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Abstract. Homomorphic encryption (HE), which allows computation over encrypted data, has often
been used to preserve privacy. However, the computationally heavy nature and complexity of network
topologies make the deployment of HE schemes in the Internet of Things (IoT) scenario difficult.
In this work, we propose CARM, the first optimized GPU implementation that covers BGV, BFV
and CKKS, targeting for accelerating homomorphic multiplication using GPU in heterogeneous IoT
systems. We offer constant-time low-level arithmetic with minimum instructions and memory usage,
as well as performance- and memory-prior configurations, and exploit a parametric and generic design,
and offer various trade-offs between resource and efficiency, yielding a solution suitable for accelerating
RNS homomorphic multiplication on both high-performance and embedded GPUs. Through this, we
can offer more real-time evaluation results and relieve the computational pressure on cloud devices. We
deploy our implementations on two GPUs and achieve up to 378.4×, 234.5×, and 287.2× speedup for
homomorphic multiplication of BGV, BFV, and CKKS on Tesla V100S, and 8.8×, 9.2×, and 10.3× on
Jetson AGX Xavier, respectively.

Keywords: Homomorphic encryption · RNS multiplication · Number Theoretic Transform · Internet
of Things · GPU acceleration.

1 Introduction

The Internet of Things (IoT) is now infiltrating into all parts of people’s lives. The resource-constrained nature
of IoT edge devices makes it necessary for cloud servers to assist in processing data in some scenarios, which
leads to security issues when the data is privacy-sensitive. In detail, processing user data in plaintext form
will leak personal information that could be used to track user interests, locations, and so on. Homomorphic
encryption (HE) is often introduced to solve this problem, which allows data analysis to be performed on
ciphertext and enables secure device-to-cloud computation.

Since Gentry proposed the first fully homomorphic encryption (FHE) scheme [27, 28], there have been
many improvements to make FHE more practical, such as enabling Single Instruction Multiple Data (SIMD)
operations [42] and handling floating point data [19]. In view of the good parallelism of the low-level arithmetic
of HE schemes, parallel computing is usually used in practice to speed up the computing process, relieving
the computational overhead of the schemes. The Graphics Processing Unit (GPU) has powerful parallel
computing capability. Existing approaches that take full advantage of GPUs to accelerate compute-intensive
computation achieve auspicious performance, underlining their tremendous impact.

However, the computation overhead is a significant consideration that limits the deployability of homo-
morphic encryption, especially on resource-constrained IoT edge devices. Additionally, the complexity of IoT
topologies and the diversity of the computational power of devices make the implementation more difficult.
Fortunately, the massive increase in the quantities and varieties of devices has promoted the evolution of
IoT topologies, making the modern IoT systems become more heterogeneous. The emergence of devices with
embedded Graphics Processing Units (GPUs) brings new challenges and opportunities to the deployment of
homomorphic encryption in IoT scenarios. Embedded GPUs are a promising technology, as they provide high
performance computing platform for massive data processing with low energy consumption, while preserving



the portable and mobile nature of IoT devices. Enabling homomorphic encryption on such devices allows
computation in the entire device-to-cloud scenario to be accelerated using GPUs, which is of great value for
the deployment of FHE schemes in the IoT systems.

1.1 Related work

In 2009, Gentry proposed the first FHE scheme based on ideals [27, 28]. Since then, research in this area
began to burgeon, mainly focusing on improving the efficiency and applicability of FHE schemes. Modern
FHE schemes are based on different hardness assumptions, i.e., Approximate Greatest Common Divisor
(AGCD) [36], (Ring-)Learning with Errors ((R-)LWE) [17,18], and Number Theory Research Unit (NTRU)
[23], and most of them can be classified into bit-wise FHE (e.g., FHEW [25] and TFHE [20]) and word-wise
FHE (e.g., BGV [16], BFV [26] and CKKS [19]). Compared to bit-wise FHE, word-wise FHE is more efficient
in large vectorial arithmetic operations [15]. Recently, many open source libraries have implemented these
schemes, such as HElib [2], PALISADE [3], SEAL [39] and HEAAN [1].

To alleviate the computation bottlenecks, some studies dedicated to exploring different acceleration strate-
gies for polynomial arithmetic, such as adopting the Number Theoretic Transformation (NTT) and the
Residue Number System (RNS) representation. SEAL employs the Harvey’s algorithm [32] and follows the
classic level-by-level method for implementing NTT, which is further accelerated in several studies [4, 38]
using GPUs. Recent studies [9, 22, 33] adopted the four-step Cooley-Tukey algorithm [10, 21] and split the
N -point NTT into several ones with smaller size, they also achieved performance improvements on GPUs.
The RNS is a commonly utilized technique to efficiently conduct computation over integers larger than the
processor word-size. In practice, there are some RNS variant of these schemes, using the RNS instantiations
such as the Bajard-Eynard-Hasan-Zucca (BEHZ) method [11] that is based on the decomposition to residues,
the Gentry-Halevi-Smart (GHS) method [29] that temporarily extends the basis with a special prime, and
the hybrid method [31] that takes advantage of both methods.

Previous works on accelerating FHE schemes mostly focus on high-performance platforms, by increasing
the parallelism of computation. For example, Boemer et al. proposed Intel HEXL [13] that accelerated the
polynomial arithmetic using the Intel Advanced Vector Extensions 512 (AVX512) instruction set and achieved
a 7.2× speedup, which is now integrated into SEAL and PALISADE. Other works dedicated to improving
the computation concurrency through general-purpose GPU (GPGPU) implementation, resulting in speedup
such as 5×-22× for homomorphic operations in [4] and 257× for CKKS bootstrapping in [33]. FHE schemes
were not introduced to the IoT systems, until Natarajan et al. proposed the first CKKS implementation in
the embedded domain, i.e., SEAL-Embedded [37]. They concentrated on reducing the memory consumption
of CKKS encoding and encryption while maintaining the performance and used an adapter as a middle layer
to convert the ciphertexts sent by the devices into a form compatible to SEAL.

So far, although embedded GPUs have been deployed in many IoT devices, there is no optimized imple-
mentation of FHE schemes targeted for this platform. Previous works on accelerating FHE schemes using
GPU only support a portion of the parameters and are not general enough to cover all applications. Addi-
tionally, many open-source libraries and works adopt non-constant-time implementations, such as SEAL [39]
and [33]. A recent side-channel attack on SEAL v3.2 [7], although not affecting implementations after v3.3,
raised awareness of the potential security risks that non-constant-time implementations may bring.

1.2 Contributions and road-map

In this work, we propose CARM, the first optimized GPU implementation of RLWE-based FHE schemes
in IoT scenario that covers BGV, BFV and CKKS, and integrate it into SEAL v4.0 library [39]. Our
library provides fast homomorphic multiplication for two types of devices in the IoT network topology, i.e.,
middle-layer and cloud devices. Our solution has two advantages: first, we accelerate the performance of
homomorphic multiplication on cloud devices, and second, we allow middle-layer devices to provide more
real-time evaluation results, thus relieving the computational pressure on cloud devices. We follow the secure
deployment solution for IoT [37], and the computation model is shown in Figure 1. In summary, we make
the following contributions:
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Fig. 1: Secure device-to-cloud computation model of CARM.

– We provide constant-time low-level arithmetic implementation written in the CUDA PTX assembly
with minimum instructions and register usage, covering multiply-accumulation, conditional subtraction,
Barrett reduction, and butterfly operation, which allow us to eliminate the divergence in warps and
provide side-channel resistance.

– We exploit a parametric hierarchical design for the (I)NTT with a mix-type memory usage strategy
to fully utilize the on-board memory and reduce the IO latency. We offer the implementation of both
performance-prior (PP) and memory-prior (MP) versions, allowing a flexible choice according to the
target platforms.

– We devise a generic design of homomorphic multiplication and apply memory-centric optimization
through kernel fusing (KF) and data re-use, which achieve a balance between the instruction- and
thread-level parallelism. For that KF will not always improve the performance, we illustrate its impact
and give the bound between the methods with or without KF. We also exploit the KF approach in the
BEHZ-type multiplication that reduces the memory access and meanwhile preserves good parallelism.

– We deploy our GPU implementation on two devices, targeting two different scenarios. Our implementa-
tion outperforms the recent published works [4,6,8,33,35]. Meanwhile, compared with the CPU baseline,
our (I)NTT implementation improves the performance up to 140.8× for a single (I)NTT and 251.4× for
batched (I)NTT with size 21 on a Tesla V100S GPU, and up to 5.7× on a Jetson AGX Xavier GPU.
With the MP configuration, we show a 170.7× improvement in the size of the precomputed table. We
also achieve up to 378.4×, 233.6×, and 287.2× on Tesla V100S (8.8×, 9.2×, and 10.3× on Jetson AGX
Xavier) for the multiplication of BGV, BFV and CKKS, respectively.

The rest of this paper is organized as follows. In Section 2, we present some definitions and introductions
to RLWE-based FHE schemes, embedded GPU, and the programming model. In Section 3, we describe
the structure of CARM as well as the considerations and trade-offs in our design. The implementation and
optimization details are presented in Section 4. Thereafter, we provide the performance results, comparison,
and some further discussions in Section 5. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Notation

Let N be a power of 2. We choose the 2N -th cyclotomic polynomial xN + 1 to define the quotient ring
R = Z[x]/(xN +1), whose elements are integer polynomials of degree less than N and denoted by lower-case
boldface letters, e.g., p or p(x). For a real number r, we use ⌊r⌋, ⌈r⌉, and ⌊r⌉ to denote rounding down, up,
and to the nearest integer, respectively, and use [r]q (for q an integer) to denote the centered remainder of r
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modulo q. When these operations are applied to a polynomial, we indicate that the corresponding operation

is performed on each coefficient separately. By a
$← S, we denote that a is sampled uniformly from a finite set

S. For a distribution X on S, we use a← X to denote the sampling of a from S according to the distribution
X .

2.2 BGV, BFV and CKKS

The BGV, BFV and CKKS are three prominent word-wise FHE schemes. This type of scheme supports
batched computation by pre-splitting the input into different slots and is efficient on some time-consuming
operations. The BGV and BFV work on the same plaintext space that perform exact computations over finite
fields, while the CKKS supports approximate evaluation of real numbers at a preset precision. The security
of BGV, BFV and CKKS is based on the hardness of the (Ring-)Learning with Errors ((R-)LWE) problem.
Let λ denote the security parameter. Let s be a random element in Rq and X = X (λ) be a distribution
over Rq. The decision R-LWE problem is defined as to distinguish the samples (ai, bi) from the uniform

distribution on R2
q , where bi = ais+ ei, ai

$← Rq, ei ← X .
Let Q =

∏L
i=0 qi be the moduli and define the modulus at level l as Ql =

∏l
i qi, where qi are primes, and

let p be the special prime [29]. We define the main components of the three algorithms as follows.

– Key generation. Given the system parameter params = (λ,N,Q) and distributions Xkey and Xerr, gen-
erates the public key, secret key and evaluation key in the following way:

• Secret key. Sample s← Xkey, and set the secret key sk := (1, s).

• Public key. Sample a
$←RQ and e ← Xerr. The public key is formed as pk := ([−a · s + te]Q,a) in

BGV, and as pk := ([−a · s+ e]Q,a) in both BFV and CKKS.

• Evaluation key. Sample a′ $← Rp·Q and e′ ← Xerr. The evaluation key is defined as evk := ([−a′ ·
s+ e′ + ps′]p·Q,a

′), where s′ = [s2]Q.

– Encryption. Given a public key pk = (u0,u1) ∈ R2
Q and a message m ∈ R, sample r ← Xkey and

e0, e1 ← Xerr. The resulting ciphertext of BGV, BFV, or CKKS encryption is described respectively as
follows:
BGV.Enc(pk,m) = ([[m]t + r · u0 + te0]Q, [r · u1 + te1]Q);
BFV.Enc(pk,m) = ([∆BFV · [m]t + r · u0 + e0]Q, [r · u1 + e1]Q), where ∆BFV = ⌊Q/t⌋;
CKKS.Enc(pk,m) = ([m+ r · u0 + e0]Q, [r · u1 + e1]Q).

– Decryption. Given a secret key sk = (1, s) and a ciphertext ct = (c0, c1) ∈ R2
Q′ , the decryption algorithm

is like the following:
BGV.Dec(sk, ct) = [c0 + c1 · s]Q′ ;
BFV.Dec(sk, ct) = ⌊t/Q′ · [c0 + c1 · s]Q′⌉;
CKKS.Dec(sk, ct) = [c0 + c1 · s]Q′ .
Note that for leveled schemes, the modulus Q′ is equal to Ql at level l, while for the scale-invariant
scheme BFV, the modulus will not change.

– Evaluation. Homomorphic encryption provides a way to perform operations on ciphertext without de-
cryption. Common homomorphic evaluations include homomorphic addition and multiplication. For the
three schemes, we give their detailed evaluation procedures below.

• Addition. For any BGV, BFV, or CKKS schemes, given two ciphertexts ct and ct′ in R2
Q′ , their

sum is defined identically as the follows:
Add(ct, ct′) = [ct+ ct′]Q′ .
• Multiplication. Given two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) in R2

Q′ , their product is defined
as the follows:
Mult(ct, ct′) = [(c̃0, c̃1) + ⌊p−1 · c̃2 · evk⌉]Q′ .
Here (c̃0, c̃1, c̃2) = [(c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1)]Q′ for BGV and CKKS, and [⌊t/Q′ · (c0 · c′0, c0 ·
c′1 + c1 · c′0, c1 · c′1)⌉]Q′ for BFV.
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2.3 Basic FHE operations

The basic operations of RLWE-based fully homomorphic encryption schemes performs on polynomials. We
provide here the detailed procedures of some of these functions, which enable the efficiency of the schemes.

Barrett reduction To perform a 128-bit integer modular reduction with a 64-bit storage unit, we implement
modified Barrett reduction [12]. Given a modulus q, a precomputed value γ = ⌊2128/q⌋, and an integer
a < 2128, a and γ are represented as a = 264 · a1 + a0 and γ = 264 · γ1 + γ0, respectively (a1, a0, γ1, γ0 are all
64-bit integers). Then, the reduction computes

a− ⌊a1γ1 · 2
128 + (a1γ0 + a0γ1) · 264 + a0γ0

2128
⌋ · q,

which equals to

a− ⌊ (a1 · 2
64 + a0) · (γ1 · 264 + γ0)

2128
⌋ · q = a− ⌊a · γ

2128
⌋ · q.

This result is actually either [a]q or [a]q + q, and then we can get the final reduced result in a constant-time
manner via a conditional subtraction by q.

Number theoretic transform To include fast polynomial multiplication, Number Theoretic Transform
(NTT) is utilized. In our setting, polynomials are multiplied modulo xN+1, and thus we perform a negacyclic
version of NTT accordingly. To be specific, for a polynomial f ∈ Rq with 2N |(q−1), there exists a primitive
2N -th root of unity ω ∈ Zq, and the negacyclic NTT transform of f = (f0, f1, · · · , fN−1) is defined as

f̂ = (f̂0, f̂1, · · · , f̂N−1), f̂i =

N−1∑
j=0

fjω
j(2i+1), i ∈ [0, N).

And the inverse, INTT, is performed by replacing the term ω here with ω−1 and we omit it for simplicity. Upon
the NTT technique, the product of two polynomials f , g ∈ Rq can be computed via INTT(NTT(f) ◦ NTT(g)),
where ◦ denotes element-wise multiplication of vector.

Residue number system As we mentioned above, the coefficient modulus Ql is set to be a product
of several small pairwise coprime values q0, · · · , ql, with each qi being a prime number itself, so that the
Chinese Remainder Theory (CRT) implies a ring isomorphism RQl

∼→Rq0 ⊗ · · · ⊗ Rql . This means we can
replace the arithmetic in RQl

with several ones with much smaller operands. In practice, there are some RNS
instantiations, such as the BEHZ instantiation [11] that proposed to eliminate the multi-precision arithmetic
introduced by the division and rounding operation in the decryption and multiplication of BFV.

Modulus switching In homomorphic encryption schemes, the increase in the noise magnitude of a cipher-
text accumulates with the increase in homomorphic multiplication operations it goes through. To reduce
the noise or to accelerate the homomorphic multiplication computation, the modulus switching procedure is
introduced. It performs by scaling or transforming a ciphertext ct in RQ into another ciphertext ct′ in RP ,

where Q =
∏l

i qi, P =
∏v

i pi are two coprime moduli. The latter can be efficiently computed by a fast base
conversion technique suggested in [11], formulated as

ConvQ→P (x ∈ ZQ) =

[
l∑

i=0

[
x
qi
Q

]
qi

× Q

qi

]
pj

v

j=0

.

For other RNS instantiations, there are similar conversion formulations, and we omit them here for simplicity.
For those who are interested, referring to [29], [34] or [31] can help.
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2.4 CUDA programming model

The GPU, a multi-core processor with highly parallel features, can execute the same program over multiple
data in parallel through the interface Compute Unified Device Architecture (CUDA), which allows access
to the GPU resource. In this programming mode, the CPU calls a kernel, which is executed in parallel by
several CUDA threads.

CUDA follows a hierarchy, with both execution units and memory. The minimum execution unit is a
thread, and multiple threads (up to 1024) can be organized into 1- to 3-dimension, thus forming a block.
Similarly, blocks can be arranged into 1- to 3-dimension grid. The purpose of this hierarchy is to be compatible
with the structure of operands, making the invocation of elements simpler. GPU contains three types of read-
write memory, i.e., global memory (GMEM), shared memory (SMEM) and register file (RF), and two types
of read-only memory, i.e., constant memory and texture memory. Threads within a block have access to
the block SMEM, and each thread has private RF. The GMEM and read-only memory is accessible to all
threads, while the latency is higher contrasted with the SMEM and RF. During the execution of a kernel,
each block has to be executed independently in a sequence. Consecutive 32 threads in a block belong to the
same warp, which is scheduled by the warp scheduler (WS) in the streaming multiprocessor (SM).

3 Implementation Overview

3.1 Library structure

Our CARM library is proposed to accelerate FHE schemes on both middle-layer and cloud devices, to provide
efficient homomorphic evaluation of privacy data. The structure of CARM is shown in Figure 2. Our design
follows the host-device (HD) computation model, where the CPU launches a kernel and the GPU computes
and returns the result. In functionality, CARM can be divided into two parts, one contains the initialization
of the GPU memory and pre-computation of some constants according to the scheme parameters, such as
the NTT table; the other contains the implementation of the functions of the FHE scheme, which consists
of three layers: the low-level arithmetic layer, polynomial operations layer and the scheme layer.

Evaluation

CPU (Host)

Data Evaluation

Data

Add/Sub Mul Reduction

Polynomial Arithmetic RNS

EvaluationData

GPU (Device)

GPU MemoryCPU memory

PCIe

BGV/BFV/CKKS Homomorphic Evaluation

Fig. 2: The host-device model and library structure of CARM.

The basic layer contains the modulo reduction, addition, and multiplication. We provide constant-time
implementation written in CUDA parallel thread execution (PTX) instructions and well optimize it by
minimizing the instruction numbers and register usage. The middle layer consists of polynomial arithmetic
and RNS tools to accelerate the computation of the scheme functions. At the top layer, CARM offers
optimized homomorphic evaluation kernels for BGV, BFV and CKKS. Additionally, our library supports
|N | ∈ [11, 17], which covers the parameter requirements of most applications.
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3.2 Design considerations and trade-offs

In this section, we illustrate the considerations and trade-offs in the design of CARM. We concentrate on
reducing the data access and synchronization and provide many trade-offs between the cost of computation
and resource.

Memory-centric optimization The computation of FHE functions is in nature memory-bound since they
feature low arithmetic intensity but require plenty of data access. In this work, we exploit memory-centric
optimizations to reduce both memory usage and IO latency. For the low-level arithmetic kernel, we make full
use of the RF and SMEM and minimize the number of temporary registers. Based on this, we fuse multiple
kernels to large ones for high-level homomorphic operations to reduce data transfers, especially the GMEM
accesses. Note that after fusing, a function may still contain more than one kernel. While this preserves
some data transfer between GMEM and SMEM or RF, it allows a certain degree of parallelism and prevents
resource overuse or overflow that lead to low occupancy and performance degradation.

Synchronization Inserting a synchronization point is a commonly applicable method to GPUs to prevent
data conflicts when data interaction exists. Throughout this work, we arrange the order of reading and
writing data appropriately to eliminate some expensive synchronization. In particular, there is no need to
synchronize the 32 threads in the same warp because there is no data conflict. Considering this, we eliminate
the thread synchronization in five layers in (I)NTT through finely tune the inner loop.

ILP and TLP For memory-bound computation, reusing data and having one thread execute more opera-
tions provides a way to increase the instruction-level parallelism (ILP) and reduce IO latency, thus improving
the overall performance. Limited by the fixed on-board storage on the GPU, an SM cannot execute multiple
blocks with high memory overhead simultaneously, resulting in some WSs remaining in the idle state thus
decrease the thread-level parallelism (TLP). However, low SM occupancy does not always lead to low per-
formance, as storing more data in the SMEM may reduce access to the GMEM, which may consume much
more cycles than arithmetic operations. In this work, we choose suitable ILP and TLP for implementations
of different parameters, which lead to peak kernel performance. For example, in the (I)NTT, we instantiate
the two kernels with different ILP and form the kernels Kl1 and Kl2 as 8 and 2 per-thread implementation
respectively. Thus, we can reduce the memory interaction in Kl1 and reserve more RF in Kl2 to store the temp
element in the generic RNS multiplication kernel, which contains Kl2 through kernel fusing, as described in
Sec 4.4.

4 Implementation Details and Optimizations

In this section, we present the implementation details of CARM, as well as our optimization techniques and
trade-offs. First, we give the constant-time low-level arithmetic implementation written in the CUDA PTX
instructions, based on which we implement the polynomial operations, including the (I)NTT and the RNS
tools. Then, we optimize the homomorphic multiplication using techniques such as kernel fusing. We strive
for a generic, scalable and parametric design that is adaptable according to the platforms, and we provide
several strategies for making choices.

4.1 Constant-time arithmetic

The efficient implementation of the low-level arithmetic ensures the performance of the schemes, and keeping
the execution time constant provides the ability to resist side-channel attacks. Here, we provide our optimized
inline functions, including multiply-accumulation, conditional subtraction, and Barrett reduction and show
our approaches to minimize the number of instructions and register usage.
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Algorithm 1 Multiply Accumulate

Input: acc1, acc0, a, b ∈ [0, 264)
Output: acc′1, acc

′
0 ∈ [0, 264)

1: mad.lo.cc.u64 acc0, a, b, acc0
▷ acc′0 = acc0 + (a · b)lo

2: madc.hi.u64 acc1, a, b, acc1
▷ acc′1 = acc1 + (a · b)hi + carry

Multiply-accumulation The multiplication of two 64-bit elements requires two PTX instructions on the
GPU, so that the two 64-bit halves of the result are obtained and stored separately. For the multiply-
accumulate operation, unlike other methods that perform addition after multiplication, we use the mad and
madc instructions to simplify the process, which is given in Algorithm 1. Specifically, we split the 128-bit
addition and merge it with the 64-bit multiplication. The other issue that needs to be addressed is the carry.
We store the carry flag implicitly in the low 64-bit multiply-accumulate operation, and then use the madc

instruction to add the carry flag in the high 64-bit multiply-accumulate operation. In this way, we get the
result without introducing additional overhead, as the number of instructions used is the same as the original
multiplication.

Conditional subtraction Microsoft SEAL set a logic branch to control the condition in subtraction-based
reduction. Namely, it reduces numbers from [0, 2q) to [0, q) by subtracting q from elements greater than q and
remaining the others unchanged. However, this unbalanced execution poses a potential threat of side-channel
attacks and introduces thread divergences in warps, which will incur a drop in the instruction throughput
as the different execution paths must be serialized. The instructions with a guard predicate are commonly
used for implicit comparisons. Nevertheless, the predicate variable prefixed to the next instruction still
specifies a conditional execution. To mitigate the problems, we follow [14] to exploit the arithmetic and shift
instructions and subtract q from the input, and the sign gives the implicit comparison result, which can be
obtained by logic shifting. Through this approach, we can conduct a conditional subtraction in constant-time
and eliminate the divergence in warps caused by the previous control flow instructions.

Barrett reduction The main idea of Barrett reduction is to transform a big integer division to fast
arithmetic like multiplication and shifting. The multiplication of two 64-bit elements (i.e., a = x · y) yields
a 128-bit product, so we implement both 64-bit and 128-bit Barrett reduction using CUDA PTX ISA. In
detail, CARM offers three types of Barrett reduction, one for reducing 64-bit numbers and two others for
reducing 128-bit numbers, one of which is a faster variant proposed by Shoup [41] to reduce the computation
overhead. For a pseudocode description of our implementation, see Algorithm 2. The reduction of a 64-bit
input a follows a conventional and commonly applicable way of computing tmp0 = ⌊a·γ64

264 ⌋ and subtract q
multiple of it from a. However, when reducing the product of two 64-bit numbers, we can only compute
and store the high 64-bit and low 64-bit of the 128-bit number and ratio separately, due to the limitation
of CUDA computing capability. Here, we present a constant-time approach by using the combination of
instruction mul.hi.u64 and mad.lo.cc.u64 to implicitly record the overflow flag in the condition code
register and handle the carry bits of additions. The faster version of the 128-bit reduction takes inputs of x

and a precomputed number ⌊y·2
64

q ⌋, which trades the storage of ⌊y·2
64

q ⌋ for simplifying the computation of

⌊x·y·γ128

2128 ⌋. As the output is in range [0, 2q), we use the conditional subtraction approach illustrated before

to ensure a constant-time execution. The ratio γi = ⌊ 2
i

q ⌋ is precomputed and stored in the GMEM. During
the computation, we load the ratio into the RF and all the calculations are performed in the RF to obtain
the minimum latency. Additionally, we reduce the use of temporary registers and reduce the number to one
to minimize memory usage.
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Algorithm 2 Barrett Reduction 128

Input: a = 264 · a1 + a0, γ = 264 · γ1 + γ0, q, 0 ≤ a, γ, q < 264

Output: res = a mod q, 0 ≤ res < 2q
1: mul.hi.u64 tmp, a0, γ0
2: mad.lo.cc.u64 tmp, a0, γ1, tmp

▷ c0 =
⌊(
(a0r0)hi + (a0r1)lo

)
/264

⌋
3: madc.hi.u64 res, a0, γ1, 0
4: mad.lo.cc.u64 tmp, a1, γ0, tmp

▷ c1 =
⌊(
(a0r0)hi + (a0r1)lo + (a1r0)lo

)
/264

⌋
5: madc.hi.u64 res, a1, γ0, res
6: mad.lo.u64 res, a1, γ1, res

▷ res = (a0r1)hi + (a1r0)hi + (a1r1)lo
7: mul.lo.u64 res, res, q
8: sub.u64 res, a0, res ▷ res = a0 − (res ∗ q)lo
9: sub.s64 res, res, q
10: shr.s64 tmp, res, 63
11: and.b64 tmp, tmp, q
12: add.s64 res, res, tmp

4.2 NTT implementation and trade-offs

A full transformation of a (N − 1)-degree polynomial takes logN layers. Each layer contains the processing
of N/2 butterfly operations, of which the inputs are two coefficients and the corresponding root. Throughout
this paper, we apply the hierarchical implementation [30,33] and divide the procedure into two steps, yielding
two kernels that comprise an (I)NTT execution and are responsible for processing different layers respectively,
namely, l1 and l2 layers, where logN = l1 + l2. For compatibility, we provide a generic GPU implementation
of (I)NTT that works for all cyclotomic rings with power-of-two orders in the range {211, 212, · · · , 217}.
Additionally, we implement two versions of (I)NTT, one focusing on better performance and the other on
using less resource, taking into account the features of different platforms in IoT scenarios.

Previous work shows that setting l1 and l2 close to 1
2 logN is the most efficient method [10], however,

the IO latency is not taken into account. For example, in [33] the authors fixed l1 = 8 and obtain 14- to
17-layer (I)NTT implementation by adjusting l2. In each Kernel, they instantiate it with 256 threads and
used a fixed 8 per-thread implementation, which requires the execution of a data interaction between RF
and SMEM every three layers. Considering that access to RF is more efficient than SMEM, we explore a
mix-type memory usage strategy, which is different from the prior implementations [22, 33]. Figure 3 shows
the process and data access pattern of the two kernels.

Performance-prior version Let λ denote the batch size of RNS-NTT and Kl denote the kernel that
performs l-point (I)NTT. We instantiate the Kl1 and Kl2 kernels with λN/ρ threads, where each thread
performs ρ per-thread in-place (I)NTT. The Kl1 kernel is responsible for executing 1 to 6 layers of the NTT.
For those that require only three layers or less, we load the data directly from GMEM into RF and let ρ = 2,
4, and 8 corresponding to the cases where l1 ∈ {1, 2, 3}, respectively. For l1 ∈ {4, 5, 6}, we let ρ = 8 and
exchange the data in the RF through the SMEM. In the Kl2 kernel, we set l2 = 11, store the data in SMEM,
and fix ρ = 2. With this instantiation, we can set aside more RF resources, making other operations faster
and with lower latency.

Memory-prior version To perform an N -point NTT with a batch size β, it requires a Nβ/128 KB and
Nβ/64 KB of storage, respectively, to hold the coefficients and precomputed table of uint 64 type, e.g., 3β
MB in total in the case N = 217. However, there may not be enough resources for storage-constrained devices,
making the execution impossible. Several prior works [35, 37] proposed generating the twiddle factors in an
on-the-fly manner to reduce the size of precomputed table. In detail, instead of generating all twiddle factors,
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Fig. 3: Execution and memory access pattern of the proposed (I)NTT kernel.

this method only needs to store some of them in advance, and the rest can be generated by these. In [35],
the authors applied a base-1024 approach on the last one or two layers, and the number of precomputed
twiddle factors can be at most reduced to (N/4 + (1024 +N/1024))β, in which the computation of ω × x is
performed by calculating x′ = ω1 × x and x = ω2 × x′, where ω = ω1ω2. However, this approach does not
minimize the table size.

In our implementation of the memory-prior version, we follow [35] while exploiting a base-D approach,
where D is a power of 2. We adjust the value of D to logD = 1

2 logN so that the number of precomputed
twiddle factors is optimal for every N , i.e., D+N/D. Taking N = 217 as an example, in which case D = 256,
through this method, we can reduce the precomputed table size from 2β MB to 12β KB, which means a
170.7× improvement.

Constant-time PTX butterfly For the butterfly operation, we apply the Harvey’s algorithm [32] and
build inline device functions with CUDA PTX instruction set. To eliminate the modular multiplication of
n−1 in the INTT, we adopt the approach following [33,38], which modifies the precomputed table of INTT by
multiplying with 1

2 . In GS butterfly this modification only affects one operand, thus previous works [33, 38]
performed division by 2 on the other operand with a 1-bit shift to the right, where odd numbers need to
be added with q to ensure correctness. While this is efficient, it is risky because the parity of the current
operand can be inferred through energy analysis, thereby leaking information. To solve this, we multiply the
least significant bit of the operand by q and add the result to it. This introduces one multiplication, but
ensures a constant-time execution.

4.3 Fast basis conversion

The fast basis conversion ConvQ→P [11] offers an efficient approach to convert the basis of the residues of a
polynomial, of which the new basis is coprime to the original basis Q. In the SEAL library, the polynomials
are stored in RNS representation, which forms a matrix of size |Q| ×N , and the addresses of the residues of
the same modulus are contiguous. Let I denote the input matrix of residues basis Q, O denote the output
matrix of residues under basis P , andC denote the conversion matrix. The SEAL library conducts an implicit
matrix transposition through the iterators and obtains the conversion result through computing IT ·C = OT .
However, this transposition triggers the problem of non-unit-stride global memory access on the GPU, which
should be avoided because of its high IO latency.

For this consideration, we form a 3-dimension kernel with N threads, where the x-, y-, and z-axis are set
based on the block size, |Q|, and ciphertext size, i.e., the number of polynomials, respectively. Each thread
takes a row of the C matrix and a column of the I matrix, performs the inner product by an internal loop,
and stores the result in the RF. We use two 64-bit registers to form a 128-bit accumulator to store the result.
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Algorithm 3 CT Butterfly in CUDA PTX Assembly

Input: 0 ⩽ X,Y < 4q, ϖ = 264, q < ϖ/4, 0 < W < q, W ′ = ⌊Wϖ/q⌋
Output: 0 ⩽ X ′, Y ′ < 4q
1: sub.s64 X,X, 2q
2: shr.s64 T,X, 63
3: and.b64 T, T, 2q
4: add.s64 X,X, T ▷ (X > 2q) ? X − 2q : X
5: mul.hi.u64 T, Y,W ′

6: mul.lo.u64 T, T, q
7: mul.lo.u64 V, Y,W
8: sub.u64 V, V, T ▷ V = [WY ]ϖ − [⌊W ′Y

ϖ
⌋ · q]ϖ

9: add.u64 Y,X, 2q
10: sub.u64 Y, Y, V ▷ Y ′ = X − V + 2q
11: add.u64 X,X, V ▷ X ′ = X + V

Algorithm 4 GS Butterfly in CUDA PTX Assembly

Input: 0 ⩽ X,Y < 2q, ϖ = 264, q < ϖ/4, 0 < W < q, W ′ = ⌊Wϖ/q⌋
Output: 0 ⩽ X ′, Y ′ < 2q
1: add.u64 T,X, 2q
2: sub.u64 T, T, Y
3: add.u64 X,X, Y
4: sub.s64 X,X, 2q
5: shr.s64 V,X, 63
6: and.b64 V, V, 2q
7: add.s64 X,X, V
8: and.b64 V, T, 1 ▷ Judge parity
9: mul.lo.u64 V, V, q
10: add.u64 X,X, V
11: shr.s64 X,X, 1 ▷ X ′ = (X+Y )

2

12: mul.hi.u64 V, T,W ′

13: mul.lo.u64 V, V, q
14: mul.lo.u64 Y, T,W
15: sub.u64 Y, Y, V ▷ Y ′ = W (X−Y )

2
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Fig. 4: Fused homomorphic multiplication kernel.

A special case is that in the BEHZ variant of BFV [11], it requires converting the residues from base
Q to another base extended by an extra modulus m̃. In SEAL, it is performed by calling two individual
conversions respectively. We combine these two processes in our GPU implementation, i.e., a thread takes
the residues modulo pi and m̃, and one column of the I matrix, performs two vector inner products and
stores the results in two 128-bit accumulators, respectively. This approach reduces the memory access but
increases the computational overhead of the threads, since the product of the residues of modulo m̃ by the I
matrix is repeated by all threads, but due to the parallelism of the computation, it introduces no additional
time consumption.

4.4 Homomorphic multiplication

In the SEAL library, polynomials are represented in different forms, i.e., only CKKS keeps the elements in
the NTT form. To reduce the computation overhead, the (I)NTT should be conducted for the ciphertexts
of BGV and BFV. Meanwhile, the design of BFV makes it require more operations in multiplication, such
as basis conversion and scale, which is different from BGV. For compatibility, we exploit a generic RNS
multiplication kernel (GRM) that works for both BGV and BFV, which fuse the NTT, element-wise product
and INTT kernels into one kernel so that the interaction with GMEM can be reduced to the load and store
operations required by the (I)NTT themselves. The logic flow and data access pattern is shown in Figure 4.

Generic RNS multiplication kernel Let ĉt = NTT(ct) and the variables containing subscript tmp be the
intermediate value in the (I)NTT processing. In our GRM kernel, first, we load the ciphertexts ct = (c0, c1)
and ct′ = (c′0, c

′
1) from GMEM and transform them into NTT domain using the Kn1

and Kn2
kernel defined

before. Then, each thread loads data to the RF, computes the triple ĉ = ([c0·c′0]Ql
, [c0·c′1+c1·c′0]Ql

, [c1·c′1]Ql
)

and stores the results back to the SMEM. After that, we perform INTT to the elements in the triple
respectively. During the entire process, the remaining load and store operations over GMEM are that required
in performing (I)NTT on ct, ct′ and c, which in nature cannot be omitted. To fully utilize the RF, we
instantiate the Kn2

kernel with n2 = 11 that forms the 2 per-thread in-place n2-point NTT. Through this
configuration we can reserve enough registers for the computation of the triple, which ensures no register
overflow will occur that impact the correctness in launching kernel.

One thing to note is that, for implementations with different parameters, especially N , kernel fusing does
not always improve the performance. In the original procedure, i.e., multiplication is composed by several
kernels containing the NTT, element-wise product and INTT, where blocks are scheduled by different SMs
and executed in parallel. However, in the GRM kernel, they are executed sequentially. Therefore, for high
performance platforms with a large number of SMs and a small N , it is more efficient not to use kernel
fusing. In order to obtain the bounds between the two methods, we have performed adequate experiments
and given them in detail in Sec 5.3.
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Table 1: Testing environment.
Target platform Middle-layer device Cloud device

GPU Jetson AGX Xavier Tesla V100S PCIe
GPU cores 512 5120
GPU frequency 1.37 GHz 1.60 GHz
SMs 8 80
GPU memory 32 GB (unified) 32 GB
Compute capability 7.2 7.0
CUDA version 11.4 11.6

CPU NVIDIA Carmel Intel Xeon Silver
64-bit ARMv8.2 4210R

CPU cores 8 10
CPU frequency 2.26 GHz 2.40 GHz
CPU memory 32 GB (unified) 32 GB
CPU Cache 8 MB L2 10 MB L2

4 MB L3 13.75 MB L3

Kernel fusing in BFV Our generic design is also applicable to the full RNS homomorphic multiplication
applied in the BEHZ variant of BFV [11], which is implemented in SEAL. Here, we follow the notation
in [11], and denote the extended base as B ∪ {msk} ∪ {m̃}, or Bsk ∪ {m̃}, where Bsk = B ∪ {msk}, B is
the auxiliary base with v moduli, and msk and m̃ are two extra moduli. The main function of this process
(described in Algorithm 3, [11]) is the fast base conversion, which is performed to compute the product in an
extended basis and to achieve the approximate rounding and transitional step. Considering the structure of
the operands and memory usage, we exploit the kernel fusing (KF) approach and fuse the entire process into
four kernels. Note that kernel fusing allows data reuse that saves data access instructions. Fusing a function
consists of more than one kernel, will reserve enough memory resources for each kernel, thus reducing the
overall IO latency.

In our implementation, first, we fuse the Small Montgomery Reduction into the fast base conversion
kernel, using the method described in Sec 4.3. After fusing, the kernel performs the conversion of ct and ct′

from base Ql to Bsk ∪ {m̃}, yielding new ciphertexts with q-overflows, which are then reduced for elements
in Bsk through the Small Montgomery Reduction. Second, we apply our generic multiplication kernel to
multiply the two ciphertexts in the NTT domain, by setting the modulus size to |Ql ∪ Bsk|. Third, we fuse
the scaling into the conversion to Bsk. In the last kernel, which performs the Shenoy and Kumaresan like
conversion [40], we apply a similar method as the first one and let each thread performs the vector inner
products as well as the computation of αsk. In the four kernels, a block consists of 128 threads and loads
128 columns of the I matrix, which is a multiple of 32, so that all memory write requests of a warp fall into
distinct memory banks and will not cause bank conflict.

5 Results and Comparison

5.1 Testing environment

To evaluate the performance of CARM, we implement it on two NVIDIA GPUs, one is the Jetson AGX
Xavier developer kit and the other is the Tesla V100S PCIe, targeting the embedded and server-grade
platforms. The detailed testing environment hardware configurations and the corresponding platforms are
summarized in Table 1. We integrate our GPU implementation into Microsoft SEAL library v4.0 [39] and all
implementations are profiled with the same build and execute environment. For all experiments, we compile
the C++ implementation using g++ 11.1 and the GPU implementation using CUDA 11 on Ubuntu 20.04.

All the parameters we use all reach 128-bit security according to the LWE estimator [5], except benching
the batched (I)NTT with |N | = 14 and batch size β = 21, because we wanted to be consistent with the
parameters selected in [35] for better comparisons of performance.
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Table 2: The performance of our (I)NTT implementation on Tesla V100S, CPU baseline, and [38].
|N | Batch Our work (PP) CPU [38] NTT speedup

size NTT INTT NTT INTT NTT vs. CPU vs. [38]

11 1 12.3 12.3 35.1 24.8 12.5 2.9× 1.0×
12 1 14.4 15.4 71.8 54.0 22.5 5.0× 1.6×
13 1 15.4 16.4 151.2 115.0 27.0 9.8× 1.8×
14 1 17.4 18.4 294.9 242.8 29.0 16.9× 1.7×
15 1 16.4 16.4 633.6 486.1 39.0 38.6× 2.4×
16 1 16.4 17.4 1299.5 1022.7 - 79.2× -
17 1 19.5 19.5 2746.2 2176.0 140.8×

Table 3: The performance of our batched (I)NTT implementation on Tesla V100S, CPU baseline, and [35].
|N | Batch Our work (PP) CPU [35] NTT speedup

size NTT INTT NTT INTT NTT vs. CPU vs. [35]

12 2 15.3 15.4 142.8 108.0 9.3×
13 4 15.4 16.4 563.0 431.0 - 36.7× -
14 21 46.0 49.2 6264.0 4814.3 44.1 136.0×
15 21 68.6 71.7 13137.5 10258.9 84.2 191.6× 1.2×
16 21 123.9 132.1 27682.2 21805.0 156.3 223.5× 1.3×
17 21 231.4 240.6 58182.5 46879.1 304.2 251.4× 1.3×

5.2 NTT

Our generic and scalable design of (I)NTT kernels provides several ways of combining Kl1 and Kl2 for different
parameters. The l2 = 11 with ρ = 2 configuration targets for less SMEM usage with a high SM occupancy,
and reserve sufficient RF to store the temp element after fusing multiple kernels into one. Table 2 and 3
present the performance of our implementation of (I)NTT with the performance-prior (PP) configuration on
Tesla V100S, which are different in the batch size, and the comparisons with the CPU baseline implemented
in SEAL v4.0 [39] and related works [35, 38]. Additionally, we provide the benchmark of both performance-
prior (PP) and memory-prior (MP) configuration of (I)NTT on Jetson AGX Xavier, as well as the CPU
baseline in Table 4. Since there is no (I)NTT implementation on embedded GPUs yet, we only list the
comparison with the CPU implementation. Here, [38] is a recent published work that reports the speed of
single (I)NTT with |N | ∈ [11, 15] on Tesla V100, and in [35] the authors give the execution time of NTT
with |N | ∈ [14, 17] batch size β = 21 on NVIDIA Titan V, in which the twiddle factors of the last layer are
computed on-the-fly.

In the case of performing a single transformation, our GPU implementation provides 2.9× to 254.1×
speedup on V100S and 1.1× to 5.7× speedup on AGX Xavier compared to the CPU baseline. Meanwhile,
the speedup factor grows rapidly with the polynomial degree and batch size, and we improve the performance
up to 140.8× and 254.1× correspondingly for single and batched NTT when |N | = 17. Our implementation
outperforms [38] and [35] by 1.0× to 2.4×, and offers a larger parameter set. Although our implementation is a
bit slower than [35] when (|N |, β) = (14, 21), this set of parameters does not satisfy the security requirement.
Meanwhile, they employ non-constant-time implementation that may leak the parity of operands [33, 35].
Compared to their approach, we offer constant-time implementation of (I)NTT supports |N | ∈ [11, 17], which
is in nature generic and scalable and suitable for many scenarios.

To measure the impact of our MP approach on the size of the precomputed TW tables, we present the
results of different implementations in Table 5. Note that this is the size of the table needed for a single
NTT, and the results of [35] are given as the smallest size that their implementation can lead to. Our
implementation has a significant effect on reducing the table size, by a factor of 21.3 to 170.7 compared to
the method without MP. Additionally, we achieve 20.1× to 44.2× improvements against [35].

14



Table 4: The performance of our batched (I)NTT implementation on Jetson AGX Xavier and CPU baseline.
|N | Batch Our work (PP) Our work (MP) CPU Speedup

size NTT INTT NTT INTT NTT INTT

11 1 111.9 110.8 150.8 162.0 199.6 122.7 1.8×/1.1×
12 1 153.2 154.8 186.2 210.0 211.0 234.5 1.4×/1.5×
13 1 159.0 170.9 217.2 246.4 372.2 497.8 2.3×/2.9×
14 1 215.8 248.0 282.3 317.3 738.8 856.7 3.4×/3.5×
15 1 308.7 336.2 404.1 459.5 1384.3 1408.4 4.5×/4.2×
16 1 564.9 624.1 769.3 902.7 3011.6 3000.4 5.3×/4.8×
17 1 1079.4 1170.4 1559.8 1801.2 5931.1 6253.2 5.5×/5.3×
12 2 160.2 163.7 196.1 222.7 275.1 272.1 1.7×/1.7×
13 4 375.0 431.3 451.4 519.4 1284.4 1278.5 3.4×/3.0×
14 8 1440.5 1603.9 1801.5 2040.7 6520.8 5512.9 4.5×/3.4×
15 16 3944.3 4070.1 5562.1 6305.6 21108.4 23246.5 5.4×/5.7×

Table 5: The TW table size of the baseline implementation, [35], and our MP method (measured in KB).
|N | Baseline [35] Our work Improvement

(MP) vs. CPU vs. [35]

11 32 1.5 21.3×
12 64 - 2 32.0× -
13 128 3 42.7×
14 256 80.25 4 64.0× 20.1×
15 512 144.5 6 85.3× 24.1×
16 1024 273 8 128.0× 34.1×
17 2048 530 12 170.7× 44.2×

5.3 Homomorphic multiplication

In this section, we analyze the performance impact of our implementations using different optimization
strategies, as well as the comparisons with related works.

Because we believe that kernel fusing does not improve the performance in all cases, we test the execution
time of the two methods to obtain the bound, i.e., with or without GRM, respectively, where the results of
|N | = 14 and 15 on the Tesla V100S are shown in Fig. 5a and 5b. From our experiments, we find that the
method without GRM is faster when |N | is less than 14. This result starts to change at |N | = 14 and the
method with GRM outperforms the other when the number of moduli is greater than 6. Additionally, GRM
shows more advantages when |N | and the modulus count becomes larger. Throughout this work, we apply
this bound and combine both methods to get better performance.

Based on this, we evaluate the performance of our optimized homomorphic multiplication of BGV, BFV
and CKKS. Table 6 summarizes the execution time on a single-thread CPU, our GPU implementation on
Tesla V100S, and some related works, where [4] and [33] are the state-of-the-art implementations of BFV
and CKKS, and [6] and [8] are some recent works. The target platforms in these works have computing
capability similar to ours. Although these works do not cover as many parameters of fully homomorphic
encryption schemes in practice as we do, we still find adequate data for comparison. Additionally, we provide
the performance on Jetson AGX Xavier in Table 7. Compared to the CPU baseline, our GPU implementation
provides up to 378.4× speedup for BGV, 234.5× speedup for BFV, and 287.2× speedup for CKKS on Tesla
V100S, and 8.8×, 9.2×, and 10.3× on Jetson AGX Xavier. Meanwhile, our implementation outperforms the
works listed in Table 6, which shows the impact of our optimizations.

5.4 Discussions

Resistance to side-channel leakage The butterfly and reduction operations play important roles in the
implementation of HE schemes. Unfortunately, the majority open-source libraries and previous works use
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Fig. 5: Performance of the generic multiplication before and after fusing.

Table 6: Performance of homomorphic multiplication on Tesla V100S and comparisons with other works.
|N | l BGV BFV CKKS [4] [6] [8] [33]

GPU CPU Speedup GPU CPU Speedup GPU CPU Speedup P100 K80 V100 V100

12 2 0.083 1.754 21.1× 0.167 4.049 24.2× 0.024 0.144 6.0× 1.833 1.214 -
13 4 0.090 5.130 57.0× 0.189 16.213 85.8× 0.023 0.639 27.8× 3.538 3.061 0.403
14 8 0.127 20.625 162.4× 0.386 71.727 185.8× 0.031 2.487 80.2× 11.747 13.914 0.742 -
15 16 0.355 86.342 243.2× 1.608 365.014 227.0× 0.059 9.988 169.3× 2.388
16 32 1.080 361.504 334.7× 9.209 2159.234 234.5× 0.157 40.362 257.1× - - 33.577 17.4
17 32 1.988 752.253 378.4× 19.463 4546.390 233.6× 0.281 80.710 287.2× 7.96

Table 7: Performance of homomorphic multiplication on Jetson AGX Xavier.
|N | l BGV BFV CKKS

GPU CPU Speedup GPU CPU Speedup GPU CPU Speedup

12 2 1.048 4.363 4.2× 2.880 16.176 5.6× 0.173 0.723 4.2×
13 4 2.502 14.115 5.6× 8.800 65.036 7.4× 0.395 2.186 5.5×
14 8 9.549 56.164 5.9× 37.756 258.971 6.9× 1.006 8.862 8.8×
15 16 24.946 218.688 8.8× 112.884 1043.381 9.2× 3.380 34.726 10.3×
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compiler-level optimization as a compensation to eliminate time variance. This poses a potential threat, as
the study has shown that simple modifications to the code under this protection can reduce the hardness of
the R-LWE problem [24]. In this paper, we use a constant-time design for all low-level arithmetic operations
with the least possible performance loss. This technique brings an additional benefit, as an unbalanced
execution will introduce thread divergences in warps, making different execution paths have to be serialized.
We believe that such a countermeasure is worthwhile in two ways: first, it reduces the potential leakage of
secret information; second, it increases the instruction throughput, which contributes to the efficiency.

Applicability of proposed approaches Our design is generic and provides an optimization approach
for GPU implementations of other homomorphic schemes and on other platforms. The difference of GPUs
is mainly in terms of resource and computational capability. For different fully homomorphic encryption
schemes, especially those based on RLWE, the low-level operations have low arithmetic density and share
similar constructions. In our implementation, firstly, we propose some general designs with adjustable param-
eters that are scalable to be chosen according to the specific situation. Second, we provide both performance-
prior and memory-prior approaches that can be applied to devices with different computational capabilities.
Additionally, we use a memory-centric optimization approach based on kernel fusing that reduces memory
accesses. We also provide the impact of kernel fusing on performance, giving a choice between different
implementation approaches. In summary, our approach is meaningful for the optimization of schemes on
various platforms.

6 Conclusion

In this work, we present CARM, the first optimized GPU implementation of word-wise homomorphic en-
cryption schemes in IoT scenario, covering BGV, BFV and CKKS. Our work focuses on homomorphic
multiplication, and offers various trade-offs between computational efficiency and memory consumption for
deployment on different platforms. We provide evaluations on two different GPUs, targeting the embedded
and cloud devices, and the results demonstrate the effectiveness of our approaches. Our generic and para-
metric design is applicable to GPU implementations of other functions, schemes, and on other platforms,
which will be our future work.

References

1. Heaan. https://github.com/snucrypto/HEAAN (Apr 2022)
2. Helib. https://github.com/homenc/HElib (Apr 2022)
3. Palisade. https://gitlab.com/palisade (Apr 2022)
4. Al Badawi, A., Veeravalli, B., Mun, C.F., Aung, K.M.M.: High-performance fv somewhat homomorphic encryption

on gpus: An implementation using cuda. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(2), 70–95 (2018). https://doi.org/10.13154/tches.v2018.i2.70-95

5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–
203 (2015), http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

6. Alves, P.G.M.R., Ortiz, J.N., Aranha, D.F.: Faster homomorphic encryption over gpgpus via hierarchical
dgt. In: Financial Cryptography and Data Security. pp. 520–540. Lecture Notes in Computer Science (2021).
https://doi.org/10.1007/978-3-662-64331-0 27

7. Aydin, F., Karabulut, E., Potluri, S., Alkim, E., Aysu, A.: Reveal: Single-trace side-channel leakage of the seal
homomorphic encryption library. IACR Cryptol. ePrint Arch. 2022, 204 (2022)

8. Badawi, A.A., Hoang, L., Mun, C.F., Laine, K., Aung, K.M.M.: Privft: Private and fast text classification with
homomorphic encryption. IEEE Access 8, 226544–226556 (2020). https://doi.org/10.1109/access.2020.3045465

9. Badawi, A.A., Veeravalli, B., Mi Aung, K.M.: Faster number theoretic transform on graphics processors for ring
learning with errors based cryptography. In: 2018 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI). pp. 26–31 (2018). https://doi.org/10.1109/soli.2018.8476725

10. Bailey, D.H.: Ffts in external of hierarchical memory. In: Proceedings of the 1989 ACM/IEEE conference on
Supercomputing - Supercomputing ’89. pp. 234–242 (1989). https://doi.org/10.1145/76263.76288

17

https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://gitlab.com/palisade
https://doi.org/10.13154/tches.v2018.i2.70-95
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-662-64331-0_27
https://doi.org/10.1109/access.2020.3045465
https://doi.org/10.1109/soli.2018.8476725
https://doi.org/10.1145/76263.76288


11. Bajard, J., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like somewhat homomorphic encryption
schemes. In: Selected Areas in Cryptography - SAC 2016. pp. 423–442. Lecture Notes in Computer Science (2017).
https://doi.org/10.1007/978-3-319-69453-5 23

12. Barrett, P.: Implementing the rivest shamir and adleman public key encryption algorithm on a standard digital
signal processor. In: Advances in Cryptology - CRYPTO 1986. Lecture Notes in Computer Science, vol. 263, pp.
311–323 (1986). https://doi.org/10.1007/3-540-47721-7 24

13. Boemer, F., Kim, S., Seifu, G., Souza, F.D.M.d., Gopal, V.: Intel hexl: Accelerating homomorphic encryption with
intel avx512-ifma52. In: WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. pp. 57–62 (2021). https://doi.org/10.1145/3474366.3486926

14. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler, G., Stehlé,
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