ if that is a valid secret). Then SD (H0,H1) ≤
(m− t) ε′ due to the adaptive secrecy of partial views of the RPE scheme. (We assume here
that |T | = t, which is without loss of generality, since we can always generate the leakage on
a particular share given the share in its entirety.) Indeed, this can be proved using a standard
hybrid argument, where in the jth hybrid for j /∈ T we replace the jth share used to compute
the leakage from Sh0j to Shj . Then every pair of consecutive hybrids are ε′-statistically close
by the secrecy of the RPE scheme, because a distinguisher D between Hj and the previous
hybrid can be used to distinguish between encodings of Sh0j , Shj as follows. The distinguisher

has s0, s hardwired into it, it randomly secret shares them into Sh01, . . . , Sh
0
m and Sh1, . . . , Shm.

It RPE encodes
(
Sh0l

)
l∈T ,

(
Sh0l

)
l /∈T,l≤j

, (Shl)l /∈T,l>j , and asks its challenger for an encoding of

either Sh0j or Shj . Depending on the answer of the challenger, the distinguisher obtains either
Hj or the previous hybrid, and can emulate D with the hybrid (and answer as D does) to
obtain the same distinguishing advantage.

H2: In H2, we replace ViewT

(
s0
)
with ViewT

(
s1
)
. Then SD (H1,H2) ≤ ε due to the privacy of

VSS, because leak (Sh1, . . . , Shm) is independent of s0, s1 and can be �xed into the distinguisher.

H3: In H3, we replace leak (Sh1, . . . , Shm) with leak
(
Sh11, . . . , Sh

1
m

)
, where

(
Sh11, . . . , Sh

1
m

)
is a ran-

dom secret sharing of s1. Then SD (H0,H1) ≤ (m− t) ε′ using the same arguments used to
show that SD (H0,H1) ≤ (m− t) ε′. We note that H3 is the joint distribution of ViewT

(
s1
)

and leak
(
Sh11, . . . , Sh

1
m

)
in an execution with secret s1.

5.2 Distributed ZK (dZK)

In this section we apply our paradigm to distributed ZK proofs, obtaining proofs which are leakage-
and tampering-resilient. We �rst introduce the setting of distributed ZK proofs, following mostly
the terminology of [BBC+19b].

The setting of distributed ZK proofs. Distributed ZK proofs are a multi-veri�er variant of
zero-knowledge interactive proofs. Recall that in standard interactive proofs, a prover P tries to

38

TR and LR-VSS

Building blocks: an (m, t)-VSS scheme VSS and an RPE scheme (Encode,Decode,Rec).

The sharing phase: the dealer D, on input a secret s emulates the sharing procedure of VSS on
input s to obtain secret shares Sh1, . . . ,Shm, and sends Shi to Pi.

The veri�cation phase: party Pi, with share Shi obtained from the sharing phase:

� Emulates party Pi in the veri�cation phase of VSS with Shi. Let S̃h
in

i denote the
updated share which Pi obtains at the end of this emulation.

� Encodes S̃hi ← Enc

(
S̃h

in

i

)
.

� Erases all information obtained during the emulation, except for S̃hi.

� Outputs S̃hi as its updated share.

The reconstruction phase: on input S̃h1, . . . , S̃hm, the reconstruction procedure:

� Decodes S̃h
in

i = Dec
(
S̃hi

)
.

� Computes s∗ = Reconst

(
S̃h

in

1 , . . . , S̃h
in

m

)
, where Reconst is the reconstruction proce-

dure of VSS.

� Outputs s∗.

Figure 3: TR abd LR-VSS

convince a veri�er that some input x is in some language L. In the distributed setting, the single
veri�er is replaced with k veri�ers V1, . . . , Vk, and the input x is distributed between the veri�ers,
where Vi holds a piece xi such that x = x1 ◦ . . . ◦ xk (where ◦ can denote concatenation or addition,
depending on the concrete implementation). The language L is replaced with its k-distributed
version Lk =

{(
x1, . . . , xk

)
: x ∈ L

}
, and a relation R (x,w) is replaced with its k-distributed

version Rk

(
x1, . . . , xk, w

)
. We use L (R) to denote the language corresponding to R (this notation

can be used also for k-distributed relations and languages).

De�nition 5.3 (k-Distributed Interactive Proofs (k-dIP)). Let F be a �eld. A k-distributed Inter-
active Proof (k-dIP) consists of a prover P and veri�ers V1, . . . , Vk satisfying the following.

1. The input of Vi is a piece xi, and the input of P is x = x1 ◦ . . . ◦ xk.

2. The parties interact in rounds, where the messages sent by a party in round i are determined
given a next-message function, and depend on its input, randomness, and messages it received
in previous rounds.

More speci�cally, the computation can be divided into phases,27 where each phase has the
following structure. First, the prover shares some proof string between the veri�ers by sending

27The notion of distributed ZK proofs was de�ned more generally in [BBC+19b]. However, the structure which we
describe here will allow us to obtain a more meaningful LR guarantee. We note that the main protocols of [BBC+19b]
(speci�cally, the protocols of [BBC+19b, Theorem 6.6] and [BBC+19b, Theorem 6.10]) have the structure we describe
here. We also note that some other dZK proofs can be seen as consisting of several �epochs�, where each epoch consists
of several phases as described above.

39

a message to each veri�er.28 This is followed by several rounds in which all parties can interact,
but during which the messages exchanged are completely independent of the inputs of the parties,
and the previous messages they have received. (For example, these rounds can be used to execute
a coin-tossing sub-protocol.) Then, each veri�er performs a local computation on its secret
shares and the outcome it received from the previous rounds of the phase. Following the �nal
phase, the veri�ers can again exchange messages to determine whether to accept or reject.

3. The protocol terminates after a �xed number of rounds, and each veri�er outputs either accept
or reject, based on its view (which consists of its input and the messages it received throughout
the execution).

Next, we de�ne the notion of distributed ZK proofs. These proofs are executed in the presence
of a malicious and rushing adversary, and come in two �avors, depending on whether the adversary
is allowed to simultaneously corrupt the prover and a subset of veri�ers.

De�nition 5.4 (Distributed ZK (dZK): malicious prover or veri�ers). Let Rk

(
x1, . . . , xk, w

)
be a

k-distributed relation over a �nite �eld F. A k-dIP Π = (P, V1, . . . , Vk) for Rk is a k-distributed ZK
proof (k-dZK) for Rk against malicious prover or t veri�ers with error ε, if Π satis�es the following
properties.

� Completeness. For every
(
x1, . . . , xk, w

)
∈ Rk, all veri�ers accept in the execution of Π on(

x1, . . . , xk, w
)
with probability 1.

� Soundness (malicious prover or veri�ers). For every (possibly malicious and unbounded)
prover P ∗, and any x1 ◦ . . . ◦ xk /∈ L (Rk), except with probability ε all veri�ers reject in the
execution of Π with prover P ∗ and input x1 ◦ . . . ◦ xk.

� Distributed Zero-Knowledge (dZK). For every adversary A corrupting a subset T of at
most t veri�ers, there exists a simulator Sim such that for every

(
x1, . . . , xk, w

)
∈ Rk, it holds

that
SD

(
Sim

((
xj
)
j∈T

)
,ViewΠ,A

(
x1, . . . , xk, w

))
≤ ε

where ViewΠ,A
(
x1, . . . , xk, w

)
denotes the view of the adversary A in an execution of Π on

inputs x1, . . . , xk, w.29

De�nition 5.5 (Distributed ZK (dZK): malicious prover and veri�ers). Let Rk

(
x1, . . . , xk, w

)
be

a k-distributed relation over a �nite �eld F. A k-dIP Π = (P, V1, . . . , Vk) for Rk is a k-distributed
ZK proof (k-dZK) for Rk against malicious prover and t veri�ers with error ε, if Π satis�es the
completeness and dZK properties of De�nition 5.4, as well as the following soundness property.

� Soundness (malicious prover and veri�ers). For every adversary A corrupting P and a
subset T of at most t−1 veri�ers, and for any x1◦. . .◦xk /∈ L (Rk), the following holds. If there
exists no

(
x1′, . . . , xk′

)
∈ L (Rk) such that xi = xi′ for every i /∈ T , then except with probability

ε all honest veri�ers reject in the execution of Π with adversary A and input x1 ◦ . . . ◦ xk.
28We note that as in standard ZK proofs, the messages of the prover to the veri�ers depend on the messages it

received from the veri�ers in previous phases. For example, in the protocols of [BBC+19b], in each phase the veri�ers
jointly toss random coins which are used as a random veri�cation challenge, and a�ect the prover's message in the
next phase.

29We note that [BBC+19b] de�ne dZK proofs with perfect dZK, whereas we allow for a statistical simulation error.
This is to explicitly analyze how the simulation error grows through our transformation. However, we note that our
�nal construction will have perfect dZK (see Corollary 5.4).

40

dZK leakage model. Our leakage-resilient dZK proofs protect the proof shares - which the prover
sends to the veri�ers throughout the execution - against probing leakage. Similar to our previous
constructions, the secret shares are protected when they are stored in memory, and throughout the
lifetime of the protocol, and up until the veri�ers exchange messages at the end of the protocol
to decide whether to accept or reject. In particular, the secret shares are not protected when the
veri�ers locally compute on them at the end of each phase. We also assume that there is no leakage
on the prover.30

More speci�cally, leakage-resilience is de�ned by comparing a real-world execution, in which
the adversary A interacts with a challenger C, to an ideal execution in which A interacts with a
simulator Sim. In both executions, the challenger and simulator emulate the honest parties, whereas
A can adaptively corrupt parties and assumes full control of corrupted parties. A can additionally
adaptively probe proof shares of honest veri�ers. This is formalized in the following de�nition.

De�nition 5.6 (Leakage-Resilient dZK (LR-dZK)). We say that a dZK proof Π is an ε-leakage-
resilient dZK (LR-dZK) proof against (t, ℓ)-local probing leakage if for every semi-honest adversary
A that can adaptively corrupt up to t veri�ers, there exists a simulator Sim such that for every(
x1, . . . , xk, w

)
∈ Rk it holds that SD (REALt,ℓ, IDEALt,ℓ) ≤ ε, where REALt,ℓ, IDEALt,ℓ are

de�ned as follows.

� REALt,ℓ =
(
ViewΠ,A

(
x1, . . . , xk, w

)
, leak

(
(πj,l)j∈[k],l≤r

))
where πj,l is the proof shares which

the prover sent to Vj in phase l which were generated through the following process. A interacts
with a challenger C who emulates the execution of the dZK proof together with A. Through-
out this emulation, C emulates the prover P with input

(
x1, . . . , xk, w

)
, as well as all honest

veri�ers. During the emulation, A can repeatedly perform the following operations:

� adaptively corrupt a veri�er Vj by sending j to C, in which case C sends to A the view
of Vj up to that point of the emulation. Following the corruption of Vj, the adversary
obtains full control of Vj, meaning it sends to C the messages of Vj to the honest parties,
and C sends to A the messages which honest parties send to Vj. We let T denote the set
of veri�ers that were corrupted throughout this process.

� make a leakage query to the i'th bit of the proof share of the j'th veri�er in round l, by
sending i, j, l to C, to which C responds by sending the i'th bit of πj,l to A, where πj,l
denotes the proof share which Vj received from the prover in phase l. A is allowed to
make up to ℓ distinct leakage queries to each πj,l (C does not answer any further queries).

Then ViewΠ,A
(
x1, . . . , xk, w

)
denotes the view of the parties in T in this process, r is the

number of phases performed during the proof, and leak (·) denotes the symbols which A adap-
tively probed from the proof shares throughout the execution, where each proof share was probed
in at most ℓ locations.

� IDEALt,ℓ is the output of the simulator Sim in the following process. Sim interacts with A,
playing the role of the challenger, and answering its corruption and leakage queries as follows.

� if A corrupts Vj, then Sim receives the input xj of Vj. Then, it sends to A a simulated
view of Vj up to that point of the emulation, and simulates any further messages that Vj

receives.

30We note that this assumption could be removed by having the prover encode the input and witness, and whenever
it needs to perform some computations on these, it will decode, compute and reencode these values. However, assuming
that the prover is leak-free results in a cleaner and clearer model, so we chose to present the model in this way.

41

� if A makes a leakage query to the i'th bit of the share of the j'th veri�er in round l, then
Sim responds with a simulated bit.

Remark 5.2 (On adaptive security of dZK proofs.). The security de�nition of dZK proofs of Boneh
et al. [BBC+19b] (given in De�nitions 5.4 and 5.5 above) assumes the adversary is non-adaptive. It
can be naturally extended to allow for adaptive corruptions in the dZK property, a property which will
be needed to achieve adaptive leakage resilience in our construction (Construction 4). As we show
in Lemma A.1, the protocol of [BBC+19a, Theorem 6.6] is dZK even against adaptive corruptions.
In what follows, we will assume by default that the dZK proof has dZK against adaptive adversaries.
We note that we could also use the standard (i.e., non-adaptive) notion of dZK, in which case we
would achieve a weaker LR guarantee which allows only the leakage queries to be adaptive (namely
the adversary is restricted to non-adaptive corruption of veri�ers).

Tampering-resilient dZK. Our dZK proofs will be tampering-resilient in the following sense: if
all parties are honest, then the veri�ers will accept a true statement even if an external adversary
can arbitrarily modify at most τ symbols in every proof share sent by the prover. This is formalized
in the next de�nition:

De�nition 5.7 (τ -tampering-resilience for dZK proofs). We say that a dZK proof Π is τ -tampering-
resilient if for every

(
x1, . . . , xk, w

)
∈ Rk, and any adversary A that can arbitrarily modify at most

τ symbols in every proof share sent by the prover, all veri�ers accept in the execution of Π on(
x1, . . . , xk, w

)
with probability 1.

Our Construction. Our scheme combines together a distributed ZK proof between a prover P
and k veri�ers V1, . . . , Vk, with an RPE scheme. The high-level idea is to RPE encode the input
pieces x1, . . . , xk, as well as to modify the phases of the protocol as follows. The prover will RPE
encode the proof shares which it sends to the veri�ers. These shares can remain encoded in the
following rounds in which the parties interact, because the messages exchanged during those rounds
are independent of the shares. Then, when the veri�ers need to locally compute on their proof
shares, each veri�er will decode its share, perform the computation on it, and RPE encode the
result. Additionally, each veri�er will erase all the intermediate values in the computation on the
decoded share (including the decoded share itself). Finally, when the �nal phase terminates, the
veri�ers can decode their shares to compute the messages they need to send.31 This construction is
formalized in Figure 4, and its properties are summarized in Theorem 5.3 below.

Theorem 5.3 (LR-dZK (malicious prover or veri�ers)). Let R be a k-distributed relation over a
�eld F. Assume that Construction 4 is instantiated with:

� A dZK proof for R between prover P and k veri�ers V1, . . . , Vk with security against the prover
or t veri�ers and error ε.32 Let r denote the number of phases in this dZK protocol.

� An adaptive (ε′, ℓ, τ)-RPE scheme.

Then Construction 4 is a dZK proof for R with security against the prover or t veri�ers, that is
τ -TR and ε+ krε′-LR for the class of (t, ℓ)-local probing leakage.

31We note that in some cases, e.g., in the protocol of [BBC+19b], this �nal rounds consist of each veri�er sending
to a single veri�er all the values it locally computed throughout the protocol, and then that veri�er broadcasting the
result (accept of reject). In this case, the shares can remain encoded up until the designated veri�er decodes them to
compute whether to accept or reject.

32Recall that we assume the dZK property holds against adaptive adversaries.

42

The following corollary is obtained by instantiating the construction of Figure 4 with the dZK
proofs of [BBC+19a, Theorem 6.6] (using Lemma A.1 for adaptive security) and the RPEs of Corol-
lary 3.1.

Corollary 5.4 (Leakage-Resilient and Tampering-Resilient dZK proofs). For any k-distributed re-
lation Rk, any k-dZK proof Π for Rk can be transformed into a dZK proof Π′ for Rk which is
Ω (N)-TR and LR for the class of (t,Ω (N))-local probing leakage, where N denotes the length of
proof shares in Π. Moreover, if Π has perfect dZK then Π′ has perfect dZK, and the transformation
only causes a constant blowup in the length of proof shares.

Proof sketch (Theorem 5.3): We argue that Construction 4 satis�es the properties of De�ni-
tion 5.4 and the additional leakage-resilience guarantee of De�nition 5.6.

Completeness. Follows directly from a combination of the completeness of the underlying dZK
and the correctness of the RPE scheme.

Soundness against a malicious prover or veri�ers. Notice that the �rst round of each phase
l determines some proof shares π1,l, . . . , πk,l, which will be used throughout the protocol execution.
These values could have been generated by the prover P of the underlying dZK protocol. (In partic-
ular, providing V ′

j with an invalid RPE encoding - i.e., one for which decoding fails - corresponds to

a prover strategy in the underlying dZK which gives 0⃗ to Vj as its share in the lth phase.) Therefore,
soundness reduces to the soundness of the underlying dZK system.

ZK. Follows directly from the ZK of the underlying dZK system, since the RPE encoding is applied
separately to each share.

TR. Follows from the error-correction of the RPE (since each share is encoded separately), and from
the completeness of the underlying dZK proof, using similar arguments to the proof of Theorem 4.1.

LR. Follows from a combination of the ZK of the underlying dZK system and the LR of the RPE
scheme, using a hybrid argument. The simulator Sim′ will run the simulator of the underlying
dZK system to answer adaptive corruption queries, and answer leakage queries using random RPE
encoding of the all-zero strings. We sketch the hybrids.

H0: This is the real distribution REALt,ℓ which is the joint distribution of ViewΠ,A
(
x1, . . . , xk, w

)
and leak

(
(π̃j,l)j∈[k],l≤r

)
.

H1: In H1, we consider a hybrid simulator Sim′′ which obtains x1, . . . , xk, w, and emulates the role
of C in REALt,ℓ, with the only di�erence that it answers leakage queries using RPE encodings
of the all-zero strings (exactly as Sim′ does).

Notice that H1 is the distribution obtained from H0 by replacing leak
(
(π̃j,l)j∈[k],l≤r

)
with

the leakage obtained by replacing each πj,l with the all-zeros string (and then randomly RPE
encoding it). Then SD (H0,H1) ≤ krε′ from the adaptive secrecy of partial views of the RPE
scheme, by a standard hybrid argument in which we replace the πj,l one at a time (where
x1, . . . , xk, w are hardwired into the distinguisher, so it can generate the πj,l's on its own).33

33We note that if A is restricted to non-adaptive corruptions (but is allowed to obtain adaptive leakage on the shares
of the honest veri�ers) then we can bound the statistical distance here by (k − t) rε. This is because in this case we
can answer leakage queries to shares of the corrupted veri�ers using the actual shares, instead of using encodings of 0.
(This holds when A corrupts t veri�ers, which is without loss of generality, since we can always generate the leakage
on a particular proof share given the share in its entirety.)

43

H2: H2 is the ideal distribution IDEALt,ℓ. Notice that the output of leak (·) is distributed identically
in H1,H2, so SD (H1,H2) ≤ ε′ due to the ZK (against adaptive corruptions) of the underlying
dZK system.

Theorem 5.5 (LR-dZK (malicious prover and veri�ers)). Let R be a k-distributed relation over a
�eld F. Assume that Construction 4 is instantiated with:

� A dZK protocol for R between prover P and k veri�ers V1, . . . , Vk with security against a
coalition of the prover and t− 1 malicious veri�ers, and error ε.34 Let r denote the number of
phases in this dZK protocol.

� An adaptive (ε′, ℓ, τ)-RPE scheme.

Then Construction 4 is a dZK protocol for R with security against a coalition of the prover and t−1
malicious veri�ers, that is τ -TR and ε+ krε′-LR for the class of (t, ℓ)-local probing leakage.

Proof sketch: The only di�erence from the proof of Theorem 5.3 is in the soundness property,
which we now explain.

Soundness against a malicious prover and veri�ers. The �rst round of each phase l determines
some proof shares π′

1,l, . . . , π
′
k,l, which will be used throughout the protocol execution. These values

could have been generated by the prover P of the underlying dZK protocol, since providing an invalid
RPE encoding in the RL-dZK proof corresponds to a prover strategy in the underlying dZK which
gives the share 0⃗. Moreover, each computation phase which depends on the proof shares, uses (the
decoded shares) π′

1,l, . . . , π
′
k,l, where malicious veri�ers can of course arbitrarily modify their shares.

Therefore, soundness reduces to the soundness of the underlying dZK system.

5.3 Function Secret Sharing (FSS)

In this section we study is a leakage- and tampering-resilient variant of Function Secret Sharing
(FSS). Loosely speaking, FFS is a cryptographic building block that enables evaluation of a function
f in a distributed manner, and involves two algorithms (Gen,Eval). In the �rst phase secret keys
(k0, k1) are generated within Gen(1κ, f) and handed to each party.35 In the second phase each party
Pi is given an input x, and locally computes Eval (i, ki, x) to obtain a function share fi(x) such that
f(x) = f0(x) + f1(x). The security requirement ensures that the individual keys do not disclose
any information about the function description (to a computationally-bounded adversary). We now
de�ne FSS and its security more formally (taken verbatim from [BGI16]).

De�nition 5.8 (FSS: Syntax.). An m-party Function Secret Sharing (FSS) scheme is a pair of
algorithms (Gen,Eval) with the following syntax:

� Gen(1κ, f̂) is a PPT key generation algorithm, which on input 1κ (security parameter) and
f̂ ∈ {0, 1}∗ (a description of a function f) outputs an m-tuple of keys (k1, . . . , km). We assume
that f̂ explicitly contains an input length 1κ, group description G, and size parameter T .

34Recall that we assume the dZK property holds against adaptive adversaries.
35While FSS can be de�ned more broadly for any number of parties, current applications �nd practical constructions

mostly in the two-party setting [BGI16, BCG+21]. We note that our results naturally extend to the multi-party setting.

44

LR-dZK

Building blocks: a k-dZK system with prover P and veri�ers V1, . . . , Vk, and an RPE scheme
(Encode,Decode,Rec).

Input encoding:a we assume that for every j, xj is encoded as x̃j ← Encode
(
xj
)
.

Protocol execution: the prover P ′ with input x and witness w, and the veri�ers V ′
1 , . . . , V

′
k with

input pieces x̃1, . . . , x̃k interact in phases. Phase l of the protocol is carried out as follows:

� P ′ emulates P on x,w to obtain the shares π1,l, . . . , πk,l that P sends to V1, . . . , Vk

(respectively) in the lth phase.

� For every j ∈ [k], P ′ encodes π̃j,l ← Encode (πj,l), and sends π̃j,l to Vj .

� The parties emulate P, V1, . . . , Vk during the rounds of interaction of the lth phase.
(We note that the shares can remain encoded throughout this process, because the
messages exchanged during these rounds are independent of the shares.)

� Every V ′
j , j ∈ [k]:

� Decodes πj,l = Decode (π̃j,l).
b If decoding fails then V ′

j sets πj,l = 0⃗.

� Emulates Vj on πj,l, and the messages received in previous rounds, to obtain an
outcome oj,l.

� Encodes õj,l ← Encode (oj,l), and erases πj,l, oj,l and all intermediate values gen-
erated during the computation of oj,l.

After the �nal phase of the protocol, the veri�ers interact to determine the outcome of the
computation. At this point the veri�ers may decode any value computed previously, as
needed.c

aThis will be executed by the party which distributes the input between the veri�ers, which could be
the prover or some trusted external party.

bWe note that the computation in this round might depend on πj,l′ or oj,l′ (oj,l′ is de�ned in the
following steps) for some l′ ≤ l, in which case V ′

j decodes them too.
cWe note that in the protocols of [BBC+19a, Theorem 6.6] and [BBC+19a, Theorem 6.10], the �nal

rounds consist of all veri�ers sending the outcome of the last phase to V1, and V1 broadcasting the result.
In this case, there is no need for decoding, the veri�ers can send the encoded outcomes to V1, who will
locally decode them.

Figure 4: LR-dZK

� Eval(i, ki, x) is a PPT evaluation algorithm, which on input i ∈ [m] (party index), ki (key
de�ning fi : {0, 1}κ 7→ G) and x ∈ {0, 1}κ (input for fi) outputs a group element yi ∈ G (the
value of fi(x), the ith share of f(x)).

When m is omitted, it is understood to be 2, in which case we sometimes index the parties
by i ∈ {0, 1} rather than i ∈ {1, 2}. A function family is de�ned by a pair F = (PF , EF), where
PF ⊆ {0, 1}∗ is an in�nite collection of function descriptions f̂ , and EF : PF ×{0, 1}∗ 7→ {0, 1}∗ is a
polynomial-time algorithm de�ning the function described by f̂ . Concretely, each f̂ ∈ PF describes
a corresponding function f : Df 7→ Rf de�ned by f(x) = EF (f̂ , x).

De�nition 5.9 (FSS: Security.). Let F = (PF , EF) be a function family and Leak : {0, 1}∗ 7→ {0, 1}∗
be a function specifying the allowable leakage. Let m (number of parties) and t (secrecy threshold)
be positive integers. An m-party t-secure FSS for F with leakage Leak is a pair (Gen,Eval) as in
De�nition 5.8, satisfying the following requirements

45

� Correctness: For all f̂ ∈ PF describing f̂ : {0, 1}κ 7→ G, and every x ∈ {0, 1}κ, if
(k1, . . . , km)← Gen(1κ, f̂) then Pr[

∑m
i=1 Eval(i, ki, x) = f(x)] = 1.

� Secrecy: For every subset T ⊂ [m] of size |T | ≤ t, there exists a PPT algorithm Sim (simula-
tor), such that for every sequence f̂1, f̂2, . . . of polynomial-size function descriptions from PF ,
the outputs of the following experiments Real and Ideal are computationally indistinguishable:

� Real(1κ) : (k1, . . . , km)← Gen(1κ, f̂κ);
Output {ki}i∈T .

� Ideal(1κ);
Output Sim(1κ, Leak(f̂κ)).

When Leak is omitted, it is understood to be the function Leak(f̂) = (1κ, Sf̂ ,G) where 1κ, Sf̂ ,

and G are the input length, size,36 and group description contained in f̂ .

FSS leakage model. In this work we construct leakage-resilient FSS that protects function keys
and output shares against probing. Recall that our security model protects these keys during peri-
ods of time in which they are stored in the memory of the servers, but not when they are used for
computation and evaluation. As opposed to other security notions considered in this work (e.g., VSS
and dZK described in Sections 5.1 and 5.2, respectively), our LR-FSS de�nition requires considering
computationally-bounded adversaries, because standard FSS has computational security. We there-
fore de�ne admissible adversaries by decoupling the (computationally unbounded) adversary that
leaks from the honest parties' shares from the (computationally bounded) adversary that attacks
the underlying FSS, maintaining a stronger security property for the former.

De�nition 5.10 (Admissible adversaries (FSS)). An admissible adversary A = (A1,A2) is a pair
of algorithms (A1,A2) such that A1 is computationally unbounded whereas A2 is PPT.

Next, we introduce our leakage-resilient FSS de�nition. Intuitively speaking, our de�nition
compares a real-world experiment with an ideal-world experiment. In both experimentsA1 is allowed
to adaptively leak on the honest parties' key and output shares via the oracle LEAK, where a
leakage query consists of a pair of leakage functions g, g′ to be applied to the key and output shares,
respectively. A2 is allowed to adaptively corrupt parties by calling the COR oracle, in which case it
receives the key shares of the corrupted parties. The adversary must make all leakage queries before
making any corruption queries. As noted above, this is necessary to obtain information-theoretic
security against leakage queries while using a computationally-secure primitive such as FSS. To
ensure consistency between repeated leakage queries, we maintain a table O containing, for each
queried input x, all randomness required for sampling the output shares in the real execution (such
a list is not needed in the ideal experiment, since it can be maintained in the simulator's state).
The adversary is restricted to corrupting at most t parties, and leaking at most ℓ bits from the key
share, and all output shares, of each party. (See Remark 5.3 below for a discussion of a stronger
LR guarantee for output shares, which our construction achieves.) This is enforced by the check
performed before the experiments terminate, where if the adversary violated these restrictions, then
its guess b is disregarded.

De�nition 5.11 (Leakage-Resilient FSS (LR-FSS)). Let FSS = (Gen,Eval) be an FSS scheme. We
say that FSS is Leakage-Resilient (LR) for the class of (t, ℓ)-local probing leakage if for every PPT

36The exact meaning of the size parameter depends on the computational model in use. For instance, the size of
Boolean circuits is typically the number of the gates in the circuit.

46

adversary A corrupting at most t parties there exists an e�cient simulator (Sim1, Sim2, Sim3, Sim4)
and a negligible function ε (κ) such that

|Pr [REALℓ,t (1κ) = 1]− Pr [IDEALℓ,t (1κ) = 1]| ≤ ε (κ)

where REALℓ,t (1κ) , IDEALℓ,t (1κ) are de�ned in Figure 5, and the probability is over the random
coin tosses of SET UPR, Eval, A, and (Sim1, Sim2, Sim3, Sim4).

Remark 5.3 (Better leakage bound for output shares). Notice that we allow the adversary in Fig-
ure 5 to obtain leakage on the output shares, for an unbounded number of inputs x.37 However,
for every party i ∈ [m], we allow only ℓ leakage bits in total on all output shares fi (x) generated
throughout the experiment. This was done to simplify the de�nition, but we stress that our construc-
tion will obtain a stronger leakage guarantee, which allows the adversary to leak ℓ bits from every
output share. For example, if during the execution the adversary calls LEAK with two di�erent
inputs x, x∗, resulting in two sets of output shares f1 (x) , . . . , fm (x) and f1 (x

∗) , . . . , fm (x∗) (re-
spectively), then leakage resilience is guaranteed even if the adversary leaks ℓ bits from fi (x) and ℓ
(possibly di�erent) bits from fi (x

∗), for every i. We chose to present the weaker version in Figure 5
to keep the de�nition simpler and clearer.

Remark 5.4 (Adaptive corruptions). Our de�nition supports adaptive corruptions, so to satisfy
it, our construction will require that the underlying FSS is also adaptively secure. Speci�cally, we
need the underlying FSS to have an adaptive secrecy guarantee which is stronger than the secrecy of
De�nition 5.9. Roughly, in adaptive secrecy the experiments Real, Ideal of De�nition 5.9 are modi�ed
to be a game between the adversary and a challenger or simulator (respectively), where the adversary
can adaptively ask for key shares (by sending a party index i to the challenger or simulator) and
obtains the corresponding function key. Secrecy is required to hold so long as the set of shares the
adversary obtains throughout the process is of an unauthorized set. We note that current schemes
from the literature are analyzed in the presence of static corruptions, but could possibly be compiled
into the adaptive setting using known secure computation techniques. We leave such adaptations to
future work.

We stress that we could also make due with statically-secure FSS schemes (i.e., ones satisfying
the standard static-secrecy property of De�nition 5.9), by considering a weaker security de�nition
for LR-FSS in which corruptions are �xed at the onset of the protocol, but the adversary can still
adaptively leak on the shares of the honest parties.

Remark 5.5 (Enhancing FSS security). We can enhance the security de�nition of (both standard
and LR) FSS by adding an additional REV oracle, allowing the adversary to obtain the function
shares of honest parties (for instance, this is useful in applications where all parties are required
to learn the output of the function). In this case, the FSS simulator needs to simulate the honest
parties' function shares as well. In standard FSS, this can easily be done because the output shares
form a (fresh) additive sharing of the output. We can also extend LR-FSS to support REV queries
by having the leakage-resilience simulator sample a random additive sharing of the output subject
to the shares of the corrupted parties, and resample RPE-encodings of the freshly-sampled shares
consistently with the previous leakage.

37When using RPEs with a statistical error ε, the statistical error will accumulate over calls to LEAK with di�erent
inputs, however, if the RPE is perfect (as is the case in the RPE used in this work, see Corollary 3.1) the number
of inputs does not a�ect the quality of simulation (i.e., the error does not accumulate, since there is no simulation
error). See also Remark 5.6 below.

47

LR FSS

SET UPR (1κ):

pick a random string r for Gena

LEAKR (r, g, g′, x):

(k1, . . . , km)← Gen(1κ, f̂κ; r):
if (x, ·, . . . , ·) /∈ O
then pick random strings rx1 , . . . , r

x
m

else let (x, rx1 , . . . , r
x
m) ∈ O

for every i ∈ [m], fi(x)← Eval(i, ki, x; r
x
i)

(outputi)i∈[m] ← g
(
(ki)i∈[m]

)
(output′i)i∈[m] ← g′

(
(fi(x))i∈[m]

)
O ← O ∪ {(x, rx1 , . . . , rxm)}
for every i ∈ [m]
ℓi ← ℓi + |outputi|
ℓ′i ← ℓ′i + |output′i|

output
(
(outputi, output

′
i)i∈[m]

)

CORR (r, T):
T1 ← T1 ∪ T
output (ki)i∈T

SET UPI
(
1κ, Leak(f̂κ)

)
:

St← Sim1

(
1κ, Leak(f̂κ)

)

LEAKI (St, g, g′, x):(
(outputi)i∈[m] , St

)
← Sim2 (St, g)(

(output′i)i∈[m] , St
)
← Sim3 (St, g

′, x)

for every i ∈ [m]
ℓi ← ℓi + |outputi|
ℓ′i ← ℓ′i + |output′i|

output
(
(outputi, output

′
i)i∈[m]

)

CORI (St, T):
T1 ← T1 ∪ T
(k′i)i∈T ← Sim4(St, T)
output (k′i)i∈T

REALℓ,t (1
κ):

ℓ1, ℓ
′
1, . . . , ℓm, ℓ′m ← 0

T1,O ← ∅
SET UPR (1κ)

StA ← ALEAKR(r,·,·,·)
1 ()

b← ACORR(r,·)
2 (StA)

if ℓi, ℓ
′
i ≤ ℓ for every i ∈ [m] and |T1| ≤ t

then output b
else output 0

IDEALℓ,t

(
1κ, Leak(f̂κ)

)
:

ℓ1, ℓ
′
1, . . . , ℓm, ℓ′m ← 0

T1,O ← ∅
St← SET UPI

(
1κ, Leak(f̂κ)

)
StA ← ALEAKI(St,·,·,·)

1 ()

b← ACORI(St,·)
2 (StA)

if ℓi, ℓ
′
i ≤ ℓ for every i ∈ [m] and |T1| ≤ t

then output b
else output 0

aWe consider the randomness r, the table O, the simulator state St, the set T1 of corrupted parties,
and the counters ℓi, ℓ

′
i as global variables that the relevant oracles can freely access and update.

Figure 5: The Security Experiments of LR FSS

Our Construction. Our modi�ed key generation algorithm is similar to the sharing phase de-
scribed in Figure 2, where we generate the function keys using Gen and then apply an RPE encoding
separately to each share. Next, whenever the servers need to run the Eval algorithm, each server
locally decodes its key, computes yi = Eval(i, ki, x), RPE encodes yi, and then deletes the decoded
key and yi upon completing the evaluation. Recall that according to our leakage model, the decoding
and evaluation phases are leak-free. yi remains encoded for the remaining lifetime of this process,

48

and up until the clients reconstruct f(x). Importantly, due to the linearity of the underlying re-
construction algorithm, the clients can remotely operate on the encoded output shares yi, and only
decode the outcome f(x). Thus, function and output shares can still be aggregated as required for
FSS applications.

We provide the formal construction in Figure 6 for a one-time invocation of the FSS algorithms.
Our construction naturally extends to multiple executions of both algorithms. This requires another
aggregation step where each server computes the sum

∑
j ỹ

j
i of the encoded function shares.

Theorem 5.6 (Leakage-Resilient and Tampering-Resilient FSS). Assume that Construction 6 is
instantiated with:

� An m-party t-secure FSS scheme FSS = (Gen,Eval).

� An adaptive (ε, ℓ, τ)-RPE scheme.

Then the construction de�ned in Figure 6 is an m-party t-secure FSS which is τ -TR and is also
leakage-resilient for the class of (t, ℓ)-local probing leakage, with

|Pr [REALℓ,t (1κ) = 1]− Pr [IDEALℓ,t (1κ) = 1]| ≤ (h+ 1)mε+ δ(κ)

where REALℓ,t, IDEALℓ,t were de�ned in Figure 5, h is the number of distinct inputs to the FSS
on which the adversary called the LEAK oracle, and δ(κ) is the secrecy error of FSS.

Remark 5.6 (LR-FSS for an unbounded number of input queries). The error in Theorem 5.6 grows
with the number h of inputs x the adversary queried from the LEAK oracle, which requires some
a-priori bound on h. However, we note that this bound can be removed by employing perfect RPEs,
such as the RPE of Corollary 3.1.

The following corollary follows immediately from Theorem 5.6 by instantiating the Construction
of Figure 6 with the RPE of Lemma 3.9.

Corollary 5.7 (Leakage-resilient and tampering-resilient FSS). Let F be a �eld. Any m-party
t-secure FSS FSS over F can be transformed into an m-party t-secure FSS FSS′ over F that is
Ω (N)-TR and LR for the class of (t,Ω (N))-local probing leakage, where the LR simulation error is
exactly the secrecy error of FSS, and N is the length of key and output shares in FSS. Moreover,
this transformation only causes a constant blowup in the key and output share sizes. Furthermore,
if FSS has additive reconstruction over F, then FSS′ has linear reconstruction over F.

Remark 5.7. We note that if one does not care to preserve linear reconstruction, then one can
instantiate Theorem 5.6 with the RPEs of Corollary 3.1, resulting in a LR-FSS scheme with the
properties speci�ed in the corollary (except for linear reconstruction). Thus, one can obtain a LR-FSS
scheme from any FSS scheme. (This should be contrasted with the LR-FSS scheme of Corollary 5.7,
in which the (original) FSS scheme and the RPE are required to be over the same �eld.)

Proof sketch (of Theorem 5.6): We argue that the construction de�ned in Figure 6 satis�es
the properties of De�nition 5.9, the leakage-resilience guarantee of De�nition 5.11, and the tamper-
resilience property of De�nition 2.7.

Correctness. Follows directly from a combination of the correctness of the underlying FSS and
RPE schemes.

Secrecy. Follows directly from the privacy of FSS, since the RPE encoding is applied separately to
each key share. Speci�cally, the simulator can run the FSS simulator to simulate the shares, then

49

honestly RPE encode each share to obtain simulated encoded shares. More speci�cally, the �avor
of secrecy � namely static or adaptive � is inherited from the underlying FSS. This is proved via a
reduction to the security of the underlying FSS as follows. In the reduction, the shares are generated
according to the real or simulated experiments, where in the static setting these are generated at the
onset of the experiment, whereas in the adaptive setting they are generated on the �y. The shares
are then RPE-encoded and handed to the distinguisher.

TR. Follows from the error-correction of the RPE (since each share is encoded separately), and the
correctness of FSS, using similar arguments to the proof of Theorem 4.1. We note that in the FSS
setting, TR holds against adversaries that can only change τ bits in each of the shares (but do not
corrupt parties).

LR. Follows from a combination of the secrecy of FSS, the adaptive secrecy of partial views of the
RPE, and the adaptive reconstruction* from partial views of the RPE, using a sequence of hybrid
distributions. Speci�cally, the adversary is leaking from a single set of key shares, and h sets of
output shares. The simulator will answer leakage queries using RPE-encodings of 0⃗. When the
adversary corrupts parties, the simulator will use the FSS simulator to simulate the key shares, and
will use the resampling algorithm Rec of the RPE scheme to sample RPE-encodings of the simulated
key shares which are consistent with the leakage. (Here, whether or not the adversary can adaptively
corrupt parties depends on the �avor of security of the underlying FSS scheme.) Indistinguishability
between the real and the simulated executions can be shown via a sequence of hybrids, as we now
explain. In the following, we assume that the adversary corrupts at most t parties, and obtains at
most ℓ leakage bits from every RPE encoding. This is without loss of generality, since otherwise
both experiments output 0.

Let H0 denote the real execution of the LR-FSS. The next hybrid H1 is obtained from H0 by
(1) answering leakage queries on key shares using RPE-encodings of 0⃗, and (2) answering corruption
queries by using the resampling algorithm Rec of the RPE to resample a fresh RPE-encoding of the
key share, consistently with the leakage. We stress that H1 encodes the same values as in H0, so
(apart from the leakage) the only di�erence between the hybrids is in the RPE encoding itself. Then
SD (H0,H1) ≤ mε by the adaptive secrecy of partial views, and the adaptive reconstruction* from
partial views of the RPE. Speci�cally, we de�ne a sequence of hybrids where in the i'th hybrid we
replace only the RPE-encodings of the �rst i key shares. When comparing hybrid i− 1 with hybrid
i, if the ith key share was not revealed by a corruption query, then the two hybrids are ε-statistically
close by the adaptive secrecy of partial views, otherwise they are ε-statistically close by the adaptive
reconstruction* from partial views. In particular, in the reduction to the secrecy/reconstruction
of RPE, the entire hybrid distribution can be generated given the leakage (and, if the ith party is
corrupted, the encoding) of the ith key. We note that in this reduction, all output shares of the ith
party � and leakage on them � are generated using the actual values of these output shares (as in
the real execution).

Next, we de�ne H2 which is obtained from H1 by answering leakage queries on output shares
using RPE-encodings of 0⃗. (In particular, in H2 all leakage queries � on key or output shares � are
answered according to RPE-encodings of 0⃗.) Then SD (H0,H1) ≤ hmε by the adaptive secrecy of
partial views of the RPE. Speci�cally, we order the (at most) hm output shares generated throughout
the experiment in some arbitrary order, and de�ne a sequence of hybrids where in the ith hybrid we
switch the leakage (from real to leakage on encodings of 0⃗) only in the �rst i shares. When comparing
hybrid i− 1 with hybrid i, the only di�erence is in leakage on the RPE-encoding of the ith output
share, and so indistinguishability follows from the adaptive secrecy of partial views of the RPE.
(Indeed, output shares are never revealed in full throughout the execution. In particular, we stress
that even if the ith output share belongs to some corrupted party j, the adversary can compute �

50

Leakage-Resilient and Tampering-Resilient FSS

Building blocks: an m-party FSS scheme (Gen,Eval) and an RPE scheme (Encode,Decode,Rec).

Keys generation: on input a security parameter 1κ:

� Computes (k1, . . . , km)← Gen (1κ).

� For every i ∈ [m], encodes k̃i ← Encode (ki).

� Outputs the key shares
(
k̃1, . . . , k̃m

)
.

Evaluation: on a key share k̃i, i ∈ [m] and an input x:

� Decodes ki = Decode(k̃i).

� Evaluates fi(x)← Eval (i, ki, x).

� Encodes f̃i(x)← Encode (fi(x)).

� Erases ki and fi(x), together with all intermediate computations except for f̃i(x).

� Outputs f̃i(x).

Figure 6: LR and TR FSS

from party j's key share � the corresponding output share in the original FSS FSS, however since
output shares of FSS are randomly RPE-encoded, the adversary does not learn the actual output
share in full.)

Next, we de�ne H3 that is identical to the simulated execution as de�ned above. The only
di�erence between H2,H3 is in how corruption queries are answered � in H2 they are answered
by resampling an RPE-encoding of the actual key shares, whereas in H3 they are resampled using
simulated key shares. Then H2 and H3 are computationally indistinguishable by the secrecy of
the underlying FSS, through the following reduction. The reduction emulates the leakage on RPE
encodings of 0⃗ (which, in particular, are independent of the honest parties' real shares). When
it receives a corrupt query, it forwards this query to its oracle receiving back the key shares for
the corrupted parties, for which it honestly resamples the RPE-encodings (using Rec) consistently
with the leakage, and hands these shares to the adversary. Finally, it returns the bit b output
by the adversary. (We note that the leakage is � always! � adaptively simulated, whereas the
corruption pattern is either static or adaptive, depending on the permissible corruption strategies
in the underlying FSS.)

5.4 Threshold Cryptography

In this section we study the usefulness of our paradigm in the context of threshold cryptogra-
phy [DH76, LN18, FLOP18, HMR+19] where the secret key underlying some cryptographic task
(e.g., encryption or signing), is used in a distributed manner. For clarity of exposition, we will focus in
the following description on threshold encryption schemes. Our construction easily extends to other
cryptographic primitives (e.g., signature schemes), as we explain below. Let (TESGEN,Enc,TESDEC)
denote a threshold encryption scheme with distributed key generation protocol TESGEN whereas the
encryption algorithm Enc is unchanged compared to the standard non-distributed setting. More-
over, decryption is done locally, namely each party Pi can locally decrypt its plaintext share using a
local deterministic algorithm Deci. Our starting point will be m-party semi-honest secure schemes.

51

We will later brie�y explain how to handle arbitrary attacks. We �rst formally de�ne threshold
encryption schemes.

De�nition 5.12 (Threshold Encryption Scheme (TES)). An m-party Threshold Encryption Scheme
(TES) for message spaceM is a tuple (TESGEN,Enc,TESDEC) with the following syntax and correct-
ness guarantee:

� TESGEN(1
κ) is an m-party protocol, which on input 1κ (where κ is a security parameter) outputs

an m-tuple of secret key shares (sk1, . . . , skm) and a public key pk.

� Enc(pk,msg) is a PPT algorithm, which on input a public key pk and a plaintext msg ∈ M
outputs a ciphertext c.

� TESDEC is a tuple of m local PPT algorithms (Dec1, . . . ,Decm), where Deci on input a secret
key share ski and a ciphertext c, output a plaintext share msgi.

38

� Correctness.

Pr

∑
i

msgi = msg

∣∣∣∣
((sk1, . . . , skm),pk)← TESGEN(1

κ)

c← Enc(pk,msg)

∀i ∈ [m] : msgi = Deci(ski, c)

 = 1

The security of TES is de�ned as follows, extending the standard indistinguishability security of
public key encryption schemes for multiple ciphertexts.

De�nition 5.13 (TES: Security.). Let TES = (TESGEN,Enc,TESDEC) be a TES. We say that TES
is an m-party t-secure TES if for every PPT adversary A corrupting at most t parties there exists
an e�cient simulator Sim = (Sim1, Sim2, Sim3) and a negligible function δ (κ) such that:

|Pr [REALt (1κ) = 1]− Pr [IDEALt (1κ) = 1]| ≤ δ (κ)

where REALt (1κ) , IDEALt (1κ) are de�ned in Figure 7, and the probability is over the random coin
tosses of SET UPR, Enc, A and Sim.

Example: Threshold Additive El Gamal [Gam85]. We �rst recall the (additive variant of
the) standard El Gamal scheme. Let G be a group of prime order p in which the Decisional Di�e-
Hellman problem is hard. The public key is a tuple pk = ⟨G, p, g, h⟩, where g is a generator of G,
and the corresponding secret key is sk = s, s.t. gs = h. Encryption is performed by choosing r ← Zp

and computing Enc(pk,m; r) = ⟨gr, hr · gm⟩. Decryption of a ciphertext c = ⟨α, β⟩ is performed by
computing gm = β · α−s and then �nding m by running an exhaustive search. Consequently, this
variant is only applicable for small plaintext domains, which is the case in our work. (We note that
to encode elements from a domain of size 2p using RPEs we implicitly view each such element as a
bit string of length p).

Next, we discuss the threshold variant of the El Gamal scheme where the parties �rst agree on
a group G of order p and a generator g. Then, each party Pi picks si ← Zp and sends hi = gsi

to the others. Finally, the parties compute h =
∏m

i=1 hi and set pk = ⟨G, p, g, h⟩. Clearly, the
secret key s =

∑m
i=1 si associated with this public key is correctly shared amongst the parties. In

the setting of malicious corruptions, to ensure honest behavior the parties must prove knowledge of
their secret key share si by running a zero-knowledge proof of a discrete logarithm on (g, hi). To
decrypt a ciphertext c = ⟨c1, c2⟩, party Pi computes c2 · (

∏m
i=1 c

si
1)

−1, and sends csi1 together with a
corresponding proof of the Di�e-Hellman relation (the proof is used to ensure correctness).

38We assume that the randomness used by each party within Deci is derived locally.

52

Secure TES

SET UPR (1κ):
pick a random string r for TESGEN

a

(sk1, . . . , skm,pk)← TESGEN(1
κ; r):

output pk

ENCR (r,pk,msg,msg′):
c← Enc(pk,msg)
(msg1, . . . ,msgm)← TESDEC(sk1, . . . , skm, c)
id← Rb

O ← O ∪ {(msg1, . . . ,msgm, id)}
output (c, id)

CORR (r, T):
T1 ← T1 ∪ T
output (ski)i∈T

REVR (r, id):
if (·, . . . , ·, id) /∈ O then return
let (msg1, . . . ,msgm, id) ∈ O
output (msgi)i/∈T1

SET UPI (1κ):
initialize St to the empty string
(St,pk)← Sim1 (1

κ)
output pk

ENCI (St,pk,msg,msg′):
c← Enc(pk,msg′)
id← R
O ← O ∪ {(c,msg,msg′, id)}
output (c, id)

CORI (St, T):
T1 ← T1 ∪ T
(sk′

i)i∈T ← Sim2(St, T)
output (sk′

i)i∈T

REVI (St, id):
if (·, ·, ·, id) /∈ O then return
let (c,msg, ·, id) ∈ O(
msgSi

)
i/∈T1

← Sim3 (St, c,msg)

output
(
msgSi

)
i/∈T1

REALℓ,t (1
κ):

T1,O ← ∅
Let O′ denote the column of id's within O
pk← SET UPR (1κ)

b← AENCR(r,pk,·,·),CORR(r,·),REVR(r,·)(pk,O′)
if |T1| ≤ t
then output b, else, output 0

IDEALℓ,t (1
κ):

T1,O ← ∅
Let O′ denote the column of id's within O
(St,pk)← SET UPI (1κ)

b← AENCI(St,pk,·,·),CORI(St,·),REVI(r,·)(pk,O′)
if |T1| ≤ t
then output b, else, output 0

aWe assume that the randomness r, the table O, the public key pk, the set T1 of corrupted parties,
and the simulator state St are global parameters that the relevant oracles can access and update.

bWe assume that R is a su�ciently large domain of binary strings, so that with overwhelming proba-
bility all id's are unique.

Figure 7: The Security Experiments of TES

Our leakage model. We protect secret keys and plaintext shares against adaptive leakage attacks
of computationally unbounded adversaries when the keys and plaintexts are stored in memory (i.e.,
�data at rest�), but not during computations on them. In particular, we assume that the computa-
tions performed on the shares, namely within the subprotocols TESGEN and TESDEC, are carried out
in a leak-free environment (see discussion below on cases in which this leak-free assumption can be
removed).

Our leakage model is motivated by application scenarios in which the ciphertext and/or plaintext
shares are stored in memory for extended time periods. The most natural application scenario is
to protect the secret key shares from leakage while they are being stored in memory throughout
the lifetime of the system, which could be quite extensive. Our paradigm additionally protects the
plaintext shares. In particular, note that though when the (distributed) decryption process ends, the

53

adversary learns all plaintext shares (and consequently also the plaintext), it can potentially learn
information about the plaintext earlier on by (adaptively) leaking on the plaintext shares of honest
parties before the decryption process ends. This is of particular concern when the plaintext shares
are expected to be stored for a long time before the decryption is completed. Our paradigm protects
against such attacks by guaranteeing that the honest parties' plaintext shares remain entirely hidden
even given the leakage. To capitalize on this feature of our paradigm, we explicitly separate the
decryption phase into two phases: a phase in which parties compute plaintext shares (on which the
adversary can leak), and a reveal phase in which all plaintext shares are revealed to the adversary
(and, in particular, the adversary learns the message).

Another example in which our paradigm is useful is when the ciphertext c is generated on some
server who knows only the public key (this is possible because TES is a public key object), whereas
c is unknown to the adversary, who can only (adaptively) leak on the server's storage, but cannot
obtain c in full. In this case, our paradigm guarantees that the plaintext remains information-
theoretically hidden, because our leakage guarantee holds against unbounded adversaries.

We note that our paradigm is most useful when the shares in the underlying TES protocol form
an additive secret sharing of the secret key (resp., multiplicative secret sharing of the public key).
This is because our paradigm respects additive sharing, and so this allows us to aggregate the shares
before decoding them, as explained in detail in the following paragraph.

Obtaining a stronger leakage guarantee for TES. In some cases, we can achieve a stronger
leakage-resilience guarantee for TES. Speci�cally, if TESGEN,TESDEC are non-interactive (i.e., each
party broadcasts a single message) and the scheme supports additive sharing, then our paradigm
can protect the entire process of public key generation from the shares (as well as decryption from
plaintext shares) from adaptive leakage. We note that this is indeed the case in many TES instan-
tiations (such as the TES described in the example above). These properties eliminate the need for
leak-free assumptions since non-interactive sub-protocols introduce no secret intermediate values,39

and the encoded shares can be aggregated such that decoding is performed only after (an encoding
of) the �nal outcome (the public key or the plaintext) has been computed.

In more detail, using our paradigm we can RPE encode the secret key shares, aggregate the
encoded shares to obtain an encoding of the public key, and �nally RPE decode to obtain the public
key. (We note that in most cases � such as the Di�e-Hellman example described above � decoding
is carried out in the exponent relative to some group description. Thus, each party can apply an
RPE encoding to each key share in the exponent before broadcasting it to the other parties.) For
example, in the El Gamal scheme described above, each party will RPE encode si to obtain an
encoding s′i from which it computes the value h′i = gs

′
i that it broadcasts to all other parties. Then,

the parties will (locally) compute h′ =
∏m

i=1 h
′
i = g

∑m
i=1 s

′
i and �nally RPE decode h′ � by applying

RPE decoding in the exponent � to obtain the public key h = g
∑m

i=1 si . (The fact that RPE decoding
does indeed give h follows from the linearity of the RPE.)

We run a similar process during the distributed decryption protocol, where we encode the shares
of the decrypted ciphertext (i.e., the plaintext shares). As noted above, encoding the plaintext shares
is useful when they are expected to be stored in memory for a long period of time before completing
the decryption (i.e., executing TESDEC which, when the TES has additive reconstruction, is done
by adding the plaintext shares) at a later point. Recall that encoding the plaintext shares protects
them from leakage until the decryption process is completed.

39We note that for decryption, broadcast is required only if all parties should learn the decrypted plaintext. Oth-
erwise, the parties send their message via a point-to-point channel to the designated party.

54

The leakage-resilience de�nition. We are now ready to formally de�ne the notion of LR-TES.
Similar to De�nition 5.10, we �rst de�ne an admissible adversary for TES, where here the adversary
is comprised of three parts since the TES de�nition is more involved.

De�nition 5.14 (Admissible adversaries (TES)). An admissible adversary A = (A1,A2,A3) is a
tuple of algorithms (A1,A2,A3) such that A1,A3 are PPT whereas A2 is computationally unbounded.

Before introducing our formal leakage-resilience de�nition, we provide the high-level idea. Similar
to equivocal SSS and LR-FSS, we compare a real-world execution with an ideal execution. In the
real-world execution the adversary can use the CORR oracle to adaptively corrupt (at most) t parties,
where by corrupting a party the adversary learns its secret key share, from which it can conclude
the corresponding plaintext shares for any ciphertext. The adversary can also ask for plaintexts to
be encrypted (by calling the ENCR oracle), and to leak on the key and plaintext shares of honest
parties (by calling the LEAKR oracle). To capture the fact that the adversary can learn decrypted
plaintexts (since plaintexts might be decrypted during the lifetime of the system), we allow the
adversary to make REVR queries. Throughout the experiment, T1 maintains the set of corrupted
parties, and ℓi, ℓ

′
i denotes the total number of bits leaked from the key share and plaintext shares of

party i, respectively. LR is only guaranteed against an adversary that corrupts at most t parties, and
leaks at most ℓ bits from the key share, and all plaintext shares, of each party. (See Remark 5.9 for
a discussion of a stronger leakage guarantee for plaintext shares, which our scheme satis�es.) This is
captured by the checks performed in the one but last line of REAL, where if the leakage restrictions
are violated then the adversarial guess b is disregarded. We note that the de�nition poses some
(necessary) restrictions on the order in which oracles are called, see Remark 5.8 for a discussion.
An analogous ideal experiment is de�ned using a four-step simulator to simulate the setup, as well
as the leakage, corruption, and reveal capabilities of the adversary. These simulators extend the
simulators for standards TES schemes to support leakage from the secret key and plaintext shares.

De�nition 5.15 (Leakage-Resilient TES (LR-TES)). Let TES = (TESGEN,Enc,TESDEC) be a TES.
We say that TES is Leakage-Resilient (LR) for the class of (t, ℓ)-local probing leakage if for every ad-
missible adversary A corrupting at most t parties there exists an e�cient simulator (Sim1, Sim2, Sim3, Sim4)
and a negligible function ε (κ) such that:

|Pr [REALℓ,t (1κ) = 1]− Pr [IDEALℓ,t (1κ) = 1]| ≤ ε (κ)

where REALℓ,t (1κ) , IDEALℓ,t (1κ) are de�ned in Figure 8, and the probability is over the random
coin tosses of SET UPR, Enc, A and (Sim1, Sim2, Sim3, Sim4).

A few remarks are in order regarding our LR-TES de�nition.

Remark 5.8. First, currently the adversary can only leak on the secret key shares if it had already
made an ENC query. We have chosen to de�ne the leakage oracle this way to simplify the de�nition.
However, we note that this restriction can be removed by replacing the LEAK oracle with two oracles
� LEAKkey and LEAKcipher � which allow the adversary to leak separately on the key and plaintext
shares, respectively. Second, in the current de�nition the adversary is restricted in its query pattern
because it has to �rst make all ENC queries, then all LEAK queries, and �nally all REV queries.
Removing this restriction is subtle since we need to guarantee that the state passed to the LEAK
adversary does not provide any information on ciphertexts, because the �LEAK adversary� can break
TES security. We therefore chose to provide the simpler de�nition with restricted query pattern.
We note, however, that if one is willing to have only computational security (even against leakage
attacks), then the three adversarial entities can be united into a single, computationally-bounded,
adversary with access to all three oracles. In particular, this means the adversary can query the
oracles in an arbitrary order.

55

Remark 5.9 (Better leakage bound for message shares). Notice that in Figure 8, for every party
i ∈ [m], we allow a total of ℓ leakage bits on all message shares msgi generated throughout the
experiment. However, similar to the FSS case (Remark 5.3), our construction will obtain a stronger
leakage guarantee, which allows the adversary to leak ℓ bits from every message share. For example,
if during the execution the adversary calls ENC with two di�erent messages msg,msg∗, resulting in
two sets of message shares msg1, . . . ,msgm and msg∗1, . . . ,msg∗m (respectively), then leakage resilience
is guaranteed even if the adversary leaks ℓ bits from msgi and ℓ (possibly di�erent) bits from msg∗i ,
for every i. We chose to present the weaker version in Figure 8 to keep the de�nition simpler and
clearer.

Remark 5.10 (Protecting ciphertexts against leakage). We note that our LR-TES de�nition can
naturally be extended to also guarantee leakage-resilience for ciphertexts, by having the LEAK oracle
take a third function g′′, and apply it to the ciphertext associated with id. Our construction can
easily be adapted to this case by having the encryption algorithm RPE-encode the ciphertext, where
the decryption algorithm �rst RPE-decodes the ciphertext before generating the plaintext share from
it. This scheme can be proved secure by slightly modifying the proof of Theorem 5.8 to also handle
ciphertext leakage by simulating it using RPE-encodings of 0⃗, and using the secrecy of partial views of
the RPE. We chose not to include this strengthening in our LR-TES de�nition to keep the de�nition
as simple as possible.

We present our construction in Figure 9, and summarize its properties in the following theorem:

Theorem 5.8 (Leakage-Resilient and Tampering-Resilient TES). Assume that the Construction of
Figure 9 is instantiated with:

� An m-party t-secure TES TES = (TESGEN,Enc,TESDEC).

� An adaptive (ε, ℓ, τ)-RPE scheme.

Then the construction de�ned in Figure 9 is a τ -TR TES which is also leakage-resilient for the class
of (t, ℓ)-local probing leakage, where

|Pr [REALℓ,t (1κ) = 1]− Pr [IDEALℓ,t (1κ) = 1]| ≤ 2(h+ 1)mε+ δ(κ)

for some negligible function δ (κ), where REALℓ,t, IDEALℓ,t were de�ned in Figure 8, and h is the
number of encrypted plaintexts the adversary obtained throughout the execution.

Remark 5.11 (LR-TES for an unbounded number of encrypted plaintext). The error in Theo-
rem 5.8 grows with the number h of encrypted plaintexts that the adversary queried from the ENC
oracle, which requires some a-priori bound on h. However, we note that this bound can be removed
by employing perfect RPEs, such as the RPE of 3.1.

The following corollary follows immediately from Theorem 5.8 by instantiating the Construction
of Figure 9 with the RPE of Lemma 3.9.

Corollary 5.9 (Leakage-Resilient and Tampering-Resilient TES). Let F be a �eld. Any m-party
t-secure TES TES over F can be transformed into an Ω (N)-TR TES TES′ over F which is also LR
for the class of (t,Ω (N))-local probing leakage, where N denotes the length of key and output shares,
and the LR simulation error is exactly the security error of TES. Moreover, this transformation
only causes a constant blowup in the key and plaintext share sizes. Furthermore, if TES has additive
reconstruction over F, then TES′ has linear reconstruction over F.

56

LR TES

SET UPR (1κ):
pick a random string r for TESGEN

a

(sk1, . . . , skm,pk)← TESGEN(1
κ; r):

output pk

ENCR (r,pk,msg,msg′):
c← Enc(pk,msg)
(msg1, . . . ,msgm)← TESDEC(sk1, . . . , skm, c)
id← Rb

O ← O ∪ {(msg1, . . . ,msgm, id)}
output c

LEAKR (r, g, g′, id):
if g /∈ Lt,ℓ

c or g′ /∈ Lt,ℓ or (·, . . . , ·, id) /∈ O return
let (msg1, . . . ,msgm, id) ∈ O
(outputi)i∈[m] ← g

(
(ski)i∈[m]

)
(output′i)i∈[m] ← g′

(
(msgi)i∈[m]

)
for every i ∈ [m]

ℓi ← ℓi + |outputi|, ℓ′i ← ℓ′i + |output′i|
output (outputi, output

′
i)i∈[m]

CORR (r, T):
T1 ← T1 ∪ T
output (ski)i∈T

REVR (r, id):
if (·, . . . , ·, id) /∈ O then return
let (msg1, . . . ,msgm, id) ∈ O
output (msgi)i/∈T1

SET UPI (1κ):
initialize St to the empty string
(St,pk)← Sim1 (1

κ)
output pk

ENCI (St,pk,msg,msg′):
c← Enc(pk,msg′)
id← R
O ← O ∪ {(c,msg,msg′, id)}
output c

LEAKI (St, g, g′, id):
if g /∈ Lt,ℓ or g

′ /∈ Lt,ℓ or (·, ·, ·, id) /∈ O return(
St, (outputi, output

′
i)i∈[m]

)
← Sim2 (St, g, g

′)

for every i ∈ [m]
ℓi ← ℓi + |outputi|, ℓ′i ← ℓ′i + |output′i|

output
(
(outputi, output

′
i)i∈[m]

)

CORI (St, T):
T1 ← T1 ∪ T
(sk′

i)i∈T ← Sim3(St, T)
output (sk′

i)i∈T

REVI (St, id):
if (·, ·, ·, id) /∈ O then return
let (c,msg, ·, id) ∈ O(
msgSi

)
i/∈T1

← Sim4 (St, c,msg)

output
(
msgSi

)
i/∈T1

REALℓ,t (1
κ):

ℓ1, ℓ
′
1, . . . , ℓm, ℓ′m ← 0, T1,O ← ∅

pk← SET UPR (1κ)

StA1 ← A
ENCR(r,pk,·,·)
1 (pk)

Let O′ denote the column of id's within O
StA2 ← A

LEAKR(r,·,·,·)
2 (pk,O′)

b← ACORR(r,·),REVR(r,·)
3 (StA1 , St

A
2)

if ℓi, ℓ
′
i ≤ ℓ for every i ∈ [m] and |T1| ≤ t

then output b, else, output 0

IDEALℓ,t (1
κ):

ℓ1, ℓ
′
1, . . . , ℓm, ℓ′m ← 0, T1,O ← ∅

(St,pk)← SET UPI (1κ)

StA1 ← A
ENCI(St,pk,·,·)
1 (pk)

Let O′ denote the column of id's within O
StA2 ← A

LEAKI(St,·,·,·)
2 (pk,O′)

b← ACORI(St,·),REVI(r,·)
3 (StA1 ,St

A
2)

if ℓi, ℓ
′
i ≤ ℓ for every i ∈ [m] and |T1| ≤ t

then output b, else, output 0

aWe assume that the randomness r, the table O, the public key pk, the set T1 of corrupted parties,
and the simulator state St are global parameters that the relevant oracles can access and update.

bWe assume that R is a su�ciently large domain of binary strings, so that with overwhelming proba-
bility all id's are unique.

cRecall that Lt,ℓ was de�ned in De�nition 2.2 in Section 2.1.

Figure 8: The Security Experiments of LR TES

57

Remark 5.12. We note that if one does not care to preserve linear reconstruction, then one can
instantiate Theorem 5.8 with the RPEs of Corollary 3.1, resulting in a LR-TES with the properties
speci�ed in the corollary (except for linear reconstruction). Thus, one can obtain a LR-TES from
any TES scheme. (This should be contrasted with the LR-TES scheme of Corollary 5.9, in which
the (original) TES scheme and the RPE are required to be over the same �eld.)

Proof sketch: We argue that the construction de�ned in Figure 9 satis�es the properties of
De�nition 5.13, the leakage-resilience guarantee of De�nition 5.15, and the tampering-resilience
property of De�nition 2.7.

Correctness. Follows directly from a combination of the correctness of the underlying TES and
RPE schemes.

Secrecy. Follows directly from the privacy of TES, since the RPE encoding is applied separately
to each secret key and plaintext shares. Speci�cally, the simulator can use the TES simulator
to generate secret key/plaintext shares, and then honestly RPE encode each individual simulated
share. We note that the static/adaptive �avor of secrecy is inherited from the underlying TES
scheme, namely if the underlying scheme is only statically-secure, then the resultant scheme is also
statistically-secure, whereas if the underlying scheme is adaptively-secure, then so is the resultant
scheme.

TR. Follows from the error-correction of the RPE (since each share is encoded separately), and the
correctness of TES (since we assume semi-honest corruptions), using similar arguments to the proof
of Theorem 4.1.

LR. Follows from a combination of the secrecy of TES, the adaptive secrecy of partial views of
the RPE, and the adaptive reconstruction* from partial views of the RPE, using a sequence of
hybrid arguments. Speci�cally, the adversary is leaking from a single set of key shares, and h sets
of plaintext shares. The simulator will answer leakage queries using RPE encodings of 0⃗. When
the adversary corrupts a subset T of parties, the simulator will use the TES simulator to simulate
the key shares of parties in T , whereas when the adversary calls REV, the simulator will use the
TES simulator to simulate the plaintext shares of honest parties. In both cases, the simulator
will then run the resampling algorithm Rec of the RPE scheme to sample RPE-encodings of the
simulated key or plaintext shares which are consistent with the leakage. (Here, whether or not
the adversary can adaptively corrupt parties depends on the security �avor of the underlying TES
scheme.) Indistinguishability between the real and the simulated executions can be shown via a
sequence of hybrid arguments, as we now explain. In the following, we assume that the adversary
corrupts at most t parties, and obtains at most ℓ leakage bits from every RPE-encoding. This is
without loss of generality, since otherwise both experiments output 0.

Let H0 denote the real execution of the LR-TES. The next hybrid H1 is obtained from H0

by (1) answering leakage queries on key and plaintexts shares using RPE-encodings of 0⃗, and (2)
answering corruption queries by using the resampling algorithm Rec of the RPE to resample a fresh
RPE-encoding of the key consistently with the leakage, and (3) answering reveal queries by using
the resampling algorithm Rec of the RPE to resample a fresh RPE-encoding of the plaintext share.
We stress that H1 encodes the same values (of key and plaintext shares) as in H0, so (apart from the
leakage) the only di�erence between the hybrids is in the RPE encoding itself. Then SD (H0,H1) ≤
(h + 1)mε by the adaptive secrecy of partial views, and the adaptive reconstruction* from partial
views of the RPE. Speci�cally, we order the key and plaintext shares generated throughout the
experiment in some arbitrary order, and de�ne a sequence of hybrids where in the i'th hybrid we
switch the leakage (from real to leakage on encodings of 0⃗), and resmaple the encoding (if the share
was queried to COR or REV), only in the �rst i shares. When comparing hybrid i− 1 with hybrid

58

Leakage-Resilient and Tampering-Resilient TES

Building blocks: an m-party TES (TESGEN,Enc,TESDEC) and an RPE scheme
(Encode,Decode,Rec).

Key shares generation: on input a security parameter 1κ:

� Computes (sk1, . . . , skm,pk)← TESGEN (1κ) where party Pi obtains ski and all parties
obtain pk.

� For every i ∈ [m], encodes s̃ki ← Encode (ski).

� Outputs the key shares
(
s̃k1, . . . , s̃km

)
and the public key pk.

Encryption: identical to Enc � on input a plaintext msg and a public key pk outputs c ←
Enc(pk,msg).

Decryption: on input a key share s̃ki, i ∈ [m] and a ciphertext c:

� Decodes ski = Decode
(
s̃ki

)
.

� Decrypts msgi ← Deci (ski, c).

� Encodes m̃sgi ← Encode (msgi).

� Erases ski, c and msgi, together with all intermediate computations except for m̃sgi.

� Outputs m̃sgi.

Figure 9: LR and TR Threshold Encryption Scheme

i, where the ith share is a (key or plaintext) share of the jth party, there are three possible cases.
First, if the encoding of the ith share was never queried (i.e., by a LEAK, COR or REV query) then
the hybrids are identical. Second, if the ith share was queried by a LEAK query, but not by a REV
or COR query, then the hybrids are ε-statistically close by the adaptive secrecy of partial views of
the RPE. Finally, if the ith share is a plaintext share that was queried by a REV query, or it is a
key share of a corrupted party j (i.e., j was queried through a COR query), then the hybrids are
ε-statistically close by the adaptive reconstruction* from partial views of the RPE.

Next, we de�ne H2 that is identical to the simulated execution as de�ned above. The only
di�erence between H1,H2 is in how corruption and reveal queries are answered � in H1 they are
answered by resampling an RPE-encoding of the actual key and plaintext shares, whereas in H2

they are resampled using simulated key and plaintexts shares. Then H1 and H2 are computationally
indistinguishable by the secrecy of the underlying TES, through the following reduction. The reduc-
tion emulates the leakage on RPE encodings of 0⃗ (which, in particular, are independent of the honest
parties' real shares). When it receives a corrupt query, it forwards this query to its oracle receiving
back the key shares for the corrupted parties, for which it honestly resamples the RPE-encodings
(using Rec) consistently with the leakage, and hands these shares to the adversary. When it receives
a reveal query, it forwards this query to its oracle receiving back the plaintext shares for the honest
parties, for which it honestly resamples the RPE encodings (using Rec) consistently with the leakage,
and hands these shares to the adversary. Finally, it returns the bit b output by the adversary. (We
note that the leakage is � always! � adaptively simulated, whereas the corruption pattern is either
static or adaptive, depending on the permissible corruption strategies in the underlying TES.)

Achieving leakage-resilient TES in the malicious setting. Threshold crytosystems in the
presence of malicious attackers are harder to achieve and require heavier tools for ensuring correctness

59

e.g., zero-knowledge proofs of knowledge or additional encoding mechanisms. For systems that are
ampli�ed using such proofs without modifying the messages of the underlying semi-honest protocol,
e.g., the Di�e-Hellman protocol, we can apply our paradigm in a similar manner. Namely, each
party attaches a proof for every message of the semi-honest protocol. In the Di�e-Hellman protocol
this boils down to a proof of knowledge of the exponent which can be applied to the encoded value.

Threshold signature schemes. Threshold signature schemes are used in applications where
multiple signers are required to generate a signature. A notable example is ECDSA, a standardized
signing algorithm that is widely deployed in practice. Its threshold variant attracted much attention
lately due to its usage in Bitcoin and other cryptocurrencies. Other examples for threshold singing
protocols exist for RSA and Schnorr signatures. Our paradigm is also useful for enhancing the
security of signature schemes (guaranteeing leakage-resilience of the key shares) in which the secret
decryption key is additively shared between the parties, which is indeed the case for these schemes.

Acknowledgments

We thank the anonymous ITC'22 reviewers for their helpful comments. The �rst and third authors
were supported by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister's O�ce. The �rst author
was also supported by ISF grant No. 1316/18.

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with
o(1/ log(n)) leakage rate. In EUROCRYPT, Proceedings, Part II, pages 586�615, 2016.

[ADN+19] Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto,
João L. Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable secret shar-
ing schemes for general access structures. In CRYPTO, pages 510�539, 2019.

[AGV09] Adi Akavia, Sha� Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, Proceedings, pages 474�495, 2009.

[BBC+19a] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. How to prove a
secret: Zero-knowledge proofs on distributed data via fully linear PCPs. IACR Cryptol. ePrint

Arch., 2019:188, 2019.

[BBC+19b] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In CRYPTO, Proceedings, Part III, pages
67�97, 2019.

[BCG+11] Nir Bitansky, Ran Canetti, Sha� Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N.
Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT, Proceedings, pages
722�739, 2011.

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and
Mayank Rathee. Function secret sharing for mixed-mode and �xed-point secure computation.
In EUROCRYPT, pages 871�900, 2021.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In TCC,

Proceedings, pages 266�284, 2012.

[BDG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable
codes for small-depth circuits. In FOCS, pages 826�837, 2018.

60

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage
resilience of linear secret sharing schemes. In CRYPTO, Proceedings, pages 531�561, 2018.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes for
bounded depth, bounded fan-in circuits. In EUROCRYPT, pages 881�908, 2016.

[BDL14] Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant computation with input-
independent preprocessing. In CRYPTO, Proceedings, Part II, pages 146�163, 2014.

[Bea91] Donald Beaver. E�cient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, CRYPTO, volume 576, pages 420�432. Springer, 1991.

[BFV19] Gianluca Brian, Antonio Faonio, and Daniele Venturi. Continuously non-malleable secret sharing
for general access structures. In TCC, pages 211�232, 2019.

[BG10] Zvika Brakerski and Sha� Goldwasser. Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO,

Proceedings, pages 1�20, 2010.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In CCS, pages 1292�1303, 2016.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure com-
putation against adaptive auxiliary information. In CRYPTO, pages 316�334, 2013.

[BGJK12] Elette Boyle, Sha� Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty computation
secure against continual memory leakage. In STOC, Proceedings, pages 1235�1254, 2012.

[BGK11] Elette Boyle, Sha� Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin tossing. In DISC,
Proceedings, pages 181�196, 2011.

[BIVW16] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded indis-
tinguishability and the complexity of recovering secrets. In CRYPTO, pages 593�618, 2016.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In FOCS,
pages 501�510, 2010.

[Bra84] Gabriel Bracha. An asynchronous (n− 1)/3-resilient consensus protocol. In PODC, pages 154�
162, 1984.

[BS11] Zvika Brakerski and Gil Segev. Better security for deterministic public-key encryption: The
auxiliary-input setting. In CRYPTO, Proceedings, pages 543�560, 2011.

[BS19] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret sharing.
In EUROCRYPT, pages 593�622, 2019.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In EUROCRYPT,

Proceedings, pages 89�108, 2011.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In TCC, pages 427�444,
2008.

[CDMW18] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. A black-box construction
of non-malleable encryption from semantically secure encryption. J. Cryptol., 31(1):172�201,
2018.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
CRYPTO, pages 90�104, 1997.

[CGG+20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Ashutosh Kumar, Xin Li, Raghu Meka,
and David Zuckerman. Extractors and secret sharing against bounded collusion protocols. In
FOCS, pages 1226�1242, 2020.

61

[CKOS21] Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar.
Adaptive extractors and their application to leakage resilient secret sharing. In CRYPTO, pages
595�624, 2021.

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Wal�sh. Perfectly secure password pro-
tocols in the bounded retrieval model. In TCC, Proceedings, pages 225�244, 2006.

[CPP20] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable interactive encryption. In
CRYPTO, pages 807�835, 2020.

[DDN15] Ivan Damgård, Frédéric Dupuis, and Jesper Buus Nielsen. On the orthogonal vector problem and
the feasibility of unconditionally secure leakage-resilient computation. In ICITS, Proceedings,
pages 87�104, 2015.

[DDV10] Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In SCN,

Proceedings, pages 121�137, 2010.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational as-
sumptions. In TCC, Proceedings, pages 230�247, 2012.

[DGK+] Yevgeniy Dodis, Sha� Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Public-key encryption schemes with auxiliary inputs. In TCC, Proceedings, pages
361�381.

[DGR97] Scott E. Decatur, Oded Goldreich, and Dana Ron. A probabilistic error-correcting scheme. IACR
Cryptol. ePrint Arch., 1997:5, 1997.

[DGR99] Scott E. Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity. SIAM J.

Comput., 29(3):854�879, 1999.

[DH76] Whit�eld Di�e and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf.

Theory, 22(6):644�654, 1976.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In FOCS, pages 511�520, 2010.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary input.
In STOC, Proceedings, pages 621�630, 2009.

[DLZ15] Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou. Leakage-resilient circuits revisited
- optimal number of computing components without leak-free hardware. In EUROCRYPT,

Proceedings, Part II, pages 131�158, 2015.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS, Pro-

ceedings, pages 227�237, 2007.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, Proceedings,
pages 207�224, 2006.

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed
RSA key generation for semi-honest and malicious adversaries. In CRYPTO, pages 331�361,
2018.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In EUROCRYPT,

Proceedings, pages 135�156, 2010.

[FV19] Antonio Faonio and Daniele Venturi. Non-malleable secret sharing in the computational setting:
Adaptive tampering, noisy-leakage resilience, and improved rate. In CRYPTO, pages 448�479,
2019.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469�472, 1985.

62

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov. Bounded-
communication leakage resilience via parity-resilient circuits. In FOCS, pages 1�10, 2016.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In CRYPTO,

Proceedings, pages 297�315, 2011.

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In STOC, Proceedings, pages
685�698, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access structures.
In CRYPTO, Proceedings, Part I, pages 501�530, 2018.

[GM10] Berndt M. Gammel and Stefan Mangard. On the duality of probing and fault attacks. J.

Electron. Test., 26(4):483�493, 2010.

[GR10] Sha� Goldwasser and Guy N. Rothblum. Securing computation against continuous leakage. In
CRYPTO, Proceedings, pages 59�79, 2010.

[GR12] Sha� Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In FOCS,
pages 31�40, 2012.

[GW16] Venkatesan Guruswami and Mary Wootters. Repairing Reed-Solomon codes. In STOC, Pro-

ceedings, pages 216�226, 2016.

[HMR+19] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and Angelo Agatino Nicolosi. Ef-
�cient RSA key generation and threshold paillier in the two-party setting. J. Cryptol., 32(2):265�
323, 2019.

[HVW21] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. ZK-PCPs from
leakage-resilient secret sharing. In ITC, 2021.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. Private circuits II: keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308�327, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463�481, 2003.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage. In
CRYPTO, Proceedings, pages 41�58, 2010.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In SP, pages 1�19, 2019.

[KJJ99] Paul C. Kocher, Joshua Ja�e, and Benjamin Jun. Di�erential power analysis. In CRYPTO,

Proceedings, pages 388�397, 1999.

[KMS19] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing against collud-
ing parties. In FOCS, pages 636�660, 2019.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Di�e-Hellman, RSA, DSS, and other
systems. In CRYPTO, Proceedings, pages 104�113, 1996.

[KOST21] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, Sruthi Sekar, and Jenit Tomy. Locally
reconstructable non-malleable secret sharing. IACR Cryptol. ePrint Arch., 2021:657, 2021.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptography. In Providing

Sound Foundations for Cryptography: On the Work of Sha� Goldwasser and Silvio Micali, pages
727�794. 2019.

[LCG+19] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and Huaxiong
Wang. Non-malleable secret sharing against a�ne tampering. CoRR, abs/1902.06195, 2019.

63

[LCG+20] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and Huaxiong
Wang. Leakage-resilient secret sharing in non-compartmentalized models. In ITC, pages 7:1�7:24,
2020.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In CCS, pages 1837�1854, 2018.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In USENIX Security, pages 973�990, 2018.

[Mil14] Eric Miles. Iterated group products and leakage resilience against NC1. In ITCS, pages 261�268,
2014.

[MNP+21] Hemanta K. Maji, Hai H. Nguyen, Anat Paskin-Cherniavsky, Tom Suad, and Mingyuan Wang.
Leakage-resilience of the shamir secret-sharing scheme against physical-bit leakages. In EURO-

CRYPT, pages 344�374, 2021.

[MPSW21] Hemanta K. Maji, Anat Paskin-Cherniavsky, Tom Suad, and Mingyuan Wang. Constructing
locally leakage-resilient linear secret-sharing schemes. In CRYPTO, pages 779�808, 2021.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
TCC, pages 278�296, 2004.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In STOC, pages 251�260, 2013.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,

Proceedings, pages 18�35, 2009.

[NS20] Jesper Buus Nielsen and Mark Simkin. Lower bounds for leakage-resilient secret sharing. In
EUROCRYPT, Proceedings, Part I, pages 556�577, 2020.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In CRYPTO,

Proceedings, pages 552�569, 2012.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612�613, 1979.

[SV19] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret sharing and
applications. In CRYPTO, Proceedings, pages 480�509, 2019.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475�484, 2014.

[TX21] Ivan Tjuawinata and Chaoping Xing. Leakage-resilient secret sharing with constant share size.
CoRR, abs/2105.03074, 2021.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More e�cient MPC from improved triple generation
and authenticated garbling. In CCS, pages 1627�1646. ACM, 2020.

A Adaptive Zero-Knowledge of the dZK proof of [BBC+19b]

To obtain fully-adaptive leakage-resilience in our LR-dZK proofs of Section 5.2, we relied on (non-
leakage-resilient) dZK proofs with dZK against adaptive adversaries. For completeness, in this section
we show that the dZK proof of [BBC+19a, Theorem 6.6] based on public-coin Fully-Linear Interac-
tive Oracle Proofs (FLIOPs) with strong honest-veri�er ZK, has dZK against adaptive adversaries.
Combined with the construction of Figure 4 (and Theorem 5.3), this gives a TR and adaptively LR
dZK proof for malicious prover or veri�ers.

64

Overview of the dZK proof of [BBC+19a]. The dZK proof of [BBC+19a, Thoerem 6.6] uses
as a building block a public-coin FLIOP that has strong honest-veri�er ZK. Roughly, in an IOP
system the veri�er has oracle access to the prover messages, where in a fully-linear IOP the answer
to a veri�er query q to a proof oracle π is computed as ⟨x ◦ π, q⟩, where ◦ denotes concatenation,
and x is the input statement (i.e., the veri�er is trying to verify that x is in some language L). The
public-coin property of the FLIOP guarantees that the veri�er queries are simply random coins.
Strong honest-veri�er zero-knowledge means there exists an e�cient simulator that can simulate �
with no knowledge of x or the corresponding witness � the answers to the oracle queries of the honest
veri�er.

At a high level, the dZK proof between a prover P and veri�ers V1, . . . , Vk operates in epochs,
where in each epoch the prover P emulates the FLIOP prover Pin to obtain a proof oracle, which it
additively secret shares, sending the jth proof share to Vj . Then, all parties invoke an ideal coin-
tossing functionality to determine the queries which the FLIOP veri�er Vin makes in this round.
Then, each veri�er Vj locally applies the queries to its proof share and input piece x(j) to obtain
an answer share. When the FLIOP execution terminates, all veri�ers send their answer shares to
V1,

40 who recovers from them the oracle answers for Vin (this is done by summing the answer shares,
which form an additive sharing of the oracle answers). Finally, V1 emulates Vin with these oracle
answers, and broadcasts the output of Vin to all veri�ers, who output it as their own output. In
particular, the only direct communication between the veri�ers is in the last two rounds: in the one
but last round all veri�ers send their answer shares to V1, and in the last round V1 broadcasts the
output. (We refer the interested reader to [BBC+19a] for the formal description of the dZK proof,
as well as the de�nition of strong HVZK and the underlying FLIOP system.)

The adaptive security of [BBC+19a, Theorem 6.6] is stated in the following lemma.

Lemma A.1 (Adaptive dZK proof). The dZK proof of [BBC+19b, Theorem 6.6] has dZK against
adversaries that adaptively corrupt t ≤ k − 1 veri�ers.41

Proof: Let Πdist denote the dZK of [BBC+19a, Theorem 6.6] (page 32 in [BBC+19a]), and recall
that Πdist employs an FLIOP that is public-coin and has strong honest-veri�ers zero-knowledge.
That is, the FLIOP veri�er is public-coin, and the zero-knowledge simulator can simulate a proof
for an input x in the language, without knowing x. Recall also that we consider a slightly modi�ed
version of the proof, in which the veri�ers defer their messages to V1 until the last round. Let A be
an adversary that adaptively corrupts t ≤ k− 1 veri�ers. We describe a simulator Sim for A, which
uses the simulator Simin of the FLIOP, interacts with A, and operates as follows.

1. Sim emulates the simulator Simin of the FLIOP to obtain the randomness R1, . . .Rr of the
FLIOP-veri�er (here, r determines the total number of phases in the proof, and each Rl

determines veri�er queries q⃗l,1, . . . , q⃗l,sl because the FLIOP is public-coin), and the oracle
answers a⃗1, . . . , a⃗r (where a⃗l, 1 ≤ l ≤ r is a length-sl vector).

2. For every phase l = 1, . . . , r:

(a) For every corrupted veri�er Vj , Sim picks its proof share πj,l uniformly at random, and
gives it to A as the answer of the oracle.

40This is a slightly modi�ed version of the dZK proof of [BBC+19b, Theorem 6.6], where in the original protocol the
veri�ers send their answer shares to V1 as they are computed throughout the execution. Deferring the messages to V1

to the last round does not a�ect any of the properties of the protocol (because the underlying FLIOP is public-coin),
but will allow for a cleaner analysis of adaptive security.

41Recall that we consider a slightly modi�ed version of the dZK proof of [BBC+19b, Theorem 6.6], in which all
veri�ers defer their messages to V1 to the last round.

65

Whenever A corrupts a veri�er Vj , Sim provides A with the shares πj,l′ for l
′ ≤ l, which

are sampled uniformly at random. We note that when A corrupts Vj then Sim is given
the input piece xj of Vj .

(b) Sim provides Rl to A as the output of the coin-tossing oracle.

3. Let T denote the set of corrupted veri�ers at the onset of the one but last round (in which all
veri�ers send their answer shares to V1). If 1 ∈ T (i.e., V1 is corrupted), then Sim needs to
simulate the messages which the honest veri�ers send to V1 in this round. For every corrupted
veri�er Vj , j ∈ T , Sim honestly computes the answer shares a⃗j,1, . . . , a⃗j,r which Vj would
have computed in Πdist had it been honest (this is possible because Sim knows both xj and
πj,1, . . . , πj,r). More speci�cally, for every 1 ≤ l ≤ r, 1 ≤ h ≤ sl, the hth coordinate of a⃗l
is computed as ⟨q⃗l,h,

(
x̃1, . . . , x̃j−1, xj , x̃j+1, . . . , xk

)
◦ πj,l⟩, where q⃗l,h is the lth query of the

FLIOP veri�er in round l, x̃z = 0⃗ for every j ̸= z ∈ [k], and πj,l is the proof share that Vj

received in phase l. Then, Sim picks the answer shares of the honest veri�ers uniformly at
random subject to the constraint that a⃗l =

∑
j∈[k] a⃗j,l for every 1 ≤ l ≤ r.

4. In the last round, Sim needs to simulate the message which V1 broadcasts only if V1 is honest.
(Notice that if V1 is honest at this point of the simulation, then it was also honest in the
previous round, so Sim did not need to simulate the incoming message to V1 in Step 3.) For
every malicious Vj , Sim obtained from A the answer shares a⃗∗j,1, . . . , a⃗

∗
j,r (one share for each

phase) which the corrupted Vj sent to V1. (This was sent in the one but last round, during
which V1 is honest.) Then, Sim computes the answer shares a⃗j,1, . . . , a⃗j,r which Vj should have
sent to V1 (the answer shares depend only on xj and πj,1, . . . , πj,r, which are both known

to Sim). Next, for every 1 ≤ l ≤ r, Sim computes a⃗∗l = a⃗l +
∑

i∈T

(
a⃗∗j,l − a⃗j,l

)
. Finally,

Sim emulates the FLIOP-veri�er with randomness R1, . . .Rr and oracle answers a⃗∗1, . . . , a⃗
∗
r and

sends the output of the FLIOP-veri�er as the message from V1.

We now show that the simulated and real-world adversarial views are identically distributed.
First, the randomness R1, . . . ,Rl of the FLIOP-veri�er, as well as the proof shares πj,l provided to
the corrupted veri�ers throughout the execution, are identically distributed in the simulation and
the real-world execution, so we can condition both views on these values. Additionally, the simulated
oracle answers a⃗1, . . . , a⃗l of the FLIOP-simulator Simin are identically distributed to the real-world
FLIOP oracle answers, by the perfect strong HVZK of the FLIOP, so we can further condition both
views on the oracle answers.

Next, we show that the answer shares (⃗aj,l)j∈[k],l∈[r] are identically distributed in the real exe-
cution and the simulation. For this, we show that in both cases the shares are uniformly random
subject to the constraint that they sum up to (⃗al)l∈[r]. To prove this, it su�ces to show that each

strict subset of answer shares is uniformly distributed.42

For every round l ∈ [r], let Ql denote the matrix whose columns are q⃗l,1, . . . , q⃗l,sl . (Notice that
the oracle answer a⃗l is computed as a⃗ = (x ◦ πl) · Ql, where ◦ denotes concatenation.) We assume
that each Ql has full rank, which is without loss of generality, otherwise queries are redundant in
the sense that the answer to some queries can be computed from the answer to the other queries.

For every j ∈ [k], let Q
(j)
l denote the matrix obtained from Ql by restricting the �rst n rows to the

xj entries.
To show that the answer shares a⃗j,l are indeed random subject to the constraint a⃗l =

∑
j∈[k] a⃗j,l,

it su�ces to show that the restriction Q̃l of Q
(j)
l to all but the �rst n rows � i.e., to the rows that are

42We note that this property was indeed proven in [BBC+19a, Theorem 6.6], we include a proof here for complete-
ness.

66

multiplied by πj,l when computing the oracle answers � has linearly independent columns. (Notice

that the Q
(j)
l , j ∈ [k] matrices di�er only in the �rst n rows, so Q̃l is well de�ned.) Indeed, since Ql

has full rank then in this case the linear system has a solution, so every a⃗l has the same number of
sources under the linear mapping de�ned by f (y) = y · Q̃l. Since the πj,l are uniformly random �
because only a strict subset of them is revealed in each round l � this means that the a⃗j,l are also
random.

Therefore, it remains to show that Q̃l has linearly independent columns. This follows from the
strong HVZK of the underlying FLIOP. Indeed, assume towards contradiction that the columns of
Q̃l are linearly dependent with some positive probability. Then conditioned on this event, there is a
linear combination α⃗ such that Q̃l · α⃗ = 0⃗. Given the answer shares a⃗1, . . . , a⃗l of the FLIOP, we can
use α⃗ to cancel out the dependency of a⃗1, . . . , a⃗l on π1, . . . , πj , in which case we learn a non-trivial
linear combination of x, in contradiction to the strong HVZK of the FLIOP (which guarantees that
the answers a⃗l can be computed with no knowledge of x).

Finally, it follows directly from the protocol description that the simulated oracle answers
a⃗∗1, . . . , a⃗

∗
r computed in Step 4 of the simulation are distributed identically to the oracle answers

on which the FLIOP-veri�er is emulated in the real-world proof, so the message broadcasted by V1

is identically distributed to the real world.

67

	Introduction
	Our Results
	Applications
	Deniable Secret Sharing Schemes
	MPC Resilient to Leakage of ``Data at Rest''

	Future Directions and Open Questions
	Techniques
	Equivocation from RPEs and Standard Secret Sharing
	Share-then-Encode: A General Paradigm for Leakage- and Tampering-Resilience

	Related Work
	Leakage-Resilience for Data at Rest
	Leakage-resilient Secret Sharing
	Leakage-Resilient Memory and Storage
	Leakage-Resilient Distributed Primitives
	Leakage-Resilient MPC and General Computations
	Tampering-Resilience

	Preliminaries
	Leakage Classes
	Secret Sharing Schemes (SSSs)
	Resampleable Secret Sharing Schemes
	Probing-Resilient SSSs
	Equivocal Secret Sharing

	Reconstructible Probabilistic Encodings (RPEs)
	Adaptive Take on RPEs

	Equivocal SSS from SSSs and RPEs
	The Equivocal SSS Construction
	Deniable Secret Sharing Schemes

	Leakage-Resilient and Tampering-Resilient Distributed Primitives
	Verifiable Secret Sharing (VSS)
	Distributed ZK (dZK)
	Function Secret Sharing (FSS)
	Threshold Cryptography

	Adaptive Zero-Knowledge of the dZK proof of BonehBCGI19

