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Abstract. In this paper, we propose the first key-recovery side-channel
attack on Classic McEliece, a KEM finalist in the NIST Post-quantum
Cryptography Standardization Project. Our novel idea is to design an
attack algorithm where we submit special ciphertexts to the decryption
oracle that correspond to cases of single errors. Decoding of such cipher-
texts involves only a single entry in a large secret permutation, which is
part of the secret key. Through an identified leakage in the additive FFT
step used to evaluate the error locator polynomial, a single entry of the
secret permutation can be determined. Reiterating this for other entries
leads to full secret key recovery.
The attack is described using power analysis both on the FPGA refer-
ence implementation and a software implementation running on an ARM
Cortex-M4. We use a machine-learning-based classification algorithm to
determine the error locator polynomial from a single trace. The attack
is fully implemented and evaluated in the Chipwhisperer framework and
is successful in practice. For the smallest parameter set, it is using about
300 traces for partial key recovery and less than 800 traces for full key
recovery, in the FPGA case. A similar number of traces are required for
a successful attack on the ARM software implementation.

Keywords: Code-based cryptography, NIST post-quantum standard-
ization, side-channel attacks, Classic McEliece, machine-learning-aided
side-channel analysis

1 Introduction

The promise of quantum computing has rapidly changed the focus of research
and industry in many areas. The growing interest in applications of quantum
computing has led to a rapid development of quantum computers in the recent
years. In 2019 IBM announced a first commercial quantum computer, followed
by larger experimental quantum computers developed in the labs of companies
such as Google and Microsoft.

The current solutions for information security are threatened by this huge
progress in the development of large-scale quantum computers. In particular,



constructions using cryptographic primitives that base their security on the dif-
ficulty of factoring or the discrete log problem, are no longer secure. Shor’s
algorithm [57] can be used to break these schemes in polynomial time. Even
though a sufficiently large quantum computer may still be many years into the
future, information processed today must remain secure also in 10 or 20 years
from now. So it has been recognized that the development of new security solu-
tions that can withstand the threat of quantum computers is both urgent and
of utmost importance.

As a major step in the direction, NIST initiated a few years ago the NIST
Post-quantum Cryptography Standardization Project [1], here called the NIST
PQ project. This is an ongoing evaluation and standardization project for two
types of cryptographic primitives, KEMs (Key Encapsulation Mechanisms) and
digital signatures. It will eventually set new world standards for post-quantum
secure primitives, in a similar manner as was previously done in the development
of AES and SHA-3.

Post-quantum secure primitives are most commonly constructed based on
either lattice problems or decoding problems in the Hamming metric, referred
to as lattice-based crypto or code-based crypto. The NIST PQ project is now in
its final round (round 3) before standardization and we can find one code-based
KEM as finalist and two code-based KEMs as alternate candidates (classified
roughly as promising candidates that need more study), BIKE [4] and HQC [2].

This paper is about Classic McEliece [3], which is the code-based KEM
finalist, together with three lattice-based KEM finalists, Saber, Kyber, and
NTRU [20, 55, 17]. The Classic McEliece KEM proposal is a modified version
of the old McEliece PKC construction from the 70’s, using the so-called Nieder-
reiter PKC version and scrambled parity-check matrices from Goppa codes. The
security is mainly related to the hardness of decoding random codes as well as
distinguishing scrambled Goppa codes from random codes.

Classic McEliece is regarded as a conservative design based on a well-studied
problem. It is less efficient compared to lattice-based schemes in implementation
and key size but has high confidence in its security. The German Federal Office
for Information Security (BSI) in [22] suggests to use Classic McEliece [3] and
FrodoKEM [44] for “long-term confidentiality protection”.

While the theoretical security of these post-quantum secure primitives is in-
tensively investigated and small steps forward are continuously taken, the study
on implementation-security of these schemes is of equal importance. From a
practical perspective, it may even be more important, as information leakage
from implementations often lead to actual practical attacks, whereas a success-
ful theoretical attack on a proposed scheme may still be very far from an attack
that can actually be done in practice.

Side-channel attacks on implementations of cryptographic primitives, initi-
ated by Kocher [31], contain a plethora of different approaches, such as timing
attacks and power attacks, etc. There are also the related fault injection attacks.
In a power attack, as used in this paper, the continuous power consumption of
the target devise with the crypto implementation is measured while the device is
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executing. The measured power consumption can provide information on secret
values in the cryptographic scheme. A successful attack both needs to identify
where in the execution to measure, i.e. identifying a useful leakage point, and
then to describe an algorithm that uses the received side-channel information
and determines secret information in the attacked crypto scheme.

The most powerful and common side-channel attack model is of profiling
type, meaning that it is assumed that the adversary has access to the target
device or some form of a copy of the target device. The adversary can then in an
initial profiling step characterize and measure on the device to learn possible de-
pendencies, etc. Whereas so-called template attacks have traditionally been the
common approach to profiled attacks, a recently developed and now very com-
mon approach is to use machine-learning algorithms. In particular, side-channel
attacks based on deep learning have recently gained a lot of attention [39, 70, 30,
46, 50]. There are also non-profiled side-channel attacks with deep learning [64,
49].

All the lattice-based KEM finalists in the NIST PQ project have been sub-
jects of side-channel attacks that can recover the secret key [54, 69, 46, 5, 52, 65]
There are also attacks recovering the secret message [61]. We now see a struggle
between researchers trying to provide better-protected implementations both in
hardware and in software, and researchers trying to find even more sophisti-
cated ways of attacking protected implementations of the finalists [9, 46, 11, 13,
6]. However, no key-recovery side-channel attack on Classic McEliece is known,
only message recovery attacks. This paper proposes the first key-recovery side-
channel attack on Classic McEliece.

1.1 Related works

The first code-based cryptosystem was proposed by McEliece [43]. Classic McEliece
is a modified version of this original scheme and its latest version is described
in [3]. The official submission of the proposal to round 3 of the NIST PQ
project contains also implementations. Other published implementations of Clas-
sic McEliece can be found, e.g., FPGA implementations in [67, 68] and an ARM
Cortex-M4 implementation in [18].

Side-channel attacks on Classic McEliece have previously appeared as a
message-recovery attack using a type of reaction attack in [32]. There has also
been a message-recovery laser fault-injection attack described in [15]. In [32] the
attack is based on [58] but adopting it to an EM side-channel on a constant-
time Berlekamp-Massey decoder. The attack targets the FPGA implementation
of Classic McEliece as in [68]. A new message-recovery attack [19] targeting the
encryption process of Classic McEliece was proposed very recently.

Key-recovery reaction attacks have appeared on code-based primitives, most
notably on QC-MDPC [27, 28] and on QC-LDPC [21]. These attacks have a close
connection to side-channel attacks and have appeared on the NIST PQ project
candidate HQC [25] and key-recovery timing attacks have appeared on BIKE
and HQC [24].
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Relevant general timing attacks on schemes using the FO transformation
appeared in [26]. Ueno et al. concluded in [65] that all round-3 NIST PQC
candidates but Classic McEliece are vulnerable to implementation attacks by
focusing on the FO transformation.

1.2 Contributions

In this paper, we propose the first key-recovery side-channel attacks on Classic
McEliece. This is based on an identified general vulnerability caused by the
current algorithm design, that can be explored in a side-channel attack. The
vulnerability comes from the fact that if the error locator polynomial is fixed,
then the additive FFT evaluation procedure in decoding is deterministic. We list
some main contributions of the paper as follows.

– We present the first key-recovery side-channel attacks on Classic McEliece
both in hardware (FPGA) and in software (ARM Cortex-M4)

– We highlight an identified side-channel vulnerability in the constant-time
(Goppa) decoding step that involves an FFT computation for the evaluation
of the error locator polynomial. This has to be addressed when designing a
protected implementation of Classic McEliece or similar schemes.

– We show the design of a detailed attack algorithm that finds ways of mini-
mizing the number of required traces.

We have applied this attack to the FPGA reference implementation1 of Clas-
sic McEliece and fully implemented and evaluated the different steps. We also
apply it to a third-party implementation for the ARM Cortex-M4 CPU [18] with
full implementation and evaluation.

New techniques The main idea of the attack is that if the error locator polyno-
mial is fixed, then the later step of an additive FFT to evaluate the error locator
polynomial over all the 2m points is a deterministic process. In the FPGA im-
plementation, it corresponds to 1095 clock cycles of computation. If we generate
error vectors with only one position in error, in position i, then there exit only
2m possible error locator polynomials since it is a polynomial of the form x−αi,
where αi is an unknown value. We use a machine-learning-based classification
algorithm to determine the error locator polynomial from power measurements.
The error locator polynomial outputted by the Berlekamp-Massey algorithm is
given by a selected error location after the secret mapping, related to the se-
cret αi values. We can thus recover parts of the secret support by repeatedly
submitting ciphertexts with a single error in different positions and after a few
hundred such submissions we can successfully recover the entire secret Goppa
polynomial. To do full secret key recovery, we need additional traces.

1 This hardware implementation is referenced in the official document [3] of round-3
Classic McEliece and is named “reference implementation” in [32].
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1.3 Organization

The remaining of the paper is organized as follows. In Section 2, we give the
necessary background in coding theory and code-based cryptography. We then
describe the novel ideas in Section 3 and present the new attack in detail in
Section 4. This is followed by Section 5 showing the experimental results. We
conclude the paper and discuss possible improvements and future works in Sec-
tion 6.

2 Backgrounds

In this section, we briefly introduce background information including basics in
coding theory, code-based cryptography, and side-channel analysis.

2.1 Notations

We adopt some of the notations in the design document of round-3 Classic
McEliece [3]. We employ bold-face capital characters for matrices and bold-face
low-case characters for vectors throughout the paper. Let q be a prime or a
power of prime. We denote Fq the finite field of order q and Fq[x] the polynomial
ring over Fq. The notation #{A} means the number of elements in the set A.
The Hamming weight of a vector v (denoted wH (v)) is defined as the number
of non-zero coordinates of v. The Hamming distance of two vectors v1 and v2

(denoted dH (v1,v2)) is defined to be the number of coordinates in which v1 and
v2 differ. We use |x| to denote the absolute value of x.

2.2 Coding theory

Linear codes Let C be a subspace of Fn
q with dimension k. Then C is called

an [n, k]q linear code of length n and dimension k. The redundancy of C is then
r = n−k. We call a vector c = (c1, . . . , cn) ∈ C a codeword of C, and the support
of a codeword c is defined as the index set I(c) that

I(c) = {i : i ∈ {1, . . . , n} and ci 6= 0}.

Thus, we have wH (c) = #{I(c)}. The minimum distance of a linear code C is
defined as the smallest Hamming distance between two distinct codewords. Let
G be a k× n matrix over Fq whose rows are the vectors of a basis of C. We call
G a generator matrix and the linear code C is generated by

C = {uG : u ∈ Fk
q}.

We can also define C by an r × n matrix H, called parity-check matrix, as

C = {c ∈ Fn
q : HcT = 0},

i.e. C is the kernel of H. The syndrome of a vector v ∈ Fn
q is defined as HvT.

Binary Goppa codes Classic McEliece employs irreducible binary Goppa
codes defined as follows.
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m t n k = n−mt level
kem/mceliece348864 12 64 3488 2720 1
kem/mceliece460896 13 96 4608 3360 3
kem/mceliece6688128 13 128 6688 5024 5
kem/mceliece6960119 13 119 6960 5413 5
kem/mceliece8192128 13 128 8192 6528 5

Table 1. Classic McEliece parameter sets.

Definition 1 (Binary Goppa Codes). The binary Goppa code C over F2m is
defined by a support vector p = (α1, . . . , αn) ∈ Fn

2m , where αi 6= αj for i 6= j
and the Goppa polynomial g(x) ∈ F2m [x] with degree t. The code C includes the
codewords c = (c1, . . . , cn) ∈ Fn

2 such that

n∑
i=1

ci
x− αi

≡ 0 mod g(x). (1)

We say that the code C is defined by Γ = (g, (α1, . . . , αn)). If the Goppa poly-
nomial g(x) is irreducible, then the Goppa code C has minimum distance 2t+ 1
and is called an irreducible binary Goppa code.

For more information on Goppa codes and their related decoding algorithms,
we refer to any textbook on the subject, like [37].

2.3 Classic McEliece

The first code-based cryptosystem was proposed by McEliece in 1978 [43] using a
randomly chosen irreducible binary Goppa code. Later in 1986, Niederreiter [47]
proposed a dual variant of the McEliece cryptosystem that uses a parity-check
matrix for encryption (rather than using a generator matrix). His original ver-
sion employing Reed-Solomon codes was attacked in [60], but the version with
irreducible binary Goppa codes is still secure. Also, it was proven in [35] that
McEliece and Niederreiter cryptosystems are equivalent.

Classic McEliece, one of the three KEM/PKE finalists in the NIST PQ
project, is built upon the Niederreiter framework. The proposal [3] provides
an IND-CCA2-secure KEM called the Classic McEliece KEM, which is obtained
after a standard transformation of an IND-CPA-secure Niederreiter-style PKE
(Public-Key Encryption scheme). The parameters of Classic McEliece2 are shown
in Table 1, where m determines the size of the binary field, t represents the num-
ber of correctable errors, and n the length of the code. Next, we describe the
IND-CPA-secure PKE.
2 The Classic McEliece KEM also designed another type of parameter sets marked by
“-f”, e.g. kem/mceliece8192128f. The difference is in the key generation procedure.
The new attack also applies to the parameter sets in the “-f” class, since there is no
difference in the encryption and decryption when the key pair is generated.
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Key generation First choose a random irreducible polynomial g(x) ∈ F2m [x]
of degree t and a list of distinct elements (α1, . . . , αn) ∈ Fn

2m . Thus, we have
picked a random binary irreducible binary Goppa code, which serves as the
private key of the PKE. We then compute a t × n parity check matrix Hgoppa

over F2m and transform it to a tm× n binary matrix H′goppa via replacing each
entry in Hgoppa by an m-bit column over F2. We write the matrix H′goppa in the
systematic form H′′goppa = [Imt|Tmt×(n−mt)] and set the public key to be T. This
step of systematizing H′goppa reduces the public key size since it is unnecessary
to store or communicate the identity matrix.

The private key of the Classic McEliece KEM contains an additional uni-
form random n-bit string, which is only used in the CCA transform in case the
decapsulation fails.

Algorithm 1 Ken Generation for the PKE

Input: The Classic McEliece parameters: m, t, and n
Output: The secret key (g(x), (α1, α2, . . . , αn)) and public key T

1: Randomly choose a list of distinct elements (α1, . . . , αn) ∈ Fn
2m as

support
2: Choose a random irreducible polynomial g(x) ∈ F2m [x] of degree t
3: Compute the t× n parity-check matrix

Hgoppa =


1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) α

t−1
2 /g(α2) · · · αt−1

n /g(αn)


4: Transform Hgoppa to a tm × n binary matrix H′goppa via replacing

each entry in Hgoppa by an m-bit column over F2

5: Transform H′goppa in the systematic form H′′goppa = [I|T]
6: Return the secret key (g(x), (α1, α2, . . . , αn)) and public key T

Encryption From the public key T, the sender can re-construct the Goppa
parity check matrix H′′goppa in the systematic form [Imt|Tmt×(n−mt)]. The sender
then chooses an error vector e ∈ Fn

2 with wH (e) = t as the plaintext and
produces the syndrome s = [I|T]eT as the ciphertext.

Decryption The decryption is equivalent to the syndrome decoding of binary
Goppa codes, including the steps of computing the syndrome polynomial and
the error locator polynomial and that of evaluating the error locator polynomial
at the points in F2m . As in [10, 68], official implementations of Classic McEliece
employ a decoder from the constant-time Berlekamp-Massey (BM) algorithm.
Thanks to a trick attributed to Sendrier in [29], one could correct t errors by
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Algorithm 2 Encryption for the PKE

Input: Plaintext e ∈ Fn
2 with wH (e) = t and the public key T

Output: Ciphertext s
1: Return s = [I|T]eT

computing a double-size 2t× n parity-check matrix H
(2)
goppa over F2m . We trans-

form H
(2)
goppa to a 2mt × n binary parity check matrix H

′(2)
goppa by replacing each

entry with a column of m bits. The double-size syndrome s(2) is then computed
as H

′(2)
goppa[s|0]T, where we append n − mt zeros to the syndrome s. We then

use the constant-time BM algorithm to compute the error locator polynomial
σ(x) ∈ F2m [x] of s(2) and evaluate σ(x) in all elements in F2m . This polynomial
evaluation over the whole finite field F2m can be efficiently implemented through
the additive FFT (Fast Fourier Transform) procedure. In the last step, we read
the partial secret key (α1, . . . , αn) and check whether σ(αi) = 0. We set the ith
bit ei = 1 if σ(αi) = 0 and ei = 0 otherwise.

Algorithm 3 Decryption for the PKE

Input: Ciphertext s and the secret key (g(x), (α1, α2, . . . , αn))
Output: Plaintext e
1: Compute a double-size 2t× n parity-check matrix

H(2)
goppa =


1/g2(α1) 1/g2(α2) · · · 1/g2(αn)
α1/g

2(α1) α2/g
2(α2) · · · αn/g

2(αn)
...

...
. . .

...
α2t−1
1 /g2(α1) α

2t−1
2 /g2(α2) · · · α2t−1

n /g2(αn)


2: Transform H

(2)
goppa to a 2mt×n binary parity check matrix H

′(2)
goppa by

replacing each entry with a column of m bits
3: Compute the double-size syndrome s(2) = H

′(2)
goppa[s|0]T

4: Use the BM algorithm to compute the error locator polynomial σ(x)
5: Evaluate the polynomial σ(x) at (α1, . . . , αn) and recover the plain-

text e
6: Return the plaintext e

Berlekamp-Massey algorithm and the additive FFT Given a double-size
syndrome vector s(2), Berlekamp-Massey algorithm [40] is employed for comput-
ing the error locator polynomial whose roots are the error locations. The error
correction capability is t since the size of the double-size syndrome vector s(2) is
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2t. The BM algorithm can be made constant-time due to its simplicity. We com-
pute the syndrome polynomial from s(2), which is the input to the BM algorithm.
The algorithm initializes polynomials σ(x) = 1 ∈ F2m [x], β(x) = x ∈ F2m [x],
integers l = 0 and δ = 1 ∈ F2m and updates the 4-tuple (σ(x), β(x), l, δ) during
the kth iteration for 0 ≤ k ≤ 2t − 1, according to certain updating rules. The
final output, i.e., the found error locator polynomial, is the updated polynomial
σ(x) after the 2t iterations.

Another important problem is to evaluate a polynomial at multiple points,
which is solved by the additive FFT algorithm in the Classic McEliece. We focus
on the decryption algorithm, in which one needs to evaluate the error locator
polynomial at the secret support (α1, . . . , αn). The additive FFT procedure in-
cludes two steps, the radix conversion and twisting step transferring the input
polynomial σ(x) to many 1-coefficient constant polynomials and the reduction
step iteratively evaluating at the input points using these constant polynomials.

2.4 Relations between secret key parts in Classic McEliece

If you know the public keyT and some part of the secret key (g(x), (α1, α2, . . . , αn)),
can you then efficiently determine other parts of the secret key? Some brief facts
are described.

The support splitting algorithm The support splitting algorithm [56] pro-
posed by Sendrier is designed to solve the code equivalence problem of deter-
mining if a linear code C1 can be obtained by the index permutation of another
linear code C2. The input to the support splitting algorithm is two generator
matrices and the output is the found permutation. For random linear codes, the
dominant cost of the support splitting algorithm is O

(
n3
)
with overwhelming

probability, where n is the length of the code.

Key recovery The key recovery problem of Classic McEliece is the recovery
of the Goppa polynomial g(x) and the vector p = (α1, . . . , αn) since such in-
formation is sufficient for decrypting ciphertexts. The key recovery problem has
been investigated in [56, 36, 48]. We can determine the polynomial g(x) from the
vector p or determine the vector p from g(x) and the set {α1, α2, . . . , αn}. If
n = 2m, the set {α1, α2, . . . , αn} is the whole finite field F2m , and thus, it is suf-
ficient to recover g(x). The whole secret key (g(x),p = (α1, . . . , αn)) can then
be recovered by the support splitting algorithm. We just construct a generator
matrix G0 of the Goppa codes from g(x) and an arbitrary support p0 over the
set {α1, α2, . . . , αn}. Feeding G0 and a generator matrix Ggoppa from H′′goppa to
the support splitting algorithm, we could reconstruct the secret support.

The Classic McEliece submission proposed four parameter sets with n < 2m,
which can provide additional security against key recovery attacks since it is
non-trivial to recover the set {α1, α2, . . . , αn} from g(x) if 2m − n is not small.
We return to this problem in Section 4.2.
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2.5 Information set decoding (ISD)

A fundamental problem in code-based cryptography is the syndrome decoding
problem, where one needs to find an unknown e0 with wH (e0) = w, assuming
that a parity-check matrix H and a syndrome s = He0

T are given.
Prange [51] initiated the research line called information set decoding, where

the basic idea is to find k error-free coordinates that carry sufficient information
to recover the full error vector e. These k coordinates are called the information
set. This algorithm was further improved by a number of algorithms (e.g., [33,
62, 41, 8, 42]). Since one part of the new attack is based on an ISD algorithm and
we instantiate it with Stern’s algorithm [62] for simplicity, we involve a detailed
description and complexity analysis of Stern’s variant as follows.

Stern’s algorithm [62] Stern firstly introduced the idea of using the birthday
paradox in information set decoding. We start with a permutation to write the
parity check matrix H in a systematic form (H0, I), so the first k coordinates
form an information set. We denote Ĥ0 (or ŝ) the first l columns of H0 (or rows
of s). We then enumerate e of dimension k/2 and weight p, compute Ĥ0(e,0)

T

and ŝ− Ĥ0(0, e)
T, and search for collisions. Last, we check whether the weight

of remaining (r − l) coordinates of the obtained error vector is (w − 2p).
The list size is

(
k/2
p

)
. The complexity of one iteration of Stern’s algorithm is

W = CGauss + 2(n− k) ·
(
k/2

p

)
+ (n− k − l) ·

(
k/2

p

)2

2−l,

where CGauss is the cost of Gauss Elimination that can be set as 0.5 · (n− k)k2,
if we use a basic school book form of the algorithm.

The complexity of Stern’s algorithm can be written as W/P , where P is
the probability that we find one solution in one iteration. Since in our problem
setting the weight w is larger than a threshold called GV-bound, there exist many
solutions. Then, the probability P can be estimated as

P ≈
(
k/2

p

)2(
n− k − l
w − 2p

)
2−(n−k).

2.6 Neural-network-aided profiled side-channel analysis

A profiled side-channel attack consists of a profiling stage and an attack stage.
Typically, a device ideally identical to the intended target is used during profiling
where the attacker has full control and can set the inputs to the device, like the
secret key and the ciphertext. A large number of traces are captured through
side-channel leakage while the device performs a cryptographic operation with
inputs picked by the attacker. Each trace is labeled with a piece of information
that is related to the selected input. The set of traces and labels are then used
to construct a model, that based on an observed trace estimates the true label of
the trace. At the attack stage, the model is used to classify traces captured from
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the device under attack that could be the same or different from the profiling
device.

For profiling, templates introduced by [16] have been used to model the rela-
tion between observed traces and labels. For this type of profiling, the estimated
noise of a trace is used to determine the most probable label. Machine learn-
ing techniques, such as support vector machines and random forest has been
used for profiling to get around some of the shortcomings of the template tech-
niques [34]. With the rapid development of deep learning, neural networks have
shown promising results for profiled side-channel attacks [30].

Common architectures for neural networks in the context of side-channel at-
tacks are the convolutional neural network (CNN) and the multilayer perceptron
(MLP). CNN’s have shown to be less sensitive to jitter, i.e., when traces are mis-
aligned due to clock phase variation or intentional phase variations introduced
as countermeasures [14]. In case of well-synchronized traces, the MLP has shown
to be effective for profiling [53, 38].

An MLP consists of a number of layers where the first layer is called the
input layer and the last is called the output layer. Layers in between, are called
hidden layers. Rather simple MLP’s i.e., shallow neural networks with only a few
number of hidden layers, have successfully been used to conduct side-channel
attacks [46]. Each layer in an MLP consists of a number of neurons that are
fully connected to neurons in the previous layer. During a supervised training of
an MLP, traces are fed to the input layer and the predicted labels at the output
layer are compared to the true labels. An optimizer is then used to tune the
connection between the neurons such that the MLP becomes more accurate in
predicting labels of traces.

2.7 Test vector leakage assessment

During the NIST Non-Invasive Attack Testing Workshop in 2011, Goodwill et al.
[23] presented the Test Vector Leakage Assessment (TVLA) as a metric to eval-
uate side-channel leakage. The TVLA has been used to evaluate implemented
side-channel countermeasures [12, 7], and to locate points of interest during at-
tacks [53].

During a TVLA, side-channel measurements are divided into two sets and
Welch’s t-test is applied at each sampling point to determine if the two sets are
different by evaluating the null hypothesis that the two sets have equal mean. To
perform the t-test on the two sets of measurements T0 and T1, the test statistic
tobs of Welch’s t-test is calculated as

tobs =
µ̂0 − µ̂1√
s20
n0

+
s21
n1

where µ̂i, si, and ni are the mean, standard deviation, and cardinality of Ti. If
|tobs| ≥ 4.5, the null hypothesis is rejected at a confidence level of 99.998% if s0 ≈
s1, and n0 ≈ n1 ≥ 100. In the context of side-channel analysis, a rejected null
hypothesis suggests that the two sets of measurements are noticeably different
and leak side-channel information that possibly could be exploited.
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3 A basic description of the new attack idea

In this section, we briefly describe the new attacking idea. We start with the
attack model and then give the essence of the new key-recovery attack.

3.1 The threat model

The Classic McEliece KEM is designed for IND-CCA2 security. In this paper,
we further study its side-channel resilience when being implemented in low-end
devices and assume that the adversary is capable of measuring the power traces
during the decapsulation process. The adversary aims to recover the secret key
via:

1. the adversary firstly selects ciphertexts satisfying certain properties and
sends these ciphertexts to the Classic McEliece KEM decapsulation device;

2. the adversary could physically observe the power traces.

Furthermore, the adversary is assumed to have a similar device/environment
running the Classic McEliece KEM, and thus the adversary could perform pro-
filing activities. Note that we do NOT assume the same secret key is cloned to
the profiling environment. The difficulty of the attack is to design ciphertext
properties for profiling to facilitate the key recovery via side channels.

3.2 The essence of the attack

The secret key of the classic McEliece KEM consists of an irreducible polynomial
g(x), a vector p = (α1, α2, . . . , αn) where αi ∈ F2m and αi 6= αj for i 6= j, and
one uniform random n-bit string. As the random string is only used when the
KEM fails, the key recovery problem is to recover the polynomial g(x) and the
secret support p = (α1, . . . , αn). We aim to first partially recover the secret
support p = (α1, . . . , αn) and list the main observation below.

Observation 1 A long part of the computation in the decapsulation algorithm
is deterministic if the error locator polynomial is fixed. For instance, the additive
FFT procedure to evaluate the error locator polynomial σ(x) over the whole finite
field only depends on σ(x).

This fact generally holds for the Classic McEliece decryption, including the
known FPGA and ARM Cortex-M4 implementations. We show as an example
the leakage in a recent Cortex-M4 implementation published at CHES 2021 [18],
given in Listing 1.1.

1 int decrypt_n3488_t64(unsigned char *e, const unsigned char *
sk , const unsigned char *s){

2 ...
3 bm( locator , s_priv ); // find error locator
4 fft_p64_v4096_u32( temp , locator ); // find the root of

error locator
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5

6 // need to know the position only
7 for(i=0;i<128;i++) error[i] = get_nonzero_mask_u32( temp[i]

, GFBITS ) ^ 0xffffffff;
8 ...
9 }

Listing 1.1. Part of the decryption function in [18]

In Line 3, the Berlekamp-Massey (BM) algorithm computes the error locator
polynomial σ(x) stored in a variable called “locator”. Then, the computations in
Line 4 and Line 7 only depend on the value stored in the “locator”, i.e., σ(x).

New idea for a profiled attack Based on Observation 1, we create ciphertexts
from plaintexts e’s with wH (e) = 1; for the decryption of such a ciphertext, the
computed error locator polynomial σ(x) is a monic polynomial of degree 1 and
up to q error locator polynomials are possible. We then could design a profiled
attack to recover σ(x). The basic idea of the attack is described in two phases
as follows.

Profiling phase: We randomly sample secret supports ppub. We then sample
error vectors ei that all the entries are zero except for the ith one. Then,
the non-zero position will lead to an error locator polynomial σ(x) = (x −
ppub(i)). Thus, we have q = 2m different error locator polynomials and could
allocate all the traces in q categories according to the corresponding error
locator polynomial. We then train a neural network to classify the traces
from the q different categories.

Attacking phase: In each decryption oracle call, we send an error vector ei.
The error locator polynomial can be computed as σ(x) = x − αi. By the
classification model built in the profiling phase, we could detect σ(x) and
therefore recover αi. After trying all the possible i’s, we could recover the
secret support p, so the required number of traces in the attack phase is
at least n. However, not all of the αi’s in the secret support are required
to re-build the irreducible polynomial g(x). With this observation, we could
reduce the required number of test traces.

Recover g(x) by polynomial factorization Next, we show how to determine
the irreducible polynomial g(x), once the partial secret-key p is recovered. We
use one valid ciphertext c = (c1, c2, . . . , cn) and compute

c(x) =

n∑
i=1

ci
x− αi

∏
j∈I(c)

(x− αj), (2)

where I(c) denotes the support of the codeword c. Since we know from the
definition of Goppa codes that,

n∑
i=1

ci
x− αi

= 0 mod g(x),
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we can compute the irreducible polynomial g(x) by factoring the polynomial
c(x) in F2m [x] and choosing an irreducible factor with the weight t.

Factoring a polynomial over a finite field to irreducibles is a well-studied
problem [59] and can be efficiently solved by the Cantor-Zassenhaus algorithm
with expected complexity O

(
l2+o(1) ·m

)
or by the Berlekamp algorithm with

expected complexity O
(
l3 + l1+o(1) ·m

)
. For the new attack targeting the pa-

rameter sets of the Classic McEliece KEM, the polynomial degree l is bounded
to a few hundred. Thus, the complexity for such polynomial factorization is low.
The factorization procedure is efficiently implemented, for example, in the open-
source software SageMath [63]. We show in the next section that the task of
computing c(x) and factoring it to irreducibles can be performed at a negligible
cost compared with the main complexity cost.

Note. To recover the polynomial c(x) in Equation 2, one only needs to determine
αi where the corresponding ci is non-zero. Thus, the weight of the codeword
determines the sample complexity of recovering the irreducible polynomial g(x).

4 Detailed attacks

In this section, we describe a concrete instantiation of the new attack. We first
propose a partial key-recovery attack to recover the irreducible polynomial g(x),
which is sketched in Algorithm 4. We then extend the partial key recovery to
full key recovery.

Algorithm 4 The partial key-recovery side-channel attack

Input: The Classic McEliece KEM parameters; the public key H′′goppa
Output: The partial secret key g(x).
1: Find a low-weight codeword c with weight w.
2: Recover the αi’s for i in a chosen index set I with side-channel

information of decrypting the chosen ciphertexts
3: Compute the polynomial c(x) defined in Equation 2 and recover the

irreducible polynomial g(x) by factoring c(x) in F2m [x]

4.1 Partial key recovery

We now describe the new attack algorithm in steps. We start with producing
one binary Goppa codeword with a small weight. The support of c is denoted by
I(c). From the systematic parity check matrix H′′goppa, we could easily construct
a generator matrix Ggoppa in the systematic form. Thus, the easier method to
find a codeword is to randomly pick one row in the generator matrix Ggoppa, the
expected weight of the chosen codeword is r/2 + 1.
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A more advanced approach is to use an Information Set Decoding algorithm.
With Stern’s algorithm as discussed in Section 2.5, we can achieve a codeword
with a smaller weight.

Recovering αi for i ∈ I(c) Denote pc the set that pc = {(i, αi) : i ∈ I(c)}.
We aim to recover pc with side-channel leakages. We choose an error vector
ei with all but the ith position zero, prepare for the corresponding ciphertext,
and send it to the decryption oracle. With the trained deep-learning model,
we can get soft-information of the corresponding αi, i.e., a normalized vector
(l1, l2, . . . , lq) ∈ Rq with

∑
li = 1. A simple approach, called the naive approach,

is to pick the guess with the maximized likelihood. We could design a more
advanced approach, called the threshold approach, by picking a threshold τ for
the obtained normalized likelihood values. If the largest likelihood value is still
below the threshold τ , then we can repeat the test for ei and get another nor-
malized likelihood vector (l′1, l

′
2, . . . , l

′
q) ∈ Rq. We can multiply the two vector

component-wisely and normalize the new vector. We repeat until the obtained
largest likelihood value becomes larger than the threshold τ . With this method,
we could recover all the αi’s for i ∈ I(c). The advantage of the threshold ap-
proach is that one could adaptively increase the number of decryption attempts
for the obtained unreliable αi’s. Thus, if most of the positions are reliable, then
the increased number of traces is limited.

Recovering the irreducible polynomial g(x) As has been described in
Section 3, we could compute the polynomial c(x) ∈ F2m [x] in Equation (2) if
the codeword c and the corresponding αi’s for i ∈ I(c) are all determined. We
recover the irreducible polynomial by factoring c(x) and choosing an irreducible
factor with weight t.

Last, even if we cannot uniquely determine g(x), we can prepare a small list
of g(x)’s and recover the full key for all the candidates in the list. We can find
the correct one in the list since the wrong guess of g(x) can be easily detected
and discarded with the encryption and decryption tests.

4.2 Full key recovery

Recovering the full secret support when n = 2m After recovering the
irreducible polynomial g(x), if n = 2m, i.e., for the parameter set kem/m-
celiece8192128, it is clear that the support splitting algorithm [56] can be used
to recover the full secret support. Since Goppa codes behave like random codes,
the complexity of the support splitting algorithm is O

(
n3
)
, which is a small

cost. We refer the interested readers to [48] for details.

Attack variant when n < 2m When n = 2m, the key recovery problem is
equivalent to the problem of recovering the irreducible polynomial g(x) and it
is beneficial to find a codeword of low weight. But this is not true in a more
general case, where n < 2m, since it is difficult to guess the set {α1, . . . , αn} and
we need to design a new approach to recover the full secret support p.
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We first recover the matrix P that is the first r = mt columns of H′goppa.
Assuming the partial support (α1, . . . , αr) and the irreducible polynomial g(x)
is known, we could compute P′ where the element in the ith row and the jth
column is αi−1

j /g(αj) ∈ F2m . We then compute P by replacing each entry in P′

with an m-bit column over F2. Then, since

P−1H′goppa = H′′goppa = [Imt|T],

one could recover H′goppa by computing PH′′goppa.
We then build a table storing pairs (α,TABLE(α)), where α runs through all

the 2m elements in F2m . For each α ∈ F2m , we compute a column vectorK ∈ Ft
2m ,

where the ith entry in K is αi−1/g(α). We obtain a new vector K′ ∈ Fmt
2 by

replacing one entry in K with anm-bit column over F2. We put TABLE(α) = K′.
For each column in H′goppa, we can check the table and find the corresponding
value of α.

Based on this new approach, we could slightly modify the attack described
in Section 4.1 to make it more efficient for the parameter sets with n < 2m.

Firstly, instead of minimizing the weight of the codeword, we aim to find
a codeword c minimizing #{I(c) \ {1, . . . , r}}. An easy solution is to generate
Ggoppa = [TT|Ik×k] and to select one row in the matrix. We select the index
set I = I(c) ∪ {1, . . . , r} and recover such (r + 1) αi’s with i ∈ I by observing
the side-channel leakages from decrypting the chosen ciphertexts. Similar to the
method described in Section 4.1, we compute c(x) and obtain the irreducible
polynomial g(x) by polynomial factorization. Last, we compute the mt × mt
matrix P, construct the secret parity-check matrix H′goppa and reconstruct the
whole p = (α1, . . . , αn) by checking the table (α,TABLE(α)) for all α ∈ F2m .

4.3 Complexity analysis and verification

We conclude this section with the complexity analysis of the new algorithm and
present some experimental verification. Since the profiling stage is irrelevant to
the targeted public-secret keypair, we treat it as a pre-computation step.

Verifying the ISD step The weight of the found codeword c is a key pa-
rameter for the partial key recovery of g(x) since it determines the number of
α’s that need to be recovered in the profiled side-channel attacking step. For
the Classic McEliece KEM parameters, we compute the expected weight of the
low-weight codeword with the complexity formula presented in Section 2.5 for
Stern’s algorithm. We show the results in the “Estimation” columns in Table 2.
The column “random” shows the expected weight numbers computed by r/2+1,
i.e., when the codeword is generated by randomly picking a row in a systematic
generator matrix; the column “≈ 240” shows the expected weight number when
the computation cost is about 240 bit operations; the column “≈ 250” shows the
case with about 250 bit operations.

The complexity analysis for Stern’s algorithm is well-established. One ques-
tion is how to interpret the bit operation numbers as actual CPU clock cycles
since modern CPUs can do more than one bit operation in a clock cycle. Since
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r + 1 Estimation ≈ 2 min
random ≈ 240 ≈ 250

kem/mceliece348864 769 385 300 282 287
kem/mceliece460896 1249 625 523 500 508
kem/mceliece6688128 1665 833 717 690 693
kem/mceliece6960119 1548 775 662 635 646
kem/mceliece8192128 1665 833 717 688 695

Table 2. The predicted weight of the low-weight codeword using Stern’s algorithm.

the binary Goppa codes behave like binary random linear codes, we generate
parity check matrices for random linear codes with dimension same to the Clas-
sic McEliece KEM parameters and test the actual performance of Stern’s algo-
rithm. We slightly modified a C implementation [66] from Vasseur that employs
the AVX2 instruction set. We use eight threads in a desktop with CPU Intel(R)
Core(TM) i7-10700K @3.8GHz, run the ISD algorithm for about 2 minutes, and
report the obtained weights under the column “≈ 2 min” in Table 2. Thus, the
numbers presented in the column “≈ 250” could be achieved easily on a normal
desktop.

We have also performed a large instance against a random public key gener-
ated by the round-3 reference implementation of kem/mceliece8192128 submit-
ted to NIST. Using twelve threads of the same desktop, we found a codeword
of weight 690 after 103 seconds of computation, which supports the numbers
claimed in Table 2. After 22858 seconds (≈ 6.3 hours), we obtained a codeword
of weight 679. For a public key of kem/mceliece348864, after 47855 seconds (≈ 13
hours), we obtained a codeword of weight 273.

Verifying the factorization method Given a low-weight codeword c, we
assume that the corresponding partial secret support pc = {(i, αi) : i ∈ I(c)}
has been recovered through side channels. We have verified that the procedure
of computing the polynomial c(x) and then factoring c(x) to find g(x) as the
irreducible factor of weight t can be done efficiently. We implemented this pro-
cedure with the SageMath software. For instance, using a single thread in the
desktop with CPU Intel(R) Core(TM) i7-10700K @3.8GHz, we performed this
procedure ten times, targeting a secret Goppa code for the largest parameter
set kem/mceliece8192128. We found the correct irreducible polynomial g(x) of
weight 128 ten times, so the empirical success probability is 100%. The average
time consumed for each run is only 16.3 seconds.

The overall complexity We verified in Section 5 that when the KEM kem/m-
celiece348864 is implemented on our real (FPGA and ARM Cortex-M4) plat-
forms, one decryption oracle call in the attack phase is sufficient to recover one
error locator polynomial (which is equivalent to one αi value in our setting),
due to the significant leakages detected. Thus, the attack stage is quite efficient.
For partial key recovery of g(x), one can make the computation dominated by
the initial information set decoding (ISD) step. This ISD step can be seen as a
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time-sample trade-off since heavier ISD computation can lead to an attack that
requires fewer traces (i.e., accessing time) to the targeted device.

Thus, one can get an estimation of the sample complexity of the new partial
key recovery of g(x) targeting different Classic McEliece parameters, by checking
the weight prediction shown in Table 2. When aiming for the full key recovery,
for the KEM kem/mceliece8192128, the sample complexity is the same as that
of the partial key recovery, i.e., we need 688 traces when the computation cost
is bounded to 250 bit operations with Stern’s algorithm. For the parameter sets
other than the KEM kem/mceliece8192128, we need r+1 traces to perform the
full key recovery. The numbers r + 1 for different parameter sets are shown in
the column marked by “r + 1” of Table 2.

5 Experimental results

In this section, we present the detailed results of our side-channel key-recovery
attack against a hardware and a software implementation of Classic McEliece.
To capture traces, we make use of the open-source Chipwhisperer system that
consists of hardware modules and software specifically developed by NewAE for
evaluating hardware security [45].

5.1 On the official FPGA implementation

For the attack on the hardware implementation, we use the CW305 from NewAE
that contains a XC7A100T2FTG256 Artix 7 FPGA. The implementation of [68]
is synthesized with the parameter set kem/mceliece348864 and implemented on
the FPGA. To capture traces, we use the Chipwhisperer-lite (CWL) from NewAE
that measures power consumption of the FPGA by the voltage drop over a shunt
resistor placed inline with the supply to the FPGA. Both the FPGA and the
CWL are driven by a common 5 MHz clock and the measured power is amplified
by 46 dB before being digitized.

Leakage assessment To evaluate whether the hardware implementation leaks
sensitive side-channel information, we perform fixed-vs-random TVLA. More
specifically, we want to determine if the power consumption during processing
a specific σ(x) of degree 1 differs from a random σ(x) of degree 1. Initially, we
randomly pick an element γ ∈ F2m . Then, we construct a set of random keys
KL where for each kL ∈ KL, p = (α1, α2, . . . , αn) such that γ = pi for some
i ∈ (1, 2, . . . , n). During trace capture, we randomly decide to either capture a
fixed or a random trace. For a fixed trace, we randomly select a kL ∈ KL and
determine i such that γ = pi. In the case of a random trace, we randomly pick a
kL ∈ KL and an integer i such that γ 6= pi. In both cases, we create a plaintext
e where the ith bit ei = 1 and all other bits are zero. The secret key and the
ciphertext s are then transferred to the FPGA. We then capture a trace while
the FPGA runs the decryption algorithm.
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Traces are then split into two sets T0 and T1, where T0 contains all fixed
traces and T1 contains all random traces. Finally, we apply Welch’s t-test on
the two sets. We then repeat the same procedure for multiple γ’s. In Fig. 1 the
test statistic is shown for one of the γ’s. It can clearly be seen that, possible
exploitable, side-channel information leaks during the additive FFT step. Note
that the double syndrome construction step was stripped from traces before the
TVLA as the execution time of this step depends on wH (s). Thus, if this step
had been kept, subsequent decryption steps would become misaligned in the
captured traces, which could lead to falsely detected leakage.

Fig. 1. TVLA performed on traces of the hardware implementation
where each set consists of 300 traces. The areas marked in the graph
corresponds to the decryption steps; calculate 1/g2(x), BM, additive
FFT, and error reconstruction. The double syndrome calculation is
removed from traces as this step is of non-constant time

Profile phase In the profile phase, we only capture traces of the additive FFT
step as this is the only step where we could detect leakage for our suggested at-
tack. By focusing on the additive FFT step and using a sample rate of 1pt/clock
cycle, each trace contains 1095 samples. Initially, we create a set of random keys
Kp. We capture a set of traces Tp with cardinality d = #{Tp}. For each Tj ∈ Tp,
j = 1, 2, . . . , d, we pick a random kp ∈ Kp and a random integer i ∈ (1, . . . , n).
We capture Tj while the FPGA performs decryption of the plaintext e where
the ith bit ei = 1 and all other bits are zero. We label each Tj with the support
element at position i of the key kp, i.e. we label a trace with γ = αi.

We use Tp to train a MLP that predicts γ for each trace, i.e. the root of
σ(x). We split Tp into a training set Ttrain and validation set Tval with a ratio of
5:1. We preprocess all traces by removing the mean and scaling to unit variance
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before training the MLP. Parameters used for preprocessing is solely based on
Ttrain.

The architecture of our MLP is presented in Table 3. All weights in the
network are initialized by sampling a HeUniform distribution and all biases are
initially set to zero. We train the MLP by using mini-batches consisting 150
traces each. To evaluate the performance of the MLP we use the crossentropy
loss and we use the Nadam optimizer with a learning rate of 10−3 to tune
weights and biases of the network. We regularize the training by employing label
smoothing with a value of 0.2. We let the training run for maximum of 100
epochs with an early stop condition if the validation loss is not reduced within
4 epochs. For profiling we use #{Kp} = 30 and d = 418560.

Layer type (input, output) shape Activation # Parameters
Dense (1095, 1095) ReLu 1200120
Batch Normalization (1095, 1095) 4380
Dense (1095, 2048) ReLu 2244608
Batch Normalization (2048, 2048) 8192
Dense (2048, 4096) SoftMax 8540160

Table 3. The architecture of the MLP we use to construct a classifier to attack
the hardware reference implementation of Classic McEliece.

Attack phase To evaluate our approach, the trained model is used to attack a
set of random keys Ka, where Ka ∪Kp = ∅ and #{Ka} = 30. For each ka ∈ Ka,
we collect a trace corresponding to the decryption of every possible plaintext ei
with only the ith bit set to 1. For each trace, we also record the value of i. In
total, we collect 104640 traces. Next, we employ the previously trained classifier
to predict the value of each γ. Since we recorded the value of i, we know the
position of the predicted γ in p = (α1, α2, · · · , αn). Thus, we can predict the
value of αi. With our attack, we manage to successfully recover the complete
secret support for all attacked keys. This means that the experimental prediction
rate was 100%.

5.2 On an ARM Cortex-M4 implementation

For the attack on the software implementation, we use the CW308T-STM32F
from NewAE which contains a STM32F415RGT6 microcontroller that is pro-
grammed with the kem/mceliece348864 implementation of [18]. The software
implementation is built using the arm-none-eabi-gcc compiler set with optimiza-
tion level -O3. We only program the microcontroller with the decryption function
which is the first function called during decapsulation in [18]. During trace cap-
ture, the microcontroller and the CWL are driven by a common 24 MHz clock,
and the measured power is amplified by 32 dB.
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Leakage assessment To evaluate possible leakage points for the software im-
plementation, we use a similar approach as used for the hardware implemen-
tation. However, as the software implementation takes roughly 340 times more
clock cycles to execute, the buffer of the CWL is too small to capture the com-
plete decryption with one sample per clock cycle. We solve this by performing
a piece-wise TVLA of the complete decryption. In Fig. 2 we see that the soft-
ware implementation shows a large number of leakage points. Especially, we see
many leakage points during the additive FFT step marked by a gray box in
Fig. 2. But the TVLA also shows leakage during other parts of decryption. The
detected leakage towards the end of decryption is related to the re-encryption
of the recovered plaintext. The re-encryption feature is not implemented in the
hardware reference design.

Fig. 2. TVLA of the software implementation. The gray box corre-
sponds to the additive FFT evaluation of σ(x).

Profile phase In the profile phase we only focus on the additive FFT step of
the algorithm. As the duration of the additive FFT part is too long to be sam-
pled with the CWL at every clock cycle there are two options. We could capture
the FFT step in intervals with one sample per clock cycle, or we could capture
the complete FFT step with a lower sample rate. As the time and memory re-
quirements of the subsequent neural network training would be higher for the
first capture procedure, we decide to test if the later option works. Therefore,
we reduce the sample rate to 1pt/12th microcontroller clock cycle. This results
in traces consisting of 22988 sample points. Apart from the number of sample
points, we use the same procedure to capture traces as for the hardware im-
plementation. We train the MLP given in table 4 with the same initialization,
optimizer and regularization as for the profiling on the hardware implementa-
tion. We let the training run for a maximum of 100 epochs with an early stop
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condition if the validation loss is not improved within 3 epochs. For profiling of
the software classifier we use #{Kp} = 10 and d = 34880.

Layer type (input, output) shape Activation # Parameters
Dense (22988, 22988) ReLu 528471132
Batch Normalization (22988, 22988) 91952
Dense (4096, 4096) ReLu 94162944
Batch Normalization (22988, 22988) 16384
Dense (4096, 4096) SoftMax 16781312

Table 4. The architecture of the MLP we use to construct a classifier to attack
the software implementation.

Attack phase We evaluate our classifier by attacking a set of random keys Ka,
where Ka ∪ Kp = ∅ and #{Ka} = 90. We use the same procedure to capture
traces as for the hardware implementation, i.e. for each ka ∈ Ka we capture
3488 traces which are then fed to the classifier. Thus, in total we collect 313920
traces. With our attack against the software implementation, we manage to
successfully recover the complete secret support for all the attacked keys. Again,
the experimental prediction rate was 100%.

5.3 Origin of leakage

To evaluate the error locator polynomial σ(x) at all elements of F2m , both the
hardware and software implementation make use of the additive FFT to speed up
the computation. The additive FFT algorithm takes as input, a polynomial f(x)
with degree at most t, and outputs the value of f(β) for all β ∈ F2m . The main
idea of the additive FFT, is to exploit that (β+1)2+(β+1) = β2+β for β ∈ F2m .
Thus, by doing a radix conversion and writing f(x) = f (0)(x2+x)+xf (1)(x2+x)
where deg(f (0)) = bdeg(f)/2c and deg(f (1)) = b(deg(f) − 1)/2c, the value of
f(β + 1) can be easily calculated by first calculating f(β) = f (0)(β2 + β) +
βf (1)(β2 + β), and then using f(β + 1) = f(β) + f (1)(β2 + β). Thus, f(x)
only needs to be evaluated at half of the elements of F2m , since the other half,
which contains ”1”, can easily be calculated from the first half. By twisting
the basis of f (0)(x) and f (1)(x), half of the elements where the polynomials
should be evaluated will contain the ”... + 1”. Thus, the radix conversion can
performed again to get f (0)(x) = f (0,0)(x2 + x) + xf (0,1)(x2 + x) and f (1)(x) =
f (1,0)(x2+x)+xf (1,1)(x2+x). The additive FFT repeats the twisting and radix
conversion recursively until we are left with deg(f) + 1 constant polynomials.
These constants are then read and we recursively evaluate f(x). For our attack,
the important point is that the value of the constants as well as the calculation
of all intermediate polynomial depends only on the polynomial f(x) that we
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feed to the additive FFT. For two different αi’s, the BM algorithm outputs two
different error locator polynomials, which will be transferred to two different sets
of 1-coefficient constant polynomials. Thus, the power consumption in the two
cases will be distinct.

6 Discussions and concluding remarks

In this paper, we have presented the first key-recovery side-channel attack on
Classic McEliece, a KEM finalist in the NIST Post-quantum Cryptography Stan-
dardization Project. We have identified a general vulnerability in the decryption
algorithm design that the additive FFT procedure for evaluating a polynomial
at many points is deterministic for a fixed input error locator polynomial. We
then designed special ciphertexts generated by error vectors where the Hamming
weight is 1 and captured traces of the decryption of such ciphertexts. Since the
error weight is only 1, there are only q = 2m possible error locator polynomials.
We then used machine-learning algorithms to recover the secret error locator
polynomial, which reveals one entry in the secret support p = (α1, . . . , αn). We
have also designed new algorithms to recover the partial key g(x) and the full
secret key, based on the side-channel leakages.

We implemented and measured the new attack in real FPGA and ARM
Cortex-M4 platforms. We have a perfect recovery for recovering the secret αi

with one trace, i.e., the empirical success probability is 100% with the naive
approach. Note that in a noisier platform, we can use the threshold approach to
adaptively send more decryption traces for the unreliable αi’s.

The sample complexity of the partial key recovery attack depends on the
computation limit of the first ISD step in the proposed attack. We could achieve
273 traces for kem/mceliece348864 and 679 traces for kem/mceliece8192128. For
the case n = q, i.e. kem/mceliece8192128, a partial key recovery is equivalent to
a full key recovery with the help of the support splitting algorithm.

The other four parameter sets with n 6= q provide more security against this
side-channel attack. We designed a variant of the full key recovery attack with
sample complexity of r+1 traces, which is 769 for the KEM kem/mceliece348864.
A future work is to study better algorithms to efficiently recover the full secret
support from the recovered g(x) when n 6= q.

On the one hand, the Classic McEliece KEM still requires more traces com-
pared with the recent results in attacking lattice-based primitives. For instance,
in [46], the secret key of a masked Saber version could be recovered with around
20 traces. On the other hand, this work shows that protections like masking
are necessary, though they may hurt the performance of the scheme. Thus, re-
search on efficiently protected implementations of classic McEliece should be
prioritized.

Our key-recovery attack requires slightly more traces than the message-
recovery EM attack reported at Asiacrypt 2020 [32]. But, we highlight that
key-recovery attacks are much stronger than message-recovery attacks. Also, we
could greatly reduce the sample complexity in a theoretical manner. One ap-
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proach is to send a ciphertext obtained from a plaintext of higher weight (of
e.g. weight 2). For e with wH (e) = 2, there are q(q− 1)/2 possible error locator
polynomials to profile. The number is about 223 for the kem/mceliece-348864
KEM and about 225 for the other parameter sets. Then, assuming that one error
locator polynomial can be recovered by one decryption oracle call, each time
we can determine two αi’s. The overall sample complexity can be reduced by
a factor of 2. This improved attack has a high implementation complexity, but
is still doable; we leave it for future work. Last, an interesting future direction
is to improve the current attack without a significant increase in the profiling
complexity.
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