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Abstract. Rainbow, a multivariate digital signature scheme and third
round finalist in NIST’s PQC standardization process, is a layered ver-
sion of the unbalanced oil and vinegar (UOV) scheme. We introduce two
fault attacks, each focusing on one of the secret linear transformations
T and S used to hide the structure of the central map in Rainbow. The
first fault attack reveals a part of T and we prove that this is enough
to achieve a full key recovery with negligible computational effort for
all parameter sets of Rainbow. The second one unveils S, which can
be extended to a full key recovery by the Kipnis-Shamir attack. Our
work exposes the secret transformations used in multivariate signature
schemes as an important attack vector for physical attacks, which need
further protection. Our attacks target the optimized Cortex-M4 imple-
mentation and require only first-order instruction skips and a moderate
amount of faulted signatures.

Keywords: Rainbow · Fault injection attacks · Multivariate schemes ·
Post-quantum cryptography · Cortex M4 implementation

1 Introduction

Quantum computers pose a threat to public-key schemes based on the integer
factorization or the discrete logarithm problem, like the widely deployed RSA
and ECC. Since Shor published his famous algorithms [28] to solve these prob-
lems in polynomial time, their security depends on the technical feasibility of
large scale quantum computers. Although there still is a certain amount of scep-
ticism about the possibility of quantum computers being capable of factorizing
integers and solving the discrete logarithm for cryptographically relevant in-
stances in the upcoming decades [17,19,26], the National Institute of Standards
and Technology (NIST) states that:

”[...] regardless of whether we can estimate the exact time of the arrival
of the quantum computing era, we must begin now to prepare our infor-
mation security systems to be able to resist quantum computing” [1].
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Therefore, a standardization process for post-quantum, i.e., quantum-resistant
cryptographic algorithms was initiated. Currently five families of post-quantum
cryptography are being studied, each relying on different mathematical assump-
tions. Concerning signatures, the remaining candidates in the currently ongoing
third round of the standardization process mainly consist of lattice-based, hash-
based, and multivariate schemes.

The evaluation criteria of NIST are not only the security and performance
of the candidates, but also other properties such as resistance to side channel
attacks and misuse resistance. Hence, NIST asked for efficient implementations
that are protected against physical attacks, such as side channel and fault at-
tacks. In these attacks, an attacker does not exploit mathematical weaknesses of
a cryptographic scheme. Instead, in a side channel attack an attacker measures
physical information during the computation of a cryptographic algorithm that
she then analyzes to reveal secret data. In a fault attack, an attacker intention-
ally introduces faults into the computation such that it results in faulty outputs
that she can analyze to learn secret data. In a first-order fault attack, an attacker
induces a single fault during a computation, while in higher-order fault attacks,
at least two faults are induced in the same computation. Since this is technically
more complex, first-order faults are generally believed to be more realistic and,
hence, more practically relevant.

In this work, we study first-order fault attacks on Rainbow, a multivariate sig-
nature scheme that was selected as finalist in the NIST standardization [14,15].
We are aware of the significant improvements in mathematical cryptanalysis on
the multivariate signature schemes GeMSS and Rainbow that have been pub-
lished recently [3, 4, 30]. Especially the improved cryptanalytic approach pre-
sented by Beullens massively reduces the complexity of key recovery attacks
against Rainbow, in particular against the parameter set for security level I [4].
However, NIST announced that there will be a fourth round where further post-
quantum signature schemes can be submitted 4. This became necessary since on
the one hand, for security and practicality reasons diversity of (post-quantum)
signatures is needed, while on the other hand the remaining signature candidates
in the current third round are mostly based on structured lattices. Thus, for the
fourth round NIST is especially interested in schemes that are not based on struc-
tured lattices and we expect that, despite the recent cryptanalytic results, other
multivariate schemes will be submitted. For instance, the well-studied scheme
UOV is likely to gain more attention soon, since it is explicitly not affected by
Beullens latest approach. Hence, we believe that our results are relevant for the
future development of multivariate signature schemes even if Rainbow turns out
to be insecure or even broken. Our results reveal attack vectors for and weak-
nesses of a specific multivariate signature scheme, which have to be prevented in
future developments or optimizations of other multivariate signature schemes,
too.

4 Announced by Dustin Moody at the third PQC Standard-
ization Conference in June 2021 https://www.nist.gov/video/

third-pqc-standardization-conference-session-i-welcomecandidate-updates

https://www.nist.gov/video/third-pqc-standardization-conference-session-i-welcomecandidate-updates
https://www.nist.gov/video/third-pqc-standardization-conference-session-i-welcomecandidate-updates
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Related Work. The number of publications on the physical security of multi-
variate cryptography has increased in recent years, but is still manageable. Some
effort was put into side channel analysis (SCA) of signature schemes. To name a
few of them, Steinwandt et al. theoretically conducted differential power analysis
(DPA) to reveal the secret seed and subsequently the affine bijections S and T
used in FLASH and SFLASH already in 2001 [29]. Some years later, Okeya et al.
were the first to experimentally verify a DPA attack against SFLASH [23]. More
recently, in 2017, Yi and Li presented a DPA on enTTS [32], a signature scheme
that contains some common features with Rainbow, such as the layer structure
of the central map and the enclosing affine transformations. Finally, there are
side channel attacks by Park et al. [24] and by Pokorny et al. [25] on Rainbow,
both targeting the affine transformations via correlation power analysis (CPA).

The literature on fault attacks on multivariate signatures is less extensive.
In 2011, Hashimoto et al. described some general ideas that might be applicable
to multivariate schemes [18]. However, their ideas remain rather high-level and
refer to several schemes at once. The authors in [32] mentioned a fault model
that is supposed to facilitate the DPA on the central map F of the enTTS
scheme, but they also did not provide a detailed description of their approach.
They merely stated to ”cause a fault, to change the unknown items during the
signature generation”. Krämer and Loiero transferred two ideas of [18] to UOV
and Rainbow [21]. First, they analyzed how a faulted coefficient in the central
map propagates through the signature and can be utilized to regain informa-
tion about the secret transformation S. Second, they discussed the effect of
fixing the vinegar variables across multiple signatures and show how informa-
tion about the secret transformation T can be revealed by this. Shim and Koo
developed the latter approach further to a full key recovery attack [27]. But
the algebraic post-processing method they used still has a significant complexity
of 240, rendering the attack impractical. The most practical attack yet, called
Quantumhammer [22] by Mus, Islam, and Sunar, was performed on LUOV. The
authors randomly induce bit flips in the linear transformation T and learn one
bit of the secret key through each faulty signature. They also append an alge-
braic attack to the online fault injection phase, but they manage to limit the
effort in the range of hours. In summary, there is no fault attack on Rainbow
that presents a full key recovery in reasonable time.

Contribution. We introduce the first two efficiently executable fault attacks on
Rainbow that lead to full key recovery. Both fault attacks only require first-order
instruction skips and a moderate number of faulted signatures to be executed.
We target the optimized Cortex-M4 implementation from [12].

1. We revisit the already existing theoretical approach of fixing the vinegar
variables via a fault injection attack. This attack leads to partial leakage
of one of the secret transformations used in Rainbow. The authors of [27]
suggested to exploit this leakage by speeding up the key recovery attack
using the notion of good keys [31]. Although they can reduce the number of
variables and equations, the remaining system of quadratic equations is still
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of significant complexity of around 240 [27, Table. VII] for the Rainbow level I
parameter set. We introduce a cryptanalytical method for circumventing this
costly procedure and show how it is possible to recover the remaining bits
of the secret key by just solving linear equations. Contrary to the previously
suggested key recovery attack, this method can be applied to any possible
parameter set of Rainbow and leads to full key recovery.

2. We present a new fault attack that targets the application of the linear
transformation S. By collecting a small number of faulted signatures, we
obtain enough input and output values of S to completely recover it. By
knowledge of S, the complexity of Rainbow can be reduced to a small UOV
instance with reduced parameter sizes [3]. To complete the key recovery, we
apply the Kipnis-Shamir attack 5 for unbalanced oil and vinegar values [20],
with remaining complexity O(qv1−o1). Considering Rainbows security level
I parameter set, it holds qv1−o1 = 216. Compared to the first fault attack,
this attack works with half the number of faulted signatures.

We see the algebraic post-processing that is used to further exploit the informa-
tion gained by the fault attacks as a contribution of its own. It can be used as a
plug-and-play method for all kinds of physical attacks. For instance, Section 3.1
proves that if an attacker obtains the block T1 of the secret Rainbow parame-
ters through any kind of leakage, she can achieve full key recovery without any
further physical or computational effort.

Furthermore, we verify our attacks on an emulated ARMM4 architecture. On
the one hand, this implies that we execute the compiled binary of the source code
as a real signing device would and, therefore, can target the specific instruction
of the assembly code that needs to be skipped. On the other hand, it verifies
the feasibility of our attacks and proves the claims we made above for a given
Rainbow key pair.

Finally, we suggest efficient countermeasures to prevent the mentioned at-
tacks and make implementations of multivariate schemes more resilient against
fault attacks.

1.1 Organization

In Section 2, we develop the background that is necessary for the presented
attacks. This includes the Rainbow signature scheme, relevant simplifications
applied by the authors of the corresponding NIST submission, and background
information on fault attacks. In Section 3, we present the two fault attacks,
together with a detailed description of the algebraic post-processing. We uncover
the low-level instructions that need to be skipped in the practical fault attack in
Section 4 and present our simulation. In Section 5, we suggest countermeasures
to the previously described fault attacks and Section 6 concludes the work.

5 In a very recent paper Esser et al. claim that there is another way to complete the
key recovery, instead of using the Kipnis-Shamir attack [16]. If their findings hold
true, this works with significantly lower complexity O(n3), which is efficient even for
higher parameter sets
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2 Background

In this section, we recall useful background information for understanding the
rest of the paper. This includes an overview on the Rainbow signature scheme
and fault injection attacks.

Notation Let Fq be a finite field with q elements. By x = (x1, . . . , xn) ∈ Fn
q we

denote a vector and by T ∈Mn(Fq) we denote a matrix with entries in Fq. The
multivariate quadratic maps P : Fn

q → Fm
q are given by m quadratic polynomials

p(i) in n variables. To concatenate two strings x and y, x||y is written. H(x)
represents the application of a hash function H on a value x.

2.1 The Rainbow Signature Scheme

The Rainbow signature scheme [15] can be seen as a generalization of the un-
balanced oil and vinegar (UOV) scheme [20]. It consists of several layers, where
the oil and vinegar variables of the i-th layer are used as vinegar variables of
the subsequent layer. Inserting them into the central polynomials of this layer,
leads to easily solvable linear equations, since there are no quadratic oil terms
in each layer just as it is the case for UOV. Initially, the authors suggested to
use u = 5 layers, but it turned out to work best for u = 2 which is used by
all currently suggested parameter sets. The case u = 1 constitutes the original
UOV, the scheme whose security and efficiency Rainbow is supposed to improve.

More formally, let Fq be a finite field with q elements and v1 < . . . < vu+1 = n
be integers. Set Vi = {1, . . . , vi} and Oi = {vi + 1, . . . , vi+1} for i ∈ {1, . . . , u}.
Therefore, it holds |Vi| = vi and |Oi| = oi for i ∈ {1, . . . , u}. The central
map F of Rainbow consists of m = n − v1 multivariate quadratic polynomi-
als f (v1+1), . . . , f (n) of the form

f (k)(x) =
∑

i,j∈Vl

α
(k)
ij xixj +

∑
i∈Vl,j∈Ol

β
(k)
ij xixj +

∑
i∈Vl∪Ol

γ
(k)
i xi + δ(k), (1)

where l ∈ {1, . . . , u} is the only integer such that k ∈ Ol. In each layer l there
remain no quadratic terms in the polynomials f (k) after inserting the values of
the vinegar variables xi for i ∈ Vl. This leads to an easily invertible central map
F : Fn → Fm consisting of the m coordinate functions f . This special structure
of F facilitates the signature generation and must be hidden in the public key.
To this end, two invertible linear maps S : Fm → Fm and T : Fn → Fn are
concatenated to the central map in order to generate the public key

P = S ◦ F ◦ T : Fn → Fm. (2)

Since the composed maps look like a random system of multivariate quadratic
equations, it is hard to find a preimage under P. By holding the private key maps
S,F , and T , this task becomes feasible. The signing and verifying procedure for
the Rainbow signature scheme can be briefly summarized as follows. For the
signing procedure we also present the pseudo code in Algorithm 1.
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Signature Generation: To generate a signature for a message (or hash value)
w ∈ Fm, one performs the following three steps.

1. Compute x = S−1(w) ∈ Fm.
2. Compute a pre-image y of x under the central map F .
3. Compute the signature z ∈ Fn by z = T−1(y).

Signature Verification: To check, if z ∈ Fn is a valid signature for a message
w ∈ Fm, one simply computes w0 = P(z). If w0 = w holds, the signature is
accepted, otherwise rejected.

Since both fault attacks presented in this work target the signing procedure,
we shortly present it in Algorithm 1 to give the reader a first intuition of the
code lines that render the signature scheme vulnerable.

The algorithm is located in Section 3.1 to keep it close to the presented
fault attacks. We use a similar description as [14, Section 3.5], but align the
notation tighter to the actual implementation and simplify the representation
of the secret maps, as they are all chosen to be homogeneous in [14, Section
4], anyway. The first fault attack in Section 3.1 targets the sampling of random
vinegar variables in Line 2. The second fault attack in Section 3.2 bypasses the
application of S in Line 8. Since both lines are located in a loop, one has to
consider under which conditions the fault might be annihilated by a repeated
execution of the respective lines. We exit the while loop if the matrices given by
F̂1 and F̂2 are invertible. If we assume the entries to be uniformly distributed in
Fq, the probability that a matrix Mn(Fq) is invertible is given by

n∏
i=0

(
qn − qi

qn2 ) =

n∏
i=1

(1− 1

qi
). (3)

For the given parameters this evaluates to approximately 93%. We will carefully
analyze what impact the injected fault might have on the conditions of the while
loop in Section 4.2.

Remark 1. Very recently, Beullens presented an improved cryptanalytic approach
that massively reduces the complexity of key recovery attacks [4], in particular
against the Rainbow parameter set for security level I. His paper builds on an
earlier analysis of him [3], where he introduced a new description of the Rainbow
scheme, avoiding the presence of the central map and rather considering secret
subspaces that satisfy certain equations under the public map P and its polar
form P ′. He defines

O′
1 ⊂ Fn

q := {x ∈ Fn
q : xi = 0 for i ∈ {1, . . . , v1}},

O′
2 ⊂ Fn

q := {x ∈ Fn
q : xi = 0 for i ∈ {1, . . . , v1 + o1}},

W ′ ⊂ Fm
q := {x ∈ Fm

q : xi = 0 for i ∈ {1, . . . , o1}}.

The interesting point about these (public) subspaces is that all polynomials
of the central map vanish on O′

2 and the polynomials of the first layer vanish
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even on O′
1, i.e., it holds F(O′

2) = 0 and F(O′
1) ⊂ W ′, respectively. The secret

linear maps S and T now transform the given subspaces to the secret subspaces
O1 = T−1O′

1, O2 = T−1O′
2, and W = SW ′. The new technique in [4] finds a

vector in the secret subspace O2 with way less computational effort than needed
in previous works. The attack is completed in similar style as in [3], where he
uses the vector in O2 to recover W efficiently by using the polar form of the
public key and finally, applying the Kipnis-Shamir attack to compute O1. The
important take-away for our analysis in Section 3.2 is that recovering the secret
transformation S is equivalent to detecting the secret subspace W using this
notation. For more details we refer to [3, Section 5].

2.2 Conventions in the Specification

In the Rainbow specification [14], several simplifications are made. They are
introduced to speed up the key generation process and reduce the key sizes,
while it is argued that they do not weaken the security of Rainbow. First, the
secret transformations S and T are chosen to be of the form

S =

(
I S1

0 I

)
and T =

 I T1 T2

0 I T3

0 0 I

. (4)

This is justified by the fact that, for every public map P, there exists an equiv-
alent secret key (S,F , T ) with S and T as in Equation (4). Consequently, the
inverse maps have the same structure and are given by

S−1 =

(
I S1

0 I

)
and T−1 =

 I T1 T4

0 I T3

0 0 I

, (5)

where T4 = T1T3−T2. Furthermore, the Rainbow submitters restrict themselves
to a homogeneous central map F . As a result, the public map P = S ◦ F ◦ T
is homogeneous as well. Thus, the coefficients of every quadratic polynomial
f (i) and p(j) for i, j ∈ {1, . . . ,m} can be collected in n× n matrices, by defining
Fi ∈Mn×n(Fq) and Pj ∈Mn×n(Fq) as the matrices that satisfy f (i)(x) = x⊤Fix
and p(j)(x) = x⊤Pjx , respectively. Following this notation, Equation (2) can be
turned into an equation of matrices of the form

Fi =

m∑
j=1

s̃ij(T̃
⊤Pj T̃ ). (6)

Here, s̃ij denote the entries of S−1 and T̃ = T−1. This method of switching
back and forth from public to secret matrices will play a major role in the
analysis of our fault attacks. Interchanging the roles of Fi and Pj in Equation (6)
represents the basic procedure of computing the public key from the private key.
In the above form, the equation occurs less frequently in the literature, but is
used, e.g., by Thomae in [31]. Due to the structure of the central polynomials
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in Equation (1), several parts of the matrices Fi are forced to be zero and this
is obvious to any attacker. In more detail, the zero blocks of the matrices are
given as

Fi =

F
(1)
i F

(2)
i 0

0 0 0
0 0 0

 for i ∈ {1, . . . , o1} (7)

and

Fi =

F
(1)
i F

(2)
i F

(3)
i

0 F
(5)
i F

(6)
i

0 0 0

 for i ∈ {o1 + 1, . . . , o2}.

If an attacker somehow obtains secret information, she can use Equation (6)
together with the structure of the occurring matrices given by Equation (5) and
Equation (7), to further exploit this leakage. In Section 3.1 we will show, e.g.,
how an attacker that has T1 at hand, is able to recover S1 and subsequently
T3 and T4, just by solving linear equations. Although this assumes a strong
leakage in the first place, to the best of our knowledge this is the first work that
demonstrates such a result.

2.3 Fault Attacks

Fault attacks against cryptographic schemes were first described 25 years ago [8].
Since then, a great variety of fault attacks has been developed. All fault attacks
have in common that an attacker actively and intentionally disturbs the com-
putation of a cryptographic algorithm so as to gain secret information from the
faulty output. Both the kind of physical fault and the effect of a fault can be
manifold. For instance, a fault can be injected via clock glitching, e.g., [9], or
laser fault injection, e.g., [11], and it can be either transient or permanent. Most
published fault attacks result in a zeroed or randomized value or an instruction
skip, see, e.g., [6]. Instruction skips as also used in this work correspond to skip-
ping, i.e., ignoring, selected lines of the program code. Since fault attacks were
first described, most cryptographic schemes have been analyzed with respect to
them and in recent years, fault attacks have been published for all five families
of post-quantum cryptography, e.g., [6,9–11,21]. These works range from purely
theoretical publications [6] to more practical attacks [22].

3 Full Key Recovery Attacks

In this section we present two different fault attack scenarios. Both rely on a
first-order skipping fault model, i.e., the attacker is assumed to be capable of
introducing a single instruction skip during the signing procedure. Compared to
fault attacks that require randomizing or zeroing values in memory, the instruc-
tion skips belongs to the more practical ones and it has been shown that even
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higher-order skipping faults against real-world cryptographic implementations
are possible [7]. The first attack already exists in the literature. It aims at fixing
the vinegar variables across consecutive signature generations and leads to valid
signatures. We significantly reduce the complexity of the post-processing that is
necessary to achieve a full key recovery. Additionally, we introduce a completely
new attack that benefits from the same efficient techniques and works with even
less faulted signatures. They constitute the first fault attacks on the Rainbow
scheme that lead to a complete revealing of the secret key which are executable
on a desktop machine. In both cases, the messages that are chosen to generate
the faulty signatures not need to fulfill special requirements, that are hard to
control. The messages must be different from each other and should lead to lin-
early independent vectors at some point of the respective procedures, but the
attacker can just discard a faulty signature if it does not meet this requirement
and start over with a new message. We will emphasize this condition in the
description of the two fault attacks.

In Section 3.1, we reinvestigate the case of fixed vinegar variables, which was
presented in detail in [21]. The authors of [27] are the first to expand this to a
complete key recovery attack. However, their approach is reliant on a costly post-
processing step that involves solving a system of quadratic equations of moderate
size. They investigate three different level I parameter sets of Rainbow, and even
in the best case their complexities remain as high as 238. This is still considerably
large to constitute another hurdle in the practicability of the fault attack. We
introduce a method on how to bypass this step, leading to an easily executable
full key recovery attack.

Furthermore, we present in Section 3.2 a new fault attack that gets along
with significantly less faulted signatures. The faulted output reveals the secret
transformation S and the attack can be completed to a full key recovery by a
subsequent Kipnis-Shamir attack. Due to the knowledge of S, the parameters
of the system to solve allow for an efficiently executable instance of the Kipnis-
Shamir attack. After explaining the attacks, we also translate the procedure
to the abstract secret subspace notation used by Beullens which we stated in
Remark 1.

3.1 Attack 1: Full Key Recovery from Fixed Vinegar Variables

This fault attack aims to skip the random generation of vinegar variables during
the signing process. Depending on the implementation, this results in either the
vinegar variables from the previous signature being reused, or being equal to
zero in case they are zeroed at the end of the signing process. Both cases have
already been mentioned in [27] and are very similar. The main difference is that
for the reuse model an additional, unfaulted reference signature is needed. In the
following we focus on the optimized bitsliced implementation developed in [12].
Here, the vinegar variables are not zeroed at the end of the signing process and
therefore skipping the generation of the new vinegar variables results in the same
variables being used for successive signature computations.
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Algorithm 1 Rainbow Sign

Input message d, private key (S,F , T ), length l of the salt.
Output signature σ = (z, salt) ∈ Fn

q × {0, 1}l s.t. P(z) = H(H(d)||salt).
1: repeat
2: (z1, . . . , zv1)←R Fv1

q

3:
(
f̂ (v1+1), . . . , f̂ (n))← (f (v1+1)(z1, . . . , zv1), . . . , f

(n)(z1, . . . , zv1)
)

4: until IsInvertible(F̂1) == True
5: repeat
6: salt←R {0, 1}l
7: y ← H(H(d)||salt)
8: y ← S−1(y)
9: zv1+1, . . . , zv2 ← F̂−1

1 (yv1+1, . . . , yv2)

10: (f̂ (v2+1), . . . , f̂ (n))←
(
f (v2+1)(zv1+1, . . . , zv2

), . . . , f (n)(zv1+1, . . . , zv2)
)

11: until IsInvertible(F̂2) == True
12: zv2+1, . . . , zn ← F̂−1

2 (yv2+1, . . . , yn)
13: z ← T−1(z)
14: σ = (z, salt)
15: return σ

First, we show how the secret matrices T1 ∈ Mo1×o2(Fq) and T2 ∈ Mo2×o2(Fq)
in Section 2.2 can be determined from the faulty signatures. Let z′ be the error-
free generated signature of an arbitrary message d′. According to the Rainbow
specification, z′ is defined by z′ = T−1◦F−1◦S−1(y), where y = H(H(d′)||salt) ∈
Fm
q . From an attacker’s point of view, all intermediate values are unknown. What

is known is that the first v1 entries of F−1 ◦ S−1(y) consist of the generated
vinegar values, whereas the remaining m = o1+o2 entries are the corresponding
solutions of the first and second layer of the central map under the chosen vinegar
variables. Thus, we can write

z′ = T−1

 v
o′1
o′2

,

with v ∈ Fv1
q , o′1 ∈ Fo1

q , and o′2 ∈ Fo2
q . By using the instruction skip indicated

in Section 2.1 and elaborated in detail in Section 4.1, the attacker successively
generates m signatures, all of which fall back to the same vinegar variables v as
the reference signature z′. For i ∈ {1 . . .m}, we denote these signatures by

z(i) = T−1

 v

o
(i)
1

o
(i)
2

.

The remaining entries o
(i)
1 and o

(i)
2 of the input of T−1 are under no control of

the attacker and do not need to be considered in more detail. By subtracting
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the reference signature and multiplying with T , we receive

T (z(i) − z′) =

 v

o
(i)
1

o
(i)
2

−
 v
o′1
o′2

 =

 0

õ
(i)
1

õ
(i)
2

, (8)

for i ∈ {1 . . .m}. Let Z ∈ Mn×m be the matrix whose i-th column is defined
by the vector z(i) − z′. Then Equation (8) implies that the first v1 rows of T
map Z to 0v1×m. If this linear system of equations can be solved uniquely, it
reveals the first v1 rows of T , more precisely the submatrices T1 ∈ Mo1×o2(Fq)
and T2 ∈ Mo2×o2(Fq). Therefore, we need the columns of Z and thus the last
m entries of Tz(i) to be linearly independent, since the first entries are identical
to the entries of the reference signature. Following Equation 3 this happens
with high probability and in case we draw a faulted signature that is linearly
dependent of the previous, we can just disregard it and draw a new one. We note
that Equation (8) does not provide any further information about the remaining
rows of T .

Remark 2. The authors of [27] only utilize parts of the gained information for
their algebraic key recovery attack. More precisely, they use certain entries of
the submatrices to reduce the complexity of a key recovery attack introduced
in [31] using the good key approach. However, this still requires solving a system
of quadratic equations. In the following we show how this can be completely
omitted by utilizing the whole submatrix T1.

Recover the secret transformation S. We take a closer look at Equation
(6). By also dividing the public matrices Pj and the secret transformation T into
3× 3 block matrices we receive

F̃i =

m∑
j=1

s̃ij

[ I 0 0
T⊤
1 I 0

T⊤
4 T⊤

3 I


P

(1)
j P

(2)
j P

(3)
j

0 P
(5)
j P

(6)
j

0 0 P
(9)
j


 I T1 T4

0 I T3

0 0 I

]
. (9)

The resulting matrices are not necessarily equal to the matrices Fi of the central
map but the polynomials they represent are identical. Consequently, by denoting

F̃i =

F̃
(1)
i F̃

(2)
i F̃

(3)
i

F̃
(5)
i F̃

(5)
i F̃

(6)
i

F̃
(7)
i F̃

(8)
i F̃

(9)
i

, (10)

it follows from Equation (7) that F̃
(5)
i needs to be skew symmetric and F̃

(7)⊤
i +

F̃
(3)
i = 0v1×o2 and F̃

(8)⊤
i + F̃

(6)
i = 001×o2 holds for the central maps of the first

layer, i.e., for i ∈ {1, . . . , o1}.
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Now, we solely focus on the middle block F̃
(5)
i ∈Mo1×o1(Fq) and observe that

T1 is the only part of the secret transformation T contributing to that block.
Thus, neglecting the other submatrices turns Equation (9) into

F̃
(5)
i =

m∑
j=1

s̃ij

(
T⊤
1 P

(1)
j T1 + T⊤

1 P
(2)
j + P

(4)
j T1 + P

(5)
j

)
. (11)

Note that the term inside the brackets is completely known to the attacker, since
she has already recovered T1. The remaining unknowns are now the entries of
S−1, in particular the o1 · o2 entries of S1. Since Equation (11) holds for all
i ∈ {1, . . . , o1}, the resulting linear system of equations is overdetermined and
solving it provides exactly the entries of S1.

Recover the remaining part of the secret transformation T. Having
access to the complete transformation S, the attacker is able to exploit (9) even

more. She now targets the v1 × o2 block F
(3)
i on the top right and the o2 × o1

block F
(7)
i on the bottom left. Similarly to (11), she derives

F
(7)⊤
i + F

(3)
i = 0v1×o2 =

m∑
j=1

s̃ij

(
P

(1)⊤
j T4 + P

(1)
j T4 + P

(2)
j T3 + P

(3)
j

)
. (12)

Now the attacker wants to solve for the unknowns in T3 and T4. By now, she
has knowledge of all the entries s̃ij , which turns (12) into a linear system of
equations. Once more the number of equations exceeds the number of variables
and its solution reveals the submatrices T3 and T4 and therefore the remaining
part of the secret transformation T−1. This finishes the key recovery attack. The
algebraic post-processing of the fault attack can be summarized as follows.

Attack 1: Full key recovery from fixed vinegar variables. After successful
execution of the fault attack, the attacker takes the reference signature z′ and
m faulted signatures z(1), . . . , z(m), obtained in the way described above and
proceeds as follows.

1. Build the matrix Z ∈Mn×m(Fq) with columns z(i) − z′ for i ∈ {1, . . . ,m}.
2. Compute the echelon form of the matrix T ′ ∈Mv1×n(Fq) that fulfills T

′Z =
0. It holds T ′ =

(
I T1 T2

)
.

3. Insert T1 into Equation (11). Solve the resulting system of linear equations
to recover S.

4. Insert S into Equation (12). Solve the resulting system of linear equations
to recover T3 and T4.

5. Use Equation (6) to obtain F . The attacker recovered the full secret key
(S,F , T ).

Remark 3. This attack can also be translated to the more abstract language
established in Remark 1. The difference of two signatures z(i) − z′ that are



Recovering Rainbow’s Secret Key with a First-Order Fault Attack 13

generated with identical vinegar variables, can be seen as a vector in the secret
subspace O1. This becomes obvious when considering Equation (8), which shows
that T maps this vector to a vector whose first v1 entries are zero, i.e, an ele-
ment in O′

1. Thus, the m linearly independent vectors of the matrix Z that are
gained by our fault attack, together span the secret subspace O1 from which the
remaining secret subspaces can be deduced.

3.2 Attack 2: Secret Key Recovery by Skipping the Linear
Transformation S

This fault attack aims to skip the application of the matrix S−1 during the gen-
eration of the signature. If the instruction skip is successful, the signing process
evaluates to z̃ = T−1◦F−1(y). By inserting this faulted signature into the public
map P, an attacker receives P(z̃) = S ◦ F ◦ T (z̃) = S(y) =: w ∈ Fm

q .

Since y = H(H(d)||salt) is known to the attacker, this fault attack presents
a method for deriving input-output pairs for the secret linear transformation
S. Now, let W ∈ Mm×o2(Fq) be the matrix whose columns consist of vectors
w(i) ∈ Fm

q , i ∈ {1 . . . o2}, which are obtained in the manner described above,
and Y ∈Mm×o2(Fq) be the matrix whose columns consist of the corresponding
starting vectors y(i), i ∈ {1 . . . o2}. By dividing the matrices and vectors into
blocks according to Equation (4), we receive

SY =

(
I S1

0 I

)(
Y1

Y2

)
=

(
Y1 + S1Y2

Y2

)
=

(
W1

W2

)
. (13)

Thus, the secret submatrix S1 can be obtained via S1 = (W1 − Y1) ∗ Y −1
2 .

Consequently, for the attack to be successful o2 faulty signatures are needed and
the starting vectors y(i) need to be chosen s.t. Y2 ∈Mo2×o2(Fq) is invertible.

Recover T by using S. Having access to the secret transformation S, an
attacker can use the very same strategy to recover T4 and T3 as described in
Section 3.1. By the time this step was applied during the post-processing of the
first fault attack, the attacker had already learned T1, which is not the case
anymore. However, in order to exploit Equation (12) it is enough to know S,
i.e., the attacker does not need any of the entries of T1 to recover T3 and T4.

This procedure - although presented somewhat differently - was already pro-
posed by Park et al. in [24, Section 4.2]. In their work, they used Correlation
Power Analysis to obtain S and thus, faced the same challenge for the subse-
quent algebraic evaluation, i.e., the recovery of T under the knowledge of S. In
order to obtain T1, they suggest to use a similar approach, namely by focusing

on the o1 × o2 block F
(6)
i and the o2 × o1 block F

(8)
i of (10). However, it is not

possible to continue the attack like this, as we sketch in the following. Therefore,
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observe

F
(8)⊤
i + F

(6)
i = 0o1×o2 =

m∑
j=1

s̃ij

(
T⊤
1 (P

(1)⊤
j + P

(1)
j )T4 + T⊤

1 (P
(2)
j )T3 + . . .

. . . P
(2)⊤
j T4 + (P

(5)⊤
j + P

(5)
j )T3 + T⊤

1 P
(3)
j + P

(6)
j

)
.

(14)

While it is true that only linear equations remain, after inserting the known
values for T3, T4, and S, one can deduce from

T⊤
1

m∑
j=1

s̃ij

(
(P

(1)⊤
j + P

(1)
j )T4 + (P

(2)
j )T3 + P

(3)
j

)
(12)
= T⊤

1 0,

that Equation (14) does not provide further information about the block T1, since
it is satisfied independent of its choice. The authors of [31] and [24] confirmed
our findings in this regard.

Thus, one way to proceed and obtain T1, is to fall back to the well-known
Kipnis-Shamir attack on UOV [20]. Note that the knowledge of S is equivalent
to the recovery of the secret subspace W , referring to the notation in Remark 1.
Following [3, Section 5.3], this reduces the problem of finding O1 to a small UOV
instance with reduced parameter n′ = n − o2 and m′ = m − o2 and complex-
ity O(qn′−2m′

) = O(qn+o2−2m) = O(qv1−o1). In case of Rainbow parameter set
I, this leads to a very efficient method to finish the key recovery attack, since it
holds n′ ≈ 2m′. For higher parameter sets this approach still remains infeasible,
as we have n′ ≫ 2m′, rendering the Kipnis-Shamir attack inefficient.

Very recently, Esser et al. published a work on partial key exposure at-
tacks [16], in which they cover Rainbow, among other schemes. They also treat
the task of exposing T1 after the remaining part of the secret matrices are known.
Their approach builds up on a work by Billet and Gilbert [5] and has complexity
O(n3), which would be very efficient, even for larger parameter sets of Rainbow.

Attack 2: Secret key recovery by skipping the linear transformation S.
After successful execution of the fault attack, the attacker takes the generated
faulted signatures z(1), . . . , z(o2) and the used starting values y(1), . . . , y(o2) being
of the form described above and performs the following steps:

1. Compute w(i) = P(z(i)) for i ∈ {1, . . . , o2}.
2. Build the matrices W ∈ Mm×o2(Fq) and Y ∈ Mm×o2(Fq) as described for

Equation (13).
3. Recover S by computing S1 = (W1 − Y1) ∗ Y −1

2 .
4. Insert S into Equation (12). Solve the resulting system of linear equations

to recover T3 and T4.
5. Obtain T by applying the Kipnis-Shamir attack to the reduced UOV in-

stance.
6. Use Equation (6) to obtain F . The attacker recovered the full secret key

(S,F , T ).
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4 Code Analysis and Simulation

To implement the attacks described in Section 3, an in-depth analysis of the
instruction code needs to be performed. The following section discusses how to
uncover the low-level instructions that need to be skipped to achieve the desired
behaviour of the fault attacks as specified in Section 3 based on the source code
of the ARM Cortex M4 optimized round 3 submission by the authors of [12]6.
Furthermore, we present an elaborated simulation of our results.

4.1 Attack 1: Fixing the Vinegar Variables

Listing 1.1 shows the relevant code snippet for our first attack. The implemen-
tation proposed by [12] does not set the vinegar variables to zero after signature
generation. Therefore skipping the function call to prng gen in line 55 will leave
them with the same values due to the temporary variable being reallocated to
the same address at each function call. This, of course, assumes that the respec-
tive memory region is not overwritten between two function calls, which holds
if the device acts solely as a signing oracle.

By analyzing the disassembly of the compiled binary, we find the relevant in-
struction given in Listing 1.2. By skipping the branch performed in line 0xdfb2,
the desired behaviour is achieved and the vinegars remain constant for subse-
quent signatures.

4.2 Attack 2: Skipping the Linear Transformation S

To prohibit the application of the linear transformation S−1 we aim at skipping
the function call to gf256v add in line 178 of the source code shown in Listing
1.1. However, for this function being inlined - meaning the compiler inserts the
function body instead of a branch - a single instruction skip does not suffice.
Therefore the beforehand executed call to gf16mat prod 16 32 in line 173 is
skipped, leaving the variable temp o at its initial all-zero value and rendering
the subsequent call to gf256v add without effect. To achieve this effect, we target
line 0xe070 of the assembly code shown in Listing. 1.2 with a first order fault.

Exiting the while loop In this paragraph, we discuss the probability of exiting
the respective while loop on the first iteration, assuming that the fault injection
was successful. Regarding the attack in Section 4.1, if the skip of the vinegar
variables in Line 2 of Algorithm 1 is introduced successfully, the same vinegar
variables are used again for consecutive signatures. Thus, the chosen vinegar
variables already led to an invertible matrix F̂1 in the previous signature. Since
F̂1 only depends on the vinegar variables (y1, . . . , yv1) and the polynomials of
the first layer, the condition in Line 8 is always fulfilled. Regarding the attack
in Section 4.2, the condition in Line 11 also depends on the solution of the first

6 The source code can be found at https://github.com/rainbowm4/rainbowm4.git

https://github.com/rainbowm4/rainbowm4.git
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26 int ra inbow s ign ( . . . )
27 {
. . . . . .
51 while ( ! l 1 s u c c ) // u n t i l s o l u t i o n found
52 {
. . . . . .
. . . // sk ipped by Attack 1
55 prng gen(&prng s ign , v inegar , V1 BYTE ) ;
. . . . . .
80 }
. . . . . .
. . . // temp o i s i n i t i a l i z e d wi th ze ros
155 u i n t 8 t temp o [ MAX O BYTE + 32 ] = {0} ;
. . . . . .
157 while ( ! succ ) // u n t i l s o l u t i o n found
158 {
. . . // sk ipped by Attack 2
173 gf16mat prod 16 32 ( temp o , sk−>s1 , z + O1 BYTE ) ;
. . . . . .
. . . // app l y ing S
178 gf256v add (y , temp o , O1 BYTE ) ;
. . . . . .
228 }
. . . . . .
292 }

Listing 1.1. Relevant snippets of the rainbow sign function in rain-
bowm4/crypto sign/rainbowI-classic/m4/rainbow.c

. . .
0 xdfb0 add s ignature , sp ,#0xe4
0xdfb2 b l prng gen
0xdfb6 add d i g e s t , sp ,#0x6c
. . .
0 xe06e add s ignature , sp ,#0x144
0xe070 b l g f16mat prod 16 32
0xe074 l d r sk , [ sp ,#y [ 4 ] ]
. . .

Listing 1.2. Relevant snippets of the assembly code corresponding to line 55 and line
173 of the rainbow sign function in Listing 1.1.
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layer in Line 9. Thus the probability of F̂2 to be invertible can be approximated
by the probability of that a randomly generated matrix with entries in Fq is
invertible which is given by Equation (3).

4.3 Simulation

To verify our assumptions and provide a first proof of concept, we implement
a generic ARM M4 architecture simulation environment based on Unicorn [13],
which itself is based on QEMU [2].7 The validity of our results exceed the ones
one would obtain by simple code modification - i.e., removing code lines one
wishes to skip - as the compiled binary of the unmodified source code is exe-
cuted within our simulation just as a real device would execute it. The 32-bit
Reduced Instruction Set Computer (RISC) architecture as defined by ARM is
emulated in its entirety.
The framework allows per-instruction execution of the compiled binary, cycle-
accurate skipping faults and memory analysis at any given point during execu-
tion. This facilitates the validation of both attacks’ feasibility through injection
of the intended faults and subsequent analysis of the memory space mapped to
the vinegar variables and y for the first and second attack, respectively. After
verification of the skipping faults’ effects on memory, signature collection is per-
formed. Both attacks lead to successful recovery of the secret key, proving the
feasibility of our attacks. In the following we give a brief overview of the core
features of the simulation framework.

Key Generation For the generation of the public and secret key being com-
putationally expensive and very time consuming within the simulation, we im-
plement it on the host machine and subsequently map the keys to the simulated
device memory.

Signing The signing algorithm runs entirely within the simulation. Upon ex-
ecuting the binary starting from the respective function’s memory address, the
secret key is mapped to the simulated device’s memory. The address of the
memory region holding the message to be signed, a buffer for the result and the
key’s address are written to the corresponding registers according to the calling
convention. To implement the attacks, the simulation first stops at the address
where we want to inject the fault. Then the instruction pointer is incremented as
required by the length of the instruction to be skipped. Execution is subsequently
resumed at the following instruction.

Verification For completeness, verification inside the simulation is also imple-
mented. Of course, the adversary may implement verification on any device. It is
merely used to verify successful fault injection and extract temporary variables
that facilitate executing Attack 2.

7 The codebase of our framework can be found at https://anonymous.4open.

science/r/double_rainbow_submission-E3CC

https://anonymous.4open.science/r/double_rainbow_submission-E3CC
https://anonymous.4open.science/r/double_rainbow_submission-E3CC
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4.4 Applicability to Other Implementations

The attack we introduced in Section3.1 is not directly applicable to the reference
implementation of Rainbow that was submitted to the NIST Standardization
Process [14]. This is due to the fact that the vinegar variables are zeroed at the
end of the signing process there, so they can’t be reused in a subsequent signing
process by a first-order fault attack. See Section 5.1 for more details. The second
attack, however, can be applied to the reference implementation, since the same
steps as mentioned in Listing 1.1 are executed there.

5 Countermeasures

Countermeasures attempt to either verify the integrity of the executed algorithm
before returning its result or ensuring that a system cannot leak secrets even
when compromised. If the latter is the case, the returned value should either be a
random number or an error constant. A traditional way to tackle this problem for
the case of fault injections is to repeat the computation and compare the results.
However, this approach is very expensive in terms of computation time and relies
on the assumption that an attacker will fail to successfully inject faults in two
subsequent runs of the algorithm. In this section we suggest countermeasures
that can be adopted in order to avoid the attacks described in Section 3.

5.1 Countermeasures for Attack 1

For the first attack relying on keeping the vinegar variables constant, some coun-
termeasures aiming for either zeroing or randomization can be employed.

Firstly, resetting the memory region mapped to the vinegars at the end of
the function call to zero - as it is done in the original NIST submission in [15]
- is the most straight-forward solution. Then, if the respective fault is injected,
the system of equations is rendered non-solvable, leading to re-iteration of the
loop until either a threshold number of iterations is reached and the function
is exited or the fault injection fails and vinegar variables are sampled correctly.
However, depending on the implementation, this can enable a different attack of
higher complexity relying on partial zeroing of the vinegars, as described in [27].

Secondly, if the vinegars were to be saved in between subsequent function
calls, they could be checked for equivalence before returning the signature. While
this might seem a viable solution, care must be taken to ensure safe storage not
to leak their values. Moreover, since simple checks are assumed to be easily
skippable, the checking procedure has to be elegantly integrated in the signing
procedure.

Thirdly, inlining the function call to prng gen could prohibit the attack for
some parameter sets. Depending on the implementation and the corresponding
number of vinegars, the loop copying the random values to the vinegars can be
exited earlier by injecting a fault, leaving them partially constant. While this
prohibits our attack which requires all vinegars to stay constant, similar attacks
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with less stringent constraints might still be applicable. To further mitigate these,
loop unrolling could provide remedy. However, this combined mitigation tech-
nique would introduce non-negligible overhead in code size which might render
it inapplicable to constrained devices.

5.2 Countermeasures for Attack 2

For the second attack that aims to skip the application of the secret transforma-
tion S, an evident mitigation technique is to verify the signature before returning
it. However, this leads to an overhead of around 25% [12], rendering this strategy
very costly.

More practical, one could initialize the temp o variable so that the skipping
fault would result to an all-zero y after execution of gf256v add. To achieve
this, temp o first o1/2 bytes - i.e., the bytes that are affected by the subsequent
addition - are initialized with y ’s first o1/2 bytes (i.e., 16 for the parameter set of
32 oil variables in the bitsliced representation). The subsequent F256 addition -
i.e., implemented as multiple consecutive binary XORs - then leads to an all-zero
y, prohibiting leakage of the secret key through the collected signatures.

Furthermore, inlining the call to gf16mat prod 16 32 would prohibit a first-
order skipping fault attack. However, due to this function being implemented
in assembly language for optimization purposes, there is a discrepancy for the
required build steps. Therefore this mitigation technique might not be trivial to
implement.

6 Conclusion

This paper demonstrated how important it is to protect the secret transforma-
tions S and T in multivariate schemes against fault attacks. They are the only
obstacles an attacker faces when trying to discover the structure of the central
map F . Due to their linearity, it is possible to recover them either partially (see
Section 3.1) or in total (see Section 3.2), by collecting enough input and output
vectors and analyzing their transformation. As the generated signature consti-
tutes the output of T−1 and the hash value that is to be signed represents the
input to S−1, an attacker only needs to obtain an intermediate result, e.g., the
input vector of T−1 or the output vector of S−1, in order to gain secret informa-
tion. If she is able to thoughtfully induce a fault that compromises one of these
intermediate vectors, either by skipping a code line or forcing the algorithm to
compute with the same values over and over again, the security of the scheme is
no longer guaranteed.

For instance, it was already shown in [27] that UOV and LUOV are vulnerable
to the attack that fixes the vinegar variables. Whereas the authors of [22] doubt
that it is possible to fix a large portion of the vinegar variables by physical fault
injection, we showed that this is indeed possible by a single instruction skip.

Specifically for Rainbow, we proved that it is not even necessary to recover the
whole secret transformation T , by the means of a fault attack. The introduced
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algebraic attack restores the complete secret key of Rainbow on input of the
submatrix T1 by just solving linear equations. This is of course not limited
to the evaluation of fault attacks, but also holds if T1 is leaked through any
other kind of side-channel analysis. In the light of the recent breakthrough in
cryptanalysis [4], we acknowledge that the Rainbow parameter set for security
level I is deprecated. However, the fault attacks we suggest, directly reveal either
the secret subspaces O1 (see Section 3.1) or W (see Section 3.2) and thus, work
for any given parameter set, in particular for higher security levels and adapted
parameters that are designed to meet new requirements.
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Schemes and Their Sensitivity to Fault Attacks. In 2016 Workshop on Fault Di-
agnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016, pages 63–77. IEEE Computer Society, 2016.
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