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ABSTRACT
One of the most successful applications of peer-to-peer communica-

tion networks is in the context of blockchain protocols, which—in

Satoshi Nakamoto’s own words—rely on the “nature of informa-

tion being easy to spread and hard to stifle.” Significant efforts

were invested in the last decade into analyzing the security of

these protocols, and invariably the security arguments known for

longest-chain Nakamoto-style consensus use an idealization of this

tenet. Unfortunately, the real-world implementations of peer-to-

peer gossip-style networks used by blockchain protocols rely on a

number of ad-hoc attack mitigation strategies that leave a glaring

gap between the idealized communication layer assumed in formal

security arguments for blockchains and the real world, where a

wide array of attacks have been showcased.

In this work we bridge this gap by presenting a Byzantine-

resilient network layer for blockchain protocols. For the first time

we quantify the problem of network-layer attacks in the context of

blockchain security models, and we develop a design that thwarts

resource-restricted adversaries. Importantly, we focus on the proof-

of-stake setting due to its vulnerability to Denial-of-Service (DoS)

attacks stemming from the well-known deficiency (compared to

the proof-of-work setting) known as nothing at stake.
We present a Byzantine-resilient gossip protocol, and we ana-

lyze it in the Universal Composition framework. In order to prove

security, we show novel results on expander properties of random

graphs. Importantly, our gossip protocol can be based on any given

bilateral functionality that determines a desired interaction between

two “adjacent” peers in the networking layer and demonstrates

how it is possible to use application-layer information to make the

networking-layer resilient to attacks. Despite the seeming circular-

ity, we demonstrate how to prove the security of a Nakamoto-style

longest-chain protocol given our gossip networking functionality,

and hence, we demonstrate constructively how it is possible to

obtain provable security across protocol layers, given only bare-

bone point-to-point networking, majority of honest stake, and a

verifiable random function.
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1 INTRODUCTION
1.1 Gossip Protocols and Byzantine Attackers

Gossip protocols. Gossip protocols [12, 18] provide an efficient

mechanism to distribute information to a large set of parties. The

key feature of such algorithms is their peer-to-peer operation that

load balances the effort of information propagation in a way that

individual nodes are only investing a modicum of effort when

contributing to the delivery of a message network-wide.

As communication infrastructure for multiparty cryptography,

gossip protocols have recently found wide-spread application in the

context of blockchain protocols, notably with the introduction of

the Bitcoin blockchain [26]. Among other things, gossip protocols

are used by blockchain participants to diffuse newly found blocks.

In the words of Nakamoto, blockchain protocols rely on the “nature

of information being easy to spread and hard to stifle,” underscoring

the relevance of gossip as the underlying communication layer.
1

The “security” of gossip protocols. Deploying gossip protocols as

the communication layer of blockchain protocols adds a crucial

new dimension to their design: their “security.”

At the very least, gossip protocols underlying blockchains must

deal with the fact that the resources (e.g., network bandwidth, com-

putation time and space) of each peer are limited, and exhausting

them will lead to denial-of-service (DoS) attacks. As such, the afore-

mentioned consideration of keeping the complexity for each peer

1
Note that the security guarantees of gossip protocols are weaker than Byzantine-

resilient Broadcast aka the Byzantine Generals problem [23] because they do not

guarantee any kind of agreement on or consistent ordering of messages gossiped

among parties.
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small (sublinear, preferably constant, in the number of total partici-

pants) is therefore not only relevant for efficiency but also essential

for security.

For this reason, gossip protocols currently used in practice incor-

porate an array of (typically ad-hoc) measures to protect informa-

tion propagation against DoS attacks. In the setting of blockchain

protocols in particular, the most salient feature of such DoS mitiga-

tions is the fact that the adversary is resource-bounded (e.g., has

limited hashing power, in the context of the Bitcoin protocol, or

stake, in the context of proof-of-stake protocols), and peers can

exploit this to manage network-wide message propagation. Tech-

niques include rejecting previously seen proof-of-work messages

and skipping content downloads that will not result in a local state

update (such as skipping the download of a block’s contents when

the block header indicates that it cannot be adopted based on the

local state of the client).

It should be stressed that such measures are far from perfect,

as exemplified by a number of attacks that have been described,

including eclipse attacks [17] and routing attacks [2]. Moreover,

the proof-of-stake setting poses additional difficulties stemming

from the possibility of reusing keys to issue numerous conflicting

messages [27] and the fact that the whole stakeholder set should be

at hand for proof-of-stake verification to work, in sharp contrast to

proof of work, which only needs the current difficulty level.

However, the security issues extend far beyond just the per-peer

complexity. Most crucially, the design, setup, and maintenance of

the overlay used for gossiping must be such that it resists Byzantine
attackers—who make participants actively and maliciously deviate

from the prescribed protocol—that command a large number of

peers in the network. Despite all of the above shortcomings, in

practice the information-propagation guarantees of the deployed

networking layers of blockchain protocols are generally postulated

to be sufficient for the higher-level protocol to maintain its security

and correctness.

On the theory side, blockchain consensus protocols—be they

Nakamoto-style (e.g., [11, 26]) or inspired by Byzantine fault-tolerant

computing (e.g., [7]), based on proof of work (PoW) or proof of stake

(PoS)—all crucially rely on the reliable and timely delivery of pro-

tocol messages (blocks, votes, etc.) to achieve liveness and many

also to be safe. However, while the consensus layers of all these

protocols have received considerable attention, with a number of

them achieving provable security against Byzantine attackers, the

design and security of the network layer are usually an afterthought

at best.

Specifically, all previous formal security analyses of PoS proto-

cols (e.g., [7, 10, 11]) use (over-)idealized message-passing abstrac-

tions that essentially promise that honest messages are distributed

undisturbed to all honest parties within a reasonable delay window

and ignore the fact that these abstractions must be implemented in

the real world.

More broadly, there exists surprisingly little published work that

considers the problem of extending Byzantine resilience to the

communication layer of blockchains or gossip protocols in general.

The above state of affairs highlights serious shortcomings of the

approaches taken both in theory and in practice and also suggests

a significant gap between the two. Given that gossip is a critical

piece of the protocol stack for any permissionless distributed-ledger

protocol, the lack of a thorough, formal security treatment of its

properties is a critical deficiency in the understanding of the security

of these protocols. This the main motivation behind the present

paper.

1.2 Our Results
This work takes a systematic and principled approach to allevi-

ating the issues explained above and provides a novel design for

Byzantine-resilient gossiping in the context of PoS blockchain pro-

tocols. The results are presented in the Universal Composability

framework [5].

AByzantine-resilient network layer for blockchains. The first main

contribution of this work is a protocol for “synchronizing chains”

globally among participants of PoS blockchain consensus.
2
The

protocol is designed to work over a standard, Internet-like network

with (bounded-delay) message passing.

Crucially, the security of the network layer is based on the same

assumption as that of the consensus layer, namely that the majority

of stake in the system is controlled by honest parties. This may

seem circular at first, as the proper operation of the network layer

is conditioned on agreement on the stake distribution. The way to

break this “cycle” is as follows: Commonly, Nakamoto-style PoS

blockchains anyway split the execution of the consensus protocol

into epochs and use the stake distribution SDi−1 at the end of an

epoch i−1 as a basis for consensus in epoch i+1 (under the assump-

tion of bounded stake drift during epochs). The same approach can

be taken for the network layer, i.e., SDi−1 underpins the execution

of the network layer in epoch i + 1. Specifically, in the new protocol

parties use a verifiable random function (VRF) to, based on SDi−1,

create a stake-weighted random-graph overlay in which the degree

of each party is constant in the number of participants. The use of

VRFs allows parties to reject connection requests from participants

that are not supposed to be in their neighbor set.
3

Because the node degrees in the network protocol are constant,

it is easy for an (adaptive) attacker to isolate a (bounded) fraction

of the stake by corrupting all neighbors of parties making up said

stake. To that end, edges in the graph have an expiration time, at

which point replacements are sampled. In addition to helping parties

recover from eclipses, this also allows the overlay to gradually adapt

to changing stake distributions.

It may seem tempting to now simply perform run-of-the-mill

block gossiping over the above overlay. Such an approach, however,

seems to be unsuitable (at least) for Nakamoto blockchains: For

example, it is an impractical and insecure design to ask parties to

keep all received blocks around, as many of them could be adver-

sarial in the PoS setting (an attacker may—in principle—generate

as many blocks as they like, in particular as slot leader). There-

fore, with block gossip, a party should delete blocks unless they

extend its current local chain. During a fork event, however, the

2
This work focuses on synchronizing chains; similar approaches can be taken to

synchronize other protocol messages, such as votes, transactions, etc.

3
Non-Nakamoto blockchains sometimes do not have the notion of an epoch built into

the consensus protocol, e.g., because they finalize blocks and use the stake distribution
of the finalized block as a basis for agreeing on the next block. However, for the purpose

of equipping them with the network design presented here, such a notion can easily be

added to them. Moreover, note that it seems that any reasonable design of a network

layer for PoS protocols needs to assume bounded stake drift.
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party may require previously deleted blocks for which the gossip is

“over.” Similar issues apply if a party misses blocks, e.g., due to an

eclipse. In general, which blocks are needed by a particular party

to synchronize with the system is highly dependent on the party’s

local state.

Therefore, stateless solutions, i.e., solutions in which neighbors

do not share state, do not appear to be a good fit and will not

yield DoS-resilient and scalable blockchain protocols in practice.

A more suitable approach is to have each pair of neighbors run a

bilateral chain synchronization (chain sync) protocol, which allows

them to keep each other informed about their locally preferred

chains. When a party discovers a better chain in one of these chain-

sync instances or when it produces a better one, it informs all of its

current chain-sync instances of the new chain.

This work abstracts this bilateral chain sync as a functionality

Fbilateral. The actual implementation of such a protocol is outside

the scope of and irrelevant for this work.
4
It is merely important to

note that chain sync is stateful and instances thereof take time to

set up in the real world (establishing the connection, initial synchro-

nization of blocks, etc.). Hence, bilateral chain sync is intended to

run between two parties for an extended (albeit bounded) amount

of time. These facts are captured by Fbilateral in that there is an

initial synchronization delay δinit, which may be much larger than

the delay δsync occurring once a chain sync instance has been set

up.

Finally, observe that in the blockchain context particularly (but

also in general), the attacker must be prevented from interrupting

the propagation of any specific message; otherwise, the attacker

can, e.g., prevent honest chain updates from spreading through the

network. Unfortunately, with an efficient gossip protocol, in which

nodes have constant degrees, the (adaptive) attacker can simply

corrupt all neighbors of a block leader and thereby halt propagation.

It is therefore unavoidable to consider a model in which corruption

requests by the attacker only take effect after a certain amount of

time.

The ideal global chain-sync functionality. The security guaran-

tees of the protocol above are captured by a functionality Fsync, the
second main contribution of this work. Similarly to the network

functionalities assumed in prior work, Fsync provides global chain
“propagation” within some time bound ∆sync. However, there are

several important differences stemming from the fact Fsync is im-

plemented and not assumed. The two most crucial ones are the

following:

• Fsync allows the attacker to “eclipse” parties and exclude

them from the provided guarantees, as long as the fraction

of eclipsed stake does not exceed a certain bound. Note that

the adversary is allowed to be “mobile” w.r.t. which parties

are eclipsed, i.e., every party can potentially be eclipsed at

some point during the execution of the protocol. Note that

there is an eclipse delay ξecl ≥ ∆sync in Fsync. This ensures
that the attacker cannot stop the propagation of specific

chains.

4
Secure and practical implementations of chain sync exist, e.g., [9] and [8, Section 3.7].

• Due to the use of chain sync, Fsync’s guarantees are slightly
weaker than those offered by the assumed network func-

tionalities in prior work: instead of a particular chain C
“propagating” through the network within ∆, Fsync may also

instead deliver different chains C ′
that are not worse (i.e.,

equal length or longer) than C .

Security proof. In order to show that the new network protocol

securely realizes ideal functionality Fsync, this work derives a new

result on expander graphs: Consider the stake-weighted random

graph formed by parties in the protocol. Then, even after removing

all corrupted nodes form the graph, leaving behind some fraction

α of honest stake, there exists a subgraph of honest parties, the

backbone, corresponding to at least an (α − β)-fraction of the total

stake, for some β , and this backbone is an expander graph (with

overwhelming probability). Most importantly, the result holds even

if the attacker chooses which nodes to remove with full knowl-
edge of the entire graph. The expander property guarantees that

the diameter in the backbone is small, and therefore timely chain

“propagation” is possible therein.

Fully Byzantine-resilient PoS. As a final contribution, this work
demonstrates how to utilize the synchronization functionality in

the context of a proof-of-stake protocol. Specifically, [11] is used to

illustrate the result. First, note that the original analysis is insuffi-

cient: despite the fact that the networking model of [11] allows a

Byzantine adversary controlling a minority of stake, Fsync permits

a “mobile” eclipsing strategy that would deplete the adversarial

budget of any straightforward reduction to the adversary of [11].

To circumvent this issue, a revamped analysis is presented showing

that adaptive eclipsing does not disturb the forkable-string analysis

of [11], which can be recovered to demonstrate that the protocol re-

mains secure even against an adversary that exploits the enhanced

capabilities of the adversarial interface of Fsync. This gives rise to
a new analysis of [11] in an adversarial setting where in addition

to party corruption, some degree of message suppression is also

permitted.

1.3 Related Work
The use of gossip or epidemic algorithms in the context of dis-

tributed systems was put forth in [13] and explored at length both

in networking systems [20] but also from theoretical angles [19].

The study of Byzantine fault tolerance in a network of a bounded

degree was initiated in [14] and further refined in [29], where it

is shown that if the adversary is bounded by O(n/logn) or O(n),
respectively, there exist graphs of bounded degree that facilitate

broadcast.

In terms of total communication, it is known that the communi-

cation complexity of Byzantine broadcast is Ω(n2), and assuming

some type of delay in the corruption model is necessary to break

the communication complexity barrier to sublinear [1].

In the context of peer-to-peer networking for blockchains, a

“structured” approach in the organization of the peer-to-peer net-

work can be used to reduce communication complexity further, but

at the expense of adaptive security [28].

Our protocols, viewed from the lens of multiparty computation,

exhibit a “communication locality,” which has also been studied



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell

more broadly in the context of general secure multiparty computa-

tion [6]. We also remark that message suppression as an enhanced

adversarial capability was also studied in the general secure MPC

setting in the context of “omission corruptions” [30].

Finally, concurrently and independently of our work, [24, 25]

studied the related problem of stateless flooding amongst a set of

participants, also motivated in part by the blockchain setting. Their

flooding protocol has peers connecting to a bounded-size, randomly

chosen neighborhood for each message transmission. This can

be seen as creating a separate random graph for every message.

However, as mentioned above, stateless flooding is unsuitable in

practice for blockchain protocols. Moreover, their protocol does

not use any mechanism to resource bound the adversary (e.g., as

a VRF) and hence there is no mitigation that can prevent honest

parties from being flooded with messages by the adversary.

2 PRELIMINARIES AND NOTATION
UC security. Protocols are described and proven secure in the

Universal Composability (UC) framework [5]. In UC, the security

of a particular protocol is captured by comparing a real-world

execution of the protocol to an ideal-world execution in which

the protocol is replaced by an ideal functionality. In rough terms,

a protocol π securely realizes a functionality F , if for every real-

world attackerA attacking π , there exists an ideal-world simulator

S attacking F such that the real and ideal experiments become

indistinguishable to all environmentsZ.
5

A protocol (in the real world) may itself make calls to so-called

hybrid functionalities. These hybrid functionalities may serve to ei-

ther model assumptions (e.g., Fnet below) or are themselves realized

by protocols. The UC framework guarantees that the security of a

protocol is maintained when hybrids are replaced by the protocols

that realize them.

Round structure. All functionalities/protocols proceed in rounds

(not made explicit) and are assumed to have access to the current

time, denoted T. Generally, the round structure is such that parties

first use a fetch-type command to retrieve information, followed

by a send/set-type command to distribute information.

Attacker and corruption delay. The attacker considered is poly-

nomially bounded and may corrupt parties, thereby learning their

internal state, and make them deviate from the prescribed protocol

arbitrarily. The attacker is adaptive, i.e., it may choose whom to

corrupt on the fly during the execution of the protocol and based

on all the information observed. However, there is a corruption

delay of ξcorr, i.e., a corruption request issued by the attacker takes

effect after a delay of ξcorr rounds only.

Underlying network. This work considers parties P with so-called

relays, identified by their IP addresses IP. Having the actual node—

holding the key material—firewalled by relays is common practice

as a first line of defense against intrusion attacks.
6

Communication between relays is modeled by functionality Fnet
(cf. Figure 1), which captures a simple, Internet-like network. Parties

5
The environment both acts as distinguisher and controls the attacker/simulator as

well as the inputs to the parties.

6
Note, however, that for the purposes of this work, the attacker corrupts parties, at

which point it gains control over (all of) their relays.

Parameters: δnet: maximum delay.

Variables: The functionality keeps track of the following variables,

initialized to the following values: array IPs[P ] := ∅: set of IPs owned

by parties P ; array M[mid]: message records (IP, IP′, t ,m), indexed

by message IDs (MIDs) mid.

IP addresses: Upon (getIP) from P : Output (getIP, P ) to S and ask S

for a unique address IP. Add IP to IPs[P ] and output (getIP, IP) to P .

Malicious IPs Registration: Upon (regIP, IP) from S: if IP is unique,

add it to IPs[S].

Message send: Upon (send, IP, IP′,m) from P with IP ∈ IPs[P ]: Pick
a unique mid and store M[mid] := (IP, IP′, T,m). Output

(send,mid, IP, IP′,m) to S.

Malicious message send: Upon (send, IP, IP′,m) from S where

IP ∈ IPs[S] or P with IP ∈ IPs[P ] is corrupted: Pick a unique mid and

store M[mid] := (IP, IP′,∞,m). Output (send,mid) to S.

Fetching: Upon (fetch, IP) from P with IP ∈ IPs[P ]:
(1) Output (fetch, P , IP) to S and ask S for a set M of MIDs.

(2) Let M ′
be the set of MIDs corresponding to records (·, IP, t , ·) with

T − t ≥ δnet.
(3) Let

˜M := M[M ∪M ′] and set M[M ∪M ′] := ⊥.

(4) Output (fetch, ˜M′) to P , where ˜M′
is the set

˜M with the time

stamp removed in each tuple.

Functionality Fnet

Figure 1: Network/Internet functionality Fnet.

can obtain (unique) IP addresses for their relays. Fnet guarantees
bounded-delay message transmission between any two relays. The

attacker sees all messages sent and may send messages on behalf

of any relay IP owned by a corrupted party; it is, however, not

permitted to interfere with message transmission between honest

relays (beyond inducing a bounded delay).

Master index. A master indexMI is made up of:

• the network directoryND, which consists of tuples (P, IP,v),
where P is a party ID, IP is an IP address, and v is a VRF

public key (see below);

• the stake distribution SD, which consists of tuples (P,α),
where α ∈ (0, 1] denotes P ’s stake fraction; and

• a seed value R.

A master index is valid if (a) the same parties appear in ND and SD,
and each party appears at most once, (b) values IP and v appear

only once in ND, and (c) the values α in SD sum up to 1. All master

indices appearing in this work are tacitly assumed to be valid.

Observe that the MI format defined above restricts each party to

having only one IP address. This choice was made for simplicity;

the definition of master indices as well as all protocols and func-

tionalities can easily be adapted to allow multiple IP addresses per

party, thereby modeling the fact that in practice parties often have

multiple relays.

Verifiable random functions. A verifiable random function (VRF)
is a cryptographic primitive that allows a party P to create key pair
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Variables: The functionality keeps track of the following variables,

initialized to the values below:

(1) an array Keys[P ] := ∅: set of keys owned by P ;
(2) an array T [v , x ] := ⊥, where v is a key and x a domain value: pair

(y, S ), where y is a range value and S a set of proofs π ;
(3) a set E := ∅: contains triples (v , x , y) to keep track of all VRF

evaluations.

Keys: Upon (getKey) from P : Output (getKey, P ) to S and ask S for

a unique key v . Add v to Keys[P ] and output (getKey, v) to P .

Register Keys: Upon (regKey, v) from S: if v is unique, add it to

Keys[S].

Evaluation: Upon (Eval, v , x ) from P with v ∈ Keys[P ]: Output
(Eval, P , v , x ) to S, and upon obtaining (Eval, π ) from S:

(1) If π is not unique, exit the procedure.

(2) If T [v , x ] is undefined, pick y uniformly at random from the range

and set S := ∅; otherwise, let (y, S ) := T [v , x ].
(3) Set T [v , x ] := (y, S ∪ {π }) and add (v , x , y) to E .
(4) Output (Eval, y, π ) to P .

Malicious evaluation: Upon (Eval, v , x ) from S:

• Case 1: There exists an uncorrupted P with v ∈ Keys[P ]: If
(y, S ) := T [v , x ] is defined, return (Eval, y) to S; otherwise, do

nothing.

• Case 2: There exists a corrupted P with v ∈ Keys[P ] or
v ∈ Keys[S]: If T [v , x ] is not defined, pick y uniformly at random

from the range, let S := ∅ and set T [v , x ] := (y, S ); otherwise, let
(y, S ) := T [v , x ]. Return (Eval, y) to S.

• Else: Do nothing.

Verification: Upon (Verify, v , x , y, π ) from any ITI: Send

(Verify, v , x , y, π ) to S, and upon receiving (Verify, ϕ) from S:

• If v ∈ Keys[·] and T [v , x ] = (y, S ) is defined:
(1) If π ∈ S , set f := 1.

(2) Else, if ϕ = 1 and π is unique—i.e., if for all (v ′, x ′) , (v , x )
with T [v ′, x ′] = (·, S ), π < S—set T [v , x ′] := (y, S ∪ {π })

and f := 1.

(3) Else, set f := 0.

• Else, set f := 0.

Output (Verify, f ) to P .

Adversarial leakage: Upon (Leak) from S: return (Leak, E) to S.

Functionality Fvrf

Figure 2: VRF functionality Fvrf .

consisting of a secret evaluation key and a public verification key

such that: (a) with the secret key, P can evaluate the VRF at any

input x , obtaining a random-looking output y and a proof π ; (b)
given the public key of P , anyone is able to verify, using π , that y is

indeed the output corresponding to x . Importantly, even a malicious

P cannot bias the output of the VRF on any particular input x (for

any fixed public key).

The above guarantees are abstracted by an idealized function-

ality Fvrf (cf. Figure 2). The main commands offered by Fvrf are (i)
(getKey), answered by (getKey,v) for an (adversarially chosen)

idealized public keyv , (ii) (eval,v, x), answered by (eval,y, π ), and
(iii) (Verify,v, x,y, π ), answered by (Verify,ϕ) with ϕ ∈ {0, 1} in-

dicating whether π is a valid proof for the input/output pair (x,y)
under public key v .

3 BYZANTINE-RESILIENT NETWORKING
3.1 Overview
One of the main contributions of this work is to define and realize a

synchronization functionality Fsync that can be used by participants

of proof-of-stake (PoS) consensus layers to globally synchronize

their blockchains. A most crucial feature of Fsync is that it is real-
izable under the same assumptions as the consensus protocol that
builds on top of it.

In rough terms, the idea underpinning the protocol realizing

Fsync is as follows: Each consensus participant P samples ΘP ·

d neighbors in a stake-based fashion based on the output of a

verifiable random function (VRF); d is a small constant, and ΘP is

a multiplier that depends on the amount of stake of P itself. The

use of a VRF guarantees that parties can verify whether they were

indeed supposed to be chosen as neighbors by other participants.

Once the neighbors are sampled, chains are synchronized glob-

ally by each party engaging in bilateral chain synchronization with

all its neighbors. Due to the fact that the resulting communication

overlay is essentially a random graph, using expander theory, one
can show that even with all adversarial nodes removed, there re-

mains a large connected backbone with small diameter. This enables
timely synchronization (TS), which is crucial to the security of many

consensus protocols.

Of course, with a constant number of neighbors, it is unavoidable

that some parties end up being connected solely to corrupted parties,

which means that they are eclipsed. Consequently, Fsync will have
to grant eclipsing power to the adversary and can only guarantee

TS to non-eclipsed parties.

Functionality Fsync will be realized (cf. Section 3.4) from a func-

tionality Fbilateral (cf. Section 3.2), which models bilateral chain

synchronization, as well as from network functionality Fnet (cf.
Section 2) and (standard) functionality Fvrf (cf. Section 2).

3.2 Bilateral Chain Synchronization
Functionality Fbilateral (cf. Figure 3) models bilateral chain synchro-

nization between two parties A and B. In Fbilateral, each party has a

local chain, and the functionality allows them to learn their coun-

terparty’s chain as it evolves. A party’s local chain evolves by use

of the setC command, under the restriction that local chains are

only replaced by “better” chains as determined by a strict partial

order prefer(·, ·), where prefer(C,C ′) (also denoted by C > C ′
) if

and only if C is strictly preferable to C ′
;
7 prefer is a parameter of

the functionality.

Both parties are informed about changes to their counterparty’s

local chain with a delay of at most δsync. However, initially, i.e., until
both parties have used setC at least once (thereby indicating that

they are ready to start chain synchronization), the delay may be up

to δinit; this models the fact that in reality chain synchronization can

7
Commonly, C is strictly preferable to C ′

if it is longer.
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Parameters: δinit: initial delay; δsync: synchronization delay;

prefer(·, ·): strict partial order.

Parties and session ID: Involves two parties A and B . Below,
whenever P ∈ {A, B }, P ′

refers to the other party. The parties use

sid = (A, IP, B, IP′, t , j) as session ID (for some t and j ).

Variables: The functionality keeps track of the following variables,

initialized to the values below for both parties P ∈ {A, B } and all

rounds t :
(1) C[P , t ] := ⊥: local chain of P in round t ;
(2) Ptr[P ] := −∞: time pointer of P into C[P ′, ·];

(3) tstart[P ] (derived from C and Ptr): smallest t such that C[P , t ] , ⊥.

Fetch chain: Upon (fetch) from P :
(1) Output (fetch, P ) to S and ask S for time pointer Ptr < T.
(2) If T −max{tstart[P ], tstart[P ′]} < δinit, set d := ∞; else, set

d := δsync.
(3) Let Ptr[P ] := max{Ptr, Ptr[P ], T − d }.
(4) Output (fetch,C[P ′, Ptr[P ]]) to P .

Set local chain: Upon (setC,C) from P : if prefer(C ,C[P , T − 1]), set

C[P , T] := C .

Functionality Fbilateral

Figure 3: Bilateral chain-sync functionality Fbilateral.

take significant time between two parties who have just established

a connection.

This work leaves the exact mechanism employed to realize

Fbilateral open and simply assumes Fbilateral as a hybrid. In general,

the approach to realizing Fbilateral is along the following lines: Upon
establishing a connection, two parties first determine the point at

which their local chains diverge;
89

subsequently, they inform each

other about changes to their local chains.

In practice, highly optimized implementations of Fbilateral are
used in order to improve synchronization time even further. For an

example of such an implementation, see [9] and [8, Section 3.7].

3.3 Synchronization Functionality
Functionality Fsync, whose realization is the main focus of this work,

allows parties to synchronize their chains with the rest of the partic-

ipants. It is parametrized by an initial delay ∆init, a synchronization

delay ∆sync, an eclipse delay ξecl ≥ ∆sync, a “lookback” parameter

µ ≥ ∆sync, as well as an upper bound λ on the amount of eclipsed

honest stake.

8
For the sake of offering a concrete description: In order to figure out the common

prefix, party A sends block hashes of suffixes of length 1, 2, 4, 8, . . . to party B until

B finds that one of these hashes corresponds to a block on their chain. Thereafter,

the exact point of divergence is located by binary search. In the worst case, this takes

O (δnet · logk ), where k is the common prefix parameter. Note that this is independent

of the length of the parties’ chains. Furthermore, on average, in a longest chain protocol,

due to the exponential decay in the probability of divergence (as a function of the size

of the divergence), synchronization time is much shorter (typically a small constant)

between up-to-date peers.

9
In a BFT-style blockchain like Algorand [7], one local chain is normally a prefix of

the other, which simplifies this step.

Note that parties have to agree on the round number in which

they start using Fsync. For convenience, in this section, initialization
of Fsync begins in round−∆init, and parties actually start using Fsync
in round 0.

IP and key management. Since Fsync is realized from Fnet and
Fvrf , interfaces for IP and key registration are also provided by Fsync.
The reason these are not abstracted away is that IPs and VRF keys

must be known by the (higher-level) consensus protocol (e.g., to

generate the genesis block).
10

Master index and setup. As previously mentioned, in the synchro-

nization protocol parties will sample neighbors based on their stake.

The stake distribution, however, is an object that emanates from

the consensus layer, which itself relies on the synchronization func-

tionality. This apparent cycle is broken as follows: Fsync expects
each party to input its view on themaster index (cf. Section 2) in the

beginning via command setup, and Fsync only provides guarantees
if (a) all honest parties (i) agree on the master index and (ii) input

chains originating from the same genesis block, and (b) all honest

parties are represented in the master indexMI = (ND, SD,R) they
input; a party is represented in MI if one of its IP addresses IP and

one of its keys v appear in ND, i.e., (P, IP,v) ∈ ND.
When all of the above conditions are satisfied, Fsync has valid

setup. If the setup is not valid, Fsync shuts down. Note that it is

the responsibility of the consensus protocol (i.e., the environment

in the diffusion context) to ensure that the setup is valid. This is

commonly achieved via the genesis block (which is assumed to be

available to all parties) initially and later on based on the epoch-

wise consensus properties of the protocol. More details on this

relationship are provided in Section 5.

Eclipsing. Due to the fact that in practically feasible and scalable

protocols for realizing Fsync, each party is connected only to a

small subset of all participants, it is unavoidable that the adversary

may eclipse certain honest parties by (adaptively) corrupting all of

their neighbors. Consequently, Fsync offers an eclipse command

by which the attacker can exclude any honest party from the TS

guarantees (see below).

There are two limitations on the attacker’s use of the eclipse

command. The first one is that eclipse commands only take effect

after a delay of ξecl. The second limitation is based on the following

notion of t-free party:

Definition 3.1. A t-free party is an honest party that was not

eclipsed during rounds t − 1, t − 2, . . . , t − µ.

The eclipse restriction is that at any time t , the fraction of stake

corresponding to t-non-free honest parties may not exceed parame-

ter λ.
Formulating an eclipse restriction in this way prevents the at-

tacker from eclipsing a completely different subset of parties in each

round since a party eclipsed in round t essentially blocks a fraction

corresponding to its stake in the attacker’s eclipse budget λ for µ
slots. Note, however, that it is absolutely possible for the adversary

to eclipse a particular party for an unlimited amount of time. This

10
Observe that the keys in the networking layer need not necessarily be VRF keys:

any type of “public key” could potentially be used as an ID instead. Fsync is sufficiently

general to support any such use case since the keys are only used to determine “valid

setup” (see below).
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Parameters: ∆init: initial delay; ∆sync: synchronization delay; ξecl ≥ ∆sync: eclipse delay; µ ≥ ∆sync: non-free lookback parameter; λ: maximum fraction

of non-free honest stake; prefer(·, ·): strict partial order.

Admin
Variables: The functionality keeps track of the

following variables, initialized to the values

below for all parties P and rounds t :
(1) IPs[P ] := ∅: set of IPs owned by P ;
(2) Keys[P ] := ∅: set of keys owned by P ;
(3) C[P , t ] := ⊥: local chain of P in round t ;
(4) E[P , t ] := false: eclipse status of P in

round t ;
(5) MI[P ] := ⊥: master index as seen by P ;

recall that MI = (ND, SD, R) (cf. Section 2).

Setup: Upon (setup,MI,C) from P (in round

−∆init): set C[P , < 0] := C andMI[P ] := MI.

IP addresses: Upon (getIP) from P : Output
(getIP, P ) to S and ask S for a unique address

IP. Add IP to IPs[P ] and output (getIP, IP) to P .

Keys: Upon (getKey) from P : Output
(getKey, P ) to S and ask S for a unique key v .
Add v to Keys[P ] and output (getKey, v) to P .

Fetch & Set

Fetch chains: Upon (fetch) from P :

(1) Output (fetch, P ) to S and ask S for a set

D of chains.

(2) For any C with C[P ′, T − ∆sync] = C for

some T-core node P ′
: if P is a T-core node

and prefer(C ,C[P , T − 1]) as well as

prefer(C ,C′) for all endorsed chains C′
in D ,

add C to a set D′
.

(3) Output (fetch, D ∪ D′) to P .

Set local chain: Upon (setC,C) from P : if
prefer(C ,C[P , T − 1]), set C[P , T] := C .

Adversarial

Eclipsing: Upon (eclipse, P ) from S—after all

honest parties have set master index in current

round T: If eclipsing P in round T would result

in the fraction of (T + ξecl + 1)-non-free stake
remaining below λ, set E[P , T + ξecl] := true.

Register IPs: Upon (regIP, IP) from S: if IP is

unique, add it to IPs[S].

Register keys: Upon (regKey, v) from S: if v
is unique, add it to Keys[S].

Notions

Representation: P is represented if

(P , IP, v) ∈ ND for IP ∈ IPs[P ] and
v ∈ Keys[P ].

Eclipsed: P is eclipsed in round t if
E[P , t ] = true.

Core and free parties: P is a t -core party (resp.

t -free party) if it was not eclipsed in rounds

t − ∆sync, . . . , t − 1 (resp. t − µ , . . . , t − 1).

Valid setup: Fsync has valid setup if (a) all honest
parties use setup with (i) chains originating

from the same genesis block and (ii) the sameMI,
and (b) all honest parties are represented.

If Fsync’s setup is not valid, it halts.

Functionality Fsync

Figure 4: Functionality Fsync for global chain synchronization among participants of PoS consensus.

must be dealt with by the higher-level consensus protocol using

Fsync.

Main operation and timely synchronization (TS). Similarly to

Fbilateral, a party uses setC to switch their local chain to a strictly

better one according to a predicate prefer (cf. Section 3.2). Moreover,

parties use fetch in order to receive information about chains of

other participants.

The TS guarantee offered by Fsync is based on the following

notion of t-core:

Definition 3.2. A t-core party is an honest party that was not

eclipsed during rounds t − 1, t − 2, . . . , t − ∆sync.

Thus, the t-core notion is very similar to that of t-free parties,
except with less “lookback” (as ∆sync ≤ µ).11

The TS guarantee is now the following: Suppose an honest party

P sets its local chain to some chain C at time t . Then, by time

t + ∆sync, provided P is in the (t + ∆sync)-core, the following holds

for all (t + ∆sync)-core parties P
′
,

• either P ′ has already switched their local chain to C ′
, or

• the fetch command returns C ′
,

where C ′
is a chain with ¬prefer(C,C ′), i.e., incomparable to or

better than C .12

11
The reason for having two parameters ∆sync and µ here is that Fsync is more “useful”

the smaller ∆sync is and the larger µ is.

12
Note that since prefer is a strict partial order, C ′ = C is also possible.

3.4 Synchronization Protocol
Overview. Protocol πsync (cf. Figure 5), realizing Fsync in the hy-

brid model with Fnet, Fvrf , and Fbilateral, follows the stake-weighted
random-graph approach outlined in Section 3.1. The protocol uses

a VRF to determine the random graph and to ensure that honest

parties only accept connections from parties they are neighbors of

in the graph. A party runs instances of Fbilateral with each neighbor

in order to keep track of their local chain. Whenever a party learns

of a valid chainC ′
better than their current local one, the idea is that

they switch to C ′
. However, as elaborated below, validity checks

and the decision to switch occur in the environment; therefore,

πsync will only realize Fsync w.r.t. to a (very reasonably) restricted

class of environments.

Admin. Protocol πsync handles requests for IPs and keys by sim-

ply forwarding them to Fnet and Fvrf , respectively, and the subse-

quent replies back to the environment.

Upon receiving (setup,MI′,C) from the environment, πsync
stores these values internally for later use.

Overlay. The most crucial part of πsync deals with establishing

and updating the random-graph overlay. A party P initially samples

ΘP neighbors for each time stamp t = −(d−1)r ,−(d−2)r , . . . ,−r , 0
independently and based on their stake, where ΘP is a multiplier

that depends on the stake αP of P itself; specifically,

ΘP := ⌈αP /αmin⌉ ,
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Parameters: d : degree paremeter; r : refresh parameter; αmin: minimum core-party stake; prefer(·, ·): strict partial order.

Hybrids: Fnet: network functionality; Fvrf : VRF functionality; Fbilateral: functionality for bilateral chain synchronization.

Admin

Variables: The protocol is described from the

point of view of a party P ; it keeps track of the

following items, initialized to the values below:

(1) IPs := ∅: set of IPs owned by P ;
(2) Keys := ∅: set of keys owned by P ;
(3) Clocal := ⊥: local chain of P ;
(4) MI := ⊥: master index; recall that

MI = (ND, SD, R) (cf. Section 2).

(5) (implicitly) instances of Fbilateral involving P .

Setup: Upon (setup,MI′,C) from P (before

round 0): set Clocal := C andMI := MI′.
Moreover, let IP and v be P ’s IP and VRF keys in

ND, i.e., (P , IP, v) ∈ ND.

IP addresses: Upon (getIP) from Z: Output

(getIP, P ) to Fnet, receive (getIP, IP) from Fnet,
add IP to IPs, and output (getIP, IP) to Z.

Keys: Upon (getKey) from P : Output
(getKey, P ) to Fnet, receive (getKey, v) from
Fvrf , add v to Keys, and output (getKey, v)
to Z.

Fetch & Set

Fetch chains: Upon (fetch) from Z:

(1) Let D := ∅. For all instances of Fbilateral:
output (fetch) to Fbilateral and receive

(fetch, D′) from Fbilateral; add D′
to D .

(2) Let Dpref be all C ∈ D with prefer(C ,Clocal).

Output (fetch, Dpref ) to Z.

Set local chain: Upon (setC,C) from Z: If

prefer(C ,Clocal), set Clocal := C . For all instances

of Fbilateral, output (setC,C) to Fbilateral.

Overlay Management
Multiplier: The degree multiplier for P is

defined as ΘP := ⌈αP /αmin ⌉, where αP is P ’s
stake according to SD.

Initialization: (Run as part of the setup

command.) For t = −(d − 1)r , −(d − 2)r , . . . ,
−r , 0 and j = 1, . . . , ΘP , run SamCon(t , j).

Refresh Operation: (Run as part of the fetch

command.) When T is a positive multiple of r :
Stop Fbilateral instances with time stamps t that
have expired (i.e., T − t = dr ). For j ∈ 1, ..., ΘP :
run SamCon(T, j).

Procedure SamCon(t , j): Proceed as follows:

(1) Output (eval, v , R | |t | |j) to Fvrf and receive

(eval, y, π ) from Fvrf .

(2) Let (P ′, IP′) := pick(y) and let IP be the IP

with (P , IP, ·) ∈ ND. Send message

(P , IP, P ′, IP′, t , j , y, π ) to IP′ using Fnet.
Start Fbilateral instance with
sid = (P , IP, P ′, IP′, t , j).

Procedure pick(y): Using y as random coins,

pick a party P ′
proportionally to its stake in SD.

Output (P ′, IP′), where IP′ is such that

(P ′, IP′, ·) ∈ ND.

Handling incoming connections: (Run as

part of the fetch command.) Proceed as follows:

(1) Let IP be the IP with (P , IP, ·) ∈ ND.
(2) Fetch messages from Fnet. For each message

(P ′, IP′, P , IP, t , j , y, π ):
(a) Check that t has not expired (i.e.,

T − t < dr ) and is not from the future or

non-positive (i.e., t ≤ T ∨ t ≤ 0).

(b) Check j ∈ {1, ..., ΘP ′ }.

(c) Output (verify, v ′, R | |t | |j , y, π ) to
Fvrf , where (P ′, ·, v ′) ∈ ND, and check

that Fvrf answers with (verify, 1).

Check that pick(y) = (P , IP).
If all checks pass, run Fbilateral instance with
sid = (P ′, IP′, P , IP, t , j).

Protocol πsync

Figure 5: Protocol πsync, implementing functionality Fsync.

for some parameter αmin.

Connections to neighbors expire after dr slots; thus, in each

round that is a multiple of r , ΘP new neighbors are sampled. Up-

dating the overlay in this fashion helps parties recover from eclipse

events in practice; in the context of this work, however, the adaptive

attacker considered here may simply corrupt all new neighbors of

a party. Hence, with such a powerful adversary, there is no upper

bound on the duration of an eclipse for a particular party (short of

the adversary exhausting its corruption budget, of course). Further-

more, refreshing neighbors also allows gradual adaptation of the

overlay to changing stake distributions.

The actual sampling performed by a party P is described as a

procedure SamCon(t, j) in Figure 5, where t is a time stamp and j =
1, . . . ,ΘP . The procedure uses a subroutine pick(y) which, using
VRF output y as random coins, chooses a party P ′ proportionally
to its stake in SD. Note that the inputs to the VRF are (apart from

P ’s public key) the random nonce R (part of MI), t , as well as j.
Subsequent to the above sampling, P sends a connection request

to P ′ via Fnet and immediately begins a corresponding instance of

Fbilateral. Conversely, P
′
will start the instance upon receiving the

connection request (after performing the obvious checks).

Chain management. Upon receiving (setC,C) from the environ-

ment, if C is better than P ’s current local chain, P updates the

corresponding variable and inputs (setC,C) to all running Fbilateral
instances.

Upon receiving (fetch) from the environment, P sends (fetch)

to all running Fbilateral instances and collects the answer chains

in a set D; all chains in D preferable to P ’s current local chain are

returned to the environment.

Chain validity and switching. With the application of blockchain

consensus in mind, observe that in the context of πsync (or, in the

ideal world, of Fsync) there is no notion of “chain validity.” This

is a concept from the higher-level consensus layer. Consequently,

πsync (Fsync) cannot possibly check a chain for its validity and

“automatically” switch to the best valid chain. This task therefore

falls upon the environment.

At this point it is also important to observe that successful

chain “propagation” through the network crucially depends on

the environment—in each round—using setC to make each party

switch to the best valid chain received so far. In order to circum-

vent the application-specific nature of the notion of “validity,” the

following proxy for it is used:
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Definition 3.3. In an execution of πsync (or Fsync), a chain C is

endorsed if the environment at some point inputs (setC,C) on
behalf of an honest party P .

The notion of endorsed chains allows to define the class of envi-

ronments Z w.r.t. which πsync must realize Fsync:

Definition 3.4. An environment Z is H-improving if in each

round t , every honest party P inputs (setC,C) for a chain C which

is maximal w.r.t. prefer among all endorsed chains received by P
via fetch in rounds up to t .

The above finally leads to the following main theorem:

Theorem 3.5. Let
• n ∈ N,
• α > β > 0, δ > 0, cmin, and cmax be constants satisfying
0 < cmin < 1 < cmax and (α − β)/2 ≥ β + cmin/n, and

• r ∈ N.
Then, for all sufficiently large d , there exists a constant γ > 0 such
that protocol πsync[d + 1, r , cmin/n] ε-securely realizes Fsync[∆init,

∆sync, µ, ξecl, λ] in the {Fnet[δnet], Fvrf, Fbilateral[δinit, δsync]}-hybrid
model w.r.t. H-improving environments that (1) input anMI with n
parties in which no party owns more than a cmax/n fraction of stake,
(2) corrupt at most an α -fraction of stake, (3) run for at most L rounds,
where

• ∆init = δnet + δinit,
• ∆sync = 8ℓ for ℓ := ⌈− log

1+γ (2cmin/n) + 1⌉,
• ∆sync ≤ ξecl ≤ min(ξcorr, r ),
• µ = r ,
• δinit ≤ r ,
• λ = 2(β + cmin), and
• ε = L/r · e−δn .

Remarks. A simple Chernoff bound can be used to show that if

there are no small-stake nodes (with less than cmin/n stake), the de-

grees of all parties are constant. In case there are many small-stake

nodes, the degrees of large nodes are beyond constant. However,

one can show that by having small-stake node pick their peers

uniformly (instead of based on stake), all node degrees go back to

constant again.

The security error ε is exponentially small in the number of

parties n. It is, of course, important in practice to ensure by suitable

means that there are sufficiently many parties participating. One

possible way to achieve this by having so-called stake-pool opera-

tors (SPOs), to which parties can delegate stake, run the blockchain

and use incentive mechanisms to control the total number of SPOs.

Furthermore, there are also several ways of enforcing the maxi-

mum-stake restriction in Theorem 3.5. In a system with SPOs, one

may restrict the maximum delegated stake on the consensus level.

Alternatively, one can again set incentives in such a way that SPOs

do not attract more than a certain amount of stake. For more infor-

mation, see [4].

4 SECURITY PROOF
This section presents the security proof of the synchronization

protocol πsync (cf. Section 3.4).

The most crucial part of the security argument is a new result on

stake-based expander graphs. Specifically, given a graphG wherein

each vertex v has assigned to it some stake αv ∈ (0, 1], where∑
v αv = 1, and each vertex chooses its neighbors in the stake-

based fashion adopted by protocol πsync, the results in Section 4.1

show that even after removing all adversarial nodes fromG , leaving
behind at least some α-fraction of honest stake, there exists an

honest “backbone” holding at least α − β stake, for some β , such
that the backbone is an expander graph.

As shown in Section 4.2, the above translates to πsync realizing

Fsync with roughly a β-fraction of honest stake being eclipsed,
13

while due to the expander property of the backbone, the remaining

“core” of honest parties are at most O(logn) hops apart from each

other, where n is the total number of parties. It should be noted

that the this core only approximately corresponds to the backbone

above, the reason for this being that (a) the backbone cannot be

efficiently computed (and thus, an approximation has to be used),

and (b) backbone nodes with less than cmin/n stake need to be

excluded from the core (because the expander property cannot be

used to bound their distance from other nodes in the backbone).

4.1 Expanders Resisting Vertex Deletion
It is a well-known fact that random graphs—with a wide variety of

edge distributions—form expanders with high probability and hence

have small diameter and other desirable properties. This section

shows that the random graphs produced by the protocol possess

such strong properties even if an adversary with full knowledge of
the graph is permitted to remove a constant fraction of the nodes.

As outlined above, we show that for any two constantsα > β > 0,

there is a degree parameter d for which the following holds: so long

as an α fraction of nodes remain after adversarial deletion, there is a

subset (the “backbone”) consisting of an α − β fraction of the nodes

that is a strong expander. Typically, one would choose β ≪ α so

that the backbone consists of almost all of the remaining vertices.

These results are motivated by a classical theorem of Upfal [29],

which uses different methods to establish a similar property of

Ramanujan graphs (which achieved fixed constants α and β). Thus,
our results expand on this theory by (i) handling random graphs,

and (ii) establishing that any constants can be achieved by appropri-

ate choice of d . A final remark before transitioning to the technical

survey: we also work directly with weighted graphs (with a weight-

ing corresponding to stake) so that we can define and treat a natural

notion of “stake-weighted” expansion.

Our protocol directly motivates the following family of distribu-

tions of random directed graphs.

Definition 4.1. Let d and n be positive integers and let D be a

probability distribution on [n] with the property that dv = ndD(v)
is an integer for every vertex v . We let Gn,d ;D denote the probabil-

ity law on directed multigraphs withV = [n] obtained by selecting,

for each v , dv outgoing neighborsw1, . . . ,wdv independently ac-

cording to D and defining the multiset of directed edges to be

E =
⋃
v

⋃dv
i=1(v,wi ).

14

We let Gn,d denote the special case when D is the uniform

distribution, in which case dv = d for all v .

13
More precisely, the non-free parameter λ is roughly β (cf. Section 3.3).

14
In our main application, we are actually interested in the properties of the undirected

version of such graphs; however, for analytic purposes it is convenient to distinguish

the source and sinks for each edge.
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We wish to show that Gn,d ;D is typically a “stake expander”:

that is, that sets S ⊂ V have a number of neighbors outside them,

or edges leaving them, proportional to their total stake.

Definition 4.2. Let G = (V , E) be a directed graph. For a subset

S ⊂ V , we define the (outer) boundary of S as

∂(S) = {w < S | ∃s ∈ S : (s,w) ∈ E or (w, s) ∈ E} .

Let D be a distribution on the set V and γ > 0. We say that G is

a (D,γ )-expander if for every subset of vertices S ⊂ V for which

D(S) ≤ 1/2,

D(∂(S)) ≥ γD(S) ,

where we use the notation D(S) to denote

∑
s ∈S D(s).

Theorem 4.3. Let α > β > 0 and δ > 0 be positive constants,
and let cmin and cmax be positive constants satisfying cmin < 1 <

cmax. For sufficiently large d there is a constant γ > 0 for which
the following holds: Let D be a distribution on V = [n] for which
cmin/n ≤ D(v) ≤ cmax/n and dv ≜ ndD(v) is an integer for each
v ∈ V . ConsiderG = (V , E) drawn according to Gn,d ;D . Then, except
with probability p

fail
≤ e

−δn , for every subset H ⊆ V for which
D(H ) ≥ α , there is a subset H ′ ⊂ H for which D(H ′) ≥ α − β and
the subgraph induced by H ′ is a (D ′,γ )-expander, where D ′ is the
distribution D scaled by 1/D(H ′).

See Appendix A for the proof.

Remark. The condition in Definition 4.1 and Theorem 4.3 that

ndD(v) is an integer for all v is a mere convienience so that the

out-degree of each vertex will be a fixed integer dv . We can also

define dv = ⌈ndD(v)⌉. This changes the effective stake of each

player by a factor of 1 ± O(1/d). In fact we only need an upper

bound on the stake each vertex has, as we can hand over all the

vertices with very low stake to the adversary (cf. Lemma A.5).

4.2 Security of the Synchronization Protocol
This section uses the results from Section 4.1 to finally prove the

security of protocol πsync.

Simulation basics. Simulator S internally simulates instances of

the protocol and of hybrids Fnet, Fvrf , and Fbilateral as well as the
adversaryA (which acts as the interface to the environment); in the

following, this ensemble is referred to as the simulated real world
(SRW). Specifically, S reacts as follows when receiving messages

from Fsync:

• Upon (setup, P,MI,C): in the SRW, input (setup,MI,C) on
behalf of P .

• Upon (getIP, P): in the SRW, input (getIP) on behalf of P ;
wait to receive (getIP, IP) on behalf of P ; return IP to Fsync.

• Upon (getKey, P): in the SRW, input (getKey) on behalf of

P ; wait to receive (getKey,v) on behalf of P ; return v to

Fsync.
• Upon (fetch, P): in the SRW, input (fetch) on behalf of P ;
wait to receive (fetch, D̃); return D̃ to Fsync.

• Upon (setC, P,C): in the SRW, input (setC,C) on behalf

of P .

Messages from A are handled as follows:

• Upon (regIP, IP): input (regIP, IP) to Fsync.
• Upon (regKey,v): input (regKey,v) to Fsync.

Notation. Fix the master index MI = (ND, SD,R) input by the

honest parties at the beginning; recall that n denotes the number of

parties inMI. In the following, for a subset S of the parties inMI,
denote by αS := SD(S) the amount of stake held by parties in S .

Determining whom to eclipse. A crucial part of S is to ensure that

when handling fetch commands, Fsync does not enforce delivery
guarantees that contradict the SRW. To that end, S determines

which honest parties are “eclipsed” and relays this information to

Fsync. Recall that Fsync will not offer any guarantees to non-core

parties, where a party is in the core in round t if and only if it has

not been eclipsed in rounds t − 1, t − 2, . . . , t − ∆sync.

Towards understanding which parties to eclipse at a particular

time t , consider the graph G formed by all parties in MI and the

connections implied by the use of the VRF at time t , but ignore the
edges added to it during the latest refresh (i.e., in the largest round

t ′ ≤ t that is a multiple of r ). This graph follows the distribution

Gn,d ;SD.

LetH denote the set of honest parties in at time t . By Theorem 4.3,

there exists a setH ′ ⊆ H with αH ′ ≥ αH −β , such that the subgraph
ofG induced by H ′

is an (SD′,γ )-expander, where SD′
is SD scaled

by 1/αH ′ . This expander property allows to bound the diameter

between parties in H ′
with a certain minimum amount of stake, a

fact used to show:

Claim 4.4. From each party in H ′ with stake at least cmin/n in
SD, one can reach more than (αH − β)/2 of honest stake in at most ℓ
steps.

Proof. Consider a party P ∈ H ′
with stake αP ≥ cmin/n. Its

stake according to SD′
is equal to

αP /αH ′ ≥
cmin

αH ′n
.

By the expander property on H ′
, one can reach more than 1/2 of

the stake in H ′
from P (according to SD′

) in ℓ′ steps if

cmin

αH ′n
(1 + γ )ℓ

′

>
1

2

.

This is satisfied for

ℓ′ :=

⌈
log

1+γ

(
αH ′n

2cmin

)
+ 1

⌉
≤

⌈
log

1+γ

(
n

2cmin

)
+ 1

⌉
= ℓ .

Reaching half of the stake in H ′
according to SD′

translates to

reaching

αH ′

2

≥
αH − β

2

of stake according to SD. □

Since the security argument in Theorem 4.3 is non-constructive,

it is unclear whether set H ′
can be efficiently determined. Instead,

consider the set

It := {h ∈ H | can reach β + cmin/n HS in ℓ steps from h} ,

where HS stands for “honest stake.” The subscript is dropped from

I whenever clear from the context.

Claim 4.5. αI ≥ αH − β − cmin.
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Proof. First, observe that (αH − β)/2 ≥ (α − β)/2 ≥ β + cmin/n,
where the last inequality is by assumption. By Claim 4.4, all parties

inH ′
with stake at least cmin/n are therefore in I . The claim follows

by observing that at most cmin of the total stake is held by parties

with more than cmin/n stake. □

As the subgraph induced by H ′
, that induced by I also has

bounded diameter:

Claim 4.6. There is a path of length at most 4ℓ between any two
parties in I .

Proof. By definition of I , from any node in I , one can reach at

least β + cmin/n stake in H in ℓ steps, and, therefore, cmin/n stake

in H ′
. The argument in the proof of Claim 4.4 suggests there is a

path of length at most 2ℓ between any two nodes with stake at least

cmin/n in H ′
. One concludes that there must be a path of length at

most 4ℓ between any two nodes in I . □

Given the above, the eclipse strategy of S is to, in each round

t , use (eclipse, P) to eclipse all parties P < It . However, due to the

eclipse-delay property of Fsync, S is forced to set eclipsed status

based on It at or before time t − ξecl. This is, however, possible:

• Since ξecl ≤ r and the edges added during the latest round

t ′ ≤ t that was a multiple of r are ignored, the topology of

G in round t is known by round t − ξecl.
• Since ξcorr ≥ ξecl, which parties are honest/corrupted is also

known by round t − ξecl.

Bounding synchronization time. The next step in the proof con-

sists of arguing that Fsync never has to add any chain C to set D ′

during a fetch call by party P in some round t .
To that end, assume first that there is no multiple of r in {t −

4ℓ, . . . , t − 1}, i.e., the underlying graph G does not change in this

period. Consequently, It−4ℓ ⊇ It−(4ℓ−1) ⊇ . . . ⊇ It−1, where the
only reason elements are dropped from I over time is corruption.

Consider now the fetch command by P in round t . Recall that
a chain C is added to D ′

only if

(i) C was held by some honest party P ′ in round t − ∆sync,

(ii) neither P nor P ′ were eclipsed in rounds t − 1, . . . , t − ∆sync,

(iii) C is preferable to the chain held by P ′ in round t − 1 and to

all chains in set D (during the fetch call).

Observe that ∆sync ≥ 4ℓ; thus, that the fact that (ii) holds (i.e., S

did not issue, in advance, eclipse commands for P or P ′ for rounds
t − 1, . . . , t − ∆sync) means that both parties P and P ′ were in sets I
during rounds t − 1, . . . , t − 4ℓ.

Therefore, by the monotonicity of the sets I , there has been a

path of length at most 4ℓ between P ′ and P , which, combined with

the facts thatZ is H-improving and (again) ∆sync ≥ 4ℓδsync, means

that by time t , either P ’s local chain will already be set to a chain

C ′ ≮ C or a chain C ′ ≮ C is in set D at time t . In either case, C is

not added to D ′
.

Finally, for intervals including changes to G, observe that since
∆sync = 8ℓ, there are at least 4ℓ rounds either before or after the

change to G.

Amount of non-free stake. The fact that the amount of non-free

stake remains below λ = 2(β + cmin) follows from Claim 4.5, not-

ing that the extra factor of 2 is required for ∆sync-sized intervals

containing a multiple of r .

Proof (of Theorem 3.5). In order to complete the proof based

on the above, note that it remains merely to apply a union bound

over all refresh periods (which are of length r ). □

5 FULLY SECURE POS CONSENSUS
This section discusses the application of running a PoS consensus

protocol on top of the chain synchronization functionality Fsync. For
concreteness, the protocol considered here is Ouroboros Praos [11]

which is a longest chain Nakamoto-style blockchain PoS protocol

and is described first. This is followed by a comparison of the

“diffusion” functionality Fdiff used in [11] and Fsync. Based on this

comparison, the changes to Ouroboros Praos’ security proof are

presented and discussed; in particular, as a contribution of possibly

independent interest, a generalized version of the so-called forkable-
string analysis is provided.

5.1 Ouroboros Praos
Ouroboros Praos (or, simply, Praos) proceeds in so-called slots. In

each slot, each party P first checks whether it has “received” valid

chains that are longer than its current local chain; if so, it switches

to a longest one among those. Subsequently, based on the stake

distribution used in the current epoch, P checks whether it is the

slot leader. This determination is made based on the output y of a

VRF evaluated on (in addition to P ’s key) the slot number and the

so-called epoch randomness; if y ends up below a certain threshold,

which is a monotonically increasing function of P ’s stake, P is a

slot leader. As such, it creates a new block extending its current

local chain C; the block consists of the hash of the last block of C ,
the slot number, P ’s identity, the VRF output and VRF proof, a data

payload, as well as a signature. The resulting chain C ′
is then “sent

to everyone.”

5.2 Diffusion vs. Synchronization
In [11], parties share a diffusion functionality Fdiff , parametrized

by a value ∆, with the simple intuitive property that any chain

an honest party diffuses via Fdiff will “arrive” at all other honest

parties with a delay of no more than ∆ slots.

Consider now using Fsync, in order to “synchronize” rather than

“diffuse” chains. Figure 6 contains a description of the (static-stake)

Praos protocol using Fsync. The protocol additionally uses hybrids

Fvrf for slot leadership as well as the following two hybrids, which

are only described on a high-level sufficient for the context of this

section:

• Finit is used for master-index and genesis-block generation;

more precisely, parties initially send information such as

keys, IPs, etc. to Finit, which then generates the initial master

index and the genesis block.

• Fkes is a functionality idealizing key-evolving signatures and,
in particular, allows parties to create keys as well as to issue

and verify signatures.
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Parameters: k : common-prefix parameter; prefer(·, ·): strict partial order.

Hybrids: Finit: generates initial master index and genesis block; Fvrf : used to determine slot leadership; Fkes: used for key-evolving signatures; Fsync:
allows to synchronize chains.

Admin & Initialization

Variables: The protocol is described from the

point of view of a party P ; it keeps track of the

following items, initialized to the values below:

(1) Clocal := ⊥: local chain of P ;
(2) η := ⊥: VRF salt value.

Initialization: Initially, P proceeds as follows:

(1) Use Fsync to obtain an IP address and a

network (VRF) key.

(2) Use Fkes to obtain a signature public key.

(3) Use Fvrf to obtain a VRF key (for slot

leadership).

(4) Pass the above values to Finit and obtain the

initial master index MI, genesis chain

Cgenesis, and epoch randomness η′; set
Clocal := Cgenesis and η := η′.

(5) Input (setup,MI,Cgenesis) to Fsync.

Main Operation

In each slot s ≥ 1, execute the following steps:

Fetch chains: Input (fetch) to Fsync and obtain

a set D of chains. Pick a maximal (w.r.t. prefer)
chain among the valid chains C′ ∈ D with

prefer(C′,Clocal) and set Clocal := C′
; if no such

chain C′
exists, leave Clocal unchanged. A chain

is valid if (1) it has the same genesis block as

Clocal, (2) all hashes are correct, (3) slot numbers

of blocks are strictly increasing, (4) all VRF

values y and proofs π are valid and y is below

the threshold for the issuing party, (5) all

signatures are valid.

Chain extension: Send (eval, v , η ∥s) to Fvrf ,
where v is P ’s VRF key (stored in the genesis

block), and obtain a VRF value y as well as a

proof π . If y is below P ’s leadership threshold,

create a block B = (h, s , P , y, π , d , σ ), where h
is a hash of the last block in Clocal, d is a data

payload, and σ is a signature, obtained via Fkes,
on (h, s , P , y, π , d ). Set Clocal := Clocal ∥B .

Chain synchronization: Input (setC,Clocal)

to Fsync.

Ledger: Output as the ledger the concatenation
of all data d contained in blocks of depth at least

k in Clocal.

Protocol πpraos

Figure 6: Protocol πpraos.

Due to the fact that it is implemented by a protocol—rather than

merely assumed—the guarantees offered by Fsync are weaker in

several ways:

• A λ-fraction of the total stake may be eclipsed, and the cor-

responding parties are excluded from the timely synchro-

nization (TS) guarantees.

• The TS properties of Fsync are weaker compared to those

offered by Fdiff : instead of a particular chain C “propagat-

ing” through the network within ∆ slots, Fsync may deliver

different chains C ′
that are not worse (i.e., equal length or

longer).

• In order to replace Fsync by its implementation, the environ-

ment must be H-improving (cf. Section 3.4).

The next section details how to update the security proofs of

Praos in order to deal with these weaker guarantees of Fsync.

5.3 Updated Proofs for Praos
5.3.1 Characteristic Strings and Forks. At the heart of the Praos
security proof (with functionality Fdiff ) [11] are the notions of char-
acteristic strings, forks, and margin, which capture the security-

relevant information about events in an execution of Praos. Charac-

teristic strings indicate the relevant information about the sequence

of elected leaders in an execution of the protocol. The analysis

shows that consistency violations can be controlled by (i) distilling

the family of possible blocktrees that can arise for a given sequence

of leader elections (as determined by a characteristic string) into a

single numeric metric of interest called margin and (ii) an analysis

of the stochastic process that governs generation of characteristic

strings and the resulting behavior of margin. The final result is ar-

ticulated as a large-deviation bound for margin, which establishes

consistency with high probability. In this section, we discuss how

that analysis can be adapted to our setting with a finer-grained

view of networking and block delivery.

Characteristic strings in Praos have the formw = w1w2 . . . and

record information about slot leadership in an execution. Each

character in the string is a symbolwi ∈ {A,H,⊥}, where

wi =


A if slot i has an adversarial or multiple leaders,

H if slot i has a single honest leader,

⊥ if slot i has no leader.

A ∆-fork F for a characteristic stringw is a directed, rooted tree,

intended to represent the topology of all chains observed during

an execution of Praos: Each vertex v of F corresponds to a block

in a particular chain and has a label ℓ(v) ∈ N, which records the

block’s slot number. The genesis block is represented by the root

of the tree. The edges of a fork are directed “away from” the root

so that there is a unique directed path from the root to any vertex.

Based on the description of Praos, it is easy to see that a fork

satisfies the following properties:

(i) The root r ∈ V has label ℓ(r ) = 0 and is considered honest

by fiat.

(ii) The sequence of labels ℓ(·) along any directed path is strictly

increasing. Reason: this is enforced by the protocol.

(iii) If wi = H, there is a unique vertex v for which ℓ(v) = i .
Reason: honest parties do not create multiple blocks.

(iv) For any pair of honest vertices v,v ′
(i.e., wℓ(v) = wℓ(v ′) =

H) with ℓ(v) + ∆ ≤ ℓ(v ′), their lengths (i.e., distance from

root) len(v) and len(v ′) satisfy len(v) < len(v ′). Reason:

As per the guarantees of Fdiff , during the creation of the

block corresponding to vertex v ′
in slot ℓ(v ′), the block
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corresponding to v was available to build on since it was

created in slot ℓ(v), which was at least ∆ slots before v ′
;

hence, len(v ′) must be strictly larger than len(v).

The analysis proceeds by defining a notion of margin for a fork,

which reflects the presence of pairs of paths (chains) in the fork

that diverge prior to a particular slot and exceed the length of the

deepest honest block. Intuitively, such pairs of paths correspond to

a consistency failure and, indeed, the precise definition of margin

ensures that the quantity is positive exactlywhen such a consistency

failure exists. This notion is extended to characteristic strings by

maximizing over all forks consistent with the string. The analysis

then shows that margin satisfies a recurrence relation in terms

of the characteristic string (corresponding to an execution of the

protocol) and, finally, that the probability of observing a positive

margin is small.

5.3.2 Accounting for Eclipsed Parties. Clearly, the∆-fork formalism

above does not consider cases where (a) the leader is out of sync and

potentially fails to build on some longest chain C whose last block

is more than ∆ slots old or (b) the leader’s block takes longer than

∆ to reach the next slot leader; naturally, an eclipse event can cause

both (a) and (b).
15

In the following, an honest leader not suffering
from (a) is called current, and an honest leader not suffering from (b)

is called relayed. An honest leader that is both current and relayed

is called synchronized.
In order to update the forkable-string analysis to account for non-

relayed parties, the following changes are introduced to it. First, the

characteristic string is now over an alphabetwi ∈ {A,CR,C,R,⊥},
where

wi =



A if slot i has an adversarial or multiple leaders,

CR if slot i has a single synchronized leader,

C if slot i has a single current leader,

R if slot i has a single relayed leader,

⊥ if slot i has no leader.

Second, condition (iv) for forks is amended as follows:

(iv) For any pair v,v ′
withwℓ(v) ∈ {R,CR} andwℓ(v ′) ∈ {C,CR}

and where ℓ(v)+∆ ≤ ℓ(v ′), their lengths (i.e., distance from

root) len(v) and len(v ′) satisfy len(v) < len(v ′).

The definition of margin is essentially unchanged with this new

definition of fork. However, the recursive behavior depends on

the new semantics of these richer characteristic string symbols

and exhibits some rather interesting properties: in particular, the

effect of the C and R symbols depends on whether the worst-case

margin is currently negative or positive. We discuss this in detail

in Appendix B.

5.3.3 Alternative chains and H-improving. It is easy to see that (1)

condition (iv) of the forks is not violated if instead of a chain C
non-worse chains C ′

are delivered after ∆sync slots and (2) Praos is

an H-improving environment for Fsync.

15
Note that there are implementations of the network layer in which the connections

to peers are unidirectional. In such cases, it is possible that due to an eclipse event (a)

occurs but (b) does not (or vice versa).

5.4 Multi-Epoch Praos
There are two approaches to running Praos with Fsync in a multi-

epoch setting with an evolving stake distribution: (a) use a different

instance of Fsync in every epoch or (b) define a version of Fsync that
allows for changing stake distributions.

The conceptually simpler approach is, of course, (a). The idea is

to, ∆init before the end of each epoch, begin a new instance of Fsync.
At that point, the master index (including the network directory, the

stake distribution, and the randomness) to be used in the new epoch

is determined.
16

Taking approach (a) would mean that the random

overlay is completely re-sampled for each new epoch. In practice,

this may constitute an unacceptable overhead. Using approach (b)

avoids this issue, but makes the definition, realization, and proofs

of Fsync somewhat more cumbersome.

Observe that in either case it is important to properly deal with

honest parties that have been eclipsed for more than an epoch.

The issue with these parties is that once they have been eclipsed

long enough for their master index to be out of date, they will face

difficulties ever reconnecting to the network since the choice of

neighbors via the VRF is based on an up-to-date stake distribution.

While in practice such a scenario is unlikely to occur due to

the evolving nature of the random-graph overlay, in theory the

adaptive attacker can keep corrupting a party’s neighbors until

it exhausts its corruption budget, thereby keeping it eclipsed for

a long period of time. This issue can be mitigated by assuming

a checkpointing functionality (realized, e.g., via some light-client

infrastructure) that supplies parties, sufficiently in advance of an

epoch’s beginning, with the relevant master index.
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A EXPANDERS RESILIENT AGAINST VERTEX
DELETION

We consider the following family of distributions of randomdirected

graphs.

Definition A.1 (Restatement of Definition 4.1.). Let d and n be

positive integers and let D be a probability distribution on [n] with

the property that dv ≜ ndD(v) is an integer for every vertex v .
We let Gn,d ;D denote the probability law on directed multigraphs

with V = [n] obtained by selecting, for each v , dv outgoing neigh-

borsw1, . . . ,wdv independently according to D and defining the

multiset of directed edges to be E =
⋃
v

⋃dv
i=1(v,wi ). In our main

application, we are actually interested in the properties of the undi-
rected version of such graphs; however, for analytic purposes it is

convenient to distinguish the source and sinks for each edge.

In the definition above, we let Gn,d denote the special case when

D is the uniform distribution, in which case dv = d for all v .
Notation warning. Note that Gn,d does not denote the random

d-regular graph as it often does in the literature. Rather, it is a

directed graph where every vertex has out-degree d and in-degree

distributed as Bin(dn, 1/n).
We wish to show that Gn,d ;D is typically a “stake expander”:

that is, that sets S ⊂ V have a number of neighbors outside them,

or edges leaving them, proportional to their total stake.

Definition A.2 (Restatement of Definition 4.2). LetG = (V , E) be a
directed graph. For a subset S ⊂ V , we define the (outer) boundary

of S as

∂(S) = {w < S | ∃s ∈ S : (s,w) ∈ E or (w, s) ∈ E} .

Let D be a distribution on the set V and γ > 0. We say that G is

a (D,γ )-expander if for every subset of vertices S ⊂ V for which

D(S) ≤ 1/2,

D(∂(S)) ≥ γD(S) ,

where we use the notation D(S) to denote

∑
s ∈S D(s). When D is

the uniform distribution, we say that G is an γ -expander.

Proposition A.3 (Diameter bound for stake expanders.).

LetG = (V , E) be a γ -stake expander with (stake) distribution D. Let
m = minv ∈V D(v) be the minimum stake of any vertex inG . LetG be
the undirected counterpart of G, obtained by replacing each directed
edge with an undirected edge. Writingm = c/n, where n = |V |, the
diameter of G is no more than 2 log

1+γ (2n/c).

Proof. Consider two vertices u and v of G. Note that the total
stake reachable fromu by paths of lengthk is at least (1+γ )kD(v) ≥

(1 + γ )km. If k ≥ log
1+γ (1/(2m)) the stake of this set exceeds 1/2.

The same can be said of the vertex v . Composing these two paths

(and reversing the directions of arrows on the second) yields a path

of length 2 log
1+γ (1/2m), as desired. □

Theorem A.4 (Restatement of Theorem 4.3.). Let α > β > 0

and δ > 0 be positive constants, and let c and C be positive constants
satisfying c < 1 < C . For sufficiently large d there is a constant γ > 0

for which the following holds. Let D be a distribution on V = [n] for
which c/n ≤ D(v) ≤ C/n and dv ≜ ndD(v) is an integer for each
v ∈ V . ConsiderG = (V , E) drawn according to Gn,d ;D . Then, except

with probability p
fail

≤ e
−δn , for every subset H ⊆ V for which

D(H ) ≥ α , there is a subset H ′ ⊂ H for which D(H ′) ≥ α − β and
the subgraph induced by H ′ is a (D ′,γ )-expander, where D ′ is the
distribution D scaled by 1/D(H ′).

Remark. The condition in Definition 4.1 and Theorem 4.3 that

ndD(v) is an integer for all v is a mere convienience so that the

out-degree of each vertex will be a fixed integer dv . We can also

define dv = ⌈ndD(v)⌉. This changes the effective stake of each

player by a factor of 1 ±O(1/d).

In fact we only need an upper bound on the stake each vertex

has, if we are willing to hand over all the vertices with very low

stake to the adversary:

Lemma A.5. Let c < 1 < C and let D be a distribution on [n]
such that D(v) ≤ C/n for all v . Then the fraction q of vertices v with
c/n ≤ D(v) ≤ C/n, is bounded below by

q ≥
1 − c

C − c
.

It follows that the total probability mass associated with vertices v for
which D(v) ≤ c/n is no more than c(1 − q) ≤ c(C − 1)/(C − c) ≤ c .

Proof. Otherwise, the total stakewould be atmostqC+(1−q)c <
1. □

A.1 Mixing and expansion
The Expander Mixing Lemma is a classic result asserting that if

G = (V , E) is a d-regular expander and S,T ⊂ V are sufficiently

large disjoint sets, then the number of edges between S and T is

close to (d/|V |)|S | · |T | (which can be interpreted as the expected

value if the graph had been drawn randomly). This property is

useful to us since it is inherited by any induced subgraph of G , e.g.,
the subgraph H induced by the good players, albeit with modified

parameters. As a partial converse, this mixing property implies

expansion for sufficiently large sets, since we can take T to be the

complement of S .
Here we prove a mixing lemma for graphs in our model. The

proof is a simple Chernoff bound with a union bound over all S
and T , and is essentially the same as for random d-regular graphs
or sparse Erdős-Rényi graphs Gn,p=d/n . For simplicity, we focus

here on the uniform case Gn,d and then generalize to the stake-

weighted case.We then use it to establish edge expansion and vertex

expansion for sufficiently large sets.

LemmaA.6. Fix disjoint sets S,T ∈ V of size |S | = σn and |T | = τn.
Let G ∈ Gn,d and let E(S,T ) denote the number of edges in either
direction between S and T . For any κ ≤ 1,

Pr

G

[����E(S,T )
2dστn

− 1

���� > κ

]
≤ exp

(
−
κ2dστn

3

)
. (1)

Proof. Recall that in Gn,d each vertex in S chooses d outgo-

ing neighbors uniformly and independently from the graph. Since

each of these neighbors falls in T with probability |T |/n, the num-

ber of directed edges from S to T is binomially distributed as

Bin(d |S |, |T |/n). Similarly, the number of edges from T to S is dis-

tributed as Bin(d |T |, |S |/n). Since E(S,T ) is the sum of these two ran-

dom variables, both of which have expectation d |S | |T |/n = dστn,
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the event

��E(S,T ) − 2dστn
�� > 2t implies that at least one of them

deviates from its mean by t . A standard two-sided Chernoff bound

for binomial variables X with mean µ states that

Pr[|X − µ | > t] ≤ e
− t2

3µ
(2)

if t ≤ µ. Setting t = κdστn and µ = dστn completes the proof. □

Lemma A.7. Let 0 < ε < 1/2, κ > 0, and δ > 0. Then for
sufficiently large d , with probability 1 − e−δn in G ∈ Gn,d , for all
pairs of disjoint sets S,T ⊂ V , if |S | = σn and |T | = τn where
ε ≤ σ , τ ≤ 1 − ε , then

1 − κ ≤
E(S,T )

2dστn
≤ 1 + κ . (3)

Proof. We use Lemma A.6 and take the union bound over S and

T . The number of pairs of sets of size σn and τn, disjoint or not, is(
n

σn

) (
n

τn

)
≤ exp

(
(h(σ ) + h(τ ))n

)
,

where h(x) = −x lnx − (1 − x) ln(1 − x) is the entropy function.

Comparing (1), we need to set d such that

κ2dστ

3

> δ + h(σ ) + h(τ )

for all ε < σ , τ < 1 − ε . Since h(x) ≤ ln 2, setting

d >
3(δ + 2 ln 2)

κ2ε2

suffices to beat the union bound over all pairs of sets S,T for any

fixed σ , τ . Since the failure probability is exponentially small, it

also easily covers the union bound easily covers all O(n2) possible
values of σ and τ . □

A.2 Inferring expansion of induced subgraphs
Lemma A.7 implies that, with high probability in G ∈ Gn,d , any

sufficiently large set is “edge expanding”, with a large number of

edges connecting it to its complement. The same holds in any

induced subgraph of G. Consider the following definition.

Definition A.8. For ρ > 0 and a multigraph G = (V , E), we say
a subset S ⊂ V is ρ-edge-expanding if E(S,V \ S) ≥ ρ |S |. We say

G is an ρ-edge-expander if all subsets S ⊂ V with |S | ≤ |V |/2 are

ρ-edge-expanding.

Then Lemma A.7 states that in an induced subgraph of size n′,
with high probability any set of size greater than εn is ρ-edge-
expanding where

ρ = d(1 − κ)n′/n (4)

where we took |T | ≥ n′/2 and thus τ ≥ n′/(2n) in (3).

Intuitively, a graph where the only non-expanding subsets are

small is close to an expander. Here we show that we can obtain an

expander simply by removing the largest non-expanding subset.

Lemma A.9. Let G = (V , E) be an undirected multi-graph of max-
imum degree d . Let ρ > 0, and let S ⊂ V be a subset of maximum
cardinality such that |S | ≤ |V |/2 and S is non-ρ-edge-expanding. As-
sume that |S | ≤ µ |V | where µ < 1/4. Then the subgraph G ′ induced
by V ′ = V \ S is an ρ ′-edge-expander, where

ρ ′ = ρ − 4dµ .

Proof. To the contrary, assume there is some subset T ⊂ V ′

with |T | ≤ |V ′ |/2 which is not ρ ′-edge-expanding: that is, E(T ,V ′ \

T ) < ρ ′ |T |.
There are two cases. If |T | ≤ (1/2 − µ)|V | then |S ∪T | ≤ |V |/2.

However, this gives

E
(
S∪T ,V \(S∪T

)
≤ E(S,V \S)+E(T ,V ′\T ) < ρ |S |+ρ ′ |T | ≤ ρ(|S∪T |) .

Thus |S ∪T | is non-ρ-edge-expanding in V , contradicting the max-

imality of |S |.
In the other case, |T | > (1/2 − µ)|V | ≥ |V |/4. But this implies

E(T ,V \T ) = E(T ,V ′ \T ) + E(S,T )

≤ E(T ,V ′ \T ) + d |S | (5)

< ρ ′ |T | + dµ |V | ≤ (ρ ′ + 4dµ)|T | ≤ ρ |T | .

Thus T is non-ρ-expanding in V . But since |S | ≤ µ |V | < |T | ≤
|V ′ |/2 ≤ |V |/2, this again contradicts the maximality of |S |. □

Remark.We have chosen to write Lemma A.9 as a purely graph-

theoretic result with as few assumptions as possible. In our setting,

however, we can be considerably less pessimistic. First, we assumed

in (5) that E(S,T ) could be as large as d |S |, but the upper bound
of Lemma A.7 shows that this is almost certainly not the case.

Second, just as Lemma A.7 implies that |S |/|V | is bounded by a

small constant µ, the same holds for |T |/|V ′ |. Thus we can in fact

exclude the second case where |S∪T | > |V |/2with high probability.

A.3 From edge expansion to vertex expansion
In order to bound the diameter of the subgraph induced by H ′

, we

care more about vertex expansion—as in Definition 4.2—than about

edge expansion. Even if a set S is edge-expanding, if many vertices

outside S have large in-degree, then many of S’s outgoing edges

could be incident to just a few vertices.

The next lemma shows that if D(v) ≤ C/n for all v as in the

statement of Theorem 4.3, then the set of vertices v with in-degree

more than 2Cd , and thus total degree more than dv + 2Cd ≤ 3Cd , is
almost always a small fraction of the graph. By condemning these

vertices to spend eternity with the adversary, we are left with a

subgraph where no vertex has degree greater than 3Cd . If S hasm
edges connecting it to its complement in that subgraph, we have

|∂(S)| ≥ m/(3Cd). Thus if that subgraph is an α-edge-expander, it

is also a γ -expander where γ = α/(3Cd).

Lemma A.10. Let δ > 0 and ε > 0 and assume that D(v) ≤ C/n

for all v . Then for sufficiently large d , with probability 1 − e−δn in
G ∈ Gn,d ;D at most εn vertices have in-degree greater than 2Cd .

Proof. Since the outgoing neighbors of each vertex in Gn,d ;D
are chosen independently and the total out-degree is dn, the in-

degree of any given vertex v is distributed as Bin(dn,D(v)), which

is stochastically dominated by Bin(dn,C/n). Using the Chernoff

bound (2) with t = µ ≤ Cd , the probability this exceeds 2Cd is

at most e
−Cd/3

. Since the total in-degree is fixed, the number of

such vertices is stochastically dominated by Bin(n, e−Cd/3). Using
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a crude union bound, the probability that there are more than εn
such vertices is at most(

n

εn

)
e
−(Cd/3)εn ≤ 2

n
e
−(Cd/3)εn ,

which is less than e
−δn

whenever d > (3/(εC))(δ + ln 2). □

A.4 Proof of Theorem 4.3
Now we put these pieces together.

Proof of Theorem 4.3. We begin wth the uniform case. Con-

sider G ∈ Gn,d where c = C = 1. Fix a subset H ⊆ V such that

|H | ≥ αn. Our task is to find a subsetH ′ ⊆ H of size at least (α−β)n
whose induced subgraph is a γ -expander for some γ > 0.

First, we remove from H the vertices whose in-degree exceeds

2d . Using Lemma A.10, with high probability there are at most εn

of these, and we set d large enough so that ε = β/2. Denote the
remaining set of vertices H ′′

and note that |H ′′ | ≥ (α − β/2)n.
We now want to find a subsetH ′ ⊆ H ′′

whose induced subgraph

is an edge expander and where |H ′ | ≥ (α − β)n. Lemma A.9 tells us

that we can do that by removing the largest subset S of H ′′
which

is non-ρ-edge-expanding, as long as this set is of size at most µn
where µ ≤ β/2. In fact we set µ = β/16.

To bound the size of S we use the fact that H ′′
, like any induced

subgraph of G, inherits the mixing property of Lemma A.7. We set

d large enough so that ε = µ = β/16 and κ = 1/2 in that lemma.

Then with high probability every set of size between εn and |H ′′ |/2

is ρ-edge-expanding in H ′′
where (from (4))

ρ = (1 − κ)d |H ′′ |/n ≥ d(α − β/2)/2 .

Lemma A.9 then tells us that H ′ = H ′′ \ S is a ρ ′-edge-expander
where

ρ ′ = ρ − 4dµ ≥ d(α − β/2)/2 − dβ/4 = d(α − β)/2 .

Since the maximum total degree of any vertex in H ′′
is at most 3d ,

H ′
is a γ -expander where

γ = ρ ′/(3d) = (α − β)/6 .

Finally, we set δ in both Lemmas A.7 and A.10 to be strictly

larger than δ + ln 2 where δ is the desired parameter for p
fail

in

Theorem 4.3. Then the probability either of these lemmas fails is

less than 2
−n

e
−δn

. Finally, we take a union bound over all subsets

H ⊂ V with |H | ≥ αn, of which there are at most 2
n
.

The nonuniform case of the theorem follows with minor alter-

ations. Specifically, the mixing lemma follows because the number

of independent random variables appearing in the Chernoff bounds

there depend only on stake. The subgraph removal lemma trans-

lates immediately to a stake-weighted version and the remainder

of the argument treats individual vertices. □

Remark. Note that the expansion parameter γ stays constant as d
increases, since the edge expansion parameter α is proportional to

d .

B AN ANALYSIS OF NAKAMOTO CONSENSUS
WITH ADVERSARIALLY SUPPRESSED
MESSAGES.

Existing work on the analysis of Nakamoto consensus has focused

on the setting with ∆-synchrony, where all message broadcasts are

delivered with adversarially determined delays of no more than ∆
time steps. In this section, we show how to analyze a setting where

the adversary may entirely eliminate messages of his choice from

the protocol. We remark that this axis of adversarial activity does

not have the same hard threshold at 1/2: indeed, there are natural

settings where Nakamoto consensus can survive even if a majority

of honestly sent messages never arrive.

B.1 The synchronous setting with message
suppression.

We adopt the framework of characteristic strings and margin, devel-

oped in [22], to study the behavior of the longest chain rule under

message suppression. Specifically, the analysis divides time into

equal length time slots. While these time slots can be chosen to

be small enough so that the possibility of multiple proof-of-work

successes in a single slot can be neglected, it is convenient for our

analysis to permit multiple proof-of-work discoveries in each time

slot. We refer to the set of parties that discover proofs-of-work in a

particular time slot as the “leaders” of that slot.

In this setting where we wish to explore the effects of message

suppression, we identify two properties of interest: ∆-current lead-
ers and ∆-relayed leaders. In the context of a particular execution

of the blockchain protocol these properties—which are only ap-

plied to honest parties—have the following meaning: If a party is

∆-current at a particular time slot t then she holds a chain at least as
long as any chain broadcast by a ∆-relayed party at time slot t − ∆
or earlier. If a party is both ∆-current and ∆-relayed, we say that

it is ∆-synchronized. When the network delay ∆ can be inferred

from context, we simply say current, relayed, and synchronized. In-
tuitively, any block produced by a “relayed” leader is successfully

transmitted to the network layer; likewise, any “current” leader is

aware of all blocks recently transmitted to the network layer.

With any fixed execution, wemay associate a characteristic string

w1w2 . . .

indicating certain properties of the sequence of parties elected to

be slot leaders (and hence block producers). Specifically, each wi
is a symbol wi ∈ Σ = {A,C,R,CR,⊥}. These symbols have the

following interpretation:

• A indicates a slot with an adversarial leader, or with more

than one leader;

• CR indicates a slot with a synchronized leader;

• C indicates a slot with a current leader;

• R indicates a slot with a relayed leader;

• ⊥ indicates a slot with no leader.

Whenwi ∈ {CR,C, R}, we say that the index (or, alternatively, “slot”)
i is honest; we further distinguish honest indices according to which
of these symbols actually arises: ifwi , C, we say that the index is

relayed; if wi , R, we say that the index is current; if an index is

both current and relayed, we say that it is synchronized. Ifwi = A,
we say that the index is adversarial.

We remark that this framework is “first order” modeling, in

the sense that it simply treats any slot with multiple leaders as

adversarial. Generalizing the model to handle more sophisticated
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leadership patterns in a single slot is straightforward, but compli-

cates the case analyses of the proofs below. Furthermore, for typical

settings where slots are short with respect to network delays the

major improvements in analysis arises from careful treatment of

the leadership pattern across slots within ∆ of each other (rather

than careful treatment of the pattern in a single slot).

B.2 Fork notation, closure.
We adopt the modeling infrastructure developed in [11, 22] for rea-

soning about the consistency and liveness of Nakamoto consensus

algorithms. Specifically, the relevant state of a blockchain algorithm

is reflected with the following graph-theoretic object, the ∆-fork.

Definition B.1 (∆-fork). Let ∆ be a positive integer and L ∈ N. A

∆-fork for the string w ∈ ΣL is a directed, rooted tree F = (V , E)
with a labeling

ℓ : V → N

satisfying the axioms below. Edges are directed “away from” the

root so that there is a unique directed path from the root to any

vertex. The value ℓ(v) is referred to as the label ofv , and takes values
in the set {i | wi , ⊥} ∪ {0}. We apply the same terminology to

vertices as to the indices that label them; that is, the vertex v is

respectively adversarial, honest, relayed, current, or synchronized if

this is true of ℓ(v).

(i) the root r ∈ V has label ℓ(r ) = 0 and is considered honest

and relayed by fiat;

(ii) the sequence of labels ℓ() along any directed path is strictly

increasing;

(iii) ifwi ∈ {CR,C, R}, there is a unique vertexv for which ℓ(v) =
i;

(iv) for any pair of vertices v,w for which v is relayed, w is

current, and ℓ(v)+ ∆ ≤ ℓ(w), their depths len(v) and len(w)

satisfy len(v) < len(w).

We write F ⊢∆ w to indicate that F is a ∆-fork for the stringw .

When ∆ = 1, corresponding to the synchronous case, we may just

write F ⊢ w . If F ′ ⊢∆ w ′
for a prefix w ′

of w , we say that F ′ is a
subfork of F ⊢ w , denoted F ′ ⊏ F , if F contains F ′ as a consistently-
labeled subgraph. We remark that with any prefixw ′

ofw there is

a unique maximal subfork F ′ ⊢ w ′
of a given fork F ⊢ w (given by

all vertices labeled with the indices ofw ′
).

Tines. A path in a fork F originating at the root is called a tine.
(Note that tines do not necessarily terminate at a leaf.) For a vertex

v in F , F (v) denotes the tine in F terminating in v . Given this one-

to-one correspondence between vertices and tines of a fork, we

routinely overload notation so that it applies to both tines and

vertices. For example, we let len(T ) denote the length of the tine

T , equal to the number of edges on the path; recall that len(v) also
indicates the depth of the vertex v . If we must identify the fork

from which v is drawn, we sometimes write lenF (v). We further

overload len() to apply to forks: len(F ) denotes the length of the

longest tine in a fork F . A tine is called honest if it terminates in

an honest vertex; we likewise apply the terms adversarial, current,
relayed, and synchronized.

For two tines T ,T ′
of a fork F , we write T ∼ℓ T

′
if the two tines

share a vertex with a label greater or equal to ℓ. Intuitively,T ∼ℓ T
′

guarantees that the respective blockchains agree on the state of

the ledger up to time ℓ. Observe that ∼ℓ is a “partial equivalence

relation”: it is symmetric and transitive, but not necessarily reflexive

(for example, T ≁ℓ T if this tine has no blocks appearing in slots ℓ

or larger). Looking ahead, the adversary can only make two parties

disagree on the state of the ledger up to time ℓ if she makes them

hold two chains corresponding to tines for which T ≁ℓ T
′
.

Fork trimming; dominance. For a characteristic stringw = w1 . . .wn ∈

Σn and a positive integer k , we letw ⌈k = w1 . . .wn−k+1 denote the

string obtained by removing the last k − 1 symbols. When |w | < k ,
w ⌈k = ϵ . For a fork F ⊢∆ w1 . . .wn we let F ⌈k ⊢∆ w ⌈k denote the

fork obtained by retaining only those vertices labeled from the set

{0}∪ {1, . . . ,n−k +1}. Observe that relayed tines appearing in F ⌈∆
are those that are necessarily visible to current players at a round

just beyond the last one described by the characteristic string. We

say that a tineT in F is ∆-dominant if len(T ) ≥ len(F ⌈∆) and simply

call it dominant if ∆ is clear from the context.

B.3 Advantage, reach, and margin
We generally focus our analysis on forks that represent the view(s)

of honest parties during the protocol. This places special emphasis

on two properties defined next.

Definition B.2 (Honest and relayed forks and subforks). • We

say that a fork F if honest if every leaf is honest. In general,

the honest subfork of a fork F is the maximal honest subfork

of F .
• We say that a fork F is relayed if every leaf is relayed. The

relayed subfork of a fork F is the maximal relayed subfork of

F . We let F denote the relayed subfork of the fork F .

For a ∆-fork F ⊢∆ w , we define the advantage of a tine T ∈ F as

αF (T ) = len(T ) − len(F ⌈∆) .

When F can be inferred from context, we remove the subscripts.

Observe that α∆F (T ) ≥ 0 if and only if T is ∆-dominant in F .
We pause to remark that our treatment differs somewhat from

that developed in [22]. They consider a notion of “reserve” for a tine,

which intuitively adds to that tine’s advantage any yet unused ad-

versarial slots; with this addition, the analysis can focus entirely on

honest subforks forks (which are called closed forks in [22]). In our

current setting this mechanism is less convenient due to the more

complicated role played by the various classes of honest parties.

We thus opt for a treatment that considers arbitrary forks, rather

than honest subforks—this somewhat complicates the analysis, but

permits us to work with a simpler notion of advantage.

For ℓ ≥ 1, we define two quantities of interest

ρ(F ) = max

T
α∆F (T ) , (6)

µ∆ℓ (F ) = max

T ≁ℓT ∗
min(α∆F (T ),α

∆
F (T

∗)) , (7)

this maximum extended over all pairs of tines (T ,T ∗) for which

T ≁ℓ T ∗
. Note that there might exist multiple such pairs in F ,

but under the condition ℓ ≥ 1 there will always exist at least one

such pair, as the trivial tine T0 containing only the root vertex

satisfies T0 ≁ℓ T for any T and ℓ ≥ 1; in particular T0 ≁ℓ T0. For
this reason, we will always consider µ∆

ℓ
only for ℓ ≥ 1. Intuitively,

α∆F (T ) captures the length advantage (or deficit) of the tineT against
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the longest relayed tine created at least ∆ slots before the upcoming

slot, and hence now known to all current parties. Consequently,

µ∆
ℓ
(F ) records the maximal advantage of any pair of tines F that

agree only prior to ℓ, where “advantage” in this setting is treated

as the minimum of the two tines.

The quantity ρ(F ) is the reach of F ; the quantity µℓ(F ) is the
margin of F . We say that a tine T ∗

is a witness for the reach ρ(F )
when it achieves the maximum of definition (6); we use the same

terminology for margin: a pair of tinesT andT ′ witness the margin

µℓ(F ) if they achieve the maximum of the definition (7).

We remark that one may always chose a pair of tines (T ,T ∗)

that witness µℓ(F ) for which one is, additionally, a witness for

reach. To see this, consider any witnessT ∗
of ρ(F ) and a pair (T ,T ′)

that witness µℓ(F ); as T ≁ℓ T ′
, we must have either T ∗ ≁ℓ T or

T ∗ ≁ℓ T
′
and hence T ∗

can replace one of these without reducing

the margin quantity.

We overload the notation and let

µ∆ℓ (w) = max

F ⊢∆w
µ∆ℓ (F ) .

We again emphasize the difference between this approach and that

of [22], which maximizes only over honest forks.

The crucial property motivating these definitions is that µ∆
ℓ
()

provides explicit control over consistency failure events. This is

reflected in the lemma below, which follows directly from the anal-

ogous formulation and proof in [3, 16].

LemmaB.3. Consider the sequence of forks F1 ⊢ w1, F2 ⊢ w1w2, . . .

associated with each step of an execution corresponding to a char-
acteristic string w = w1w2 . . .. Consider a tine T held by a current
honest party in round r , which is hence ∆-dominant in Fr ; let ℓ
be a round associated with a vertex (block) B that appears on T . If
µℓ(w1 . . .ws ) < 0 for every r ≤ s ≤ t then any ∆-dominant tine T ∗

of Ft contains the vertex B.

Thus, in order to rule out consistency violations it suffices to

establish that µ∆
ℓ
(w) < 0 for appropriate ℓ and w1 . . .wℓ+t (note

that this bounds above µ∆
ℓ
(F ) for any relevant fork). Similar connec-

tions were originally established for PoS forks [22] with guaranteed

network delivery.

B.4 An exact analysis in the serialized,
synchronous setting.

We begin with an analysis of the quantity µ∆
ℓ
(w) in the synchronous

setting, corresponding to the case when ∆ = 1 and block creation is

strictly serialized. In this synchronous case we abbreviate α1F () by

αF (), and note that αF (T ) = len(T )−len(F ). We similarly abbreviate

µ1
ℓ
by µℓ(). In preparation for the statement of the theorem below,

one final definition: we say that a characteristic string is silent if it
contains no relayed symbols, and relayed otherwise.

Theorem B.4. Fix ℓ ≥ 1. By definition ρ(ϵ) = µℓ(ϵ) = 0. In
general,

ρ(wA) = ρ(w) + 1 ,

ρ(wR)

{
= max(ρ(w) − 1, 0) ifw is silent,
= ρ(w) otherwise,

ρ(wC) ≤ ρ(w) + 1 ,

ρ(wCR) = max(0, ρ(w) − 1) ,

(8)

and, turning to margin: µℓ(w) = ρ(w) for |w | < ℓ, and, for |w | ≥ ℓ,
µℓ(wA) = µℓ(w) + 1 ,

µℓ(wR)


= µℓ(w) + 1 if µℓ(w) < 0,

= µℓ(w) if µℓ(w) ≥ 0 andw is relayed,
= µℓ(w) − 1 if µℓ(w) ≥ 0 andw is silent,

µℓ(wC)

{
= µℓ(w) if µℓ(w) < 0,

≤ µℓ(w) + 1 if µℓ(w) ≥ 0,

µℓ(wCR) =

{
0, if ρ(w) > 0 and µℓ(w) = 0,
µℓ(w) − 1, otherwise.

(9)

The proof is presented as a sequence of lemmas, the first es-

tablishes the relationship between ρ and µℓ when |x | < ℓ. The
remaining lemmas handle each input symbol separately.

Lemma B.5. ρ(ε) = 0 and, for any x ∈ Σ∗ and |x | < ℓ, µℓ(x) =
ρ(x).

Proof. The only possible fork for the empty string ε contains a
single honest vertex; the only tine in this fork has advantage zero;

hence ρ(ε) = 0.

Let F ⊢ x be a fork for which ρ(F ) = ρ(x); let T ∗
be a tine

witnessing ρ(F ). Observe thatT ∗ ≁ℓ T
∗
because ℓ > |x |. Therefore,

µℓ(F ) ≥ ρ(x) by considering the pair (T ∗,T ∗) as a witness for

margin. As µℓ(F ) can clearly not exceed ρ(x), it follows that µℓ(x) =
ρ(x). □

Lemma B.6 (A). For anyw ∈ Σ∗, ρ(wA) = ρ(w) + 1. Additionally,
for anyw ∈ Σ∗, µℓ(wA) = µℓ(wA) + 1.

Proof. We first establish the bounds ρ(wA) ≥ ρ(w) + 1 and

µℓ(wA) ≥ µℓ(w) + 1. Consider a fork F ⊢ w and a pair of tines,

T and T ∗
, for which α(T ∗) = ρ(F ), α(T ) = µℓ(F ), and T ≁ℓ T ∗

.

We may construct a new fork ext F ⊢ wA from F by adding two

new adversarial vertices, v and v∗, both labeled with the index of

the additional A symbol. Each of the two tines T and T ∗
of F are

then extended by adding a directed edge to one of these vertices:

T is extended by the vertex v ; T ∗
is extended by v∗. Note that F =

ext F . Then αext F (ext F (v
∗)) = αF (T

∗) + 1 and αext F (ext F (v)) =
αF (T ) + 1. Applying this transformation to a fork F for which

ρ(F ) = ρ(w) shows that ρ(wA) ≥ ρ(w) + 1. Similarly, applying this

transformation to a fork F for which µℓ(F ) = µℓ(w) shows that

µℓ(wA) ≥ µℓ(w) + 1.

To complete the proof we establish the bounds ρ(wA) ≤ ρ(w)+1

and µℓ(w) ≤ µℓ(w) + 1. Consider a fork F ⊢ wA and a pair of tines,

T and T ∗
, for which α(T ∗) = ρ(F ), α(T ) = µℓ(F ), and T ≁ℓ T ∗

.

Let res F ⊢ w be the maximal subfork of F for the prefixw and let

res(T ) and res(T ∗) the restrictions of T and T ∗
to res F . Observe

that res F = F . Furthermore, the tines T and T ∗
, when restricted

to res F , lose at most one vertex: thus len(res(T )) ≥ len(T ) − 1 and

len(res(T ∗)) ≥ len(T ∗) − 1. It follows that ρ(res F ) ≥ ρ(F ) − 1 and

µℓ(res F ) ≥ µℓ(F ) − 1. Applying this transformation to a fork F
for which ρ(F ) = ρ(wA) proves that ρ(w) ≥ ρ(wA) − 1; similarly,

applying this transformation to a fork F for which µℓ(F ) = µℓ(wA)
proves that µℓ(w) ≥ µℓ(wA) − 1, as desired. □
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Lemma B.7 (R). For anyw ∈ Σ∗,

ρ(wR) =

{
max(ρ(w) − 1, 0) ifw is silent,
ρ(w) otherwise.

Additionally, for anyw ∈ Σ∗ with |w | ≥ ℓ,

µℓ(wR) =


µℓ(w) + 1 , if µℓ(w) < 0,

µℓ(w) , if µℓ(w) ≥ 0 andw relayed,
µℓ(w) − 1 , if µℓ(w) ≥ 0 andw silent.

Proof. We consider the quantity ρ() first and begin with the

setting when w is silent. It is easy to confirm that (for silent w),

ρ(w) = |w | while ρ(wR) = max(|w | − 1, 0). When w is not silent,

we wish to show that ρ(w) = ρ(wR) and we first establish that

ρ(w) ≥ ρ(wR). If ρ(wR) = 0, this follows from the fact that ρ()
is nonnegative. Otherwise, ρ(wR) > 0 and we let F ⊢ wR be a

fork for which ρ(F ) = ρ(wR), T a tine witnessing ρ(F ), and v the

vertex in F associated with the last symbol (R). Let res F denote the

fork restricted to the string w . As ρ(F ) > 0, the relayed vertex v
cannot appear on T ; thus T appears unchanged in res F , where its
advantage can only increase by the removal of the relayed vertex v .
It follows that ρ(w) ≥ ρ(wR), as desired. Conversely, we establish
the inequality ρ(wR) ≥ ρ(w). Let F ⊢ w be a fork for which ρ(F ) =
ρ(w) and let T be a tine witnessing ρ(w). Let ext F ⊢ wR denote

the fork formed from F by adding a single vertex v labeled by the

last symbol (R) and attached by an edge to the root. As w is not

silent, len(F ) > 0 and we conclude that len(F ) = len(ext F ): then
ρ(F ) = ρ(ext F ) and hence ρ(w) ≥ ρ(wR).

Turning now to µℓ(w) (with |w | > ℓ), we begin with the two

bounds

µℓ(w) < 0 ⇒ µℓ(wR) ≥ µℓ(w) + 1 , (10)

µℓ(w) ≥ 0 ⇒ µℓ(wR) ≥

{
µℓ(w) ifw is not silent,

µℓ(w) − 1 ifw is silent.

(11)

Let F ⊢ w be a fork for which µℓ(w) = µℓ(F ) and let T ∗
and T

be two tines witnessing µℓ(w); as usual we assume that ρ(F ) =
α(T ∗) ≥ α(T ) = µℓ(w). If µℓ(w) < 0, define ext F ⊢ wR to be the

fork obtained from F by adding a single vertex v to the end of

the tine T labeled with the index of the last symbol (R). This is
a legal fork and, moreover, as αF (T ) < 0 the new relayed vertex

appears with depth no more than len(F ). Thus len(ext F ) = len(F )
and αext F (ext F (v)) = αF (T ) + 1. The two tines T ∗

and ext F (v) of
ext F establish that µ(ext F ) = µℓ(w) + 1 and hence (10) as desired.

As for the case µℓ(w) ≤ 0, we again consider a fork F ⊢ w and

construct a fork ext F ⊢ wR by addition of a single new vertex

v attached directly to the root vertex and labeled by the index

of the last symbol (R). Observe that ext F is a legal fork and that

len(ext F ) = max(1, len(F )). Unless w is silent, then, len(ext F ) =
len(F ) and the tines T and T ∗

in ext F witness µℓ(ext F ) ≥ µℓ(F ),
which establishes the non-silent case of (11). If w is silent, the

same construction establishes µℓ(wR) ≥ µℓ(ext F ) ≥ µℓ(F ) − 1 as

len(ext F ) = 1 (and len(F )) = 0), concluding the argument for (11).

To complete the argument, we establish the complementary

bounds:

µℓ(wR) > 0 ⇒ µℓ(w) ≥

{
µℓ(wR) ifw is relayed,

µℓ(wR) + 1 ifw is silent,

(12)

µℓ(wR) ≤ 0 ⇒ µℓ(w) ≥ µℓ(wR) − 1 . (13)

Consider a fork F ⊢ wR for which µℓ(F ) = µℓ(wR); letT andT ∗
be a

pair of tines for which α(T ∗) = ρ(F ), and α(T ∗) = µℓ(F ) = µℓ(wR).
Let v be the unique vertex labeled by the last symbol (R) and let

res F ⊢ w be the fork obtained by removal of the vertex v . Observe
that if µℓ(wR) > 0 the vertex v cannot appear on either of the tines

T or T ∗
, as len(F ) < len(T ) ≤ len(T ∗) (and v is a leaf in the fork F ).

Noting that the removal of v can only reduce the length of res F ,
and that the two tines T and T ∗

appear in res F , we conclude that
µℓ(w) ≥ µℓ(res F ) ≥ αres F (T ) ≥ αF (T ). Observe, furthermore, that

if w is silent then len(res F ) = 0 and len(F ) > 0; thus αres F (T ) ≥
αF (T ) + 1. This establishes (12). We proceed to the last case (13),

in which we again consider the construction res F ⊢ w above with

the same notation. In this case, however, there is no guarantee that

the leaf node v (labeled with the index of the last symbol (R)) does
not appear on one of the two tines of interest, T and T ∗

. We let

resT denote the result of removing the vertex v from T , so that

resT = T if v does not appear onT , and resT is the resulting prefix

of T otherwise; we adopt the same notation resT ∗
for the tine T ∗

.

Thus, resT and resT ∗
are tines of res F . Clearly, the lengths of T

andT ∗
can differ from their restricted counterparts resT and resT ∗

by no more than one and

min(lenres F (resT
∗), lenres F (resT )) ≥ min(lenF (T

∗), lenF (T )) − 1 .

Noting, as above, that len(res F ) ≤ len(F ), we conclude that µℓ(w) ≥

µℓ(res F ) ≥ µℓ(F ) − 1, as desired. □

Lemma B.8 (C). For anyw ∈ Σ∗, ρ(wC) = ρ(w) + 1. Additionally,
for anyw ∈ Σ∗, with ℓ ≤ |w |,

µℓ(wC) ≤ µℓ(w) + 1 , if µℓ(w) ≥ 0,

µℓ(wC) = µℓ(w) , if µℓ(w) < 0.

Proof. Note that if F ⊢ wC then F ⊢ wA and it follows that

ρ(wC) ≤ ρ(wA) ≤ ρ(w) + 1 by Lemma B.6. To establish ρ(wC) ≥
ρ(w) + 1, consider a fork F ⊢ w and a tine T that witnesses ρ(w).

Construct the fork ext F ⊢ wC by adding a new vertex v to the

end of the tine T labeled with the additional symbol (C). This is a
legal fork for which len(ext F ) = len(F ) as the new vertex in ext F
is not relayed. As len(v) = len(T ) + 1, we conclude that ρ(wC) ≥
ρ(ext F ) = ρ(w) + 1.

Turning to margin, we first observe that the statement of the

lemma is a consequence of the following three inequalities, which

we treat individually below.

µℓ(wC) ≥ µℓ(w) , (14)

µℓ(wC) ≤ µℓ(w) + 1 , (15)

µℓ(wC) ≤ µℓ(w) if µℓ(wC) ≤ 0. (16)

To establish inequality (14) consider a fork F ⊢ w for which

µℓ(F ) = µℓ(w) and define ext F ⊢ wC to be the fork obtained

from F by adding a single vertex v , labeled by the index of the

new symbol (C), so that it extends the longest tine of F . As the

new vertex is not relayed, len(ext F ) = len(F ) and it follows that

µℓ(ext F ) ≥ µℓ(F ), considering that any pair of tines in F exist in

ext F . Thus µℓ(wC) ≥ µℓ(w), as desired.
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The inequality (15) follows from the straightforward fact men-

tioned above: any fork F ⊢ wC is also a legal fork for wA. In
particular, µℓ(wC) ≤ µℓ(wA) ≤ µℓ(w) + 1 by Lemma B.6.

It remains to show (16)—the case when µℓ(wC) ≤ 0. Let F ⊢ wC
be a fork for which µℓ(F ) = µℓ(wC) and let T and T ∗

be two

tines in F that witness µℓ(F ) so that α(T ∗) = ρ(F ) and α(T ) =
µℓ(F ) = µℓ(wC) ≤ 0. We construct a fork res F ⊢ w by delet-

ing the vertex v associated with the final symbol (C). Consider-
ing that v is not relayed len(ext F ) = len(F ). As in the previous

arguments, we let resT ∗
denote the result of removing the ver-

tex v from T ∗
, so that resT ∗ = T when v does not appear on

T ∗
. We adopt the same notation for T . As the vertex v is current,

len(v) > len(res F ) = len(F ) and it follows that v cannot appear

on the tine T (as len(T ) ≤ len(F ) by assumption); thus resT = T .

If len(T ∗) = len(F ), the same argument implies: v cannot appear

on T ∗
and hence T ∗ = resT ∗

. In this case, the pair of tines resT ∗

and resT witness µℓ(res F ) ≥ µℓ(F ), as desired. If len(T
∗) > len(F ),

the restriction resT ∗
may have length one less than T but in any

case lenres F (resT
∗) ≥ lenres F (resT ). Again, the two tines resT

and resT ∗
of res F witness µℓ(res F ) ≥ αres F (resT ) ≥ µℓ(w), as

desired. □

B.5 The case when ∆ > 1 and the serialization
mapping

We observe that the case when ∆ > 1 can be handled via a direct

reduction to the synchronous case (∆ = 1) using a standard tech-

nique developed in [11]. We remark that one could alternatively

carry out more precise accounting, such as that developed in [15],

at the cost of significantly more complex analysis.

One simple analysis adopts the following transformation. Call a

symbol “left isolated” if it is preceded by ⊥∆
; similarly define the

notion of “right isolated” if it is followed by⊥∆
and “doubly isolated”

if it is both left and right isolated. Then consider the transformation

T , operating on characteristic strings, so that

⊥ −→ ⊥

A −→ A

C −→

{
C if left isolated,

A otherwise,

R −→

{
R if right isolated,

A otherwise,

CR −→


CR if doubly isolated,

R if right isolated,

C if left isolated,

A if not isolated on either side.

It is straightforward to check that any ∆-fork for a characteristic

string w is also a 1-fork for the characteristic string T (w). This

reduces the study of ∆-forks to the synchronous case as in [11].

B.6 The asymptotics
Finally, we consider the distribution placed on characteristic strings

corresponding to the executions of interest: each symbol is i.i.d.

with distribution of the form

pR = Pr[wi = R] = p!h · p
send

(1 − preceive),

pC = Pr[wi = C] = p!h · (1 − p
send

)preceive,

pCR
= Pr[wi = CR] = p!h · p

send
preceive,

p⊥ = Pr[wi = ⊥] = (1 − pa )(1 − ph ),

pA = Pr[wi = A] = 1 − p⊥ − pR − pC − pCR
,

where ph is the probability that a slot has an honest slot leader, p!h
is the probability that a slot has a unique honest slot leader, pa is

the probability that a slot has an adversarial slot leader, p
send

is

the probability that a block sent from a stake-weighted random

honest party is received by the backbone in ∆ time, and preceive is
the probability that a block known to a member of the backbone is

received by a stake-weighted random honest party in ∆ time.

Then the final probabilistic bounds on margin with this distribu-

tion follow directly from the analysis of [21], yielding the following

consistency result.

Lemma B.9. Let w = w1, . . . ,wn be chosen according to the dis-
tribution above with the added assumption that pa < pCR

. Then for
any ℓ and k for which ℓ + k ≤ n, Pr[µℓ(w) ≥ 0] = exp(−Θ(k)).
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