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Abstract. Maximum Distance Separable (MDS) matrices are usually used to be diffusion
layers in cryptographic designs. The main advantage of involutory MDS matrices lies in
that both encryption and decryption share the same matrix-vector product. In this paper,
we present a new type of MDS matrices called generalized-involutory MDS matrices, imple-
mentation of whose inverse matrix-vector products in decryption is the combination of the
matrix-vector products in encryption plus a few extra XOR gates. For the purpose of veri-
fying the existence of such matrices, we found 4× 4 Hadamard generalized-involutory MDS
matrix over GF(24) consuming as little as 38 XOR gates with 4 additional XOR gates for
inverse matrix, while the best previous single-clock implementation in IWSEC 2019 needs
46 XOR gates with 51 XOR gates for inverse matrix. For GF(28), our results also beat the
best previous records in ToSC 2017.
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1 Introduction

Most symmetric key primitives like block cipher are based on confusion and diffusion
components, which are crucial to the security and efficiency of the cryptographic scheme.
The major role of the diffusion layer is to spread the internal dependencies as much as
possible and hence provide the best resistance to differential and linear attacks. One way
to achieve this is to use Maximum Distance Separable (MDS) matrix which theoretically
ensures a perfect diffusion. A typical example is AES [1], which uses a 4 × 4 MDS ma-
trix over GF(28) as the diffusion layer. Some other block ciphers such as CLEFIA [2],
FOX [3], KHAZAD [4], and ANUBIS [5] also use MDS matrices as diffusion components.
As more and more resource-constrained devices such as RFID tags are widely used in In-
ternet of Things (IoT), good hardware efficiency has become an important design factor in
lightweight cryptography. As the diffusion layer is a major component of the cryptographic
scheme, lowering the hardware cost of MDS matrices becomes a major design principle.
One way to design lightweight cryptography is to use involutory MDS matrices. The main
advantage of involutory MDS matrices lies in that both encryption and decryption share
the same matrix-vector product.

While the cryptographic scheme composed of involutory MDS matrices could reuse
encryption circuits in the decryption process, there is no involutory circulant MDS ma-
trix over fields of even characteristic [6–8]. Also, no companion matrix over fields of even
characteristic could yield an involutory MDS matrix [9]. Thus Hadamard matrices are
widely studied in terms of involutory property. Sim et al. [10] provide the construc-
tion of Hadamard or Hadamard-Cauchy involutory MDS matrices. However, there is no
lightweight involutory MDS matrix in some cases due to the small candidate set. To over-
come this problem, some generalizations on involutory are presented.



Victor et al. [11] presented quasi-involutory matrices that the matrix-vector product
and its inverse can be implemented by clocking the same LFSR-like architecture. Only one
additional bit permutation is needed for the implementation of the inverse matrix-vector
product.

Victor et al. [6] also relaxed circulancy to θ-circulancy to construct θ-circulant involu-
tory MDS matrices for fields of characteristic 2. Also, the involutory definition is furthered
and new direct construction of almost involutory θ-circulant MDS matrices is proposed,
which could be efficiently implemented in hardware by adding some transformation com-
pared to normal involutory matrix.

Zaghian et al. [12] proposed a generalization of involutory called semi involutory. The
merit of this generalization is that “the cost of implementation of these matrices and their
inverses are equal”. Cheon et al. [13] studied and generalized semi-involutory matrices: a
nonsingular matrix A is semi-involutory if there exists (nonsingular) diagonal matrices D
and D′ such that A−1 = DAD′.

In this paper, we propose definitions of additive and multiplicative generalized-involutory
matrices (GIM). Their inverse matrices are the combinations of some lightweight matrices
and themselves using a small number of addition and multiplication operations. There-
fore, the inverse matrix-vector product of our proposed matrices can be implemented
efficiently. We theoretically prove that all Hadamard MDS matrices over a finite field are
multiplicative GIM, thus the only work is to judge whether a Hadamard matrix is MDS
or not.We exhaustively search 4× 4 generalized-involutory Hadamard and circulant MDS
matrices over field GF(24) and GF(28). We apply BP heuristics [14], a competitive global
optimization algorithm, to search generalized-involutory MDS matrices.

We compare our results with previous works in Table 1, where S-xor denotes the
XOR count needed for the matrix-vector product after optimization. The total numbers
of XOR gates for both Mv and M−1v for Hadamard multiplicative GIMs over GF(24)
are 38 + 4 = 42, which is only 43 percent of the best previous result 46 + 51 = 97 [15].
Due to limited computing resources, we only implement the inner product of the first
row of matrix and vector over GF(28). Our Hadamard multiplicative GIM over GF(28)
and its inverse matrix consume 34 + 3 = 37 XOR gates totally, which is more lightweight
than previous best result 35 + 76 = 111 [16]. Our circulant candidates also beat the best
previous records in ToSC 2017 and FSE 2016.

This paper is structured as follows. Section 2 describes the performance metric, i.e.
XOR count. Then, we propose the definition of generalized-involutory MDS matrices in
Section 3, followed by experiment results in Section 4, and Section 5 concludes the paper.

2 XOR count

Given a matrix, we use XOR count [19], the number of XOR gates needed, as the metric
for the hardware cost.

For a k × k Hadamard matrix H, there are 2 variant metrics of XOR count:

– The XOR count needed for directly computing the multiplication of M with a vec-
tor is called D-xor, denoted as D(M). D(M) is an overestimation of the hardware
implementation cost.

– We then use BP heuristic method [14] to optimize the circuit. The XOR count needed
after optimization is called S-xor, denoted as S(M) [16].



Table 1: Experiment results
Galois Field Type S-xor(M) S-xor(M−1) Ref.

GF(24) Had. Involution 44 0 FSE20 [17]
GF(24) Had. Involution 47 0 IWSEC19 [15]
GF(24) Had. Involution 48 0 ToSC17 [14]
GF(28) Had. Involution 36 0 ours
GF(28) Had. Involution 38 0 FSE15 [10], ToSC17 [16]

GF(24) Had 38 4 Multiplicative GIM (ours)
GF(24) Had 48 54 ToSC17 [14]
GF(24) Had 46 51 IWSEC19 [15]
GF(28) Had 34 3 Multiplicative GIM (ours)
GF(28) Had 35 76 FSE15 [10],ToSC17 [16]
GF(28) Cir 36 77 ToSC17(AES) [16]
GF(28) Cir 31 75 FSE16 [18]� ToSC17 [16]
GF(28) Cir 39 36 Additive GIM (ours)
GF(28) Cir 37 18 Multiplicative GIM (ours)

Consider the XOR count of a given k × k Hadamard matrix had(h0, . . . , hk−1). Let
D(hi) be the XOR count of the element hi. If we directly calculate matrix-vector multipli-
cation, we will cost k2 multiplications and k(k − 1) additions. Therefore, the D-xor over
GF(2c)/p(x) could be calculated as

D(Hk,k) = k ×
k−1∑
i=0

D(hi) + k × (k − 1)× c.

Take matrix E = had(0x1, 0x2, 0x8, 0xa) and vector V = (v0, v1, v2, v3)
⊤ over GF(24)/0x13

as an example. Firstly, we should calculate the XOR count of each element in the matrix.
Let v =

∑3
i=0 v

ixi for 0 ≤ k ≤ 3. For element 0xa, 0xa · v is equal to

0xa · v =(x3 + x)× (v3x3 + v2x2 + v1x+ v0)

=(v0v2v3)x3 + (v1v2v3)x2 + (v0v1v2v3)x+ (v1v3).

As there is no AND operation between vector elements, we omit the XOR mark ⊕ in
the expression without ambiguity. For example, v0v2 here denotes v0 ⊕ v2. So D(0xa) =
2 + 2 + 3 + 1 = 8. Similarly, we could acquire D(0x1) = 0, D(0x2) = 1, D(0x8) = 3, and
hence

D(E) = 4× (0 + 1 + 3 + 8) + 48 = 96.

3 Construct generalized-involutory MDS matrices

For involutory MDS matrices, both encryption and decryption share the same matrix-
vector product. However, there is no lightweight involutory MDS matrix in some cases
due to the small candidate set. To overcome this problem, We propose generalizations on
involutory, i.e. additive and multiplicative generalized-involutory matrices (GIM).



3.1 Multiplicative GIM

Definition 1. (Multiplicative GIM). A k×k matrix Mk over field GF(2c) is a multiplica-
tive GIM if there exists a lightweight matrix Gk such that

M−1
k = GkMk.

From Def.1, we could directly get a property that the inverse matrix-vector product
M−1

k · v are simple linear combinations of matrix-vector product Mk · v. Therefore, only
D(Gk) additional XOR gates are needed for the implementation of the inverse matrix-
vector product, which is often much less than original XOR count D(M−1

k ). Especially,
matrices are involutory matrices when Gk is an identity matrix. Gk could be calculated
by Gk = M−1

k M−1
k .

Corollary 1. Invertible Hadamard matrices over finite field GF(2c) are all multiplicative
GIM.

Proof. For an invertible Hadamard matrix Hk =had (h0, ..., hk−1) and its inverse H−1
k

=had (h
′
0, ..., h

′
k−1) over GF(2c), we have

Hk ·Hk =
k−1∑
i=0

h2i · Ik. (1)

Here we define a multiplier-factor α as:

α =
1∑k−1

i=0 h2i
. (2)

Multiplying α on both sides of Eq. (1), we can obtain αHk×Hk = Ik, thus the inverse
matrix H−1

k equals to αHk. Then, we could get

H−1
k = α ·Hk = diag(α)Hk, (3)

where diag(α) is a diagonal matrix whose main diagonal elements are α and other elements
are zero, so diag(α) is a lightweight matrix. According to Def. 1, Hk is a multiplicative
GIM, and extra XOR gates for inverse matrix-vector product is D(diag(α)) = kD(α).

3.2 Additive GIM

Definition 2. (Additive GIM). A k× k matrix Mk over field GF(2c) is an additive GIM
if there exists a lightweight matrix Gk such that

M−1
k = Gk +Mk.

The inverse matrix-vector product M−1
k v is the sum of matrix-vector products of Gkv

and Mkv. Therefore, we need D(Gk) XOR gates for the matrix-vector product Gkv and
k × c XOR gates for the summation of Gkv and Mkv to implement the inverse matrix-
vector product M−1

k v. The value of D(Gk) + k × c is often less than original XOR count
D(M−1

k ). Specially, matrices are involutory matrices when Gk is a zero matrix. Gk could
be calculated by Gk = M−1

k +Mk.



4 Experiment results

In this part, We exhaustively search 4× 4 Hadamard and circulant matrices over GF(24)
and GF(28) and check they are MDS matrices or not using the following property: a matrix
M is MDS if and only if every square submatrix of M is nonsingular. Then we use BP
heuristic method [14] to optimize the circuit.

Hadamard and circulant GIMs and the comparison with previous works are shown
in Table 2. XOR count denotes the number of XOR gates needed for matrix-vector
product after optimization. Due to limited computing resources, we only implement the
inner product of the first row of matrix and vector over GF(28). Thus XOR count of a
matrix over GF(28) denote the number of XOR gates needed for the inner product of the
first row of matrix and vector. We list the first row of each matrix and its inverse in the
third column, where elements are in hex. Also the XOR counts of matrix and its inverse
are listed. For inverse matrix of multiplicative GIM, we listed only the XOR count of the
lightweight matrix G. For inverse matrix of additive GIM, we listed the number of XOR
gates used to compute both Gv and Mv +Gv.

BP heuristic method is powerful, and we obtain Hadamard involutory matrix over
GF(28) which is better than the best previous result using this optimization method. The
XOR counts of the inverse of GIMs are much smaller than that of previous works. Our
Hadamard multiplicative GIM over GF(24) merely consumes 4 additional XOR gates for
inverse matrix, this number is 51 in IWSEC 2019. The total number of XOR gates for
both Mv and M−1v for our Hadamard multiplicative GIM over GF(24) is 42 = 38 + 4,
which is even smaller than previous best involutory result 44 in FSE 2020. The first row of
our Hadamard multiplicative GIM over GF(28) merely consumes 3 additional XOR gates
for the inverse matrix, which is more lightweight than previous result 76 in ToSC 2017.
The total numbers of XOR gates for both Mv and M−1v over GF(28) are 75 and 55 for
circulant multiplicative and additive GIMs repectively, while the best previous result is
106 = 31 + 75 in ToSC 2017.

Here we use two examples to show the implementation of the inverse of multiplicative
and additive GIMs. Given a matrix over GF(28), we use S(M) to denote the number of
XOR gates needed for the inner product of the first row of M and vector after optimization.

Example 1. Given a multiplicative GIM H = had(0x01, 0x02, 0x08, 0x8e) over GF(28)/0x11d,
we need 34 XOR gates and D(α) extra XOR gates according to Corollary 1, where α is
0x8e by Eq. 2, thus D(0x8e) = 3 extra XOR gates are needed. If we directly implement
the first row of its inverse matrix H = had(0x8e, 0x01, 0x04, 0x47), S(H−1) = 34 XOR
gates are needed. Thus 34− 3 = 31 XOR gates are saved.

Example 2. Given an additive GIM C = cir(0x02, 0x8e, 0x53, 0x01) over GF(28)/0x14d,
we need 39 XOR gates and S(G)+8 = 36 extra XOR gates, where 8 is the number of XOR
gates used to XOR Cv and Gv. If we directly implement the first row of its inverse matrix
C = cir(0x51, 0x8b, 0x53, 0xa7), S(C−1) = 54 XOR gates are needed. Thus 54− 36 = 18
XOR gates are saved.

5 Conclusion

In this paper, we propose the concept of generalized-involutory matrix and provide two
types of GIMs, i.e. additive GIM and multiplicative GIM. By applying BP heuristic on



Table 2: XOR counts of 4× 4 Hadamard and circulant MDS matrices over GF(24) and GF(28)

Galois Field Type M, M−1 XOR count G Ref.

GF(24)/0x13
Had (1, 4, 9, d) 44

- FSE20 [17]
Involution (1, 4, 9, d) 0

GF(24)/0x13 Had
(2, 3, 9, d) 38

diag(9) Multiplicative GIM (ours)
(1, 8, d, f) 4

GF(24)/0x13 Had
(1, 2, 8, 9) 48

- ToSC17 [14]
(d, 9, 2, f) 54

GF(24)/0x13 Had
(1, 2, 8, 9) 46

- IWSEC19 [15]
(d, 9, 2, f) 51

GF(28)/0x12b
Had (01, 02, 95, 97) 36

- ours
Involution (01, 02, 95, 97) 0

GF(28)/0x165
Had (01, 02, b0, b2) 38

- FSE15 [10]
Involution (01, 02, b0, b2) 0

GF(28)/0x11d Had
(01, 02, 08, 8e) 34

diag(8e) Multiplicative GIM (ours)
(8e, 01, 04, 47) 3

GF(28)/0x1c3 Had
(01, 02, 04, 91) 35

- FSE15 [10],ToSC17 [16]
(27, 4e, 9c, 79) 76

GF(28)/0x11b Cir
(02, 03, 01, 01) 36

- ToSC17(AES) [16]
(0e, 0b, 0d, 09) 77

GF(28)/0x1c3 Cir
(01, 01, 02, 91) 31

- FSE16 [18]� ToSC17 [16]
(55, 5a, 71, 41) 75

GF(28)/0x14d Cir
(02, 8e, 53, 01) 39

cir(53, 05, 00, a6) Additive GIM (ours)
(51, 8b, 53, a7) 36

GF(28)/0x187 Cir
(01, a2, a3, c3) 37

cir(01, 00, 05, 00) Multiplicative GIM (ours)
(a7, 63, a6, 60) 18



4 × 4 Hadamard and circulant matrix over GF(24) and GF(28), we obtain state-of-the-
art XOR counts. Our work can be extended to a larger scope, such as 8 × 8 matrix
over GL(m,Fq). Also, we can extend the concept of generalized-involutory to find more
lightweight candidates.
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